WorldWideScience

Sample records for satellite goes-r series

  1. GOES-R: Satellite Insight

    Science.gov (United States)

    Fitzpatrick, Austin J.; Leon, Nancy J.; Novati, Alexander; Lincoln, Laura K.; Fisher, Diane K.

    2012-01-01

    GOES-R: Satellite Insight seeks to bring awareness of the GOES-R (Geostationary Operational Environmental Satellite -- R Series) satellite currently in development to an audience of all ages on the emerging medium of mobile games. The iPhone app (Satellite Insight) was created for the GOES-R Program. The app describes in simple terms the types of data products that can be produced from GOES-R measurements. The game is easy to learn, yet challenging for all audiences. It includes educational content and a path to further information about GOESR, its technology, and the benefits of the data it collects. The game features action-puzzle game play in which the player must prevent an overflow of data by matching falling blocks that represent different types of GOES-R data. The game adds more different types of data blocks over time, as long as the player can prevent a data overflow condition. Points are awarded for matches, and players can compete with themselves to beat their highest score.

  2. Post launch calibration and testing of the Advanced Baseline Imager on the GOES-R satellite

    Science.gov (United States)

    Lebair, William; Rollins, C.; Kline, John; Todirita, M.; Kronenwetter, J.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United State's National Oceanic and Atmospheric Administration. The first launch of the GOES-R series is planned for October 2016. The GOES-R series satellites and instruments are being developed by the National Aeronautics and Space Administration (NASA). One of the key instruments on the GOES-R series is the Advance Baseline Imager (ABI). The ABI is a multi-channel, visible through infrared, passive imaging radiometer. The ABI will provide moderate spatial and spectral resolution at high temporal and radiometric resolution to accurately monitor rapidly changing weather. Initial on-orbit calibration and performance characterization is crucial to establishing baseline used to maintain performance throughout mission life. A series of tests has been planned to establish the post launch performance and establish the parameters needed to process the data in the Ground Processing Algorithm. The large number of detectors for each channel required to provide the needed temporal coverage presents unique challenges for accurately calibrating ABI and minimizing striping. This paper discusses the planned tests to be performed on ABI over the six-month Post Launch Test period and the expected performance as it relates to ground tests.

  3. Geostationary Operational Environmental Satellites (GOES): R series hyperspectral environmental suite (HES) overview

    Science.gov (United States)

    Martin, Gene; Criscione, Joseph C.; Cauffman, Sandra A.; Davis, Martin A.

    2004-11-01

    The Hyperspectral Environmental Suite (HES) instrument is currently under development by the NASA GOES-R Project team within the framework of the GOES Program to fulfill the future needs and requirements of the National Environmental Satellite, Data, and Information Service (NESDIS) Office. As part of the GOES-R instrument complement, HES will provide measurements of the traditional temperature and water vapor vertical profiles with higher accuracy and vertical resolution than obtained through current sounder technologies. HES will provide measurements of the properties of the shelf and coastal waters and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). The HES team is forging the future of remote environmental monitoring with the development of an operational instrument with high temporal, spatial and spectral-resolution and broad hemispheric coverage. The HES development vision includes threshold and goal requirements that encompass potential system solutions. The HES team has defined tasks for the instrument(s) that include a threshold functional complement of Disk Sounding (DS), Severe Weather/Mesoscale Sounding (SW/M), and Shelf and Coastal Waters imaging (CW) and a goal functional complement of Open Ocean (OO) imaging, and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). To achieve the best-value procurement, the GOES-R Project has base-lined a two-phase procurement approach to the HES design and development; a Formulation/study phase and an instrument Implementation phase. During Formulation, currently slated for the FY04-05 timeframe, the developing team(s) will perform Systems Requirements Analysis and evaluation, System Trade and Requirements Baseline Studies, Risk Assessment and Mitigation Strategy and complete a Preliminary Conceptual Design of the HES instrument. The results of the formulation phase will be leveraged to achieve an effective and efficient system solution during

  4. Post launch calibration and testing of the Geostationary Lightning Mapper on GOES-R satellite

    Science.gov (United States)

    Rafal, Marc; Clarke, Jared T.; Cholvibul, Ruth W.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 μs) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  5. Calibration/validation strategy for GOES-R L1b data products

    Science.gov (United States)

    Fulbright, Jon P.; Kline, Elizabeth; Pogorzala, David; MacKenzie, Wayne; Williams, Ryan; Mozer, Kathryn; Carter, Dawn; Race, Randall; Sims, Jamese; Seybold, Matthew

    2016-10-01

    The Geostationary Operational Environmental Satellite-R series (GOES-R) will be the next generation of NOAA geostationary environmental satellites. The first satellite in the series is planned for launch in November 2016. The satellite will carry six instruments dedicated to the study of the Earth's weather, lightning mapping, solar observations, and space weather monitoring. Each of the six instruments require specialized calibration plans to achieve their product quality requirements. In this talk we will describe the overall on-orbit calibration program and data product release schedule of the GOES-R program, as well as an overview of the strategies of the individual instrument science teams. The Advanced Baseline Imager (ABI) is the primary Earth-viewing weather imaging instrument on GOES-R. Compared to the present on-orbit GOES imagers, ABI will provide three times the spectral bands, four times the spatial resolution, and operate five times faster. The increased data demands and product requirements necessitate an aggressive and innovative calibration campaign. The Geostationary Lightning Mapper (GLM) will provide continuous rapid lightning detection information covering the Americas and nearby ocean regions. The frequency of lightning activity points to the intensification of storms and may improve tornado warning lead time. The calibration of GLM will involve intercomparisons with ground-based lightning detectors, an airborne field campaign, and a ground-based laser beacon campaign. GOES-R also carries four instruments dedicated to the study of the space environment. The Solar Ultraviolet Imager (SUVI) and the Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS) will study solar activity that may affect power grids, communication, and spaceflight. The Space Environment In-Situ Suite (SEISS) and the Magnetometer (MAG) study the in-situ space weather environment. These instruments follow a calibration and validation (cal/val) program that relies on

  6. The solar panels on the GOES-L satellite are deployed

    Science.gov (United States)

    1999-01-01

    Loral workers at Astrotech, Titusville, Fla., check out the solar panels of the GOES-L weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  7. Improving precipitation estimates over the western United States using GOES-R precipitation data

    Science.gov (United States)

    Karbalaee, N.; Kirstetter, P. E.; Gourley, J. J.

    2017-12-01

    Satellite remote sensing data with fine spatial and temporal resolution are widely used for precipitation estimation for different applications such as hydrological modeling, storm prediction, and flash flood monitoring. The Geostationary Operational Environmental Satellites-R series (GOES-R) is the next generation of environmental satellites that provides hydrologic, atmospheric, and climatic information every 30 seconds over the western hemisphere. The high-resolution and low-latency of GOES-R observations is essential for the monitoring and prediction of floods, specifically in the Western United States where the vantage point of space can complement the degraded weather radar coverage of the NEXRAD network. The GOES-R rainfall rate algorithm will yield deterministic quantitative precipitation estimates (QPE). Accounting for inherent uncertainties will further advance the GOES-R QPEs since with quantifiable error bars, the rainfall estimates can be more readily fused with ground radar products. On the ground, the high-resolution NEXRAD-based precipitation estimation from the Multi-Radar/Multi-Sensor (MRMS) system, which is now operational in the National Weather Service (NWS), is challenged due to a lack of suitable coverage of operational weather radars over complex terrain. Distribution of QPE uncertainties associated with the GOES-R deterministic retrievals are derived and analyzed using MRMS over regions with good radar coverage. They will be merged with MRMS-based probabilistic QPEs developed to advance multisensor QPE integration. This research aims at improving precipitation estimation over the CONUS by combining the observations from GOES-R and MRMS to provide consistent, accurate and fine resolution precipitation rates with uncertainties over the CONUS.

  8. NOAA Geostationary Operational Environmental Satellite (GOES) Imager Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Geostationary Operational Environmental Satellite (GOES) series provides continuous measurements of the atmosphere and surface over the Western Hemisphere....

  9. GOES-R Space Weather Data: Achieving User Ready Products

    Science.gov (United States)

    Rowland, W. F.; Tilton, M.; Redmon, R. J.; Goodman, S. J.; Comerford, M.

    2017-12-01

    Forecasters and the science community will rely on improved Space Weather products from the next generation of Geostationary Operational Environmental Satellite (GOES-R Series) for decades to come. Many issues must be successfully addressed in order to produce useful products. The instruments themselves and their basic scientific measurements (Level 1b data, i.e. L1b) must be calibrated and validated. Algorithms must be created to transform L1b into the specific environmental parameters that are of interest to forecasters and the community (Level 2+, i.e. L2+). In the case of Space Weather data, because the L2+ products are not generated within the core GOES-R Ground Segment, a separate system had to be developed in order to implement the L2+ products. Finally, the products must be made available to real time and retrospective users, as well as preserved for future generations. We give an overview of the path to production of the GOES-R Space Weather products, and the role of the National Centers for Environmental Information (NCEI) in this process.

  10. Development of IDEA product for GOES-R aerosol data

    Science.gov (United States)

    Zhang, Hai; Hoff, Raymond M.; Kondragunta, Shobha

    2009-08-01

    The NOAA GOES-R Advanced Baseline Imager (ABI) will have nearly the same capabilities as NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) to generate multi-wavelength retrievals of aerosol optical depth (AOD) with high temporal and spatial resolution, which can be used as a surrogate of surface particulate measurements such as PM2.5 (particulate matter with diameter less than 2.5 μm). To prepare for the launch of GOES-R and its application in the air quality forecasting, we have transferred and enhanced the Infusing satellite Data into Environmental Applications (IDEA) product from University of Wisconsin to NOAA NESDIS. IDEA was created through a NASA/EPA/NOAA cooperative effort. The enhanced IDEA product provides near-real-time imagery of AOD derived from multiple satellite sensors including MODIS Terra, MODIS Aqua, GOES EAST and GOES WEST imager. Air quality forecast guidance is produced through a trajectory model initiated at locations with high AOD retrievals and/or high aerosol index (AI) from OMI (Ozone Monitoring Instrument). The product is currently running at http://www.star.nesdis.noaa.gov/smcd/spb/aq/. The IDEA system will be tested using the GOES-R ABI proxy dataset, and will be ready to operate with GOES-R aerosol data when GOES-R is launched.

  11. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  12. Avoiding Stair-Step Artifacts in Image Registration for GOES-R Navigation and Registration Assessment

    Science.gov (United States)

    Grycewicz, Thomas J.; Tan, Bin; Isaacson, Peter J.; De Luccia, Frank J.; Dellomo, John

    2016-01-01

    In developing software for independent verification and validation (IVV) of the Image Navigation and Registration (INR) capability for the Geostationary Operational Environmental Satellite R Series (GOES-R) Advanced Baseline Imager (ABI), we have encountered an image registration artifact which limits the accuracy of image offset estimation at the subpixel scale using image correlation. Where the two images to be registered have the same pixel size, subpixel image registration preferentially selects registration values where the image pixel boundaries are close to lined up. Because of the shape of a curve plotting input displacement to estimated offset, we call this a stair-step artifact. When one image is at a higher resolution than the other, the stair-step artifact is minimized by correlating at the higher resolution. For validating ABI image navigation, GOES-R images are correlated with Landsat-based ground truth maps. To create the ground truth map, the Landsat image is first transformed to the perspective seen from the GOES-R satellite, and then is scaled to an appropriate pixel size. Minimizing processing time motivates choosing the map pixels to be the same size as the GOES-R pixels. At this pixel size image processing of the shift estimate is efficient, but the stair-step artifact is present. If the map pixel is very small, stair-step is not a problem, but image correlation is computation-intensive. This paper describes simulation-based selection of the scale for truth maps for registering GOES-R ABI images.

  13. The YORP effect on the GOES 8 and GOES 10 satellites: A case study

    Science.gov (United States)

    Albuja, Antonella A.; Scheeres, Daniel J.; Cognion, Rita L.; Ryan, William; Ryan, Eileen V.

    2018-01-01

    The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is a proposed explanation for the observed rotation behavior of inactive satellites in Earth orbit. This paper further explores the YORP effect for highly asymmetric inactive satellites. Satellite models are developed to represent the GOES 8 and GOES 10 satellites, both of which are currently inactive in geosynchronous Earth orbit (GEO). A simple satellite model for the GOES 8 satellite is used to analyze the short period variations of the angular velocity and obliquity as a result of the YORP effect. A more complex model for the rotational dynamics of the GOES 8 and GOES 10 satellites are developed to probe their sensitivity and to match observed spin periods and states of these satellites. The simulated rotation periods are compared to observations for both satellites. The comparison between YORP theory and observed rotation rates for both satellites show that the YORP effect could be the cause for the observed rotational behavior. The YORP model also predicts a novel state for the GOES 8 satellite, namely that it could periodically fall into a tumbling rotation state. Recent observations of this satellite are consistent with this prediction.

  14. Derivation and evaluation of land surface temperature from the geostationary operational environmental satellite series

    Science.gov (United States)

    Fang, Li

    The Geostationary Operational Environmental Satellites (GOES) have been continuously monitoring the earth surface since 1970, providing valuable and intensive data from a very broad range of wavelengths, day and night. The National Oceanic and Atmospheric Administration's (NOAA's) National Environmental Satellite, Data, and Information Service (NESDIS) is currently operating GOES-15 and GOES-13. The design of the GOES series is now heading to the 4 th generation. GOES-R, as a representative of the new generation of the GOES series, is scheduled to be launched in 2015 with higher spatial and temporal resolution images and full-time soundings. These frequent observations provided by GOES Image make them attractive for deriving information on the diurnal land surface temperature (LST) cycle and diurnal temperature range (DTR). These parameters are of great value for research on the Earth's diurnal variability and climate change. Accurate derivation of satellite-based LSTs from thermal infrared data has long been an interesting and challenging research area. To better support the research on climate change, the generation of consistent GOES LST products for both GOES-East and GOES-West from operational dataset as well as historical archive is in great demand. The derivation of GOES LST products and the evaluation of proposed retrieval methods are two major objectives of this study. Literature relevant to satellite-based LST retrieval techniques was reviewed. Specifically, the evolution of two LST algorithm families and LST retrieval methods for geostationary satellites were summarized in this dissertation. Literature relevant to the evaluation of satellite-based LSTs was also reviewed. All the existing methods are a valuable reference to develop the GOES LST product. The primary objective of this dissertation is the development of models for deriving consistent GOES LSTs with high spatial and high temporal coverage. Proper LST retrieval algorithms were studied

  15. GOES-16 Space Weather Data Availability and Applications

    Science.gov (United States)

    Tilton, M.; Rowland, W. F.; Codrescu, S.; Seaton, D. B.; Redmon, R. J.; Hsu, V.

    2017-12-01

    In November 2016, NOAA launched the first in the "R" series of Geostationary Operational Environmental Satellites, GOES-16. Compared to its GOES predecessors, the GOES-R series satellites provide improved in situ measurements of charged particles, higher cadence magnetic field measurements, and enhanced remote sensing of the sun through ultraviolet (UV) imagery and X-ray/UV irradiance. GOES-16 space weather instruments will nominally reach provisional status near the beginning of 2018. After this milestone has been achieved, NOAA's National Centers for Environmental Information (NCEI) will provide archive access to GOES-16 space weather data. This presentation will describe the status of the space weather instruments, including available products and their applicability for forecasters, modelers, academics, spacecraft operators, and other users. It will discuss the available access systems for all levels of data-raw telemetry (Level 0), science measurements in high resolution (L1b), and higher-level (L2+) products developed by NCEI scientists. Finally, it will cover NCEI's efforts to promote space weather awareness through data visualization tools and image dissemination via the Helioviewer project.

  16. The GOES-R Proving Ground: 2012 Update

    Science.gov (United States)

    Gurka, J.; Goodman, S. J.; Schmit, T.; Demaria, M.; Mostek, A.; Siewert, C.; Reed, B.

    2011-12-01

    The Geostationary Operational Environmental Satellite (GOES)-R will provide a great leap forward in observing capabilities, but will also offer a significant challenge to ensure that users are ready to exploit the vast improvements in spatial, spectral, and temporal resolutions. To ensure user readiness, forecasters and other users must have access to prototype advanced products well before launch, and have the opportunity to provide feedback to product developers and computing and communications managers. The operational assessment is critical to ensure that the end products and NOAA's computing and communications systems truly meet their needs in a rapidly evolving environment. The GOES-R Proving Ground (PG) engages the National Weather Service (NWS) forecast, watch and warning community and other agency users in pre-operational demonstrations of select products with GOES-R attributes (enhanced spectral, spatial, and temporal resolution). In the PG, developers and forecasters test and apply algorithms for new GOES-R satellite data and products using proxy and simulated data sets, including observations from current and future satellite instruments (MODIS, AIRS, IASI, SEVIRI, NAST-I, NPP/VIIRS/CrIS, LIS), lightning networks, and computer simulated products. The complete list of products to be evaluated in 2012 will be determined after evaluating results from experiments in 2011 at the NWS' Storm Prediction Center, National Hurricane Center, Aviation Weather Center, Ocean Prediction Center, Hydrometeorological Prediction Center, and from the six NWS regions. In 2012 and beyond, the PG will test and validate data processing and distribution systems and the applications of these products in operational settings. Additionally developers and forecasters will test and apply display techniques and decision aid tools in operational environments. The PG is both a recipient and a source of training. Training materials are developed using various distance training tools in

  17. New GOES satellite synchronized time code generation

    Science.gov (United States)

    Fossler, D. E.; Olson, R. K.

    1984-01-01

    The TRAK Systems' GOES Satellite Synchronized Time Code Generator is described. TRAK Systems has developed this timing instrument to supply improved accuracy over most existing GOES receiver clocks. A classical time code generator is integrated with a GOES receiver.

  18. Early Transition and Use of VIIRS and GOES-R Products by NWS Forecast Offices

    Science.gov (United States)

    Fuell, Kevin K.; Smith, Mathew; Jedlovec, Gary

    2012-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on the NPOESS Preparatory Project (NPP) satellite, part of the Joint Polar Satellite System (JPSS), and the ABI and GLM sensors scheduled for the GOES-R geostationary satellite will bring advanced observing capabilities to the operational weather community. The NASA Short-term Prediction Research and Transition (SPoRT) project at Marshall Space Flight Center has been facilitating the use of real-time experimental and research satellite data by NWS Weather Forecast Offices (WFOs) for a number of years to demonstrate the planned capabilities of future sensors to address particular forecast challenges through improve situational awareness and short-term weather forecasts. For the NOAA GOES-R Proving Ground (PG) activity, SPoRT is developing and disseminating selected GOES-R proxy products to collaborating WFOs and National Centers. SPoRT developed the a pseudo-Geostationary Lightning Mapper product and helped in the transition of the Algorithm Working Group (AWG) Convective Initiation (CI) proxy product for the Hazardous Weather Testbed (HWT) Spring Experiment,. Along with its partner WFOs, SPoRT is evaluating MODIS/GOES Hybrid products, which brings ABI-like data sets from existing NASA instrumentation in front of the forecaster for everyday use. The Hybrid uses near real-time MODIS imagery to demonstrate future ABI capabilities, while utilizing standard GOES imagery to provide the temporal frequency of geostationary imagery expected by operational forecasters. In addition, SPoRT is collaborating with the GOES-R hydrology AWG to transition a baseline proxy product for rainfall rate / quantitative precipitation estimate (QPE) to the OCONUS regions. For VIIRS, SPoRT is demonstrating multispectral observing capabilities and the utility of low-light channels not previously available on operational weather satellites to address a variety of weather forecast challenges. This presentation will discuss the results of

  19. Status of Land Surface Temperature Product Development at NOAA/NESDIS/STAR for JPSS and GOES-R Missions

    Science.gov (United States)

    Yu, Yunyue; Liu, yuling; yu, peng; Casiszar, Ivan; Zhou, Lihang

    2016-04-01

    Land surface temperature (LST) is of fundamental importance to many aspects of the geosciences, e.g., net radiation budget at the Earth surface, monitoring state of crops and vegetation, as well as an important indicator of both the greenhouse effect and the physics of land-surface processes at local through global scales. Satellite LST measurements provide unique data sources for regional and global coverage in fairly good temporal, spatial resolution and time span. Therefore, LST is one of baseline products in both JPSS and GOES-R satellite missions. The Center for SaTellite Applications and Research (STAR) of NOAA/NESDIS is responsible for developing high quality LST products for a variety of satellite missions including JPSS and GOES-R. The JPSS LST data, which is produced for each swath of observations, has reached its beta, provisional and validated stage 1 status in October 2013, May 2014, and December 2015, respectively. A routine validation and monitoring toolkit has been developed and its results are available through a public web site. Our validation results against the U.S. SURFRAD ground stations show that uncertainty of the VIIRS LST is less than 2.35K (vs. the JPSS mission requirement of 2.5K). Improvement of the JPSS LST product is on-going, which counts surface emissive variation explicitly in retrieval algorithm. Further, a gridded daily global LST product will be available by end of 2016. In terms of the GOES-R LST product, we have evaluated the retrieval algorithm using SEVIRI and AHI data as proxies. The evaluation results show that the accuracy of GOES-R LST is expected to be less than 2.30K (GOES-R mission requirement). The validation toolkit developed for JPSS mission will be extended and applicable for the GOES-R mission as well. A detailed Readiness, Implementation and Management Plan (RIMP) of GOES-R LST beta and provisional validation has been developed for the GOES-R launch that is scheduled in October 2016.

  20. SPoRT's Participation in the GOES-R Proving Ground Activity

    Science.gov (United States)

    Jedlovec, Gary; Fuell, Kevin; Smith, Matthew; Stano, Geoffrey; Molthan, Andrew

    2011-01-01

    The next generation geostationary satellite, GOES-R, will carry two new instruments with unique atmospheric and surface observing capabilities, the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM), to study short-term weather processes. The ABI will bring enhanced multispectral observing capabilities with frequent refresh rates for regional and full disk coverage to geostationary orbit to address many existing and new forecast challenges. The GLM will, for the first time, provide the continuous monitoring of total lightning flashes over a hemispherical region from space. NOAA established the GOES-R Proving Ground activity several years ago to demonstrate the new capabilities of these instruments and to prepare forecasters for their day one use. Proving Ground partners work closely with algorithm developers and the end user community to develop and transition proxy data sets representing GOES-R observing capabilities. This close collaboration helps to maximize refine algorithms leading to the delivery of a product that effectively address a forecast challenge. The NASA Short-term Prediction Research and Transition (SPoRT) program has been a participant in the NOAA GOES-R Proving Ground activity by developing and disseminating selected GOES-R proxy products to collaborating WFOs and National Centers. Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the SPoRT program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. Participation in the Proving Ground activities extends SPoRT s activities and taps its experience and expertise in diagnostic weather analysis, short-term weather forecasting, and the transition of research and experimental

  1. SPoRT Participation in the GOES-R and JPSS Proving Grounds

    Science.gov (United States)

    Jedlovec, Gary; Fuell, Kevin; Smith, Matthew

    2013-01-01

    For the last several years, the NASA Short-term Prediction Research and Transition (SPoRT) project at has been working with the various algorithm working groups and science teams to demonstrate the utility of future operational sensors for GOES-R and the suite of instruments for the JPSS observing platforms. For GOES-R, imagery and products have been developed from polar-orbiting sensors such as MODIS and geostationary observations from SEVIRI, simulated imagery, enhanced products derived from existing GOES satellites, and data from ground-based observing systems to generate pseudo or proxy products for the ABI and GLM instruments. The suite of products include GOES-POES basic and RGB hybrid imagery, total lightning flash products, quantitative precipitation estimates, and convective initiation products. SPoRT is using imagery and products from VIIRS, CrIS, ATMS, and OMPS to show the utility of data and products from their operational counterparts on JPSS. The products include VIIRS imagery in swath form, the GOES-POES hybrid, a suite of RGB products including the air mass RGB using water vapor and ozone channels from CrIS, and several DNB products. Over a dozen SPoRT collaborative WFOs and several National Centers are involved in an intensive evaluation of the operational utility of these products.

  2. A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R

    International Nuclear Information System (INIS)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael

    2014-01-01

    synergic use of two future geostationary satellites, GOES-R (Geostationary Operational Environmental Satellite R-series) and TEMPO (Tropospheric Emissions: Monitoring of Pollution). Strong synergy between GEOS-R and TEMPO are found especially in their characterization of surface bi-directional reflectance, and thereby, can potentially improve the AOD retrieval to the accuracy required by GEO-CAPE. - Highlights: • A numerical testbed for remote sensing of aerosols for any satellite/algorithm design. • Linearly and coupled scattering and radative transfer codes, optimization code included. • Hyperspectral study of gas absorption effect on retrievals of aerosol height. • Strong synergy between geo-satellites (GOES and TEMPO/GEO-CAPE) for aerosol retrieval. • Polarization in O 2 A band is sensitive to aerosol height over visibly bright surface

  3. New GOES-R Risk Reduction Activities at CIRA

    Science.gov (United States)

    Rogers, M. A.; Miller, S. D.; Grasso, L. D.; Haynes, J. M.; NOH, Y. J.; Forsythe, J.; Zupanski, M.; Lindsey, D. T.

    2017-12-01

    A team of atmospheric scientists at the Cooperative Institute for Research in the Atmosphere (CIRA) at the Colorado State University has been selected by the National Oceanic and Atmospheric Administration's (NOAA) GOES-R Risk Reduction (GOES-R3) science program to develop applications to enhance the utilization of the GOES-R sensors, including the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM). The selected project topics follow NOAA's Research and Development Objectives listed in its 5-year Strategic Plan. The projects will be carried out over a three-year period which started on 1 July 2017 and will end on 30 June 2019. CIRA is working on five GOES-R3 application developments: 1) Developing an Environmental Awareness Repertoire of ABI Imagery (`DEAR-ABII') to Advise the Operational Weather Forecaster. DEAR-ABII maximizes the vast potential of the new GOES-R/GOES-16 sensor technology. 2) GOES-R ABI channel differencing used to reveal cloud-free zones of `precursors of convective initiation'. This product identifies where convective initiation may occur in cloud free skies. 3) Improving the ABI Cloud Layers Product for Multiple Layer Cloud Systems and Aviation Forecast Applications. This project aims to improve the GOES-16 cloud layer product by providing information on the boundaries of cloud layers even when one layer overlies another. 4) Using the New Capabilities of GOES-R to Improve Blended, Multisensor Water Vapor Products for Forecasters. GOES-R TPW retrievals will be merged with TPW derived from polar orbiter and surface data to improve the operational NOAA blended TPW product. 5) Data assimilation of GLM observations in HWRF/GSI system. Assimilation of GOES-R GLM observations for the NOAA operational hurricane model with the goal to improve operational hurricane forecasting. Examples for each of these applications will be presented.

  4. After 10 years of service, NOAA retires GOES-12 satellite

    Science.gov (United States)

    NOAA HOME WEATHER OCEANS FISHERIES CHARTING SATELLITES CLIMATE RESEARCH COASTS CAREERS National oceans. In addition to GOES, NOAA also operates the polar operational environmental satellite (POES spacecraft. NOAA's mission is to understand and predict changes in the Earth's environment, from the depths

  5. Improving Satellite Quantitative Precipitation Estimation Using GOES-Retrieved Cloud Optical Depth

    Energy Technology Data Exchange (ETDEWEB)

    Stenz, Ronald; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kuligowski, Robert J.

    2016-02-01

    To address significant gaps in ground-based radar coverage and rain gauge networks in the U.S., geostationary satellite quantitative precipitation estimates (QPEs) such as the Self-Calibrating Multivariate Precipitation Retrievals (SCaMPR) can be used to fill in both the spatial and temporal gaps of ground-based measurements. Additionally, with the launch of GOES-R, the temporal resolution of satellite QPEs may be comparable to that of Weather Service Radar-1988 Doppler (WSR-88D) volume scans as GOES images will be available every five minutes. However, while satellite QPEs have strengths in spatial coverage and temporal resolution, they face limitations particularly during convective events. Deep Convective Systems (DCSs) have large cloud shields with similar brightness temperatures (BTs) over nearly the entire system, but widely varying precipitation rates beneath these clouds. Geostationary satellite QPEs relying on the indirect relationship between BTs and precipitation rates often suffer from large errors because anvil regions (little/no precipitation) cannot be distinguished from rain-cores (heavy precipitation) using only BTs. However, a combination of BTs and optical depth (τ) has been found to reduce overestimates of precipitation in anvil regions (Stenz et al. 2014). A new rain mask algorithm incorporating both τ and BTs has been developed, and its application to the existing SCaMPR algorithm was evaluated. The performance of the modified SCaMPR was evaluated using traditional skill scores and a more detailed analysis of performance in individual DCS components by utilizing the Feng et al. (2012) classification algorithm. SCaMPR estimates with the new rain mask applied benefited from significantly reduced overestimates of precipitation in anvil regions and overall improvements in skill scores.

  6. GOES-K solar panel inspection at Astrotech

    Science.gov (United States)

    1997-01-01

    Space Systems/LORAL employees inspect solar panels for the GOES-K weather satellite in the Astrotech facility at Titusville, Fla., as they begin final testing of the imaging system, communications and power systems of the spacecraft. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The launch of the satellite from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) is currently planned for Apr. 24 at the opening of a launch window which extends from 1:56 to 3:19 a.m. EDT.

  7. GOES-R active vibration damping controller design, implementation, and on-orbit performance

    Science.gov (United States)

    Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.

    2018-01-01

    GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. To meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping for the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is

  8. A Numerical Testbed for Remote Sensing of Aerosols, and its Demonstration for Evaluating Retrieval Synergy from a Geostationary Satellite Constellation of GEO-CAPE and GOES-R

    Science.gov (United States)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael I.

    2014-01-01

    synergic use of two future geostationary satellites, GOES-R (Geostationary Operational Environmental Satellite R-series) and TEMPO (Tropospheric Emissions: Monitoring of Pollution). Strong synergy between GEOS-R and TEMPO are found especially in their characterization of surface bi-directional reflectance, and thereby, can potentially improve the AOD retrieval to the accuracy required by GEO-CAPE.

  9. GHRSST Level 2P West Atlantic Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-12 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  10. GHRSST Level 2P Eastern Pacific Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-11 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  11. GHRSST Level 2P Western Atlantic Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-13 satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  12. GHRSST Level 2P Central Pacific Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-15 satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  13. Hands-on Activities Designed to Familiarize Users with Data from ABI on GOES-R and AHI on Himawari-8

    Science.gov (United States)

    Lindstrom, S. S.; Schmit, T.; Gerth, J.; Gunshor, M. M.; Mooney, M. E.; Whittaker, T. M.

    2016-12-01

    Recent and ongoing launches of next-generation geostationary satellites offer a challenge to familiarize National Weather Service (and other) forecasters with the new capabilities of different spectral channels sensed by the Advanced Baseline Imager (ABI) on GOES-R and the Advanced Himawari Imager (AHI) on Himawari-8. Hands on HTML5-based applets developed at the Cooperative Institute for Meteorological Satellite Studies allow for quick comparisons of reflectance in the visible (0.4 to 0.7 um) and near-infrared channels (0.86 to 2.2 um) and brightness temperatures in the infrared (3.9 to 13.3 um). The web apps to explore the different channels on ABI and AHI are at http://cimss.ssec.wisc.edu/goes/webapps/bandapp/; those that offer guidance on how to produce Red/Green/Blue composites are at http://cimss.ssec.wisc.edu/goes/webapps/satrgb/overview.html. This talk will briefly discuss highlights from both websites, and suggest ways the applications can be used to educate forecasters and the general public.

  14. NASA SPoRT GOES-R Proving Ground Activities

    Science.gov (United States)

    Stano, Geoffrey T.; Fuell, Kevin K.; Jedloec, Gary J.

    2010-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) program is a partner with the GOES-R Proving Ground (PG) helping prepare forecasters understand the unique products to come from the GOES-R instrument suite. SPoRT is working collaboratively with other members of the GOES-R PG team and Algorithm Working Group (AWG) scientists to develop and disseminate a suite of proxy products that address specific forecast problems for the WFOs, Regional and National Support Centers, and other NOAA users. These products draw on SPoRT s expertise with the transition and evaluation of products into operations from the MODIS instrument and the North Alabama Lightning Mapping Array (NALMA). The MODIS instrument serves as an excellent proxy for the Advanced Baseline Imager (ABI) that will be aboard GOES-R. SPoRT has transitioned and evaluated several multi-channel MODIS products. The true and false color products are being used in natural hazard detection by several SPoRT partners to provide better observation of land features, such as fires, smoke plumes, and snow cover. Additionally, many of SPoRT s partners are coastal offices and already benefit from the MODIS sea surface temperature composite. This, along with other surface feature observations will be developed into ABI proxy products for diagnostic use in the forecast process as well as assimilation into forecast models. In addition to the MODIS instrument, the NALMA has proven very valuable to WFOs with access to these total lightning data. These data provide situational awareness and enhanced warning decision making to improve lead times for severe thunderstorm and tornado warnings. One effort by SPoRT scientists includes a lightning threat product to create short-term model forecasts of lightning activity. Additionally, SPoRT is working with the AWG to create GLM proxy data from several of the ground based total lightning networks, such as the NALMA. The evaluation will focus on the vastly improved spatial

  15. NOAA GOES Geostationary Satellite Server

    Science.gov (United States)

    GOES-West Visible Current Full Disk Himawari 8 Visible Image Loop GOES-West AVN Infrared Current Full Disk Himawari 8 AVN Infrared Image Loop GOES-West Funktop Infrared Current Full Disk Himawari 8 Funktop Visible Image Loop Himawari-8 AVN Infrared Current Full Disk Himawari 8 AVN Infrared Image Loop Himawari-8

  16. The GOES-R/JPSS Approach for Identifying Hazardous Low Clouds: Overview and Operational Impacts

    Science.gov (United States)

    Calvert, Corey; Pavolonis, Michael; Lindstrom, Scott; Gravelle, Chad; Terborg, Amanda

    2017-04-01

    Low ceiling and visibility is a weather hazard that nearly every forecaster, in nearly every National Weather Service (NWS) Weather Forecast Office (WFO), must regularly address. In addition, national forecast centers such as the Aviation Weather Center (AWC), Alaska Aviation Weather Unit (AAWU) and the Ocean Prediction Center (OPC) are responsible for issuing low ceiling and visibility related products. As such, reliable methods for detecting and characterizing hazardous low clouds are needed. Traditionally, hazardous areas of Fog/Low Stratus (FLS) are identified using a simple stand-alone satellite product that is constructed by subtracting the 3.9 and 11 μm brightness temperatures. However, the 3.9-11 μm brightness temperature difference (BTD) has several major limitations. In an effort to address the limitations of the BTD product, the GOES-R Algorithm Working Group (AWG) developed an approach that fuses satellite, Numerical Weather Prediction (NWP) model, Sea Surface Temperature (SST) analyses, and other data sets (e.g. digital surface elevation maps, surface emissivity maps, and surface type maps) to determine the probability that hazardous low clouds are present using a naïve Bayesian classifier. In addition, recent research has focused on blending geostationary (e.g. GOES-R) and low earth orbit (e.g. JPSS) satellite data to further improve the products. The FLS algorithm has adopted an enterprise approach in that it can utilize satellite data from a variety of current and future operational sensors and NWP data from a variety of models. The FLS products are available in AWIPS/N-AWIPS/AWIPS-II and have been evaluated within NWS operations over the last four years as part of the Satellite Proving Ground. Forecaster feedback has been predominantly positive and references to these products within Area Forecast Discussions (AFD's) indicate that the products are influencing operational forecasts. At the request of the NWS, the FLS products are currently being

  17. Sao Paulo Lightning Mapping Array (SP-LMA): Network Assessment and Analyses for Intercomparison Studies and GOES-R Proxy Activities

    Science.gov (United States)

    Bailey, J. C.; Blakeslee, R. J.; Carey, L. D.; Goodman, S. J.; Rudlosky, S. D.; Albrecht, R.; Morales, C. A.; Anselmo, E. M.; Neves, J. R.; Buechler, D. E.

    2014-01-01

    A 12 station Lightning Mapping Array (LMA) network was deployed during October 2011 in the vicinity of Sao Paulo, Brazil (SP-LMA) to contribute total lightning measurements to an international field campaign [CHUVA - Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement)]. The SP-LMA was operational from November 2011 through March 2012 during the Vale do Paraiba campaign. Sensor spacing was on the order of 15-30 km, with a network diameter on the order of 40-50km. The SP-LMA provides good 3-D lightning mapping out to 150 km from the network center, with 2-D coverage considerably farther. In addition to supporting CHUVA science/mission objectives, the SP-LMA is supporting the generation of unique proxy data for the Geostationary Lightning Mapper (GLM) and Advanced Baseline Imager (ABI), on NOAA's Geostationary Operational Environmental Satellite-R (GOES-R: scheduled for a 2015 launch). These proxy data will be used to develop and validate operational algorithms so that they will be ready to use on "day1" following the GOES-R launch. As the CHUVA Vale do Paraiba campaign opportunity was formulated, a broad community-based interest developed for a comprehensive Lightning Location System (LLS) intercomparison and assessment study, leading to the participation and/or deployment of eight other ground-based networks and the space-based Lightning Imaging Sensor (LIS). The SP-LMA data is being intercompared with lightning observations from other deployed lightning networks to advance our understanding of the capabilities/contributions of each of these networks toward GLM proxy and validation activities. This paper addresses the network assessment including noise reduction criteria, detection efficiency estimates, and statistical and climatological (both temporal and spatially) analyses for intercomparison studies and GOES-R proxy activities.

  18. GOES WATER VAPOR TRANSPORT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOES Water Vapor Transport CD contains nineteen months of geostationary satellite-derived products from the GOES-8 satellite spanning the 1987-1988 El Nino...

  19. Accelerator Tests of the Prototype Energetic Heavy Ion Sensor (EHIS) for GOES-R

    Science.gov (United States)

    Connell, J. J.; Lopate, C.; McKibben, R. B.

    2010-12-01

    The Energetic Heavy Ion Sensor (EHIS) is part of the Space Environmental In-Situ Suite (SEISS) for the Geostationary Operational Environment Satellite series R (GOES-R) program. It will measure energetic protons from 10-200 MeV and ions through nickel (Z=28) with similar penetrating power. By use of an Angle Detecting Inclined Sensor (ADIS) system, EHIS achieves single element resolution with extensive on-board event processing. A prototype or "brass-board" instrument, fully functional but not intended for environmental testing, has been completed. In November of 2009, we exposed the prototype to protons at Massachusetts General Hospital (MGH) and in March of 2010, we exposed it to Ni primary and fragment beams at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). In both cases, the instrument was rotated over a range of angles and a moving degrader spread the energy from full beam energy to zero energy. We will present results of these tests. These show an angular resolution for the prototype which results in a one sigma charge resolution of ~0.25 e at Ni. The prototype also demonstrated the capability for calculating the charge of 2500 events per second with its internal processor, accumulating those events in on-board charge histograms, and thus providing unprecedented statistics in high flux conditions. The EHIS represents a major advance in capabilities for operational space weather instruments while also providing data quality suitable for scientific research. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  20. Estimating and forecasting the precipitable water vapor from GOES satellite data at high altitude sites

    Science.gov (United States)

    Marín, Julio C.; Pozo, Diana; Curé, Michel

    2015-01-01

    In this work, we describe a method to estimate the precipitable water vapor (PWV) from Geostationary Observational Environmental Satellite (GOES) data at high altitude sites. The method was applied at Atacama Pathfinder Experiment (APEX) and Cerro Toco sites, located above 5000 m altitude in the Chajnantor plateau, in the north of Chile. It was validated using GOES-12 satellite data over the range 0-1.2 mm since submillimeter/millimeter astronomical observations are only useful within this PWV range. The PWV estimated from GOES and the Final Analyses (FNL) at APEX for 2007 and 2009 show root mean square error values of 0.23 mm and 0.36 mm over the ranges 0-0.4 mm and 0.4-1.2 mm, respectively. However, absolute relative errors of 51% and 33% were shown over these PWV ranges, respectively. We recommend using high-resolution thermodynamic profiles from the Global Forecast System (GFS) model to estimate the PWV from GOES data since they are available every three hours and at an earlier time than the FNL data. The estimated PWV from GOES/GFS agrees better with the observed PWV at both sites during night time. The largest errors are shown during daytime. Short-term PWV forecasts were implemented at both sites, applying a simple persistence method to the PWV estimated from GOES/GFS. The 12 h and 24 h PWV forecasts evaluated from August to October 2009 indicates that 25% of them show a very good agreement with observations whereas 50% of them show reasonably good agreement with observations. Transmission uncertainties calculated for PWV estimations and forecasts over the studied sites are larger over the range 0-0.4 mm than over the range 0.4-1.2 mm. Thus, the method can be used over the latter interval with more confidence.

  1. Comparison of the simultaneous measurement results of SCR fluxes received by geostationary satellites 'Electro-L' and 'GOES'

    International Nuclear Information System (INIS)

    Arakelov, A S; Burov, V A; Ochelkov, Y P

    2013-01-01

    In the present paper the comparison of the results of the simultaneous measurements of solar proton fluxes on board geostationary satellites 'GOES' and 'Electro' was made for the purpose of calibration of 'Electro-L' detectors and determination of the possibility to utilize 'Electro-L' data for space weather monitoring. It was shown that the solar proton observation data on board 'Electro-L' recalculated to energy thresholds of 'GOES' 10 and 30 MeV are in a good consistent with 'GOES' data and may be used for control of radiation conditions in near-earth space.

  2. Incorporating GOES Satellite Photosynthetically Active Radiation (PAR) Retrievals to Improve Biogenic Emission Estimates in Texas

    Science.gov (United States)

    Zhang, Rui; White, Andrew T.; Pour Biazar, Arastoo; McNider, Richard T.; Cohan, Daniel S.

    2018-01-01

    This study examines the influence of insolation and cloud retrieval products from the Geostationary Operational Environmental Satellite (GOES) system on biogenic emission estimates and ozone simulations in Texas. Compared to surface pyranometer observations, satellite-retrieved insolation and photosynthetically active radiation (PAR) values tend to systematically correct the overestimation of downwelling shortwave radiation in the Weather Research and Forecasting (WRF) model. The correlation coefficient increases from 0.93 to 0.97, and the normalized mean error decreases from 36% to 21%. The isoprene and monoterpene emissions estimated by the Model of Emissions of Gases and Aerosols from Nature are on average 20% and 5% less, respectively, when PAR from the direct satellite retrieval is used rather than the control WRF run. The reduction in biogenic emission rates using satellite PAR reduced the predicted maximum daily 8 h ozone concentration by up to 5.3 ppbV over the Dallas-Fort Worth (DFW) region on some days. However, episode average ozone response is less sensitive, with a 0.6 ppbV decrease near DFW and 0.3 ppbV increase over East Texas. The systematic overestimation of isoprene concentrations in a WRF control case is partially corrected by using satellite PAR, which observes more clouds than are simulated by WRF. Further, assimilation of GOES-derived cloud fields in WRF improved CAMx model performance for ground-level ozone over Texas. Additionally, it was found that using satellite PAR improved the model's ability to replicate the spatial pattern of satellite-derived formaldehyde columns and aircraft-observed vertical profiles of isoprene.

  3. Chronology of the episode 54 eruption at Kilauea Volcano, Hawaii, from GOES-9 satellite data

    Science.gov (United States)

    Harris, A.J.L.; Keszthelyi, L.; Flynn, L.P.; Mouginis-Mark, P. J.; Thornber, C.; Kauahikaua, J.; Sherrod, D.; Trusdell, F.; Sawyer, M.W.; Flament, P.

    1997-01-01

    The free availability of GOES satellite data every 15 minutes makes these data an attractive tool for studying short-term changes on cloud-free volcanoes in the Pacific basin. We use cloud-free GOES-9 data to investigate the chronology of the January 1997, episode 54 eruption of Kilauea Volcano, Hawaii. Seventy-six images for this effusive eruption were collected over a 60-hour period and show the opening and shutdown of active fissures, the draining and refilling of the Pu'u 'O'o lava lake, and the cessation of activity at the ocean entry. Copyright 1997 by the American Geophysical Union.

  4. Real-time new satellite product demonstration from microwave sensors and GOES-16 at NRL TC web

    Science.gov (United States)

    Cossuth, J.; Richardson, K.; Surratt, M. L.; Bankert, R.

    2017-12-01

    The Naval Research Laboratory (NRL) Tropical Cyclone (TC) satellite webpage (https://www.nrlmry.navy.mil/TC.html) provides demonstration analyses of storm imagery to benefit operational TC forecast centers around the world. With the availability of new spectral information provided by GOES-16 satellite data and recent research into improved visualization methods of microwave data, experimental imagery was operationally tested to visualize the structural changes of TCs during the 2017 hurricane season. This presentation provides an introduction into these innovative satellite analysis methods, NRL's next generation satellite analysis system (the Geolocated Information Processing System, GeoIPSTM), and demonstration the added value of additional spectral frequencies when monitoring storms in near-realtime.

  5. NASA/SPoRT's GOES-R Activities in Support of Product Development, Management, and Training

    Science.gov (United States)

    Fuell, K. K.; Jedlovec, G.; Molthan, A.; Stano, G. T.

    2012-12-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center supports many activities within the GOES-R Proving Grounds (PG). These include the development of imagery from existing instrumentation as a proxy to future Advanced Baseline Imager (ABI) capabilities on GOES-R. The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible/Infrared Imager/Radiometer Suite (VIIRS) instruments are used to provide a glimpse of the multi-spectral capabilities that will become the norm as the number of channels and data rate dramatically increase with GOES-R. The NOAA/NWS has plans to provide operational users with all ABI channels at the highest resolution. Data fusion of individual channels into composite red, green, and blue imagery products will assist the end user with this future wave of information. While increasing the efficiency in the operational use of ABI channels, these composites provide only qualitative information. Within the GOES-R PG, SPoRT and other partners are exploring ways to include quantitative information as part of the composite imagery. However, limitations in local hardware processing and/or data bandwidth for users of the GOES-R data stream are challenges to overcome. This presentation will discuss the creation of these composite images as well as possible solutions to address these processing challenges. In a similar manner the Geostationary Lightning Mapper (GLM) to be launched on GOES-R presents several data management challenges. The GLM is a pioneering instrument to quantify total lightning from a geostationary platform. The expected data frequency from the GLM is to be at a sub-minute interval. Users of such a data set may have little experience in handling such a rapid update of information. To assist users, SPoRT is working with the NWS to develop tools within the user's decision support system to allow tracking and analysis of total lightning from a storm-based perspective. This presentation will discuss the

  6. NASA/SPoRT's GOES-R Activities in Support of Product Development, Management, and Training

    Science.gov (United States)

    Fuell, Kevin K.; Jedlovec, Gary; Molthan, Andrew L.; Stano, Geoffrey T.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center supports many activities within the GOES-R Proving Grounds (PG). These include the development of imagery from existing instrumentation as a proxy to future Advanced Baseline Imager (ABI) capabilities on GOES-R. The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible/Infrared Imager/Radiometer Suite (VIIRS) instruments are used to provide a glimpse of the multi-spectral capabilities that will become the norm as the number of channels and data rate dramatically increase with GOES-R. The NOAA/NWS has plans to provide operational users with all ABI channels at the highest resolution. Data fusion of individual channels into composite red, green, and blue imagery products will assist the end user with this future wave of information. While increasing the efficiency in the operational use of ABI channels, these composites provide only qualitative information. Within the GOES-R PG, SPoRT and other partners are exploring ways to include quantitative information as part of the composite imagery. However, limitations in local hardware processing and/or data bandwidth for users of the GOES-R data stream are challenges to overcome. This presentation will discuss the creation of these composite images as well as possible solutions to address these processing challenges. In a similar manner the Geostationary Lightning Mapper (GLM) to be launched on GOES-R presents several data management challenges. The GLM is a pioneering instrument to quantify total lightning from a geostationary platform. The expected data frequency from the GLM is to be at a sub-minute interval. Users of such a data set may have little experience in handling such a rapid update of information. To assist users, SPoRT is working with the NWS to develop tools within the user fs decision support system to allow tracking and analysis of total lightning from a storm-based perspective. This presentation will discuss the

  7. New GOES High-Resolution Magnetic Measurements and their Contribution to Understanding Magnetospheric Particle Dynamics

    Science.gov (United States)

    Redmon, R. J.; Loto'aniu, P. T. M.; Boudouridis, A.; Chi, P. J.; Singer, H. J.; Kress, B. T.; Rodriguez, J. V.; Abdelqader, A.; Tilton, M.

    2017-12-01

    The era of NOAA observations of the geomagnetic field started with SMS-1 in May 1974 and continues to this day with GOES-13-16 (on-orbit). We describe the development of a new 20+ year archive of science-quality, high-cadence geostationary measurements of the magnetic field from eight NOAA spacecraft (GOES-8 through GOES-15), the status of GOES-16 and new scientific results using these data. GOES magnetic observations provide an early warning of impending space weather, are the core geostationary data set used for the construction of magnetospheric magnetic models, and can be used to estimate electromagnetic wave power in frequency bands important for plasma processes. Many science grade improvements are being made across the GOES archive to unify the format and content from GOES-8 through the new GOES-R series (with the first of that series launched on November 19, 2016). A majority of the 2-Hz magnetic observations from GOES-8-12 have never before been publicly accessible due to processing constraints. Now, a NOAA Big Earth Data Initiative project is underway to process these measurements starting from original telemetry records. Overall the new archive will include vector measurements in geophysically relevant coordinates (EPN, GSM, and VDH), comprehensive documentation, highest temporal cadence, best calibration parameters, recomputed means, updated quality flagging, full spacecraft ephemeris information, a unified standard format and public access. We are also developing spectral characterization tools for estimating power in standard frequency bands (up to 1 Hz for G8-15), and detecting ULF waves related to field-line resonances. We present the project status and findings, including in-situ statistical and extreme ULF event properties, and case studies where the ULF oscillations along the same field line were observed simultaneously by GOES near the equator in the magnetosphere, the ST-5 satellites at low altitudes, and ground magnetometer stations. For event

  8. Merging thermal and microwave satellite observations for a high-resolution soil moisture data product

    Science.gov (United States)

    Many societal applications of soil moisture data products require high spatial resolution and numerical accuracy. Current thermal geostationary satellite sensors (GOES Imager and GOES-R ABI) could produce 2-16km resolution soil moisture proxy data. Passive microwave satellite radiometers (e.g. AMSR...

  9. GOES-R Proving Ground Activities at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    Science.gov (United States)

    Molthan, Andrew

    2011-01-01

    SPoRT is actively involved in GOES-R Proving Ground activities in a number of ways: (1) Applying the paradigm of product development, user training, and interaction to foster interaction with end users at NOAA forecast offices national centers. (2) Providing unique capabilities in collaboration with other GOES-R Proving Ground partners (a) Hybrid GOES-MODIS imagery (b) Pseudo-GLM via regional lightning mapping arrays (c) Developing new RGB imagery from EUMETSAT guidelines

  10. From Data to Knowledge — Faster: GOES Early Fire Detection System to Inform Operational Wildfire Response and Management

    Science.gov (United States)

    Koltunov, A.; Quayle, B.; Prins, E. M.; Ambrosia, V. G.; Ustin, S.

    2014-12-01

    Fire managers at various levels require near-real-time, low-cost, systematic, and reliable early detection capabilities with minimal latency to effectively respond to wildfire ignitions and minimize the risk of catastrophic development. The GOES satellite images collected for vast territories at high temporal frequencies provide a consistent and reliable source for operational active fire mapping realized by the WF-ABBA algorithm. However, their potential to provide early warning or rapid confirmation of initial fire ignition reports from conventional sources remains underutilized, partly because the operational wildfire detection has been successfully optimized for users and applications for which timeliness of initial detection is a low priority, contrasting to the needs of first responders. We present our progress in developing the GOES Early Fire Detection (GOES-EFD) system, a collaborative effort led by University of California-Davis and USDA Forest Service. The GOES-EFD specifically focuses on first detection timeliness for wildfire incidents. It is automatically trained for a monitored scene and capitalizes on multiyear cross-disciplinary algorithm research. Initial retrospective tests in Western US demonstrate significantly earlier identification detection of new ignitions than existing operational capabilities and a further improvement prospect. The GOES-EFD-β prototype will be initially deployed for the Western US region to process imagery from GOES-NOP and the rapid and 4 times higher spatial resolution imagery from GOES-R — the upcoming next generation of GOES satellites. These and other enhanced capabilities of GOES-R are expected to significantly improve the timeliness of fire ignition information from GOES-EFD.

  11. Improved Satellite Techniques for Monitoring and Forecasting the Transition of Hurricanes to Extratropical Storms

    Science.gov (United States)

    Folmer, Michael; Halverson, Jeffrey; Berndt, Emily; Dunion, Jason; Goodman, Steve; Goldberg, Mitch

    2014-01-01

    The Geostationary Operational Environmental Satellites R-Series (GOES-R) and Joint Polar Satellite System (JPSS) Satellite Proving Grounds have introduced multiple proxy and operational products into operations over the last few years. Some of these products have proven to be useful in current operations at various National Weather Service (NWS) offices and national centers as a first look at future satellite capabilities. Forecasters at the National Hurricane Center (NHC), Ocean Prediction Center (OPC), NESDIS Satellite Analysis Branch (SAB) and the NASA Hurricane and Severe Storms Sentinel (HS3) field campaign have had access to a few of these products to assist in monitoring extratropical transitions of hurricanes. The red, green, blue (RGB) Air Mass product provides forecasters with an enhanced view of various air masses in one complete image to help differentiate between possible stratospheric/tropospheric interactions, moist tropical air masses, and cool, continental/maritime air masses. As a compliment to this product, a new Atmospheric Infrared Sounder (AIRS) and Cross-track Infrared Sounder (CrIS) Ozone product was introduced in the past year to assist in diagnosing the dry air intrusions seen in the RGB Air Mass product. Finally, a lightning density product was introduced to forecasters as a precursor to the new Geostationary Lightning Mapper (GLM) that will be housed on GOES-R, to monitor the most active regions of convection, which might indicate a disruption in the tropical environment and even signal the onset of extratropical transition. This presentation will focus on a few case studies that exhibit extratropical transition and point out the usefulness of these new satellite techniques in aiding forecasters forecast these challenging events.

  12. The GOES-R Product Generation Architecture

    Science.gov (United States)

    Dittberner, G. J.; Kalluri, S.; Hansen, D.; Weiner, A.; Tarpley, A.; Marley, S.

    2011-12-01

    The GOES-R system will substantially improve users' ability to succeed in their work by providing data with significantly enhanced instruments, higher resolution, much shorter relook times, and an increased number and diversity of products. The Product Generation architecture is designed to provide the computer and memory resources necessary to achieve the necessary latency and availability for these products. Over time, new and updated algorithms are expected to be added and old ones removed as science advances and new products are developed. The GOES-R GS architecture is being planned to maintain functionality so that when such changes are implemented, operational product generation will continue without interruption. The primary parts of the PG infrastructure are the Service Based Architecture (SBA) and the Data Fabric (DF). SBA is the middleware that encapsulates and manages science algorithms that generate products. It is divided into three parts, the Executive, which manages and configures the algorithm as a service, the Dispatcher, which provides data to the algorithm, and the Strategy, which determines when the algorithm can execute with the available data. SBA is a distributed architecture, with services connected to each other over a compute grid and is highly scalable. This plug-and-play architecture allows algorithms to be added, removed, or updated without affecting any other services or software currently running and producing data. Algorithms require product data from other algorithms, so a scalable and reliable messaging is necessary. The SBA uses the DF to provide this data communication layer between algorithms. The DF provides an abstract interface over a distributed and persistent multi-layered storage system (e.g., memory based caching above disk-based storage) and an event management system that allows event-driven algorithm services to know when instrument data are available and where they reside. Together, the SBA and the DF provide a

  13. GOES-12 Solar X-ray Imager Archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GOES Solar X-ray Imager is integrated into the GOES-12 satellite, whose primary mission is to provide Earth-weather monitoring. The SXI is operated by NOAA's...

  14. OW NOAA GOES-POES Sea Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains blended satellite-derived sea-surface temperature measurements collected by means of the Geostationary Orbiting Environmental Satellites (GOES)...

  15. MITRA Virtual laboratory for operative application of satellite time series for land degradation risk estimation

    Science.gov (United States)

    Nole, Gabriele; Scorza, Francesco; Lanorte, Antonio; Manzi, Teresa; Lasaponara, Rosa

    2015-04-01

    This paper aims to present the development of a tool to integrate time series from active and passive satellite sensors (such as of MODIS, Vegetation, Landsat, ASTER, COSMO, Sentinel) into a virtual laboratory to support studies on landscape and archaeological landscape, investigation on environmental changes, estimation and monitoring of natural and anthropogenic risks. The virtual laboratory is composed by both data and open source tools specifically developed for the above mentioned applications. Results obtained for investigations carried out using the implemented tools for monitoring land degradation issues and subtle changes ongoing on forestry and natural areas are herein presented. In detail MODIS, SPOT Vegetation and Landsat time series were analyzed comparing results of different statistical analyses and the results integrated with ancillary data and evaluated with field survey. The comparison of the outputs we obtained for the Basilicata Region from satellite data analyses and independent data sets clearly pointed out the reliability for the diverse change analyses we performed, at the pixel level, using MODIS, SPOT Vegetation and Landsat TM data. Next steps are going to be implemented to further advance the current Virtual Laboratory tools, by extending current facilities adding new computational algorithms and applying to other geographic regions. Acknowledgement This research was performed within the framework of the project PO FESR Basilicata 2007/2013 - Progetto di cooperazione internazionale MITRA "Remote Sensing tecnologies for Natural and Cultural heritage Degradation Monitoring for Preservation and valorization" funded by Basilicata Region Reference 1. A. Lanorte, R Lasaponara, M Lovallo, L Telesca 2014 Fisher-Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to characterize vegetation recovery after fire disturbance International Journal of Applied Earth Observation and

  16. Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES).

    Science.gov (United States)

    Chudnovsky, Alexandra A; Lee, Hyung Joo; Kostinski, Alex; Kotlov, Tanya; Koutrakis, Petros

    2012-09-01

    Although ground-level PM2.5 (particulate matter with aerodynamic diameter < 2.5 microm) monitoring sites provide accurate measurements, their spatial coverage within a given region is limited and thus often insufficient for exposure and epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate location- and/or subject-specific exposures to PM2.5. In this study, the authors apply a mixed-effects model approach to aerosol optical depth (AOD) retrievals from the Geostationary Operational Environmental Satellite (GOES) to predict PM2.5 concentrations within the New England area of the United States. With this approach, it is possible to control for the inherent day-to-day variability in the AOD-PM2.5 relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles, and ground surface reflectance. The model-predicted PM2.5 mass concentration are highly correlated with the actual observations, R2 = 0.92. Therefore, adjustment for the daily variability in AOD-PM2.5 relationship allows obtaining spatially resolved PM2.5 concentration data that can be of great value to future exposure assessment and epidemiological studies. The authors demonstrated how AOD can be used reliably to predict daily PM2.5 mass concentrations, providing determination of their spatial and temporal variability. Promising results are found by adjusting for daily variability in the AOD-PM2.5 relationship, without the need to account for a wide variety of individual additional parameters. This approach is of a great potential to investigate the associations between subject-specific exposures to PM2.5 and their health effects. Higher 4 x 4-km resolution GOES AOD retrievals comparing with the conventional MODerate resolution Imaging Spectroradiometer (MODIS) 10-km product has the potential to capture PM2.5 variability within the urban domain.

  17. Recent Korean R&D in Satellite Communications

    Science.gov (United States)

    Lee, Ho-Jin; Kim, Jae Moung; Lee, Byung-Seub; Lee, Han; Ryoo, Jang-Soo

    The R&D in satellite communications in Korea has been driven mainly by KCC (Korea Communications Commission) but in a small scale compared to Korea space development program organized by MEST (Ministry of Education, Science and Technology). Public and civilian satcom sector R&D has been led mainly by ETRI with small/medium companies contrary to rare investment in private sector while military sector R&D has been orchestrated by ADD with defense industry. By the COMS (Communication, Ocean and Meteorological Satellite) experimental Ka-band payload, Korea pursues a space qualification of own technology for national infrastructure evolution as well as industrialization of space R&D results. Once COMS launched and space qualified in 2009, subsequent application experiments and new technology R&D like UHDTV will entail service and industry promotion. The payload technology is expected for the next Korean commercial satellites or for new OBP satellites. The COMS ground control system and GNSS ground station technologies are under development for COMS operation and enhanced GNSS services along with advent of Galileo respectively. Satellite broadband mobile VSAT based on DVB-S2/RCS (+M) and low profile tracking antennas have been developed for trains, ships, and planes. While APSI is developing GMR-1 based Thuraya handset functions, ETRI is designing IMT-Advanced satellite radio interface for satellite and terrestrial dual-mode handheld communication system like Japanese STICS, with universities' satellite OFDM researches. A 21GHz Ka-band higher-availability scalable HD broadcasting technology and SkyLife's hybrid satellite IPTV technology are being developed. In near term Korea will extend R&D programs to upgrade the space communication infrastructure for universal access to digital opportunity and safer daily life from disaster, and to promote space green IT industrialization, national security, and space resources sovereign. Japanese stakeholders are invited to establish

  18. VizieR Online Data Catalog: Quasi-periodic pulsations in solar flares (Inglis+, 2016)

    Science.gov (United States)

    Inglis, A. R.; Ireland, J.; Dennis, B. R.; Hayes, L.; Gallagher, P.

    2018-04-01

    We have used data from the Geostationary Operational Environmental Satellite (GOES) instrument series, and from Fermi/Gamma-ray Burst Monitor (GBM). For this reason, we choose the interval 2011 February 1 - 2015 December 31, as it not only coincides with the availability of GOES-15 satellite data, but also includes regular solar observations by GBM. GOES satellites are equipped with solar X-ray detectors that record the incident flux in the 0.5-4Å and 1-8Å wavelength ranges. Solar X-ray data from the most recent satellite, GOES-15, has been available since 2010 at a nominal 2s cadence. To access the GOES catalog, we use the Heliophysics Event Knowledgebase (HEK). Fermi/GBM operates in the 8keV-40MeV range and regularly observes emission from solar flares, with a solar duty cycle of ~60%, similar to the solar-dedicated Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). To accumulate the database of Fermi/GBM events, we use the GBM trigger catalog produced by the instrument team, selecting all events marked as flares. (2 data files).

  19. GOES WATER VAPOR TRANSPORT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOES Water Vapor Transport CD contains nineteen months of geostationary satellite-derived products spanning the 1987/1988 El Nino Southern Oscillation (ENSO)...

  20. Validation of the GOES-16 magnetometer using multipoint measurements and magnetic field models

    Science.gov (United States)

    Califf, S.; Loto'aniu, P. T. M.; Redmon, R. J.; Sarris, T. E.; Brito, T.

    2017-12-01

    The Geostationary Operational Environmental Satellites (GOES) have been providing continuous geomagnetic field measurements for over 40 years. While the primary purpose of GOES is operational, the magnetometer data are also widely used in the scientific community. In an effort to validate the recently launched GOES-16 magnetometer, we compare the measurements to existing magnetic field models and other GOES spacecraft currently on orbit. There are four concurrent measurements from GOES-13, 14, 15 and 16 spanning 75W to 135W longitude. Also, GOES-13 is being replaced by GOES-16 in the GOES-East location, and during the transition, GOES-13 and GOES-16 will be parked nearby in order to assist with calibration of the new operational satellite. This work explores techniques to quantify the performance of the GOES-16 magnetometer by comparison to data from nearby spacecraft. We also build on previous work to assimilate in situ measurements with existing magnetic field models to assist in comparing data from different spatial locations. Finally, we use this unique dataset from four simultaneous geosynchronous magnetometer measurements and the close separation between GOES-13 and GOES-16 to study the spatial characteristics of ULF waves and other magnetospheric processes.

  1. Image Navigation and Registration Performance Assessment Tool Set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    Science.gov (United States)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24-hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24-hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  2. Development and validation of satellite-based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2016-02-01

    A satellite-based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5 % for classifying clear (V ≥ 30 km), moderate (10 km ≤ V United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  3. Development and validation of satellite based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2015-10-01

    A satellite based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5% for classifying Clear (V ≥ 30 km), Moderate (10 km ≤ V United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network, and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  4. Using the SPoRT POES/GOES Hybrid Product in OCONUS Forecasting

    Science.gov (United States)

    Smith, Matt; Fuell, Kevin; Nelson, Jim

    2014-01-01

    The SPoRT (Short-term Prediction and Research Transition) Program at the NASA/Marshall Space Flight Center has been providing unique NASA and NOAA data and techniques to partner Weather Forecast Offices (WFOs) for ten years. Data are provided in the Decision Support System used by WFO forecasters: AWIPS. For the last couple of years, SPoRT has been producing the POES/GOES Hybrid. This suite of products combines the strength ofl5- minute animations of GOES imagery - providing temporal continuity, with the higher resolution, relatively random availability, of polar orbiting (POES) imagery data. The product was first introduced with only MODIS data from NASA's Terra and Aqua satellites, but recently the VIIRS instrument onboard the Suomi-NPP satellite was added, providing better high-resolution coverage. These products represent SPoRT's efforts to prepare for higher resolution, higher frequency GOES-R imagery - as well as helping to move VIIRS (JPSS) data into the mainstream of weather forecasting. SPoRT generates 5 products for this dataset: Visible, Longwave Infrared (11 micrometers), Shortwave IR (3.7 micrometers), Water Vapor (6.7 micrometers), and Fog (Difference of 11 micrometer and 3.7 micrometer channels). The Water Vapor hybrid product has a Red-Blue-Green image from MODIS inlaid, since it provides even more qualitative information than water vapor alone. Animated examples of the products will be shown in this presentation. While the resolution at nadir of GOES imagery is nominally Han (4km for IR channels), the inlaid polar orbiter imagery has a resolution of 250m (lkm for IR channels). This has tremendous application in the continental US. However, in high latitudes, since the usefulness of GOES degrades poleward rapidly, the contrast of GOES and POES data is stark. The consistent temporal nature of GOES, even though at a reduced resolution at high latitudes, provides basic situational awareness, but the introduction of polar data is very helpful in seeing

  5. Modeling 13.3nm Fe XXIII Flare Emissions Using the GOES-R EXIS Instrument

    Science.gov (United States)

    Rook, H.; Thiemann, E.

    2017-12-01

    The solar EUV spectrum is dominated by atomic transitions in ionized atoms in the solar atmosphere. As solar flares evolve, plasma temperatures and densities change, influencing abundances of various ions, changing intensities of different EUV wavelengths observed from the sun. Quantifying solar flare spectral irradiance is important for constraining models of Earth's atmosphere, improving communications quality, and controlling satellite navigation. However, high time cadence measurements of flare irradiance across the entire EUV spectrum were not available prior to the launch of SDO. The EVE MEGS-A instrument aboard SDO collected 0.1nm EUV spectrum data from 2010 until 2014, when the instrument failed. No current or future instrument is capable of similar high resolution and time cadence EUV observation. This necessitates a full EUV spectrum model to study EUV phenomena at Earth. It has been recently demonstrated that one hot flare EUV line, such as the 13.3nm Fe XXIII line, can be used to model cooler flare EUV line emissions, filling the role of MEGS-A. Since unblended measurements of Fe XXIII are typically unavailable, a proxy for the Fe XXIII line must be found. In this study, we construct two models of this line, first using the GOES 0.1-0.8nm soft x-ray (SXR) channel as the Fe XXIII proxy, and second using a physics-based model dependent on GOES emission measure and temperature data. We determine that the more sophisticated physics-based model shows better agreement with Fe XXIII measurements, although the simple proxy model also performs well. We also conclude that the high correlation between Fe XXIII emissions and the GOES 0.1-0.8nm band is because both emissions tend to peak near the GOES emission measure peak despite large differences in their contribution functions.

  6. GOES Fire Detects from the Wildfire Automated Biomass Burning Algorithm (WF-ABBA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GOES ABBA is a contextual multi-spectral thresholding algorithm which utilizes dynamic local thresholds derived from the GOES satellite imagery and ancillary...

  7. GLM Post Launch Testing and Airborne Science Field Campaign

    Science.gov (United States)

    Goodman, S. J.; Padula, F.; Koshak, W. J.; Blakeslee, R. J.

    2017-12-01

    The Geostationary Operational Environmental Satellite (GOES-R) series provides the continuity for the existing GOES system currently operating over the Western Hemisphere. The Geostationary Lightning Mapper (GLM) is a wholly new instrument that provides a capability for total lightning detection (cloud and cloud-to-ground flashes). The first satellite in the GOES-R series, now GOES-16, was launched in November 2016 followed by in-orbit post launch testing for approximately 12 months before being placed into operations replacing the GOES-E satellite in December. The GLM will map total lightning continuously throughout day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. The total lightning is very useful for identifying hazardous and severe thunderstorms, monitoring storm intensification and tracking evolution. Used in tandem with radar, satellite imagery, and surface observations, total lightning data has great potential to increase lead time for severe storm warnings, improve aviation safety and efficiency, and increase public safety. In this paper we present initial results from the post-launch in-orbit performance testing, airborne science field campaign conducted March-May, 2017 and assessments of the GLM instrument and science products.

  8. Calibration of NOAA-7 AVHRR, GOES-5 and GOES-6 VISSR/VAS solar channels

    Science.gov (United States)

    Frouin, R.; Gautier, C.

    1986-01-01

    The NOAA-7, GOES-5 and GOES-6 Visible Infrared Spin Scan Radiometer/Vertical Atmospheric Sounder (VISSR/VAS) solar channels were calibrated. The White Sands Monument area in New Mexico, whose reflectance properties are well known, and space are used as calibration targets. The shortwave reflected terrestrial irradiance that is measured at satellite altitude is computed using a fairly accurate radiative transfer model which accounts for multiple scattering and bidirectional effects. The ground target reflectance and relevant characteristics of the overlying atmosphere are estimated from climatological data and observation at the nearest meteorological sites. The approach is believed to produce accuracies of 8 to 13% depending on the channel considered.

  9. OSDPD-L2P-GOES13:1

    Data.gov (United States)

    National Aeronautics and Space Administration — SST calculated from the IR channels of GOES-13 at full resolution on a half hourly basis. In raw satellite projection, vertically adjacent pixels averaged and read...

  10. Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    Science.gov (United States)

    DeLuccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  11. Normalization and calibration of geostationary satellite radiances for the International Satellite Cloud Climatology Project

    Science.gov (United States)

    Desormeaux, Yves; Rossow, William B.; Brest, Christopher L.; Campbell, G. G.

    1993-01-01

    Procedures are described for normalizing the radiometric calibration of image radiances obtained from geostationary weather satellites that contributed data to the International Satellite Cloud Climatology Project. The key step is comparison of coincident and collocated measurements made by each satellite and the concurrent AVHRR on the 'afternoon' NOAA polar-orbiting weather satellite at the same viewing geometry. The results of this comparison allow transfer of the AVHRR absolute calibration, which has been established over the whole series, to the radiometers on the geostationary satellites. Results are given for Meteosat-2, 3, and 4, for GOES-5, 6, and 7, for GMS-2, 3, and 4 and for Insat-1B. The relative stability of the calibrations of these radiance data is estimated to be within +/- 3 percent; the uncertainty of the absolute calibrations is estimated to be less than 10 percent. The remaining uncertainties are at least two times smaller than for the original radiance data.

  12. Pre-Launch GOES-R Risk Reduction Activities for the Geostationary Lightning Mapper

    Science.gov (United States)

    Goodman, S. J.; Blakeslee, R. J.; Boccippio, D. J.; Christian, H. J.; Koshak, W. J.; Petersen, W. A.

    2005-01-01

    The GOES-R Geostationary Lightning Mapper (GLM) is a new instrument planned for GOES-R that will greatly improve storm hazard nowcasting and increase warning lead time day and night. Daytime detection of lightning is a particularly significant technological advance given the fact that the solar illuminated cloud-top signal can exceed the intensity of the lightning signal by a factor of one hundred. Our approach is detailed across three broad themes which include: Data Processing Algorithm Readiness, Forecast Applications, and Radiance Data Mining. These themes address how the data will be processed and distributed, and the algorithms and models for developing, producing, and using the data products. These pre-launch risk reduction activities will accelerate the operational and research use of the GLM data once GOES-R begins on-orbit operations. The GLM will provide unprecedented capabilities for tracking thunderstorms and earlier warning of impending severe and hazardous weather threats. By providing direct information on lightning initiation, propagation, extent, and rate, the GLM will also capture the updraft dynamics and life cycle of convective storms, as well as internal ice precipitation processes. The GLM provides information directly from the heart of the thunderstorm as opposed to cloud-top only. Nowcasting applications enabled by the GLM data will expedite the warning and response time of emergency management systems, improve the dispatch of electric power utility repair crews, and improve airline routing around thunderstorms thereby improving safety and efficiency, saving fuel and reducing delays. The use of GLM data will assist the Bureau of Land Management (BLM) and the Forest Service in quickly detecting lightning ground strikes that have a high probability of causing fires. Finally, GLM data will help assess the role of thunderstorms and deep convection in global climate, and will improve regional air quality and global chemistry/climate modeling

  13. Incorporating Satellite Time-Series Data into Modeling

    Science.gov (United States)

    Gregg, Watson

    2008-01-01

    In situ time series observations have provided a multi-decadal view of long-term changes in ocean biology. These observations are sufficiently reliable to enable discernment of even relatively small changes, and provide continuous information on a host of variables. Their key drawback is their limited domain. Satellite observations from ocean color sensors do not suffer the drawback of domain, and simultaneously view the global oceans. This attribute lends credence to their use in global and regional model validation and data assimilation. We focus on these applications using the NASA Ocean Biogeochemical Model. The enhancement of the satellite data using data assimilation is featured and the limitation of tongterm satellite data sets is also discussed.

  14. Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001

    Science.gov (United States)

    Gu, Yingxin; Rose, William I.; Schneider, D.J.; Bluth, G.J.S.; Watson, I.M.

    2005-01-01

    The February 2001 eruption of Cleveland Volcano, Alaska allowed for comparisons of volcanic ash detection using two-band thermal infrared (10-12 ??m) remote sensing from MODIS, AVHRR, and GOES 10. Results show that high latitude GOES volcanic cloud sensing the range of about 50 to 65??N is significantly enhanced. For the Cleveland volcanic clouds the MODIS and AVHRR data have zenith angles 6-65 degrees and the GOES has zenith angles that are around 70 degrees. The enhancements are explained by distortion in the satellite view of the cloud's lateral extent because the satellite zenith angles result in a "side-looking" aspect and longer path lengths through the volcanic cloud. The shape of the cloud with respect to the GOES look angle also influences the results. The MODIS and AVHRR data give consistent retrievals of the ash cloud evolution over time and are good corrections for the GOES data. Copyright 2005 by the American Geophysical Union.

  15. The NOAA Satellite Observing System Architecture Study

    Science.gov (United States)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  16. Applications of Geostationary Satellite Data to Aviation

    Science.gov (United States)

    Ellrod, Gary P.; Pryor, Kenneth

    2018-03-01

    Weather is by far the most important factor in air traffic delays in the United States' National Airspace System (NAS) according to the Federal Aviation Administration (FAA). Geostationary satellites have been an effective tool for the monitoring of meteorological conditions that affect aviation operations since the launch of the first Synchronous Meteorological Satellite (SMS) in the United States in 1974. This paper will review the global use of geostationary satellites in support of aviation weather since their inception, with an emphasis on the latest generation of satellites, such as Geostationary Operational Environmental Satellite (GOES)-R (16) with its Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM). Specific applications discussed in this paper include monitoring of convective storms and their associated hazards, fog and low stratus, turbulence, volcanic hazards, and aircraft icing.

  17. Use of GOES, SSM/I, TRMM Satellite Measurements Estimating Water Budget Variations in Gulf of Mexico - Caribbean Sea Basins

    Science.gov (United States)

    Smith, Eric A.

    2004-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of 3ourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple- algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective m identifying problems in estimating vapor transports from a leaky operational radiosonde network than in verifying

  18. Assimilating All-Sky Himawari-8 Satellite Infrared Radiances: A Case of Typhoon Soudelor (2015)

    OpenAIRE

    Honda, Takumi; Miyoshi, Takemasa; Lien, Guo-Yuan; Nishizawa, Seiya; Yoshida, Ryuji; Adachi, Sachiho A.; Terasaki, Koji; Okamoto, Kozo; Tomita, Hirofumi; Bessho, Kotaro

    2018-01-01

    Japan’s new geostationary satellite Himawari-8, the first of a series of the third-generation geostationary meteorological satellites includingGOES-16, has been operational since July 2015. Himawari-8 produces highresolution observations with 16 frequency bands every 10 min for full disk, and every 2.5 min for local regions. This study aims to assimilate all-sky every-10-min infrared (IR) radiances from Himawari-8 with a regional numerical weather prediction model and to investigate its impac...

  19. The International Satellite Cloud Climatology Project H-Series climate data record product

    Science.gov (United States)

    Young, Alisa H.; Knapp, Kenneth R.; Inamdar, Anand; Hankins, William; Rossow, William B.

    2018-03-01

    This paper describes the new global long-term International Satellite Cloud Climatology Project (ISCCP) H-series climate data record (CDR). The H-series data contain a suite of level 2 and 3 products for monitoring the distribution and variation of cloud and surface properties to better understand the effects of clouds on climate, the radiation budget, and the global hydrologic cycle. This product is currently available for public use and is derived from both geostationary and polar-orbiting satellite imaging radiometers with common visible and infrared (IR) channels. The H-series data currently span July 1983 to December 2009 with plans for continued production to extend the record to the present with regular updates. The H-series data are the longest combined geostationary and polar orbiter satellite-based CDR of cloud properties. Access to the data is provided in network common data form (netCDF) and archived by NOAA's National Centers for Environmental Information (NCEI) under the satellite Climate Data Record Program (https://doi.org/10.7289/V5QZ281S" target="_blank">https://doi.org/10.7289/V5QZ281S). The basic characteristics, history, and evolution of the dataset are presented herein with particular emphasis on and discussion of product changes between the H-series and the widely used predecessor D-series product which also spans from July 1983 through December 2009. Key refinements included in the ISCCP H-series CDR are based on improved quality control measures, modified ancillary inputs, higher spatial resolution input and output products, calibration refinements, and updated documentation and metadata to bring the H-series product into compliance with existing standards for climate data records.

  20. Regulation of turkey myogenic satellite cell migration by MicroRNAs miR-128 and miR-24.

    Science.gov (United States)

    Velleman, S G; Harding, R L

    2017-06-01

    Myogenic satellite cells are an adult stem cell responsible for all post-hatch muscle growth in poultry. As a stem cell population, satellite cells are highly heterogeneous, but the origin of this heterogeneity remains unclear. Heterogeneity is, in part, regulated by gene expression. One method of endogenous gene regulation that may contribute to heterogeneity is microRNAs (miRNAs). Two miRNAs previously shown to regulate poultry myogenic satellite cell proliferation and differentiation, miR-128 and miR-24, were studied to determine if they also affected satellite cell migration. Satellite cell migration is an essential step for both proliferation and differentiation. During proliferation, satellite cells will migrate and align to form new myofibers or donate their nuclei to existing myofibers leading to muscle fiber hypertrophy or regeneration. Transient transfection of miRNA specific mimics to each miRNA reduced migration of satellite cells following a cell culture scratch at 72 h of proliferation when the cultures were 90 to 100% confluent. However, only the migration in cells transfected with miR-24 mimics at 24 and 30 h following the scratch was significantly reduced (P ≤ 0.05) to around 70% of the distance migrated by controls. Alternately, transfection with inhibitors specific to miR-128 or miR-24 significantly (P ≤ 0.05) increased migration between 147 and 252% compared to their controls between 24 and 48 h following the scratch. These data demonstrate that miR-128 and miR-24 play a role in myogenic satellite cell migration, which will impact muscle development and growth. © 2016 Poultry Science Association Inc.

  1. Validation of Satellite Derived Cloud Properties Over the Southeastern Pacific

    Science.gov (United States)

    Ayers, J.; Minnis, P.; Zuidema, P.; Sun-Mack, S.; Palikonda, R.; Nguyen, L.; Fairall, C.

    2005-12-01

    Satellite measurements of cloud properties and the radiation budget are essential for understanding meso- and large-scale processes that determine the variability in climate over the southeastern Pacific. Of particular interest in this region is the prevalent stratocumulus cloud deck. The stratocumulus albedos are directly related to cloud microphysical properties that need to be accurately characterized in Global Climate Models (GCMs) to properly estimate the Earth's radiation budget. Meteorological observations in this region are sparse causing large uncertainties in initialized model fields. Remote sensing from satellites can provide a wealth of information about the clouds in this region, but it is vital to validate the remotely sensed parameters and to understand their relationship to other parameters that are not directly observed by the satellites. The variety of measurements from the R/V Roger Revelle during the 2003 STRATUS cruise and from the R/V Ron Brown during EPIC 2001 and the 2004 STRATUS cruises are suitable for validating and improving the interpretation of the satellite derived cloud properties. In this study, satellite-derived cloud properties including coverage, height, optical depth, and liquid water path are compared with in situ measurements taken during the EPIC and STRATUS cruises. The remotely sensed values are derived from Geostationary Operational Environmental Satellite (GOES) imager data, Moderate Resolution Imaging Spectroradiometer (MODIS) data from the Terra and Aqua satellites, and from the Visible and Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring Mission (TRMM) satellite. The products from this study will include regional monthly cloud climatologies derived from the GOES data for the 2003 and 2004 cruises as well as micro and macro physical cloud property retrievals centered over the ship tracks from MODIS and VIRS.

  2. MODVOLC2: A Hybrid Time Series Analysis for Detecting Thermal Anomalies Applied to Thermal Infrared Satellite Data

    Science.gov (United States)

    Koeppen, W. C.; Wright, R.; Pilger, E.

    2009-12-01

    We developed and tested a new, automated algorithm, MODVOLC2, which analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes, fires, and gas flares. MODVOLC2 combines two previously developed algorithms, a simple point operation algorithm (MODVOLC) and a more complex time series analysis (Robust AVHRR Techniques, or RAT) to overcome the limitations of using each approach alone. MODVOLC2 has four main steps: (1) it uses the original MODVOLC algorithm to process the satellite data on a pixel-by-pixel basis and remove thermal outliers, (2) it uses the remaining data to calculate reference and variability images for each calendar month, (3) it compares the original satellite data and any newly acquired data to the reference images normalized by their variability, and it detects pixels that fall outside the envelope of normal thermal behavior, (4) it adds any pixels detected by MODVOLC to those detected in the time series analysis. Using test sites at Anatahan and Kilauea volcanoes, we show that MODVOLC2 was able to detect ~15% more thermal anomalies than using MODVOLC alone, with very few, if any, known false detections. Using gas flares from the Cantarell oil field in the Gulf of Mexico, we show that MODVOLC2 provided results that were unattainable using a time series-only approach. Some thermal anomalies (e.g., Cantarell oil field flares) are so persistent that an additional, semi-automated 12-µm correction must be applied in order to correctly estimate both the number of anomalies and the total excess radiance being emitted by them. Although all available data should be included to make the best possible reference and variability images necessary for the MODVOLC2, we estimate that at least 80 images per calendar month are required to generate relatively good statistics from which to run MODVOLC2, a condition now globally met by a decade of MODIS observations. We also found

  3. Innovative Approaches for the Dissemination of Near Real-time Geostationary Satellite Data for Terrestrial and Space Weather Applications

    Science.gov (United States)

    Jedlovec, G.; McGrath, K.; Meyer, P. J.; Berndt, E.

    2017-12-01

    A GOES-R series receiving station has been installed at the NASA Marshall Space Flight Center (MSFC) to support GOES-16 transition-to-operations projects of NASA's Earth science program and provide a community portal for GOES-16 data access. This receiving station is comprised of a 6.5-meter dish; motor-driven positioners; Quorum feed and demodulator; and three Linux workstations for ingest, processing, display, and subsequent product generation. The Community Satellite Processing Package (CSPP) is used to process GOES Rebroadcast data from the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS), and Space Environment In-Situ Suite (SEISS) into Level 1b and Level 2 files. GeoTIFFs of the imagery from several of these instruments are ingested into an Esri Arc Enterprise Web Map Service (WMS) server with tiled imagery displayable through a web browser interface or by connecting directly to the WMS with a Geographic Information System software package. These data also drive a basic web interface where users can manually zoom to and animate regions of interest or acquire similar results using a published Application Program Interface. While not as interactive as a WMS-driven interface, this system is much more expeditious with generating and distributing requested imagery. The legacy web capability enacted for the predecessor GOES Imager currently supports approximately 500,000 unique visitors each month. Dissemination capabilities have been refined to support a significantly larger number of anticipated users. The receiving station also supports NASA's Short-term Prediction, Research, and Transition Center's (SPoRT) project activities to dissemination near real-time ABI RGB products to National Weather Service National Centers, including the Satellite Analysis Branch, National Hurricane Center, Ocean Prediction Center, and Weather Prediction Center, where they

  4. GHRSST Level 2P USA NAVOCEANO GOES11 SST:1

    Data.gov (United States)

    National Aeronautics and Space Administration — SST calculated from the IR channels of GOES-11 at full resolution on a half hourly basis. In raw satellite projection, vertically adjacent pixels averaged and read...

  5. GHRSST Level 2P USA NAVOCEANO GOES12 SST:1

    Data.gov (United States)

    National Aeronautics and Space Administration — SST calculated from the IR channels of GOES-12 at full resolution on a half hourly basis. In raw satellite projection, vertically adjacent pixels averaged and read...

  6. Advanced mobile satellite communications system using Ka and MM-wave bands in Japan's R and D satellite project

    Science.gov (United States)

    Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru

    1991-01-01

    Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.

  7. IBM Demonstrates a General-Purpose, High-Performance, High-Availability Cloud-Hosted Data Distribution System With Live GOES-16 Weather Satellite Data

    Science.gov (United States)

    Snyder, P. L.; Brown, V. W.

    2017-12-01

    IBM has created a general purpose, data-agnostic solution that provides high performance, low data latency, high availability, scalability, and persistent access to the captured data, regardless of source or type. This capability is hosted on commercially available cloud environments and uses much faster, more efficient, reliable, and secure data transfer protocols than the more typically used FTP. The design incorporates completely redundant data paths at every level, including at the cloud data center level, in order to provide the highest assurance of data availability to the data consumers. IBM has been successful in building and testing a Proof of Concept instance on our IBM Cloud platform to receive and disseminate actual GOES-16 data as it is being downlinked. This solution leverages the inherent benefits of a cloud infrastructure configured and tuned for continuous, stable, high-speed data dissemination to data consumers worldwide at the downlink rate. It also is designed to ingest data from multiple simultaneous sources and disseminate data to multiple consumers. Nearly linear scalability is achieved by adding servers and storage.The IBM Proof of Concept system has been tested with our partners to achieve in excess of 5 Gigabits/second over public internet infrastructure. In tests with live GOES-16 data, the system routinely achieved 2.5 Gigabits/second pass-through to The Weather Company from the University of Wisconsin-Madison SSEC. Simulated data was also transferred from the Cooperative Institute for Climate and Satellites — North Carolina to The Weather Company, as well. The storage node allocated to our Proof of Concept system as tested was sized at 480 Terabytes of RAID protected disk as a worst case sizing to accommodate the data from four GOES-16 class satellites for 30 days in a circular buffer. This shows that an abundance of performance and capacity headroom exists in the IBM design that can be applied to additional missions.

  8. Satellite images to aircraft in flight. [GEOS image transmission feasibility analysis

    Science.gov (United States)

    Camp, D.; Luers, J. K.; Kadlec, P. W.

    1977-01-01

    A study has been initiated to evaluate the feasibility of transmitting selected GOES images to aircraft in flight. Pertinent observations that could be made from satellite images on board aircraft include jet stream activity, cloud/wind motion, cloud temperatures, tropical storm activity, and location of severe weather. The basic features of the Satellite Aircraft Flight Environment System (SAFES) are described. This system uses East GOES and West GOES satellite images, which are interpreted, enhanced, and then retransmitted to designated aircraft.

  9. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  10. Downscaling Satellite Land Surface Temperatures in Urban Regions for Surface Energy Balance Study and Heat Index Development

    Science.gov (United States)

    Norouzi, H.; Bah, A.; Prakash, S.; Nouri, N.; Blake, R.

    2017-12-01

    A great percentage of the world's population reside in urban areas that are exposed to the threats of global and regional climate changes and associated extreme weather events. Among them, urban heat islands have significant health and economic impacts due to higher thermal gradients of impermeable surfaces in urban regions compared to their surrounding rural areas. Therefore, accurate characterization of the surface energy balance in urban regions are required to predict these extreme events. High spatial resolution Land surface temperature (LST) in the scale of street level in the cities can provide wealth of information to study surface energy balance and eventually providing a reliable heat index. In this study, we estimate high-resolution LST maps using combination of LandSat 8 and infrared based satellite products such as Moderate Resolution Imaging Spectroradiometer (MODIS) and newly launched Geostationary Operational Environmental Satellite-R Series (GOES-R). Landsat 8 provides higher spatial resolution (30 m) estimates of skin temperature every 16 days. However, MODIS and GOES-R have lower spatial resolution (1km and 4km respectively) with much higher temporal resolution. Several statistical downscaling methods were investigated to provide high spatiotemporal LST maps in urban regions. The results reveal that statistical methods such as Principal Component Analysis (PCA) can provide reliable estimations of LST downscaling with 2K accuracy. Other methods also were tried including aggregating (up-scaling) the high-resolution data to a coarse one to examine the limitations and to build the model. Additionally, we deployed flux towers over distinct materials such as concrete, asphalt, and rooftops in New York City to monitor the sensible and latent heat fluxes through eddy covariance method. To account for the incoming and outgoing radiation, a 4-component radiometer is used that can observe both incoming and outgoing longwave and shortwave radiation. This

  11. TechEdSat Nano-Satellite Series Fact Sheet

    Science.gov (United States)

    Murbach, Marcus; Martinez, Andres; Guarneros Luna, Ali

    2014-01-01

    TechEdSat-3p is the second generation in the TechEdSat-X series. The TechEdSat Series uses the CubeSat standards established by the California Polytechnic State University Cal Poly), San Luis Obispo. With typical blocks being constructed from 1-unit (1U 10x10x10 cm) increments, the TechEdSat-3p has a 3U volume with a 30 cm length. The project uniquely pairs advanced university students with NASA researchers in a rapid design-to-flight experience lasting 1-2 semesters.The TechEdSat Nano-Satellite Series provides a rapid platform for testing technologies for future NASA Earth and planetary missions, as well as providing students with an early exposure to flight hardware development and management.

  12. The GOES-R Geostationary Lightning Mapper (GLM) and the Global Observing System for Total Lightning

    Science.gov (United States)

    Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Buechler, D.; Carey, L.; Chronis, T.; Mach, D.; Bateman, M.; Peterson, H.; McCaul, E. W., Jr.; hide

    2014-01-01

    for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning continuously day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. The GLM will help address the National Weather Service requirement for total lightning observations globally to support warning decision-making and forecast services. Science and application development along with pre-operational product demonstrations and evaluations at NWS national centers, forecast offices, and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in 2016. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings.

  13. Posn(R) and Eisenstein series

    CERN Document Server

    Jorgenson, Jay

    2005-01-01

    Posn(R) and Eisenstein Series provides an introduction, requiring minimal prerequisites, to the analysis on symmetric spaces of positive definite real matrices as well as quotients of this space by the unimodular group of integral matrices. The approach is presented in very classical terms and includes material on special functions, notably gamma and Bessel functions, and focuses on certain mathematical aspects of Eisenstein series.

  14. Satellite image time series simulation for environmental monitoring

    Science.gov (United States)

    Guo, Tao

    2014-11-01

    The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of

  15. Calibration of GOES-derived solar radiation data using a distributed network of surface measurements in Florida, USA

    Science.gov (United States)

    Sumner, David M.; Pathak, Chandra S.; Mecikalski, John R.; Paech, Simon J.; Wu, Qinglong; Sangoyomi, Taiye; Babcock, Roger W.; Walton, Raymond

    2008-01-01

    Solar radiation data are critically important for the estimation of evapotranspiration. Analysis of visible-channel data derived from Geostationary Operational Environmental Satellites (GOES) using radiative transfer modeling has been used to produce spatially- and temporally-distributed datasets of solar radiation. An extensive network of (pyranometer) surface measurements of solar radiation in the State of Florida has allowed refined calibration of a GOES-derived daily integrated radiation data product. This refinement of radiation data allowed for corrections of satellite sensor drift, satellite generational change, and consideration of the highly-variable cloudy conditions that are typical of Florida. To aid in calibration of a GOES-derived radiation product, solar radiation data for the period 1995–2004 from 58 field stations that are located throughout the State were compiled. The GOES radiation product was calibrated by way of a three-step process: 1) comparison with ground-based pyranometer measurements on clear reference days, 2) correcting for a bias related to cloud cover, and 3) deriving month-by-month bias correction factors. Pre-calibration results indicated good model performance, with a station-averaged model error of 2.2 MJ m–2 day–1 (13 percent). Calibration reduced errors to 1.7 MJ m–2 day–1 (10 percent) and also removed time- and cloudiness-related biases. The final dataset has been used to produce Statewide evapotranspiration estimates.

  16. Office of Satellite and Product Operations

    Science.gov (United States)

    ; Strategy » International Agreements » POES Current » GOES Current History » History in Images » POES History » GOES History OSPO Information » Access and Distribution Policy » Organization Chart  Branch utilizes interactive processing technology to integrate multiple satellite sensor data streams

  17. Net Surface Shortwave Radiation from GOES Imagery—Product Evaluation Using Ground-Based Measurements from SURFRAD

    Directory of Open Access Journals (Sweden)

    Anand K. Inamdar

    2015-08-01

    Full Text Available The Earth’s surface net radiation controls the energy and water exchanges between the Earth’s surface and the atmosphere, and can be derived from satellite observations. The ability to monitor the net surface radiation over large areas at high spatial and temporal resolution is essential for many applications, such as weather forecasting, short-term climate prediction or water resources management. The objective of this paper is to derive the net surface radiation in the shortwave domain at high temporal (half-hourly and spatial resolution (~1 km using visible imagery from Geostationary Operational Environmental Satellite (GOES. The retrieval algorithm represents an adaptation to GOES data of a standard algorithm initially developed for the NASA-operated Clouds and Earth’s Radiant Energy System (CERES scanner. The methodology relies on: (1 the estimation of top of atmosphere shortwave radiation from GOES spectral measurements; and (2 the calculation of net surface shortwave (SW radiation accounting for atmospheric effects. Comparison of GOES-retrieved net surface shortwave radiation with ground-measurements at the National Oceanic and Atmospheric Administration’s (NOAA Surface Radiation (SURFRAD stations yields very good agreement with average bias lower than 5 W·m−2 and root mean square difference around 70 W·m−2. The algorithm performance is usually higher over areas characterized by low spatial variability in term of land cover type and surface biophysical properties. The technique does not involve retrieval and assessment of cloud properties and can be easily adapted to other meteorological satellites around the globe.

  18. Quality Improvement of the Satellite Soil Moisture Products by Fusing In Situ and GNSS-R Observation

    Science.gov (United States)

    Yuan, Q.; Xu, H.; Li, T.; Shen, H.; Zhang, L.

    2017-12-01

    Soil moisture plays a fundamental role in the hydrological cycle as well as in the energy partitioning. On this basis, it is of great concern to derive a long-term soil moisture time series on a global scale and monitor its temporal and spatial variations for practical applications. Although passive and active microwave satellites have been shown to provide useful retrievals of near-surface soil moisture at regional and global scales, the limitations in retrieval accuracy prevent them from high-quality applications in specific areas. On the other hand, measuring soil moisture straightly through in situdevices, such as soil moisture probes, is high accuracy, but is not able to derive global soil moisture maps. Recently, the ground-based GNSS-R method is emerging in monitoring near-surface soil moisture variations but still over limited spatial scales. In this paper, a multi-source data fusion method was applied to synthesize regional high-quality soil moisture products from 2015 to 2017 in western parts of the continental United States. Firstly, we put all the three soil moisture datasets into the generalized regression neural network (GRNN) model. The input signals of the model are SMOS and SMAP satellite-derived passive level 3 soil moisture daily products combined with date and latitude and longitude information, while the in situ measured and GNSS-R retrieved soil moisture are used as target. Finally, we apply the model to all the soil moisture time series in the experiment area and obtain two high-quality regional soil moisture products for SMOS and SMAP, respectively. The results before fusion show that the correlation coefficients between site-specific soil moisture and satellite-derived soil moisture are 0.39 for SMOS and 0.27 for SMAP and that unbiased root-mean-square errors (ubRMSE) are 0.113 for SMOS and 0.128 for SMAP, respectively. After applying the GRNN-R, the model fitted correlation coefficients have reached 0.72 for SMOS and 0.75 for SMAP and the

  19. Satellite Image Time Series Decomposition Based on EEMD

    Directory of Open Access Journals (Sweden)

    Yun-long Kong

    2015-11-01

    Full Text Available Satellite Image Time Series (SITS have recently been of great interest due to the emerging remote sensing capabilities for Earth observation. Trend and seasonal components are two crucial elements of SITS. In this paper, a novel framework of SITS decomposition based on Ensemble Empirical Mode Decomposition (EEMD is proposed. EEMD is achieved by sifting an ensemble of adaptive orthogonal components called Intrinsic Mode Functions (IMFs. EEMD is noise-assisted and overcomes the drawback of mode mixing in conventional Empirical Mode Decomposition (EMD. Inspired by these advantages, the aim of this work is to employ EEMD to decompose SITS into IMFs and to choose relevant IMFs for the separation of seasonal and trend components. In a series of simulations, IMFs extracted by EEMD achieved a clear representation with physical meaning. The experimental results of 16-day compositions of Moderate Resolution Imaging Spectroradiometer (MODIS, Normalized Difference Vegetation Index (NDVI, and Global Environment Monitoring Index (GEMI time series with disturbance illustrated the effectiveness and stability of the proposed approach to monitoring tasks, such as applications for the detection of abrupt changes.

  20. Discovering significant evolution patterns from satellite image time series.

    Science.gov (United States)

    Petitjean, François; Masseglia, Florent; Gançarski, Pierre; Forestier, Germain

    2011-12-01

    Satellite Image Time Series (SITS) provide us with precious information on land cover evolution. By studying these series of images we can both understand the changes of specific areas and discover global phenomena that spread over larger areas. Changes that can occur throughout the sensing time can spread over very long periods and may have different start time and end time depending on the location, which complicates the mining and the analysis of series of images. This work focuses on frequent sequential pattern mining (FSPM) methods, since this family of methods fits the above-mentioned issues. This family of methods consists of finding the most frequent evolution behaviors, and is actually able to extract long-term changes as well as short term ones, whenever the change may start and end. However, applying FSPM methods to SITS implies confronting two main challenges, related to the characteristics of SITS and the domain's constraints. First, satellite images associate multiple measures with a single pixel (the radiometric levels of different wavelengths corresponding to infra-red, red, etc.), which makes the search space multi-dimensional and thus requires specific mining algorithms. Furthermore, the non evolving regions, which are the vast majority and overwhelm the evolving ones, challenge the discovery of these patterns. We propose a SITS mining framework that enables discovery of these patterns despite these constraints and characteristics. Our proposal is inspired from FSPM and provides a relevant visualization principle. Experiments carried out on 35 images sensed over 20 years show the proposed approach makes it possible to extract relevant evolution behaviors.

  1. The GOES-16 Energetic Heavy Ion Sensor (EHIS) Ion Composition and Flux Measurements

    Science.gov (United States)

    Connell, J. J.; Lopate, C.

    2017-12-01

    The Energetic Heavy Ion Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite (formerly GOES-R) in Geostationary orbit. EHIS measures energetic ions over the range 10-200 MeV for protons, and energy ranges for heavy ions corresponding to the same stopping range (e.g., 19-207 MeV/u for carbon and 38-488 MeV/u for iron). EHIS uses the Angle Detecting Inclined Sensors (ADIS) technique to provide single-element charge resolution. Though on an operational mission for Space Weather monitoring, EHIS can thus provide a new source of high quality Solar Particle Event (SPE) data for science studies. With a high rate of on-board processing ( 2000 events/s), EHIS will provide exceptional statistics for ion composition measurements in large SPEs. For the GOES Level 1-B and Level 2 data products, heavy ions are distinguished in EHIS using pulse-height analysis with on-board processing producing charge histograms for five energy bands. Fits to these data are normalized to priority rate data on the ground. The instrumental cadence for histograms is 1 minute and the primary Level 1-B heavy ion data products are 1-minute and 5-minute averages. We discuss the preliminary EHIS heavy ion data results which show elemental peaks from H to Fe, with peaks for the isotopes D and 3He. (GOES-16 was launched in 19 November, 2016 and data has, though July 2017, been dominated by Galactic Cosmic Rays.) The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  2. Atmospheric temporal variations in the pre-landfall environment of typhoon Nangka (2015) observed by the Himawari-8 AHI

    Science.gov (United States)

    Lee, Yong-Keun; Li, Jun; Li, Zhenglong; Schmit, Timothy

    2017-11-01

    The next generation Geostationary Operational Environmental Satellite-R series (GOES-R) Advanced Baseline Imager (ABI) legacy atmospheric profile (LAP) retrieval algorithm is applied to the Advanced Himawari Imager (AHI) radiance measurements from the Himawari-8 satellite. Derived products included atmospheric temperature/moisture profiles, total precipitable water (TPW), and atmospheric stability indices. Since both AHI and ABI have 9 similar infrared bands, the GOES-R ABI LAP retrieval algorithm can be applied to the AHI measurements with minimal modifications. With the capability of frequent (10-min interval) full disk observations over the East Asia and Western Pacific regions, the AHI measurements are used to investigate the atmospheric temporal variation in the pre-landfall environment for typhoon Nangka (2015). Before its landfall over Japan, heavy rainfalls from Nangka occurred over the southern region of Honshu Island. During the pre-landfall period, the trends of the AHI LAP products indicated the development of the atmospheric environment favorable for heavy rainfall. Even though, the AHI LAP products are generated only in the clear skies, the 10-minute interval AHI measurements provide detailed information on the pre-landfall environment for typhoon Nangka. This study shows the capability of the AHI radiance measurements, together with the derived products, for depicting the detailed temporal features of the pre-landfall environment of a typhoon, which may also be possible for hurricanes and storms with ABI on the GOES-R satellite.

  3. Dimension Reduction of Multi-Spectral Satellite Image Time Series to Improve Deforestation Monitoring

    Directory of Open Access Journals (Sweden)

    Meng Lu

    2017-10-01

    Full Text Available In recent years, sequential tests for detecting structural changes in time series have been adapted for deforestation monitoring using satellite data. The input time series of such sequential tests is typically a vegetation index (e.g., NDVI, which uses two or three bands and ignores all other bands. Being limited to a vegetation index will not benefit from the richer spectral information provided by newly launched satellites and will bring two bottle-necks for deforestation monitoring. Firstly, it is hard to select a suitable vegetation index a priori. Secondly, a single vegetation index is typically affected by seasonal signals, noise and other natural dynamics, which decrease its power for deforestation detection. A novel multispectral time series change monitoring method that combines dimension reduction methods with a sequential hypothesis test is proposed to address these limitations. For each location, the proposed method automatically chooses a “suitable” index for deforestation monitoring. To demonstrate our approach, we implemented it in two study areas: a dry tropical forest in Bolivia (time series length: 444 with strong seasonality and a moist tropical forest in Brazil (time series length: 225 with almost no seasonality. Our method significantly improves accuracy in the presence of strong seasonality, in particular the temporal lag between disturbance and its detection.

  4. Towards a Cloud Computing Environment: Near Real-time Cloud Product Processing and Distribution for Next Generation Satellites

    Science.gov (United States)

    Nguyen, L.; Chee, T.; Minnis, P.; Palikonda, R.; Smith, W. L., Jr.; Spangenberg, D.

    2016-12-01

    The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) processes and derives near real-time (NRT) global cloud products from operational geostationary satellite imager datasets. These products are being used in NRT to improve forecast model, aircraft icing warnings, and support aircraft field campaigns. Next generation satellites, such as the Japanese Himawari-8 and the upcoming NOAA GOES-R, present challenges for NRT data processing and product dissemination due to the increase in temporal and spatial resolution. The volume of data is expected to increase to approximately 10 folds. This increase in data volume will require additional IT resources to keep up with the processing demands to satisfy NRT requirements. In addition, these resources are not readily available due to cost and other technical limitations. To anticipate and meet these computing resource requirements, we have employed a hybrid cloud computing environment to augment the generation of SatCORPS products. This paper will describe the workflow to ingest, process, and distribute SatCORPS products and the technologies used. Lessons learn from working on both AWS Clouds and GovCloud will be discussed: benefits, similarities, and differences that could impact decision to use cloud computing and storage. A detail cost analysis will be presented. In addition, future cloud utilization, parallelization, and architecture layout will be discussed for GOES-R.

  5. GOES-R Advanced Baseline Imager: spectral response functions and radiometric biases with the NPP Visible Infrared Imaging Radiometer Suite evaluated for desert calibration sites.

    Science.gov (United States)

    Pearlman, Aaron; Pogorzala, David; Cao, Changyong

    2013-11-01

    The Advanced Baseline Imager (ABI), which will be launched in late 2015 on the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-series satellite, will be evaluated in terms of its data quality postlaunch through comparisons with other satellite sensors such as the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership satellite. The ABI has completed much of its prelaunch characterization and its developers have generated and released its channel spectral response functions (response versus wavelength). Using these responses and constraining a radiative transfer model with ground reflectance, aerosol, and water vapor measurements, we simulate observed top of atmosphere (TOA) reflectances for analogous visible and near infrared channels of the VIIRS and ABI sensors at the Sonoran Desert and White Sands National Monument sites and calculate the radiometric biases and their uncertainties. We also calculate sensor TOA reflectances using aircraft hyperspectral data from the Airborne Visible/Infrared Imaging Spectrometer to validate the uncertainties in several of the ABI and VIIRS channels and discuss the potential for validating the others. Once on-orbit, calibration scientists can use these biases to ensure ABI data quality and consistency to support the numerical weather prediction community and other data users. They can also use the results for ABI or VIIRS anomaly detection and resolution.

  6. Monitoring Seasonal Evapotranspiration in Vulnerable Agriculture using Time Series VHSR Satellite Data

    Science.gov (United States)

    Dalezios, Nicolas; Spyropoulos, Nicos V.; Tarquis, Ana M.

    2015-04-01

    The research work stems from the hypothesis that it is possible to perform an estimation of seasonal water needs of olive tree farms under drought periods by cross correlating high spatial, spectral and temporal resolution (~monthly) of satellite data, acquired at well defined time intervals of the phenological cycle of crops, with ground-truth information simultaneously applied during the image acquisitions. The present research is for the first time, demonstrating the coordinated efforts of space engineers, satellite mission control planners, remote sensing scientists and ground teams to record at specific time intervals of the phenological cycle of trees from ground "zero" and from 770 km above the Earth's surface, the status of plants for subsequent cross correlation and analysis regarding the estimation of the seasonal evapotranspiration in vulnerable agricultural environment. The ETo and ETc derived by Penman-Montieth equation and reference Kc tables, compared with new ETd using the Kc extracted from the time series satellite data. Several vegetation indices were also used especially the RedEdge and the chlorophyll one based on WorldView-2 RedEdge and second NIR bands to relate the tree status with water and nutrition needs. Keywords: Evapotransipration, Very High Spatial Resolution - VHSR, time series, remote sensing, vulnerability, agriculture, vegetation indeces.

  7. ESTIMATING RELIABILITY OF DISTURBANCES IN SATELLITE TIME SERIES DATA BASED ON STATISTICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Z.-G. Zhou

    2016-06-01

    Full Text Available Normally, the status of land cover is inherently dynamic and changing continuously on temporal scale. However, disturbances or abnormal changes of land cover — caused by such as forest fire, flood, deforestation, and plant diseases — occur worldwide at unknown times and locations. Timely detection and characterization of these disturbances is of importance for land cover monitoring. Recently, many time-series-analysis methods have been developed for near real-time or online disturbance detection, using satellite image time series. However, the detection results were only labelled with “Change/ No change” by most of the present methods, while few methods focus on estimating reliability (or confidence level of the detected disturbances in image time series. To this end, this paper propose a statistical analysis method for estimating reliability of disturbances in new available remote sensing image time series, through analysis of full temporal information laid in time series data. The method consists of three main steps. (1 Segmenting and modelling of historical time series data based on Breaks for Additive Seasonal and Trend (BFAST. (2 Forecasting and detecting disturbances in new time series data. (3 Estimating reliability of each detected disturbance using statistical analysis based on Confidence Interval (CI and Confidence Levels (CL. The method was validated by estimating reliability of disturbance regions caused by a recent severe flooding occurred around the border of Russia and China. Results demonstrated that the method can estimate reliability of disturbances detected in satellite image with estimation error less than 5% and overall accuracy up to 90%.

  8. GHRSST Level 2P Western Pacific Regional Skin Sea Surface Temperature from the Multifunctional Transport Satellite 1R (MTSAT-1R) (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Multi-functional Transport Satellites (MTSAT) are a series of geostationary weather satellites operated by the Japan Meteorological Agency (JMA). MTSAT carries an...

  9. AUTOMATIC CLOUD DETECTION FROM MULTI-TEMPORAL SATELLITE IMAGES: TOWARDS THE USE OF PLÉIADES TIME SERIES

    Directory of Open Access Journals (Sweden)

    N. Champion

    2012-08-01

    Full Text Available Contrary to aerial images, satellite images are often affected by the presence of clouds. Identifying and removing these clouds is one of the primary steps to perform when processing satellite images, as they may alter subsequent procedures such as atmospheric corrections, DSM production or land cover classification. The main goal of this paper is to present the cloud detection approach, developed at the French Mapping agency. Our approach is based on the availability of multi-temporal satellite images (i.e. time series that generally contain between 5 and 10 images and is based on a region-growing procedure. Seeds (corresponding to clouds are firstly extracted through a pixel-to-pixel comparison between the images contained in time series (the presence of a cloud is here assumed to be related to a high variation of reflectance between two images. Clouds are then delineated finely using a dedicated region-growing algorithm. The method, originally designed for panchromatic SPOT5-HRS images, is tested in this paper using time series with 9 multi-temporal satellite images. Our preliminary experiments show the good performances of our method. In a near future, the method will be applied to Pléiades images, acquired during the in-flight commissioning phase of the satellite (launched at the end of 2011. In that context, this is a particular goal of this paper to show to which extent and in which way our method can be adapted to this kind of imagery.

  10. The use of satellite data for monitoring temporal and spatial patterns of fire: a comprehensive review

    Science.gov (United States)

    Lasaponara, R.

    2009-04-01

    data analysis for small active fire detection.n International Journal of Remote Sensing, vol. 24, No 8, 1723-1749. Minchella A., F. Del Frate, F. Capogna, S. Anselmi, F. Manes Use of multitemporal SAR data for monitoring vegetation recovery of Mediterranean burned areas Remote Sensing of Environment, In Press Næsset E., T. Gobakken Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 3079-3090 Peterson S. H, Dar A. Roberts, Philip E. Dennison Mapping live fuel moisture with MODIS data: A multiple regression approach, Remote Sensing of Environment, Volume 112, Issue 12, 15 December 2008, Pages 4272-4284. Schroeder Wilfrid, Elaine Prins, Louis Giglio, Ivan Csiszar, Christopher Schmidt, Jeffrey Morisette, Douglas Morton Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data Remote Sensing of Environment, Volume 112, Issue 5, 15 May 2008, Pages 2711-2726 Shi J., T. Jackson, J. Tao, J. Du, R. Bindlish, L. Lu, K.S. Chen Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E Remote Sensing of Environment, Volume 112, Issue 12, 15 December 2008, Pages 4285-4300 Tansey, K., Grégoire, J-M., Defourny, P., Leigh, R., Pekel, J-F., van Bogaert, E. and Bartholomé, E., 2008 A New, Global, Multi-Annual (2000-2007) Burnt Area Product at 1 km Resolution and Daily Intervals Geophysical Research Letters, VOL. 35, L01401, doi:10.1029/2007GL031567, 2008. Telesca L. and Lasaponara R., 2006; "Pre-and Post- fire Behaviural trends revealed in satellite NDVI time series" Geophysical Research Letters,., 33, L14401, doi:10.1029/2006GL026630 Telesca L. and Lasaponara R 2005 Discriminating Dynamical Patterns in Burned and Unburned Vegetational Covers by Using SPOT-VGT NDVI Data. Geophysical Research Letters,, 32, L21401, doi:10.1029/2005GL024391. Telesca L. and Lasaponara R. Investigating fire

  11. Data Filtering of Western Hemisphere GOES Wildfire ABBA Products

    Science.gov (United States)

    Theisen, M.; Prins, E.; Schmidt, C.; Reid, J. S.; Hunter, J.; Westphal, D.

    2002-05-01

    The Fire Locating and Modeling of Burning Emissions (FLAMBE') project was developed to model biomass burning emissions, transport, and radiative effects in real time. The model relies on data from the Geostationary Operational Environment Satellites (GOES-8, GOES-10), that is generated by the Wildfire Automated Biomass Burning Algorithm (WF ABBA). In an attempt to develop the most accurate modeling system the data set needs to be filtered to distinguish the true fire pixels from false alarms. False alarms occur due to reflection of solar radiation off of standing water, surface structure variances, and heat anomalies. The Reoccurring Fire Filtering algorithm (ReFF) was developed to address such false alarms by filtering data dependent on reoccurrence, location in relation to region and satellite, as well as heat intensity. WF ABBA data for the year 2000 during the peak of the burning season were analyzed using ReFF. The analysis resulted in a 45% decrease in North America and only a 15% decrease in South America, respectively, in total fire pixel occurrence. The lower percentage decrease in South America is a result of fires burning for longer periods of time, less surface variance, as well as an increase in heat intensity of fires for that region. Also fires are so prevalent in the region that multiple fires may coexist in the same 4-kilometer pixel.

  12. R and D limited partnerships (possible applications in advanced communications satellite technology experiment program)

    Science.gov (United States)

    1985-01-01

    Typical R&D limited partnership arrangements, advantages and disadvantages of R&D limited partnership (RDLPs) and antitrust and tax implications are described. A number of typical forms of RDLPs are described that may be applicable for use in stimulating R&D and experimental programs using the advanced communications technology satellite. The ultimate goal is to increase the rate of market penetration of goods and/or services based upon advanced satellite communications technology. The conditions necessary for these RDLP forms to be advantageous are outlined.

  13. Evaluation of Temperature and Material Combinations on Several Lubricants for Use in the Geostationary Operational Environmental Satellite (GOES) Mission Filter Wheel Bearings

    Science.gov (United States)

    Jansen, Mark J.; Jones, William R., Jr.; Predmore, Roamer E.

    2001-01-01

    A bearing test apparatus was used to investigate lubricant degradation rates and elastohydrodynamic transition temperatures for several perfluoropolyether (Krytox) formulations, a pentasilahydrocarbon, and a synthetic hydrocarbon (Pennzane 2001 A) in an MPB 1219 bearing, which is used in the geostationary operational environmental satellite (GOES) mission filter wheel assembly. Test conditions were the following: 1000-hr duration, 75 C, 20 lb axial load, vacuum level less than 1 x 10(exp -6) Torr, and a 600-rpm rotational speed. Baseline tests were performed using unformulated Krytox 143AB, the heritage lubricant. Krytox additive formulations showed small reductions in degradation rate. Krytox GPL-105, a higher viscosity version, yielded the least amount of degradation products. Both the silahydrocarbon and Pennzane 2001A showed no signs of lubricant degradation and had ample amounts of free oil at test conclusion.

  14. Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach

    Science.gov (United States)

    Koeppen, W. C.; Pilger, E.; Wright, R.

    2011-07-01

    We developed and tested an automated algorithm that analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes. Our algorithm enhances the previously developed MODVOLC approach, a simple point operation, by adding a more complex time series component based on the methods of the Robust Satellite Techniques (RST) algorithm. Using test sites at Anatahan and Kīlauea volcanoes, the hybrid time series approach detected ~15% more thermal anomalies than MODVOLC with very few, if any, known false detections. We also tested gas flares in the Cantarell oil field in the Gulf of Mexico as an end-member scenario representing very persistent thermal anomalies. At Cantarell, the hybrid algorithm showed only a slight improvement, but it did identify flares that were undetected by MODVOLC. We estimate that at least 80 MODIS images for each calendar month are required to create good reference images necessary for the time series analysis of the hybrid algorithm. The improved performance of the new algorithm over MODVOLC will result in the detection of low temperature thermal anomalies that will be useful in improving our ability to document Earth's volcanic eruptions, as well as detecting low temperature thermal precursors to larger eruptions.

  15. Programming a real-time operating system for satellite control applications Satellite Control Applications

    International Nuclear Information System (INIS)

    Omer, M.; Anjum, O.; Suddle, M.R.

    2004-01-01

    With the realization of ideas like formation flights and multi-body space vehicles the demands on an attitude control system have become increasingly complex. Even in its most simplified form, the control system for a typical geostationary satellite has to run various supervisory functions along with determination and control algorithms side by side. Within each algorithm it has to employ multiple actuation and sensing mechanisms and service real time interrupts, for example, in the case of actuator saturation and sensor data fusion. This entails the idea of thread scheduling and program synchronization, tasks specifically meant for a real time OS. This paper explores the embedding of attitude determination and control loop within the framework of a real time operating system provided for TI's DSP C6xxx series. The paper details out the much functionality provided within the scaleable real time kernel and the analysis and configuration tools available, It goes on to describe a layered implementation stack associated with a typical control for Geo Stationary satellites. An application for control is then presented in which state of the art analysis tools are employed to view program threads, synchronization semaphores, hardware interrupts and data exchange pipes operating in real time. (author)

  16. Van Allen Probes, THEMIS, GOES, and Cluster Observations of EMIC Waves, ULF Pulsations, and an Electron Flux Dropout

    Science.gov (United States)

    Sigsbee, K.; Kletzing, C. A.; Smith, C. W.; Macdowall, R.; Spence, H.; Reeves, G.; Blake, J. B.; Baker, D. N.; Green, J. C.; Singer, H. J.; hide

    2016-01-01

    We examined an electron flux dropout during the 12-14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12-13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13-14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dstwaves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior.

  17. An estimation model of population in China using time series DMSP night-time satellite imagery from 2002-2010

    Science.gov (United States)

    Zhang, Xiaoyong; Zhang, Zhijie; Chang, Yuguang; Chen, Zhengchao

    2015-12-01

    Accurate data on the spatial distribution and potential growth estimation of human population are playing pivotal role in addressing and mitigating heavy lose caused by earthquake. Traditional demographic data is limited in its spatial resolution and is extremely hard to update. With the accessibility of massive DMSP/OLS night time imagery, it is possible to model population distribution at the county level across China. In order to compare and improve the continuity and consistency of time-series DMSP night-time satellite imagery obtained by different satellites in same year or different years by the same satellite from 2002-2010, normalized method was deployed for the inter-correction among imageries. And we referred to the reference F162007 Jixi city, whose social-economic has been relatively stable. Through binomial model, with average R2 0.90, then derived the correction factor of each year. The normalization obviously improved consistency comparing to previous data, which enhanced the correspondent accuracy of model. Then conducted the model of population density between average night-time light intensity in eight-economic districts. According to the two parameters variation law of consecutive years, established the prediction model of next following years with R2of slope and constant typically 0.85 to 0.95 in different regions. To validate the model, taking the year of 2005 as example, retrieved quantitatively population distribution in per square kilometer based on the model, then compared the results to the statistical data based on census, the difference of the result is acceptable. In summary, the estimation model facilitates the quick estimation and prediction in relieving the damage to people, which is significant in decision-making.

  18. Reactions of 3d-series metallocenes with organic cadmium compounds

    International Nuclear Information System (INIS)

    Razuvaev, G.A.; Mar'in, V.P.; Vyshinskaya, L.I.; Grinval'd, I.I.; Spiridonova, N.N.

    1987-01-01

    Interaction of organic cadmium compounds and 3d-series metallocenes, Cp 2 M (M=V, Cr, Mn, Ni, Co) has been studied. It is shown that direction of these reactions is determined by metallocene nature. Reactions of oxidizing addition leading to σ-complexes formation are characteristic for vanadium and chromium metallocenes. When reacting cobaltocene with R 2 Cd, R group introduction to cyclopentadienyl ring and elimination of cobalt diene complexes take place. Manganocene and nickelocene interaction goes through the stage of complex formation with transition metal - cadmium bond

  19. Chartering Launchers for Small Satellites

    Science.gov (United States)

    Hernandez, Daniel

    The question of how to launch small satellites has been solved over the years by the larger launchers offering small satellites the possibility of piggy-backing. Specific fixtures have been developed and commercialized: Arianespace developed the ASAP interface, the USAF studied ESPA, NASA has promoted Shuttle launch possibilities, Russian authorities and companies have been able to find solutions with many different launchers... It is fair to say that most launcher suppliers have worked hard and finally often been able to find solutions to launch most small satellites into orbit. It is also true, however, that most of these small satellites were technology demonstration missions capable of accepting a wide range of orbit and launch characteristics: orbit altitude and inclination, launch date, etc. In some cases the small satellite missions required a well-defined type of orbit and have therefore been obliged to hire a small launcher on which they were the prime passenger. In our paper we would like to propose an additional solution to all these possibilities: launchers could plan well in advance (for example about 3 years), trips to precisely defined orbits to allow potential passengers to organize themselves and be ready on the D-Day. On the scheduled date the chartered launcher goes to the stated orbit while on another date, another chartered launcher goes to another orbit. The idea is to organize departures for space like trains or airplanes leaving on known schedules for known destinations.

  20. National Oceanic and Atmospheric Administration: National Weather Service Modernization and Weather Satellite Program

    National Research Council Canada - National Science Library

    Willemssen, Joel

    2000-01-01

    ...). At your request, we will discuss the status of the National Weather Service (NWS) systems modernization and the National Environmental Satellite, Data, and Information Service's Geostationary Operational Environmental Satellite (GOES) program...

  1. Classification of Clouds and Deep Convection from GEOS-5 Using Satellite Observations

    Science.gov (United States)

    Putman, William; Suarez, Max

    2010-01-01

    With the increased resolution of global atmospheric models and the push toward global cloud resolving models, the resemblance of model output to satellite observations has become strikingly similar. As we progress with our adaptation of the Goddard Earth Observing System Model, Version 5 (GEOS-5) as a high resolution cloud system resolving model, evaluation of cloud properties and deep convection require in-depth analysis beyond a visual comparison. Outgoing long-wave radiation (OLR) provides a sufficient comparison with infrared (IR) satellite imagery to isolate areas of deep convection. We have adopted a binning technique to generate a series of histograms for OLR which classify the presence and fraction of clear sky versus deep convection in the tropics that can be compared with a similar analyses of IR imagery from composite Geostationary Operational Environmental Satellite (GOES) observations. We will present initial results that have been used to evaluate the amount of deep convective parameterization required within the model as we move toward cloud system resolving resolutions of 10- to 1-km globally.

  2. Intercomparison of Satellite Derived Gravity Time Series with Inferred Gravity Time Series from TOPEX/POSEIDON Sea Surface Heights and Climatological Model Output

    Science.gov (United States)

    Cox, C.; Au, A.; Klosko, S.; Chao, B.; Smith, David E. (Technical Monitor)

    2001-01-01

    The upcoming GRACE mission promises to open a window on details of the global mass budget that will have remarkable clarity, but it will not directly answer the question of what the state of the Earth's mass budget is over the critical last quarter of the 20th century. To address that problem we must draw upon existing technologies such as SLR, DORIS, and GPS, and climate modeling runs in order to improve our understanding. Analysis of long-period geopotential changes based on SLR and DORIS tracking has shown that addition of post 1996 satellite tracking data has a significant impact on the recovered zonal rates and long-period tides. Interannual effects such as those causing the post 1996 anomalies must be better characterized before refined estimates of the decadal period changes in the geopotential can be derived from the historical database of satellite tracking. A possible cause of this anomaly is variations in ocean mass distribution, perhaps associated with the recent large El Nino/La Nina. In this study, a low-degree spherical harmonic gravity time series derived from satellite tracking is compared with a TOPEX/POSEIDON-derived sea surface height time series. Corrections for atmospheric mass effects, continental hydrology, snowfall accumulation, and ocean steric model predictions will be considered.

  3. A graph-based approach to detect spatiotemporal dynamics in satellite image time series

    Science.gov (United States)

    Guttler, Fabio; Ienco, Dino; Nin, Jordi; Teisseire, Maguelonne; Poncelet, Pascal

    2017-08-01

    Enhancing the frequency of satellite acquisitions represents a key issue for Earth Observation community nowadays. Repeated observations are crucial for monitoring purposes, particularly when intra-annual process should be taken into account. Time series of images constitute a valuable source of information in these cases. The goal of this paper is to propose a new methodological framework to automatically detect and extract spatiotemporal information from satellite image time series (SITS). Existing methods dealing with such kind of data are usually classification-oriented and cannot provide information about evolutions and temporal behaviors. In this paper we propose a graph-based strategy that combines object-based image analysis (OBIA) with data mining techniques. Image objects computed at each individual timestamp are connected across the time series and generates a set of evolution graphs. Each evolution graph is associated to a particular area within the study site and stores information about its temporal evolution. Such information can be deeply explored at the evolution graph scale or used to compare the graphs and supply a general picture at the study site scale. We validated our framework on two study sites located in the South of France and involving different types of natural, semi-natural and agricultural areas. The results obtained from a Landsat SITS support the quality of the methodological approach and illustrate how the framework can be employed to extract and characterize spatiotemporal dynamics.

  4. The CACAO Method for Smoothing, Gap Filling, and Characterizing Seasonal Anomalies in Satellite Time Series

    Science.gov (United States)

    Verger, Aleixandre; Baret, F.; Weiss, M.; Kandasamy, S.; Vermote, E.

    2013-01-01

    Consistent, continuous, and long time series of global biophysical variables derived from satellite data are required for global change research. A novel climatology fitting approach called CACAO (Consistent Adjustment of the Climatology to Actual Observations) is proposed to reduce noise and fill gaps in time series by scaling and shifting the seasonal climatological patterns to the actual observations. The shift and scale CACAO parameters adjusted for each season allow quantifying shifts in the timing of seasonal phenology and inter-annual variations in magnitude as compared to the average climatology. CACAO was assessed first over simulated daily Leaf Area Index (LAI) time series with varying fractions of missing data and noise. Then, performances were analyzed over actual satellite LAI products derived from AVHRR Long-Term Data Record for the 1981-2000 period over the BELMANIP2 globally representative sample of sites. Comparison with two widely used temporal filtering methods-the asymmetric Gaussian (AG) model and the Savitzky-Golay (SG) filter as implemented in TIMESAT-revealed that CACAO achieved better performances for smoothing AVHRR time series characterized by high level of noise and frequent missing observations. The resulting smoothed time series captures well the vegetation dynamics and shows no gaps as compared to the 50-60% of still missing data after AG or SG reconstructions. Results of simulation experiments as well as confrontation with actual AVHRR time series indicate that the proposed CACAO method is more robust to noise and missing data than AG and SG methods for phenology extraction.

  5. Plantago lagopus B Chromosome Is Enriched in 5S rDNA-Derived Satellite DNA

    Czech Academy of Sciences Publication Activity Database

    Kumke, K.; Macas, Jiří; Fuchs, J.; Altschmied, L.; Kour, J.; Dhar, M.K.; Houben, A.

    2016-01-01

    Roč. 148, č. 1 (2016), s. 68-73 ISSN 1424-8581 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:60077344 Keywords : Polymorhpic A chromosome segment * Satellite repeat * Supernumerary chromosome * 5S rDNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.354, year: 2016

  6. Van Allen Probes, THEMIS, GOES, and Cluster Observations of EMIC Waves, ULF Pulsations, and an Electron Flux Dropout

    Science.gov (United States)

    Sigsbee, K.; Kletzing, C. A.; Smith, C. W.; Macdowall, R.; Spence, H.; Reeves, G.; Blake, J. B.; Baker, D. N.; Green, J. C.; Singer, H. J.; hide

    2016-01-01

    We examined an electron flux dropout during the 12-14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12-13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13-14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dst<100 nT. At the start of the recovery phase, both the 0.8 and 2.0 MeV electron fluxes finally returned to near prestorm values, possibly in response to strong ultralow frequency (ULF) waves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior.

  7. Fourier Series Formalization in ACL2(r

    Directory of Open Access Journals (Sweden)

    Cuong K. Chau

    2015-09-01

    Full Text Available We formalize some basic properties of Fourier series in the logic of ACL2(r, which is a variant of ACL2 that supports reasoning about the real and complex numbers by way of non-standard analysis. More specifically, we extend a framework for formally evaluating definite integrals of real-valued, continuous functions using the Second Fundamental Theorem of Calculus. Our extended framework is also applied to functions containing free arguments. Using this framework, we are able to prove the orthogonality relationships between trigonometric functions, which are the essential properties in Fourier series analysis. The sum rule for definite integrals of indexed sums is also formalized by applying the extended framework along with the First Fundamental Theorem of Calculus and the sum rule for differentiation. The Fourier coefficient formulas of periodic functions are then formalized from the orthogonality relations and the sum rule for integration. Consequently, the uniqueness of Fourier sums is a straightforward corollary. We also present our formalization of the sum rule for definite integrals of infinite series in ACL2(r. Part of this task is to prove the Dini Uniform Convergence Theorem and the continuity of a limit function under certain conditions. A key technique in our proofs of these theorems is to apply the overspill principle from non-standard analysis.

  8. Title of the paper goes here second line

    Indian Academy of Sciences (India)

    Title of the paper goes here second line. AUTHOR11, AUTHOR21 and AUTHOR32,*. 1 Department of P, University X. 2 Department of Q, University Z. Abstract. Abstract text goes here. Abstract text goes here. Abstract text goes here. Abstract text goes here. Abstract text goes here. Abstract text goes here. Abstract text goes ...

  9. Oceanic Weather Decision Support for Unmanned Global Hawk Science Missions into Hurricanes with Tailored Satellite Derived Products

    Science.gov (United States)

    Feltz, Wayne; Griffin, Sarah; Velden, Christopher; Zipser, Ed; Cecil, Daniel; Braun, Scott

    2017-04-01

    The purpose of this presentation is to identify in-flight hazards to high-altitude aircraft, namely the Global Hawk. The Global Hawk was used during Septembers 2012-2016 as part of two NASA funded Hurricane Sentinel-3 field campaigns to over-fly hurricanes in the Atlantic Ocean. This talk identifies the cause of severe turbulence experienced over Hurricane Emily (2005) and how a combination of NOAA funded GOES-R algorithm derived cloud top heights/tropical overshooting tops using GOES-13/SEVIRI imager radiances, and lightning information are used to identify areas of potential turbulence for near real-time navigation decision support. Several examples will demonstrate how the Global Hawk pilots remotely received and used real-time satellite derived cloud and lightning detection information to keep the aircraft safely above clouds and avoid regions of potential turbulence.

  10. A Land Product Characterization System for Comparative Analysis of Satellite Data and Products

    Directory of Open Access Journals (Sweden)

    Kevin Gallo

    2017-12-01

    Full Text Available A Land Product Characterization System (LPCS has been developed to provide land data and products to the community of individuals interested in validating space-based land products by comparing them with similar products available from other sensors or surface-based observations. The LPCS facilitates the application of global multi-satellite and in situ data for characterization and validation of higher-level, satellite-derived, land surface products (e.g., surface reflectance, normalized difference vegetation index, and land surface temperature. The LPCS includes data search, inventory, access, and analysis functions that will permit data to be easily identified, retrieved, co-registered, and compared statistically through a single interface. The system currently includes data and products available from Landsat 4 through 8, Moderate Resolution Imaging Spectroradiometer (MODIS Terra and Aqua, Suomi National Polar-Orbiting Partnership (S-NPP/Joint Polar Satellite System (JPSS Visible Infrared Imaging Radiometer Suite (VIIRS, and simulated data for the Geostationary Operational Environmental Satellite (GOES-16 Advanced Baseline Imager (ABI. In addition to the future inclusion of in situ data, higher-level land products from the European Space Agency (ESA Sentinel-2 and -3 series of satellites, and other high and medium resolution spatial sensors, will be included as available. When fully implemented, any of the sensor data or products included in the LPCS would be available for comparative analysis.

  11. Investigation of chemical bond characteristics, thermal expansion coefficients and bulk moduli of alpha-R2MoO6 and R2Mo2O7 (R = rare earths) by using a dielectric chemical bond method.

    Science.gov (United States)

    Li, Huaiyong; Zhang, Siyuan; Zhou, Shihong; Cao, Xueqiang

    2009-09-01

    Theoretical researches are performed on the alpha-R2MoO6 (R = Y, Gd, Tb Dy, Ho, Er, Tm and Yb) and pyrochlore-type R2Mo2O7 (R = Y, Nd, Sm, Gd, Tb and Dy) rare earth molybdates by using chemical bond theory of dielectric description. The chemical bonding characteristics and their relationship with thermal expansion property and compressibility are explored. The calculated values of linear thermal expansion coefficient (LTEC) and bulk modulus agree well with the available experimental values. The calculations reveal that the LTECs and the bulk moduli do have linear relationship with the ionic radii of the lanthanides: the LTEC decreases from 6.80 to 6.62 10(-6)/K and the bulk modulus increases from 141 to 154 GPa when R goes in the order Gd, Tb Dy, Ho, Er, Tm, and Yb in the alpha-R2MoO6 series; while in the R2Mo2O7 series, the LTEC ranges from 6.80 to 6.61 10(-6)/K and the bulk modulus ranges from 147 to 163 GPa when R varies in the order Nd, Sm, Gd, Tb and Dy. Copyright 2008 Wiley Periodicals, Inc.

  12. Comparison of different Methods for Univariate Time Series Imputation in R

    OpenAIRE

    Moritz, Steffen; Sardá, Alexis; Bartz-Beielstein, Thomas; Zaefferer, Martin; Stork, Jörg

    2015-01-01

    Missing values in datasets are a well-known problem and there are quite a lot of R packages offering imputation functions. But while imputation in general is well covered within R, it is hard to find functions for imputation of univariate time series. The problem is, most standard imputation techniques can not be applied directly. Most algorithms rely on inter-attribute correlations, while univariate time series imputation needs to employ time dependencies. This paper provides an overview of ...

  13. Dither Gyro Scale Factor Calibration: GOES-16 Flight Experience

    Science.gov (United States)

    Reth, Alan D.; Freesland, Douglas C.; Krimchansky, Alexander

    2018-01-01

    This poster is a sequel to a paper presented at the 34th Annual AAS Guidance and Control Conference in 2011, which first introduced dither-based calibration of gyro scale factors. The dither approach uses very small excitations, avoiding the need to take instruments offline during gyro scale factor calibration. In 2017, the dither calibration technique was successfully used to estimate gyro scale factors on the GOES-16 satellite. On-orbit dither calibration results were compared to more traditional methods using large angle spacecraft slews about each gyro axis, requiring interruption of science. The results demonstrate that the dither technique can estimate gyro scale factors to better than 2000 ppm during normal science observations.

  14. Results of the Ongoing Monitoring of the Position of a Geostationary Telecommunication Satellite by the Method of Spatially Separated Basis Receiving of Digital Satellite Television Signals

    Science.gov (United States)

    Bushuev, F.; Kaliuzhnyi, M.; Sybiryakova, Y.; Shulga, O.; Moskalenko, S.; Balagura, O.; Kulishenko, V.

    2016-10-01

    The results of the ongoing monitoring of the position of geostationary telecommunication satellite Eutelsat-13B (13° East) are presented in the article. The results were obtained using a radio engineering complex (RC) of four stations receiving digital satellite television and a data processing centre. The stations are located in Kyiv, Mukachevo, Kharkiv and Mykolaiv. The equipment of each station allows synchronous recording (by the GPS) of fragments of DVB-S signal from the quadrature detector output of the satellite television receiver. Samples of the complex signal are archived and sent to the data processing center through the Internet. Here three linearly independent slant range differences (Δr) for three pairs of the stations are determined as a result of correlation processing of received signals. Every second measured values of Δr are used to calculate Cartesian coordinates (XYZ) of the satellite in the coordinate system WGS84 by multilateration method. The time series of Δr, X, Y and Z obtained during continuous observations from March to May 2015 are presented in the article. Single-measurement errors of Δr, X, Y and Z are equal to 2.6 m, 3540 m, 705 m and 455 m, respectively. The complex is compared with known analogues. Ways of reduction of measurement errors of satellite coordinates are considered. The radio engineering complex could be considered a prototype of a system of independent ongoing monitoring of the position of geostationary telecommunication satellites.

  15. miR-378 attenuates muscle regeneration by delaying satellite cell activation and differentiation in mice.

    Science.gov (United States)

    Zeng, Ping; Han, Wanhong; Li, Changyin; Li, Hu; Zhu, Dahai; Zhang, Yong; Liu, Xiaohong

    2016-09-01

    Skeletal muscle mass and homeostasis during postnatal muscle development and regeneration largely depend on adult muscle stem cells (satellite cells). We recently showed that global overexpression of miR-378 significantly reduced skeletal muscle mass in mice. In the current study, we used miR-378 transgenic (Tg) mice to assess the in vivo functional effects of miR-378 on skeletal muscle growth and regeneration. Cross-sectional analysis of skeletal muscle tissues showed that the number and size of myofibers were significantly lower in miR-378 Tg mice than in wild-type mice. Attenuated cardiotoxin-induced muscle regeneration in miR-378 Tg mice was found to be associated with delayed satellite cell activation and differentiation. Mechanistically, miR-378 was found to directly target Igf1r in muscle cells both in vitro and in vivo These miR-378 Tg mice may provide a model for investigating the physiological and pathological roles of skeletal muscle in muscle-associated diseases in humans, particularly in sarcopenia. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Automatic Detection of Clouds and Shadows Using High Resolution Satellite Image Time Series

    Science.gov (United States)

    Champion, Nicolas

    2016-06-01

    Detecting clouds and their shadows is one of the primaries steps to perform when processing satellite images because they may alter the quality of some products such as large-area orthomosaics. The main goal of this paper is to present the automatic method developed at IGN-France for detecting clouds and shadows in a sequence of satellite images. In our work, surface reflectance orthoimages are used. They were processed from initial satellite images using a dedicated software. The cloud detection step consists of a region-growing algorithm. Seeds are firstly extracted. For that purpose and for each input ortho-image to process, we select the other ortho-images of the sequence that intersect it. The pixels of the input ortho-image are secondly labelled seeds if the difference of reflectance (in the blue channel) with overlapping ortho-images is bigger than a given threshold. Clouds are eventually delineated using a region-growing method based on a radiometric and homogeneity criterion. Regarding the shadow detection, our method is based on the idea that a shadow pixel is darker when comparing to the other images of the time series. The detection is basically composed of three steps. Firstly, we compute a synthetic ortho-image covering the whole study area. Its pixels have a value corresponding to the median value of all input reflectance ortho-images intersecting at that pixel location. Secondly, for each input ortho-image, a pixel is labelled shadows if the difference of reflectance (in the NIR channel) with the synthetic ortho-image is below a given threshold. Eventually, an optional region-growing step may be used to refine the results. Note that pixels labelled clouds during the cloud detection are not used for computing the median value in the first step; additionally, the NIR input data channel is used to perform the shadow detection, because it appeared to better discriminate shadow pixels. The method was tested on times series of Landsat 8 and Pl

  17. AUTOMATIC DETECTION OF CLOUDS AND SHADOWS USING HIGH RESOLUTION SATELLITE IMAGE TIME SERIES

    Directory of Open Access Journals (Sweden)

    N. Champion

    2016-06-01

    Full Text Available Detecting clouds and their shadows is one of the primaries steps to perform when processing satellite images because they may alter the quality of some products such as large-area orthomosaics. The main goal of this paper is to present the automatic method developed at IGN-France for detecting clouds and shadows in a sequence of satellite images. In our work, surface reflectance orthoimages are used. They were processed from initial satellite images using a dedicated software. The cloud detection step consists of a region-growing algorithm. Seeds are firstly extracted. For that purpose and for each input ortho-image to process, we select the other ortho-images of the sequence that intersect it. The pixels of the input ortho-image are secondly labelled seeds if the difference of reflectance (in the blue channel with overlapping ortho-images is bigger than a given threshold. Clouds are eventually delineated using a region-growing method based on a radiometric and homogeneity criterion. Regarding the shadow detection, our method is based on the idea that a shadow pixel is darker when comparing to the other images of the time series. The detection is basically composed of three steps. Firstly, we compute a synthetic ortho-image covering the whole study area. Its pixels have a value corresponding to the median value of all input reflectance ortho-images intersecting at that pixel location. Secondly, for each input ortho-image, a pixel is labelled shadows if the difference of reflectance (in the NIR channel with the synthetic ortho-image is below a given threshold. Eventually, an optional region-growing step may be used to refine the results. Note that pixels labelled clouds during the cloud detection are not used for computing the median value in the first step; additionally, the NIR input data channel is used to perform the shadow detection, because it appeared to better discriminate shadow pixels. The method was tested on times series of Landsat 8

  18. Community Radiative Transfer Model for Inter-Satellites Calibration and Verification

    Science.gov (United States)

    Liu, Q.; Nalli, N. R.; Ignatov, A.; Garrett, K.; Chen, Y.; Weng, F.; Boukabara, S. A.; van Delst, P. F.; Groff, D. N.; Collard, A.; Joseph, E.; Morris, V. R.; Minnett, P. J.

    2014-12-01

    Developed at the Joint Center for Satellite Data Assimilation, the Community Radiative Transfer Model (CRTM) [1], operationally supports satellite radiance assimilation for weather forecasting. The CRTM also supports JPSS/NPP and GOES-R missions [2] for instrument calibration, validation, monitoring long-term trending, and satellite retrieved products [3]. The CRTM is used daily at the NOAA NCEP to quantify the biases and standard deviations between radiance simulations and satellite radiance measurements in a time series and angular dependency. The purposes of monitoring the data assimilation system are to ensure the proper performance of the assimilation system and to diagnose problems with the system for future improvements. The CRTM is a very useful tool for cross-sensor verifications. Using the double difference method, it can remove the biases caused by slight differences in spectral response and geometric angles between measurements of the two instruments. The CRTM is particularly useful to reduce the difference between instruments for climate studies [4]. In this study, we will carry out the assessment of the Suomi National Polar-orbiting Partnership (SNPP) [5] Cross-track Infrared Sounder (CrIS) data [6], Advanced Technology Microwave Sounder (ATMS) data, and data for Visible Infrared Imaging Radiometer Suite (VIIRS) [7][8] thermal emissive bands. We use dedicated radiosondes and surface data acquired from NOAA Aerosols and Ocean Science Expeditions (AEROSE) [9]. The high quality radiosondes were launched when Suomi NPP flew over NOAA Ship Ronald H. Brown situated in the tropical Atlantic Ocean. The atmospheric data include profiles of temperature, water vapor, and ozone, as well as total aerosol optical depths. The surface data includes air temperature and humidity at 2 meters, skin temperature (Marine Atmospheric Emitted Radiance Interferometer, M-AERI [10]), surface temperature, and surface wind vector. [1] Liu, Q., and F. Weng, 2006: JAS [2] Liu, Q

  19. Satellite Formation during Coalescence of Unequal Size Drops

    KAUST Repository

    Zhang, F. H.

    2009-03-12

    The coalescence of a drop with a flat liquid surface pinches off a satellite from its top, in the well-known coalescence cascade, whereas the coalescence of two equally sized drops does not appear to leave such a satellite. Herein we perform experiments to identify the critical diameter ratio of two drops, above which a satellite is produced during their coalescence. We find that the critical parent ratio is as small as 1.55, but grows monotonically with the Ohnesorge number. The daughter size is typically about 50% of the mother drop. However, we have identified novel pinch-off dynamics close to the critical size ratio, where the satellite does not fully separate, but rather goes directly into a second stage of the coalescence cascade, thus generating a much smaller satellite droplet.

  20. Satellite Formation during Coalescence of Unequal Size Drops

    KAUST Repository

    Zhang, F. H.; Li, E. Q.; Thoroddsen, Sigurdur T

    2009-01-01

    The coalescence of a drop with a flat liquid surface pinches off a satellite from its top, in the well-known coalescence cascade, whereas the coalescence of two equally sized drops does not appear to leave such a satellite. Herein we perform experiments to identify the critical diameter ratio of two drops, above which a satellite is produced during their coalescence. We find that the critical parent ratio is as small as 1.55, but grows monotonically with the Ohnesorge number. The daughter size is typically about 50% of the mother drop. However, we have identified novel pinch-off dynamics close to the critical size ratio, where the satellite does not fully separate, but rather goes directly into a second stage of the coalescence cascade, thus generating a much smaller satellite droplet.

  1. The GOES-16 Energetic Heavy Ion Instrument Proton and Helium Fluxes for Space Weather Applications

    Science.gov (United States)

    Connell, J. J.; Lopate, C.

    2017-12-01

    The Energetic Heavy Ion Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite, in geostationary Earth orbit. The EHIS measures energetic ions in space over the range 10-200 MeV for protons, and energy ranges for heavy ions corresponding to the same stopping range. Though an operational satellite instrument, EHIS will supply high quality data for scientific studies. For the GOES Level 1-B and Level 2 data products, protons and helium are distinguished in the EHIS using discriminator trigger logic. Measurements are provided in five energy bands. The instrumental cadence of these rates is 3 seconds. However, the primary Level 1-B proton and helium data products are 1-minute and 5-minute averages. The data latency is 1 minute, so data products can be used for real-time predictions as well as general science studies. Protons and helium, comprising approximately 99% of all energetic ions in space are of great importance for Space Weather predictions. We discuss the preliminary EHIS proton and helium data results and their application to Space Weather. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  2. Knowledge fusion: An approach to time series model selection followed by pattern recognition

    International Nuclear Information System (INIS)

    Bleasdale, S.A.; Burr, T.L.; Scovel, J.C.; Strittmatter, R.B.

    1996-03-01

    This report describes work done during FY 95 that was sponsored by the Department of Energy, Office of Nonproliferation and National Security, Knowledge Fusion Project. The project team selected satellite sensor data to use as the one main example for the application of its analysis algorithms. The specific sensor-fusion problem has many generic features, which make it a worthwhile problem to attempt to solve in a general way. The generic problem is to recognize events of interest from multiple time series that define a possibly noisy background. By implementing a suite of time series modeling and forecasting methods and using well-chosen alarm criteria, we reduce the number of false alarms. We then further reduce the number of false alarms by analyzing all suspicious sections of data, as judged by the alarm criteria, with pattern recognition methods. An accompanying report (Ref 1) describes the implementation and application of this 2-step process for separating events from unusual background and applies a suite of forecasting methods followed by a suite of pattern recognition methods. This report goes into more detail about one of the forecasting methods and one of the pattern recognition methods and is applied to the same kind of satellite-sensor data that is described in Ref. 1

  3. A general theory for the Uranian satellites

    Science.gov (United States)

    Laskar, J.

    1986-01-01

    A general analytical theory of the five main satellites of Uranus, including the secular and short period terms hereafter denoted by GUST, is presented. A comparison is made with an internal numerical integration with nominal masses of Veillet (1983). The precision of the theory goes from about 10 km for Miranda to 100 km for Oberon. The short period terms in the motions of Titania and Oberon are larger than 500 km. They should make possible the determination of the masses of the outer satellites through the optical data of Voyager encounter.

  4. Detection of land cover change using an Artificial Neural Network on a time-series of MODIS satellite data

    CSIR Research Space (South Africa)

    Olivier, JC

    2007-11-01

    Full Text Available An Artificial Neural Network (ANN) is proposed to detect human-induced land cover change using a sliding window through a time-series of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite surface reflectance pixel values. Training...

  5. 75 FR 28480 - Airworthiness Directives; Airbus Model A300 Series Airplanes; Model A300 B4-600, B4-600R, F4-600R...

    Science.gov (United States)

    2010-05-21

    ... Airworthiness Directives; Airbus Model A300 Series Airplanes; Model A300 B4-600, B4-600R, F4-600R Series..., B4-622, B4- 605R, B4-622R, F4-605R, F4-622R, and C4-605R Variant F airplanes; and Model A310-203...

  6. Study of Sea Surface Temperatures changes due to tropical cyclone fanoos in the southwest Bay of Bengal using satellite and argo observations

    Science.gov (United States)

    Krishna Kailasam, Muni

    Sea surface temperature (SST) plays an important role in the studies of global climate system and as a boundary condition for operational numerical forecasts. Estimation of SST has tra-ditionally been performed with satellite based sensors operating in the infrared (IR) portion of the electromagnetic spectrum, where the ocean emissivity is close to unity. The National Oceanic and Atmospheric Administration (NOAA) satellite series, the GOES Imagers on the Geostationary Operational Environmental Satellites, the Along Track Scanning Radiometer (ATSR) on the European Remote Sensing satellites and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA EOS platform are successful examples of IR sen-sors currently used for operational SST retrievals. Significant progress in SST retrieval from remote sensing data came with the introduction of a new low-frequency channel (10.7 GHz) on microwave (MW) sensors. The anthropogenic effects over a period of time resulted in increase of infrared absorbers such as greenhouse gases and absorbing aerosol would produce increase of both daytime maximum and nighttime minimum temperatures. In contrast, the increases of visible reflectors such as sulfate aerosols and low cloud amount would result in a decrease of the daytime maximum temperature. Solar radiation, wind stress and vertical mixing are known to be the three major factors impacting the SST seasonal variations. In the present study, impact of absorbing aerosols on the sea surface temperature (SST) over Bay of Bengal (BoB) region was investigated. Increased aerosol loading over BoB was observed due to advection of aerosols from continental region consisting of absorbing particles primarily from dust and biomass burning. This increased loading over BoB resulted in reduction of surface reaching solar radiation. Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) de-rived SST over BoB showed negative correlation with OMI-Aerosol Index (AI) (R = 0.87) and

  7. 76 FR 18960 - Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and...

    Science.gov (United States)

    2011-04-06

    ... B4-600, B4-600R, and F4-600R Series Airplanes, and Model C4-605R Variant F Airplanes (Collectively... July 20, 2005; have been performed in service. (2) Airbus Model A300 B4-605R, B4-622R, F4-605R, and F4... C4-600R, and A300 F4-600R series airplanes (fitted with a trim tank), all serial numbers, except...

  8. Variations in Upper-Level Water Vapor Transport Diagnosed from Climatological Satellite Data

    Science.gov (United States)

    Lerner, Jeffrey A; Jedlovee, Gary J.; Atkinson, Robert J.

    1998-01-01

    GOES-7 VAS measurements during the Pathfinder period (1987-88) have been analysed to reveal seasonal and interannual variations in moisture transport. Long term measurements of quality winds and humidity from satellite estimates show superior benefit in diagnosing middle and upper tropospheric large scale climate variations such as ENSO events and direct circulation systems such as the Hadley Cell. A water Vapor Transport Index (WVTI) has been developed to diagnose preferred regions of strong moisture transport and to gauge the seasonal and interannual intensities detected in the GOES viewing area. Second-order variables that may be derived from GOES winds will be also discussed on the poster.

  9. Geostationary satellite estimation of biomass burning in Amazonia during BASE-A

    International Nuclear Information System (INIS)

    Menzel, W.P.; Cutrim, E.C.; Prins, E.M.

    1991-01-01

    This chapter presents the results of using Geostationary Operational Environmental Satellite (GOES) Visible Infrared Spin Scan Radiometer Atmospheric Sounder (VAS) infrared window (3.9 and 11.2 microns) data to monitor biomass burning several times per day in Amazonia. The technique of Matson and Dozier using two window channels was adapted to GOES VAS infrared data to estimate the size and temperature of fires associated with deforestation in the vicinity of Alta Floresta, Brazil, during the Biomass Burning Airborne and Spaceborne Experiment - Amazonia (BASE-A). Although VAS data do not offer the spatial resolution available with AVHRR data 97 km versus 1 km, respectively, this decreased resolution does not seem to hinder the ability of the VAS instrument to detect fires; in some cases it proves to be advantageous in that saturation does not occur as often. VAS visible data are additionally helpful in verifying that the hot spots sensed in the infrared are actually related to fires. Furthermore, the fire plumes can be tracked in time to determine their motion and extent. In this way, the GOES satellite offers a unique ability to monitor diurnal variations in fire activity and transport of related aerosols

  10. Algorithms R

    Indian Academy of Sciences (India)

    After introducing the basic counter machine, we discuss the. Church-Post-Turing ... SERIES I ARTICLE. The variables are called counters as the operations possi- ..... Nobody goes to that restaurant any more, it is too crowded. . Around the ...

  11. COIN Goes GLOCAL: Traditional COIN With a Global Perspective: Does the Current US Strategy Reflect COIN Theory, Doctrine and Principles

    Science.gov (United States)

    2007-05-17

    COIN goes “ GLOCAL ”: Traditional COIN with a Global Perspective: Does the Current US Strategy Reflect COIN Theory, Doctrine and Principles? A...TITLE AND SUBTITLE COIN goes “ GLOCAL ”: Traditional COIN with a Global P ti D th C t US St t R fl t COIN 5a. CONTRACT NUMBER Perspective: Does...Monograph: COIN goes “ GLOCAL ”: Traditional COIN with a Global Perspective: Does the Current US Strategy Reflect COIN Theory, Doctrine and Principles

  12. Earth Remote Sensing for Weather Forecasting and Disaster Applications

    Science.gov (United States)

    Molthan, Andrew; Bell, Jordan; Case, Jonathan; Cole, Tony; Elmer, Nicholas; McGrath, Kevin; Schultz, Lori; Zavodsky, Brad

    2016-01-01

    NASA's constellation of current missions provide several opportunities to apply satellite remote sensing observations to weather forecasting and disaster response applications. Examples include: Using NASA's Terra and Aqua MODIS, and the NASA/NOAA Suomi-NPP VIIRS missions to prepare weather forecasters for capabilities of GOES-R; Incorporating other NASA remote sensing assets for improving aspects of numerical weather prediction; Using NASA, NOAA, and international partner resources (e.g. ESA/Sentinel Series); and commercial platforms (high-res, or UAV) to support disaster mapping.

  13. 75 FR 60611 - Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and...

    Science.gov (United States)

    2010-10-01

    ... Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and Model A300 C4...; Model A300 B4-601, B4- 603, B4-620, B4-622, B4-605R, B4-622R, F4-605R, F4-622R, and C4-605R Variant F...-- Dated-- A300 series airplanes......... A300-32A0447..... April 22, 2004. A300 B4-600, B4-600R, and F4...

  14. Onsets of Solar Proton Events in Satellite and Ground Level Observations: A Comparison

    Science.gov (United States)

    He, Jing; Rodriguez, Juan V.

    2018-03-01

    The early detection of solar proton event onsets is essential for protecting humans and electronics in space, as well as passengers and crew at aviation altitudes. Two commonly compared methods for observing solar proton events that are sufficiently large and energetic to be detected on the ground through the creation of secondary radiation—known as ground level enhancements (GLEs)—are (1) a network of ground-based neutron monitors (NMs) and (2) satellite-based particle detectors. Until recently, owing to the different time resolution of the two data sets, it has not been feasible to compare these two types of observations using the same detection algorithm. This paper presents a comparison between the two observational platforms using newly processed >100 MeV 1 min count rates and fluxes from National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite (GOES) 8-12 satellites, and 1 min count rates from the Neutron Monitor Database. We applied the same detection algorithm to each data set (tuned to the different background noise levels of the instrument types). Seventeen SPEs with GLEs were studied: GLEs 55-70 from Solar Cycle 23 and GLE 71 from Solar Cycle 24. The median difference in the event detection times by GOES and NM data is 0 min, indicating no innate benefit in time of either system. The 10th, 25th, 75th, and 90th percentiles of the onset time differences (GOES minus NMs) are -7.2 min, -1.5 min, 2.5 min, and 4.2 min, respectively. This is in contrast to previous studies in which NM detections led GOES by 8 to 52 min without accounting for different alert protocols.

  15. NOAA: Primary GOES-R instrument cleared for installation onto spacecraft

    Science.gov (United States)

    NOAA HOME WEATHER OCEANS FISHERIES CHARTING SATELLITES CLIMATE RESEARCH COASTS CAREERS National primary instrument for scanning Earth's weather, oceans, and environment and is a significant improvement changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to

  16. Several thoughts for using new satellite remote sensing and global modeling for aerosol and cloud climate studies

    Science.gov (United States)

    Nakajima, Teruyuki; Hashimoto, Makiko; Takenaka, Hideaki; Goto, Daisuke; Oikawa, Eiji; Suzuki, Kentaroh; Uchida, Junya; Dai, Tie; Shi, Chong

    2017-04-01

    The rapid growth of satellite remote sensing technologies in the last two decades widened the utility of satellite data for understanding climate impacts of aerosols and clouds. The climate modeling community also has received the benefit of the earth observation and nowadays closed-collaboration of the two communities make us possible to challenge various applications for societal problems, such as for global warming and global-scale air pollution and others. I like to give several thoughts of new algorithm developments, model use of satellite data for climate impact studies and societal applications related with aerosols and clouds. Important issues are 1) Better aerosol detection and solar energy application using expanded observation ability of the third generation geostationary satellites, i.e. Himawari-8, GOES-R and future MTG, 2) Various observation functions by directional, polarimetric, and high resolution near-UV band by MISR, POLDER&PARASOL, GOSAT/CAI and future GOSAT2/CAI2, 3) Various applications of general purpose-imagers, MODIS, VIIRS and future GCOM-C/SGLI, and 4) Climate studies of aerosol and cloud stratification and convection with active and passive sensors, especially climate impact of BC aerosols using CLOUDSAT&CALIPSO and future Earth Explorer/EarthCARE.

  17. Mapping Impervious Surface Expansion using Medium-resolution Satellite Image Time Series: A Case Study in the Yangtze River Delta, China

    Science.gov (United States)

    Gao, Feng; DeColstoun, Eric Brown; Ma, Ronghua; Weng, Qihao; Masek, Jeffrey G.; Chen, Jin; Pan, Yaozhong; Song, Conghe

    2012-01-01

    Cities have been expanding rapidly worldwide, especially over the past few decades. Mapping the dynamic expansion of impervious surface in both space and time is essential for an improved understanding of the urbanization process, land-cover and land-use change, and their impacts on the environment. Landsat and other medium-resolution satellites provide the necessary spatial details and temporal frequency for mapping impervious surface expansion over the past four decades. Since the US Geological Survey opened the historical record of the Landsat image archive for free access in 2008, the decades-old bottleneck of data limitation has gone. Remote-sensing scientists are now rich with data, and the challenge is how to make best use of this precious resource. In this article, we develop an efficient algorithm to map the continuous expansion of impervious surface using a time series of four decades of medium-resolution satellite images. The algorithm is based on a supervised classification of the time-series image stack using a decision tree. Each imerpervious class represents urbanization starting in a different image. The algorithm also allows us to remove inconsistent training samples because impervious expansion is not reversible during the study period. The objective is to extract a time series of complete and consistent impervious surface maps from a corresponding times series of images collected from multiple sensors, and with a minimal amount of image preprocessing effort. The approach was tested in the lower Yangtze River Delta region, one of the fastest urban growth areas in China. Results from nearly four decades of medium-resolution satellite data from the Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper plus (ETM+) and China-Brazil Earth Resources Satellite (CBERS) show a consistent urbanization process that is consistent with economic development plans and policies. The time-series impervious spatial extent maps derived

  18. Expanding the Operational Use of Total Lightning Ahead of GOES-R

    Science.gov (United States)

    Stano, Geoffrey T.; Wood, Lance; Garner, Tim; Nunez, Roland; Kann, Deirdre; Reynolds, James; Rydell, Nezette; Cox, Rob; Bobb, William R.

    2015-01-01

    NASA's Short-term Prediction Research and Transition Center (SPoRT) has been transitioning real-time total lightning observations from ground-based lightning mapping arrays since 2003. This initial effort was with the local Weather Forecast Offices (WFO) that could use the North Alabama Lightning Mapping Array (NALMA). These early collaborations established a strong interest in the use of total lightning for WFO operations. In particular the focus started with warning decision support, but has since expanded to include impact-based decision support and lightning safety. SPoRT has used its experience to establish connections with new lightning mapping arrays as they become available. The GOES-R / JPSS Visiting Scientist Program has enabled SPoRT to conduct visits to new partners and expand the number of operational users with access to total lightning observations. In early 2014, SPoRT conducted the most recent visiting scientist trips to meet with forecast offices that will used the Colorado, Houston, and Langmuir Lab (New Mexico) lightning mapping arrays. In addition, SPoRT met with the corresponding Center Weather Service Units (CWSUs) to expand collaborations with the aviation community. These visits were an opportunity to learn about the forecast needs of each office visited as well as to provide on-site training for the use of total lightning, setting the stage for a real-time assessment during May-July 2014. With five lightning mapping arrays covering multiple geographic locations, the 2014 assessment has demonstrated numerous uses of total lightning in varying situations. Several highlights include a much broader use of total lightning for impact-based decision support ranging from airport weather warnings, supporting fire crews, and protecting large outdoor events. The inclusion of the CWSUs has broadened the operational scope of total lightning, demonstrating how these data can support air traffic management, particularly in the Terminal Radar Approach

  19. HiTempo: a platform for time-series analysis of remote-sensing satellite data in a high-performance computing environment

    CSIR Research Space (South Africa)

    Van den Bergh, F

    2012-08-01

    Full Text Available Course resolution earth observation satellites offer large data sets with daily observations at global scales. These data sets represent a rich resource that, because of the high acquisition rate, allows the application of time-series analysis...

  20. Determining Aerosol Plume Height from Two GEO Imagers: Lessons from MISR and GOES

    Science.gov (United States)

    Wu, Dong L.

    2012-01-01

    Aerosol plume height is a key parameter to determine impacts of particulate matters generated from biomass burning, wind-blowing dust, and volcano eruption. Retrieving cloud top height from stereo imageries from two GOES (Geostationary Operational Environmental Satellites) have been demonstrated since 1970's and the principle should work for aerosol plumes if they are optically thick. The stereo technique has also been used by MISR (Multiangle Imaging SpectroRadiometer) since 2000 that has nine look angles along track to provide aerosol height measurements. Knowing the height of volcano aerosol layers is as important as tracking the ash plume flow for aviation safety. Lack of knowledge about ash plume height during the 2010 Eyja'rjallajokull eruption resulted in the largest air-traffic shutdown in Europe since World War II. We will discuss potential applications of Asian GEO satellites to make stereo measurements for dust and volcano plumes.

  1. Measurement of spectra and neutron fluxes on artificial earth satellites from the Cosmos series

    Science.gov (United States)

    Dudkin, V. Y.; Kovalev, Y. Y.; Novikova, M. R.; Potapov, Y. V.; Skvortsov, S. S.; Smirennyy, L. N.

    1975-01-01

    In 1966-1967 measurements were carried out at the altitudes of 200 to 400 km to determine the spectra and fluxes of fast neutrons inside the hermetically sealed artificial earth satellites of the Cosmos series. The detectors used were nuclear emulsions of the B9 and BR types and an emulsion of the P9 type, filled with Li and P. Spectra and fluxes of neutrons in the range of energies from thermal energies to 10 MeV are presented. Neutron doses are also estimated.

  2. R - evolution in Time Series Analysis Software Applied on R - omanian Capital Market

    Directory of Open Access Journals (Sweden)

    Ciprian ALEXANDRU

    2014-06-01

    Full Text Available Worldwide and during the last decade, R has developed in a balanced way and nowadays it represents the most powerful tool for computational statistics, data science and visualization. Millions of data scientists use R to face their most challenging problems in topics ranging from economics to engineering and genetics. In this study, R was used to compute data on stock market prices in order to build trading models and to estimate the evolution of the quantitative financial market. These models were already applied on the international capital markets. In Romania, the quantitative modeling of capital market is available only for clients of trading brokers because the time series data are collected for the commercial purpose; in that circumstance, the statistical computing tools meet the inertia to change. This paper aims to expose a small part of the capability of R to use mix-and-match models and cutting-edge methods in statistics and quantitative modeling in order to build an alternative way to analyze capital market in Romania over the commercial threshold.

  3. Tree Species Classification in Temperate Forests Using Formosat-2 Satellite Image Time Series

    Directory of Open Access Journals (Sweden)

    David Sheeren

    2016-09-01

    Full Text Available Mapping forest composition is a major concern for forest management, biodiversity assessment and for understanding the potential impacts of climate change on tree species distribution. In this study, the suitability of a dense high spatial resolution multispectral Formosat-2 satellite image time-series (SITS to discriminate tree species in temperate forests is investigated. Based on a 17-date SITS acquired across one year, thirteen major tree species (8 broadleaves and 5 conifers are classified in a study area of southwest France. The performance of parametric (GMM and nonparametric (k-NN, RF, SVM methods are compared at three class hierarchy levels for different versions of the SITS: (i a smoothed noise-free version based on the Whittaker smoother; (ii a non-smoothed cloudy version including all the dates; (iii a non-smoothed noise-free version including only 14 dates. Noise refers to pixels contaminated by clouds and cloud shadows. The results of the 108 distinct classifications show a very high suitability of the SITS to identify the forest tree species based on phenological differences (average κ = 0 . 93 estimated by cross-validation based on 1235 field-collected plots. SVM is found to be the best classifier with very close results from the other classifiers. No clear benefit of removing noise by smoothing can be observed. Classification accuracy is even improved using the non-smoothed cloudy version of the SITS compared to the 14 cloud-free image time series. However conclusions of the results need to be considered with caution because of possible overfitting. Disagreements also appear between the maps produced by the classifiers for complex mixed forests, suggesting a higher classification uncertainty in these contexts. Our findings suggest that time-series data can be a good alternative to hyperspectral data for mapping forest types. It also demonstrates the potential contribution of the recently launched Sentinel-2 satellite for

  4. Object-Based Classification of Grasslands from High Resolution Satellite Image Time Series Using Gaussian Mean Map Kernels

    Directory of Open Access Journals (Sweden)

    Mailys Lopes

    2017-07-01

    Full Text Available This paper deals with the classification of grasslands using high resolution satellite image time series. Grasslands considered in this work are semi-natural elements in fragmented landscapes, i.e., they are heterogeneous and small elements. The first contribution of this study is to account for grassland heterogeneity while working at the object level by modeling its pixels distributions by a Gaussian distribution. To measure the similarity between two grasslands, a new kernel is proposed as a second contribution: the α -Gaussian mean kernel. It allows one to weight the influence of the covariance matrix when comparing two Gaussian distributions. This kernel is introduced in support vector machines for the supervised classification of grasslands from southwest France. A dense intra-annual multispectral time series of the Formosat-2 satellite is used for the classification of grasslands’ management practices, while an inter-annual NDVI time series of Formosat-2 is used for old and young grasslands’ discrimination. Results are compared to other existing pixel- and object-based approaches in terms of classification accuracy and processing time. The proposed method is shown to be a good compromise between processing speed and classification accuracy. It can adapt to the classification constraints, and it encompasses several similarity measures known in the literature. It is appropriate for the classification of small and heterogeneous objects such as grasslands.

  5. Two-Column Aerosol Project (TCAP): Ground-Based Radiation and Aerosol Validation Using the NOAA Mobile SURFRAD Station Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, Joseph [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Lantz, Kathy [Univ. of Colorado, Boulder, CO (United States)

    2016-05-01

    The National Oceanic and Atmospheric Administration (NOAA) is preparing for the launch of the Geostationary Operational Environmental Satellite R-Series (GOES-R) satellite in 2015. This satellite will feature higher time (5-minute versus 30-minute sampling) and spatial resolution (0.5 km vs 1 km in the visible channel) than current GOES instruments provide. NOAA’s National Environmental Satellite Data and Information Service has funded the Global Monitoring Division at the Earth System Research Laboratory to provide ground-based validation data for many of the new and old products the new GOES instruments will retrieve specifically related to radiation at the surface and aerosol and its extensive and intensive properties in the column. The Two-Column Aerosol Project (TCAP) had an emphasis on aerosol; therefore, we asked to be involved in this campaign to de-bug our new instrumentation and to provide a new capability that the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Mobile Facilities (AMF) did not possess, namely surface albedo measurement out to 1625 nm. This gave us a chance to test remote operation of our new multi-filter rotating shadowband radiometer/multi-filter radiometer (MFRSR/MFR) combination. We did not deploy standard broadband shortwave and longwave radiation instrumentation because ARM does this as part of every AMF deployment. As it turned out, the ARM standard MFRSR had issues, and we were able to provide the aerosol column data for the first 2 months of the campaign covering the summer flight phase of the deployment. Using these data, we were able to work with personnel at Pacific Northwest National Laboratory (PNNL) to retrieve not only aerosol optical depth (AOD), but single scattering albedo and asymmetry parameter, as well.

  6. Near-real-time global biomass burning emissions product from geostationary satellite constellation

    Science.gov (United States)

    Zhang, Xiaoyang; Kondragunta, Shobha; Ram, Jessica; Schmidt, Christopher; Huang, Ho-Chun

    2012-07-01

    Near-real-time estimates of biomass burning emissions are crucial for air quality monitoring and forecasting. We present here the first near-real-time global biomass burning emission product from geostationary satellites (GBBEP-Geo) produced from satellite-derived fire radiative power (FRP) for individual fire pixels. Specifically, the FRP is retrieved using WF_ABBA V65 (wildfire automated biomass burning algorithm) from a network of multiple geostationary satellites. The network consists of two Geostationary Operational Environmental Satellites (GOES) which are operated by the National Oceanic and Atmospheric Administration, the Meteosat second-generation satellites (Meteosat-09) operated by the European Organisation for the Exploitation of Meteorological Satellites, and the Multifunctional Transport Satellite (MTSAT) operated by the Japan Meteorological Agency. These satellites observe wildfires at an interval of 15-30 min. Because of the impacts from sensor saturation, cloud cover, and background surface, the FRP values are generally not continuously observed. The missing observations are simulated by combining the available instantaneous FRP observations within a day and a set of representative climatological diurnal patterns of FRP for various ecosystems. Finally, the simulated diurnal variation in FRP is applied to quantify biomass combustion and emissions in individual fire pixels with a latency of 1 day. By analyzing global patterns in hourly biomass burning emissions in 2010, we find that peak fire season varied greatly and that annual wildfires burned 1.33 × 1012 kg dry mass, released 1.27 × 1010 kg of PM2.5 (particulate mass for particles with diameter forest and savanna fires in Africa, South America, and North America. Evaluation of emission result reveals that the GBBEP-Geo estimates are comparable with other FRP-derived estimates in Africa, while the results are generally smaller than most of the other global products that were derived from burned

  7. Analysis of freshwater flux climatology over the Indian Ocean using the HOAPS data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Schulz, J.

    uses the three lower frequencies of the SSM/I where the main predictor is the polarisation difference at 37 GHz. The other frequencies are used to correct for atmospheric influences. The method distinguishes between rain free, light rain, and heavy rain... and the cloud top temperature. Arkin (1979) and Arkin and Meisner (1987) applied this technique to measure- ments of the Geostationary Operational Environmental Satellite (GOES) satellite series and were able to produce eight maps per day of the so called GOES...

  8. Using Deep Learning for Targeted Data Selection, Improving Satellite Observation Utilization for Model Initialization

    Science.gov (United States)

    Lee, Y. J.; Bonfanti, C. E.; Trailovic, L.; Etherton, B.; Govett, M.; Stewart, J.

    2017-12-01

    At present, a fraction of all satellite observations are ultimately used for model assimilation. The satellite data assimilation process is computationally expensive and data are often reduced in resolution to allow timely incorporation into the forecast. This problem is only exacerbated by the recent launch of Geostationary Operational Environmental Satellite (GOES)-16 satellite and future satellites providing several order of magnitude increase in data volume. At the NOAA Earth System Research Laboratory (ESRL) we are researching the use of machine learning the improve the initial selection of satellite data to be used in the model assimilation process. In particular, we are investigating the use of deep learning. Deep learning is being applied to many image processing and computer vision problems with great success. Through our research, we are using convolutional neural network to find and mark regions of interest (ROI) to lead to intelligent extraction of observations from satellite observation systems. These targeted observations will be used to improve the quality of data selected for model assimilation and ultimately improve the impact of satellite data on weather forecasts. Our preliminary efforts to identify the ROI's are focused in two areas: applying and comparing state-of-art convolutional neural network models using the analysis data from the National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) weather model, and using these results as a starting point to optimize convolution neural network model for pattern recognition on the higher resolution water vapor data from GOES-WEST and other satellite. This presentation will provide an introduction to our convolutional neural network model to identify and process these ROI's, along with the challenges of data preparation, training the model, and parameter optimization.

  9. Design of an Image Motion Compenstaion (IMC Algorithm for Image Registration of the Communication, Ocean, Meteorolotical Satellite (COMS-1

    Directory of Open Access Journals (Sweden)

    Taek Seo Jung

    2006-03-01

    Full Text Available This paper presents an Image Motion Compensation (IMC algorithm for the Korea's Communication, Ocean, and Meteorological Satellite (COMS-1. An IMC algorithm is a priority component of image registration in Image Navigation and Registration (INR system to locate and register radiometric image data. Due to various perturbations, a satellite has orbit and attitude errors with respect to a reference motion. These errors cause depointing of the imager aiming direction, and in consequence cause image distortions. To correct the depointing of the imager aiming direction, a compensation algorithm is designed by adapting different equations from those used for the GOES satellites. The capability of the algorithm is compared with that of existing algorithm applied to the GOES's INR system. The algorithm developed in this paper improves pointing accuracy by 40%, and efficiently compensates the depointings of the imager aiming direction.

  10. ShapeSelectForest: a new r package for modeling landsat time series

    Science.gov (United States)

    Mary Meyer; Xiyue Liao; Gretchen Moisen; Elizabeth Freeman

    2015-01-01

    We present a new R package called ShapeSelectForest recently posted to the Comprehensive R Archival Network. The package was developed to fit nonparametric shape-restricted regression splines to time series of Landsat imagery for the purpose of modeling, mapping, and monitoring annual forest disturbance dynamics over nearly three decades. For each pixel and spectral...

  11. THE THERMAL PROPERTIES OF SOLAR FLARES OVER THREE SOLAR CYCLES USING GOES X-RAY OBSERVATIONS

    International Nuclear Information System (INIS)

    Ryan, Daniel F.; Gallagher, Peter T.; Milligan, Ryan O.; Dennis, Brian R.; Kim Tolbert, A.; Schwartz, Richard A.; Alex Young, C.

    2012-01-01

    Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated Temperature and Emission measure-Based Background Subtraction method (TEBBS), that builds on the methods of Bornmann. Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The TEBBS database of flare thermal plasma properties is publicly available at http://www.SolarMonitor.org/TEBBS/.

  12. Advancements in the Development of an Operational Lightning Jump Algorithm for GOES-R GLM

    Science.gov (United States)

    Shultz, Chris; Petersen, Walter; Carey, Lawrence

    2011-01-01

    Rapid increases in total lightning have been shown to precede the manifestation of severe weather at the surface. These rapid increases have been termed lightning jumps, and are the current focus of algorithm development for the GOES-R Geostationary Lightning Mapper (GLM). Recent lightning jump algorithm work has focused on evaluation of algorithms in three additional regions of the country, as well as, markedly increasing the number of thunderstorms in order to evaluate the each algorithm s performance on a larger population of storms. Lightning characteristics of just over 600 thunderstorms have been studied over the past four years. The 2 lightning jump algorithm continues to show the most promise for an operational lightning jump algorithm, with a probability of detection of 82%, a false alarm rate of 35%, a critical success index of 57%, and a Heidke Skill Score of 0.73 on the entire population of thunderstorms. Average lead time for the 2 algorithm on all severe weather is 21.15 minutes, with a standard deviation of +/- 14.68 minutes. Looking at tornadoes alone, the average lead time is 18.71 minutes, with a standard deviation of +/-14.88 minutes. Moreover, removing the 2 lightning jumps that occur after a jump has been detected, and before severe weather is detected at the ground, the 2 lightning jump algorithm s false alarm rate drops from 35% to 21%. Cold season, low topped, and tropical environments cause problems for the 2 lightning jump algorithm, due to their relative dearth in lightning as compared to a supercellular or summertime airmass thunderstorm environment.

  13. An Overview of Recent Geostationary Fire Monitoring Activities and Applications in the Western Hemisphere

    Science.gov (United States)

    McRae, D. J.; Conard, S. G.; Ivanova, G. A.; Sukhinin, A. I.; Hao, W. M.; Koutzenogii, K. P.; Prins, E. M.; Schmidt, C. C.; Feltz, J. M.

    2002-05-01

    Over the past twenty years the international scientific research and environmental monitoring communities have recognized the vital role environmental satellites can play in detecting and monitoring active fires both regionally and around the globe for hazards applications and to better understand the extent and impact of biomass burning on the global environment. Both groups have stressed the importance of utilizing operational satellites to produce routine fire products and to ensure long-term stable records of fire activity for applications such as land-use/land cover change analyses and global climate change research. The current NOAA GOES system provides the unique opportunity to detect fires throughout the Western Hemisphere every half-hour from a series of nearly identical satellites for a period of 15+ years. This presentation will provide an overview of the GOES biomass burning monitoring program at UW-Madison Cooperative Institute for Meteorological Satellite Studies (CIMSS) with an emphasis on recent applications of the new GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA). For the past 8 years, CIMSS has utilized the GOES-8 imager to monitor biomass burning trends in South America. Since September 2000, CIMSS has been producing half-hourly fire products in real-time for most of the Western Hemisphere. The WF_ABBA half-hourly fire product is providing new insights into diurnal, spatial, seasonal and interannual fire dynamics in North, Central, and South America. In North America these products are utilized to detect and monitor wildfires in northerly and remote locations. In South America the diurnal GOES fire product is being used as an indicator of land-use and land-cover change and carbon dynamics along the borders between Brazil, Peru, and Bolivia. The Navy is assimilating the Wildfire ABBA fire product into the Navy Aerosol Analysis and Prediction System (NAAPS) to analyze and predict aerosol loading and transport as part of the NASA

  14. 76 FR 6581 - Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and...

    Science.gov (United States)

    2011-02-07

    ... B4-600, B4-600R, and F4-600R Series Airplanes, and Model C4-605R Variant F Airplanes (Collectively...-605R, B4-622R, F4-605R, F4-622R, and C4-605R Variant F airplanes, certificated in any category, all...

  15. 76 FR 441 - Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and...

    Science.gov (United States)

    2011-01-05

    ... Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and Model C4-605R...-622, B4-605R, B4-622R, F4-605R, F4-622R, and C4-605R Variant F airplanes, certificated in any category...

  16. 76 FR 28914 - Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and...

    Science.gov (United States)

    2011-05-19

    ... B4-600, B4-600R, and F4-600R Series Airplanes, and Model C4-605R Variant F Airplanes (Collectively... B4-605R and B4-622R airplanes; A300 F4-605R and F4-622R airplanes; A300 C4-605R Variant F airplanes...

  17. 76 FR 38069 - Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and...

    Science.gov (United States)

    2011-06-29

    ... B4-600, B4-600R, and F4-600R Series Airplanes, and Model C4-605R Variant F Airplanes (Collectively...-603, B4-620, B4-622, B4-605R, B4-622R, F4-605R, F4-622R, and C4-605R Variant F airplanes; and Model...

  18. 76 FR 39248 - Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and...

    Science.gov (United States)

    2011-07-06

    ... Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and Model C4-605R... B4-605R and B4-622R airplanes; Model A300 F4-605R and F4-622R airplanes; Model A300 C4-605R Variant F...

  19. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Pedro; et al.,

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  20. 76 FR 19724 - Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and...

    Science.gov (United States)

    2011-04-08

    ... B4-600, B4-600R, and F4-600R Series Airplanes, and Model C4-605R Variant F Airplanes (Collectively... F4-605R and F4-622R airplanes, and Model A300 C4-605R Variant F airplanes; and Model A310-203, -204...

  1. Minding the gaps: new insights into R&D management and operational transitions of NOAA satellite products

    Science.gov (United States)

    Colton, Marie C.; Powell, Alfred M.; Jordan, Gretchen; Mote, Jonathon; Hage, Jerald; Frank, Donald

    2004-10-01

    The NESDIS Center for Satellite Applications and Research (STAR), formerly ORA, Office of Research and Applications, consists of three research and applications divisions that encompass satellite meteorology, oceanography, climatology, and cooperative research with academic institutions. With such a wide background of talent, and a charter to develop operational algorithms and applications, STAR scientists develop satellite-derived land, ice, ocean, and atmospheric environmental data products in support of all of NOAA"s mission goals. In addition, in close association with the Joint Center for Satellite Data Assimilation, STAR scientists actively work with the numerical modeling communities of NOAA, NASA, and DOD to support the development of new methods for assimilation of satellite data. In this new era of observations from many new satellite instruments, STAR aims to effectively integrate these data into multi-platform data products for utilization by the forecast and applications communities. Much of our work is conducted in close partnerships with other agencies, academic institutes, and industry. In order to support the nearly 400 current satellite-derived products for various users on a routine basis from our sister operations office, and to evolve to future systems requires an ongoing strategic planning approach that maps research and development activities from NOAA goals to user requirements. Since R&D accomplishments are not necessarily amenable to precise schedules, appropriate motivators and measures of scientific progress must be developed to assure that the product development cycle remains aligned with the other engineering segments of a satellite program. This article presents the status and results of this comprehensive effort to chart a course from the present set of operational satellites to the future.

  2. Study of chaos in chaotic satellite systems

    Science.gov (United States)

    Khan, Ayub; Kumar, Sanjay

    2018-01-01

    In this paper, we study the qualitative behaviour of satellite systems using bifurcation diagrams, Poincaré section, Lyapunov exponents, dissipation, equilibrium points, Kaplan-Yorke dimension etc. Bifurcation diagrams with respect to the known parameters of satellite systems are analysed. Poincaré sections with different sowing axes of the satellite are drawn. Eigenvalues of Jacobian matrices for the satellite system at different equilibrium points are calculated to justify the unstable regions. Lyapunov exponents are estimated. From these studies, chaos in satellite system has been established. Solution of equations of motion of the satellite system are drawn in the form of three-dimensional, two-dimensional and time series phase portraits. Phase portraits and time series display the chaotic nature of the considered system.

  3. 75 FR 76926 - Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and...

    Science.gov (United States)

    2010-12-10

    ... Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and Model C4-605R... airplanes; Model A300 B4-605R and B4-622R airplanes; Model A300 F4-605R and F4-622R airplanes; Model A300 C4...

  4. How consistent are global long-term satellite LAI products in terms of interannual variability and trend?

    Science.gov (United States)

    Jiang, C.; Ryu, Y.; Fang, H.

    2016-12-01

    Proper usage of global satellite LAI products requires comprehensive evaluation. To address this issue, the Committee on Earth Observation Satellites (CEOS) Land Product Validation (LPV) subgroup proposed a four-stage validation hierarchy. During the past decade, great efforts have been made following this validation framework, mainly focused on absolute magnitude, seasonal trajectory, and spatial pattern of those global satellite LAI products. However, interannual variability and trends of global satellite LAI products have been investigated marginally. Targeting on this gap, we made an intercomparison between seven global satellite LAI datasets, including four short-term ones: MODIS C5, MODIS C6, GEOV1, MERIS, and three long-term products ones: LAI3g, GLASS, and GLOBMAP. We calculated global annual LAI time series for each dataset, among which we found substantial differences. During the overlapped period (2003 - 2011), MODIS C5, GLASS and GLOBMAP have positive correlation (r > 0.6) between each other, while MODIS C6, GEOV1, MERIS, and LAI3g are highly consistent (r > 0.7) in interannual variations. However, the previous three datasets show negative trends, all of which use MODIS C5 reflectance data, whereas the latter four show positive trends, using MODIS C6, SPOT/VGT, ENVISAT/MERIS, and NOAA/AVHRR, respectively. During the pre-MODIS era (1982 - 1999), the three AVHRR-based datasets (LAI3g, GLASS and GLOBMAP) agree well (r > 0.7), yet all of them show oscillation related with NOAA platform changes. In addition, both GLASS and GLOBMAP show clear cut-points around 2000 when they move from AVHRR to MODIS. Such inconsistency is also visible for GEOV1, which uses SPOT-4 and SPOT-5 before and after 2002. We further investigate the map-to-map deviations among these products. This study highlights that continuous sensor calibration and cross calibration are essential to obtain reliable global LAI time series.

  5. Properties of CIRRUS Overlapping Clouds as Deduced from the GOES-12 Imagery Data

    Science.gov (United States)

    Chang, Fu-Lung; Minnis, Patrick; Lin, Bing; Sun-Mack, Sunny; Khaiyer, Mandana

    2006-01-01

    Understanding the impact of cirrus clouds on modifying both the solar reflected and terrestrial emitted radiations is crucial for climate studies. Unlike most boundary layer stratus and stratocumulus clouds that have a net cooling effect on the climate, high-level thin cirrus clouds can have a warming effect on our climate. Many research efforts have been devoted to retrieving cirrus cloud properties due to their ubiquitous presence. However, using satellite observations to detect and/or retrieve cirrus cloud properties faces two major challenges. First, they are often semitransparent at visible to infrared wavelengths; and secondly, they often occur over a lower cloud system. The overlapping of high-level cirrus and low-level stratus cloud poses a difficulty in determining the individual cloud top altitudes and optical properties, especially when the signals from cirrus clouds are overwhelmed by the signals of stratus clouds. Moreover, the operational satellite retrieval algorithms, which often assume only single layer cloud in the development of cloud retrieval techniques, cannot resolve the cloud overlapping situation properly. The new geostationary satellites, starting with the Twelfth Geostationary Operational Environmental Satellite (GOES-12), are providing a new suite of imager bands that have replaced the conventional 12-micron channel with a 13.3-micron CO2 absorption channel. The replacement of the 13.3-micron channel allows for the application of a CO2-slicing retrieval technique (Chahine et al. 1974; Smith and Platt 1978), which is one of the important passive satellite methods for remote sensing the altitudes of mid to high-level clouds. Using the CO2- slicing technique is more effective in detecting semitransparent cirrus clouds than using the conventional infrared-window method.

  6. SatelliteDL: a Toolkit for Analysis of Heterogeneous Satellite Datasets

    Science.gov (United States)

    Galloy, M. D.; Fillmore, D.

    2014-12-01

    SatelliteDL is an IDL toolkit for the analysis of satellite Earth observations from a diverse set of platforms and sensors. The core function of the toolkit is the spatial and temporal alignment of satellite swath and geostationary data. The design features an abstraction layer that allows for easy inclusion of new datasets in a modular way. Our overarching objective is to create utilities that automate the mundane aspects of satellite data analysis, are extensible and maintainable, and do not place limitations on the analysis itself. IDL has a powerful suite of statistical and visualization tools that can be used in conjunction with SatelliteDL. Toward this end we have constructed SatelliteDL to include (1) HTML and LaTeX API document generation,(2) a unit test framework,(3) automatic message and error logs,(4) HTML and LaTeX plot and table generation, and(5) several real world examples with bundled datasets available for download. For ease of use, datasets, variables and optional workflows may be specified in a flexible format configuration file. Configuration statements may specify, for example, a region and date range, and the creation of images, plots and statistical summary tables for a long list of variables. SatelliteDL enforces data provenance; all data should be traceable and reproducible. The output NetCDF file metadata holds a complete history of the original datasets and their transformations, and a method exists to reconstruct a configuration file from this information. Release 0.1.0 distributes with ingest methods for GOES, MODIS, VIIRS and CERES radiance data (L1) as well as select 2D atmosphere products (L2) such as aerosol and cloud (MODIS and VIIRS) and radiant flux (CERES). Future releases will provide ingest methods for ocean and land surface products, gridded and time averaged datasets (L3 Daily, Monthly and Yearly), and support for 3D products such as temperature and water vapor profiles. Emphasis will be on NPP Sensor, Environmental and

  7. Study of chaos in chaotic satellite systems

    Indian Academy of Sciences (India)

    Lyapunov exponents are estimated. From these studies, chaosin satellite system has been established. Solution of equations of motion of the satellite system are drawn in the form of three-dimensional, two-dimensional and time series phase portraits. Phase portraits and time series display the chaotic nature of the ...

  8. Development of satellite green vegetation fraction time series for use in mesoscale modeling: application to the European heat wave 2006

    DEFF Research Database (Denmark)

    Nielsen, Joakim Refslund; Dellwik, Ebba; Hahmann, Andrea N.

    2014-01-01

    A method is presented for development of satellite green vegetation fraction (GVF) time series for use in the Weather Research and Forecasting (WRF) model. The GVF data is in the WRF model used to describe the temporal evolution of many land surface parameters, in addition to the evolution of veg...

  9. Plant rDNA database: ribosomal DNA loci information goes online

    Czech Academy of Sciences Publication Activity Database

    Garcia, S.; Garnatje, T.; Kovařík, Aleš

    2012-01-01

    Roč. 121, č. 4 (2012), s. 389-394 ISSN 0009-5915 R&D Projects: GA ČR(CZ) GAP501/10/0208; GA ČR GBP501/12/G090 Institutional research plan: CEZ:AV0Z50040702 Keywords : rDNA loci * FISH * database Subject RIV: BO - Biophysics Impact factor: 3.340, year: 2012

  10. 76 FR 42029 - Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and...

    Science.gov (United States)

    2011-07-18

    ... Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and Model A300 C4... A300 B4-605R and B4-622R airplanes, Model A300 F4-605R and F4-622R airplanes, and Model A300 C4- [[Page...

  11. 75 FR 27956 - Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and...

    Science.gov (United States)

    2010-05-19

    ... B4-600, B4-600R, and F4-600R Series Airplanes, and Model C4-605R Variant F Airplanes (Collectively...-203, and B4-203 airplanes; Model A300 B4-601, B4- 603, B4-620, B4-622, B4-605R, B4-622R, F4-605R, F4...

  12. 76 FR 27242 - Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and...

    Science.gov (United States)

    2011-05-11

    ... Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and Model C4-605R... applies to all Airbus Model A300 B4-601, B4-603, B4- 620, B4-622, B4-605R, B4-622R, F4-605R, F4-622R, and...

  13. Estimating inter-annual variability in winter wheat sowing dates from satellite time series in Camargue, France

    Science.gov (United States)

    Manfron, Giacinto; Delmotte, Sylvestre; Busetto, Lorenzo; Hossard, Laure; Ranghetti, Luigi; Brivio, Pietro Alessandro; Boschetti, Mirco

    2017-05-01

    Crop simulation models are commonly used to forecast the performance of cropping systems under different hypotheses of change. Their use on a regional scale is generally constrained, however, by a lack of information on the spatial and temporal variability of environment-related input variables (e.g., soil) and agricultural practices (e.g., sowing dates) that influence crop yields. Satellite remote sensing data can shed light on such variability by providing timely information on crop dynamics and conditions over large areas. This paper proposes a method for analyzing time series of MODIS satellite data in order to estimate the inter-annual variability of winter wheat sowing dates. A rule-based method was developed to automatically identify a reliable sample of winter wheat field time series, and to infer the corresponding sowing dates. The method was designed for a case study in the Camargue region (France), where winter wheat is characterized by vernalization, as in other temperate regions. The detection criteria were chosen on the grounds of agronomic expertise and by analyzing high-confidence time-series vegetation index profiles for winter wheat. This automatic method identified the target crop on more than 56% (four-year average) of the cultivated areas, with low commission errors (11%). It also captured the seasonal variability in sowing dates with errors of ±8 and ±16 days in 46% and 66% of cases, respectively. Extending the analysis to the years 2002-2012 showed that sowing in the Camargue was usually done on or around November 1st (±4 days). Comparing inter-annual sowing date variability with the main local agro-climatic drivers showed that the type of preceding crop and the weather conditions during the summer season before the wheat sowing had a prominent role in influencing winter wheat sowing dates.

  14. 76 FR 59008 - Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and...

    Science.gov (United States)

    2011-09-23

    ... Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and Model C4-605R... to Airbus Model A300 B4-601, B4-603, B4-620, B4-622, B4-605R, B4-622R, F4-605R, F4-622R, and C4-605R...

  15. Advances in analysis of pre-earthquake thermal anomalies by analyzing IR satellite data

    Science.gov (United States)

    Ouzounov, D.; Bryant, N.; Filizzola, C.; Pergola, N.; Taylor, P.; Tramutoli, V.

    Presented work addresses the possible relationship between tectonic stress, electro-chemical and thermodynamic processes in the atmosphere and increasing infrared (IR) flux as part of a larger family of electromagnetic (EM) phenomena related to earthquake activity. Thermal infra-red (TIR) surveys performed by polar orbiting (NOAA/AVHRR, MODIS) and geosynchronous weather satellites (GOES, METEOSAT) seems to indicate the appearance (from days to weeks before the event) of "anomalous" space-time TIR transients associated with the place (epicentral area, linear structures and fault systems) and the time of occurrence of a number of major earthquakes with M>5 and focal depths no deeper than 50km. As Earth emitted in 8-14 microns range the TIR signal measured from satellite strongly vary depending on meteorological conditions and other factors (space-time changes in atmospheric transmittance, time/season, solar and satellite zenithal angles and etc) independent from seismic activity, a preliminary definition of "anomalous TIR signal" should be given. To provide reliable discrimination of thermal anomalous area from the natural events (seasonal changes, local morphology) new robust approach (RAT) has been recently proposed (and successfully applied in the field of the monitoring of the major environmental risks) that permits to give a statistically based definition of thermal info-red (TIR) anomaly and reduce of false events detection. New techniques also were specifically developed to assure the precise co-registration of all satellite scenes and permit accurate time-series analysis of satellite observations. As final results we present examples of most recent 2000/2004 worldwide strong earthquakes and the techniques used to capture the tracks of thermal emission mid-IR anomalies and methodology for practical future use of such phenomena in the early warning systems.

  16. GOES Surface and Insolation Products (GSIP), Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Version 2 of the GOES Surface and Insolation Products (GSIP) is a high spatial resolution (1/8 x 1/8 degrees) solar radiation product estimated from the GOES-East...

  17. SPATIOTEMPORAL VISUALIZATION OF TIME-SERIES SATELLITE-DERIVED CO2 FLUX DATA USING VOLUME RENDERING AND GPU-BASED INTERPOLATION ON A CLOUD-DRIVEN DIGITAL EARTH

    Directory of Open Access Journals (Sweden)

    S. Wu

    2017-10-01

    Full Text Available The ocean carbon cycle has a significant influence on global climate, and is commonly evaluated using time-series satellite-derived CO2 flux data. Location-aware and globe-based visualization is an important technique for analyzing and presenting the evolution of climate change. To achieve realistic simulation of the spatiotemporal dynamics of ocean carbon, a cloud-driven digital earth platform is developed to support the interactive analysis and display of multi-geospatial data, and an original visualization method based on our digital earth is proposed to demonstrate the spatiotemporal variations of carbon sinks and sources using time-series satellite data. Specifically, a volume rendering technique using half-angle slicing and particle system is implemented to dynamically display the released or absorbed CO2 gas. To enable location-aware visualization within the virtual globe, we present a 3D particlemapping algorithm to render particle-slicing textures onto geospace. In addition, a GPU-based interpolation framework using CUDA during real-time rendering is designed to obtain smooth effects in both spatial and temporal dimensions. To demonstrate the capabilities of the proposed method, a series of satellite data is applied to simulate the air-sea carbon cycle in the China Sea. The results show that the suggested strategies provide realistic simulation effects and acceptable interactive performance on the digital earth.

  18. Spatio-temporal change detection from multidimensional arrays: Detecting deforestation from MODIS time series

    Science.gov (United States)

    Lu, Meng; Pebesma, Edzer; Sanchez, Alber; Verbesselt, Jan

    2016-07-01

    Growing availability of long-term satellite imagery enables change modeling with advanced spatio-temporal statistical methods. Multidimensional arrays naturally match the structure of spatio-temporal satellite data and can provide a clean modeling process for complex spatio-temporal analysis over large datasets. Our study case illustrates the detection of breakpoints in MODIS imagery time series for land cover change in the Brazilian Amazon using the BFAST (Breaks For Additive Season and Trend) change detection framework. BFAST includes an Empirical Fluctuation Process (EFP) to alarm the change and a change point time locating process. We extend the EFP to account for the spatial autocorrelation between spatial neighbors and assess the effects of spatial correlation when applying BFAST on satellite image time series. In addition, we evaluate how sensitive EFP is to the assumption that its time series residuals are temporally uncorrelated, by modeling it as an autoregressive process. We use arrays as a unified data structure for the modeling process, R to execute the analysis, and an array database management system to scale computation. Our results point to BFAST as a robust approach against mild temporal and spatial correlation, to the use of arrays to ease the modeling process of spatio-temporal change, and towards communicable and scalable analysis.

  19. Estimation of solar radiation over Cambodia from long-term satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand); Kitichantaropas, P. [Department of Alternative Energy Development and Efficiency, Ministry of Energy, 17 Rama 1 Road, Patumwan, Bangkok 10330 (Thailand)

    2011-04-15

    In this work, monthly average daily global solar irradiation over Cambodia was estimated from a long-term satellite data. A 14-year period (1995-2008) of visible channel data from GMS5, GOES9 and MTSAT-1R satellites were used to provide earth-atmospheric reflectivity. A satellite-based solar radiation model developed for a tropical environment was used to estimate surface solar radiation. The model relates the satellite-derived earth-atmospheric reflectivity to absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation due to water vapour was calculated from precipitable water derived from ambient relative humidity and temperature. Ozone data from the TOMS and OMI satellite data were employed to compute the solar radiation absorption by ozone. The depletion of radiation due to aerosols was estimated from the visibility data. Five new solar radiation measuring stations were established at Cambodian cities, namely Siem Reap (13.87 N, 103.85 E), Kompong Thom (12.68 N, 104.88 E), Phnom Penh (11.55 N, 104.83 E), Sihanouke Ville (10.67 N, 103.63 E) and Kampot (10.70 N, 104.28 E). Global solar radiation measured at these stations was used to validate the model. The validation was also carried out by using solar radiation measured at four Thai meteorological stations. These stations are situated near the Cambodian border. Monthly average daily global irradiation from these stations was compared with that calculated from the model. The measured and calculated irradiation is in good agreement, with the root mean square difference of 6.3%, with respect to the mean values. After the validation, the model was used to calculate monthly average daily global solar irradiation over Cambodia. Based on this satellite-derived irradiation, solar radiation maps for Cambodia were generated. These maps show that solar radiation climate of this country is strongly influenced by the monsoons. A solar radiation database was also generated

  20. 76 FR 25259 - Airworthiness Directives; Airbus Model A300 B4-600, A300 B4-600R, and A300 F4-600R Series...

    Science.gov (United States)

    2011-05-04

    ... Airworthiness Directives; Airbus Model A300 B4-600, A300 B4-600R, and A300 F4-600R Series Airplanes, and Model...-605R, B4-622R, F4-605R, F4-622R, and C4-605R Variant F airplanes; and Model A310-203, -204, -221, -222...

  1. NOAA Satellites Provide a Keen View of the Martin Luther King Solar Storm of January 2005

    Science.gov (United States)

    Wilkinson, D. C.; Allen, J. H.

    2005-05-01

    Solar active region 0720 rotated onto the east limb on January 10th and put on a pyrotechnic display uncharacteristic for this phase of the solar cycle before disappearing beyond the west limb on January 23rd. On January 15th this region released the first of five X-class solar flares. The last of those flares, January 20th, was associated with an extraordinary ion storm whose effect reached Earth's surface. This paper highlights the record of this event made by NOAA's GOES satellites via their Space Environment Monitor (SEM) subsystems that measures X-ray, energetic particles, and the magnetic field vector at the satellite. Displays of those data are supplemented by neutron monitor data to illustrate their relationship to the January 20th Ground Level Event. GOES-12 is also equipped with the Solar X-ray Imager (SXI) that produces an image of the Sun in X-ray wavelengths once per minute. Movies created from those data perfectly illustrate the cause-and-effect relationship between intense solar activity and satellite disruptions. The flares on January 17th and 20th are closely followed by noise in the SXI telescope resulting from energetic ions penetrating SXI. Ions with sufficient velocity and atomic number can penetrate satellite components and deposit charge along their path. Sufficient charge deposition can introduce erroneous information into solid-state devices. A survey of satellites that experienced problems of this type during this event will also be presented.

  2. Nuclear Decommissioning R and D: a successful history that goes on. Evolution of R and D for nuclear decommissioning

    International Nuclear Information System (INIS)

    Laraia, Michele; )

    2017-01-01

    Research and Development (R and D) in Nuclear Decommissioning date back to the 1980's and 1990's. At that time, decommissioning was a relatively new, sporadic activity; technologies were mostly imported from the non-nuclear field and adapted to nuclear uses (a trend that continues to this day and should not be looked down). R and D were first applied to a laboratory scale, and later on expanded to prototype and pilot installations. The European Commission launched a series of multi-year R and D programmes, ultimately covering the full-scale decommissioning of nuclear power plants and other large installations. Certain installations (especially the BR-3 reactor at Mol, Belgium), were used to test and compare different technologies and assign a ranking based on various factors. In parallel, the US Department of Energy was active in a number of R and D activities, culminating in a number of topical publications until around the year 2000 and the explosive growth of the decommissioning market. In Japan in early 1990's the decommissioning of the Japan Power Demonstration Reactor (JPDR) was used to test almost all dismantling techniques being available at that time: the spin-offs of JPDR work were still flowing into the nuclear community until recently. It has to be also highlighted that the Chernobyl accident boosted a spate of decommissioning R and D aimed at solving practical problems in the aftermath of that severe accident. Although R and D in this field peaked around the year 2000, R and D efforts have continued to this day. While decommissioning is not 'rocket science' and it can be safely stated that this industry has reached maturity, there are areas (e.g. management of secondary waste, access, characterization and dismantling in 'difficult' environments) that require further efforts to optimize processes and reduce the still high costs. The IAEA has contributed to these advances in various ways. For example, some 50 topical reports on the decommissioning of

  3. The 2017 Hurricane Season: A Revolution in Geostationary Weather Satellite Imaging and Data Processing

    Science.gov (United States)

    Weiner, A. M.; Gundy, J.; Brown-Bertold, B.; Yates, H.; Dobler, J. T.

    2017-12-01

    Since their introduction, geostationary weather satellites have enabled us to track hurricane life-cycle movement from development to dissipation. During the 2017 hurricane season, the new GOES-16 geostationary satellite demonstrated just how far we have progressed technologically in geostationary satellite imaging, with hurricane imagery showing never-before-seen detail of the hurricane eye and eyewall structure and life cycle. In addition, new ground system technology, leveraging high-performance computing, delivered imagery and data to forecasters with unprecedented speed—and with updates as often as every 30 seconds. As additional satellites and new products become operational, forecasters will be able to track hurricanes with even greater accuracy and assist in aftermath evaluations. This presentation will present glimpses into the past, a look at the present, and a prediction for the future utilization of geostationary satellites with respect to all facets of hurricane support.

  4. 76 FR 47430 - Airworthiness Directives; Airbus Model A300 B4-600, A300 B4-600R, and A300 F4-600R Series...

    Science.gov (United States)

    2011-08-05

    ... Airworthiness Directives; Airbus Model A300 B4-600, A300 B4-600R, and A300 F4-600R Series Airplanes, and Model..., B4-622R, F4-605R, F4-622R, and C4-605R Variant F airplanes; and Model A310-203, -204, -221, -222...

  5. Time series for water levels in virtual gauge stations in the Amazon basin using satellite radar altimetry

    Directory of Open Access Journals (Sweden)

    Juan Gabriel León Hernández

    2009-01-01

    Full Text Available Using satellite altimeter radar technology for monitoring changes in water levels at continental scale is a relatively recent ad- vance. Several studies have demonstrated the interest being shown in applying this technology to monitoring the hydrographic patterns of large-scale basins worldwide. The current study presents the inference of time series representing changes in water le- vel for bodies of water by defining virtual gauge stations deduced for two very different rivers in terms of their biophysical and to- pographic characteristics; the two rivers were the Rio Negro in the Brazilian Amazon Basin and the Caqueta River on the Colombian side. The differences between the two rivers revealed the limits of satellite radar altimeter when applied to continental waters (±20cm and ±40 cm precision for Río Negro and Río Caquetá, respectively. However, applying this technology seems very promising, since new missions have been scheduled to be put into orbit by the end of 2008.

  6. NASA/SPoRt: GOES-R Activities in Support of Product Development, Management, and Training

    Science.gov (United States)

    Fuell, Kevin; Jedlovec, Gary; Molthan, Andrew; Stano, Geoffrey

    2012-01-01

    SPoRT is using current capabilities of MODIS and VIIRS, combined with current GOES (i.e. Hybrid Imagery) to demonstrate mesoscale capabilities of future ABI instrument. SPoRT is transitioning RGBs from EUMETSAT standard "recipes" to demonstrate a method to more efficiently handle the increase channels/frequency of ABI. Challenges for RGB production exist. Internal vs. external production, Bit depth needed, Adding quantitative information, etc. SPoRT forming group to address these issues. SPoRT is leading efforts on the application of total lightning in operations and to educate users of this new capability. Training in many forms is used to support testbed activities and is a key part to the transition process.

  7. Satellite Observations of Volcanic Clouds from the Eruption of Redoubt Volcano, Alaska, 2009

    Science.gov (United States)

    Dean, K. G.; Ekstrand, A. L.; Webley, P.; Dehn, J.

    2009-12-01

    Redoubt Volcano began erupting on 23 March 2009 (UTC) and consisted of 19 events over a 14 day period. The volcano is located on the Alaska Peninsula, 175 km southwest of Anchorage, Alaska. The previous eruption was in 1989/1990 and seriously disrupted air traffic in the region, including the near catastrophic engine failure of a passenger airliner. Plumes and ash clouds from the recent eruption were observed on a variety of satellite data (AVHRR, MODIS and GOES). The eruption produced volcanic clouds up to 19 km which are some of the highest detected in recent times in the North Pacific region. The ash clouds primarily drifted north and east of the volcano, had a weak ash signal in the split window data and resulted in light ash falls in the Cook Inlet basin and northward into Alaska’s Interior. Volcanic cloud heights were measured using ground-based radar, and plume temperature and wind shear methods but each of the techniques resulted in significant variations in the estimates. Even though radar showed the greatest heights, satellite data and wind shears suggest that the largest concentrations of ash may be at lower altitudes in some cases. Sulfur dioxide clouds were also observed on satellite data (OMI, AIRS and Calipso) and they primarily drifted to the east and were detected at several locations across North America, thousands of kilometers from the volcano. Here, we show time series data collected by the Alaska Volcano Observatory, illustrating the different eruptive events and ash clouds that developed over the subsequent days.

  8. Short-Term Prediction Research and Transition (SPoRT) Center: Transitioning Satellite Data to Operations

    Science.gov (United States)

    Zavodsky, Bradley

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center located at NASA Marshall Space Flight Center has been conducting testbed activities aimed at transitioning satellite products to National Weather Service operational end users for the last 10 years. SPoRT is a NASA/NOAA funded project that has set the bar for transition of products to operational end users through a paradigm of understanding forecast challenges and forecaster needs, displaying products in end users decision support systems, actively assessing the operational impact of these products, and improving products based on forecaster feedback. Aiming for quality partnerships rather than a large quantity of data users, SPoRT has become a community leader in training operational forecasters on the use of up-and-coming satellite data through the use of legacy instruments and proxy data. Traditionally, SPoRT has supplied satellite imagery and products from NASA instruments such as the Moderate-resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). However, recently, SPoRT has been funded by the GOES-R and Joint Polar Satellite System (JPSS) Proving Grounds to accelerate the transition of selected imagery and products to help improve forecaster awareness of upcoming operational data from the Visible Infrared Imager Radiometer Suite (VIIRS), Cross-track Infrared Sounder (CrIS), Advanced Baseline Imager (ABI), and Geostationary Lightning Mapper (GLM). This presentation provides background on the SPoRT Center, the SPoRT paradigm, and some example products that SPoRT is excited to work with forecasters to evaluate.

  9. The Use of a Satellite Human Interaction System in Conjunction with a Satellite Media Distribution System. Satellite Technology Demonstration, Technical Report No. 0217.

    Science.gov (United States)

    Dale, Joyce B.

    Satellite Technology Demonstration (STD) was designed to provide data on the use of a satellite to deliver educational programs to 56 rural-isolated schools in eight Rocky Mountain States. Three series were broadcast: (1) a junior high school career development, (2) career development for public school administrators and teachers, and (3) topical…

  10. ELROI Extremely Low Resource Optical Identifier. A license plate for your satellite, and more.

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-18

    ELROI (Extremely Low Resource Optical Identifier) is a license plate for your satellite; a small tag that flashes an optical identification code that can be read by a small telescope on the ground. The final version of the tag will be the size of a thick postage stamp and fully autonomous: you can attach it to everything that goes into space, including small cubesats and inert debris like rocket stages, and it will keep blinking even after the satellite is shut down, reliably identifying the object from launch until re-entry.

  11. GOES Space Environment Monitor, Magnetometer

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Three orthogonal flux-gate magnetometer elements, (spinning twin fluxgate magnetometer prior to GOES-8) provide magnetic field measurements in three mutually...

  12. Cloud cover typing from environmental satellite imagery. Discriminating cloud structure with Fast Fourier Transforms (FFT)

    Science.gov (United States)

    Logan, T. L.; Huning, J. R.; Glackin, D. L.

    1983-01-01

    The use of two dimensional Fast Fourier Transforms (FFTs) subjected to pattern recognition technology for the identification and classification of low altitude stratus cloud structure from Geostationary Operational Environmental Satellite (GOES) imagery was examined. The development of a scene independent pattern recognition methodology, unconstrained by conventional cloud morphological classifications was emphasized. A technique for extracting cloud shape, direction, and size attributes from GOES visual imagery was developed. These attributes were combined with two statistical attributes (cloud mean brightness, cloud standard deviation), and interrogated using unsupervised clustering amd maximum likelihood classification techniques. Results indicate that: (1) the key cloud discrimination attributes are mean brightness, direction, shape, and minimum size; (2) cloud structure can be differentiated at given pixel scales; (3) cloud type may be identifiable at coarser scales; (4) there are positive indications of scene independence which would permit development of a cloud signature bank; (5) edge enhancement of GOES imagery does not appreciably improve cloud classification over the use of raw data; and (6) the GOES imagery must be apodized before generation of FFTs.

  13. Comparison of Eight Techniques for Reconstructing Multi-Satellite Sensor Time-Series NDVI Data Sets in the Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Liying Geng

    2014-03-01

    Full Text Available More than 20 techniques have been developed to de-noise time-series vegetation index data from different satellite sensors to reconstruct long time-series data sets. Although many studies have compared Normalized Difference Vegetation Index (NDVI noise-reduction techniques, few studies have compared these techniques systematically and comprehensively. This study tested eight techniques for smoothing different vegetation types using different types of multi-temporal NDVI data (Advanced Very High Resolution Radiometer (AVHRR (Global Inventory Modeling and Map Studies (GIMMS and Pathfinder AVHRR Land (PAL, Satellite Pour l’ Observation de la Terre (SPOT VEGETATION (VGT, and Moderate Resolution Imaging Spectroradiometer (MODIS (Terra with the ultimate purpose of determining the best reconstruction technique for each type of vegetation captured with four satellite sensors. These techniques include the modified best index slope extraction (M-BISE technique, the Savitzky-Golay (S-G technique, the mean value iteration filter (MVI technique, the asymmetric Gaussian (A-G technique, the double logistic (D-L technique, the changing-weight filter (CW technique, the interpolation for data reconstruction (IDR technique, and the Whittaker smoother (WS technique. These techniques were evaluated by calculating the root mean square error (RMSE, the Akaike Information Criterion (AIC, and the Bayesian Information Criterion (BIC. The results indicate that the S-G, CW, and WS techniques perform better than the other tested techniques, while the IDR, M-BISE, and MVI techniques performed worse than the other techniques. The best de-noise technique varies with different vegetation types and NDVI data sources. The S-G performs best in most situations. In addition, the CW and WS are effective techniques that were exceeded only by the S-G technique. The assessment results are consistent in terms of the three evaluation indexes for GIMMS, PAL, and SPOT data in the study

  14. STABILITY OF SATELLITES IN CLOSELY PACKED PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Payne, Matthew J.; Holman, Matthew J.; Deck, Katherine M.; Perets, Hagai B.

    2013-01-01

    We perform numerical integrations of four-body (star, planet, planet, satellite) systems to investigate the stability of satellites in planetary systems with tightly packed inner planets (STIPs). We find that the majority of closely spaced stable two-planet systems can stably support satellites across a range of parameter-space which is only slightly decreased compared to that seen for the single-planet case. In particular, circular prograde satellites remain stable out to ∼0.4 R H (where R H is the Hill radius) as opposed to 0.5 R H in the single-planet case. A similarly small restriction in the stable parameter-space for retrograde satellites is observed, where planetary close approaches in the range 2.5-4.5 mutual Hill radii destabilize most satellites orbits only if a ∼ 0.65 R H . In very close planetary pairs (e.g., the 12:11 resonance) the addition of a satellite frequently destabilizes the entire system, causing extreme close approaches and the loss of satellites over a range of circumplanetary semi-major axes. The majority of systems investigated stably harbored satellites over a wide parameter-space, suggesting that STIPs can generally offer a dynamically stable home for satellites, albeit with a slightly smaller stable parameter-space than the single-planet case. As we demonstrate that multi-planet systems are not a priori poor candidates for hosting satellites, future measurements of satellite occurrence rates in multi-planet systems versus single-planet systems could be used to constrain either satellite formation or past periods of strong dynamical interaction between planets

  15. Multitemporal satellite change detection investigations for documentation and valorization of cultural landscape

    Science.gov (United States)

    Lasaponara, R.; Masini, n.

    2012-04-01

    The paper focus on the setting up of a methodology for analyzing cultural landscapes to extract information about ancient civilization settlements, land-use variations, stratified anthropogenic environment, human impacts on landscape, as well as climate driven changes over short, medium, and long periods of time. The analysis of cultural landscape along with its protection and preservation strategies requires the contribution of integrated disciplines and data source, and, above all, the fusion of multi-temporal and multi dimensional data available from different sources. In this contest satellite time series may help us in improve knowledge content of cultural landscape and heritage . The methodology approach we devised is focused on multitemporal/multisource/multiscale data analysis as a support for extracting (i) archaeological settlements and (ii) potential ancient land-use patterning. To these aims, DTM from SRTM and ASTER along multispectral data from TM, ASTER and Quikbird have been used. In order to make the satellite data more meaningful and more exploitable for investigations, reliable data processing have been carried out. Over the years a great variety of digital image enhancement techniques have been devised for specific application fields according to data availability. Nevertheless, only recently these methods have captured great attention also in the field of archaeology for an easier extraction of quantitative information using effective and reliable semiautomatic data processing. The setting up of fully-automatic methodologies is a big challenge to be strategically addressed by research communities in the next years. Multitemporal, multiscale and multisensor satellite data sets can provide useful tool for extracting information and traces related both to modern and ancient civilizations still fossilized in the modern landscape. Reference Lasaponara R, Masini N (2006a) On the potential of panchromatic and multispectral Quickbird data for

  16. Inconing solar radiation estimates at terrestrial surface using meteorological satellite

    International Nuclear Information System (INIS)

    Arai, N.; Almeida, F.C. de.

    1982-11-01

    By using the digital images of the visible channel of the GOES-5 meteorological satellite, and a simple radiative transfer model of the earth's atmosphere, the incoming solar radiation reaching ground is estimated. A model incorporating the effects of Rayleigh scattering and water vapor absorption, the latter parameterized using the surface dew point temperature value, is used. Comparisons with pyranometer observations, and parameterization versus radiosonde water vapor absorption calculation are presented. (Author) [pt

  17. 1/ r potential in higher dimensions

    Science.gov (United States)

    Chakraborty, Sumanta; Dadhich, Naresh

    2018-01-01

    In Einstein gravity, gravitational potential goes as 1/r^{d-3} in d non-compactified spacetime dimensions, which assumes the familiar 1 / r form in four dimensions. On the other hand, it goes as 1/r^{α }, with α =(d-2m-1)/m, in pure Lovelock gravity involving only one mth order term of the Lovelock polynomial in the gravitational action. The latter offers a novel possibility of having 1 / r potential for the non-compactified dimension spectrum given by d=3m+1. Thus it turns out that in the two prototype gravitational settings of isolated objects, like black holes and the universe as a whole - cosmological models, the Einstein gravity in four and mth order pure Lovelock gravity in 3m+1 dimensions behave in a similar fashion as far as gravitational interactions are considered. However propagation of gravitational waves (or the number of degrees of freedom) does indeed serve as a discriminator because it has two polarizations only in four dimensions.

  18. NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 1b Radiances

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Baseline Imager (ABI) instrument samples the radiance of the Earth in sixteen spectral bands using several arrays of detectors in the instrument’s...

  19. A new method based on fractal variance function for analysis and quantification of sympathetic and vagal activity in variability of R-R time series in ECG signals

    Energy Technology Data Exchange (ETDEWEB)

    Conte, Elio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari, Bari (Italy); School of Advanced International Studies on Nuclear, Theoretical and Nonlinear Methodologies-Bari (Italy)], E-mail: fisio2@fisiol.uniba.it; Federici, Antonio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari, Bari (Italy); Zbilut, Joseph P. [Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1653W Congress, Chicago, IL 60612 (United States)

    2009-08-15

    It is known that R-R time series calculated from a recorded ECG, are strongly correlated to sympathetic and vagal regulation of the sinus pacemaker activity. In human physiology it is a crucial question to estimate such components with accuracy. Fourier analysis dominates still to day the data analysis efforts of such data ignoring that FFT is valid under some crucial restrictions that results largely violated in R-R time series data as linearity and stationarity. In order to go over such approach, we introduce a new method, called CZF. It is based on variogram analysis. It is aimed from a profound link with Recurrence Quantification Analysis that is a basic tool for investigation of non linear and non stationary time series. Therefore, a relevant feature of the method is that it finally may be applied also in cases of non linear and non stationary time series analysis. In addition, the method enables also to analyze the fractal variance function, the Generalized Fractal Dimension and, finally, the relative probability density function of the data. The CZF gives very satisfactory results. In the present paper it has been applied to direct experimental cases of normal subjects, patients with hypertension before and after therapy and in children under some different conditions of experimentation.

  20. A new method based on fractal variance function for analysis and quantification of sympathetic and vagal activity in variability of R-R time series in ECG signals

    International Nuclear Information System (INIS)

    Conte, Elio; Federici, Antonio; Zbilut, Joseph P.

    2009-01-01

    It is known that R-R time series calculated from a recorded ECG, are strongly correlated to sympathetic and vagal regulation of the sinus pacemaker activity. In human physiology it is a crucial question to estimate such components with accuracy. Fourier analysis dominates still to day the data analysis efforts of such data ignoring that FFT is valid under some crucial restrictions that results largely violated in R-R time series data as linearity and stationarity. In order to go over such approach, we introduce a new method, called CZF. It is based on variogram analysis. It is aimed from a profound link with Recurrence Quantification Analysis that is a basic tool for investigation of non linear and non stationary time series. Therefore, a relevant feature of the method is that it finally may be applied also in cases of non linear and non stationary time series analysis. In addition, the method enables also to analyze the fractal variance function, the Generalized Fractal Dimension and, finally, the relative probability density function of the data. The CZF gives very satisfactory results. In the present paper it has been applied to direct experimental cases of normal subjects, patients with hypertension before and after therapy and in children under some different conditions of experimentation.

  1. Stochastic models for time series

    CERN Document Server

    Doukhan, Paul

    2018-01-01

    This book presents essential tools for modelling non-linear time series. The first part of the book describes the main standard tools of probability and statistics that directly apply to the time series context to obtain a wide range of modelling possibilities. Functional estimation and bootstrap are discussed, and stationarity is reviewed. The second part describes a number of tools from Gaussian chaos and proposes a tour of linear time series models. It goes on to address nonlinearity from polynomial or chaotic models for which explicit expansions are available, then turns to Markov and non-Markov linear models and discusses Bernoulli shifts time series models. Finally, the volume focuses on the limit theory, starting with the ergodic theorem, which is seen as the first step for statistics of time series. It defines the distributional range to obtain generic tools for limit theory under long or short-range dependences (LRD/SRD) and explains examples of LRD behaviours. More general techniques (central limit ...

  2. Amélioration de la résilience de systèmes spatiaux soumis à des menaces : vers des réseaux de satellites autonomes

    OpenAIRE

    Cristini, Frédéric

    2014-01-01

    un environnement spatial naturel hostile, les systèmes spatiaux de télédétection traditionnels, monolithiques et téléopérés depuis le sol, demeurent vulnérables face à un nombre croissant de menaces émergentes issues de l’environnement spatial artificiel (armes antisatellites, débris). Plutôt que de chercher à protéger physiquement les satellites, nous proposons d’adopter une stratégie fondée sur le concept de résilience, qui traduit la capacité d’un système à poursuivre sa mis...

  3. Development and Analysis of Image Registration Program for the Communication, Ocean, Meteorological Satellite (COMS

    Directory of Open Access Journals (Sweden)

    Un-Seob Lee

    2007-09-01

    Full Text Available We developed a software for simulations and analyses of the Image Navigation and Registration (INR system, and compares the characteristics of Image Motion Compensation (IMC algorithms for the INR system. According to the orbit errors and attitude errors, the capabilities of the image distortions are analyzed. The distortions of images can be compensated by GOES IMC algorithm and Modified IMC (MIMC algorithm. The capabilities of each IMC algorithm are confirmed based on compensated images. The MIMC yields better results than GOES IMC although both the algorithms well compensate distorted images. The results of this research can be used as valuable asset to design of INR system for the Communication, Ocean, Meteorological Satellite (COMS.

  4. Demonstrating the Value of Near Real-time Satellite-based Earth Observations in a Research and Education Framework

    Science.gov (United States)

    Chiu, L.; Hao, X.; Kinter, J. L.; Stearn, G.; Aliani, M.

    2017-12-01

    The launch of GOES-16 series provides an opportunity to advance near real-time applications in natural hazard detection, monitoring and warning. This study demonstrates the capability and values of receiving real-time satellite-based Earth observations over a fast terrestrial networks and processing high-resolution remote sensing data in a university environment. The demonstration system includes 4 components: 1) Near real-time data receiving and processing; 2) data analysis and visualization; 3) event detection and monitoring; and 4) information dissemination. Various tools are developed and integrated to receive and process GRB data in near real-time, produce images and value-added data products, and detect and monitor extreme weather events such as hurricane, fire, flooding, fog, lightning, etc. A web-based application system is developed to disseminate near-real satellite images and data products. The images are generated with GIS-compatible format (GeoTIFF) to enable convenient use and integration in various GIS platforms. This study enhances the capacities for undergraduate and graduate education in Earth system and climate sciences, and related applications to understand the basic principles and technology in real-time applications with remote sensing measurements. It also provides an integrated platform for near real-time monitoring of extreme weather events, which are helpful for various user communities.

  5. Global Warming: Evidence from Satellite Observations

    Science.gov (United States)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2001-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown on-board sequential, sun-synchronous, polar orbiting NOAA operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study we have minimized systematic errors in the time series introduced by the satellite orbital drift in an objective manner. This is done with the help the onboard warm black body temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically weighted global mean temperature of the atmosphere, with a peak weight near the mid-troposphere, warmed at the rate of 0.13 K per decade (with an uncertainty of 0.05 K per decade) during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite deuced result.

  6. Identification of miR-2400 gene as a novel regulator in skeletal muscle satellite cells proliferation by targeting MYOG gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei Wei [The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); College of Life Sciences and Agriculture & Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006 (China); Tong, Hui Li; Sun, Xiao Feng; Hu, Qian; Yang, Yu; Li, Shu Feng [The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); Yan, Yun Qin, E-mail: yanyunqin@sohu.com [The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); Li, Guang Peng [The Key Laboratory of Mammal Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot 010021 (China)

    2015-08-07

    MicroRNAs play critical roles in skeletal muscle development as well as in regulation of muscle cell proliferation and differentiation. Previous study in our laboratory showed that the expression level of miR-2400, a novel and unique miRNA from bovine, had significantly changed in skeletal muscle-derived satellite cells (MDSCs) during differentiation, however, the function and expression pattern for miR-2400 in MDSCs has not been fully understood. In this report, we firstly identified that the expression levels of miR-2400 were down-regulated during MDSCs differentiation by stem-loop RT-PCR. Over-expression and inhibition studies demonstrated that miR-2400 promoted MDSCs proliferation by EdU (5-ethynyl-2′ deoxyuridine) incorporation assay and immunofluorescence staining of Proliferating cell nuclear antigen (PCNA). Luciferase reporter assays showed that miR-2400 directly targeted the 3′ untranslated regions (UTRs) of myogenin (MYOG) mRNA. These data suggested that miR-2400 could promote MDSCs proliferation through targeting MYOG. Furthermore, we found that miR-2400, which was located within the eighth intron of the Wolf-Hirschhorn syndrome candidate 1-like 1 (WHSC1L1) gene, was down-regulated in MDSCs in a direct correlation with the WHSC1L1 transcript by Clustered regularly interspaced palindromic repeats interference (CRISPRi). In addition, these observations not only provided supporting evidence for the codependent expression of intronic miRNAs and their host genes in vitro, but also gave insight into the role of miR-2400 in MDSCs proliferation. - Highlights: • miR-2400 is a novel and unique miRNA from bovine. • miR-2400 could promote skeletal muscle satellite cells proliferation. • miR-2400 directly targeted the 3′ untranslated regions of MYOG mRNA. • miR-2400 could be coexpressed together with its host gene WHSC1L1.

  7. Normalization of time-series satellite reflectance data to a standard sun-target-sensor geometry using a semi-empirical model

    Science.gov (United States)

    Zhao, Yongguang; Li, Chuanrong; Ma, Lingling; Tang, Lingli; Wang, Ning; Zhou, Chuncheng; Qian, Yonggang

    2017-10-01

    Time series of satellite reflectance data have been widely used to characterize environmental phenomena, describe trends in vegetation dynamics and study climate change. However, several sensors with wide spatial coverage and high observation frequency are usually designed to have large field of view (FOV), which cause variations in the sun-targetsensor geometry in time-series reflectance data. In this study, on the basis of semiempirical kernel-driven BRDF model, a new semi-empirical model was proposed to normalize the sun-target-sensor geometry of remote sensing image. To evaluate the proposed model, bidirectional reflectance under different canopy growth conditions simulated by Discrete Anisotropic Radiative Transfer (DART) model were used. The semi-empirical model was first fitted by using all simulated bidirectional reflectance. Experimental result showed a good fit between the bidirectional reflectance estimated by the proposed model and the simulated value. Then, MODIS time-series reflectance data was normalized to a common sun-target-sensor geometry by the proposed model. The experimental results showed the proposed model yielded good fits between the observed and estimated values. The noise-like fluctuations in time-series reflectance data was also reduced after the sun-target-sensor normalization process.

  8. Space orbits of collaboration. [international cooperation and the U.S.S.R. space program

    Science.gov (United States)

    Petrov, B.

    1978-01-01

    The U.S.S.R. cooperative space efforts with other Socialist countries dating back to 1957 are reviewed. The Interkosmos program, which is divided into three series of satellites (solar, ionospheric and magnetospheric), is discussed as well as the Prognoz, Kosmos, Soyuz, and Molniya spacecraft. Collaboration with France, India, Sweden, and the United States is mentioned.

  9. An overview of the USL/DBMS NASA/PC R and D project working paper series

    Science.gov (United States)

    Dominick, Wayne D. (Editor)

    1984-01-01

    An introduction is given to the University of Southwestern Louisiana Data Base Management System (USL/DBMS) NASA/PC R and D Working Paper Series which has been established to provide a foundation for both a formal and informal information dissemination mechanism concerning PC-based research and development activities being performed pursuant to the NASA contract. This entry also serves as an index to the collection of Working Paper Series reports.

  10. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  11. The rotational elements of Mars and its satellites

    Science.gov (United States)

    Jacobson, R. A.; Konopliv, A. S.; Park, R. S.; Folkner, W. M.

    2018-03-01

    The International Astronomical Union (IAU) defines planet and satellite coordinate systems relative to their axis of rotation and the angle about that axis. The rotational elements of the bodies are the right ascension and declination of the rotation axis in the International Celestial Reference Frame and the rotation angle, W, measured easterly along the body's equator. The IAU specifies the location of the body's prime meridian by providing a value for W at epoch J2000. We provide new trigonometric series representations of the rotational elements of Mars and its satellites, Phobos and Deimos. The series for Mars are from a least squares fit to the rotation model used to orient the Martian gravity field. The series for the satellites are from a least squares fit to rotation models developed in accordance with IAU conventions from recent ephemerides.

  12. A Least Square Approach for Joining Persistent Scatterer InSAR Time Series Acquired by Different Satellites

    Science.gov (United States)

    Caro Cuenca, Miguel; Esfahany, Sami Samiei; Hanssen, Ramon F.

    2010-12-01

    Persistent scatterer Radar Interferometry (PSI) can provide with a wealth of information on surface motion. These methods overcome the major limitations of the antecessor technique, interferometric SAR (InSAR), such as atmospheric disturbances, by detecting the scatterers which are slightly affected by noise. The time span that surface deformation processes are observed is limited by the satellite lifetime, which is usually less than 10 years. However most of deformation phenomena last longer. In order to fully monitor and comprehend the observed signal, acquisitions from different sensors can be merged. This is a complex task for one main reason. PSI methods provide with estimations that are relative in time to one of the acquisitions which is referred to as master or reference image. Therefore, time series acquired by different sensors will have different reference images and cannot be directly compared or joint unless they are set to the same time reference system. In global terms, the operation of translating from one to another reference systems consist of calculating a vertical offset, which is the total deformation that occurs between the two master times. To estimate this offset, different strategies can be applied, for example, using additional data such as leveling or GPS measurements. In this contribution we propose to use a least squares to merge PSI time series without any ancillary information. This method treats the time series individually, i.e. per PS, and requires some knowledge of the deformation signal, for example, if a polynomial would fairly describe the expected behavior. To test the proposed approach, we applied it to the southern Netherlands, where the surface is affected by ground water processes in abandoned mines. The time series were obtained after processing images provided by ERS1/2 and Envisat. The results were validated using in-situ water measurements, which show very high correlation with deformation time series.

  13. ORBITAL DEPENDENCE OF GALAXY PROPERTIES IN SATELLITE SYSTEMS OF GALAXIES

    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Park, Changbom

    2010-01-01

    We study the dependence of satellite galaxy properties on the distance to the host galaxy and the orbital motion (prograde and retrograde orbits) using the Sloan Digital Sky Survey (SDSS) data. From SDSS Data Release 7, we find 3515 isolated satellite systems of galaxies at z -1 . It is found that the radial distribution of early-type satellites in prograde orbit is strongly concentrated toward the host while that of retrograde ones shows much less concentration. We also find the orbital speed of late-type satellites in prograde orbit increases as the projected distance to the host (R) decreases while the speed decreases for those in retrograde orbit. At R less than 0.1 times the host virial radius (R vir,host ), the orbital speed decreases in both prograde and retrograde orbit cases. Prograde satellites are on average fainter than retrograde satellites for both early and late morphological types. The u - r color becomes redder as R decreases for both prograde and retrograde orbit late-type satellites. The differences between prograde and retrograde orbit satellite galaxies may be attributed to their different origin or the different strength of physical processes that they have experienced through hydrodynamic interactions with their host galaxies.

  14. The long-term effects of space weather on satellite operations

    Directory of Open Access Journals (Sweden)

    D. T. Welling

    2010-06-01

    Full Text Available Integrated lifetime radiation damage may cause spacecraft to become more susceptible to operational anomalies by changing material characteristics of electronic components. This study demonstrates and quantifies the impact of these effects by examining the National Oceanic and Atmospheric Administration (NOAA National Geophysical Data Center (NGDC satellite anomaly database. Energetic particle data from the Geostationary Operational Environmental Satellites (GOES is used to construct the total lifetime particle exposure a satellite has received at the epoch of an anomaly. These values are compared to the satellite's chronological age and the average exposure per year (calculated over two solar cycles. The results show that many anomalies occur on satellites that have received a total lifetime high-energy particle exposure that is disproportionate to their age. In particular, 10.8% of all events occurred on satellites that received over two times more 20 to 40 MeV proton lifetime particle exposure than predicted using an average annual mean. This number inflates to 35.2% for 40 to 80 MeV protons and 33.7% for ≥2 MeV electrons. Overall, 73.5% of all anomalies occurred on a spacecraft that had experienced greater than two times the expected particle exposure for one of the eight particle populations used in this study. Simplistically, this means that the long term radiation background exposure matters, and that if the background radiation is elevated during the satellite's lifetime, the satellite is likely to experience more anomalies than satellites that have not been exposed to the elevated environment.

  15. Myth, Song, and Music Education: The Case of Tolkien's "The Lord of the Rings" and Swann's "The Road Goes Ever On"

    Science.gov (United States)

    Jorgensen, Estelle R.

    2006-01-01

    In this article I explore how myth and song intersect in J. R. R. Tolkien's "The Lord of the Rings" trilogy--"The Fellowship of the Ring," "The Two Towers," and "The Return of the King"--and Donald Swann's song cycle setting of Tolkien texts, "The Road Goes Ever On." In so doing I am drawn back to Tolkien's "The Hobbit," the novel from which "The…

  16. 1/r potential in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Sumanta [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India); IUCAA, Pune (India); Dadhich, Naresh [IUCAA, Pune (India); Center for Theoretical Physics, New Delhi (India)

    2018-01-15

    In Einstein gravity, gravitational potential goes as 1/r{sup d-3} in d non-compactified spacetime dimensions, which assumes the familiar 1/r form in four dimensions. On the other hand, it goes as 1/r{sup α}, with α = (d - 2m - 1)/m, in pure Lovelock gravity involving only one mth order term of the Lovelock polynomial in the gravitational action. The latter offers a novel possibility of having 1/r potential for the non-compactified dimension spectrum given by d = 3m + 1. Thus it turns out that in the two prototype gravitational settings of isolated objects, like black holes and the universe as a whole - cosmological models, the Einstein gravity in four and mth order pure Lovelock gravity in 3m + 1 dimensions behave in a similar fashion as far as gravitational interactions are considered. However propagation of gravitational waves (or the number of degrees of freedom) does indeed serve as a discriminator because it has two polarizations only in four dimensions. (orig.)

  17. The world goes modern 

    DEFF Research Database (Denmark)

    Handberg, Kristian

    2016-01-01

    The article analyzes the contemporary art historical focus on multiple modernities through two significant exhibitions: After Year Zero at Haus der Kulturen der Welt, Berlin 2013/Museum of Modern Art, Warsaw 2015 and The World Goes Pop, Tate Modern, London (2015). These different exhibitions...

  18. International Satellite Cloud Climatology Project, D-Series (Superseded)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ISCCP D-Series has been superseded by a newer version. Users should not use ISCCP D-Series except in rare cases (e.g., when reproducing previous studies that used...

  19. waterData--An R package for retrieval, analysis, and anomaly calculation of daily hydrologic time series data, version 1.0

    Science.gov (United States)

    Ryberg, Karen R.; Vecchia, Aldo V.

    2012-01-01

    Hydrologic time series data and associated anomalies (multiple components of the original time series representing variability at longer-term and shorter-term time scales) are useful for modeling trends in hydrologic variables, such as streamflow, and for modeling water-quality constituents. An R package, called waterData, has been developed for importing daily hydrologic time series data from U.S. Geological Survey streamgages into the R programming environment. In addition to streamflow, data retrieval may include gage height and continuous physical property data, such as specific conductance, pH, water temperature, turbidity, and dissolved oxygen. The package allows for importing daily hydrologic data into R, plotting the data, fixing common data problems, summarizing the data, and the calculation and graphical presentation of anomalies.

  20. Long Short-Term Memory Neural Networks for Online Disturbance Detection in Satellite Image Time Series

    Directory of Open Access Journals (Sweden)

    Yun-Long Kong

    2018-03-01

    Full Text Available A satellite image time series (SITS contains a significant amount of temporal information. By analysing this type of data, the pattern of the changes in the object of concern can be explored. The natural change in the Earth’s surface is relatively slow and exhibits a pronounced pattern. Some natural events (for example, fires, floods, plant diseases, and insect pests and human activities (for example, deforestation and urbanisation will disturb this pattern and cause a relatively profound change on the Earth’s surface. These events are usually referred to as disturbances. However, disturbances in ecosystems are not easy to detect from SITS data, because SITS contain combined information on disturbances, phenological variations and noise in remote sensing data. In this paper, a novel framework is proposed for online disturbance detection from SITS. The framework is based on long short-term memory (LSTM networks. First, LSTM networks are trained by historical SITS. The trained LSTM networks are then used to predict new time series data. Last, the predicted data are compared with real data, and the noticeable deviations reveal disturbances. Experimental results using 16-day compositions of the moderate resolution imaging spectroradiometer (MOD13Q1 illustrate the effectiveness and stability of the proposed approach for online disturbance detection.

  1. An interactive software package for validating satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.

    to be highly correlated (r = 0.75) with the satellite data. Very good correlation (r = 0.80) is obtained for wind speed measured from both Moored buoy and Autonomous Weather Station. Night time SSTs are found to be closer to the satellite values for wind speed...

  2. Evaluation of Multiple Kernel Learning Algorithms for Crop Mapping Using Satellite Image Time-Series Data

    Science.gov (United States)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2017-09-01

    Crop mapping through classification of Satellite Image Time-Series (SITS) data can provide very valuable information for several agricultural applications, such as crop monitoring, yield estimation, and crop inventory. However, the SITS data classification is not straightforward. Because different images of a SITS data have different levels of information regarding the classification problems. Moreover, the SITS data is a four-dimensional data that cannot be classified using the conventional classification algorithms. To address these issues in this paper, we presented a classification strategy based on Multiple Kernel Learning (MKL) algorithms for SITS data classification. In this strategy, initially different kernels are constructed from different images of the SITS data and then they are combined into a composite kernel using the MKL algorithms. The composite kernel, once constructed, can be used for the classification of the data using the kernel-based classification algorithms. We compared the computational time and the classification performances of the proposed classification strategy using different MKL algorithms for the purpose of crop mapping. The considered MKL algorithms are: MKL-Sum, SimpleMKL, LPMKL and Group-Lasso MKL algorithms. The experimental tests of the proposed strategy on two SITS data sets, acquired by SPOT satellite sensors, showed that this strategy was able to provide better performances when compared to the standard classification algorithm. The results also showed that the optimization method of the used MKL algorithms affects both the computational time and classification accuracy of this strategy.

  3. Practical Application of PRA as an Integrated Design Tool for Space Systems

    Science.gov (United States)

    Kalia, Prince; Shi, Ying; Pair, Robin; Quaney, Virginia; Uhlenbrock, John

    2013-01-01

    This paper presents the application of the first comprehensive Probabilistic Risk Assessment (PRA) during the design phase of a joint NASA/NOAA weather satellite program, Geostationary Operational Environmental Satellite Series R (GOES-R). GOES-R is the next generation weather satellite primarily to help understand the weather and help save human lives. PRA has been used at NASA for Human Space Flight for many years. PRA was initially adopted and implemented in the operational phase of manned space flight programs and more recently for the next generation human space systems. Since its first use at NASA, PRA has become recognized throughout the Agency as a method of assessing complex mission risks as part of an overall approach to assuring safety and mission success throughout project lifecycles. PRA is now included as a requirement during the design phase of both NASA next generation manned space vehicles as well as for high priority robotic missions. The influence of PRA on GOES-R design and operation concepts are discussed in detail. The GOES-R PRA is unique at NASA for its early implementation. It also represents a pioneering effort to integrate risks from both Spacecraft (SC) and Ground Segment (GS) to fully assess the probability of achieving mission objectives. PRA analysts were actively involved in system engineering and design engineering to ensure that a comprehensive set of technical risks were correctly identified and properly understood from a design and operations perspective. The analysis included an assessment of SC hardware and software, SC fault management system, GS hardware and software, common cause failures, human error, natural hazards, solar weather and infrastructure (such as network and telecommunications failures, fire). PRA findings directly resulted in design changes to reduce SC risk from micro-meteoroids. PRA results also led to design changes in several SC subsystems, e.g. propulsion, guidance, navigation and control (GNC

  4. Estimation of time-series properties of gourd observed solar irradiance data using cloud properties derived from satellite observations

    Science.gov (United States)

    Watanabe, T.; Nohara, D.

    2017-12-01

    The shorter temporal scale variation in the downward solar irradiance at the ground level (DSI) is not understood well because researches in the shorter-scale variation in the DSI is based on the ground observation and ground observation stations are located coarsely. Use of dataset derived from satellite observation will overcome such defect. DSI data and MODIS cloud properties product are analyzed simultaneously. Three metrics: mean, standard deviation and sample entropy, are used to evaluate time-series properties of the DSI. Three metrics are computed from two-hours time-series centered at the observation time of MODIS over the ground observation stations. We apply the regression methods to design prediction models of each three metrics from cloud properties. The validation of the model accuracy show that mean and standard deviation are predicted with a higher degree of accuracy and that the accuracy of prediction of sample entropy, which represents the complexity of time-series, is not high. One of causes of lower prediction skill of sample entropy is the resolution of the MODIS cloud properties. Higher sample entropy is corresponding to the rapid fluctuation, which is caused by the small and unordered cloud. It seems that such clouds isn't retrieved well.

  5. R package imputeTestbench to compare imputations methods for univariate time series

    OpenAIRE

    Bokde, Neeraj; Kulat, Kishore; Beck, Marcus W; Asencio-Cortés, Gualberto

    2016-01-01

    This paper describes the R package imputeTestbench that provides a testbench for comparing imputation methods for missing data in univariate time series. The imputeTestbench package can be used to simulate the amount and type of missing data in a complete dataset and compare filled data using different imputation methods. The user has the option to simulate missing data by removing observations completely at random or in blocks of different sizes. Several default imputation methods are includ...

  6. A calibrated, high-resolution goes satellite solar insolation product for a climatology of Florida evapotranspiration

    Science.gov (United States)

    Paech, S.J.; Mecikalski, J.R.; Sumner, D.M.; Pathak, C.S.; Wu, Q.; Islam, S.; Sangoyomi, T.

    2009-01-01

    Estimates of incoming solar radiation (insolation) from Geostationary Operational Environmental Satellite observations have been produced for the state of Florida over a 10-year period (1995-2004). These insolation estimates were developed into well-calibrated half-hourly and daily integrated solar insolation fields over the state at 2 km resolution, in addition to a 2-week running minimum surface albedo product. Model results of the daily integrated insolation were compared with ground-based pyranometers, and as a result, the entire dataset was calibrated. This calibration was accomplished through a three-step process: (1) comparison with ground-based pyranometer measurements on clear (noncloudy) reference days, (2) correcting for a bias related to cloudiness, and (3) deriving a monthly bias correction factor. Precalibration results indicated good model performance, with a station-averaged model error of 2.2 MJ m-2/day (13%). Calibration reduced errors to 1.7 MJ m -2/day (10%), and also removed temporal-related, seasonal-related, and satellite sensor-related biases. The calibrated insolation dataset will subsequently be used by state of Florida Water Management Districts to produce statewide, 2-km resolution maps of estimated daily reference and potential evapotranspiration for water management-related activities. ?? 2009 American Water Resources Association.

  7. A framework to monitor activities of satellite data processing in real-time

    Science.gov (United States)

    Nguyen, M. D.; Kryukov, A. P.

    2018-01-01

    Space Monitoring Data Center (SMDC) of SINP MSU is one of the several centers in the world that collects data on the radiational conditions in near-Earth orbit from various Russian (Lomonosov, Electro-L1, Electro-L2, Meteor-M1, Meteor-M2, etc.) and foreign (GOES 13, GOES 15, ACE, SDO, etc.) satellites. The primary purposes of SMDC are: aggregating heterogeneous data from different sources; providing a unified interface for data retrieval, visualization, analysis, as well as development and testing new space weather models; and controlling the correctness and completeness of data. Space weather models rely on data provided by SMDC to produce forecasts. Therefore, monitoring the whole data processing cycle is crucial for further success in the modeling of physical processes in near-Earth orbit based on the collected data. To solve the problem described above, we have developed a framework called Live Monitor at SMDC. Live Monitor allows watching all stages and program components involved in each data processing cycle. All activities of each stage are logged by Live Monitor and shown in real-time on a web interface. When an error occurs, a notification message will be sent to satellite operators via email and the Telegram messenger service so that they could take measures in time. The Live Monitor’s API can be used to create a customized monitoring service with minimum coding.

  8. Multisensor satellite data integration for sea surface wind speed and direction determination

    Science.gov (United States)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  9. A Spatio-Temporal Analysis of the Relationship Between Near-Surface Air Temperature and Satellite Land Surface Temperatures Using 17 Years of Data from the ATSR Series

    Science.gov (United States)

    Ghent, D.; Good, E.; Bulgin, C.; Remedios, J. J.

    2017-12-01

    Surface temperatures (ST) over land have traditionally been measured at weather stations. There are many parts of the globe with very few stations, e.g. across much of Africa, leading to gaps in ST datasets, affecting our understanding of how ST is changing, and the impacts of extreme events. Satellites can provide global ST data but these observations represent how hot the land ST (LST; including the uppermost parts of e.g. trees, buildings) is to touch, whereas stations measure the air temperature just above the surface (T2m). Satellite LST data may only be available in cloud-free conditions and data records are frequently climate studies. In this study, the relationship between clear-sky satellite LST and all-sky T2m is characterised in space and time using >17 years of data. The analysis uses a new monthly LST climate data record (CDR) based on the Along-Track Scanning Radiometer (ATSR) series, which has been produced within the European Space Agency GlobTemperature project. The results demonstrate the dependency of the global LST-T2m differences on location, land cover, vegetation and elevation. LSTnight ( 10 pm local solar time) is found to be closely coupled with minimum T2m (Tmin) and the two temperatures generally consistent to within ±5 °C (global median LSTnight- Tmin= 1.8 °C, interquartile range = 3.8 °C). The LSTday ( 10 am local time)-maximum T2m (Tmax) variability is higher because LST is strongly influenced by insolation and surface regime (global median LSTday-Tmax= -0.1 °C, interquartile range = 8.1 °C). Correlations for both temperature pairs are typically >0.9 outside of the tropics. A crucial aspect of this study is a comparison between the monthly global anomaly time series of LST and CRUTEM4 T2m. The time series agree remarkably well, with a correlation of 0.9 and 90% of the CDR anomalies falling within the T2m 95% confidence limits (see figure). This analysis provides independent verification of the 1995-2012 T2m anomaly time series

  10. Gridding artifacts on ENVISAT/MERIS temporal series

    NARCIS (Netherlands)

    Gómez Chova, L.; Zurita-Milla, R.; Alonso, L.; Guanter, L.; Amoros-Lopez, J.; Camps-Valls, G.; Moreno, J.; Lacoste-Francis, H.

    2010-01-01

    Earth observation satellites are a valuable source of data that can be used to better understand the Earth system dynamics. However, analysis of satellite image time series requires an accurate spatial co-registration so that the multi-temporal pixel entities offer a true temporal view of the study

  11. The Communicative Translation Analysis of Children's Bilingual Story Book Ms Wiz the Series ‘Ms Wiz Goes Live' by Terence Blacker

    OpenAIRE

    PUTRI, ROZI HANIFIA

    2013-01-01

    Indonesian people use English as their foreign language. As a matter offact, most of books, product instructions, jobs information and literary work havebeen written in English. It means that to understand the message and informationfrom English into Indonesian, it needs translation. The writer conducted ananalysis of Indonesian version in children's storybook entitled Ms Wiz the Series‘Ms Wiz Goes Live' based on communicative translation method. Since, thisanalysis is dealing with the childr...

  12. GEO-LEO reflectance band inter-comparison with BRDF and atmospheric scattering corrections

    Science.gov (United States)

    Chang, Tiejun; Xiong, Xiaoxiong Jack; Keller, Graziela; Wu, Xiangqian

    2017-09-01

    The inter-comparison of the reflective solar bands between the instruments onboard a geostationary orbit satellite and onboard a low Earth orbit satellite is very helpful to assess their calibration consistency. GOES-R was launched on November 19, 2016 and Himawari 8 was launched October 7, 2014. Unlike the previous GOES instruments, the Advanced Baseline Imager on GOES-16 (GOES-R became GOES-16 after November 29 when it reached orbit) and the Advanced Himawari Imager (AHI) on Himawari 8 have onboard calibrators for the reflective solar bands. The assessment of calibration is important for their product quality enhancement. MODIS and VIIRS, with their stringent calibration requirements and excellent on-orbit calibration performance, provide good references. The simultaneous nadir overpass (SNO) and ray-matching are widely used inter-comparison methods for reflective solar bands. In this work, the inter-comparisons are performed over a pseudo-invariant target. The use of stable and uniform calibration sites provides comparison with appropriate reflectance level, accurate adjustment for band spectral coverage difference, reduction of impact from pixel mismatching, and consistency of BRDF and atmospheric correction. The site in this work is a desert site in Australia (latitude -29.0 South; longitude 139.8 East). Due to the difference in solar and view angles, two corrections are applied to have comparable measurements. The first is the atmospheric scattering correction. The satellite sensor measurements are top of atmosphere reflectance. The scattering, especially Rayleigh scattering, should be removed allowing the ground reflectance to be derived. Secondly, the angle differences magnify the BRDF effect. The ground reflectance should be corrected to have comparable measurements. The atmospheric correction is performed using a vector version of the Second Simulation of a Satellite Signal in the Solar Spectrum modeling and BRDF correction is performed using a semi

  13. The Nimbus satellites - Pioneering earth observers

    Science.gov (United States)

    White, Carolynne

    1990-01-01

    The many scientific achievements of the Nimbus series of seven satellites for low-altitude atmospheric research and global weather surveillance are reviewed. The series provides information on fishery resources, weather modeling, atmospheric pollution monitoring, earth's radiation budget, ozone monitoring, ocean dynamics, and the effects of cloudiness. Data produced by the forty-eight instruments and sensors flown on the satellites are applied in the fields of oceanography, hydrology, geology, geomorphology, geography, cartography, agriculture and meteorology. The instruments include the Coastal Zone Color Scanner (which depicts phytoplankton concentrations in coastal areas), the Scanning Multichannel Microwave Radiometer (which measures sea-surface temperatures and sea-surface wind-speed), and the Total Ozone Mapping Spectrometer (which provides information on total amounts of ozone in the earth's atmosphere).

  14. PELAKSANAAN KEGIATAN SPECIAL EVENT JAKARTA GOES PINK OLEH LOVEPINK INDONESIA

    Directory of Open Access Journals (Sweden)

    Nugroho Ajie Hartono

    2017-01-01

    Full Text Available ABSTRAKPenelitian ini bertujuan untuk mengetahui kegiatan special event yang dilakukan Lovepink Indonesiadalam menyelenggarakan Jakarta Goes Pink 2015 untuk meningkatkan kesadaran. Penelitian inimenggunakan Event Management Process Joe Goldblatt sebagai landasan konsep.Penelitian ini adalah penelitian kualitatif dengan pendekatan studi deskriptif. Teknik pengumpulan datadilakukan dengan wawancara mendalam, observasi partisipan pasif, dan studi kepustakaan, dengan teknik pengumpulan key informan purposive sampling. Teknik analisis data menggunakan tiga tahap yaitu reduksi data, penyajian data, serta penarikan kesimpulan. Teknik validitas data menggunakantriangulasi sumber data.Hasil penelitian ini mengemukakan bahwa manajemen special event Jakarta Goes Pink dikategorikandalam riset, desain, perencanaan, koordinasi, dan evaluasi. Riset yang dilakukan meliputi analisissituasi terkait kesadaran masyarakat Indonesia tentang kanker payudara, hasil riset menyatakanbahwa kesadaran masih rendah, terutama dibandingkan dengan aktivitas Pink Ribbon diluar negeridan evaluasi acara tahun sebelumnya. Desain acara dilakukan menggunakan unsur warna untukmemerahmudakan Jakarta, edukasi pengunjung terhadap kanker payudara, dan unsur hiburan dengankonsep fair and festival. Perencanaan Jakarta Goes Pink meliputi penentuan tujuan yang kemudiandapat menentukan tanggal dan lokasi, penetapan anggaran, pembagian tugas pengurus, dan publikasiyang dilakukan melalui media sosial dan bantuan mitra media. Koordinasi dilakukan sebagai upayapengelolaan komunikasi antara pihak eksternal seperti komunitas, relawan, sponsor, dan mitra media;serta pihak internal yaitu kepengurusan Jakarta Goes Pink. Tahap evaluasi yang dilakukan JakartaGoes Pink meliputi evaluasi acara, feedback langsung dari orang terdekat, dan penghitungan jumlahliputan media massa dan sifat pemberitaan.Kata kunci: Special event, kesadaran, organisasi, kanker payudara, event management process ABSTRACTThis study

  15. Mismatch and misalignment: dark haloes and satellites of disc galaxies

    Science.gov (United States)

    Deason, A. J.; McCarthy, I. G.; Font, A. S.; Evans, N. W.; Frenk, C. S.; Belokurov, V.; Libeskind, N. I.; Crain, R. A.; Theuns, T.

    2011-08-01

    We study the phase-space distribution of satellite galaxies associated with late-type galaxies in the GIMIC suite of simulations. GIMIC consists of resimulations of five cosmologically representative regions from the Millennium Simulation, which have higher resolution and incorporate baryonic physics. Whilst the disc of the galaxy is well aligned with the inner regions (r˜ 0.1r200) of the dark matter halo, both in shape and angular momentum, there can be substantial misalignments at larger radii (r˜r200). Misalignments of >45° are seen in ˜30 per cent of our sample. We find that the satellite population aligns with the shape (and angular momentum) of the outer dark matter halo. However, the alignment with the galaxy is weak owing to the mismatch between the disc and dark matter halo. Roughly 20 per cent of the satellite systems with 10 bright galaxies within r200 exhibit a polar spatial alignment with respect to the galaxy - an orientation reminiscent of the classical satellites of the Milky Way. We find that a small fraction (˜10 per cent) of satellite systems show evidence for rotational support which we attribute to group infall. There is a bias towards satellites on prograde orbits relative to the spin of the dark matter halo (and to a lesser extent with the angular momentum of the disc). This preference towards co-rotation is stronger in the inner regions of the halo where the most massive satellites accreted at relatively early times are located. We attribute the anisotropic spatial distribution and angular momentum bias of the satellites at z= 0 to their directional accretion along the major axes of the dark matter halo. The satellite galaxies have been accreted relatively recently compared to the dark matter mass and have experienced less phase-mixing and relaxation - the memory of their accretion history can remain intact to z= 0. Understanding the phase-space distribution of the z= 0 satellite population is key for studies that estimate the host halo

  16. Monitoring vegetation recovery in fire-affected areas using temporal profiles of spectral signal from time series MODIS and LANDSAT satellite images

    Science.gov (United States)

    Georgopoulou, Danai; Koutsias, Nikos

    2015-04-01

    Vegetation phenology is an important element of vegetation characteristics that can be useful in vegetation monitoring especially when satellite remote sensing observations are used. In that sense temporal profiles extracted from spectral signal of time series MODIS and LANDSAT satellite images can be used to characterize vegetation phenology and thus to be helpful for monitoring vegetation recovery in fire-affected areas. The aim of this study is to explore the vegetation recovery pattern of the catastrophic wildfires that occurred in Peloponnisos, southern Greece, in 2007. These fires caused the loss of 67 lives and were recognized as the most extreme natural disaster in the country's recent history. Satellite remote sensing data from MODIS and LANDSAT satellites in the period from 2000 to 2014 were acquired and processed to extract the temporal profiles of the spectral signal for selected areas within the fire-affected areas. This dataset and time period analyzed together with the time that these fires occurred gave the opportunity to create temporal profiles seven years before and seven years after the fire. The different scale of the data used gave us the chance to understand how vegetation phenology and therefore the recovery patterns are influenced by the spatial resolution of the satellite data used. Different metrics linked to key phenological events have been created and used to assess vegetation recovery in the fire-affected areas. Our analysis was focused in the main land cover types that were mostly affected by the 2007 wildland fires. Based on CORINE land-cover maps these were agricultural lands highly interspersed with large areas of natural vegetation followed by sclerophyllous vegetation, transitional woodland shrubs, complex cultivation patterns and olive groves. Apart of the use of the original spectral data we estimated and used vegetation indices commonly found in vegetation studies as well as in burned area mapping studies. In this study we

  17. Error Analysis of Satellite Precipitation-Driven Modeling of Flood Events in Complex Alpine Terrain

    Directory of Open Access Journals (Sweden)

    Yiwen Mei

    2016-03-01

    Full Text Available The error in satellite precipitation-driven complex terrain flood simulations is characterized in this study for eight different global satellite products and 128 flood events over the Eastern Italian Alps. The flood events are grouped according to two flood types: rain floods and flash floods. The satellite precipitation products and runoff simulations are evaluated based on systematic and random error metrics applied on the matched event pairs and basin-scale event properties (i.e., rainfall and runoff cumulative depth and time series shape. Overall, error characteristics exhibit dependency on the flood type. Generally, timing of the event precipitation mass center and dispersion of the time series derived from satellite precipitation exhibits good agreement with the reference; the cumulative depth is mostly underestimated. The study shows a dampening effect in both systematic and random error components of the satellite-driven hydrograph relative to the satellite-retrieved hyetograph. The systematic error in shape of the time series shows a significant dampening effect. The random error dampening effect is less pronounced for the flash flood events and the rain flood events with a high runoff coefficient. This event-based analysis of the satellite precipitation error propagation in flood modeling sheds light on the application of satellite precipitation in mountain flood hydrology.

  18. SEL monitoring of the earth's energetic particle radiation environment

    International Nuclear Information System (INIS)

    Sauer, H.H.

    1989-01-01

    The Space Environment Laboratory (SEL) of the National Oceanic and Atmospheric Administration (NOAA) maintains instruments on board the GOES series of geostationary satellites, and aboard the NOAA/TIROS series of low-altitude, polar-orbiting satellites, which provide monitoring of the energetic particle radiation environment as well as monitoring the geostationary magnetic field and the solar x-ray flux. The data are used by the SEL Space Environment Services Center (SESC) to help provide real-time monitoring and forecasting of the state of the near earth environment and its disturbances, and to maintain a source of reliable information to research and operational activities of a variety of users

  19. Review of surface particulate monitoring of dust events using geostationary satellite remote sensing

    Science.gov (United States)

    Sowden, M.; Mueller, U.; Blake, D.

    2018-06-01

    The accurate measurements of natural and anthropogenic aerosol particulate matter (PM) is important in managing both environmental and health risks; however, limited monitoring in regional areas hinders accurate quantification. This article provides an overview of the ability of recently launched geostationary earth orbit (GEO) satellites, such as GOES-R (North America) and HIMAWARI (Asia and Oceania), to provide near real-time ground-level PM concentrations (GLCs). The review examines the literature relating to the spatial and temporal resolution required by air quality studies, the removal of cloud and surface effects, the aerosol inversion problem, and the computation of ground-level concentrations rather than columnar aerosol optical depth (AOD). Determining surface PM concentrations using remote sensing is complicated by differentiating intrinsic aerosol properties (size, shape, composition, and quantity) from extrinsic signal intensities, particularly as the number of unknown intrinsic parameters exceeds the number of known extrinsic measurements. The review confirms that development of GEO satellite products has led to improvements in the use of coupled products such as GEOS-CHEM, aerosol types have consolidated on model species rather than prior descriptive classifications, and forward radiative transfer models have led to a better understanding of predictive spectra interdependencies across different aerosol types, despite fewer wavelength bands. However, it is apparent that the aerosol inversion problem remains challenging because there are limited wavelength bands for characterising localised mineralogy. The review finds that the frequency of GEO satellite data exceeds the temporal resolution required for air quality studies, but the spatial resolution is too coarse for localised air quality studies. Continual monitoring necessitates using the less sensitive thermal infra-red bands, which also reduce surface absorption effects. However, given the

  20. Detecting settlement expansion using hyper-temporal SAR time-series

    CSIR Research Space (South Africa)

    Kleynhans, W

    2014-07-01

    Full Text Available The detection of new informal settlements in South Africa using time-series data derived from coarse resolution satellite imagery has recently been an active area of research. Most of the previous methods presented using hyper-temporal satellite...

  1. Results of Cavity Series Fabrication at Jefferson Laboratory for the Cryomodule 'R100'

    International Nuclear Information System (INIS)

    Marhauser, F.; Clemens, W.A.; Drury, M.A.; Forehand, D.; Henry, J.; Manning, S.; Overton, R.B.; Williams, R.S.

    2011-01-01

    A series production of eight superconducting RF cavities for the cryomodule R100 was conducted at JLab in 2010. The cavities underwent chemical post-processing prior to vertical high power testing and routinely exceeded the envisaged performance specifications. After cryomodule assembly, cavities were successfully high power acceptance tested. In this paper, we present the achievements paving the way for the first demonstration of 100 MV (and beyond) in a single cryomodule to be operated at CEBAF.

  2. Modelación de la asimetría y curtosis condicionales: una aplicación VaR para series colombianas

    OpenAIRE

    Andrés Eduardo Jiménez Gómez; Luis Fernando Melo Velandia

    2014-01-01

    Las metodologías tradicionales utilizadas para calcular el valor en riesgo y el valor en riesgo condicional usualmente modelan el primer y segundo momento de las series, suponiendo que el tercer y cuarto momento son constantes. En este documento se utiliza la metodología de Hansen [1994] para modelar los primeros cuatro momentos de la serie, en particular, se usan varias formas paramétricas para modelar la asimetría y curtosis. Las medidas de VaR y CVaR tradicionales y las propuestas son calc...

  3. Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data

    Directory of Open Access Journals (Sweden)

    A. Lana

    2012-09-01

    Full Text Available Aerosols have a large potential to influence climate through their effects on the microphysics and optical properties of clouds and, hence, on the Earth's radiation budget. Aerosol–cloud interactions have been intensively studied in polluted air, but the possibility that the marine biosphere plays an important role in regulating cloud brightness in the pristine oceanic atmosphere remains largely unexplored. We used 9 yr of global satellite data and ocean climatologies to derive parameterizations of the temporal variability of (a production fluxes of sulfur aerosols formed by the oxidation of the biogenic gas dimethylsulfide emitted from the sea surface; (b production fluxes of secondary organic aerosols from biogenic organic volatiles; (c emission fluxes of biogenic primary organic aerosols ejected by wind action on sea surface; and (d emission fluxes of sea salt also lifted by the wind upon bubble bursting. Series of global monthly estimates of these fluxes were correlated to series of potential cloud condensation nuclei (CCN numbers derived from satellite (MODIS. More detailed comparisons among weekly series of estimated fluxes and satellite-derived cloud droplet effective radius (re data were conducted at locations spread among polluted and clean regions of the oceanic atmosphere. The outcome of the statistical analysis was that positive correlation to CCN numbers and negative correlation to re were common at mid and high latitude for sulfur and organic secondary aerosols, indicating both might be important in seeding cloud droplet activation. Conversely, primary aerosols (organic and sea salt showed widespread positive correlations to CCN only at low latitudes. Correlations to re were more variable, non-significant or positive, suggesting that, despite contributing to large shares of the marine aerosol mass, primary aerosols are not widespread major drivers of the variability of cloud

  4. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    Science.gov (United States)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  5. Noise Reduction and Gap Filling of fAPAR Time Series Using an Adapted Local Regression Filter

    Directory of Open Access Journals (Sweden)

    Álvaro Moreno

    2014-08-01

    Full Text Available Time series of remotely sensed data are an important source of information for understanding land cover dynamics. In particular, the fraction of absorbed photosynthetic active radiation (fAPAR is a key variable in the assessment of vegetation primary production over time. However, the fAPAR series derived from polar orbit satellites are not continuous and consistent in space and time. Filtering methods are thus required to fill in gaps and produce high-quality time series. This study proposes an adapted (iteratively reweighted local regression filter (LOESS and performs a benchmarking intercomparison with four popular and generally applicable smoothing methods: Double Logistic (DLOG, smoothing spline (SSP, Interpolation for Data Reconstruction (IDR and adaptive Savitzky-Golay (ASG. This paper evaluates the main advantages and drawbacks of the considered techniques. The results have shown that ASG and the adapted LOESS perform better in recovering fAPAR time series over multiple controlled noisy scenarios. Both methods can robustly reconstruct the fAPAR trajectories, reducing the noise up to 80% in the worst simulation scenario, which might be attributed to the quality control (QC MODIS information incorporated into these filtering algorithms, their flexibility and adaptation to the upper envelope. The adapted LOESS is particularly resistant to outliers. This method clearly outperforms the other considered methods to deal with the high presence of gaps and noise in satellite data records. The low RMSE and biases obtained with the LOESS method (|rMBE| < 8%; rRMSE < 20% reveals an optimal reconstruction even in most extreme situations with long seasonal gaps. An example of application of the LOESS method to fill in invalid values in real MODIS images presenting persistent cloud and snow coverage is also shown. The LOESS approach is recommended in most remote sensing applications, such as gap-filling, cloud-replacement, and observing temporal

  6. History of Satellite Orbit Determination at NSWCDD

    Science.gov (United States)

    2018-01-31

    meeting of the Satellite Division of ION, Palm Springs, CA., 12–15 Sep 1995. Hughey, Raymond H., Jr., “ History of Mathematics and Computing Technology ...TR-17/229 HISTORY OF SATELLITE ORBIT DETERMINATION AT NSWCDD BY EVERETT R. SWIFT WARFARE SYSTEMS ENGINEERING AND INTEGRATION...AND SUBTITLE History of Satellite Orbit Determination at NSWCDD 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  7. Next generation hyper resolution wide swath and multi-channel optical payload for CBERS series

    Science.gov (United States)

    Wang, Weigang

    2017-11-01

    The China-Brazilian Earth Resources Satellite (CBERS) program, (also called ZY-1) the result of a space technology agreement between China and Brazil, was officially signed in 1988 after the first joint work report produced by National Institute for Space Research (INPE) and the Chinese Academy of Space Technology (CAST). During the 26 years of its existence, the program of cooperation between China and Brazil in space has achieved the successful launch of three satellites. It has become a unique example of cooperation in cutting edge technology between emerging nations. CBERS satellite is the first generation data-transferring remote sensing satellite developed by China. CBERS satellite data are widely applied to crop yield estimation, exploration of land and resources, urban planning, environmental protection and monitoring, disaster reduction, and other fields. CBERS series is just like Landsat series of USA and SPOT series of France.

  8. Multiscale, multispectral and multitemporal satellite data to identify archaeological remains in the archaeological area of Tiwanaku (Bolivia)

    Science.gov (United States)

    Masini, Nicola; Lasaponara, Rosa

    2015-04-01

    The aim of this paper is to investigate the cultural landscape of the archaeological area of Tiwanaku (Bolivia) using multiscale, multispectral and multitemporal satellite data. Geospatial analysis techniques were applied to the satellite data sets in order to enhance and map traces of past human activities and perform a spatial characterization of environmental and cultural patterns. In particular, in the Tiwanaku area, the approach based on local indicators of spatial autocorrelation (LISA) applied to ASTER data allowed us to identify traces of a possible ancient hydrographic network with a clear spatial relation with the well-known moat surrounding the core of the monumental area. The same approach applied to QuickBird data, allowed us to identify numerous traces of archaeological interest, in Mollo Kontu mound, less investigated than the monumental area. Some of these traces were in perfect accordance with the results of independent studies, other were completely unknown. As a whole, the detected features, composing a geometric pattern with roughly North-South orientation, closely match those of the other residential contexts at Tiwanaku. These new insights, captured from multitemporal ASTER and QuickBird data processing, suggested new questions on the ancient landscape and provided important information for planning future field surveys and archaeogeophyical investigations. Reference [1] Lasaponara R., Masini N. 2014. Beyond modern landscape features: New insights in thearchaeological area of Tiwanaku in Bolivia from satellite data. International Journal of Applied Earth Observation and Geoinformation, 26, 464-471, http://dx.doi.org/10.1016/j.jag.2013.09.00. [2] Tapete D., Cigna F., Masini N., Lasaponara R. 2013. Prospection and monitoring of the archaeological heritage of Nasca, Peru, with ENVISAT ASAR, Archaeological Prospection, 20, 133-147, doi: 10.1002/arp.1449. [3] Lasaponara R, N Masini, 2012 Satellite Remote Sensing, A New Tool for Archaeology (Series

  9. Use of satellite data to estimate radiation and evaporation for northwest Mexico

    International Nuclear Information System (INIS)

    Stewart, J.B.; Watts, C.J.; Rodriguez, J.C.; Bruin, H.A.R. de; Berg, A.R. van den; Garatuza-Payán, J.

    1999-01-01

    Incoming solar radiation was estimated from visible band data obtained by the GOES satellite over northwest Mexico. Comparisons against ground-based measurements of incoming solar radiation showed good agreement, particularly in months with low cloud cover. The data from an automatic weather station installed within the Yaqui Valley Irrigation Scheme was used to estimate potential evaporation from a formula based on incoming solar radiation and climatological values of temperature. The success of this formula was assessed by comparison against potential evaporation estimated using the Penman and Penman–Monteith formulae and measurements of net radiation. (author)

  10. Solar flares observed simultaneously with SphinX, GOES and RHESSI

    Science.gov (United States)

    Mrozek, Tomasz; Gburek, Szymon; Siarkowski, Marek; Sylwester, Barbara; Sylwester, Janusz; Kępa, Anna; Gryciuk, Magdalena

    2013-07-01

    In February 2009, during recent deepest solar minimum, Polish Solar Photometer in X-rays (SphinX) begun observations of the Sun in the energy range of 1.2-15 keV. SphinX was almost 100 times more sensitive than GOES X-ray Sensors. The silicon PIN diode detectors used in the experiment were carefully calibrated on the ground using Synchrotron Radiation Source BESSY II. The SphinX energy range overlaps with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) energy range. The instrument provided us with observations of hundreds of very small flares and X-ray brightenings. We have chosen a group of solar flares observed simultaneously with GOES, SphinX and RHESSI and performed spectroscopic analysis of observations wherever possible. The analysis of thermal part of the spectra showed that SphinX is a very sensitive complementary observatory for RHESSI and GOES.

  11. About the parametric interplay between ionic mach number, body-size, and satellite potential in determining the ion depletion in the wake of the S3-2 Satellite

    International Nuclear Information System (INIS)

    Samir, U.; Wildman, P.J.; Rich, F.; Brinton, H.C.; Sagalyn, R.C.

    1981-01-01

    Measurements of ion current, electron temperature, and density and values of satellite potential from the U.S. Air Force Satellite S3-2 together with ion composition measurements from the Atmosphere Explorer (AE-E) satellite were used to examine the variation of the ratio α = [I/sub +/(wake)]/[I/sub +/(ambient)] (where I/sub +/ is the ion current) with altitude and to examine the significance of the parametric interplay between ionic Mach number, normalized body size R/sub D/( = R0/lambda/sub D/, where R 0 is the satellite radius and lambda/sub D/ is the ambient debye length) and normalized body potenital phi/sub N/( = ephis/KT/sub e/, where phi/sub s/ is the satellite potential, T/sub e/ is the electron temperature, and e and K are constants). It was possible to separate between the influence of R/sub D/ and phi/sub N/ on α for a specific range parameters. Uncertainty, however, remains regarding the competiton between R/sub D/ and S(H + ) and S(O + ) are oxygen and hydrogen ionic Mach numbers, respectively) in determining the ion distribution in the nearest vicincity to the satellite surface. A brief discussion relevant to future experiments in the area of body plasma flow interactions to be conducted on board the Shuttle/Spacelab facility, is also included

  12. Image navigation and registration for the geostationary lightning mapper (GLM)

    Science.gov (United States)

    van Bezooijen, Roel W. H.; Demroff, Howard; Burton, Gregory; Chu, Donald; Yang, Shu S.

    2016-10-01

    The Geostationary Lightning Mappers (GLM) for the Geostationary Operational Environmental Satellite (GOES) GOES-R series will, for the first time, provide hemispherical lightning information 24 hours a day from longitudes of 75 and 137 degrees west. The first GLM of a series of four is planned for launch in November, 2016. Observation of lightning patterns by GLM holds promise to improve tornado warning lead times to greater than 20 minutes while halving the present false alarm rates. In addition, GLM will improve airline traffic flow management, and provide climatology data allowing us to understand the Earth's evolving climate. The paper describes the method used for translating the pixel position of a lightning event to its corresponding geodetic longitude and latitude, using the J2000 attitude of the GLM mount frame reported by the spacecraft, the position of the spacecraft, and the alignment of the GLM coordinate frame relative to its mount frame. Because the latter alignment will experience seasonal variation, this alignment is determined daily using GLM background images collected over the previous 7 days. The process involves identification of coastlines in the background images and determination of the alignment change necessary to match the detected coastline with the coastline predicted using the GSHHS database. Registration is achieved using a variation of the Lucas-Kanade algorithm where we added a dither and average technique to improve performance significantly. An innovative water mask technique was conceived to enable self-contained detection of clear coastline sections usable for registration. Extensive simulations using accurate visible images from GOES13 and GOES15 have been used to demonstrate the performance of the coastline registration method, the results of which are presented in the paper.

  13. A description of QUALCOMM Automatic Satellite Position Reporting (QASPR(R)) for mobile communications

    Science.gov (United States)

    Ames, William G.

    1990-01-01

    Two satellite position reporting has been introduced into the OmniTRACS mobile satellite communication system. This system significantly improves position reporting reliability and accuracy while simplifying the terminal's hardware. The positioning technique uses the original OmniTRACS TDMA timing signal formats in the forward and return link directions plus an auxiliary, low power forward link signal through a second satellite to derive distance values. The distances are then converted into the mobile terminal's latitude and longitude in real time. A minor augmentation of the spread spectrum profile of the return link allowed the resolution of periodic ambiguities. The system also locates the two satellites in real time with fixed platforms in known locations using identical mobile terminal hardware. Initial accuracies of 1/4 mile have been realized uniformly throughout the USA using a satellite separation of 22 degrees and there are no dead zones, skywaves, or cycle slips as found in terrestrial systems like LORAN-C.

  14. International Satellite Cloud Climatology Project (ISCCP) Climate Data Record, H-Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The International Satellite Cloud Climatology Project (ISCCP) focuses on the distribution and variation of cloud radiative properties to improve the understanding of...

  15. Monitoring and optimization of ATLAS Tier 2 center GoeGrid

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00219638; Quadt, Arnulf; Yahyapour, Ramin

    The demand on computational and storage resources is growing along with the amount of information that needs to be processed and preserved. In order to ease the provisioning of the digital services to the growing number of consumers, more and more distributed computing systems and platforms are actively developed and employed. The building block of the distributed computing infrastructure are single computing centers, similar to the Worldwide LHC Computing Grid, Tier 2 centre GoeGrid. The main motivation of this thesis was the optimization of GoeGrid performance by efficient monitoring. The goal has been achieved by means of the GoeGrid monitoring information analysis. The data analysis approach was based on the adaptive-network-based fuzzy inference system (ANFIS) and machine learning algorithm such as Linear Support Vector Machine (SVM). The main object of the research was the digital service, since availability, reliability and serviceability of the computing platform can be measured according to the const...

  16. Rovdrill{sup R} and the Rovdrill{sup R} 'M' series, pushing the limits of the offshore geotechnical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Allan [Perry Slingsby Systems Inc., North Yorkshire (United Kingdom)

    2008-07-01

    This paper will describe the development and actual field performance of a new remotely operated sub sea drilling, coring and in-situ soil sampling rig - Rovdrill{sup R}, the paper will further describe the subsequent development of the latest generation Rovdrill{sup R} the Rovdrill{sup R} 'M' Series which represents the very latest in leading edge remotely operated seabed mode rigs. We are seeing the potential for continued and sustained growth in the sub sea mineral exploration market, which will call for new and innovative complimentary equipment and processes to be developed, currently the pioneering nature of this work often carries with it limited budgets and hence the necessity for economic, yet effective solutions to new and complex sub sea intervention problems. This, in addition to the ever increasing activity levels in the offshore geotechnical investigation arenas, particularly the increasing number of sub sea oil and gas construction and shallow water renewable energy system installation projects, is driving us - as leading providers of sub sea intervention systems to develop complimentary and competitive solutions. The Rovdrill{sup R} product is one such system, which having already enjoyed some initial recognition and acceptance as a competent geotechnical data acquisition tool has now been further developed to service a much wider and expanding market. (author)

  17. R&D of a Next Generation LEO System for Global Multimedia Mobile Satellite Communications

    Science.gov (United States)

    Morikawa, E.; Motoyoshi, S.; Koyama, Y.; Suzuki, R.; Yasuda, Y.

    2002-01-01

    Next-generation LEO System Research Center (NeLS) was formed in the end of 1997 as a research group under the Telecommunications Advancement Organization of Japan, in cooperation with the telecommunications operators, manufacturers, universities and governmental research organization. The aim of this project is to develop new technology for global multimedia mobile satellite communications services with a user data rate around 2Mbps for handy terminals. component of the IMT-2000, and the second generation of the big-LEO systems. In prosecuting this project, two-phase approach, phase 1 and phase 2, is considered. Phase 1 is the system definition and development of key technologies. In Phase 2, we plan to verify the developed technology in Phase 1 on space. From this year we shifted the stage to Phase 2, and are now developing the prototype of on-board communication systems for flight tests, which will be planed at around 2006. The satellite altitude is assumed to be 1200 km in order to reduce the number of satellites, to avoid the Van Allen radiation belts and to increase the minimum elevation angle. Ten of the circular orbits with 55 degree of inclination are selected to cover the earth surface from -70 to 70 degree in latitude. 12 satellites are positioned at regular intervals in each orbit. In this case, the minimum elevation angle from the user terminal can be keep more than 20 degree for the visibility of the satellite, and 15 degree for simultaneous visibility of two satellites. Then, NeLS Research Center was focusing on the development of key technologies as the phase 1 project. Four kinds of key technologies; DBF satellite antenna, optical inter-satellite link system, satellite network technology with on-board ATM switch and variable rate modulation were selected. Satellite Antenna Technology: Development of on-board direct radiating active phased array antenna with digital beam forming technology would be one of the most important breakthroughs for the

  18. The Westinghouse Series 1000 Mobile Phone: Technology and applications

    Science.gov (United States)

    Connelly, Brian

    1993-01-01

    Mobile satellite communications will be popularized by the North American Mobile Satellite (MSAT) system. The success of the overall system is dependent upon the quality of the mobile units. Westinghouse is designing our unit, the Series 1000 Mobile Phone, with the user in mind. The architecture and technology aim at providing optimum performance at a low per unit cost. The features and functions of the Series 1000 Mobile Phone have been defined by potential MSAT users. The latter portion of this paper deals with who those users may be.

  19. DeepSAT's CloudCNN: A Deep Neural Network for Rapid Cloud Detection from Geostationary Satellites

    Science.gov (United States)

    Kalia, S.; Li, S.; Ganguly, S.; Nemani, R. R.

    2017-12-01

    Cloud and cloud shadow detection has important applications in weather and climate studies. It is even more crucial when we introduce geostationary satellites into the field of terrestrial remotesensing. With the challenges associated with data acquired in very high frequency (10-15 mins per scan), the ability to derive an accurate cloud/shadow mask from geostationary satellite data iscritical. The key to the success for most of the existing algorithms depends on spatially and temporally varying thresholds, which better capture local atmospheric and surface effects.However, the selection of proper threshold is difficult and may lead to erroneous results. In this work, we propose a deep neural network based approach called CloudCNN to classifycloud/shadow from Himawari-8 AHI and GOES-16 ABI multispectral data. DeepSAT's CloudCNN consists of an encoder-decoder based architecture for binary-class pixel wise segmentation. We train CloudCNN on multi-GPU Nvidia Devbox cluster, and deploy the prediction pipeline on NASA Earth Exchange (NEX) Pleiades supercomputer. We achieved an overall accuracy of 93.29% on test samples. Since, the predictions take only a few seconds to segment a full multi-spectral GOES-16 or Himawari-8 Full Disk image, the developed framework can be used for real-time cloud detection, cyclone detection, or extreme weather event predictions.

  20. Standardized Access and Processing of Multi-Source Earth Observation Time-Series Data within a Regional Data Middleware

    Science.gov (United States)

    Eberle, J.; Schmullius, C.

    2017-12-01

    Increasing archives of global satellite data present a new challenge to handle multi-source satellite data in a user-friendly way. Any user is confronted with different data formats and data access services. In addition the handling of time-series data is complex as an automated processing and execution of data processing steps is needed to supply the user with the desired product for a specific area of interest. In order to simplify the access to data archives of various satellite missions and to facilitate the subsequent processing, a regional data and processing middleware has been developed. The aim of this system is to provide standardized and web-based interfaces to multi-source time-series data for individual regions on Earth. For further use and analysis uniform data formats and data access services are provided. Interfaces to data archives of the sensor MODIS (NASA) as well as the satellites Landsat (USGS) and Sentinel (ESA) have been integrated in the middleware. Various scientific algorithms, such as the calculation of trends and breakpoints of time-series data, can be carried out on the preprocessed data on the basis of uniform data management. Jupyter Notebooks are linked to the data and further processing can be conducted directly on the server using Python and the statistical language R. In addition to accessing EO data, the middleware is also used as an intermediary between the user and external databases (e.g., Flickr, YouTube). Standardized web services as specified by OGC are provided for all tools of the middleware. Currently, the use of cloud services is being researched to bring algorithms to the data. As a thematic example, an operational monitoring of vegetation phenology is being implemented on the basis of various optical satellite data and validation data from the German Weather Service. Other examples demonstrate the monitoring of wetlands focusing on automated discovery and access of Landsat and Sentinel data for local areas.

  1. Network flexibility of the IRIDIUM (R) Global Mobile Satellite System

    Science.gov (United States)

    Hutcheson, Jonathan; Laurin, Mala

    1995-01-01

    The IRIDIUM system is a global personal communications system supported by a constellation of 66 low earth orbit (LEO) satellites and a collection of earth-based 'gateway' switching installations. Like traditional wireless cellular systems, coverage is achieved by a grid of cells in which bandwidth is reused for spectral efficiency. Unlike any cellular system ever built, the moving cells can be shared by multiple switching facilities. Noteworthy features of the IRIDIUM system include inter-satellite links, a GSM-based telephony architecture, and a geographically controlled system access process. These features, working in concert, permit flexible and reliable administration of the worldwide service area by gateway operators. This paper will explore this unique concept.

  2. NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 2+ Cloud Top Pressure (CTP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cloud Top Pressure product contains an image with pixel values identifying the atmospheric pressure at the top of a cloud layer. The product is generated in...

  3. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-08-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period of 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing an all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines (at two sigma from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.2%±0.9%/decade in the Northern Hemisphere and −7.1%±0.9%/in the Southern Hemisphere. Furthermore, for the period 1997 to 2008 we find that the same locations show the largest ozone recovery (+1.4% and +0.8%/decade respectively compared to other global regions, although the estimated trend model errors indicate that the trend estimates are not significantly different from a zero trend at the 2 sigma level. An all instrument average is also constructed from water vapour anomalies during 1991–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (Aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004–2005 in the lower tropical stratosphere (20–25 km and has even

  4. Validation of the CHIRPS Satellite Rainfall Estimates over Eastern of Africa

    Science.gov (United States)

    Dinku, T.; Funk, C. C.; Tadesse, T.; Ceccato, P.

    2017-12-01

    Long and temporally consistent rainfall time series are essential in climate analyses and applications. Rainfall data from station observations are inadequate over many parts of the world due to sparse or non-existent observation networks, or limited reporting of gauge observations. As a result, satellite rainfall estimates have been used as an alternative or as a supplement to station observations. However, many satellite-based rainfall products with long time series suffer from coarse spatial and temporal resolutions and inhomogeneities caused by variations in satellite inputs. There are some satellite rainfall products with reasonably consistent time series, but they are often limited to specific geographic areas. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and quasi-global coverage. In this study, CHIRP and CHIRPS were evaluated over East Africa at daily, dekadal (10-day) and monthly time scales. The evaluation was done by comparing the satellite products with rain gauge data from about 1200 stations. The is unprecedented number of validation stations for this region covering. The results provide a unique region-wide understanding of how satellite products perform over different climatic/geographic (low lands, mountainous regions, and coastal) regions. The CHIRP and CHIRPS products were also compared with two similar satellite rainfall products: the African Rainfall Climatology version 2 (ARC2) and the latest release of the Tropical Applications of Meteorology using Satellite data (TAMSAT). The results show that both CHIRP and CHIRPS products are significantly better than ARC2 with higher skill and low or no bias. These products were also found to be slightly better than the latest version of the TAMSAT product. A comparison was also done between the latest release of the TAMSAT product

  5. Satellite DNA: An Evolving Topic.

    Science.gov (United States)

    Garrido-Ramos, Manuel A

    2017-09-18

    Satellite DNA represents one of the most fascinating parts of the repetitive fraction of the eukaryotic genome. Since the discovery of highly repetitive tandem DNA in the 1960s, a lot of literature has extensively covered various topics related to the structure, organization, function, and evolution of such sequences. Today, with the advent of genomic tools, the study of satellite DNA has regained a great interest. Thus, Next-Generation Sequencing (NGS), together with high-throughput in silico analysis of the information contained in NGS reads, has revolutionized the analysis of the repetitive fraction of the eukaryotic genomes. The whole of the historical and current approaches to the topic gives us a broad view of the function and evolution of satellite DNA and its role in chromosomal evolution. Currently, we have extensive information on the molecular, chromosomal, biological, and population factors that affect the evolutionary fate of satellite DNA, knowledge that gives rise to a series of hypotheses that get on well with each other about the origin, spreading, and evolution of satellite DNA. In this paper, I review these hypotheses from a methodological, conceptual, and historical perspective and frame them in the context of chromosomal organization and evolution.

  6. Multi-satellite observations of magnetic fields in space plasmas

    International Nuclear Information System (INIS)

    Potemra, T.A.; Zanetti, L.J.; Bythrow, P.F.; Erlandson, R.E.

    1987-01-01

    The most common method of detecting electric currents in space has been by virtue of the magnetic perturbations they produce. A satellite can pass through a field-aligned ''Birkeland'' current and measure the in-situ magnetic perturbations. Satellite-borne magnetic field experiments may also be used to observe characteristics of resonant oscillations of the Earth's magnetic field at ULF frequencies. Examples of such measurements with magnetic field experiments on the Viking, AMPTE/CCE, and DMSP-F7 satellites will be presented. The Viking satellite, launched in February, 1986, is Sweden's first satellite and is in a polar orbit with 3.1 R/sub e/ apogee. AMPTE/CCE was launched in August, 1984, with satellites from West Germany and the United Kingdom, for the purpose of creating artificial comets in space. It is in an equatorial orbit with a 8.8 R/sub e/ apogee. The Defense Meteorological Satellite Program (DMSP)-F7 satellite was launched in October, 1983 into an 800 km circular sun-synchronous orbit in the 0830-2030 magnetic local time plane. Viking and AMPTE/CCE observed harmonic ULF pulsations when they were near the same flux tube, but separated by about 10 R/sub e/. These unique observations are used to investigate the characteristics and sources of multiple field line resonances of Alfven waves. On another occasion, Viking and DMSP-F7 observed similar magnetic perturbations at widely separated locations. The authors interpret these perturbations as due to a complicated system of large-scale stable Birkeland currents in the morning sector. This multi-satellite data set is in the early stages of exploration, but already confirms the usefulness of coordinated multi-position observations of magnetic fields in space

  7. Detecting Inter-Annual Variations in the Phenology of Evergreen Conifers Using Long-Term MODIS Vegetation Index Time Series

    Directory of Open Access Journals (Sweden)

    Laura Ulsig

    2017-01-01

    Full Text Available Long-term observations of vegetation phenology can be used to monitor the response of terrestrial ecosystems to climate change. Satellite remote sensing provides the most efficient means to observe phenological events through time series analysis of vegetation indices such as the Normalized Difference Vegetation Index (NDVI. This study investigates the potential of a Photochemical Reflectance Index (PRI, which has been linked to vegetation light use efficiency, to improve the accuracy of MODIS-based estimates of phenology in an evergreen conifer forest. Timings of the start and end of the growing season (SGS and EGS were derived from a 13-year-long time series of PRI and NDVI based on a MAIAC (multi-angle implementation of atmospheric correction processed MODIS dataset and standard MODIS NDVI product data. The derived dates were validated with phenology estimates from ground-based flux tower measurements of ecosystem productivity. Significant correlations were found between the MAIAC time series and ground-estimated SGS (R2 = 0.36–0.8, which is remarkable since previous studies have found it difficult to observe inter-annual phenological variations in evergreen vegetation from satellite data. The considerably noisier NDVI product could not accurately predict SGS, and EGS could not be derived successfully from any of the time series. While the strongest relationship overall was found between SGS derived from the ground data and PRI, MAIAC NDVI exhibited high correlations with SGS more consistently (R2 > 0.6 in all cases. The results suggest that PRI can serve as an effective indicator of spring seasonal transitions, however, additional work is necessary to confirm the relationships observed and to further explore the usefulness of MODIS PRI for detecting phenology.

  8. Turbulence Heating ObserveRsatellite mission proposal

    Czech Academy of Sciences Publication Activity Database

    Vaivads, A.; Retinò, A.; Souček, Jan; Khotyaintsev, Y. V.; Valentini, F.; Escoubet, C. P.; Alexandrova, O.; André, M.; Bale, S. D.; Balikhin, M.; Burgess, D.; Camporeale, E.; Caprioli, D.; Chen, C. H. K.; Clacey, E.; Cully, C. M.; Keyser de, J.; Eastwood, J. P.; Fazakerley, A. N.; Eriksson, S.; Goldstein, M. L.; Graham, D. B.; Haaland, S.; Hoshino, M.; Ji, H.; Karimabadi, H.; Kucharek, H.; Lavraud, B.; Marcucci, F.; Matthaeus, W. H.; Moore, T. E.; Nakamura, R.; Narita, Y.; Němeček, Z.; Norgren, C.; Opgenoorth, H.; Palmroth, M.; Perrone, D.; Pinçon, J.-L.; Rathsman, P.; Rothkaehl, H.; Sahraoui, F.; Servidio, S.; Sorriso-Valvo, L.; Vainio, L.; Vörös, Z.; Wimmer-Schweingruber, R. F.

    2016-01-01

    Roč. 82, č. 5 (2016), 905820501/1-905820501/16 ISSN 0022-3778 Institutional support: RVO:68378289 Keywords : plasma heating * plasma properties * space plasma physics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.160, year: 2016 https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/div-classtitleturbulence-heating-observer-satellite-mission-proposaldiv/01BB69B09206CE04C48BEDA8F24ED33C/core-reader

  9. Satellite Ocean Biology: Past, Present, Future

    Science.gov (United States)

    McClain, Charles R.

    2012-01-01

    Since 1978 when the first satellite ocean color proof-of-concept sensor, the Nimbus-7 Coastal Zone Color Scanner, was launched, much progress has been made in refining the basic measurement concept and expanding the research applications of global satellite time series of biological and optical properties such as chlorophyll-a concentrations. The seminar will review the fundamentals of satellite ocean color measurements (sensor design considerations, on-orbit calibration, atmospheric corrections, and bio-optical algorithms), scientific results from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate resolution Imaging Spectroradiometer (MODIS) missions, and the goals of future NASA missions such as PACE, the Aerosol, Cloud, Ecology (ACE), and Geostationary Coastal and Air Pollution Events (GeoCAPE) missions.

  10. GLORI (GLObal navigation satellite system Reflectometry Instrument): A New Airborne GNSS-R receiver for land surface applications

    Science.gov (United States)

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal

    2015-04-01

    GLORI (GLObal navigation satellite system Reflectometry Instrument) is a new receiver dedicated to the airborne measurement of surface parameters such as soil moisture and biomass above ground and sea state (wave height and direction) above oceans. The instrument is based on the PARIS concept [Martin-Neira, 1993] using both the direct and surface-reflected L-band signals from the GPS constellation as a multistatic radar source. The receiver is based on one up-looking and one down-looking dual polarization hemispherical active antennas feeding a low-cost 4-channel SDR direct down-conversion receiver tuned to the GPS L1 frequency. The raw measurements are sampled at 16.368MHz and stored as 2-bit, IQ binary files. In post-processing, GPS acquisition and tracking are performed on the direct up-looking signal while the down-looking signal is processed blindly using tracking parameters from the direct signal. The obtained direct and reflected code-correlation waveforms are the basic observables for geophysical parameters inversion. The instrument was designed to be installed aboard the ATR42 experimental aircraft from the French SAFIRE fleet as a permanent payload. The long term goal of the project is to provide real-time continuous surface information for every flight performed. The aircraft records attitude information through its Inertial Measurement Unit and a commercial GPS receiver records additional information such as estimated doppler and code phase, receiver location, satellites azimuth and elevation. A series of test flights were performed over both the Toulouse and Gulf of Lion (Mediterranean Sea) regions during the period 17-21 Nov 2014 together with the KuROS radar [Hauser et al., 2014]. Using processing methods from the literature [Egido et al., 2014], preliminary results demonstrate the instrument sensitivity to both ground and ocean surface parameters estimation. A dedicated scientific flight campaign is planned at the end of second quarter 2015 with

  11. Implications of heavy-ion induced satellite x-ray emission. I. Introduction

    International Nuclear Information System (INIS)

    Raman, S.; Vane, C.R.

    1983-01-01

    Regardless of how they are induced, x-ray spectra are sensitive to the chemical environment of the emitting atom and can yield information on the atomic and electronic structure of host materials. Those spectra resulting from light ion and heavy ion excitations are the main topics covered in this series of papers. Highly energetic heavy ions are capable of producing multiple innershell ionization. The resulting spectrum of x-rays from a particular target atom is composed of a complex series of satellite lines. Environmental effects give rise to the redistribution of intensity from one satellite group to another. These changes can be correlated with one satellite group to another. These changes can be correlated with bulk chemical properties (valence electron densities, effective charges, covalencies, etc.). The possibility of obtaining new chemical information (for example, in implanted materials and in metal alloys) exists but requires greater experimental and theoretical understanding of both parametric variations and the fine structure of satellite lines

  12. Applying Satellite Data Sources in the Documentation and Landscape Modelling for Graeco-Roman Fortified Sites in the TŪR Abdin Area, Eastern Turkey

    Science.gov (United States)

    Silver, K.; Silver, M.; Törmä, M.; Okkonen, J.; Okkonen, T.

    2017-08-01

    In 2015-2016 the Finnish-Swedish Archaeological Project in Mesopotamia (FSAPM) initiated a pilot study of an unexplored area in the Tūr Abdin region in Northern Mesopotamia (present-day Mardin Province in southeastern Turkey). FSAPM is reliant on satellite image data sources for prospecting, identifying, recording, and mapping largely unknown archaeological sites as well as studying their landscapes in the region. The purpose is to record and document sites in this endangered area for saving its cultural heritage. The sites in question consist of fortified architectural remains in an ancient border zone between the Graeco-Roman/Byzantine world and Parthia/Persia. The location of the archaeological sites in the terrain and the visible archaeological remains, as well as their dimensions and sizes were determined from the ortorectified satellite images, which also provided coordinates. In addition, field documentation was carried out in situ with photographs and notes. The applicability of various satellite data sources for the archaeological documentation of the project was evaluated. Satellite photographs from three 1968 CORONA missions, i.e. the declassified US government satellite photograph archives were acquired. Furthermore, satellite images included a recent GeoEye-1 Satellite Sensor Image from 2010 with a resolution of 0.5 m. Its applicability for prospecting archaeological sites, studying the terrain and producing landscape models in 3D was confirmed. The GeoEye-1 revealed the ruins of a fortified town and a fortress for their documentation and study. Landscape models for the area of these sites were constructed fusing GeoEye-1 with EU-DEM (European Digital Elevation Model data using SRTM and ASTER GDEM data) in order to understand their locations in the terrain.

  13. Effect of the structure of compounds in the series (RO)3PO-R3PO-R3ASO-R3NO on the extraction of, and nature of complex formation with, HClO4, HReO4, and HTcO4

    International Nuclear Information System (INIS)

    Rozen, A.M.; Skotnikov, A.S.

    1982-01-01

    Basicity increases considerably in the series of extractants (RO) 3 PO-R 3 AsO-R 3 NO. The effect of this factor was first studied in the extractions of nitric acid and uranyl nitrate which are characterized by a solvate mechanism of complex formation (the extractant enters into the inner sphere of the complex). In this series, a very large increase in extractive ability was observed and for HNO 3 the mechanism of addition changed, going from complexation with H-bonding ((RO) 3 PO-R 3 PO) to complexation with proton transfer of the type (R 3 XOH) + NO -3 . Correspondingly, a new mechanism (ion exchange) of extraction of metals arose, for example, in the form (R 3 XOH) + UO 2 (NO 3 ) -3 . The previously incomprehensible similarity of the distribution coefficients for extractions with amines and amine oxides (the most basic organic oxides, R 3 AsO and R 3 NO being similar to amines in the mechanism of complex formation) became clear. It was of interest to study the effect of the increase in basicity in this same series of compounds on the extraction equilibria of strong acids. These are characterized by a hydrate-solvation mechanism of extraction (the organic ligand is found in the inner sphere of the complex joined to a proton of the acid or to the metal through water. The qualitative side of such processes has been, to a considerable degree, explained but a quantitative investigation presents considerable difficulty because of the multiplicity of complexes being formed. Thus, in order to solve the problem proposed, it was necessary to develop a mathematical analysis of the processes taking place in the hydratosolvate mechanism and also to obtain the experimental data needed for such as analysis

  14. Nonlinear time series analysis with R

    CERN Document Server

    Huffaker, Ray; Rosa, Rodolfo

    2017-01-01

    In the process of data analysis, the investigator is often facing highly-volatile and random-appearing observed data. A vast body of literature shows that the assumption of underlying stochastic processes was not necessarily representing the nature of the processes under investigation and, when other tools were used, deterministic features emerged. Non Linear Time Series Analysis (NLTS) allows researchers to test whether observed volatility conceals systematic non linear behavior, and to rigorously characterize governing dynamics. Behavioral patterns detected by non linear time series analysis, along with scientific principles and other expert information, guide the specification of mechanistic models that serve to explain real-world behavior rather than merely reproducing it. Often there is a misconception regarding the complexity of the level of mathematics needed to understand and utilize the tools of NLTS (for instance Chaos theory). However, mathematics used in NLTS is much simpler than many other subjec...

  15. Enhanced ionosphere-magnetosphere data from the DMSP satellites

    International Nuclear Information System (INIS)

    Rich, F.J.; Hardy, D.A.; Gussenhoven, M.S.

    1985-01-01

    The satellites of the Defense Meteorological Satellite Program (DMSP) represent a series of low-altitude (835 km) polar-orbiting satellites. Their primary objective is related to the observation of the tropospheric weather with a high-resolution white light and infrared imaging system. It is also possible to make images of auroras. On a daily basis, information about auroras is used to assist various communication systems which are affected by the ionospheric disturbances associated with auroras. In the past few years, there have been several improvements in the ionospheric monitoring instrumentation. Since the high-latitude ionosphere is connected to the magnetosphere, the DMSP data are used to monitor magnetospheric processes. The instrumentation of the DMSP satellites is discussed, taking into account the data provided by them. 7 references

  16. Influence of satellite-derived photolysis rates and NOx emissions on Texas ozone modeling

    Science.gov (United States)

    Tang, W.; Cohan, D. S.; Pour-Biazar, A.; Lamsal, L. N.; White, A. T.; Xiao, X.; Zhou, W.; Henderson, B. H.; Lash, B. F.

    2015-02-01

    Uncertain photolysis rates and emission inventory impair the accuracy of state-level ozone (O3) regulatory modeling. Past studies have separately used satellite-observed clouds to correct the model-predicted photolysis rates, or satellite-constrained top-down NOx emissions to identify and reduce uncertainties in bottom-up NOx emissions. However, the joint application of multiple satellite-derived model inputs to improve O3 state implementation plan (SIP) modeling has rarely been explored. In this study, Geostationary Operational Environmental Satellite (GOES) observations of clouds are applied to derive the photolysis rates, replacing those used in Texas SIP modeling. This changes modeled O3 concentrations by up to 80 ppb and improves O3 simulations by reducing modeled normalized mean bias (NMB) and normalized mean error (NME) by up to 0.1. A sector-based discrete Kalman filter (DKF) inversion approach is incorporated with the Comprehensive Air Quality Model with extensions (CAMx)-decoupled direct method (DDM) model to adjust Texas NOx emissions using a high-resolution Ozone Monitoring Instrument (OMI) NO2 product. The discrepancy between OMI and CAMx NO2 vertical column densities (VCDs) is further reduced by increasing modeled NOx lifetime and adding an artificial amount of NO2 in the upper troposphere. The region-based DKF inversion suggests increasing NOx emissions by 10-50% in most regions, deteriorating the model performance in predicting ground NO2 and O3, while the sector-based DKF inversion tends to scale down area and nonroad NOx emissions by 50%, leading to a 2-5 ppb decrease in ground 8 h O3 predictions. Model performance in simulating ground NO2 and O3 are improved using sector-based inversion-constrained NOx emissions, with 0.25 and 0.04 reductions in NMBs and 0.13 and 0.04 reductions in NMEs, respectively. Using both GOES-derived photolysis rates and OMI-constrained NOx emissions together reduces modeled NMB and NME by 0.05, increases the model

  17. Visualizing the Geometric Series.

    Science.gov (United States)

    Bennett, Albert B., Jr.

    1989-01-01

    Mathematical proofs often leave students unconvinced or without understanding of what has been proved, because they provide no visual-geometric representation. Presented are geometric models for the finite geometric series when r is a whole number, and the infinite geometric series when r is the reciprocal of a whole number. (MNS)

  18. Automated land cover change detection: the quest for meaningful high temporal time series extraction

    CSIR Research Space (South Africa)

    Salmon, BP

    2010-07-01

    Full Text Available and methodologies on sequential time series extracted from satellite data. 5. REFERENCES [1] R. S. DeFries, L. Bounoua, and G. J. Collatz, “Human modification of the landscape and surface climate in the next fifty years,” Global Change Biology, vol. 8, no. 5... was extracted for only the first two spectral bands from the 8-day composite MODIS MCD43A4 data set (tile H20V11) (year 2000–2008) as it was shown to have considerable class separation when the features are analyzed [6]. 2.3. Data sets: Validation...

  19. Data management by using R: big data clinical research series.

    Science.gov (United States)

    Zhang, Zhongheng

    2015-11-01

    Electronic medical record (EMR) system has been widely used in clinical practice. Instead of traditional record system by hand writing and recording, the EMR makes big data clinical research feasible. The most important feature of big data research is its real-world setting. Furthermore, big data research can provide all aspects of information related to healthcare. However, big data research requires some skills on data management, which however, is always lacking in the curriculum of medical education. This greatly hinders doctors from testing their clinical hypothesis by using EMR. To make ends meet, a series of articles introducing data management techniques are put forward to guide clinicians to big data clinical research. The present educational article firstly introduces some basic knowledge on R language, followed by some data management skills on creating new variables, recoding variables and renaming variables. These are very basic skills and may be used in every project of big data research.

  20. Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data

    Science.gov (United States)

    Yoo, Cheolhee; Im, Jungho; Park, Seonyoung; Quackenbush, Lindi J.

    2018-03-01

    Urban air temperature is considered a significant variable for a variety of urban issues, and analyzing the spatial patterns of air temperature is important for urban planning and management. However, insufficient weather stations limit accurate spatial representation of temperature within a heterogeneous city. This study used a random forest machine learning approach to estimate daily maximum and minimum air temperatures (Tmax and Tmin) for two megacities with different climate characteristics: Los Angeles, USA, and Seoul, South Korea. This study used eight time-series land surface temperature (LST) data from Moderate Resolution Imaging Spectroradiometer (MODIS), with seven auxiliary variables: elevation, solar radiation, normalized difference vegetation index, latitude, longitude, aspect, and the percentage of impervious area. We found different relationships between the eight time-series LSTs with Tmax/Tmin for the two cities, and designed eight schemes with different input LST variables. The schemes were evaluated using the coefficient of determination (R2) and Root Mean Square Error (RMSE) from 10-fold cross-validation. The best schemes produced R2 of 0.850 and 0.777 and RMSE of 1.7 °C and 1.2 °C for Tmax and Tmin in Los Angeles, and R2 of 0.728 and 0.767 and RMSE of 1.1 °C and 1.2 °C for Tmax and Tmin in Seoul, respectively. LSTs obtained the day before were crucial for estimating daily urban air temperature. Estimated air temperature patterns showed that Tmax was highly dependent on the geographic factors (e.g., sea breeze, mountains) of the two cities, while Tmin showed marginally distinct temperature differences between built-up and vegetated areas in the two cities.

  1. Oracle JDeveloper 11gR2 Cookbook

    CERN Document Server

    Haralabidis, Nick

    2012-01-01

    "Oracle JDeveloper 11gR2 Cookbook" is a practical cookbook which goes beyond the basics with immediately applicable recipes for building ADF applications at an intermediate-to-advanced level. If you are a JavaEE developer who wants to go beyond the basics of building ADF applications with Oracle JDeveloper 11gR2 and get hands on with practical recipes, this book is for you. You should be comfortable with general Java development principles, the JDeveloper IDE, and ADF basics

  2. Satellite NMR in Cu doped with transition impurities

    International Nuclear Information System (INIS)

    Slichter, C.P.

    1979-01-01

    Measurements were made of the conduction electron spin magnetization density, M/sub sigma/(R vector) near iron group atoms (Sc through Ni) in Cu. M/sub sigma/(R vector) produces an additional effective local field which shifts the NMR frequency of nearby shells of Cu nuclei relative to Cu nuclei far from all impurities. Resonances of nearby shells appear as weak satellites to the strong resonance of distant Cu nuclei (the main line). M/sub sigma/(R vector) at a given site is proportional through know constants to the splitting of the satellite from the main line. The shell was identified giving rise to the satellite in many cases by use of single crystals. A good approximation M/sub sigma/(R vector) is proportional to the spin susceptibility chi/sub s/ of the impurity. For CuCr we find a large temperature independent chi/sub s/, in contrast to CuMn and CuFe. The results lead to a picture of the electronic structure of Cr, Mn, and Fe along the lines of Schrieffer and Hirst as ions with integral numbers of d-electrons, possessing crystal field and spin-orbit couplings

  3. E-st@r-I experience: Valuable knowledge for improving the e-st@r-II design

    Science.gov (United States)

    Corpino, S.; Obiols-Rabasa, G.; Mozzillo, R.; Nichele, F.

    2016-04-01

    Many universities all over the world have now established hands-on education programs based on CubeSats. These small and cheap platforms are becoming more and more attractive also for other-than-educational missions, such as technology demonstration, science applications, and Earth observation. This new paradigm requires the development of adequate technology to increase CubeSat performance and mission reliability, because educationally-driven missions have often failed. In 2013 the ESA Education Office launched the Fly Your Satellite! Programme which aims at increasing CubeSat mission reliability through several actions: to improve design implementation, to define best practices for conducting the verification process, and to make the CubeSat community aware of the importance of verification. Within this framework, the CubeSat team at Politecnico di Torino developed the e-st@r-II CubeSat as follow-on of the e-st@r-I satellite, launched in 2012 on the VEGA Maiden Flight. E-st@r-I and e-st@r-II are both 1U satellites with educational and technology demonstration objectives: to give hands-on experience to university students and to test an active attitude determination and control system based on inertial and magnetic measurements with magnetic actuation. This paper describes the know-how gained thanks to the e-st@r-I mission, and how this heritage has been translated into the improvement of the new CubeSat in several areas and lifecycle phases. The CubeSat design has been reviewed to reduce the complexity of the assembly procedure and to deal with possible failures of the on-board computer, for example re-coding the software in the communications subsystem. New procedures have been designed and assessed for the verification campaign accordingly to ECSS rules and with the support of ESA specialists. Different operative modes have been implemented to handle some anomalies observed during the operations of the first satellite. A new version of the on-board software is

  4. Tropical Forest Monitoring in Southeast Asia Using Remotely Sensed Optical Time Series

    DEFF Research Database (Denmark)

    Grogan, Kenneth Joseph

    of forest cover using satellite remote sensing technology. Recently, there has been a shift in data protection policy where rich archives of satellite imagery are now freely available. This has spurred a new era in satellite-based forest monitoring leading to advancements in optical time series processing...... markets. At the Landsat 30-m resolution, annual time series coupled with linear segmentation using LandTrendr was found to be an effective approach for monitoring forest disturbance, with moderate to high accuracies, depending on forest type. At the MODIS 250-m resolution, intra-annual time series...... global rubber markets can be linked to forest cover change, the effects of land policy in Cambodia, and beyond, have also had a major influence. It remains to be seen if intervention initiatives such as REDD+ can materialise over the coming years to make a meaningful contribution to tropical forest...

  5. Climate Prediction Center(CPC)Daily GOES Precipitation Index (GPI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GOES Precipitation Index (GPI) is a precipitation estimation algorithm. The GPI technique estimates tropical rainfall using cloud-top temperature as the sole...

  6. Neural Network Models for Time Series Forecasts

    OpenAIRE

    Tim Hill; Marcus O'Connor; William Remus

    1996-01-01

    Neural networks have been advocated as an alternative to traditional statistical forecasting methods. In the present experiment, time series forecasts produced by neural networks are compared with forecasts from six statistical time series methods generated in a major forecasting competition (Makridakis et al. [Makridakis, S., A. Anderson, R. Carbone, R. Fildes, M. Hibon, R. Lewandowski, J. Newton, E. Parzen, R. Winkler. 1982. The accuracy of extrapolation (time series) methods: Results of a ...

  7. OW NOAA GOES Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Geostationary Orbiting Environmental Satellite. The data is...

  8. On the characterization of vegetation recovery after fire disturbance using Fisher-Shannon analysis and SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series

    Science.gov (United States)

    Lasaponara, Rosa; Lanorte, Antonio; Lovallo, Michele; Telesca, Luciano

    2015-04-01

    characterize vegetation recovery after fire disturbanceInternational Journal of Applied Earth Observation and Geoinformation 26 441-446 Lanorte A, M Danese, R Lasaponara, B Murgante 2014 Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis International Journal of Applied Earth Observation and Geoinformation 20, 42-51 Tuia D, F Ratle, R Lasaponara, L Telesca, M Kanevski 2008 Scan statistics analysis of forest fire clusters Communications in Nonlinear Science and Numerical Simulation 13 (8), 1689-1694 Telesca L, R Lasaponara 2006 Pre and post fire behavioral trends revealed in satellite NDVI time series Geophysical Research Letters 33 (14) Lasaponara R 2005 Intercomparison of AVHRR based fire susceptibility indicators for the Mediterranean ecosystems of southern Italy International Journal of Remote Sensing 26 (5), 853-870

  9. Assessing Temporal Stability for Coarse Scale Satellite Moisture Validation in the Maqu Area, Tibet

    Science.gov (United States)

    Bhatti, Haris Akram; Rientjes, Tom; Verhoef, Wouter; Yaseen, Muhammad

    2013-01-01

    This study evaluates if the temporal stability concept is applicable to a time series of satellite soil moisture images so to extend the common procedure of satellite image validation. The area of study is the Maqu area, which is located in the northeastern part of the Tibetan plateau. The network serves validation purposes of coarse scale (25–50 km) satellite soil moisture products and comprises 20 stations with probes installed at depths of 5, 10, 20, 40, 80 cm. The study period is 2009. The temporal stability concept is applied to all five depths of the soil moisture measuring network and to a time series of satellite-based moisture products from the Advance Microwave Scanning Radiometer (AMSR-E). The in-situ network is also assessed by Pearsons's correlation analysis. Assessments by the temporal stability concept proved to be useful and results suggest that probe measurements at 10 cm depth best match to the satellite observations. The Mean Relative Difference plot for satellite pixels shows that a RMSM pixel can be identified but in our case this pixel does not overlay any in-situ station. Also, the RMSM pixel does not overlay any of the Representative Mean Soil Moisture (RMSM) stations of the five probe depths. Pearson's correlation analysis on in-situ measurements suggests that moisture patterns over time are more persistent than over space. Since this study presents first results on the application of the temporal stability concept to a series of satellite images, we recommend further tests to become more conclusive on effectiveness to broaden the procedure of satellite validation. PMID:23959237

  10. GRIP GOES 11 VISIBLE AND INFRARED IMAGES V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOES imagery files were produced and archived in near real time here at the Global Hydrology and Climate Center (http://ghcc.nsstc.nasa.gov) throughout the...

  11. APPLYING SATELLITE DATA SOURCES IN THE DOCUMENTATION AND LANDSCAPE MODELLING FOR GRAECO-ROMAN/BYZANTINE FORTIFIED SITES IN THE TŪR ABDIN AREA, EASTERN TURKEY

    Directory of Open Access Journals (Sweden)

    K. Silver

    2017-08-01

    Full Text Available In 2015-2016 the Finnish-Swedish Archaeological Project in Mesopotamia (FSAPM initiated a pilot study of an unexplored area in the Tūr Abdin region in Northern Mesopotamia (present-day Mardin Province in southeastern Turkey. FSAPM is reliant on satellite image data sources for prospecting, identifying, recording, and mapping largely unknown archaeological sites as well as studying their landscapes in the region. The purpose is to record and document sites in this endangered area for saving its cultural heritage. The sites in question consist of fortified architectural remains in an ancient border zone between the Graeco-Roman/Byzantine world and Parthia/Persia. The location of the archaeological sites in the terrain and the visible archaeological remains, as well as their dimensions and sizes were determined from the ortorectified satellite images, which also provided coordinates. In addition, field documentation was carried out in situ with photographs and notes. The applicability of various satellite data sources for the archaeological documentation of the project was evaluated. Satellite photographs from three 1968 CORONA missions, i.e. the declassified US government satellite photograph archives were acquired. Furthermore, satellite images included a recent GeoEye-1 Satellite Sensor Image from 2010 with a resolution of 0.5 m. Its applicability for prospecting archaeological sites, studying the terrain and producing landscape models in 3D was confirmed. The GeoEye-1 revealed the ruins of a fortified town and a fortress for their documentation and study. Landscape models for the area of these sites were constructed fusing GeoEye-1 with EU-DEM (European Digital Elevation Model data using SRTM and ASTER GDEM data in order to understand their locations in the terrain.

  12. High accuracy satellite drag model (HASDM)

    Science.gov (United States)

    Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent

    The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.

  13. Satellite studies of the stratospheric aerosol

    International Nuclear Information System (INIS)

    McCormick, M.P.; Hamill, P.; Pepin, T.J.; Chu, W.P.; Swissler, T.J.; McMaster, L.R.

    1979-01-01

    The potential climatological and environmental importance of the stratospheric aerosol layer has prompted great interest in measuring the properties of this aerosol. In this paper we report on two recently deployed NASA satellite systems (SAM II and SAGE) that are monitoring the stratospheric aerosol. The satellite orbits are such that nearly global coverage is obtained. The instruments mounted in the spacecraft are sun photometers that measure solar intensity at specific wavelengths as it is moderated by atmospheric particulates and gases during each sunrise and sunset encountered by the satellites. The data obtained are ''inverted'' to yield vertical aerosol and gaseous (primarily ozone) extinction profiles with 1 km vertical resolution. Thus, latitudinal, longitudinal, and temporal variations in the aerosol layer can be evaluated. The satellite systems are being validated by a series of ground truth experiments using airborne and ground lidar, balloon-borne dustsondes, aircraft-mounted impactors, and other correlative sensors. We describe the SAM II and SAGE satellite systems, instrument characteristics, and mode of operation; outline the methodology of the experiments; and describe the ground truth experiments. We present preliminary results from these measurements

  14. Schedule Optimization of Imaging Missions for Multiple Satellites and Ground Stations Using Genetic Algorithm

    Science.gov (United States)

    Lee, Junghyun; Kim, Heewon; Chung, Hyun; Kim, Haedong; Choi, Sujin; Jung, Okchul; Chung, Daewon; Ko, Kwanghee

    2018-04-01

    In this paper, we propose a method that uses a genetic algorithm for the dynamic schedule optimization of imaging missions for multiple satellites and ground systems. In particular, the visibility conflicts of communication and mission operation using satellite resources (electric power and onboard memory) are integrated in sequence. Resource consumption and restoration are considered in the optimization process. Image acquisition is an essential part of satellite missions and is performed via a series of subtasks such as command uplink, image capturing, image storing, and image downlink. An objective function for optimization is designed to maximize the usability by considering the following components: user-assigned priority, resource consumption, and image-acquisition time. For the simulation, a series of hypothetical imaging missions are allocated to a multi-satellite control system comprising five satellites and three ground stations having S- and X-band antennas. To demonstrate the performance of the proposed method, simulations are performed via three operation modes: general, commercial, and tactical.

  15. Satellite outreach in Asia and the Pacific.

    Science.gov (United States)

    1977-01-01

    Communication by satellite is rapidly changing information exchange in Asia, especially for rural areas. The integrated education planned for satellite networks includes family planning as part of general development. A series of conferences has already been held successfully via satellite for family planning associations who are members of the East and Southeast Asia and Oceania Region of the International Planned Parenthood Federation. These included a conference on nursing training. In India the Satellite Instructional Television Experiment (SITE) made history during its 1-year trial. By 1981 the entire nation is to be linked by satellite. The question is whether the television education will truly change rural life or whether it will become merely a diversion. In Indonesia, satellites were chosen as the fastest way to obtain interisland communication. The Domsat system links the entire 13,000-island archipelago and is already being used for emergency communications. The system, which was developed in 1 1/2 years by the Hughes Aircraft Corporation will be used for teaching basic health, hygiene, and family planning. It will be several years before Domsat is fully operational, but it bears watching.

  16. Satellite Retrieval of Atmospheric Water Budget over Gulf of Mexico- Caribbean Basin: Seasonal Variability

    Science.gov (United States)

    Smith, Eric A.; Santos, Pablo; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5 Imager and the DMSP 7-channel passive microwave radiometer (SSM/I) have been acquired for the Gulf of Mexico-Caribbean Sea basin. Whereas the methodology is being tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the SSM/I passive microwave signals in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, we have sought to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is partly validated by first cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. More fundamental validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithm to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin. Total columnar atmospheric water budget results will be presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98, October-98, and January-1999. These results are used to emphasize

  17. Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO

    Science.gov (United States)

    Choi, Michael K.

    2014-01-01

    This paper uses phase change material (PCM) in the scan cavity of an imager or sounder on satellites in geostationary orbit (GEO) to maintain the telescope temperature stable. When sunlight enters the scan aperture, solar heating causes the PCM to melt. When sunlight stops entering the scan aperture, the PCM releases the thermal energy stored to keep the components in the telescope warm. It has no moving parts or bimetallic springs. It reduces heater power required to make up the heat lost by radiation to space through the aperture. It is an attractive thermal control option to a radiator with a louver and a sunshade.

  18. Future development of IR thermovision weather satellite equipment

    Science.gov (United States)

    Listratov, A. V.

    1974-01-01

    The self radiation of the surface being viewed is used for image synthesis in IR thermovision equipment. The installation of such equipment aboard weather satellites makes it possible to obtain cloud cover pictures of the earth's surface in a complete orbit, regardless of the illumination conditions, and also provides quantitative information on the underlying surface temperature and cloud top height. Such equipment is used successfully aboard the Soviet satellites of the Meteor system, and experimentally on the American satellites of the Nimbus series. With regard to surface resolution, the present-day IR weather satellite equipment is inferior to the television equipment. This is due primarily to the comparatively low detectivity of the IR detectors used. While IR equipment has several fundamental advantages in comparison with the conventional television equipment, the problem arises of determining the possibility for future development of weather satellite IR thermovision equipment. Criteria are examined for evaluating the quality of IR.

  19. On the Nodal Lines of Eisenstein Series on Schottky Surfaces

    Science.gov (United States)

    Jakobson, Dmitry; Naud, Frédéric

    2017-04-01

    On convex co-compact hyperbolic surfaces {X=Γ backslash H2}, we investigate the behavior of nodal curves of real valued Eisenstein series {F_λ(z,ξ)}, where {λ} is the spectral parameter, {ξ} the direction at infinity. Eisenstein series are (non-{L^2}) eigenfunctions of the Laplacian {Δ_X} satisfying {Δ_X F_λ=(1/4+λ^2)F_λ}. As {λ} goes to infinity (the high energy limit), we show that, for generic {ξ}, the number of intersections of nodal lines with any compact segment of geodesic grows like {λ}, up to multiplicative constants. Applications to the number of nodal domains inside the convex core of the surface are then derived.

  20. The next generation of Palapa satellite (Palapa-C)

    Science.gov (United States)

    Setiawan, Bambang

    The Indonesian Palapa Communication Satellite System was established in Aug. 1976 when the first satellite of Palapa A series (Palapa A1) began operation. The system is owned and operated by PT. Telekomunikasi Indonesia (Telkom), which is a state owned company. The purpose of the system was to unify the telecommunications of the nation. Many years of operation have shown that satellite technology is the best solution for improving telecommunications in Indonesia. The system was started with 2 (two) satellites, each with 12 transponders (for a total of 24), and 40 earth stations. Now the system has 3 (three) satellites, each with 24 transponders (for a total of 72 transponders), and thousands of earth stations. The services have been extended to satisfy the requirements of the region as well as the original objectives. The use of satellite transponders in the region is increasing rapidly. In the next ten years, opportunities in the satellite communications business will become even more attractive. The next generation Palapa-C will incorporate improvements in capacity, quality, and coverage. The new frequency bands (ku- and Extended-C Band) will be used to meet the new transponder capacity requirements.

  1. Formation of the satellites of the outer solar system - Sources of their atmospheres

    International Nuclear Information System (INIS)

    Coradini, A.; Cerroni, P.; Magni, G.; Federico, C.

    1989-01-01

    The present account of the current understanding of regular satellite systems' origins gives attention to the essential processes leading to current satellite configurations, proceeding on the concept that the presence of atmospheres is connected with the final phases of satellite formation. Four major formation stages are envisioned: (1) the disk phase, linking the formation of the primary body to that of the satellites; (2) the formation phase of intermediate-sized bodies; (3) the collisional evolution of planatesimals; and (4) a series of evolutionary phases linking the primordial phases to currently observed states, in which the internal composition and thermal history of the satellites are key factors in satellite atmosphere formation

  2. Title of the paper goes here second line

    Indian Academy of Sciences (India)

    %%Please download if these packages are not included %%in your local TeX distribution %%txfonts,balance,textcase,float %% \\begin{document} %%paper title %%For line breaks, \\\\ can be used within title \\title{Title of the paper goes here\\\\ second line} %%author names are separated by comma (,) %%use \\and before ...

  3. ANÁLISIS Y PREDICCIÓN DE SERIES DE TIEMPO EN MERCADOS DE ENERGÍA USANDO EL LENGUAJE R

    Directory of Open Access Journals (Sweden)

    JUAN DAVID VELÁSQUEZ HENAO

    2011-01-01

    Full Text Available El análisis de series de tiempo y la predicción de variables económicas son tópicos centrales de investigación en el campo de la energía. En este artículo, se revisan los principales aspectos del lenguaje R para el computó estadístico, y se discute su utilidad potencial para los investigadores y profesionales en mercados de energía. También, se revisan las principales funciones disponibles para el análisis de series de tiempo y se presentan algunos ejemplos de su uso.

  4. Monthly-Diurnal Water Budget Variability Over Gulf of Mexico-Caribbean Sea Basin from Satellite Observations

    Science.gov (United States)

    Smith, E. A.; Santos, P.

    2006-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system design d to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective in identifying problems in estimating vapor transports from a "leaky" operational radiosonde network than in

  5. Multivariate time series analysis with R and financial applications

    CERN Document Server

    Tsay, Ruey S

    2013-01-01

    Since the publication of his first book, Analysis of Financial Time Series, Ruey Tsay has become one of the most influential and prominent experts on the topic of time series. Different from the traditional and oftentimes complex approach to multivariate (MV) time series, this sequel book emphasizes structural specification, which results in simplified parsimonious VARMA modeling and, hence, eases comprehension. Through a fundamental balance between theory and applications, the book supplies readers with an accessible approach to financial econometric models and their applications to real-worl

  6. ALBEDO PATTERN RECOGNITION AND TIME-SERIES ANALYSES IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    S. A. Salleh

    2012-07-01

    Full Text Available Pattern recognition and time-series analyses will enable one to evaluate and generate predictions of specific phenomena. The albedo pattern and time-series analyses are very much useful especially in relation to climate condition monitoring. This study is conducted to seek for Malaysia albedo pattern changes. The pattern recognition and changes will be useful for variety of environmental and climate monitoring researches such as carbon budgeting and aerosol mapping. The 10 years (2000–2009 MODIS satellite images were used for the analyses and interpretation. These images were being processed using ERDAS Imagine remote sensing software, ArcGIS 9.3, the 6S code for atmospherical calibration and several MODIS tools (MRT, HDF2GIS, Albedo tools. There are several methods for time-series analyses were explored, this paper demonstrates trends and seasonal time-series analyses using converted HDF format MODIS MCD43A3 albedo land product. The results revealed significance changes of albedo percentages over the past 10 years and the pattern with regards to Malaysia's nebulosity index (NI and aerosol optical depth (AOD. There is noticeable trend can be identified with regards to its maximum and minimum value of the albedo. The rise and fall of the line graph show a similar trend with regards to its daily observation. The different can be identified in term of the value or percentage of rises and falls of albedo. Thus, it can be concludes that the temporal behavior of land surface albedo in Malaysia have a uniform behaviours and effects with regards to the local monsoons. However, although the average albedo shows linear trend with nebulosity index, the pattern changes of albedo with respects to the nebulosity index indicates that there are external factors that implicates the albedo values, as the sky conditions and its diffusion plotted does not have uniform trend over the years, especially when the trend of 5 years interval is examined, 2000 shows high

  7. NOAA Polar-orbiting Operational Environmental Satellites (POES) Radiometer Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Polar-orbiting Operational Environmental Satellite (POES) series offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day...

  8. Hidden Markov Models for Time Series An Introduction Using R

    CERN Document Server

    Zucchini, Walter

    2009-01-01

    Illustrates the flexibility of HMMs as general-purpose models for time series data. This work presents an overview of HMMs for analyzing time series data, from continuous-valued, circular, and multivariate series to binary data, bounded and unbounded counts and categorical observations.

  9. Molecular series-tunneling junctions.

    Science.gov (United States)

    Liao, Kung-Ching; Hsu, Liang-Yan; Bowers, Carleen M; Rabitz, Herschel; Whitesides, George M

    2015-05-13

    Charge transport through junctions consisting of insulating molecular units is a quantum phenomenon that cannot be described adequately by classical circuit laws. This paper explores tunneling current densities in self-assembled monolayer (SAM)-based junctions with the structure Ag(TS)/O2C-R1-R2-H//Ga2O3/EGaIn, where Ag(TS) is template-stripped silver and EGaIn is the eutectic alloy of gallium and indium; R1 and R2 refer to two classes of insulating molecular units-(CH2)n and (C6H4)m-that are connected in series and have different tunneling decay constants in the Simmons equation. These junctions can be analyzed as a form of series-tunneling junctions based on the observation that permuting the order of R1 and R2 in the junction does not alter the overall rate of charge transport. By using the Ag/O2C interface, this system decouples the highest occupied molecular orbital (HOMO, which is localized on the carboxylate group) from strong interactions with the R1 and R2 units. The differences in rates of tunneling are thus determined by the electronic structure of the groups R1 and R2; these differences are not influenced by the order of R1 and R2 in the SAM. In an electrical potential model that rationalizes this observation, R1 and R2 contribute independently to the height of the barrier. This model explicitly assumes that contributions to rates of tunneling from the Ag(TS)/O2C and H//Ga2O3 interfaces are constant across the series examined. The current density of these series-tunneling junctions can be described by J(V) = J0(V) exp(-β1d1 - β2d2), where J(V) is the current density (A/cm(2)) at applied voltage V and βi and di are the parameters describing the attenuation of the tunneling current through a rectangular tunneling barrier, with width d and a height related to the attenuation factor β.

  10. Statistical variability comparison in MODIS and AERONET derived aerosol optical depth over Indo-Gangetic Plains using time series modeling.

    Science.gov (United States)

    Soni, Kirti; Parmar, Kulwinder Singh; Kapoor, Sangeeta; Kumar, Nishant

    2016-05-15

    A lot of studies in the literature of Aerosol Optical Depth (AOD) done by using Moderate Resolution Imaging Spectroradiometer (MODIS) derived data, but the accuracy of satellite data in comparison to ground data derived from ARrosol Robotic NETwork (AERONET) has been always questionable. So to overcome from this situation, comparative study of a comprehensive ground based and satellite data for the period of 2001-2012 is modeled. The time series model is used for the accurate prediction of AOD and statistical variability is compared to assess the performance of the model in both cases. Root mean square error (RMSE), mean absolute percentage error (MAPE), stationary R-squared, R-squared, maximum absolute percentage error (MAPE), normalized Bayesian information criterion (NBIC) and Ljung-Box methods are used to check the applicability and validity of the developed ARIMA models revealing significant precision in the model performance. It was found that, it is possible to predict the AOD by statistical modeling using time series obtained from past data of MODIS and AERONET as input data. Moreover, the result shows that MODIS data can be formed from AERONET data by adding 0.251627 ± 0.133589 and vice-versa by subtracting. From the forecast available for AODs for the next four years (2013-2017) by using the developed ARIMA model, it is concluded that the forecasted ground AOD has increased trend. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Fodder Biomass Monitoring in Sahelian Rangelands Using Phenological Metrics from FAPAR Time Series

    DEFF Research Database (Denmark)

    Diouf, Abdoul Aziz; Brandt, Martin Stefan; Verger, Aleixandre

    2015-01-01

    Timely monitoring of plant biomass is critical for the management of forage resources in Sahelian rangelands. The estimation of annual biomass production in the Sahel is based on a simple relationship between satellite annual Normalized Difference Vegetation Index (NDVI) and in situ biomass data....... This study proposes a new methodology using multi-linear models between phenological metrics from the SPOT-VEGETATION time series of Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) and in situ biomass. A model with three variables—large seasonal integral (LINTG), length of growing season......, and end of season decreasing rate—performed best (MAE = 605 kg·DM/ha; R2 = 0.68) across Sahelian ecosystems in Senegal (data for the period 1999–2013). A model with annual maximum (PEAK) and start date of season showed similar performances (MAE = 625 kg·DM/ha; R2 = 0.64), allowing a timely estimation...

  12. Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data

    International Nuclear Information System (INIS)

    Alcantara, Camilo; Kuemmerle, Tobias; Griffiths, Patrick; Hostert, Patrick; Knorn, Jan; Müller, Daniel; Sieber, Anika; Baumann, Matthias; Bragina, Eugenia V; Radeloff, Volker C; Prishchepov, Alexander V; Schierhorn, Florian

    2013-01-01

    The demand for agricultural products continues to grow rapidly, but further agricultural expansion entails substantial environmental costs, making recultivating currently unused farmland an interesting alternative. The collapse of the Soviet Union in 1991 led to widespread abandonment of agricultural lands, but the extent and spatial patterns of abandonment are unclear. We quantified the extent of abandoned farmland, both croplands and pastures, across the region using MODIS NDVI satellite image time series from 2004 to 2006 and support vector machine classifications. Abandoned farmland was widespread, totaling 52.5 Mha, particularly in temperate European Russia (32 Mha), northern and western Ukraine, and Belarus. Differences in abandonment rates among countries were striking, suggesting that institutional and socio-economic factors were more important in determining the amount of abandonment than biophysical conditions. Indeed, much abandoned farmland occurred in areas without major constraints for agriculture. Our map provides a basis for assessing the potential of Central and Eastern Europe’s abandoned agricultural lands to contribute to food or bioenergy production, or carbon storage, as well as the environmental trade-offs and social constraints of recultivation. (letter)

  13. Estimating daily surface NO2 concentrations from satellite data - a case study over Hong Kong using land use regression models

    Science.gov (United States)

    Anand, Jasdeep S.; Monks, Paul S.

    2017-07-01

    Land use regression (LUR) models have been used in epidemiology to determine the fine-scale spatial variation in air pollutants such as nitrogen dioxide (NO2) in cities and larger regions. However, they are often limited in their temporal resolution, which may potentially be rectified by employing the synoptic coverage provided by satellite measurements. In this work a mixed-effects LUR model is developed to model daily surface NO2 concentrations over the Hong Kong SAR during the period 2005-2015. In situ measurements from the Hong Kong Air Quality Monitoring Network, along with tropospheric vertical column density (VCD) data from the OMI, GOME-2A, and SCIAMACHY satellite instruments were combined with fine-scale land use parameters to provide the spatiotemporal information necessary to predict daily surface concentrations. Cross-validation with the in situ data shows that the mixed-effects LUR model using OMI data has a high predictive power (adj. R2 = 0. 84), especially when compared with surface concentrations derived using the MACC-II reanalysis model dataset (adj. R2 = 0. 11). Time series analysis shows no statistically significant trend in NO2 concentrations during 2005-2015, despite a reported decline in NOx emissions. This study demonstrates the utility in combining satellite data with LUR models to derive daily maps of ambient surface NO2 for use in exposure studies.

  14. A new approach for agroecosystems monitoring using high-revisit multitemporal satellite data series

    Science.gov (United States)

    Diez, M.; Moclán, C.; Romo, A.; Pirondini, F.

    2014-10-01

    With increasing population pressure throughout the world and the need for increased agricultural production there is a definite need for improved management of the world's agricultural resources. Comprehensive, reliable and timely information on agricultural resources is necessary for the implementation of effective management decisions. In that sense, the demand for high-quality and high-frequency geo-information for monitoring of agriculture and its associated ecosystems has been growing in the recent decades. Satellite image data enable direct observation of large areas at frequent intervals and therefore allow unprecedented mapping and monitoring of crops evolution. Furthermore, real time analysis can assist in making timely management decisions that affect the outcome of the crops. The DEIMOS-1 satellite, owned and operated by ELECNOR DEIMOS IMAGING (Spain), provides 22m, 3-band imagery with a very wide (620-km) swath, and has been specifically designed to produce high-frequency revisit on very large areas. This capability has been proved through the contracts awarded to Airbus Defence and Space every year since 2011, where DEIMOS-1 has provided the USDA with the bulk of the imagery used to monitor the crop season in the Lower 48, in cooperation with its twin satellite DMCii's UK-DMC2. Furthermore, high density agricultural areas have been targeted with increased frequency and analyzed in near real time to monitor tightly the evolution. In this paper we present the results obtained from a campaign carried out in 2013 with DEIMOS-1 and UK-DMC2 satellites. These campaigns provided a high-frequency revisit of target areas, with one image every two days on average: almost a ten-fold frequency improvement with respect to Landsat-8. The results clearly show the effectiveness of a high-frequency monitoring approach with high resolution images with respect to classic strategies where results are more exposed to weather conditions.

  15. H31G-1596: DeepSAT's CloudCNN: A Deep Neural Network for Rapid Cloud Detection from Geostationary Satellites

    Science.gov (United States)

    Kalia, Subodh; Ganguly, Sangram; Li, Shuang; Nemani, Ramakrishna R.

    2017-01-01

    Cloud and cloud shadow detection has important applications in weather and climate studies. It is even more crucial when we introduce geostationary satellites into the field of terrestrial remote sensing. With the challenges associated with data acquired in very high frequency (10-15 mins per scan), the ability to derive an accurate cloud shadow mask from geostationary satellite data is critical. The key to the success for most of the existing algorithms depends on spatially and temporally varying thresholds,which better capture local atmospheric and surface effects.However, the selection of proper threshold is difficult and may lead to erroneous results. In this work, we propose a deep neural network based approach called CloudCNN to classify cloudshadow from Himawari-8 AHI and GOES-16 ABI multispectral data. DeepSAT's CloudCNN consists of an encoderdecoder based architecture for binary-class pixel wise segmentation. We train CloudCNN on multi-GPU Nvidia Devbox cluster, and deploy the prediction pipeline on NASA Earth Exchange (NEX) Pleiades supercomputer. We achieved an overall accuracy of 93.29% on test samples. Since, the predictions take only a few seconds to segment a full multispectral GOES-16 or Himawari-8 Full Disk image, the developed framework can be used for real-time cloud detection, cyclone detection, or extreme weather event predictions.

  16. Time series analysis of satellite multi-sensors imagery to study the recursive abnormal grow of floating macrophyte in the lake victoria (central Africa)

    Science.gov (United States)

    Fusilli, Lorenzo; Cavalli, Rosa Maria; Laneve, Giovanni; Pignatti, Stefano; Santilli, Giancarlo; Santini, Federico

    2010-05-01

    Remote sensing allows multi-temporal mapping and monitoring of large water bodies. The importance of remote sensing for wetland and inland water inventory and monitoring at all scales was emphasized several times by the Ramsar Convention on Wetlands and from EU projects like SALMON and ROSALMA, e.g. by (Finlayson et al., 1999) and (Lowry and Finlayson, 2004). This paper aims at assessing the capability of time series of satellite imagery to provide information suitable for enhancing the understanding of the temporal cycles shown by the macrophytes growing in order to support the monitor and management of the lake Victoria water resources. The lake Victoria coastal areas are facing a number of challenges related to water resource management which include growing population, water scarcity, climate variability and water resource degradation, invasive species, water pollution. The proliferation of invasive plants and aquatic weeds, is of growing concern. In particular, let us recall some of the problems caused by the aquatic weeds growing: Ø interference with human activities such as fishing, and boating; Ø inhibition or interference with a balanced fish population; Ø fish killing due to removal of too much oxygen from the water; Ø production of quiet water areas that are ideal for mosquito breeding. In this context, an integrated use of medium/high resolution images from sensors like MODIS, ASTER, LANDSAT/TM and whenever available CHRIS offers the possibility of creating a congruent time series allowing the analysis of the floating vegetation dynamic on an extended temporal basis. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution, further its spatial resolution can results not always adequate to map the extension of floating plants. Therefore, the integrated use of sensors with different spatial resolution, were used to map across seasons the evolution of the phenomena. The

  17. Construction of Multi-Year Time-Series Profiles of Suspended Particulate Inorganic Matter Concentrations Using Machine Learning Approach

    Directory of Open Access Journals (Sweden)

    Pannimpullath R. Renosh

    2017-12-01

    Full Text Available Hydro-sedimentary numerical models have been widely employed to derive suspended particulate matter (SPM concentrations in coastal and estuarine waters. These hydro-sedimentary models are computationally and technically expensive in nature. Here we have used a computationally less-expensive, well-established methodology of self-organizing maps (SOMs along with a hidden Markov model (HMM to derive profiles of suspended particulate inorganic matter (SPIM. The concept of the proposed work is to benefit from all available data sets through the use of fusion methods and machine learning approaches that are able to process a growing amount of available data. This approach is applied to two different data sets entitled “Hidden” and “Observable”. The hidden data are composed of 15 months (27 September 2007 to 30 December 2008 of hourly SPIM profiles extracted from the Regional Ocean Modeling System (ROMS. The observable data include forcing parameter variables such as significant wave heights ( H s and H s 50 (50 days from the Wavewatch 3-HOMERE database and barotropic currents ( U b a r and V b a r from the Iberian–Biscay–Irish (IBI reanalysis data. These observable data integrate hourly surface samples from 1 February 2002 to 31 December 2012. The time-series profiles of the SPIM have been derived from four different stations in the English Channel by considering 15 months of output hidden data from the ROMS as a statistical representation of the ocean for ≈11 years. The derived SPIM profiles clearly show seasonal and tidal fluctuations in accordance with the parent numerical model output. The surface SPIM concentrations of the derived model have been validated with satellite remote sensing data. The time series of the modeled SPIM and satellite-derived SPIM show similar seasonal fluctuations. The ranges of concentrations for the four stations are also in good agreement with the corresponding satellite data. The high accuracy of the

  18. ERROR-CONTROL CODING OF ADS-B MESSAGES FOR IRIDIUM SATELLITES

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2013-12-01

    Full Text Available For modelling of ADS-B messages transmitting on the base of low-orbit satellite constellation Іrіdіum the model of a communication channel “Aircraft - Satellite - Ground Station” was built using MATLAB Sіmulіnk. This model allowed to investigate dependences of the Bit Error Rate on a type of  signal coding/decoding, ratio Eb/N0 and satellite repeater gain

  19. PAU/GNSS-R: Implementation, Performance and First Results of a Real-Time Delay-Doppler Map Reflectometer Using Global Navigation Satellite System Signals

    Directory of Open Access Journals (Sweden)

    Enric Valencia

    2008-05-01

    Full Text Available Signals from Global Navigation Satellite Systems (GNSS were originally conceived for position and speed determination, but they can be used as signals of opportunity as well. The reflection process over a given surface modifies the properties of the scattered signal, and therefore, by processing the reflected signal, relevant geophysical data regarding the surface under study (land, sea, ice… can be retrieved. In essence, a GNSS-R receiver is a multi-channel GNSS receiver that computes the received power from a given satellite at a number of different delay and Doppler bins of the incoming signal. The first approaches to build such a receiver consisted of sampling and storing the scattered signal for later post-processing. However, a real-time approach to the problem is desirable to obtain immediately useful geophysical variables and reduce the amount of data. The use of FPGA technology makes this possible, while at the same time the system can be easily reconfigured. The signal tracking and processing constraints made necessary to fully design several new blocks. The uniqueness of the implemented system described in this work is the capability to compute in real-time Delay-Doppler maps (DDMs either for four simultaneous satellites or just one, but with a larger number of bins. The first tests have been conducted from a cliff over the sea and demonstrate the successful performance of the instrument to compute DDMs in real-time from the measured reflected GNSS/R signals. The processing of these measurements shall yield quantitative relationships between the sea state (mainly driven by the surface wind and the swell and the overall DDM shape. The ultimate goal is to use the DDM shape to correct the sea state influence on the L-band brightness temperature to improve the retrieval of the sea surface salinity (SSS.

  20. Technical Report Series on Global Modeling and Data Assimilation. Volume 12; Comparison of Satellite Global Rainfall Algorithms

    Science.gov (United States)

    Suarez, Max J. (Editor); Chang, Alfred T. C.; Chiu, Long S.

    1997-01-01

    Seventeen months of rainfall data (August 1987-December 1988) from nine satellite rainfall algorithms (Adler, Chang, Kummerow, Prabhakara, Huffman, Spencer, Susskind, and Wu) were analyzed to examine the uncertainty of satellite-derived rainfall estimates. The variability among algorithms, measured as the standard deviation computed from the ensemble of algorithms, shows regions of high algorithm variability tend to coincide with regions of high rain rates. Histograms of pattern correlation (PC) between algorithms suggest a bimodal distribution, with separation at a PC-value of about 0.85. Applying this threshold as a criteria for similarity, our analyses show that algorithms using the same sensor or satellite input tend to be similar, suggesting the dominance of sampling errors in these satellite estimates.

  1. The formation of Pluto's low-mass satellites

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: bromley@physics.utah.edu [Department of Physics, University of Utah, 201 JFB, Salt Lake City, UT 84112 (United States)

    2014-01-01

    Motivated by the New Horizons mission, we consider how Pluto's small satellites—currently Styx, Nix, Kerberos, and Hydra—grow in debris from the giant impact that forms the Pluto-Charon binary. After the impact, Pluto and Charon accrete some of the debris and eject the rest from the binary orbit. During the ejection, high-velocity collisions among debris particles produce a collisional cascade, leading to the ejection of some debris from the system and enabling the remaining debris particles to find stable orbits around the binary. Our numerical simulations of coagulation and migration show that collisional evolution within a ring or a disk of debris leads to a few small satellites orbiting Pluto-Charon. These simulations are the first to demonstrate migration-induced mergers within a particle disk. The final satellite masses correlate with the initial disk mass. More massive disks tend to produce fewer satellites. For the current properties of the satellites, our results strongly favor initial debris masses of 3-10 × 10{sup 19} g and current satellite albedos A ≈ 0.4-1. We also predict an ensemble of smaller satellites, R ≲ 1-3 km, and very small particles, R ≈ 1-100 cm and optical depth τ ≲ 10{sup –10}. These objects should have semimajor axes outside the current orbit of Hydra.

  2. Using Deep Learning Model for Meteorological Satellite Cloud Image Prediction

    Science.gov (United States)

    Su, X.

    2017-12-01

    A satellite cloud image contains much weather information such as precipitation information. Short-time cloud movement forecast is important for precipitation forecast and is the primary means for typhoon monitoring. The traditional methods are mostly using the cloud feature matching and linear extrapolation to predict the cloud movement, which makes that the nonstationary process such as inversion and deformation during the movement of the cloud is basically not considered. It is still a hard task to predict cloud movement timely and correctly. As deep learning model could perform well in learning spatiotemporal features, to meet this challenge, we could regard cloud image prediction as a spatiotemporal sequence forecasting problem and introduce deep learning model to solve this problem. In this research, we use a variant of Gated-Recurrent-Unit(GRU) that has convolutional structures to deal with spatiotemporal features and build an end-to-end model to solve this forecast problem. In this model, both the input and output are spatiotemporal sequences. Compared to Convolutional LSTM(ConvLSTM) model, this model has lower amount of parameters. We imply this model on GOES satellite data and the model perform well.

  3. Analysis of microstructure and microtexture in grain-oriented electrical steel (GOES during manufacturing process

    Directory of Open Access Journals (Sweden)

    A. Volodarskaja

    2015-10-01

    Full Text Available The final Goss texture in grain-oriented electrical steels (GOES is affected by microstructure evolution and inheritance during the whole production process. This paper presents the results of detailed microtexture and microstructure investigations on GOES after the basic steps of the industrial AlN + Cu manufacturing process: hot rolling, first cold rolling + decarburization annealing, second cold rolling and final high temperature annealing. Microstructure studies showed that a copper addition to GOES affected solubility of sulphides. Copper rich sulphides dissolved during hot rolling and re-precipitated during decarburization annealing. An intensive precipitation of AlN and Si3N4 took place during decarburization annealing. No ε - Cu precipitation was detected. After high temperature annealing the misorientation of individual grains reached up to 8°.

  4. Estimating daily time series of streamflow using hydrological model calibrated based on satellite observations of river water surface width: Toward real world applications.

    Science.gov (United States)

    Sun, Wenchao; Ishidaira, Hiroshi; Bastola, Satish; Yu, Jingshan

    2015-05-01

    Lacking observation data for calibration constrains applications of hydrological models to estimate daily time series of streamflow. Recent improvements in remote sensing enable detection of river water-surface width from satellite observations, making possible the tracking of streamflow from space. In this study, a method calibrating hydrological models using river width derived from remote sensing is demonstrated through application to the ungauged Irrawaddy Basin in Myanmar. Generalized likelihood uncertainty estimation (GLUE) is selected as a tool for automatic calibration and uncertainty analysis. Of 50,000 randomly generated parameter sets, 997 are identified as behavioral, based on comparing model simulation with satellite observations. The uncertainty band of streamflow simulation can span most of 10-year average monthly observed streamflow for moderate and high flow conditions. Nash-Sutcliffe efficiency is 95.7% for the simulated streamflow at the 50% quantile. These results indicate that application to the target basin is generally successful. Beyond evaluating the method in a basin lacking streamflow data, difficulties and possible solutions for applications in the real world are addressed to promote future use of the proposed method in more ungauged basins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Commercial TV distribution and broadcast by satellite in the USA

    Science.gov (United States)

    Debastos, R.

    The evolution of DBS satellite systems and their market in the U.S. is described. Anik A, launched in 1972, has been followed by 40 other launches. By 1986 there were 30 functional DBS systems in orbit operating in either C- or K- or hybrid modes of the two bands and providing over 450 channels to subscribers. The television capabilities are being augmented, with FCC approval for 31 new satellites, with Ku-band video, telephony and data transmission systems for small businesses. Features of the RCA Series 4000 and 5000 third generation satellites which will provide the services and lower operating costs passed on to the consumer are summarized, noting the use of TWTAs and high efficiency thermal dissipation systems on the new satellite designs.

  6. INVESTIGATION OF ADS-B MESSAGES TRAFFIC VIA SATELLITE COMMUNICATION CHANNEL

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2014-12-01

    Full Text Available For modelling of ADS-B messages transmition with the help of low-orbit satellite complex Іrіdіumdifferent models of communication channel "Aircraft-to-Satellites-to-Ground Stations" were built using NetCrackerProfessіonal 4.1 software. Influence of aircraft and satellites amount on average link utilization and message travellingtime was studied for telecommunication channels with intersatellite link and bent-pipe architecture. The effect ofcommunication channel "saturation" during simultaneous data transmission through a satellite communicationchannel from many planes was investigated.

  7. SAP R/3 plant maintenance making it work for your business

    CERN Document Server

    Stengl, Britta

    2001-01-01

    SAP R/3 Plant Maintenance offers a clear introduction to this small but sophisticated component and provides a highly practical guide to implementing PM. Beginning with a examination of the key business processes underlying PM functionality, the book goes on to cover all the crucial aspects of maintenance planning and execution in R/3. Particular attention is given to integrating plant maintenance with a company's natural process flow.

  8. Results from the northern New Mexico satellite-beacon radio interferometer

    International Nuclear Information System (INIS)

    Carlos, R.; Jacobson, A.; Massey, R.; Wu, G.

    1994-01-01

    An interferometer described in the Boston, 1992, meeting of the Beacon Satellite Symposium has been in full operation for over a year now. It consists of four autonomous stations; three are in a triangle 70 km on a side and one is in the center. The stations receive the VHF beacons from two geosynchronous satellites, GOES-2 and ATS-3. The phases of the beacons are tracked at each station by referring them to an extremely stable rubidium oscillator. The studies of the two satellites are virtually separate experiments. The received phase of the beacon is retarded by the increased Total-Electron-Content of the dense regions of waves in the ionosphere. By comparing the phase history at four spatially separated stations, the authors can determine the two-dimensional propagation vector of the waves. This array is optimal for wavelengths of 70--300 km (periods of 300--3,000 seconds). Since the measurement is of the phase of the signal rather than the difference between the O-mode and X-mode phases, and since the beacons are in the VHF rather than in the L-band of GPS beacons, the array is very sensitive. It has a noise level of 10 13 electrons/m 2 , or 10 -4 of the normal daytime TEC. This has been verified by operating two stations in the same location, so that they saw the same ionosphere. The first interesting results from a year's study is that the authors do not see the same TID's when looking at the two satellites. One conclusion they draw is that they do not see evidence of ionospheric winds

  9. Design of the GOES Telescope secondary mirror mounting

    Science.gov (United States)

    Hookman, Robert A.

    1989-01-01

    The GOES Telescope utilizes a flexure mounting system for the secondary mirror to minimize thermally induced distortions of the secondary mirror. The detailed design is presented along with a discussion of the microradian pointing requirements and how they were achieved. The methodology used to dynamically tune the flexure/secondary mirror assembly to minimize structural interactions will also be discussed.

  10. Prediction of GNSS satellite clocks

    International Nuclear Information System (INIS)

    Broederbauer, V.

    2010-01-01

    This thesis deals with the characterisation and prediction of GNSS-satellite-clocks. A prerequisite to develop powerful algorithms for the prediction of clock-corrections is the thorough study of the behaviour of the different clock-types of the satellites. In this context the predicted part of the IGU-clock-corrections provided by the Analysis Centers (ACs) of the IGS was compared to the IGS-Rapid-clock solutions to determine reasonable estimates of the quality of already existing well performing predictions. For the shortest investigated interval (three hours) all ACs obtain almost the same accuracy of 0,1 to 0,4 ns. For longer intervals the individual predictions results start to diverge. Thus, for a 12-hours- interval the differences range from nearly 10 ns (GFZ, CODE) until up to some 'tens of ns'. Based on the estimated clock corrections provided via the IGS Rapid products a simple quadratic polynomial turns out to be sufficient to describe the time series of Rubidium-clocks. On the other hand Cesium-clocks show a periodical behaviour (revolution period) with an amplitude of up to 6 ns. A clear correlation between these amplitudes and the Sun elevation angle above the orbital planes can be demonstrated. The variability of the amplitudes is supposed to be caused by temperature-variations affecting the oscillator. To account for this periodical behaviour a quadratic polynomial with an additional sinus-term was finally chosen as prediction model both for the Cesium as well as for the Rubidium clocks. The three polynomial-parameters as well as amplitude and phase shift of the periodic term are estimated within a least-square-adjustment by means of program GNSS-VC/static. Input-data are time series of the observed part of the IGU clock corrections. With the estimated parameters clock-corrections are predicted for various durations. The mean error of the prediction of Rubidium-clock-corrections for an interval of six hours reaches up to 1,5 ns. For the 12-hours

  11. Application of the informational reference system OZhUR to the automated processing of data from satellites of the Kosmos series

    Science.gov (United States)

    Pokras, V. M.; Yevdokimov, V. P.; Maslov, V. D.

    1978-01-01

    The structure and potential of the information reference system OZhUR designed for the automated data processing systems of scientific space vehicles (SV) is considered. The system OZhUR ensures control of the extraction phase of processing with respect to a concrete SV and the exchange of data between phases.The practical application of the system OZhUR is exemplified in the construction of a data processing system for satellites of the Cosmos series. As a result of automating the operations of exchange and control, the volume of manual preparation of data is significantly reduced, and there is no longer any need for individual logs which fix the status of data processing. The system Ozhur is included in the automated data processing system Nauka which is realized in language PL-1 in a binary one-address system one-state (BOS OS) electronic computer.

  12. Antennas for mobile satellite communications

    Science.gov (United States)

    Huang, John

    1991-12-01

    A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.

  13. Your Aging Eyes: How You See as Time Goes By

    Science.gov (United States)

    ... Subscribe Special Issue: Seniors Print this issue Your Aging Eyes How You See as Time Goes By ... Building Social Bonds Coping with Caregiving Osteoporosis in Aging Wise Choices Protect Your Vision Have a comprehensive ...

  14. INVESTIGATION OF ADS-B MESSAGES TRAFFIC VIA SATELLITE COMMUNICATION CHANNEL

    OpenAIRE

    Volodymyr Kharchenko; Wang Bo; Andrii Grekhov; Marina Kovalenko

    2014-01-01

    For modelling of ADS-B messages transmition with the help of low-orbit satellite complex Іrіdіumdifferent models of communication channel "Aircraft-to-Satellites-to-Ground Stations" were built using NetCrackerProfessіonal 4.1 software. Influence of aircraft and satellites amount on average link utilization and message travellingtime was studied for telecommunication channels with intersatellite link and bent-pipe architecture. The effect ofcommunication channel "saturation" during simultaneou...

  15. The S.M.A.R.T. Strategy to Recruiting and Retaining High School Coaches

    Science.gov (United States)

    Lubisco, Robyn; Birren, Genevieve F. E.

    2017-01-01

    This article discusses the S.M.A.R.T. strategy for recruiting and retaining quality high school coaches. S.M.A.R.T. stands for Scouting, Mentoring and Coaching, Appreciation, Rating, and Time. Scouting addresses how one goes about locating and hiring quality coaches. Mentoring and Coaching addresses how to develop the coach within the specific…

  16. Satellite Orbital Precessions Caused by the Octupolar Mass Moment ...

    Indian Academy of Sciences (India)

    Abstract. I consider a satellite moving around a non-spherical body of mass M and equatorial radius R, and calculate its orbital precessions caused by the body's octupolar mass moment J4. I consider only the effects averaged over one orbital period T of the satellite. I give exact for- mulas, not restricted to any special values ...

  17. Satellite Remote Sensing in Seismology. A Review

    Directory of Open Access Journals (Sweden)

    Andrew A. Tronin

    2009-12-01

    Full Text Available A wide range of satellite methods is applied now in seismology. The first applications of satellite data for earthquake exploration were initiated in the ‘70s, when active faults were mapped on satellite images. It was a pure and simple extrapolation of airphoto geological interpretation methods into space. The modern embodiment of this method is alignment analysis. Time series of alignments on the Earth's surface are investigated before and after the earthquake. A further application of satellite data in seismology is related with geophysical methods. Electromagnetic methods have about the same long history of application for seismology. Stable statistical estimations of ionosphere-lithosphere relation were obtained based on satellite ionozonds. The most successful current project "DEMETER" shows impressive results. Satellite thermal infra-red data were applied for earthquake research in the next step. Numerous results have confirmed previous observations of thermal anomalies on the Earth's surface prior to earthquakes. A modern trend is the application of the outgoing long-wave radiation for earthquake research. In ‘80s a new technology—satellite radar interferometry—opened a new page. Spectacular pictures of co-seismic deformations were presented. Current researches are moving in the direction of pre-earthquake deformation detection. GPS technology is also widely used in seismology both for ionosphere sounding and for ground movement detection. Satellite gravimetry has demonstrated its first very impressive results on the example of the catastrophic Indonesian earthquake in 2004. Relatively new applications of remote sensing for seismology as atmospheric sounding, gas observations, and cloud analysis are considered as possible candidates for applications.

  18. A MegaCam Survey of Outer Halo Satellites. I. Description of the Survey

    Science.gov (United States)

    Muñoz, Ricardo R.; Côté, Patrick; Santana, Felipe A.; Geha, Marla; Simon, Joshua D.; Oyarzún, Grecco A.; Stetson, Peter B.; Djorgovski, S. G.

    2018-06-01

    We describe a deep, systematic imaging study of satellites in the outer halo of the Milky Way. Our sample consists of 58 stellar overdensities—i.e., substructures classified as either globular clusters, classical dwarf galaxies, or ultra-faint dwarf galaxies—that are located at Galactocentric distances of R GC ≥ 25 kpc (outer halo) and out to ∼400 kpc. This includes 44 objects for which we have acquired deep, wide-field, g- and r-band imaging with the MegaCam mosaic cameras on the 3.6 m Canada–France–Hawaii Telescope and the 6.5 m Magellan-Clay telescope. These data are supplemented by archival imaging, or published gr photometry, for an additional 14 objects, most of which were discovered recently in the Dark Energy Survey (DES). We describe the scientific motivation for our survey, including sample selection, observing strategy, data reduction pipeline, calibration procedures, and the depth and precision of the photometry. The typical 5σ point-source limiting magnitudes for our MegaCam imaging—which collectively covers an area of ≈52 deg2—are g lim ≃ 25.6 and r lim ≃ 25.3 AB mag. These limits are comparable to those from the coadded DES images and are roughly a half-magnitude deeper than will be reached in a single visit with the Large Synoptic Survey Telescope. Our photometric catalog thus provides the deepest and most uniform photometric database of Milky Way satellites available for the foreseeable future. In other papers in this series, we have used these data to explore the blue straggler populations in these objects, their density distributions, star formation histories, scaling relations, and possible foreground structures.

  19. US development and commercialization of a North American mobile satellite service

    Science.gov (United States)

    Arnold, Ray J.; Gray, Valerie; Freibaum, Jerry

    1990-01-01

    U.S. policies promoting applications and commercialization of space technology for the 'benefit of mankind,' and emphasis on international competitiveness, formed the basis of NASA's Mobile Satellite (MSAT) R&D and user experiments program to develop a commercial U.S. Mobile Satellite Service. Exemplifying this philosophy, the MSAT program targets the reduction of technical, regulatory, market, and financial risks that inhibit commercialization. The program strategy includes industry and user involvement in developing and demonstrating advanced technologies, regulatory advocacy, and financial incentives to industry. Approximately two decades of NASA's satellite communications development and demonstrations have contributed to the emergence of a new multi-billion dollar industry for land, aeronautical, and maritime mobile communications via satellite. NASA's R&D efforts are now evolving from the development of 'enabling' ground technologies for VHF, UHF, and L-Band mobile terminals, to Ka-Band terminals offering additional mobility and user convenience.

  20. US development and commercialization of a North American mobile satellite service

    Science.gov (United States)

    Arnold, Ray J.; Gray, Valerie; Freibaum, Jerry

    U.S. policies promoting applications and commercialization of space technology for the 'benefit of mankind,' and emphasis on international competitiveness, formed the basis of NASA's Mobile Satellite (MSAT) R&D and user experiments program to develop a commercial U.S. Mobile Satellite Service. Exemplifying this philosophy, the MSAT program targets the reduction of technical, regulatory, market, and financial risks that inhibit commercialization. The program strategy includes industry and user involvement in developing and demonstrating advanced technologies, regulatory advocacy, and financial incentives to industry. Approximately two decades of NASA's satellite communications development and demonstrations have contributed to the emergence of a new multi-billion dollar industry for land, aeronautical, and maritime mobile communications via satellite. NASA's R&D efforts are now evolving from the development of 'enabling' ground technologies for VHF, UHF, and L-Band mobile terminals, to Ka-Band terminals offering additional mobility and user convenience.

  1. Joint Polar Satellite System: the United States New Generation Civilian Polar Orbiting Environmental Satellite System

    Science.gov (United States)

    Mandt, G.

    2017-12-01

    The Joint Polar Satellite System (JPSS) is the Nation's advanced series of polar-orbiting environmental satellites. JPSS represents significant technological and scientific advancements in observations used for severe weather prediction and environmental monitoring. The Suomi National Polar-orbiting Partnership (S-NPP) is providing state-of-the art atmospheric, oceanographic, and environmental data, as the first of the JPSS satellites while the second in the series, J-1, is scheduled to launch in October 2017. The JPSS baseline consists of a suite of four instruments: an advanced microwave and infrared sounders which are critical for weather forecasting; a leading-edge visible and infrared imager critical to data sparse areas such as Alaska and needed for environmental assessments such as snow/ice cover, droughts, volcanic ash, forest fires and surface temperature; and an ozone sensor primarily used for global monitoring of ozone and input to weather and climate models. The same suite of instruments that are on JPSS-1 will be on JPSS-2, 3 and 4. The JPSS-2 instruments are well into their assembly and test phases and are scheduled to be completed in 2018. The JPSS-2 spacecraft critical design review (CDR) is scheduled for 2Q 2018 with the launch in 2021. The sensors for the JPSS-3 and 4 spacecraft have been approved to enter into their acquisition phases. JPSS partnership with the US National Aeronautics and Space Agency (NASA) continues to provide a strong foundation for the program's success. JPSS also continues to maintain its important international relationships with European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and the Japan Aerospace Exploration Agency (JAXA). JPSS works closely with its user community through the Proving Ground and Risk Reduction (PGRR) Program to identify opportunities to maximize the operational application of current JPSS capabilities. The PGRR Program also helps identify and evaluate the use of JPSS

  2. Physical study of planets and satellites

    International Nuclear Information System (INIS)

    Mayer, C.H.; Young, A.T.; Belton, M.J.S.; Morrison, D.D.; Teifel, V.G.; Baum, W.A.; Dollfus, A.; Servajean, R.

    1976-01-01

    A critical review of progress made in the physical study of planets and satellites over the period 1973-1975 is presented. Summaries of recent research are followed by short notes on the IAU Planetary Data and Research Centers. (B.R.H.)

  3. Fundamental Limitations for Imaging GEO Satellites

    Science.gov (United States)

    2015-10-18

    Fundamental limitations for imaging GEO satellites D. Mozurkewich Seabrook Engineering , Seabrook, MD 20706 USA H. R. Schmitt, J. T. Armstrong Naval...higher spatial frequency. Send correspondence to David Mozurkewich, Seabrook Engineering , 9310 Dubarry Ave., Seabrook MD 20706 E-mail: dave

  4. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  5. Estimating Winter Annual Biomass in the Sonoran and Mojave Deserts with Satellite- and Ground-Based Observations

    Directory of Open Access Journals (Sweden)

    Bradley C. Reed

    2013-02-01

    Full Text Available Winter annual plants in southwestern North America influence fire regimes, provide forage, and help prevent erosion. Exotic annuals may also threaten native species. Monitoring winter annuals is difficult because of their ephemeral nature, making the development of a satellite monitoring tool valuable. We mapped winter annual aboveground biomass in the Desert Southwest from satellite observations, evaluating 18 algorithms using time-series vegetation indices (VI. Field-based biomass estimates were used to calibrate and evaluate each algorithm. Winter annual biomass was best estimated by calculating a base VI across the period of record and subtracting it from the peak VI for each winter season (R2 = 0.92. The normalized difference vegetation index (NDVI derived from 8-day reflectance data provided the best estimate of winter annual biomass. It is important to account for the timing of peak vegetation when relating field-based estimates to satellite VI data, since post-peak field estimates may indicate senescent biomass which is inaccurately represented by VI-based estimates. Images generated from the best-performing algorithm show both spatial and temporal variation in winter annual biomass. Efforts to manage this variable resource would be enhanced by a tool that allows the monitoring of changes in winter annual resources over time.

  6. Engineering a Responsive, Low Cost, Tactical Satellite, TacSat-1

    OpenAIRE

    Hurley, Michael; Duffey, Timothy; Huffine, Christopher; Weldy, Ken; Cleveland, Jeff; Hauser, Joe

    2004-01-01

    The Secretary of Defense’s Office of Force Transformation (OFT) is currently undertaking an initiative to develop a low-cost, responsive, operationally relevant space capability using small satellites. The Naval Research Laboratory (NRL) is tasked to be program manger for this initiative, which seeks to make space assets and capabilities available to operational users. TacSat-1 is the first in a series of small satellites that will result in rapid, tailored, and operationally relevant experim...

  7. Monitoring mangrove forests after aquaculture abandonment using time series of very high spatial resolution satellite images: A case study from the Perancak estuary, Bali, Indonesia.

    Science.gov (United States)

    Proisy, Christophe; Viennois, Gaëlle; Sidik, Frida; Andayani, Ariani; Enright, James Anthony; Guitet, Stéphane; Gusmawati, Niken; Lemonnier, Hugues; Muthusankar, Gowrappan; Olagoke, Adewole; Prosperi, Juliana; Rahmania, Rinny; Ricout, Anaïs; Soulard, Benoit; Suhardjono

    2018-06-01

    Revegetation of abandoned aquaculture regions should be a priority for any integrated coastal zone management (ICZM). This paper examines the potential of a matchless time series of 20 very high spatial resolution (VHSR) optical satellite images acquired for mapping trends in the evolution of mangrove forests from 2001 to 2015 in an estuary fragmented into aquaculture ponds. Evolution of mangrove extent was quantified through robust multitemporal analysis based on supervised image classification. Results indicated that mangroves are expanding inside and outside ponds and over pond dykes. However, the yearly expansion rate of vegetation cover greatly varied between replanted ponds. Ground truthing showed that only Rhizophora species had been planted, whereas natural mangroves consist of Avicennia and Sonneratia species. In addition, the dense Rhizophora plantations present very low regeneration capabilities compared with natural mangroves. Time series of VHSR images provide comprehensive and intuitive level of information for the support of ICZM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. On the use of wavelet for extracting feature patterns from Multitemporal google earth satellite data sets

    Science.gov (United States)

    Lasaponara, R.

    2012-04-01

    The great amount of multispectral VHR satellite images, even available free of charge in Google earth has opened new strategic challenges in the field of remote sensing for archaeological studies. These challenges substantially deal with: (i) the strategic exploitation of satellite data as much as possible, (ii) the setting up of effective and reliable automatic and/or semiautomatic data processing strategies and (iii) the integration with other data sources from documentary resources to the traditional ground survey, historical documentation, geophysical prospection, etc. VHR satellites provide high resolution data which can improve knowledge on past human activities providing precious qualitative and quantitative information developed to such an extent that currently they share many of the physical characteristics of aerial imagery. This makes them ideal for investigations ranging from a local to a regional scale (see. for example, Lasaponara and Masini 2006a,b, 2007a, 2011; Masini and Lasaponara 2006, 2007, Sparavigna, 2010). Moreover, satellite data are still the only data source for research performed in areas where aerial photography is restricted because of military or political reasons. Among the main advantages of using satellite remote sensing compared to traditional field archaeology herein we briefly focalize on the use of wavelet data processing for enhancing google earth satellite data with particular reference to multitemporal datasets. Study areas selected from Southern Italy, Middle East and South America are presented and discussed. Results obtained point out the use of automatic image enhancement can successfully applied as first step of supervised classification and intelligent data analysis for semiautomatic identification of features of archaeological interest. Reference Lasaponara R, Masini N (2006a) On the potential of panchromatic and multispectral Quickbird data for archaeological prospection. Int J Remote Sens 27: 3607-3614. Lasaponara R

  9. Transcom goes on the road

    International Nuclear Information System (INIS)

    Blalock, L.; Boyd, G.

    1992-01-01

    The US Department of Energy (DoE) developed the Transportation Tracking and Communications (Transcom) system to enhance oversight of shipments of potentially harmful materials and to improve plans for responding to emergency situations. Transcom tracks DoE sponsored shipments of spent fuel, high level waste, and other high visibility shipping campaigns by using land-based positioning and two-way satellite communications equipment. The Transcom system comprises satellite communications, database management, computer networks, and a commercial telecommunications service to monitor the movements of waste shipments and to communicate with the vehicle operators, shippers, receivers and government agencies. (Author)

  10. Earth Science Goes E-Commerce

    Science.gov (United States)

    2000-01-01

    Software packages commercially marketed by Agri ImaGIS allow customers to analyze farm fields. Agri ImaGIS provides satellite images of farmland and agricultural views to US clients. The company approached NASA-MSU TechLink for access to technology that would improve the company's capabilities to deliver satellite images over the Internet. TechLink found that software with the desired functions had already been developed through NASA's Remote Sensing Database Program. Agri ImaGIS formed a partnership with the University of Minnesota group that allows the company to further develop the software to meet its Internet commerce needs.

  11. A satellite constellation optimization for a regional GNSS remote sensing mission

    Science.gov (United States)

    Gavili Kilaneh, Narin; Mashhadi Hossainali, Masoud

    2017-04-01

    Due to the recent advances in the Global Navigation Satellite System Remote sensing (GNSS¬R) applications, optimization of a satellite orbit to investigate the Earth's properties seems significant. The comparison of the GNSS direct and reflected signals received by a Low Earth Orbit (LEO) satellite introduces a new technique to remotely sense the Earth. Several GNSS¬R missions including Cyclone Global Navigation Satellite System (CYGNSS) have been proposed for different applications such as the ocean wind speed and height monitoring. The geometric optimization of the satellite orbit before starting the mission is a key step for every space mission. Since satellite constellation design varies depending on the application, we have focused on the required geometric criteria for oceanography applications in a specified region. Here, the total number of specular points, their spatial distribution and the accuracy of their position are assumed to be sufficient for oceanography applications. Gleason's method is used to determine the position of specular points. We considered the 2-D lattice and 3-D lattice theory of flower constellation to survey whether a circular orbit or an elliptical one is suitable to improve the solution. Genetic algorithm is implemented to solve the problem. To check the visibility condition between the LEO and GPS satellites, the satellite initial state is propagated by a variable step size numerical integration method. Constellation orbit parameters achieved by optimization provide a better resolution and precession for the specular points in the study area of this research.

  12. Mapping air temperature using time series analysis of LST : The SINTESI approach

    NARCIS (Netherlands)

    Alfieri, S.M.; De Lorenzi, F.; Menenti, M.

    2013-01-01

    This paper presents a new procedure to map time series of air temperature (Ta) at fine spatial resolution using time series analysis of satellite-derived land surface temperature (LST) observations. The method assumes that air temperature is known at a single (reference) location such as in gridded

  13. Dynamical history of coplanar two-satellite systems

    International Nuclear Information System (INIS)

    Ruskol, E.L.; Nikolajeva, E.V.; Syzdykov, A.S.

    1975-01-01

    One of the possible early states of the Earth-Moon system was a system of several large satellites around the Earth. The dynamical evolution of coplanar three-body systems is studied; a planet (Earth) and two massive satellites (proto-moons) with geocentric orbits of slightly different radii. Such configurations may arise in multiple satellite systems receding from a planet due to tidal friction. The numerical integration of the equations of motion shows that initially circular Keplerian orbits are soon transformed into disturbed elliptic orbits which are intersecting. The life-time of such a coplanar system between two probable physical collisions of satellites is roughly from one day to one year for satellite systems with radii less than 20 R(Earth), and may reach 100 yr for three-dimensional systems. This time-scale is short in comparison with the duration of the removal of satellites due to tides raised on the planet, which is estimated as 10 6 -10 8 yr for the same orbital dimensions. Therefore, the life-time of a system of several proto-moons is mainly determined by their tidal interactions with the Earth. For conditions which we have considered, the most probable result of the evolution was coalescence of satellites as the consequence of the collisions. (Auth.)

  14. Multi-Satellite Observation Scheduling for Large Area Disaster Emergency Response

    Science.gov (United States)

    Niu, X. N.; Tang, H.; Wu, L. X.

    2018-04-01

    an optimal imaging plan, plays a key role in coordinating multiple satellites to monitor the disaster area. In the paper, to generate imaging plan dynamically according to the disaster relief, we propose a dynamic satellite task scheduling method for large area disaster response. First, an initial robust scheduling scheme is generated by a robust satellite scheduling model in which both the profit and the robustness of the schedule are simultaneously maximized. Then, we use a multi-objective optimization model to obtain a series of decomposing schemes. Based on the initial imaging plan, we propose a mixed optimizing algorithm named HA_NSGA-II to allocate the decomposing results thus to obtain an adjusted imaging schedule. A real disaster scenario, i.e., 2008 Wenchuan earthquake, is revisited in terms of rapid response using satellite resources and used to evaluate the performance of the proposed method with state-of-the-art approaches. We conclude that our satellite scheduling model can optimize the usage of satellite resources so as to obtain images in disaster response in a more timely and efficient manner.

  15. Altered Satellite Cell Responsiveness and Denervation Implicated in Progression of Rotator-Cuff Injury.

    Directory of Open Access Journals (Sweden)

    Deanna Gigliotti

    Full Text Available Rotator-cuff injury (RCI is common and painful; even after surgery, joint stability and function may not recover. Relative contributions to atrophy from disuse, fibrosis, denervation, and satellite-cell responsiveness to activating stimuli are not known.Potential contributions of denervation and disrupted satellite cell responses to growth signals were examined in supraspinatus (SS and control (ipsilateral deltoid muscles biopsied from participants with RCI (N = 27. Biopsies were prepared for explant culture (to study satellite cell activity, immunostained to localize Pax7, BrdU, and Semaphorin 3A in satellite cells, sectioning to study blood vessel density, and western blotting to measure the fetal (γ subunit of acetylcholine receptor (γ-AchR. Principal component analysis (PCA for 35 parameters extracted components identified variables that contributed most to variability in the dataset. γ-AchR was higher in SS than control, indicating denervation. Satellite cells in SS had a low baseline level of activity (Pax7+ cells labelled in S-phase versus control; only satellite cells in SS showed increased proliferative activity after nitric oxide-donor treatment. Interestingly, satellite cell localization of Semaphorin 3A, a neuro-chemorepellent, was greater in SS (consistent with fiber denervation than control muscle at baseline. PCAs extracted components including fiber atrophy, satellite cell activity, fibrosis, atrogin-1, smoking status, vascular density, γAchR, and the time between symptoms and surgery. Use of deltoid as a control for SS was supported by PCA findings since "muscle" was not extracted as a variable in the first two principal components. SS muscle in RCI is therefore atrophic, denervated, and fibrotic, and has satellite cells that respond to activating stimuli.Since SS satellite cells can be activated in culture, a NO-donor drug combined with stretching could promote muscle growth and improve functional outcome after RCI. PCAs

  16. Altered Satellite Cell Responsiveness and Denervation Implicated in Progression of Rotator-Cuff Injury.

    Science.gov (United States)

    Gigliotti, Deanna; Leiter, Jeff R S; MacDonald, Peter B; Peeler, Jason; Anderson, Judy E

    Rotator-cuff injury (RCI) is common and painful; even after surgery, joint stability and function may not recover. Relative contributions to atrophy from disuse, fibrosis, denervation, and satellite-cell responsiveness to activating stimuli are not known. Potential contributions of denervation and disrupted satellite cell responses to growth signals were examined in supraspinatus (SS) and control (ipsilateral deltoid) muscles biopsied from participants with RCI (N = 27). Biopsies were prepared for explant culture (to study satellite cell activity), immunostained to localize Pax7, BrdU, and Semaphorin 3A in satellite cells, sectioning to study blood vessel density, and western blotting to measure the fetal (γ) subunit of acetylcholine receptor (γ-AchR). Principal component analysis (PCA) for 35 parameters extracted components identified variables that contributed most to variability in the dataset. γ-AchR was higher in SS than control, indicating denervation. Satellite cells in SS had a low baseline level of activity (Pax7+ cells labelled in S-phase) versus control; only satellite cells in SS showed increased proliferative activity after nitric oxide-donor treatment. Interestingly, satellite cell localization of Semaphorin 3A, a neuro-chemorepellent, was greater in SS (consistent with fiber denervation) than control muscle at baseline. PCAs extracted components including fiber atrophy, satellite cell activity, fibrosis, atrogin-1, smoking status, vascular density, γAchR, and the time between symptoms and surgery. Use of deltoid as a control for SS was supported by PCA findings since "muscle" was not extracted as a variable in the first two principal components. SS muscle in RCI is therefore atrophic, denervated, and fibrotic, and has satellite cells that respond to activating stimuli. Since SS satellite cells can be activated in culture, a NO-donor drug combined with stretching could promote muscle growth and improve functional outcome after RCI. PCAs suggest

  17. Rapid response flood detection using the MSG geostationary satellite

    DEFF Research Database (Denmark)

    Proud, Simon Richard; Fensholt, Rasmus; Rasmussen, Laura Vang

    2011-01-01

    A novel technique for the detection of flooded land using satellite data is presented. This new method takes advantage of the high temporal resolution of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) series of satellites to derive several p...... of data gathered during the 2009 flooding events in West Africa shows that the presented method can detect floods of comparable size to the SEVIRI pixel resolution on a short timescale, making it a valuable tool for large scale flood mapping....

  18. Time series analysis and its applications with R examples

    CERN Document Server

    Shumway, Robert H

    2017-01-01

    The fourth edition of this popular graduate textbook, like its predecessors, presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonli...

  19. Minimizing Gaps of Daily Ndvi Map with Geostationary Satellite Remote Sensing Data

    Science.gov (United States)

    Lee, S.; Ryu, Y.; Jiang, C.

    2015-12-01

    Satellite based remote sensing has been used to monitor plant phenology. Numerous studies have generally utilized normalized difference vegetation index (NDVI) to quantify phenological patterns and changes in regional to the global scales. Obtaining the NDVI values during summer in East Asian Monsoon regions is important because most plants grow vigorously in this season. However, satellite derived NDVI data are error prone to clouds during most of the period. Various methods have attempted to reduce the effect of cloud in temporal and spatial NDVI monitoring; the fundamental solution is to have a large data pool that includes multiple images in short period and supplements NDVI values in same period. Multiple images of geostationary satellite in a day can be a method to expand the pool. In this study, we suggest an approach that minimizes data gaps in NDVI of the day through geostationary satellite derived NDVI composition. We acquired data from Geostationary Ocean Color Imager (GOCI) which is a satellite that was launched to monitor ocean around the Korean peninsula, China, Japan and Russia. The satellite observes eight times per day (09:00 - 16:00, every hour) at 500 x 500 m resolution from 2011 to 2015. GOCI red- and near infrared radiance was converted into surface reflectance by using 6S Radiative Transfer Model (6S). We calculated NDVI tiles for each of observed eight tiles per day and made one day NDVI through maximum-value composite method. We evaluated the composite GOCI derived NDVI by comparing with daily MODIS-derived NDVI (composited from MOD09GA and MYD09GA), 16-day Landsat 8-derived NDVI, and in-situ light emitting diode (LED) NDVI measurements at a homogeneous deciduous forest and rice paddy sites. We found that GOCI-derived NDVI maps revealed little data gaps compared to MODIS and Landsat, and GOCI derived NDVI time series were smoother than MODIS derived NDVI time series in summer. GOCI-derived NDVI agreed well with in-situ observations of NDVI

  20. SUVI Thematic Maps: A new tool for space weather forecasting

    Science.gov (United States)

    Hughes, J. M.; Seaton, D. B.; Darnel, J.

    2017-12-01

    The new Solar Ultraviolet Imager (SUVI) instruments aboard NOAA's GOES-R series satellites collect continuous, high-quality imagery of the Sun in six wavelengths. SUVI imagers produce at least one image every 10 seconds, or 8,640 images per day, considerably more data than observers can digest in real time. Over the projected 20-year lifetime of the four GOES-R series spacecraft, SUVI will provide critical imagery for space weather forecasters and produce an extensive but unwieldy archive. In order to condense the database into a dynamic and searchable form we have developed solar thematic maps, maps of the Sun with key features, such as coronal holes, flares, bright regions, quiet corona, and filaments, identified. Thematic maps will be used in NOAA's Space Weather Prediction Center to improve forecaster response time to solar events and generate several derivative products. Likewise, scientists use thematic maps to find observations of interest more easily. Using an expert-trained, naive Bayesian classifier to label each pixel, we create thematic maps in real-time. We created software to collect expert classifications of solar features based on SUVI images. Using this software, we compiled a database of expert classifications, from which we could characterize the distribution of pixels associated with each theme. Given new images, the classifier assigns each pixel the most appropriate label according to the trained distribution. Here we describe the software to collect expert training and the successes and limitations of the classifier. The algorithm excellently identifies coronal holes but fails to consistently detect filaments and prominences. We compare the Bayesian classifier to an artificial neural network, one of our attempts to overcome the aforementioned limitations. These results are very promising and encourage future research into an ensemble classification approach.

  1. FALSE DETERMINATIONS OF CHAOS IN SHORT NOISY TIME SERIES. (R828745)

    Science.gov (United States)

    A method (NEMG) proposed in 1992 for diagnosing chaos in noisy time series with 50 or fewer observations entails fitting the time series with an empirical function which predicts an observation in the series from previous observations, and then estimating the rate of divergenc...

  2. ARM Radiosondes for National Polar-Orbiting Operational Environmental Satellite System Preparatory Project Validation Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Borg, Lori [Univ. of Wisconsin, Madison, WI (United States); Tobin, David [Univ. of Wisconsin, Madison, WI (United States); Reale, Anthony [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Knuteson, Robert [Univ. of Wisconsin, Madison, WI (United States); Feltz, Michelle [Univ. of Wisconsin, Madison, WI (United States); Liu, Mark [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Holdridge, Donna J [Argonne National Lab. (ANL), Argonne, IL (United States); Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-01

    This IOP has been a coordinated effort involving the U.S. Department of Energy (DOE) Atmospheric Radiation (ARM) Climate Research Facility, the University of Wisconsin (UW)-Madison, and the JPSS project to validate SNPP NOAA Unique Combined Atmospheric Processing System (NUCAPS) temperature and moisture sounding products from the Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). In this arrangement, funding for radiosondes was provided by the JPSS project to ARM. These radiosondes were launched coincident with the SNPP satellite overpasses (OP) at four of the ARM field sites beginning in July 2012 and running through September 2017. Combined with other ARM data, an assessment of the radiosonde data quality was performed and post-processing corrections applied producing an ARM site Best Estimate (BE) product. The SNPP targeted radiosondes were integrated into the NOAA Products Validation System (NPROVS+) system, which collocated the radiosondes with satellite products (NOAA, National Aeronautics and Space Administration [NASA], European Organisation for the Exploitation of Meteorological Satellites [EUMETSAT], Geostationary Operational Environmental Satellite [GOES], Constellation Observing System for Meteorology, Ionosphere, and Climate [COSMIC]) and Numerical Weather Prediction (NWP forecasts for use in product assessment and algorithm development. This work was a fundamental, integral, and cost-effective part of the SNPP validation effort and provided critical accuracy assessments of the SNPP temperature and water vapor soundings.

  3. Improved Solar-Radiation-Pressure Models for GPS Satellites

    Science.gov (United States)

    Bar-Sever, Yoaz; Kuang, Da

    2006-01-01

    A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.

  4. Experimental study of the helicopter-mobile radioelectrical channel and possible extension to the satellite-mobile channel

    Science.gov (United States)

    Blanchetiere-Ciarletti, V.; Sylvain, M.; Lemenn, P.

    1994-07-01

    The use of satellite seems to be an answer to the radioelectrical covering problem for the mobile communications, particularly in the low populated areas. Frequency bands at 1.5 and 2.5 GHz have been dedicated to these future services. Satellite-mobile links will be much more affected by propagation phenomena than the existing links between satellites and fixed stations. The reasons for that are twofold: The probable use of LEO (Low-Earth-Orbit) satellites instead of GEO; such satellites will have to be received at relatively low elevation to limit their number; the use of mobile communication terminals with small and non directive antennas that must work in various environments instead of terrestrian stations located at carefully chosen places and equipped with large diameter paraboloids. These propagation phenomena mainly consist in the fading of the signal level (shadowing of the link), and a frequency selective fading due to multipath propagation. The experience run by C.R.P.E. is aimed at a better understanding of the satellite-mobile propagation channel at fixed frequency as well as on a large band. In this paper, we discuss preliminary results from a series of propagation measurements performed (by lack of any experimental satellite) on an experimental radio link at 1.45 GHz on a of 20 MHz bandwidth between a helicopter flying at a height of 2 km and a mobile receiver. The whole experiment has been run in a rural environment in Brittany (France). In a first part, we illustrate the quality of the data collected during the experiment on a typical case study and give a possible physical interpretation of the observed phenomena. Then we present statistical results concerning the various characteristics (attenuation and delay spreads) of the propagation channel. Finally, we discuss the problem of using a helicopter (flying at a height of 2 km) as a substitute for a satellite at about 1000 km and try to estimate to what extent it is possible to use the data

  5. GEONEX: Land Monitoring From a New Generation of Geostationary Satellite Sensors

    Science.gov (United States)

    Nemani, Ramakrishna; Lyapustin, Alexei; Wang, Weile; Wang, Yujie; Hashimoto, Hirofumi; Li, Shuang; Ganguly, Sangram; Michaelis, Andrew; Higuchi, Atsushi; Takaneka, Hideaki; hide

    2017-01-01

    The latest generation of geostationary satellites carry sensors such as ABI (Advanced Baseline Imager on GOES-16) and the AHI (Advanced Himawari Imager on Himawari) that closely mimic the spatial and spectral characteristics of Earth Observing System flagship MODIS for monitoring land surface conditions. More importantly they provide observations at 5-15 minute intervals. Such high frequency data offer exciting possibilities for producing robust estimates of land surface conditions by overcoming cloud cover, enabling studies of diurnally varying local-to-regional biosphere-atmosphere interactions, and operational decision-making in agriculture, forestry and disaster management. But the data come with challenges that need special attention. For instance, geostationary data feature changing sun angle at constant view for each pixel, which is reciprocal to sun-synchronous observations, and thus require careful adaptation of EOS algorithms. Our goal is to produce a set of land surface products from geostationary sensors by leveraging NASA's investments in EOS algorithms and in the data/compute facility NEX. The land surface variables of interest include atmospherically corrected surface reflectances, snow cover, vegetation indices and leaf area index (LAI)/fraction of photosynthetically absorbed radiation (FPAR), as well as land surface temperature and fires. In order to get ready to produce operational products over the US from GOES-16 starting 2018, we have utilized 18 months of data from Himawari AHI over Australia to test the production pipeline and the performance of various algorithms for our initial tests. The end-to-end processing pipeline consists of a suite of modules to (a) perform calibration and automatic georeference correction of the AHI L1b data, (b) adopt the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm to produce surface spectral reflectances along with compositing schemes and QA, and (c) modify relevant EOS retrieval

  6. GEONEX: Land monitoring from a new generation of geostationary satellite sensors

    Science.gov (United States)

    Nemani, R. R.; Lyapustin, A.; Wang, W.; Ganguly, S.; Wang, Y.; Michaelis, A.; Hashimoto, H.; Li, S.; Higuchi, A.; Huete, A. R.; Yeom, J. M.; camacho De Coca, F.; Lee, T. J.; Takenaka, H.

    2017-12-01

    The latest generation of geostationary satellites carry sensors such as ABI (Advanced Baseline Imager on GOES-16) and the AHI (Advanced Himawari Imager on Himawari) that closely mimic the spatial and spectral characteristics of Earth Observing System flagship MODIS for monitoring land surface conditions. More importantly they provide observations at 5-15 minute intervals. Such high frequency data offer exciting possibilities for producing robust estimates of land surface conditions by overcoming cloud cover, enabling studies of diurnally varying local-to-regional biosphere-atmosphere interactions, and operational decision-making in agriculture, forestry and disaster management. But the data come with challenges that need special attention. For instance, geostationary data feature changing sun angle at constant view for each pixel, which is reciprocal to sun-synchronous observations, and thus require careful adaptation of EOS algorithms. Our goal is to produce a set of land surface products from geostationary sensors by leveraging NASA's investments in EOS algorithms and in the data/compute facility NEX. The land surface variables of interest include atmospherically corrected surface reflectances, snow cover, vegetation indices and leaf area index (LAI)/fraction of photosynthetically absorbed radiation (FPAR), as well as land surface temperature and fires. In order to get ready to produce operational products over the US from GOES-16 starting 2018, we have utilized 18 months of data from Himawari AHI over Australia to test the production pipeline and the performance of various algorithms for our initial tests. The end-to-end processing pipeline consists of a suite of modules to (a) perform calibration and automatic georeference correction of the AHI L1b data, (b) adopt the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm to produce surface spectral reflectances along with compositing schemes and QA, and (c) modify relevant EOS retrieval

  7. Biomass goes to waste

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J. (CPL Scientific Ltd., Newbury (United Kingdom))

    1994-08-01

    Currently the two most suitable words to describe the biomass energy industry are waste and recycling. However, there are several ways of looking at this. The first is a literal one. This reflects the current changes which are taking place in waste treatment as a consequence of new environmental initiatives. These are predicted to intensify as and when new Community Directives come into force through national legislation within the European Union (EU). At the same time biomass, in the true sense, both goes to waste as crops are not used and generates waste in terms of resources as uneconomic ventures are funded for political reasons. The net result is a depleted industry, in some sectors, and one based on false hopes in others. At the same time there is also some clarity emerging in respect of end use, with most activities focussing on decentralised electricity generation and the formation of liquid transport fuels. (Author)

  8. An Integrated 0-1 Hour First-Flash Lightning Nowcasting, Lightning Amount and Lightning Jump Warning Capability

    Science.gov (United States)

    Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey; Chronis, Themis

    2015-01-01

    Using satellite-based methods that provide accurate 0-1 hour convective initiation (CI) nowcasts, and rely on proven success coupling satellite and radar fields in the Corridor Integrated Weather System (CIWS; operated and developed at MIT-Lincoln Laboratory), to subsequently monitor for first-flash lightning initiation (LI) and later period lightning trends as storms evolve. Enhance IR-based methods within the GOES-R CI Algorithm (that must meet specific thresholds for a given cumulus cloud before the cloud is considered to have an increased likelihood of producing lightning next 90 min) that forecast LI. Integrate GOES-R CI and LI fields with radar thresholds (e.g., first greater than or equal to 40 dBZ echo at the -10 C altitude) and NWP model data within the WDSS-II system for LI-events from new convective storms. Track ongoing lightning using Lightning Mapping Array (LMA) and pseudo-Geostationary Lightning Mapper (GLM) data to assess per-storm lightning trends (e.g., as tied to lightning jumps) and outline threat regions. Evaluate the ability to produce LI nowcasts through a "lightning threat" product, and obtain feedback from National Weather Service forecasters on its value as a decision support tool.

  9. Satellite altimetry over large hydrological basins

    Science.gov (United States)

    Calmant, Stephane

    2015-04-01

    The use of satellite altimetry for hydrological applications, either it is basin management or hydrological modeling really started with the 21st century. Before, during two decades, the efforts were concentrated on the data processing until a precision of a few decimeters could be achieved. Today, several web sites distribute hundreds of series spread over hundeds of rivers runing in the major basins of the world. Among these, the Amazon basin has been the most widely studied. Satellite altimetry is now routinely used in this transboundary basin to predict discharges ranging over 4 orders of magnitude. In a few years, satellite altimetry should evolve dramatically. This year, we should see the launchs of Jason-3 and that of Sentinel-3A operating in SAR mode. With SAR, the accuracy and resolution of a growing number of measurements should be improved. In 2020, SWOT will provide a full coverage that will join in a unique framework all the previous and forthcoming missions. These technical and thematical evolutions will be illustrated by examples taken in the Amazon and Congo basin.

  10. "Toore puuga kütmine on raiskamine ..." = "Att elda med sur ved är slöseri ..." : [luuletused] / Gunnar D. Hansson ; tlk. Mati Sirkel

    Index Scriptorium Estoniae

    Hansson, Gunnar D.

    2004-01-01

    Sisu: "Toore puuga kütmine on raiskamine ..." = "Att elda med sur ved är slöseri ..."; "Esimest päeva rändab tuul ..." = "Första dagen vandrar vinden ..."; "Päike tuli lähemale ..." = "Solen kom närmare ..."; "Nagu oleks kõik möödas ..." = "Som om allt vore över ..."

  11. Variation Trend Analysis of Runoff and Sediment Time Series Based on the R/S Analysis of Simulated Loess Tilled Slopes in the Loess Plateau, China

    Directory of Open Access Journals (Sweden)

    Ju Zhang

    2017-12-01

    Full Text Available The objective of this study was to illustrate the temporal variation of runoff and sediment of loess tilled slopes under successive rainfall conditions. Loess tilled slopes with four microtopography types (straight cultivated slope, artificial backhoe, artificial digging, and contour tillage under five slope gradients (5°, 10°, 15°, 20°, 25° were simulated and a rainfall intensity of 60 mm/h was adopted. The temporal trends of runoff and sediment yield were predicted based on the Rescaled Range (R/S analysis method. The results indicate that the Hurst indices of runoff time series and sediment time series are higher than 0.5, and a long-term positive correlation exists between the future and the past. This means that runoff and sediment of loess tilled slopes in the future will have the same trends as in the past. The results obtained by the classical R/S analysis method were the same as those of the modified R/S analysis method. The rationality and reliability of the R/S analysis method were further identified and the method can be used for predicting the trend of runoff and sediment yield. The correlation between the microtopography and the Hurst indices of the runoff and sediment yield time series, as well as between the slopes and the Hurst indices, were tested, and the result was that there was no significant correlation between them. The microtopography and slopes cannot affect the correlation and continuity of runoff and sediment yield time series. This study provides an effective method for predicting variations in the trends of runoff and sediment yield on loess tilled slopes.

  12. Correcting orbital drift signal in the time series of AVHRR derived convective cloud fraction using rotated empirical orthogonal function

    Directory of Open Access Journals (Sweden)

    A. Devasthale

    2012-02-01

    Full Text Available The Advanced Very High Resolution Radiometer (AVHRR instruments onboard the series of National Oceanic and Atmospheric Administration (NOAA satellites offer the longest available meteorological data records from space. These satellites have drifted in orbit resulting in shifts in the local time sampling during the life span of the sensors onboard. Depending upon the amplitude of the diurnal cycle of the geophysical parameters derived, orbital drift may cause spurious trends in their time series. We investigate tropical deep convective clouds, which show pronounced diurnal cycle amplitude, to estimate an upper bound of the impact of orbital drift on their time series. We carry out a rotated empirical orthogonal function analysis (REOF and show that the REOFs are useful in delineating orbital drift signal and, more importantly, in subtracting this signal in the time series of convective cloud amount. These results will help facilitate the derivation of homogenized data series of cloud amount from NOAA satellite sensors and ultimately analyzing trends from them. However, we suggest detailed comparison of various methods and rigorous testing thereof applying final orbital drift corrections.

  13. Fire Monitoring - The use of medium resolution satellites (AVHRR, MODIS, TET) for long time series processing and the implementation in User Driven Applications and Services

    Science.gov (United States)

    Fuchs, E.-M.; Stein, E.; Strunz, G.; Strobl, C.; Frey, C.

    2015-04-01

    This paper introduces fire monitoring works of two different projects, namely TIMELINE (TIMe Series Processing of Medium Resolution Earth Observation Data assessing Long -Term Dynamics In our Natural Environment) and PHAROS (Project on a Multi-Hazard Open Platform for Satellite Based Downstream Services). It describes the evolution from algorithm development from in applied research to the implementation in user driven applications and systems. Concerning TIMELINE, the focus of the work lies on hot spot detection. A detailed description of the choice of a suitable algorithm (round robin approach) will be given. Moreover, strengths and weaknesses of the AVHRR sensor for hot spot detection, a literature review, the study areas and the selected approach will be highlighted. The evaluation showed that the contextual algorithm performed best, and will therefore be used for final implementation. Concerning the PHAROS project, the key aspect is on the use of satellite-based information to provide valuable support to all phases of disaster management. The project focuses on developing a pre-operational sustainable service platform that integrates space-based EO (Earth Observation), terrestrial sensors and communication and navigation assets to enhance the availability of services and products following a multi-hazard approach.

  14. Comparisons of Satellite-Deduced Overlapping Cloud Properties and CALIPSO CloudSat Data

    Science.gov (United States)

    Chang, Fu-Lung; Minnis, Patrick; Lin, Bing; Sun-Mack, Sunny

    2010-01-01

    Introduction to the overlapped cloud properties derived from polar-orbiting (MODIS) and geostationary (GOES-12, -13, Meteosat-8, -9, etc.) meteorological satellites, which are produced at the NASA Langley Research Center (LaRC) cloud research & development team (NASA lead scientist: Dr. Patrick Minnis). Comparison of the LaRC CERES MODIS Edition-3 overlapped cloud properties to the CALIPSO and the CloudSat active sensing data. High clouds and overlapped clouds occur frequently as deduced by CALIPSO (44 & 25%), CloudSat (25 & 4%), and MODIS (37 & 6%). Large fractions of optically-thin cirrus and overlapped clouds are deduced from CALIPSO, but much smaller fractions are from CloudSat and MODIS. For overlapped clouds, the averaged upper-layer CTHs are about 12.8 (CALIPSO), 10.9 (CloudSat) and 10 km (MODIS), and the averaged lower-layer CTHs are about 3.6 (CALIPSO), 3.2 (CloudSat) and 3.9 km (MODIS). Based on comparisons of upper and lower-layer cloud properties as deduced from the MODIS, CALIPSO and CloudSat data, more enhanced passive satellite methods for retrieving thin cirrus and overlapped cloud properties are needed and are under development.

  15. Augmenting Satellite Precipitation Estimation with Lightning Information

    Energy Technology Data Exchange (ETDEWEB)

    Mahrooghy, Majid [Mississippi State University (MSU); Anantharaj, Valentine G [ORNL; Younan, Nicolas H. [Mississippi State University (MSU); Petersen, Walter A. [NASA Marshall Space Flight Center, Huntsville, AL; Hsu, Kuo-Lin [University of California, Irvine; Behrangi, Ali [Jet Propulsion Laboratory, Pasadena, CA; Aanstoos, James [Mississippi State University (MSU)

    2013-01-01

    We have used lightning information to augment the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Network - Cloud Classification System (PERSIANN-CCS). Co-located lightning data are used to segregate cloud patches, segmented from GOES-12 infrared data, into either electrified (EL) or non-electrified (NEL) patches. A set of features is extracted separately for the EL and NEL cloud patches. The features for the EL cloud patches include new features based on the lightning information. The cloud patches are classified and clustered using self-organizing maps (SOM). Then brightness temperature and rain rate (T-R) relationships are derived for the different clusters. Rain rates are estimated for the cloud patches based on their representative T-R relationship. The Equitable Threat Score (ETS) for daily precipitation estimates is improved by almost 12% for the winter season. In the summer, no significant improvements in ETS are noted.

  16. Effect of incubation temperature on neuropeptide Y and neuropeptide Y receptors in turkey and chicken satellite cells.

    Science.gov (United States)

    Clark, Daniel L; McCormick, Janet L; Velleman, Sandra G

    2018-05-01

    Neuropeptide Y (NPY) is an appetite stimulating peptide released from the central nervous system and impacts the function of many different cell types. A recent transcriptome study showed that NPY expression was altered when turkey breast muscle satellite cells were incubated at low or high temperatures, suggesting NPY may mediate temperature effects on satellite cells. However, to date minimal information exists describing the expression and function of NPY in satellite cells. The objective of this study was to determine how temperature impacts NPY and NPY receptor gene expression in satellite cells isolated from turkeys and chickens with differing genetic lineages. Two broiler and two turkey breast muscle satellite cell lines were incubated at 35, 38 or 41 °C during proliferation and differentiation. In both turkey lines, NPY, and receptors NPY2R and NPY5R expression increased at elevated temperatures after 72 h of proliferation. During differentiation NPY and NPY5R expression increased in both turkey lines with higher temperatures, whereas NPY2R was minimally affected by temperature. In contrast, in both chicken cell lines there were few significant differences for NPY and NPY receptor expression across temperature during proliferation. During differentiation, the temperature effect was different in the two chicken cell lines. In the BPM8 chicken line, there were few differences in NPY and NPY receptors across temperature; whereas elevated temperatures increased NPY, NPY2R, and NPY5R expression in the 708 line. The differences between turkey and chicken lines suggest NPY has species specific satellite cell functions in response to heat stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Was Feyerabend an anarchist? The structure(s) of 'anything goes'.

    Science.gov (United States)

    Shaw, Jamie

    2017-08-01

    The near consensus in the secondary literature on Feyerabend is that his epistemological anarchism, characterized by the slogan 'anything goes', was not a positive proposal but the conclusion of a reductio argument against his opponents (Lloyd 1997; Staley 1999; Munévar 2000; Farrell 2003; Tsou 2003; Oberheim 2006; Roe 2009). This makes anarchism a mere criticism rather than a substantive position in its own right. In this paper, I argue that Feyerabend held anarchism as a positive thesis. Specifically, I present two possible interpretations of anarchism: one where anarchism is entailed by Feyerabend's radical view of pluralism and another where scientists must be 'methodological opportunists', which Feyerabend held simultaneously from at least 1970. I then consider how these positions fare against the more influential criticisms of anarchism (Nagel 1977; Worrall 1978; Godfrey-Smith 2003). I conclude by suggesting two avenues to constraining a literal interpretation of 'anything goes' on Feyerabendian grounds. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. Estimation of evaporation rates over the Arabian Sea from Satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, M.V.; RameshBabu, V.; Rao, L.V.G.; Sastry, J.S.

    Utilizing both the SAMIR brightness temperatures of Bhaskara 2 and GOSSTCOMP charts of NOAA satellite series, the evaporation rates over the Arabian Sea for June 1982 are estimated through the bulk aerodynamic method. The spatial distribution...

  19. NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 2+ Cloud and Moisture Imagery Products (CMIP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cloud and Moisture Imagery product contains one or more Earth-view images with pixel values identifying brightness values that are scaled to support visual...

  20. Coral Bleaching Products - Office of Satellite and Product Operations

    Science.gov (United States)

    satellite remotely sensed global sea surface temperature (SST) measurements and derived indices of coral HotSpots, Degree Heating Weeks, Time Series, SST Contour Charts, Ocean Surface Winds, and On-site Buoys as the product, are derived from Coral Bleaching HotSpots and Degree Heating Weeks (DHW) values measured

  1. Do satellite galaxies trace matter in galaxy clusters?

    Science.gov (United States)

    Wang, Chunxiang; Li, Ran; Gao, Liang; Shan, Huanyuan; Kneib, Jean-Paul; Wang, Wenting; Chen, Gang; Makler, Martin; Pereira, Maria E. S.; Wang, Lin; Maia, Marcio A. G.; Erben, Thomas

    2018-04-01

    The spatial distribution of satellite galaxies encodes rich information of the structure and assembly history of galaxy clusters. In this paper, we select a red-sequence Matched-filter Probabilistic Percolation cluster sample in SDSS Stripe 82 region with 0.1 ≤ z ≤ 0.33, 20 0.7. Using the high-quality weak lensing data from CS82 Survey, we constrain the mass profile of this sample. Then we compare directly the mass density profile with the satellite number density profile. We find that the total mass and number density profiles have the same shape, both well fitted by an NFW profile. The scale radii agree with each other within a 1σ error (r_s,gal=0.34_{-0.03}^{+0.04} Mpc versus r_s=0.37_{-0.10}^{+0.15} Mpc).

  2. A method of inversion of satellite magnetic anomaly data

    Science.gov (United States)

    Mayhew, M. A.

    1977-01-01

    A method of finding a first approximation to a crustal magnetization distribution from inversion of satellite magnetic anomaly data is described. Magnetization is expressed as a Fourier Series in a segment of spherical shell. Input to this procedure is an equivalent source representation of the observed anomaly field. Instability of the inversion occurs when high frequency noise is present in the input data, or when the series is carried to an excessively high wave number. Preliminary results are given for the United States and adjacent areas.

  3. Air sea exchange of fluxes and Indian monsoon from satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Sundaram, S.

    Temperature (Reynolds), Sea Surface Wind Speed and Integrated water vapor (from SSMI sensor onboard DMSP satellite series), mean sea level pressure (from NCEP/NCAR reanalysis data). Evaporation zones are identified over the western tropical Indian Ocean where...

  4. Tidal inundation (“Rob”) investigation using time series of high resolution satellite image data and from institu measurements along northern coast of Java (Pantura)

    Science.gov (United States)

    Andreas, Heri; Usriyah; Zainal Abidin, Hasanuddin; Anggreni Sarsito, Dina

    2017-06-01

    Tidal inundation (in Javanese they call it “Rob”) is now becoming a well known phenomenon along northern coast of Java Indonesia (Pantura). The occurrence of tidal inundation was recognized at least in the early 2000 and even earlier. In the recent years the tidal inundation comes not only at a high tide but even at the regular tide in some area across Pantura. In fact in location such as Pondok Bali, north of Blanakan, north of Pekalongan, north of Semarang and north west of Demak, seems those areas are sinking to the sea through times. Sea level rise and land subsidence are considered as main factors deriving the occurrence of this tidal inundation. We were using time series of high resolution satellite image data and insitu data measurements to mapping the tidal inundation along northern coast of Java. All available data from google data satellite archives (year 2000- recent years) and any available sources being analyze together with field surveys tagging and also from media information. As a result we can see the tidal inundation are taking place in Tanggerang, Jakarta, Bekasi, Cilamaya, Pondok Bali, Blanakan, Indramayu, Cirebon, Brebes, Tegal, Pemalang, Pekalongan, Kendal, Semarang, Demak, Gresik, Surabaya, Sidoarjo and Pasuruan.

  5. Exploration of satellite-derived data products for atmospheric turbulence studies

    CSIR Research Space (South Africa)

    Griffith, DJ

    2014-09-01

    Full Text Available reasonable proxy in the absence of in-situ measurements. 3.2 ORNL DAAC The Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) provides a global subsetting and time-series derivation for Moderate Resolution Imaging Spectrometer... (MODIS) data from the NASA Terra and Aqua satellite platforms. The products available for subsetting and time-series generation from the ORNL DAAC are given in Table 2. Moreover, this MODIS facility is available programmatically using the Simple Object...

  6. TV Dizileri Yoluyla Yeniden Üretilen Tüketim Kültürü / The Re-produced Consumption Culture by TV Series

    Directory of Open Access Journals (Sweden)

    Nesrin Kula

    2012-12-01

    Full Text Available “Tüketme” terimi “tahrip etmek, harcamak, israf etmek, bitirmek” anlamlarını taşımaktadır. Jean Baudrillard ise, tüketimi kodlar ve kurallarla düzenlenmiş bir göstergeler sistemi olarak tanımlamaktadır. Tüketim tarzları kişilerin kimliklerinin birer unsuru haline gelmektedir. Özneler kimliklerini ifade etmek amacıyla metaları kullanmakta ve kişilerin toplum içindeki statüsü tükettikleri ile ölçülür hale gelmektedir. TV dizileri de, bireylere tüketilecek sonsuz nesneler yoluyla oluşturulacak yaşam tarzları ile ilgili bilgiler vermektedir. Çalışmada, seçilen on dizide üretilen anlam dünyası, yeniden üretilen tüketim ideolojisi ve oluşturulan kadın ve erkek rol modelleri çözümlenmektir. The Re-produced Consumption Culture by TV Series The concept of consumption means ‘to destroy, spend, waste or finish something’. Jean Baudrillard describes the consumption as a semiotic system regulated of codes and rules. Consumption styles are nowadays becoming an element of people’s identity. Individuals use the commodities to express their identities and therefore the status of people in the community being measured according to what they consume. Meanwhile many TV series provides information to individuals about lifestyles to be created by infinite items consumed. This study analyzes the mindset created in ten selected TV series and the re-produced ideology of consumption as well as the presented role models for women and men in them.

  7. Satellite network robust QoS-aware routing

    CERN Document Server

    Long, Fei

    2014-01-01

    Satellite Network Robust QoS-aware Routing presents a novel routing strategy for satellite networks. This strategy is useful for the design of multi-layered satellite networks as it can greatly reduce the number of time slots in one system cycle. The traffic prediction and engineering approaches make the system robust so that the traffic spikes can be handled effectively. The multi-QoS optimization routing algorithm can satisfy various potential user requirements. Clear and sufficient illustrations are also presented in the book. As the chapters cover the above topics independently, readers from different research backgrounds in constellation design, multi-QoS routing, and traffic engineering can benefit from the book.   Fei Long is a senior engineer at Beijing R&D Center of 54th Research Institute of China Electronics Technology Group Corporation.

  8. Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity

    Directory of Open Access Journals (Sweden)

    S. A. Henson

    2010-02-01

    Full Text Available Global climate change is predicted to alter the ocean's biological productivity. But how will we recognise the impacts of climate change on ocean productivity? The most comprehensive information available on its global distribution comes from satellite ocean colour data. Now that over ten years of satellite-derived chlorophyll and productivity data have accumulated, can we begin to detect and attribute climate change-driven trends in productivity? Here we compare recent trends in satellite ocean colour data to longer-term time series from three biogeochemical models (GFDL, IPSL and NCAR. We find that detection of climate change-driven trends in the satellite data is confounded by the relatively short time series and large interannual and decadal variability in productivity. Thus, recent observed changes in chlorophyll, primary production and the size of the oligotrophic gyres cannot be unequivocally attributed to the impact of global climate change. Instead, our analyses suggest that a time series of ~40 years length is needed to distinguish a global warming trend from natural variability. In some regions, notably equatorial regions, detection times are predicted to be shorter (~20–30 years. Analysis of modelled chlorophyll and primary production from 2001–2100 suggests that, on average, the climate change-driven trend will not be unambiguously separable from decadal variability until ~2055. Because the magnitude of natural variability in chlorophyll and primary production is larger than, or similar to, the global warming trend, a consistent, decades-long data record must be established if the impact of climate change on ocean productivity is to be definitively detected.

  9. Pc5 waves generated by substorm injection: a case study

    Directory of Open Access Journals (Sweden)

    N. A. Zolotukhina

    2008-07-01

    Full Text Available We analyzed the spectral-polarized characteristics of Pc5 ULF waves observed on 17 September 2000 after the 03:20:25 UT substorm onset with the satellites GOES 8 and 10 located east and west of the onset location. In the course of the event, the wave polarization changed from mixed (between toroidal and poloidal to poloidal, and then to mixed again. The hodogram of magnetic field oscillations rotated counterclockwise at GOES 8, and clockwise at GOES 10. It is suggested that the satellites detected the waves generated by the substorm injected clouds of the charged particles drifting in the magnetosphere in the opposite azimuthal directions: GOES 8 (located east of the substorm onset detected the wave generated by an electron cloud, and GOES 10 (west of the onset detected the wave generated by a positive ion cloud. This interpretation is confirmed by the energetic particles data recorded by LANL satellites.

  10. A spatiotemporal analysis of the relationship between near-surface air temperature and satellite land surface temperatures using 17 years of data from the ATSR series

    Science.gov (United States)

    Good, Elizabeth J.; Ghent, Darren J.; Bulgin, Claire E.; Remedios, John J.

    2017-09-01

    The relationship between satellite land surface temperature (LST) and ground-based observations of 2 m air temperature (T2m) is characterized in space and time using >17 years of data. The analysis uses a new monthly LST climate data record (CDR) based on the Along-Track Scanning Radiometer series, which has been produced within the European Space Agency GlobTemperature project (http://www.globtemperature.info/). Global LST-T2m differences are analyzed with respect to location, land cover, vegetation fraction, and elevation, all of which are found to be important influencing factors. LSTnight ( 10 P.M. local solar time, clear-sky only) is found to be closely coupled with minimum T2m (Tmin, all-sky) and the two temperatures generally consistent to within ±5°C (global median LSTnight-Tmin = 1.8°C, interquartile range = 3.8°C). The LSTday ( 10 A.M. local solar time, clear-sky only)-maximum T2m (Tmax, all-sky) variability is higher (global median LSTday-Tmax = -0.1°C, interquartile range = 8.1°C) because LST is strongly influenced by insolation and surface regime. Correlations for both temperature pairs are typically >0.9 outside of the tropics. The monthly global and regional anomaly time series of LST and T2m—which are completely independent data sets—compare remarkably well. The correlation between the data sets is 0.9 for the globe with 90% of the CDR anomalies falling within the T2m 95% confidence limits. The results presented in this study present a justification for increasing use of satellite LST data in climate and weather science, both as an independent variable, and to augment T2m data acquired at meteorological stations.

  11. Unsupervised land cover change detection: meaningful sequential time series analysis

    CSIR Research Space (South Africa)

    Salmon, BP

    2011-06-01

    Full Text Available An automated land cover change detection method is proposed that uses coarse spatial resolution hyper-temporal earth observation satellite time series data. The study compared three different unsupervised clustering approaches that operate on short...

  12. The reionization of galactic satellite populations

    Energy Technology Data Exchange (ETDEWEB)

    Ocvirk, P.; Gillet, N.; Aubert, D.; Chardin, J. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Knebe, A.; Yepes, G. [Grupo de Astrofísica, Departamento de Fisica Teorica, Modulo C-8, Universidad Autónoma de Madrid, Cantoblanco E-280049 (Spain); Libeskind, N.; Gottlöber, S. [Leibniz-Institute für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Hoffman, Y. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2014-10-10

    We use high-resolution simulations of the formation of the local group, post-processed by a radiative transfer code for UV photons, to investigate the reionization of the satellite populations of an isolated Milky Way-M31 galaxy pair in a variety of scenarios. We use an improved version of ATON which includes a simple recipe for radiative feedback. In our baseline models, reionization is initiated by low-mass, radiatively regulated halos at high redshift, until more massive halos appear, which then dominate and complete the reionization process. We investigate the relation between reionization history and present-day positions of the satellite population. We find that the average reionization redshift (z {sub r}) of satellites is higher near galaxy centers (MW and M31). This is due to the inside out reionization patterns imprinted by massive halos within the progenitor during the epoch of reionization, which end up forming the center of the galaxy. Due to incomplete dynamical mixing during galaxy assembly, these early patterns survive to present day, resulting in a clear radial gradient in the average satellite reionization redshift, up to the virial radius of MW and M31 and beyond. In the lowest emissivity scenario, the outer satellites are reionized about 180 Myr later than the inner satellites. This delay decreases with increasing source model emissivity, or in the case of external reionization by Virgo or M31, because reionization occurs faster overall and becomes spatially quasi-uniform at the highest emissivity.

  13. The reionization of galactic satellite populations

    International Nuclear Information System (INIS)

    Ocvirk, P.; Gillet, N.; Aubert, D.; Chardin, J.; Knebe, A.; Yepes, G.; Libeskind, N.; Gottlöber, S.; Hoffman, Y.

    2014-01-01

    We use high-resolution simulations of the formation of the local group, post-processed by a radiative transfer code for UV photons, to investigate the reionization of the satellite populations of an isolated Milky Way-M31 galaxy pair in a variety of scenarios. We use an improved version of ATON which includes a simple recipe for radiative feedback. In our baseline models, reionization is initiated by low-mass, radiatively regulated halos at high redshift, until more massive halos appear, which then dominate and complete the reionization process. We investigate the relation between reionization history and present-day positions of the satellite population. We find that the average reionization redshift (z r ) of satellites is higher near galaxy centers (MW and M31). This is due to the inside out reionization patterns imprinted by massive halos within the progenitor during the epoch of reionization, which end up forming the center of the galaxy. Due to incomplete dynamical mixing during galaxy assembly, these early patterns survive to present day, resulting in a clear radial gradient in the average satellite reionization redshift, up to the virial radius of MW and M31 and beyond. In the lowest emissivity scenario, the outer satellites are reionized about 180 Myr later than the inner satellites. This delay decreases with increasing source model emissivity, or in the case of external reionization by Virgo or M31, because reionization occurs faster overall and becomes spatially quasi-uniform at the highest emissivity.

  14. Assessing exergy of forest ecosystem using airborne and satellite data

    Science.gov (United States)

    Brovkina, Olga; Fabianek, Tomas; Lukes, Petr; Zemek, Frantisek

    2017-04-01

    Interactions of the energy flows of forest ecosystem with environment are formed by a suite of forest structure, functions and pathways of self-control. According to recent thermodynamic theory for open systems, concept of exergy of solar radiation has been applied to estimate energy consumptions on evapotranspiration and biomass production in forest ecosystem or to indicate forest decline and human land use impact on ecosystem stability. However, most of the methods for exergy estimation in forest ecosystem is not stable and its physical meaning remains on the surface. This study was aimed to contribute to understanding the exergy of forest ecosystem using combination of remote sensing (RS) and eddy covariance technologies, specifically: 1/to explore exergy of solar radiation depending on structure of solar spectrum (number of spectral bands of RS data), and 2/to explore the relationship between exergy and flux tower eddy covariance measurements. Two study forest sites were located in Western Beskids in the Czech Republic. The first site was dominated by young Norway spruce, the second site was dominated by mature European beech. Airborne hyperspectral data in VNIR, SWIR and TIR spectral regions were acquired 9 times for study sites during a vegetation periods in 2015-2016. Radiometric, geometric and atmospheric corrections of airborne data were performed. Satellite multispectral Landsat-8 cloud-free 21 scenes were downloaded and atmospherically corrected for the period from April to November 2015-2016. Evapotranspiration and latent heat fluxes were collected from operating flux towers located on study sites according to date and time of remote sensing data acquisition. Exergy was calculated for each satellite and airborne scene using various combinations of spectral bands as: Ex=E^out (K+ln E^out/E^in )+R, where Ein is the incoming solar energy, Eout is the reflected solar energy, R = Ein-Eout is absorbed energy, Eout/Ein is albedo and K is the Kullback increment

  15. User Validation of VIIRS Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Don Hillger

    2015-12-01

    Full Text Available Visible/Infrared Imaging Radiometer Suite (VIIRS Imagery from the Suomi National Polar-orbiting Partnership (S-NPP satellite is the finest spatial resolution (375 m multi-spectral imagery of any operational meteorological satellite to date. The Imagery environmental data record (EDR has been designated as a Key Performance Parameter (KPP for VIIRS, meaning that its performance is vital to the success of a series of Joint Polar Satellite System (JPSS satellites that will carry this instrument. Because VIIRS covers the high-latitude and Polar Regions especially well via overlapping swaths from adjacent orbits, the Alaska theatre in particular benefits from VIIRS more than lower-latitude regions. While there are no requirements that specifically address the quality of the EDR Imagery aside from the VIIRS SDR performance requirements, the value of VIIRS Imagery to operational users is an important consideration in the Cal/Val process. As such, engaging a wide diversity of users constitutes a vital part of the Imagery validation strategy. The best possible image quality is of utmost importance. This paper summarizes the Imagery Cal/Val Team’s quality assessment in this context. Since users are a vital component to the validation of VIIRS Imagery, specific examples of VIIRS imagery applied to operational needs are presented as an integral part of the post-checkout Imagery validation.

  16. Small Aperture Telescope Observations of Co-located Geostationary Satellites

    Science.gov (United States)

    Scott, R.; Wallace, B.

    As geostationary orbit (GEO) continues to be populated, satellite operators are increasing usage of co-location techniques to maximize usage of fewer GEO longitude slots. Co-location is an orbital formation strategy where two or more geostationary satellites reside within one GEO stationkeeping box. The separation strategy used to prevent collision between the co-located satellites generally uses eccentricity (radial separation) and inclination (latitude separation) vector offsets. This causes the satellites to move in relative motion ellipses about each other as the relative longitude drift between the satellites is near zero. Typical separations between the satellites varies from 1 to 100 kilometers. When co-located satellites are observed by optical ground based space surveillance sensors the participants appear to be separated by a few minutes of arc or less in angular extent. Under certain viewing geometries, these satellites appear to visually conjunct even though the satellites are, in fact, well separated spatially. In situations where one of the co-located satellites is more optically reflective than the other, the reflected sunglint from the more reflective satellite can overwhelm the other. This less frequently encountered issue causes the less reflective satellite to be glint masked in the glare of the other. This paper focuses on space surveillance observations on co-located Canadian satellites using a small optical telescope operated by Defence R&D Canada - Ottawa. The two above mentioned problems (cross tagging and glint masking) are investigated and we quantify the results for Canadian operated geostationary satellites. The performance of two line element sets when making in-frame CCD image correlation between the co-located satellites is also examined. Relative visual magnitudes between the co-located members are also inspected and quantified to determine the susceptibility of automated telescopes to glint masking of co-located satellite members.

  17. Demise of faint satellites around isolated early-type galaxies

    Science.gov (United States)

    Park, Changbom; Hwang, Ho Seong; Park, Hyunbae; Lee, Jong Chul

    2018-02-01

    The hierarchical galaxy formation scenario in the Cold Dark Matter cosmology with a non-vanishing cosmological constant Λ and geometrically flat space (ΛCDM) has been very successful in explaining the large-scale distribution of galaxies. However, there have been claims that ΛCDM over-predicts the number of satellite galaxies associated with massive galaxies compared with observations—the missing satellite galaxy problem1-3. Isolated groups of galaxies hosted by passively evolving massive early-type galaxies are ideal laboratories for identifying the missing physics in the current theory4-11. Here, we report—based on a deep spectroscopic survey—that isolated massive and passive early-type galaxies without any signs of recent wet mergers or accretion episodes have almost no satellite galaxies fainter than the r-band absolute magnitude of about Mr = -14. If only early-type satellites are used, the cutoff is at the somewhat brighter magnitude of about Mr = -15. Such a cutoff has not been found in other nearby satellite galaxy systems hosted by late-type galaxies or those with merger features. Various physical properties of satellites depend strongly on the host-centric distance. Our observations indicate that the satellite galaxy luminosity function is largely determined by the interaction of satellites with the environment provided by their host.

  18. Eisenstein series and string thresholds

    International Nuclear Information System (INIS)

    Obers, N.A.; Pioline, B.

    2000-01-01

    We investigate the relevance of Eisenstein series for representing certain G(Z)-invariant string theory amplitudes which receive corrections from BPS states only. G(Z) may stand for any of the mapping class, T-duality and U-duality groups Sl(d,Z), SO(d,d,Z) or E d+1(d+1) (Z) respectively. Using G(Z)-invariant mass formulae, we construct invariant modular functions on the symmetric space K backslash G(R) of non-compact type, with K the maximal compact subgroup of G(R), that generalize the standard non-holomorphic Eisenstein series arising in harmonic analysis on the fundamental domain of the Poincare upper half-plane. Comparing the asymptotics and eigenvalues of the Eisenstein series under second order differential operators with quantities arising in one- and g-loop string amplitudes, we obtain a manifestly T-duality invariant representation of the latter, conjecture their non-perturbative U-duality invariant extension, and analyze the resulting non-perturbative effects. This includes the R 4 and R 4 H -4 g -4 couplings in toroidal compactifications of M-theory to any dimension D≥4 and D≥6 respectively. (orig.)

  19. Validation of early GOES-16 ABI on-orbit geometrical calibration accuracy using SNO method

    Science.gov (United States)

    Yu, Fangfang; Shao, Xi; Wu, Xiangqian; Kondratovich, Vladimir; Li, Zhengping

    2017-09-01

    The Advanced Baseline Imager (ABI) onboard the GOES-16 satellite, which was launched on 19 November 2016, is the first next-generation geostationary weather instrument in the west hemisphere. It has 16 spectral solar reflective and emissive bands located in three focal plane modules (FPM): one visible and near infrared (VNIR) FPM, one midwave infrared (MWIR), and one longwave infrared (LWIR) FPM. All the ABI bands are geometeorically calibrated with new techniques of Kalman filtering and Global Positioning System (GPS) to determine the accurate spacecraft attitude and orbit configuration to meet the challenging image navigation and registration (INR) requirements of ABI data. This study is to validate the ABI navigation and band-to-band registration (BBR) accuracies using the spectrally matched pixels of the Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) M-band data and the ABI images from the Simultaneous Nadir Observation (SNO) images. The preliminary results showed that during the ABI post-launch product test (PLPT) period, the ABI BBR errors at the y-direction (along the VIIRS track direction) is smaller than at the x-direction (along the VIIRS scan direction). Variations in the ABI BBR calibration residuals and navigation difference to VIIRS can be observed. Note that ABI is not operational yet and the data is experimental and still under testing. Effort is still ongoing to improve the ABI data quality.

  20. Validation of Cloud Parameters Derived from Geostationary Satellites, AVHRR, MODIS, and VIIRS Using SatCORPS Algorithms

    Science.gov (United States)

    Minnis, P.; Sun-Mack, S.; Bedka, K. M.; Yost, C. R.; Trepte, Q. Z.; Smith, W. L., Jr.; Painemal, D.; Chen, Y.; Palikonda, R.; Dong, X.; hide

    2016-01-01

    Validation is a key component of remote sensing that can take many different forms. The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) is applied to many different imager datasets including those from the geostationary satellites, Meteosat, Himiwari-8, INSAT-3D, GOES, and MTSAT, as well as from the low-Earth orbiting satellite imagers, MODIS, AVHRR, and VIIRS. While each of these imagers have similar sets of channels with wavelengths near 0.65, 3.7, 11, and 12 micrometers, many differences among them can lead to discrepancies in the retrievals. These differences include spatial resolution, spectral response functions, viewing conditions, and calibrations, among others. Even when analyzed with nearly identical algorithms, it is necessary, because of those discrepancies, to validate the results from each imager separately in order to assess the uncertainties in the individual parameters. This paper presents comparisons of various SatCORPS-retrieved cloud parameters with independent measurements and retrievals from a variety of instruments. These include surface and space-based lidar and radar data from CALIPSO and CloudSat, respectively, to assess the cloud fraction, height, base, optical depth, and ice water path; satellite and surface microwave radiometers to evaluate cloud liquid water path; surface-based radiometers to evaluate optical depth and effective particle size; and airborne in-situ data to evaluate ice water content, effective particle size, and other parameters. The results of comparisons are compared and contrasted and the factors influencing the differences are discussed.

  1. The Place of Vocational Education in Higher Education: Implications for Educational R&D. Distinguished Lecture Series, No. 4.

    Science.gov (United States)

    Bell, T. H.

    Half of this paper is the text of a lecture on the role of the university in job-related education in which the author suggests what universities ought to learn from vocational education. Pointing out that the challenge goes deeper than vocational or professional education, he challenges universities to have an eye for theory and practice, an eye…

  2. The Global Geostationary Wildfire ABBA: Current Implementation and Future Plans

    Science.gov (United States)

    Prins, E.; Schmidt, C. C.; Hoffman, J.; Brunner, J.; Hyer, E. J.; Reid, J. S.

    2012-12-01

    The Wild Fire Automated Biomass Burning Algorithm (WF_ABBA), developed at the Cooperative Institute for Meteorological Satellite Studies (CIMSS), has a long legacy of operational near real-time wildfire detection and characterization in the Western Hemisphere. The first phase of the global geostationary WF_ABBA was made operational at NOAA NESDIS in 2009 and currently includes diurnal active fire monitoring from GOES-East, GOES-South America, GOES-West, Meteosat-9 and MTSAT-1R/-2. This allows for near global active fire monitoring with coverage of Europe, Africa, Southeast Asia and the Western Pacific utilizing distinct geostationary sensors and a consistent algorithm. Version 6.5.006 of the WF_ABBA was specifically designed to address the capabilities and limitations of diverse geostationary sensors and requests from the global fire monitoring and user community. This presentation will provide an overview of version 6.5.006 of the global WF_ABBA fire product including the new fire and opaque cloud mask and associated metadata. We will demonstrate the WF_ABBA showing examples from around the globe with a focus on the capabilities and plans for integrating new geostationary platforms with coverage of Eastern Europe and Asia (INSAT-3D, Korean COMS, Russian GOMS Elektro-L MSU-GS). We are also preparing for future fire monitoring in the Western Hemisphere, Europe, and Africa utilizing the next generation GOES-R Imager and Meteosat Third Generation Flexible Combined Imager (MTG - FCI). The goal is to create a globally consistent long-term fire product utilizing the capabilities of each of these unique operational systems and a common fire detection algorithm. On an international level, development of a global geostationary fire monitoring system is supported by the IGOS GOFC/GOLD Fire Implementation Team. This work also generally supports Committee on Earth Observation Satellites (CEOS) activities and the Group on Earth Observations (GEO).

  3. Estimation of Satellite-Based SO42- and NH4+ Composition of Ambient Fine Particulate Matter Over China Using Chemical Transport Model

    Science.gov (United States)

    Si, Y.; Li, S.; Chen, L.; Yu, C.; Zhu, W.

    2018-04-01

    Epidemiologic and health impact studies have examined the chemical composition of ambient PM2.5 in China but have been constrained by the paucity of long-term ground measurements. Using the GEOS-Chem chemical transport model and satellite-derived PM2.5 data, sulfate and ammonium levels were estimated over China from 2004 to 2014. A comparison of the satellite-estimated dataset with model simulations based on ground measurements obtained from the literature indicated our results are more accurate. Using satellite-derived PM2.5 data with a spatial resolution of 0.1° × 0.1°, we further presented finer satellite-estimated sulfate and ammonium concentrations in anthropogenic polluted regions, including the NCP (the North China Plain), the SCB (the Sichuan Basin) and the PRD (the Pearl River Delta). Linear regression results obtained on a national scale yielded an r value of 0.62, NMB of -35.9 %, NME of 48.2 %, ARB_50 % of 53.68 % for sulfate and an r value of 0.63, slope of 0.67, and intercept of 5.14 for ammonium. In typical regions, the satellite-derived dataset was significantly robust. Based on the satellite-derived dataset, the spatial-temporal variation of 11-year annual average satellite-derived SO42- and NH4+ concentrations and time series of monthly average concentrations were also investigated. On a national scale, both exhibited a downward trend each year between 2004 and 2014 (SO42-: -0.61 %; NH4+: -0.21 %), large values were mainly concentrated in the NCP and SCB. For regions captured at a finer resolution, the inter-annual variation trends presented a positive trend over the periods 2004-2007 and 2008-2011, followed by a negative trend over the period 2012-2014, and sulfate concentrations varied appreciably. Moreover, the seasonal distributions of the 11-year satellite-derived dataset over China were presented. The distribution of both sulfate and ammonium concentrations exhibited seasonal characteristics, with the seasonal concentrations ranking as

  4. Aplicación de modelo ARIMA para el análisis de series de volúmenes anuales en el río Magdalena

    OpenAIRE

    Amaris, Gloria; Ávila, Humberto; Guerrero, Thomas

    2017-01-01

    Resumen Contexto: Los efectos del cambio climático, intervenciones humanas y características de los ríos, son factores que incrementan el riesgo en la población y de los recursos hídricos. Sin embargo, impactos negativos como inundaciones y desecación de ríos pueden ser identificados previamente mediante el uso de herramientas de modelación adecuadas. Objetivos: Se estima un modelo ARIMA para el análisis de series de tiempo de volúmenes anuales (millones de m³/año) en el río Magdalena usando ...

  5. Satellite Earth observation data to identify climate and anthropogenic pressures on Bucharest periurban forests

    Energy Technology Data Exchange (ETDEWEB)

    Zoran, Maria; Savastru, Roxana; Savastru, Dan [National Institute of R& D for Optoelectronics, MG5 Bucharest-Magurele, 077125 Romania (Romania); Dida, Adrian [University Transylvania of Brasov, Brasov (Romania)

    2016-03-25

    Satellite Earth observation data in the visible and near-infrared (VNIR) wavelengths represent a useful source of information for forest systems monitoring through derived biogeophysical parameters (vegetation index, leaf area index, canopy cover, fraction of absorbed photosynthetically active radiation, chlorophyll content, net primary production, canopy water stress, etc.). Use of satellite remote sensing data to assess forest spatio-temporal changes due to climatic or anthropogenic stressors is an excellent example of the value of multispectral and multitemporal observations. Fusion technique was applied to time-series multispectral and multitemporal satellite imagery (NOAA AVHRR, MODIS Terra/Aqua, Landsat ETM and IKONOS satellite data) for periurban forest areas Cernica-Branesti, placed in the neighboring of Bucharest town, Romania, over 2002-2014 period.

  6. Satellite Earth observation data to identify climate and anthropogenic pressures on Bucharest periurban forests

    International Nuclear Information System (INIS)

    Zoran, Maria; Savastru, Roxana; Savastru, Dan; Dida, Adrian

    2016-01-01

    Satellite Earth observation data in the visible and near-infrared (VNIR) wavelengths represent a useful source of information for forest systems monitoring through derived biogeophysical parameters (vegetation index, leaf area index, canopy cover, fraction of absorbed photosynthetically active radiation, chlorophyll content, net primary production, canopy water stress, etc.). Use of satellite remote sensing data to assess forest spatio-temporal changes due to climatic or anthropogenic stressors is an excellent example of the value of multispectral and multitemporal observations. Fusion technique was applied to time-series multispectral and multitemporal satellite imagery (NOAA AVHRR, MODIS Terra/Aqua, Landsat ETM and IKONOS satellite data) for periurban forest areas Cernica-Branesti, placed in the neighboring of Bucharest town, Romania, over 2002-2014 period.

  7. Characterising volcanic cycles at Soufriere Hills Volcano, Montserrat: Time series analysis of multi-parameter satellite data

    Science.gov (United States)

    Flower, Verity J. B.; Carn, Simon A.

    2015-10-01

    The identification of cyclic volcanic activity can elucidate underlying eruption dynamics and aid volcanic hazard mitigation. Whilst satellite datasets are often analysed individually, here we exploit the multi-platform NASA A-Train satellite constellation to cross-correlate cyclical signals identified using complementary measurement techniques at Soufriere Hills Volcano (SHV), Montserrat. In this paper we present a Multi-taper (MTM) Fast Fourier Transform (FFT) analysis of coincident SO2 and thermal infrared (TIR) satellite measurements at SHV facilitating the identification of cyclical volcanic behaviour. These measurements were collected by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) (respectively) in the A-Train. We identify a correlating cycle in both the OMI and MODIS data (54-58 days), with this multi-week feature attributable to episodes of dome growth. The 50 day cycles were also identified in ground-based SO2 data at SHV, confirming the validity of our analysis and further corroborating the presence of this cycle at the volcano. In addition a 12 day cycle was identified in the OMI data, previously attributed to variable lava effusion rates on shorter timescales. OMI data also display a one week (7-8 days) cycle attributable to cyclical variations in viewing angle resulting from the orbital characteristics of the Aura satellite. Longer period cycles possibly relating to magma intrusion were identified in the OMI record (102-, 121-, and 159 days); in addition to a 238-day cycle identified in the MODIS data corresponding to periodic destabilisation of the lava dome. Through the analysis of reconstructions generated from cycles identified in the OMI and MODIS data, periods of unrest were identified, including the major dome collapse of 20th May 2006 and significant explosive event of 3rd January 2009. Our analysis confirms the potential for identification of cyclical volcanic activity through combined

  8. Satellite time-series data for vegetation phenology detection and environmental assessment in Southeast Asia

    Science.gov (United States)

    Suepa, Tanita

    The relationship between temporal and spatial data is considered the major advantage of remote sensing in research related to biophysical characteristics. With temporally formatted remote sensing products, it is possible to monitor environmental changes as well as global climate change through time and space by analyzing vegetation phenology. Although a number of different methods have been developed to determine the seasonal cycle using time series of vegetation indices, these methods were not designed to explore and monitor changes and trends of vegetation phenology in Southeast Asia (SEA). SEA is adversely affected by impacts of climate change, which causes considerable environmental problems, and the increase in agricultural land conversion and intensification also adds to those problems. Consequently, exploring and monitoring phenological change and environmental impacts are necessary for a better understanding of the ecosystem dynamics and environmental change in this region. This research aimed to investigate inter-annual variability of vegetation phenology and rainfall seasonality, analyze the possible drivers of phenological changes from both climatic and anthropogenic factors, assess the environmental impacts in agricultural areas, and develop an enhanced visualization method for phenological information dissemination. In this research, spatio-temporal patterns of vegetation phenology were analyzed by using MODIS-EVI time series data over the period of 2001-2010. Rainfall seasonality was derived from TRMM daily rainfall rate. Additionally, this research assessed environmental impacts of GHG emissions by using the environmental model (DNDC) to quantify emissions from rice fields in Thailand. Furthermore, a web mapping application was developed to present the output of phenological and environmental analysis with interactive functions. The results revealed that satellite time-series data provided a great opportunity to study regional vegetation variability

  9. Estimating and Analyzing Savannah Phenology with a Lagged Time Series Model

    DEFF Research Database (Denmark)

    Boke-Olen, Niklas; Lehsten, Veiko; Ardo, Jonas

    2016-01-01

    cycle due to their areal coverage and can have an effect on the food security in regions that depend on subsistence farming. In this study we investigate how soil moisture, mean annual precipitation, and day length control savannah phenology by developing a lagged time series model. The model uses...... climate data for 15 flux tower sites across four continents, and normalized difference vegetation index from satellite to optimize a statistical phenological model. We show that all three variables can be used to estimate savannah phenology on a global scale. However, it was not possible to create...... a simplified savannah model that works equally well for all sites on the global scale without inclusion of more site specific parameters. The simplified model showed no bias towards tree cover or between continents and resulted in a cross-validated r2 of 0.6 and root mean squared error of 0.1. We therefore...

  10. Validation of Cloud Properties From Multiple Satellites Using CALIOP Data

    Science.gov (United States)

    Yost, Christopher R.; Minnis, Patrick; Bedka, Kristopher M.; Heck, Patrick W.; Palikonda, Rabindra; Sun-Mack, Sunny; Trepte, Qing

    2016-01-01

    The NASA Langley Satellite ClOud and Radiative Property retrieval System (SatCORPS) is routinely applied to multispectral imagery from several geostationary and polar-orbiting imagers to retrieve cloud properties for weather and climate applications. Validation of the retrievals with independent datasets is continuously ongoing in order to understand differences caused by calibration, spatial resolution, viewing geometry, and other factors. The CALIOP instrument provides a decade of detailed cloud observations which can be used to evaluate passive imager retrievals of cloud boundaries, thermodynamic phase, cloud optical depth, and water path on a global scale. This paper focuses on comparisons of CALIOP retrievals to retrievals from MODIS, VIIRS, AVHRR, GOES, SEVIRI, and MTSAT. CALIOP is particularly skilled at detecting weakly-scattering cirrus clouds with optical depths less than approx. 0.5. These clouds are often undetected by passive imagers and the effect this has on the property retrievals is discussed.

  11. The Role of Ground-Based Robotic Observatories in Satellite Projects

    Czech Academy of Sciences Publication Activity Database

    Hudec, René

    2010-01-01

    Roč. 2010, - (2010), 594854/1-594854/10 ISSN 1687-7969 R&D Projects: GA ČR GA205/08/1207 Grant - others:ESA(XE) ESA-PECS project No. 98058 Institutional research plan: CEZ:AV0Z10030501 Keywords : robotic telescopes * satellite projects * INTEGRAL mission Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  12. Mapping turbidity in the Charles River, Boston using a high-resolution satellite.

    Science.gov (United States)

    Hellweger, Ferdi L; Miller, Will; Oshodi, Kehinde Sarat

    2007-09-01

    The usability of high-resolution satellite imagery for estimating spatial water quality patterns in urban water bodies is evaluated using turbidity in the lower Charles River, Boston as a case study. Water turbidity was surveyed using a boat-mounted optical sensor (YSI) at 5 m spatial resolution, resulting in about 4,000 data points. The ground data were collected coincidently with a satellite imagery acquisition (IKONOS), which consists of multispectral (R, G, B) reflectance at 1 m resolution. The original correlation between the raw ground and satellite data was poor (R2 = 0.05). Ground data were processed by removing points affected by contamination (e.g., sensor encounters a particle floc), which were identified visually. Also, the ground data were corrected for the memory effect introduced by the sensor's protective casing using an analytical model. Satellite data were processed to remove pixels affected by permanent non-water features (e.g., shoreline). In addition, water pixels within a certain buffer distance from permanent non-water features were removed due to contamination by the adjacency effect. To determine the appropriate buffer distance, a procedure that explicitly considers the distance of pixels to the permanent non-water features was applied. Two automatic methods for removing the effect of temporary non-water features (e.g., boats) were investigated, including (1) creating a water-only mask based on an unsupervised classification and (2) removing (filling) all local maxima in reflectance. After the various processing steps, the correlation between the ground and satellite data was significantly better (R2 = 0.70). The correlation was applied to the satellite image to develop a map of turbidity in the lower Charles River, which reveals large-scale patterns in water clarity. However, the adjacency effect prevented the application of this method to near-shore areas, where high-resolution patterns were expected (e.g., outfall plumes).

  13. THE DISTRIBUTION OF FAINT SATELLITES AROUND CENTRAL GALAXIES IN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C. Y.; Jing, Y. P.; Li, Cheng [Key Laboratory for Research in Galaxies and Cosmology of Chinese Academy of Sciences, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China)

    2012-11-20

    We investigate the radial number density profile and the abundance distribution of faint satellites around central galaxies in the low-redshift universe using the Canada-France-Hawaii Telescope (CFHT) Legacy Survey. We consider three samples of central galaxies with magnitudes of M {sub r} = -21, -22, and -23 selected from the Sloan Digital Sky Survey group catalog of Yang et al. The satellite distribution around these central galaxies is obtained by cross-correlating these galaxies with the photometric catalog of the CFHT Legacy Survey. The projected radial number density of the satellites obeys a power-law form with the best-fit logarithmic slope of -1.05, independent of both the central galaxy luminosity and the satellite luminosity. The projected cross-correlation function between central and satellite galaxies exhibits a non-monotonic trend with satellite luminosity. It is most pronounced for central galaxies with M {sub r} = -21, where the decreasing trend of clustering amplitude with satellite luminosity is reversed when satellites are fainter than central galaxies by more than 2 mag. A comparison with the satellite luminosity functions in the Milky Way (MW) and M31 shows that the MW/M31 system has about twice as many satellites as around a typical central galaxy of similar luminosity. The implications for theoretical models are briefly discussed.

  14. Validation of an Innovative Satellite-Based UV Dosimeter

    Science.gov (United States)

    Morelli, Marco; Masini, Andrea; Simeone, Emilio; Khazova, Marina

    2016-08-01

    We present an innovative satellite-based UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in-vivo assessment of the erythemal effects on some volunteers having a controlled exposure to solar radiation.Both validations showed that the satellite-based UV dosimeter has a good accuracy and reliability needed for health-related applications.The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. This app will be launched on the global market by siHealth Ltd in May 2016 under the name of "HappySun" and available both for Android and for iOS devices (more info on http://www.happysun.co.uk).Extensive R&D activities are on-going for further improvement of the satellite-based UV dosimeter's accuracy.

  15. Digital front-end module (DFEM) series; Digital front end module (DFEM) series

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The digital front-end module (DFEM) is a module in which the processes ranging from the reception of digitally modulated radiofrequencies to the output of digital IF (Intermediate Frequency) signals or data streams are integrated. Beginning with a module for the MCNS (Multimedia Cable Network System) cable modem which was the first module in this business field approved by the Cable Labs, U.S., Toshiba has developed a series of DFEMs for various digital media for satellites, ground waves, and CATV (Cable Television) systems. The series is characterized by (1) the serialization of DFEMs compatible with various digital modulation techniques such as 8 PSK (Phase Shift Keying), OFDM (Orthogonal Frequency Division Multiplexing), and 256 QAM (Quadrature Amplitude Modulation), (2) easy connection with digital circuits thanks to the high shielding effect, and (3) the achievement of smaller size, higher performance, and lower power consumption. (translated by NEDO)

  16. Comparison of Cloud Properties from CALIPSO-CloudSat and Geostationary Satellite Data

    Science.gov (United States)

    Nguyen, L.; Minnis, P.; Chang, F.; Winker, D.; Sun-Mack, S.; Spangenberg, D.; Austin, R.

    2007-01-01

    Cloud properties are being derived in near-real time from geostationary satellite imager data for a variety of weather and climate applications and research. Assessment of the uncertainties in each of the derived cloud parameters is essential for confident use of the products. Determination of cloud amount, cloud top height, and cloud layering is especially important for using these real -time products for applications such as aircraft icing condition diagnosis and numerical weather prediction model assimilation. Furthermore, the distribution of clouds as a function of altitude has become a central component of efforts to evaluate climate model cloud simulations. Validation of those parameters has been difficult except over limited areas where ground-based active sensors, such as cloud radars or lidars, have been available on a regular basis. Retrievals of cloud properties are sensitive to the surface background, time of day, and the clouds themselves. Thus, it is essential to assess the geostationary satellite retrievals over a variety of locations. The availability of cloud radar data from CloudSat and lidar data from CALIPSO make it possible to perform those assessments over each geostationary domain at 0130 and 1330 LT. In this paper, CloudSat and CALIPSO data are matched with contemporaneous Geostationary Operational Environmental Satellite (GOES), Multi-functional Transport Satellite (MTSAT), and Meteosat-8 data. Unlike comparisons with cloud products derived from A-Train imagers, this study considers comparisons of nadir active sensor data with off-nadir retrievals. These matched data are used to determine the uncertainties in cloud-top heights and cloud amounts derived from the geostationary satellite data using the Clouds and the Earth s Radiant Energy System (CERES) cloud retrieval algorithms. The CERES multi-layer cloud detection method is also evaluated to determine its accuracy and limitations in the off-nadir mode. The results will be useful for

  17. Identification of micro satellite markers on chromosomes of bread ...

    African Journals Online (AJOL)

    Identification of micro satellite markers on chromosomes of bread wheat showing an association with karnal bunt resistance. M Kumar, OP Luthra, NR Yadav, L Chaudhary, N Saini, R Kumar, I Sharma, V Chawla ...

  18. UV Spectrophotometry of the Galilean Satellites, Saturnian Satellites & Selected Asteroids

    Science.gov (United States)

    Nelson, Robert M.

    We propose a series of ultraviolet spectral observations of solid surfaces of selected solar system objects, specifically the Galilean satellites of Jupiter, several atmosphereless satellites of Saturn, and the asteroids, 5 Astraea, 18 Melpomene, 532 Herculina, 68 Leto, 31 Euphmsyne, 80 Sappho, 3 Juno, and 39 Laetitia. Historically such spectral observations have allowed for the Identification of spectrally active solid state materials on planetary surfaces. Furthermore, because the rotational properties are known for all the objects proposed for study, this technique will provide a longitude map of such materials on the objects' surfaces. The study of asteroid surface mineralogy is an important method of constraining solar system formation models. The asteroid spectra we have previously acquired with IUE have created unique subdivisions within the existent asteroid types. The new spectra will provide more sophisticated mineralogical characterizations of asteroid surface materials. Our other accomplishments with IUE include mapping of the distribution of condensed S02 on Io, identification of a longitudinal asymmetry on Europa associated with magnetospheric particle bombardment of the surface, and establishing the ultraviolet geometric albedo variation as a function of longitude for all the Galilean satellites. Because Io is the most volcanically active body In the solar system, and short tern variations in selected regions of the Jovian magnetosphere are known to occur, it is important to periodically check for temporal variations in the spectra of the Galilean satellites that may be due to variations n Io tectonic/volcanic activity, or magnetosphere changes. These proposed UV observations are critical to the design and operation of several instruments on Project Galileo, NASA's Jupiter Orbiter and Probe Mission. Spectra of Iapetus, Rhea and Dione have been acquired during the previous year; however, only at orbital locations near elongation. In addition, the dark

  19. Using Information From Prior Satellite Scans to Improve Cloud Detection Near the Day-Night Terminator

    Science.gov (United States)

    Yost, Christopher R.; Minnis, Patrick; Trepte, Qing Z.; Palikonda, Rabindra; Ayers, Jeffrey K.; Spangenberg, Doulas A.

    2012-01-01

    With geostationary satellite data it is possible to have a continuous record of diurnal cycles of cloud properties for a large portion of the globe. Daytime cloud property retrieval algorithms are typically superior to nighttime algorithms because daytime methods utilize measurements of reflected solar radiation. However, reflected solar radiation is difficult to accurately model for high solar zenith angles where the amount of incident radiation is small. Clear and cloudy scenes can exhibit very small differences in reflected radiation and threshold-based cloud detection methods have more difficulty setting the proper thresholds for accurate cloud detection. Because top-of-atmosphere radiances are typically more accurately modeled outside the terminator region, information from previous scans can help guide cloud detection near the terminator. This paper presents an algorithm that uses cloud fraction and clear and cloudy infrared brightness temperatures from previous satellite scan times to improve the performance of a threshold-based cloud mask near the terminator. Comparisons of daytime, nighttime, and terminator cloud fraction derived from Geostationary Operational Environmental Satellite (GOES) radiance measurements show that the algorithm greatly reduces the number of false cloud detections and smoothes the transition from the daytime to the nighttime clod detection algorithm. Comparisons with the Geoscience Laser Altimeter System (GLAS) data show that using this algorithm decreases the number of false detections by approximately 20 percentage points.

  20. Cultures in orbit: Satellite technologies, global media and local practice

    Science.gov (United States)

    Parks, Lisa Ann

    Since the launch of Sputnik in 1957, satellite technologies have had a profound impact upon cultures around the world. "Cultures in Orbit" examines these seemingly disembodied, distant relay machines in relation to situated social and cultural processes on earth. Drawing upon a range of materials including NASA and UNESCO documents, international satellite television broadcasts, satellite 'development' projects, documentary and science fiction films, remote sensing images, broadcast news footage, World Wide Web sites, and popular press articles I delineate and analyze a series of satellite mediascapes. "Cultures in Orbit" analyzes uses of satellites for live television relay, surveillance, archaeology and astronomy. The project examines such satellite media as the first live global satellite television program Our World, Elvis' Aloha from Hawaii concert, Aboriginal Australian satellite programs, and Star TV's Asian music videos. In addition, the project explores reconnaissance images of mass graves in Bosnia, archaeological satellite maps of Cleopatra's underwater palace in Egypt, and Hubble Space Telescope images. These case studies are linked by a theoretical discussion of the satellite's involvement in shifting definitions of time, space, vision, knowledge and history. The satellite fosters an aesthetic of global realism predicated on instantaneous transnational connections. It reorders linear chronologies by revealing traces of the ancient past on the earth's surface and by searching in deep space for the "edge of time." On earth, the satellite is used to modernize and develop "primitive" societies. Satellites have produced new electronic spaces of international exchange, but they also generate strategic maps that advance Western political and cultural hegemony. By technologizing human vision, the satellite also extends the epistemologies of the visible, the historical and the real. It allows us to see artifacts and activities on earth from new vantage points

  1. On the formal series Witt transform

    NARCIS (Netherlands)

    Moree, P.

    2005-01-01

    Given a formal power series f(z)∈C〚z〛f(z)∈C〚z〛 we define, for any positive integer r, its r th Witt transform, Wf(r), by Wf(r)(z)=1r∑d|rμ(d)f(zd)r/d, where μμ denotes the Möbius function. The Witt transform generalizes the necklace polynomials, M(α;n)M(α;n), that occur in the cyclotomic identity

  2. Simultaneous Radar and Satellite Data Storm-Scale Assimilation Using an Ensemble Kalman Filter Approach for 24 May 2011

    Science.gov (United States)

    Jones, Thomas A.; Stensrud, David; Wicker, Louis; Minnis, Patrick; Palikonda, Rabindra

    2015-01-01

    Assimilating high-resolution radar reflectivity and radial velocity into convection-permitting numerical weather prediction models has proven to be an important tool for improving forecast skill of convection. The use of satellite data for the application is much less well understood, only recently receiving significant attention. Since both radar and satellite data provide independent information, combing these two sources of data in a robust manner potentially represents the future of high-resolution data assimilation. This research combines Geostationary Operational Environmental Satellite 13 (GOES-13) cloud water path (CWP) retrievals with Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity to examine the impacts of assimilating each for a severe weather event occurring in Oklahoma on 24 May 2011. Data are assimilated into a 3-km model using an ensemble adjustment Kalman filter approach with 36 members over a 2-h assimilation window between 1800 and 2000 UTC. Forecasts are then generated for 90 min at 5-min intervals starting at 1930 and 2000 UTC. Results show that both satellite and radar data are able to initiate convection, but that assimilating both spins up a storm much faster. Assimilating CWP also performs well at suppressing spurious precipitation and cloud cover in the model as well as capturing the anvil characteristics of developed storms. Radar data are most effective at resolving the 3D characteristics of the core convection. Assimilating both satellite and radar data generally resulted in the best model analysis and most skillful forecast for this event.

  3. Myogenic potential of canine craniofacial satellite cells

    Directory of Open Access Journals (Sweden)

    Rita Maria Laura La Rovere

    2014-05-01

    Full Text Available The skeletal fibres have different embryological origin; the extraocular and jaw-closer muscles develop from prechordal mesoderm while the limb and trunk muscles from somites. These different origins characterise also the adult muscle stem cells, known as satellite cells (SCs and responsible for the fibre growth and regeneration. The physiological properties of presomitic SCs and their epigenetics are poorly studied despite their peculiar characteristics to preserve muscle integrity during chronic muscle degeneration. Here we isolated SCs from canine somitic (SDM: vastus lateralis, rectus abdominus, gluteus superficialis, biceps femoris, psoas and presomitic (PSDM: lateral rectus, temporalis and retractor bulbi muscles as myogenic progenitor cells from young and old animals. In addition, SDM and PSDM satellite cells were obtained also from Golden retrievers affected by muscular dystrophy (GRMD. We characterised the lifespan, the myogenic potential and functions and oxidative stress of both somitic and presomitic SCs with the aim to reveal differences with ageing and between healthy and dystrophic animals. The different proliferation rate was consistent with higher telomerase activity in PSDM-SCs compared to SDM-SCs, although restricted at early passages. SDM-SCs express early (Pax7, MyoD and late (MyHC, Myogenin myogenic markers differently from PSDM-SCs resulting in a more efficient and faster cell differentiation. Taken together our results showed that PSDM-SCs elicit a stronger stem cell phenotype compared to SDM ones. Finally, myomiR expression profile reveals a unique epigenetic signature in GRMD satellite cells and miR-206, highly expressed in dystrophic SCs, seems to play a critical role in muscle degeneration. Thus, miR-206 could represent a potential target for novel therapeutic approaches.

  4. Initial Assessment of Cyclone Global Navigation Satellite System (CYGNSS) Observations

    Science.gov (United States)

    McKague, D. S.; Ruf, C. S.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  5. Assimilation of GMS-5 satellite winds using nudging method with MM5

    Science.gov (United States)

    Gao, Shanhong; Wu, Zengmao; Yang, Bo

    2006-09-01

    With the aid of Meteorological Information Composite and Processing System (MICAPS), satellite wind vectors derived from the Geostationary Meteorological Statellite-5 (GMS-5) and retrieved by National Satellite Meteorology Center of China (NSMC) can be obtained. Based on the nudging method built in the fifth-generation Mesoscale Model (MM5) of Pennsylvania State University and National Center for Atmospheric Research, a data preprocessor is developed to convert these satellite wind vectors to those with specified format required in MM5. To examine the data preprocessor and evaluate the impact of satellite winds from GMS-5 on MM5 simulations, a series of numerical experimental forecasts consisting of four typhoon cases in 2002 are designed and implemented. The results show that the preprocessor can process satellite winds smoothly and MM5 model runs successfully with a little extra computational load during ingesting these winds, and that assimilation of satellite winds by MM5 nudging method can obviously improve typhoon track forecast but contributes a little to typhoon intensity forecast. The impact of the satellite winds depends heavily upon whether the typhoon bogussing scheme in MM5 was turned on or not. The data preprocessor developed in this paper not only can treat GMS-5 satellite winds but also has capability with little modification to process derived winds from other geostationary satellites.

  6. Overview of GNSS-R Research Program for Ocean Observations at Japan

    Science.gov (United States)

    Ichikawa, Kaoru; Ebinuma, Takuji; Akiyama, Hiroaki; Kitazawa, Yukihito

    2015-04-01

    GNSS-R is a new remote-sensing method which uses reflected GNSS signals. Since no transmitters are required, it is suitable for small satellites. Constellations of GNSS-R small satellites have abilities on revolutionary progress on 'all-time observable' remote-sensing methods . We have started a research program for GNSS-R applications on oceanographic observations under a contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) as a'Space science research base formation program'. The duration of research program is 3 years (2015-2017). The one of important focuses of this program is creation of a new community to merge space engineering and marine science through establishment on application plans of GNSS-R. Actual GNSS-R data acquisition experiments using multi-copters, ships, and/or towers are planned, together with in-situ sea truth data such as wave spectrum, wind speed profiles and sea surface height. These data are compared to determine the accuracy and resolution of the estimates based on GNSS-R observations. Meanwhile, preparation of a ground station for receiving GNSS-R satellite data will be also established. Whole those data obtained in this project will be distributed for public. This paper introduces the overview of research plan..

  7. TRAF6 regulates satellite stem cell self-renewal and function during regenerative myogenesis

    Science.gov (United States)

    Hindi, Sajedah M.; Kumar, Ashok

    2015-01-01

    Satellite cells are a stem cell population within adult muscle and are responsible for myofiber regeneration upon injury. Satellite cell dysfunction has been shown to underlie the loss of skeletal muscle mass in many acquired and genetic muscle disorders. The transcription factor paired box-protein-7 (PAX7) is indispensable for supplementing the reservoir of satellite cells and driving regeneration in normal and diseased muscle. TNF receptor–associated factor 6 (TRAF6) is an adaptor protein and an E3 ubiquitin ligase that mediates the activation of multiple cell signaling pathways in a context-dependent manner. Here, we demonstrated that TRAF6-mediated signaling is critical for homeostasis of satellite cells and their function during regenerative myogenesis. Selective deletion of Traf6 in satellite cells of adult mice led to profound muscle regeneration defects and dramatically reduced levels of PAX7 and late myogenesis markers. TRAF6 was required for the activation of MAPKs ERK1/2 and JNK1/2, which in turn activated the transcription factor c-JUN, which binds the Pax7 promoter and augments Pax7 expression. Moreover, TRAF6/c-JUN signaling repressed the levels of the microRNAs miR-1 and miR-206, which promote differentiation, to maintain PAX7 levels in satellite cells. We also determined that satellite cell–specific deletion of Traf6 exaggerates the dystrophic phenotype in the mdx (a mouse model of Duchenne muscular dystrophy) mouse by blunting the regeneration of injured myofibers. Collectively, our study reveals an essential role for TRAF6 in satellite stem cell function. PMID:26619121

  8. On the use of COSMO-SkyMed time series for the identification of Archaeological traces dating from the Eastern-Han to Northern-Wei Dynasties in Luoyang city.

    Science.gov (United States)

    Chen, Fulong; Masini, Nicola; Yang, Ruixia; Feng, Dexian; Lasaponara, Rosa

    2015-04-01

    Prospection, 20, 71-78, doi: 10.1002/arp.1452 Tapete D., Cigna F., Masini N., Lasaponara R. 2013. Prospection and monitoring of the archaeological heritage of Nasca, Peru, with ENVISAT ASAR, Archaeological Prospection, 20, 133-147, doi: 10.1002/arp.1449. Ciminale M, D Gallo, R Lasaponara, N Masini, 2009 A multiscale approach for reconstructing archaeological landscapes: applications in Northern Apulia (Italy) Archaeological Prospection 16 (3), 143-153 Lasaponara R, N Masini, 2012 Satellite Remote Sensing, A New Tool for Archaeology (Series Remote Sensing and Digital Image) Springer book Masini N, R Lasaponara, 2006, Satellite-based recognition of landscape archaeological features related to ancient human transformation Journal of Geophysics and Engineering 3 (3), 230.

  9. SACRA - global data sets of satellite-derived crop calendars for agricultural simulations: an estimation of a high-resolution crop calendar using satellite-sensed NDVI

    Science.gov (United States)

    Kotsuki, S.; Tanaka, K.

    2015-01-01

    To date, many studies have performed numerical estimations of food production and agricultural water demand to understand the present and future supply-demand relationship. A crop calendar (CC) is an essential input datum to estimate food production and agricultural water demand accurately with the numerical estimations. CC defines the date or month when farmers plant and harvest in cropland. This study aims to develop a new global data set of a satellite-derived crop calendar for agricultural simulations (SACRA) and reveal advantages and disadvantages of the satellite-derived CC compared to other global products. We estimate global CC at a spatial resolution of 5 min (≈10 km) using the satellite-sensed NDVI data, which corresponds well to vegetation growth and death on the land surface. We first demonstrate that SACRA shows similar spatial pattern in planting date compared to a census-based product. Moreover, SACRA reflects a variety of CC in the same administrative unit, since it uses high-resolution satellite data. However, a disadvantage is that the mixture of several crops in a grid is not considered in SACRA. We also address that the cultivation period of SACRA clearly corresponds to the time series of NDVI. Therefore, accuracy of SACRA depends on the accuracy of NDVI used for the CC estimation. Although SACRA shows different CC from a census-based product in some regions, multiple usages of the two products are useful to take into consideration the uncertainty of the CC. An advantage of SACRA compared to the census-based products is that SACRA provides not only planting/harvesting dates but also a peak date from the time series of NDVI data.

  10. Differential expression of FGF receptors and of myogenic regulatory factors in primary cultures of satellite cells originating from fast (EDL) and slow (Soleus) twitch rat muscles.

    Science.gov (United States)

    Martelly, I; Soulet, L; Bonnavaud, S; Cebrian, J; Gautron, J; Barritault, D

    2000-11-01

    In the rat, the fast and slow twitch muscles respectively Extensor digitorum longus (EDL) and Soleus present differential characteristics during regeneration. This suggests that their satellite cells responsible for muscle growth and repair represent distinct cellular populations. We have previously shown that satellite cells dissociated from Soleus and grown in vitro proliferate more readily than those isolated from EDL muscle. Fibroblast growth factors (FGFs) are known as regulators of myoblast proliferation and several studies have revealed a relationship between the response of myoblasts to FGF and the expression of myogenic regulatory factors (MRF) of the MyoD family by myoblasts. Therefore, we presently examined the possibility that the satellite cells isolated from EDL and Soleus muscles differ in the expression of FGF receptors (FGF-R) and of MRF expression. FGF-R1 and -R4 were strongly expressed in proliferating cultures whereas FGF-R2 and R3 were not detected in these cultures. In differentiating cultures, only -R1 was present in EDL satellite cells while FGF-R4 was also still expressed in Soleus cells. Interestingly, the unconventional receptor for FGF called cystein rich FGF receptor (CFR), of yet unknown function, was mainly detected in EDL satellite cell cultures. Soleus and EDL satellite cell cultures also differed in the expression MRFs. These results are consistent with the notion that satellite cells from fast and slow twitch muscles belong to different types of myogenic cells and suggest that satellite cells might play distinct roles in the formation and diversification of fast and slow fibres.

  11. Estimating Next Primary Productivity using Satellite and Ancillary Data

    Science.gov (United States)

    Choudhury, B. J.

    The net primary productivity (C) or annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of the rate of gross photosynthesis (Ag) and autotrophic respiration (R) per unit ground area. Although available observations show that R is a large and variable fraction of Ag, viz., 0.3 to 0.7, it is generally recognized that much uncertainties exist in this fraction due to difficulties associated with the needed measurements. Additional uncertainties arise when these measurements are extrapolated to regional or global land surface using empirical equations, for example, using regression equations relating C to mean annual precipitation and air temperature. Here, a process- based approach has been taken to calculate Ag and R using satellite and ancillary data. Ag has been expressed as a product of radiation use efficiency, magnitude of intercepted photosynthetically active radiation (PAR), and normalized by stresses due to soil water shortage and air temperature away from the optimum range. A biophysical model has been used to determine the radiation use efficiency from the maximum rate of carbon assimilation by a leaf, foliage temperature, and the fraction of diffuse PAR incident on a canopy. All meteorological data (PAR, air temperature, precipitation, etc.) needed for the calculation are derived from satellite observations, while a land use, land cover data (based on satellite and ground measurements) have been used to assess the maximum rate of carbon assimilation by a leaf of varied cover type based on field measurements. R has been calculated as the sum of maintenance and growth components. The maintenance respiration of foliage and live fine roots at a standard temperature of different land cover has been determined from their nitrogen content using field and satellite measurements, while that of living fraction of woody stem (viz., sapwood) from the seasonal maximum leaf area index as determined from satellite

  12. The Process of Planning and Designing Research for an Educational Telecommunications Effort. Satellite Technology Demonstration, Technical Report No. 0209.

    Science.gov (United States)

    Connolly, A. J.; And Others

    The Satellite Technology Demonstration (STD) designed research for a satellite-based communication system that would transmit educational television programs. Their procedures were subject to a series of external and internal evaluations by the project sponsors, the National Institute of Education. In regard to external evaluation, STD recommended…

  13. TOGA COARE Satellite data summaries available on the World Wide Web

    Science.gov (United States)

    Chen, S. S.; Houze, R. A., Jr.; Mapes, B. E.; Brodzick, S. R.; Yutler, S. E.

    1995-01-01

    Satellite data summary images and analysis plots from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE), which were initially prepared in the field at the Honiara Operations Center, are now available on the Internet via World Wide Web browsers such as Mosaic. These satellite data summaries consist of products derived from the Japanese Geosynchronous Meteorological Satellite IR data: a time-size series of the distribution of contiguous cold cloudiness areas, weekly percent high cloudiness (PHC) maps, and a five-month time-longitudinal diagram illustrating the zonal motion of large areas of cold cloudiness. The weekly PHC maps are overlaid with weekly mean 850-hPa wind calculated from the European Centre for Medium-Range Weather Forecasts (ECMWF) global analysis field and can be viewed as an animation loop. These satellite summaries provide an overview of spatial and temporal variabilities of the cloud population and a large-scale context for studies concerning specific processes of various components of TOGA COARE.

  14. Translation goes to the movies

    CERN Document Server

    Cronin, Michael

    2008-01-01

    This highly accessible introduction to translation theory, written by a leading author in the field, uses the genre of film to bring the main themes in translation to life. Through analyzing films as diverse as the Marx Brothers' A Night at the Opera, The Star Wars Trilogies and Lost in Translation, the reader is encouraged to think about both issues and problems of translation as they are played out on the screen and issues of filmic representation through examining the translation dimension of specific films. In highlighting how translation has featured in both mainstream commercial and arthouse films over the years, Cronin shows how translation has been a concern of filmmakers dealing with questions of culture, identity, conflict and representation. This book is a lively and accessible text for translation theory courses and offers a new and largely unexplored approach to topics of identity and representation on screen. Translation Goes to the Movies will be of interest to those on translation studies...

  15. Daily and Hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    Science.gov (United States)

    Mu, M.; Randerson, J. T.; van der Werf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We distributed monthly GFED3 emissions during 2003-2009 on a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) active fire observations. We found that patterns of daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of bunting in savannas. On diurnal timescales, our analysis of the GOES active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates.

  16. Dissemination of satellite-based river discharge and flood data

    Science.gov (United States)

    Kettner, A. J.; Brakenridge, G. R.; van Praag, E.; de Groeve, T.; Slayback, D. A.; Cohen, S.

    2014-12-01

    In collaboration with NASA Goddard Spaceflight Center and the European Commission Joint Research Centre, the Dartmouth Flood Observatory (DFO) daily measures and distributes: 1) river discharges, and 2) near real-time flood extents with a global coverage. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations', and observed time series cover 1998 to the present. The advantages over in-situ gauged discharges are: a) easy access to remote or due to political reasons isolated locations, b) relatively low maintenance costs to maintain a continuous observational record, and c) the capability to obtain measurements during floods, hazardous conditions that often impair or destroy in-situ stations. Two MODIS instruments aboard the NASA Terra and Aqua satellites provide global flood extent coverage at a spatial resolution of 250m. Cloud cover hampers flood extent detection; therefore we ingest 6 images (the Terra and Aqua images of each day, for three days), in combination with a cloud shadow filter, to provide daily global flood extent updates. The Flood Observatory has always made it a high priority to visualize and share its data and products through its website. Recent collaborative efforts with e.g. GeoSUR have enhanced accessibility of DFO data. A web map service has been implemented to automatically disseminate geo-referenced flood extent products into client-side GIS software. For example, for Latin America and the Caribbean region, the GeoSUR portal now displays current flood extent maps, which can be integrated and visualized with other relevant geographical data. Furthermore, the flood state of satellite-observed river discharge sites are displayed through the portal as well. Additional efforts include implementing Open Geospatial Consortium (OGC) standards to incorporate Water Markup Language (WaterML) data exchange mechanisms to further facilitate the distribution of the satellite

  17. Retrieval of Leaf Area Index (LAI and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR from VIIRS Time-Series Data

    Directory of Open Access Journals (Sweden)

    Zhiqiang Xiao

    2016-04-01

    Full Text Available Long-term high-quality global leaf area index (LAI and fraction of absorbed photosynthetically active radiation (FAPAR products are urgently needed for the study of global change, climate modeling, and many other problems. As the successor of the Moderate Resolution Imaging Spectroradiometer (MODIS sensor, the Visible Infrared Imaging Radiometer Suite (VIIRS will continue to provide global environmental measurements. This paper aims to generate longer time series Global LAnd Surface Satellite (GLASS LAI and FAPAR products after the era of the MODIS sensor. To ensure spatial and temporal consistencies between GLASS LAI/FAPAR values retrieved from different satellite observations, the GLASS LAI/FAPAR retrieval algorithms were adapted in this study to retrieve LAI and FAPAR values from VIIRS surface reflectance time-series data. After reprocessing of the VIIRS surface reflectance to remove remaining effects of cloud contamination and other factors, a database generated from the GLASS LAI product and the reprocessed VIIRS surface reflectance for all Benchmark Land Multisite Analysis and Intercomparison of Products (BELMANIP sites was used to train general regression neural networks (GRNNs. The reprocessed VIIRS surface reflectance data from an entire year were entered into the trained GRNNs to estimate the one-year LAI values, which were then used to calculate FAPAR values. A cross-comparison indicates that the LAI and FAPAR values retrieved from VIIRS surface reflectance were generally consistent with the GLASS, MODIS and Geoland2/BioPar version 1 (GEOV1 LAI/FAPAR values in their spatial patterns. The LAI/FAPAR values retrieved from VIIRS surface reflectance achieved good agreement with the GLASS LAI/FAPAR values (R2 = 0.8972 and RMSE = 0.3054; and R2 = 0.9067 and RMSE = 0.0529, respectively. However, validation of the LAI and FAPAR values derived from VIIRS reflectance data is now limited by the scarcity of LAI/FAPAR ground measurements.

  18. Estimating the Impact of Urban Expansion on Land Subsidence Using Time Series of DMSP Night-Time Light Satellite Imagery

    Science.gov (United States)

    Jiao, S.; Yu, J.; Wang, Y.; Zhu, L.; Zhou, Q.

    2018-04-01

    In recent decades, urbanization has resulted a massive increase in the amount of infrastructure especially large buildings in large cities worldwide. There has been a noticeable expansion of entire cities both horizontally and vertically. One of the common consequences of urban expansion is the increase of ground loads, which may trigger land subsidence and can be a potential threat of public safety. Monitoring trends of urban expansion and land subsidence using remote sensing technology is needed to ensure safety along with urban planning and development. The Defense Meteorological Satellite Program Operational Line scan System (DMSP/OLS) Night-Time Light (NTL) images have been used to study urbanization at a regional scale, proving the capability of recognizing urban expansion patterns. In the current study, a normalized illuminated urban area dome volume (IUADV) based on inter-calibrated DMSP/OLS NTL images is shown as a practical approach for estimating urban expansion of Beijing at a single period in time and over subsequent years. To estimate the impact of urban expansion on land subsidence, IUADV was correlated with land subsidence rates obtained using the Stanford Method for Persistent Scatterers (StaMPS) approach within the Persistent Scatterers InSAR (PSInSAR) methodology. Moderate correlations are observed between the urban expansion based on the DMSP/OLS NTL images and land subsidence. The correlation coefficients between the urban expansion of each year and land subsidence tends to gradually decrease over time (Coefficient of determination R = 0.80 - 0.64 from year 2005 to year 2010), while the urban expansion of two sequential years exhibit an opposite trend (R = 0.29 - 0.57 from year 2005 to year 2010) except for the two sequential years between 2007 and 2008 (R = 0.14).

  19. Orbit Determination from Tracking Data of Artificial Satellite Using the Method of Differential Correction

    OpenAIRE

    Byoung-Sun Lee; Jung-Hyun Jo; Sang-Young Park; Kyu-Hong Choi; Chun-Hwey Kim

    1988-01-01

    The differential correction process determining osculating orbital elements as correct as possible at a given instant of time from tracking data of artificial satellite was accomplished. Preliminary orbital elements were used as an initial value of the differential correction procedure and iterated until the residual of real observation(O) and computed observation(C) was minimized. Tracking satellite was NOAA-9 or TIROS-N series. Two types of tracking data were prediction data precomputed fro...

  20. Comparison of a new global empirical ion composition model with available satellite data

    Czech Academy of Sciences Publication Activity Database

    Truhlík, Vladimír; Třísková, Ludmila; Šmilauer, Jan; Iwamoto, I.

    2003-01-01

    Roč. 31, č. 3 (2003), s. 665-675 ISSN 0273-1177 R&D Projects: GA ČR GP205/02/P037; GA AV ČR IAA3042201; GA AV ČR IAB3042104 Institutional research plan: CEZ:AV0Z3042911 Keywords : satellite data * ion composition model * outer ionosphere Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.483, year: 2003

  1. Local time dependences of electron flux changes during substorms derived from mulit-satellite observation at synchronous orbit

    International Nuclear Information System (INIS)

    Nagai, T.

    1982-01-01

    Energetic electron (energy higher than 2 MeV) observation by a synchronous satellite chain (which consists of GOES 2, GOES 3, and GMS covering the local time extent of approximately 10 hr) have been used to study the large-scale characteristics of the dynamic behavior in the near-earth magnetosphere for substorms, in which low-latitude positive bay aspects are clearly seen in the ground magnetic data. Simultaneous multi-satellite observations have clearly demonstrated the local time dependence of electron flux changes during substorms and the longitudinal extent of electron flux variations. Before a ground substorm onset the energetic electron flux decreases in a wide longitudinal region of the nighttime and the flux decrease is seen even on the afternoonside. For the flux behavior associated with the onset of the substorm expansion phase, there exists a demarcation line, the LT position of which can be represented as LT = 24.3-1.5 K/sub p/. The flux shows a recovery to a normal level east of the demarcation line, and it shows a decrease west of the demarcation line. The region of the flux decrease during the expansion phase is restricted, and it is observed mainly on the afternoonside. The afternoonside flux decrease has a different characteristic from the nightside flux decrease preceding the expansion phase. The nighside flux decrease-recovery sequence is observed in a wide region of more than 6 hr in the nighttime and the center of this variation exists in the premidnight region. It should be noted that the afternoonside flux decrease is not observed for every substorm and the nightside signature noted that the afternoonside flux sometimes becomes a dominent feature even on the afternoonside

  2. The BEYOND center of excellence for the effective exploitation of satellite time series towards natural disasters monitoring and assessment

    Science.gov (United States)

    Kontoes, Charalampos; Papoutsis, Ioannis; Amiridis, Vassilis; Balasis, George; Keramitsoglou, Iphigenia; Herekakis, Themistocles; Christia, Eleni

    2014-05-01

    analysis of the satellite time series from this diverse EO based monitoring network facilities established at NOA covers a broad spectrum of research activities. Indicatively using Landsat TM/ETM+ imagery we have developed algorithms for the automatic diachronic mapping of burnt areas over Greece since 1984 and we have been using MSG/SEVIRI data to detect forest wildfires in Greece since 2007, analyze their temporal and geographical signatures and store these events for further analysis in relation with auxiliary geo-information layers for risk assessment applications. In the field of geophysics we have been employing sophisticated radar interferometry techniques using SAR sensor diversity with multi-frequency, multi-resolution and multi-temporal datasets (e.g. ERS1/ERS2, ENVISAT, TerraSAR-X, COSMO-SkyMED) to map diachronic surface deformation associated with volcanic activity, tectonic stress accumulation and urban subsidence. In the field of atmospheric research, we have developed a 3-dimentional global climatology of aerosol and cloud distributions using the CALIPSO dataset. The database, called LIVAS, will continue utilizing CALIPSO observations but also datasets from the upcoming ADM-Aeolus and EarthCARE ESA missions in order to provide a unique historical dataset of global aerosol and cloud vertical distributions, as well as respective trends in cloud cover, aerosol/cloud amount and variability of the natural and anthropogenic aerosol component. Additionally, our team is involved in Swarm magnetic field constellation, a new Earth Explorer mission in ESA's Living Planet Programme launched on November 22, 2013, as member of the validation team of the mission. Finally, assessment of heat wave risk and hazards is carried out systematically using MODIS satellite data.

  3. Operational Use of the AIRS Total Column Ozone Retrievals Along with the RGB Air Mass Product as Part of the GOES-R Proving Ground

    Science.gov (United States)

    Folmer, Michael; Zavodsky, Bradley; Molthan, Andrew

    2012-01-01

    The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Hydrometeorological Prediction Center (HPC) and Ocean Prediction Center (OPC) provide short-term and medium-range forecast guidance of heavy precipitation, strong winds, and other features often associated with mid-latitude cyclones over both land and ocean. As a result, detection of factors that lead to rapid cyclogenesis and high wind events is key to improving forecast skill. One phenomenon that has been identified with these events is the stratospheric intrusion that occurs near tropopause folds. This allows for deep mixing near the top of the atmosphere where dry air high in ozone concentrations and potential vorticity descends (sometimes rapidly) deep into the mid-troposphere. Observations from satellites can aid in detection of these stratospheric air intrusions (SAI) regions. Specifically, multispectral composite imagery assign a variety of satellite spectral bands to the red, green, and blue (RGB) color components of imagery pixels and result in color combinations that can assist in the detection of dry stratospheric air associated with PV advection, which in turn may alert forecasters to the possibility of a rapidly strengthening storm system. Single channel or RGB satellite imagery lacks quantitative information about atmospheric moisture unless the sampled brightness temperatures or other data are converted to estimates of moisture via a retrieval process. Thus, complementary satellite observations are needed to capture a complete picture of a developing storm system. Here, total column ozone retrievals derived from a hyperspectral sounder are used to confirm the extent and magnitude of SAIs. Total ozone is a good proxy for defining locations and intensity of SAIs and has been used in studies evaluating that phenomenon (e.g. Tian et al. 2007, Knox and Schmidt 2005). Steep gradients in values of total ozone seen by satellites have been linked

  4. Detecting land cover change using an extended Kalman filter on MODIS NDVI time-series data

    CSIR Research Space (South Africa)

    Kleynhans, W

    2011-05-01

    Full Text Available A method for detecting land cover change using NDVI time-series data derived from 500-m MODIS satellite data is proposed. The algorithm acts as a per-pixel change alarm and takes the NDVI time series of a 3 × 3 grid of MODIS pixels as the input...

  5. Operational use of open satellite data for marine water quality monitoring

    Science.gov (United States)

    Symeonidis, Panagiotis; Vakkas, Theodoros

    2017-09-01

    The purpose of this study was to develop an operational platform for marine water quality monitoring using near real time satellite data. The developed platform utilizes free and open satellite data available from different data sources like COPERNICUS, the European Earth Observation Initiative, or NASA, from different satellites and instruments. The quality of the marine environment is operationally evaluated using parameters like chlorophyll-a concentration, water color and Sea Surface Temperature (SST). For each parameter, there are more than one dataset available, from different data sources or satellites, to allow users to select the most appropriate dataset for their area or time of interest. The above datasets are automatically downloaded from the data provider's services and ingested to the central, spatial engine. The spatial data platform uses the Postgresql database with the PostGIS extension for spatial data storage and Geoserver for the provision of the spatial data services. The system provides daily, 10 days and monthly maps and time series of the above parameters. The information is provided using a web client which is based on the GET SDI PORTAL, an easy to use and feature rich geospatial visualization and analysis platform. The users can examine the temporal variation of the parameters using a simple time animation tool. In addition, with just one click on the map, the system provides an interactive time series chart for any of the parameters of the available datasets. The platform can be offered as Software as a Service (SaaS) to any area in the Mediterranean region.

  6. GHRSST Level 2P Western Pacific Regional Skin Sea Surface Temperature from the Multifunctional Transport Satellite 2 (MTSAT-2) (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Multi-functional Transport Satellites (MTSAT) are a series of geostationary weather satellites operated by the Japan Meteorological Agency (JMA). MTSAT carries an...

  7. Time-Series Analysis: A Cautionary Tale

    Science.gov (United States)

    Damadeo, Robert

    2015-01-01

    Time-series analysis has often been a useful tool in atmospheric science for deriving long-term trends in various atmospherically important parameters (e.g., temperature or the concentration of trace gas species). In particular, time-series analysis has been repeatedly applied to satellite datasets in order to derive the long-term trends in stratospheric ozone, which is a critical atmospheric constituent. However, many of the potential pitfalls relating to the non-uniform sampling of the datasets were often ignored and the results presented by the scientific community have been unknowingly biased. A newly developed and more robust application of this technique is applied to the Stratospheric Aerosol and Gas Experiment (SAGE) II version 7.0 ozone dataset and the previous biases and newly derived trends are presented.

  8. A multisatellite case study of the expansion of a substorm current wedge in the near-Earth magnetotail

    International Nuclear Information System (INIS)

    Lopez, R.E.; Lui, A.T.Y.

    1990-01-01

    This study presents observations made by four spacecraft (AMPTE CCE, AMPTE IRM, GOES 5, and GOES 6) and two ground stations (San Juan and Tucson) during a substorm that occurred at ∼0830 UT on April 19, 1985. The spacecraft were arrayed in a configuration that allows for the examination of the spatial evolution of the substorm current wedge, CCE was located between the GOES spacecraft in longitude, but at a radial distance of 8.0 R E . IRM was located west of the other three spacecraft in the same sector as Tucson, but at a radial distance of 11.6 R E . The relative times at which the signature of the substorm current wedge was first observed at the GOES spacecraft and the ground stations are consistent with a simple longitudinally expanding current wedge. However, the times at which IRM and CCE observed the current wedge are not consistent with a current wedge that expanded only longitudinally, IRM first observed the signature of the current wedge at about the same time the signature was observed by GOES 6 and Tucson, and CCE observed the current wedge only after both GOES satellites and the ground stations had done so. Moreover, both GOES spacecraft observed signatures consistent with entry into the central plasma sheet before CCE and IRM did, even though we estimate that CCE was slightly closer to the neutral sheet than the geosynchronous spacecraft. The sequence of events suggests that during this substorm the disruption of the cross-tail current sheet, the formation of the substorm current wedge, and the expansion of the plasma sheet began in the near-Earth region, and subsequently spread tailward as well as longitudinally

  9. Particulate matter concentration mapping from MODIS satellite data: a Vietnamese case study

    Science.gov (United States)

    Nguyen, Thanh T. N.; Bui, Hung Q.; Pham, Ha V.; Luu, Hung V.; Man, Chuc D.; Pham, Hai N.; Le, Ha T.; Nguyen, Thuy T.

    2015-09-01

    Particulate Matter (PM) pollution is one of the most important air quality concerns in Vietnam. In this study, we integrate ground-based measurements, meteorological and satellite data to map temporal PM concentrations at a 10 × 10 km grid for the entire of Vietnam. We specifically used MODIS Aqua and Terra data and developed statistically-significant regression models to map and extend the ground-based PM concentrations. We validated our models over diverse geographic provinces i.e., North East, Red River Delta, North Central Coast and South Central Coast in Vietnam. Validation suggested good results for satellite-derived PM2.5 data compared to ground-based PM2.5 (n = 285, r2 = 0.411, RMSE = 20.299 μg m-3 and RE = 39.789%). Further, validation of satellite-derived PM2.5 on two independent datasets for North East and South Central Coast suggested similar results (n = 40, r2 = 0.455, RMSE = 21.512 μg m-3, RE = 45.236% and n = 45, r2 = 0.444, RMSE = 8.551 μg m-3, RE = 46.446% respectively). Also, our satellite-derived PM2.5 maps were able to replicate seasonal and spatial trends of ground-based measurements in four different regions. Our results highlight the potential use of MODIS datasets for PM estimation at a regional scale in Vietnam. However, model limitation in capturing maximal or minimal PM2.5 peaks needs further investigations on ground data, atmospheric conditions and physical aspects.

  10. Forecasting Global Horizontal Irradiance Using the LETKF and a Combination of Advected Satellite Images and Sparse Ground Sensors

    Science.gov (United States)

    Harty, T. M.; Lorenzo, A.; Holmgren, W.; Morzfeld, M.

    2017-12-01

    The irradiance incident on a solar panel is the main factor in determining the power output of that panel. For this reason, accurate global horizontal irradiance (GHI) estimates and forecasts are critical when determining the optimal location for a solar power plant, forecasting utility scale solar power production, or forecasting distributed, behind the meter rooftop solar power production. Satellite images provide a basis for producing the GHI estimates needed to undertake these objectives. The focus of this work is to combine satellite derived GHI estimates with ground sensor measurements and an advection model. The idea is to use accurate but sparsely distributed ground sensors to improve satellite derived GHI estimates which can cover large areas (the size of a city or a region of the United States). We use a Bayesian framework to perform the data assimilation, which enables us to produce irradiance forecasts and associated uncertainties which incorporate both satellite and ground sensor data. Within this framework, we utilize satellite images taken from the GOES-15 geostationary satellite (available every 15-30 minutes) as well as ground data taken from irradiance sensors and rooftop solar arrays (available every 5 minutes). The advection model, driven by wind forecasts from a numerical weather model, simulates cloud motion between measurements. We use the Local Ensemble Transform Kalman Filter (LETKF) to perform the data assimilation. We present preliminary results towards making such a system useful in an operational context. We explain how localization and inflation in the LETKF, perturbations of wind-fields, and random perturbations of the advection model, affect the accuracy of our estimates and forecasts. We present experiments showing the accuracy of our forecasted GHI over forecast-horizons of 15 mins to 1 hr. The limitations of our approach and future improvements are also discussed.

  11. Overview of intercalibration of satellite instruments

    Science.gov (United States)

    Chander, G.; Hewison, T.J.; Fox, N.; Wu, X.; Xiong, X.; Blackwell, W.J.

    2013-01-01

    Inter-calibration of satellite instruments is critical for detection and quantification of changes in the Earth’s environment, weather forecasting, understanding climate processes, and monitoring climate and land cover change. These applications use data from many satellites; for the data to be inter-operable, the instruments must be cross-calibrated. To meet the stringent needs of such applications requires that instruments provide reliable, accurate, and consistent measurements over time. Robust techniques are required to ensure that observations from different instruments can be normalized to a common scale that the community agrees on. The long-term reliability of this process needs to be sustained in accordance with established reference standards and best practices. Furthermore, establishing physical meaning to the information through robust Système International d'unités (SI) traceable Calibration and Validation (Cal/Val) is essential to fully understand the parameters under observation. The processes of calibration, correction, stability monitoring, and quality assurance need to be underpinned and evidenced by comparison with “peer instruments” and, ideally, highly calibrated in-orbit reference instruments. Inter-calibration between instruments is a central pillar of the Cal/Val strategies of many national and international satellite remote sensing organizations. Inter-calibration techniques as outlined in this paper not only provide a practical means of identifying and correcting relative biases in radiometric calibration between instruments but also enable potential data gaps between measurement records in a critical time series to be bridged. Use of a robust set of internationally agreed upon and coordinated inter-calibration techniques will lead to significant improvement in the consistency between satellite instruments and facilitate accurate monitoring of the Earth’s climate at uncertainty levels needed to detect and attribute the mechanisms

  12. Applied econometrics with R

    CERN Document Server

    Kleiber, Christian

    2008-01-01

    Offers an introduction to the R system for users with a background in economics. This book covers a variety of regression models, regression diagnostics and robustness issues, the nonlinear models of microeconomics, time series and time series econometrics.

  13. Complete Genome Sequence of vB_BveP-Goe6, a Virus Infecting Bacillus velezensis FZB42.

    Science.gov (United States)

    Schilling, Tobias; Hoppert, Michael; Daniel, Rolf; Hertel, Robert

    2018-02-22

    The new virus vB_BveP-Goe6 was isolated on the host organism Bacillus velezensis FZB42. The virus morphology indicated its association with the genus Phi29virus The genome of vB_BveP-Goe6 (19,105 bp) comprises a linear chromosome with a GC content of 39.99%. The genome harbors 26 putative protein-coding genes and a noncoding packaging RNA. Copyright © 2018 Schilling et al.

  14. The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Stenseng, Lars

    2015-01-01

    The DTU13MSS is the latest release of the global high resolution mean sea surface (MSS) from DTU Space. The new MSS is based on multi-mission satellite altimetry from 10 different satellites. Three major advances have been made in order to release the new MSS. The time series have been extended t...

  15. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    Science.gov (United States)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial

  16. Past, Current and Future of the Advanced Microwave Scanning Radiometer (AMSR) Series

    Science.gov (United States)

    Kachi, M.; Maeda, T.; Ono, N.; Tomii, N.; Kasahara, M.; Mokuno, M.; Sobue, S.

    2017-12-01

    Due to its penetrating capability, passive microwave remote sensing provides all-weather observation of the Earth's surface through clouds, and has bulk sensitivity to atmospheric column and some land surface layers such as snow. The first AMSR series instrument on orbit was the AMSR for EOS (AMSR-E) provided to NASA's Aqua satellite launched in May 2002. AMSR-E had 1.6-m diameter antenna and 14 channels with V and H polarizations including surface-sensitive C-band (6.9-GHz) channels those were not available in previous passive microwave imagers. Instant Field Of View (IFOV) of AMSR-E is largely improved due to antenna size. This IFOV improvement mainly contribute to C-band channel since its IFOV is larger (75x43-km) even though bigger antenna size. The latest AMSR series instrument on orbit, AMSR-2, was launched in May 2012 on board the Global Change Observation Mission - Water (GCOM-W) satellite. The GCOM-W satellite was injected to the A-train orbit to keep observation continuities to AMSR-E and seek synergies with the other A-train constellation satellites. Antenna size of AMSR-2 is 2.0-m diameter with 16 channels. Channel set is almost identical to that of AMSR-E, but new 7.3-GHz channels are added along with previous 6.9-GHz channels to mitigate influence of Radio Frequency Interferences (RFIs) in brightness temperature. IFOV of AMSR-2 is also improved from AMSR-E due to larger antenna size. AMSR-2 has completed its 5-year designed mission life in May 2017, and continues scientific observations without any serious problem. Besides the 10-month gaps between AMSR-E and AMSR2, the AMSR series provide long-term high-resolution and highly-frequent global observation of water-related parameters over 15-year. Upon the success of AMSR series, we have started discussion of possible follow-on mission with various user communities as well as expansion of application of AMSR-2 and follow-on data in new fields. Highest priority from users is gap-less, in terms of both

  17. Data imputation analysis for Cosmic Rays time series

    Science.gov (United States)

    Fernandes, R. C.; Lucio, P. S.; Fernandez, J. H.

    2017-05-01

    The occurrence of missing data concerning Galactic Cosmic Rays time series (GCR) is inevitable since loss of data is due to mechanical and human failure or technical problems and different periods of operation of GCR stations. The aim of this study was to perform multiple dataset imputation in order to depict the observational dataset. The study has used the monthly time series of GCR Climax (CLMX) and Roma (ROME) from 1960 to 2004 to simulate scenarios of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% of missing data compared to observed ROME series, with 50 replicates. Then, the CLMX station as a proxy for allocation of these scenarios was used. Three different methods for monthly dataset imputation were selected: AMÉLIA II - runs the bootstrap Expectation Maximization algorithm, MICE - runs an algorithm via Multivariate Imputation by Chained Equations and MTSDI - an Expectation Maximization algorithm-based method for imputation of missing values in multivariate normal time series. The synthetic time series compared with the observed ROME series has also been evaluated using several skill measures as such as RMSE, NRMSE, Agreement Index, R, R2, F-test and t-test. The results showed that for CLMX and ROME, the R2 and R statistics were equal to 0.98 and 0.96, respectively. It was observed that increases in the number of gaps generate loss of quality of the time series. Data imputation was more efficient with MTSDI method, with negligible errors and best skill coefficients. The results suggest a limit of about 60% of missing data for imputation, for monthly averages, no more than this. It is noteworthy that CLMX, ROME and KIEL stations present no missing data in the target period. This methodology allowed reconstructing 43 time series.

  18. Primary Productivity, NASA Aqua MODIS and GOES Imager, 0.1 degrees, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from NASA Aqua MODIS Chl a and NOAA GOES Imager SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific...

  19. Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice.

    Science.gov (United States)

    Murach, Kevin A; White, Sarah H; Wen, Yuan; Ho, Angel; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2017-07-10

    Pax7+ satellite cells are required for skeletal muscle fiber growth during post-natal development in mice. Satellite cell-mediated myonuclear accretion also appears to persist into early adulthood. Given the important role of satellite cells during muscle development, we hypothesized that the necessity of satellite cells for adaptation to an imposed hypertrophic stimulus depends on maturational age. Pax7 CreER -R26R DTA mice were treated for 5 days with vehicle (satellite cell-replete, SC+) or tamoxifen (satellite cell-depleted, SC-) at 2 months (young) and 4 months (mature) of age. Following a 2-week washout, mice were subjected to sham surgery or 10 day synergist ablation overload of the plantaris (n = 6-9 per group). The surgical approach minimized regeneration, de novo fiber formation, and fiber splitting while promoting muscle fiber growth. Satellite cell density (Pax7+ cells/fiber), embryonic myosin heavy chain expression (eMyHC), and muscle fiber cross sectional area (CSA) were evaluated via immunohistochemistry. Myonuclei (myonuclei/100 mm) were counted on isolated single muscle fibers. Tamoxifen treatment depleted satellite cells by ≥90% and prevented myonuclear accretion with overload in young and mature mice (p overload. Average muscle fiber CSA increased ~20% in young SC+ (p = 0.07), mature SC+ (p overload (p overload-induced hypertrophy is dependent on maturational age, and global responses to overload differ in young versus mature mice.

  20. Dynamics in mangroves assessed by high-resolution and multi-temporal satellite data: a case study in Zhanjiang Mangrove National Nature Reserve (ZMNNR, P. R. China

    Directory of Open Access Journals (Sweden)

    K. Leempoel

    2013-08-01

    Full Text Available Mangrove forests are declining across the globe, mainly because of human intervention, and therefore require an evaluation of their past and present status (e.g. areal extent, species-level distribution, etc. to implement better conservation and management strategies. In this paper, mangrove cover dynamics at Gaoqiao (P. R. China were assessed through time using 1967, 2000 and 2009 satellite imagery (sensors Corona KH-4B, Landsat ETM+, GeoEye-1 respectively. Firstly, multi-temporal analysis of satellite data was undertaken, and secondly biotic and abiotic differences were analysed between the different mangrove stands, assessed through a supervised classification of a high-resolution satellite image. A major decline in mangrove cover (−36% was observed between 1967 and 2009 due to rice cultivation and aquaculture practices. Moreover, dike construction has prevented mangroves from expanding landward. Although a small increase of mangrove area was observed between 2000 and 2009 (+24%, the ratio mangrove / aquaculture kept decreasing due to increased aquaculture at the expense of rice cultivation in the vicinity. From the land-use/cover map based on ground-truth data (5 × 5 m plot-based tree measurements (August–September, 2009 as well as spectral reflectance values (obtained from pansharpened GeoEye-1, both Bruguiera gymnorrhiza and small Aegiceras corniculatum are distinguishable at 73–100% accuracy, whereas tall A. corniculatum was correctly classified at only 53% due to its mixed vegetation stands with B. gymnorrhiza (overall classification accuracy: 85%. In the case of sediments, sand proportion was significantly different between the three mangrove classes. Overall, the advantage of very high resolution satellite images like GeoEye-1 (0.5 m for mangrove spatial heterogeneity assessment and/or species-level discrimination was well demonstrated, along with the complexity to provide a precise classification for non-dominant species (e

  1. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    Science.gov (United States)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  2. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    Science.gov (United States)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  3. ATLAS Tier-2 at the Compute Resource Center GoeGrid in Göttingen

    Science.gov (United States)

    Meyer, Jörg; Quadt, Arnulf; Weber, Pavel; ATLAS Collaboration

    2011-12-01

    GoeGrid is a grid resource center located in Göttingen, Germany. The resources are commonly used, funded, and maintained by communities doing research in the fields of grid development, computer science, biomedicine, high energy physics, theoretical physics, astrophysics, and the humanities. For the high energy physics community, GoeGrid serves as a Tier-2 center for the ATLAS experiment as part of the world-wide LHC computing grid (WLCG). The status and performance of the Tier-2 center is presented with a focus on the interdisciplinary setup and administration of the cluster. Given the various requirements of the different communities on the hardware and software setup the challenge of the common operation of the cluster is detailed. The benefits are an efficient use of computer and personpower resources.

  4. Saturn satellites

    International Nuclear Information System (INIS)

    Ruskol, E.L.

    1981-01-01

    The characteristics of the Saturn satellites are discussed. The satellites close to Saturn - Janus, Mimas, Enceladus, Tethys, Dione and Rhea - rotate along the circular orbits. High reflectivity is attributed to them, and the density of the satellites is 1 g/cm 3 . Titan is one of the biggest Saturn satellites. Titan has atmosphere many times more powerful than that of Mars. The Titan atmosphere is a peculiar medium with a unique methane and hydrogen distribution in the whole Solar system. The external satellites - Hyperion, Japetus and Phoebe - are poorly investigated. Neither satellite substance density, nor their composition are known. The experimental data on the Saturn rings obtained on the ''Pioneer-11'' and ''Voyager-1'' satellites are presented [ru

  5. Spatial and Temporal Homogeneity of Solar Surface Irradiance across Satellite Generations

    Directory of Open Access Journals (Sweden)

    Rebekka Posselt

    2011-05-01

    Full Text Available Solar surface irradiance (SIS is an essential variable in the radiation budget of the Earth. Climate data records (CDR’s of SIS are required for climate monitoring, for climate model evaluation and for solar energy applications. A 23 year long (1983–2005 continuous and validated SIS CDR based on the visible channel (0.45–1 μm of the MVIRI instruments onboard the first generation of Meteosat satellites has recently been generated using a climate version of the well established Heliosat method. This version of the Heliosat method includes a newly developed self-calibration algorithm and an improved algorithm to determine the clear sky reflection. The climate Heliosat version is also applied to the visible narrow-band channels of SEVIRI onboard the Meteosat Second Generation Satellites (2004–present. The respective channels are observing the Earth in the wavelength region at about 0.6 μm and 0.8 μm. SIS values of the overlapping time period are used to analyse whether a homogeneous extension of the MVIRI CDR is possible with the SEVIRI narrowband channels. It is demonstrated that the spectral differences between the used visible channels leads to significant differences in the solar surface irradiance in specific regions. Especially, over vegetated areas the reflectance exhibits a high spectral dependency resulting in large differences in the retrieved SIS. The applied self-calibration method alone is not able to compensate the spectral differences of the channels. Furthermore, the extended range of the input values (satellite counts enhances the cloud detection of the SEVIRI instruments resulting in lower values for SIS, on average. Our findings have implications for the application of the Heliosat method to data from other geostationary satellites (e.g., GOES, GMS. They demonstrate the need for a careful analysis of the effect of spectral and technological differences in visible channels on the retrieved solar irradiance.

  6. Merging Satellite Precipitation Products for Improved Streamflow Simulations

    Science.gov (United States)

    Maggioni, V.; Massari, C.; Barbetta, S.; Camici, S.; Brocca, L.

    2017-12-01

    statistics, as well as bias reduction and correlation coefficient, with the Bayesian approach being superior to other methods. A study case in the Tiber river basin is also presented to discuss the performance of forcing a hydrological model with the merged satellite precipitation product to simulate streamflow time series.

  7. Debris Likelihood, based on GhostNet, NASA Aqua MODIS, and GOES Imager, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Debris Likelihood Index (Estimated) is calculated from GhostNet, NASA Aqua MODIS Chl a and NOAA GOES Imager SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended...

  8. Strongest Tropical cyclones: 1980-2009: A 30-year collage of Hurricane Satellite (HURSAT) data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Strongest Tropical Cyclones: 1980-2009 poster - a 30-year collage of Hurricane Satellite (HURSAT) data. This poster depicts a series of 5 degree grids where within...

  9. CpSAT-1, a transcribed satellite sequence from the codling moth, Cydia pomonella

    Czech Academy of Sciences Publication Activity Database

    Věchtová, Pavlína; Dalíková, Martina; Sýkorová, Miroslava; Žurovcová, Martina; Füssy, Zoltán; Zrzavá, Magda

    2016-01-01

    Roč. 144, č. 4 (2016), s. 385-395 ISSN 0016-6707 R&D Projects: GA ČR GA523/09/2106; GA ČR(CZ) GA14-22765S Institutional support: RVO:60077344 Keywords : Cydia pomonella * satellite DNA * holokinetic chromosomes * sex chromosomes * Lepidoptera Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.207, year: 2016

  10. N R Krishnaswamy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. N R Krishnaswamy. Articles written in Resonance – Journal of Science Education. Volume 1 Issue 1 January 1996 pp 56-62 Series Article. Learning Organic Chemistry Through Natural Products Natural Products - A Kaleidoscopic View · N R Krishnaswamy.

  11. Geomechanical time series and its singularity spectrum analysis

    Czech Academy of Sciences Publication Activity Database

    Lyubushin, Alexei A.; Kaláb, Zdeněk; Lednická, Markéta

    2012-01-01

    Roč. 47, č. 1 (2012), s. 69-77 ISSN 1217-8977 R&D Projects: GA ČR GA105/09/0089 Institutional research plan: CEZ:AV0Z30860518 Keywords : geomechanical time series * singularity spectrum * time series segmentation * laser distance meter Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.347, year: 2012 http://www.akademiai.com/content/88v4027758382225/fulltext.pdf

  12. The RMgSn{sub 2} series of compounds (R = rare earth metal). Synthesis, crystal structure, and magnetic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Solokha, Pavlo; Minetti, Riccardo; De Negri, Serena; Saccone, Adriana [Dipartimento di Chimica e Chimica Industriale, Universita di Genova (Italy); Pereira, Laura Cristina J.; Goncalves, Antonio P. [Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, EN 10, Universidade de Lisboa, Bobadela (Portugal)

    2017-06-30

    The novel isostructural series of phases RMgSn{sub 2} (R = Y, La-Nd, Sm, Gd-Tm, Lu) is presented. They were prepared by direct synthesis in an induction furnace and subsequently annealed at 500 C. Their crystal structures were determined through single-crystal X-ray diffraction analysis of the Ce representative [I anti 42m, tI32-LaMgSn{sub 2}, Z = 8, a = 0.82863(3) nm, c = 1.23129(5) nm] and confirmed by powder X-ray diffraction analysis of the other members of the series. Rietveld refinements were also performed on the homologues with R = Pr, Tm, and Y. The title phases show a unique space distribution of atoms, characterized by the presence of a Sn-Sn dumbbell distanced at around 0.29 nm. Their structures are related to those of a few binary AeTt{sub 3} (Ae = alkaline earth; Tt = Si, Ge; I4/mmm, tI32-YbSi{sub 3}) compounds that are stable at high pressure, characterized by a more complex 3D covalently bonded Tt network. Compounds CeMgSn{sub 2} and TbMgSn{sub 2} were magnetically characterized; they show paramagnetic behavior with the presence of ferromagnetic interactions, more pronounced in the case of TbMgSn{sub 2}, as suggested by the Curie-Weiss temperatures, determined in the high-temperature range, of 0.96 and 27.6 K for CeMgSn{sub 2} and TbMgSn{sub 2}, respectively. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. INMARSAT - The International Maritime Satellite Organization: Origins and structure

    Science.gov (United States)

    Doyle, S. E.

    1977-01-01

    The third session of the International Conference on the Establishment of an International Maritime Satellite System established the International Maritime Satellite Organization (INMARSAT) in 1976. Its main functions are to improve maritime communications via satellite, thereby facilitating more efficient emergency communications, ship management, and maritime public correspondence services. INMARSAT's aims are similar to those of the Intergovernmental Maritime Consultative Organization (IMCO), the main United Nations organization dealing with maritime affairs. The specific functions of INMARSAT have been established by an Intersessional Working Group (IWG) which met three times between general conference meetings. Initial investment shares for the creation of INMARSAT were shared by the United States (17%), the United Kingdom (12%), the U.S.S.R. (11%), Norway (9.50%), Japan (8.45%), Italy (4.37%), and France (3.50%).

  14. HIMAWARI-8 Geostationary Satellite Observation of the Internal Solitary Waves in the South China Sea

    Science.gov (United States)

    Gao, Q.; Dong, D.; Yang, X.; Husi, L.; Shang, H.

    2018-04-01

    The new generation geostationary meteorological satellite, Himawari-8 (H-8), was launched in 2015. Its main payload, the Advanced Himawari Imager (AHI), can observe the earth with 10-minute interval and as high as 500-m spatial resolution. This makes the H-8 satellite an ideal data source for marine and atmospheric phenomena monitoring. In this study, the propagation of internal solitary waves (ISWs) in the South China Sea is investigated using AHI imagery time series for the first time. Three ISWs cases were studied at 3:30-8:00 UTC on 30 May, 2016. In all, 28 ISWs were detected and tracked between the time series image pairs. The propagation direction and phase speeds of these ISWs are calculated and analyzed. The observation results show that the properties of ISW propagation not stable and maintains nonlinear during its lifetime. The resultant ISW speeds agree well with the theoretical values estimated from the Taylor-Goldstein equation using Argo dataset. This study has demonstrated that the new generation geostationary satellite can be a useful tool to monitor and investigate the oceanic internal waves.

  15. Tracking wildlife by satellite: Current systems and performance

    Science.gov (United States)

    Harris, Richard B.; Fancy, Steven G.; Douglas, David C.; Garner, Gerald W.; Amstrup, Steven C.; McCabe, Thomas R.; Pank, Larry F.

    1990-01-01

    Since 1984, the U.S. Fish and Wildlife Service has used the Argos Data Collection and Location System (DCLS) and Tiros-N series satellites to monitor movements and activities of 10 species of large mammals in Alaska and the Rocky Mountain region. Reliability of the entire system was generally high. Data were received from instrumented caribou (Rangifer tarandus) during 91% of 318 possible transmitter-months. Transmitters failed prematurely on 5 of 45 caribou, 2 of 6 muskoxen (Ovibos moschatus), and 1 of 2 gray wolves (Canis lupus). Failure rates were considerably higher for polar (Ursus maritimus) and brown (U. arctos) bears than for caribou (Rangifer tarandus). Efficiency of gathering both locational and sensor data was related to both latitude and topography.Mean error of locations was estimated to be 954 m (median = 543 m) for transmitters on captive animals; 90% of locations were indices of animal activity were developed and evaluated. For several species, the long-term index was correlated with movement patterns and the short-term index was calibrated to specific activity categories (e.g., lying, feeding, walking).Data processing and sampling considerations were evaluated. Algorithms for choosing the most reliable among a series of reported locations were investigated. Applications of satellite telemetry data and problems with lack of independence among locations are discussed.

  16. Fodder Biomass Monitoring in Sahelian Rangelands Using Phenological Metrics from FAPAR Time Series

    Directory of Open Access Journals (Sweden)

    Abdoul Aziz Diouf

    2015-07-01

    Full Text Available Timely monitoring of plant biomass is critical for the management of forage resources in Sahelian rangelands. The estimation of annual biomass production in the Sahel is based on a simple relationship between satellite annual Normalized Difference Vegetation Index (NDVI and in situ biomass data. This study proposes a new methodology using multi-linear models between phenological metrics from the SPOT-VEGETATION time series of Fraction of Absorbed Photosynthetically Active Radiation (FAPAR and in situ biomass. A model with three variables—large seasonal integral (LINTG, length of growing season, and end of season decreasing rate—performed best (MAE = 605 kg·DM/ha; R2 = 0.68 across Sahelian ecosystems in Senegal (data for the period 1999–2013. A model with annual maximum (PEAK and start date of season showed similar performances (MAE = 625 kg·DM/ha; R2 = 0.64, allowing a timely estimation of forage availability. The subdivision of the study area in ecoregions increased overall accuracy (MAE = 489.21 kg·DM/ha; R2 = 0.77, indicating that a relation between metrics and ecosystem properties exists. LINTG was the main explanatory variable for woody rangelands with high leaf biomass, whereas for areas dominated by herbaceous vegetation, it was the PEAK metric. The proposed approach outperformed the established biomass NDVI-based product (MAE = 818 kg·DM/ha and R2 = 0.51 and should improve the operational monitoring of forage resources in Sahelian rangelands.

  17. Thermal emission before earthquakes by analyzing satellite infra-red data

    Science.gov (United States)

    Ouzounov, D.; Taylor, P.; Bryant, N.; Pulinets, S.; Freund, F.

    2004-05-01

    Satellite thermal imaging data indicate long-lived thermal anomaly fields associated with large linear structures and fault systems in the Earth's crust but also with short-lived anomalies prior to major earthquakes. Positive anomalous land surface temperature excursions of the order of 3-4oC have been observed from NOAA/AVHRR, GOES/METEOSAT and EOS Terra/Aqua satellites prior to some major earthquake around the world. The rapid time-dependent evolution of the "thermal anomaly" suggests that is changing mid-IR emissivity from the earth. These short-lived "thermal anomalies", however, are very transient therefore there origin has yet to be determined. Their areal extent and temporal evolution may be dependent on geology, tectonic, focal mechanism, meteorological conditions and other factors.This work addresses the relationship between tectonic stress, electro-chemical and thermodynamic processes in the atmosphere and increasing mid-IR flux as part of a larger family of electromagnetic (EM) phenomena related to seismic activity.We still need to understand better the link between seismo-mechanical processes in the crust, on the surface, and at the earth-atmospheric interface that trigger thermal anomalies. This work serves as an introduction to our effort to find an answer to this question. We will present examples from the strong earthquakes that have occurred in the Americas during 2003/2004 and the techniques used to record the thermal emission mid-IR anomalies, geomagnetic and ionospheric variations that appear to associated with impending earthquake activity.

  18. R-Area Reactor 1993 annual groundwater monitoring report

    International Nuclear Information System (INIS)

    1994-09-01

    Groundwater was sampled and analyzed during 1993 from wells monitoring the following locations in R Area: Well cluster P20 east of R Area (one well each in the water table and the McBean formation), the R-Area Acid/Caustic Basin (the four water-table wells of the RAC series), the R-Area Ash Basin/Coal Pile (one well of the RCP series in the Congaree formation and one in the water table), the R-Area Disassembly Basin (the three water-table wells of the RDB series), the R-Area Burning/Rubble Pits (the four water-table wells of the RRP series), and the R-Area Seepage Basins (numerous water-table wells in the RSA, RSB, RSC, RSD, RSE, and RSF series). Lead was the only constituent detected above its 50μg/L standard in any but the seepage basin wells; it exceeded that level in one B well and in 23 of the seepage basin wells. Cadmium exceeded its drinking water standard (DWS) in 30 of the seepage basin wells, as did mercury in 10. Nitrate-nitrite was above DWS once each in two seepage basin wells. Tritium was above DWS in six seepage basin wells, as was gross alpha activity in 22. Nonvolatile beta exceeded its screening standard in 29 wells. Extensive radionuclide analyses were requested during 1993 for the RCP series and most of the seepage basin wells. Strontium-90 in eight wells was the only specific radionuclide other than tritium detected above DWS; it appeared about one-half of the nonvolatile beta activity in those wells

  19. Quenching of satellite galaxies at the outskirts of galaxy clusters

    Science.gov (United States)

    Zinger, Elad; Dekel, Avishai; Kravtsov, Andrey V.; Nagai, Daisuke

    2018-04-01

    We find, using cosmological simulations of galaxy clusters, that the hot X-ray emitting intracluster medium (ICM) enclosed within the outer accretion shock extends out to Rshock ˜ (2-3)Rvir, where Rvir is the standard virial radius of the halo. Using a simple analytic model for satellite galaxies in the cluster, we evaluate the effect of ram-pressure stripping on the gas in the inner discs and in the haloes at different distances from the cluster centre. We find that significant removal of star-forming disc gas occurs only at r ≲ 0.5Rvir, while gas removal from the satellite halo is more effective and can occur when the satellite is found between Rvir and Rshock. Removal of halo gas sets the stage for quenching of the star formation by starvation over 2-3 Gyr, prior to the satellite entry to the inner cluster halo. This scenario explains the presence of quenched galaxies, preferentially discs, at the outskirts of galaxy clusters, and the delayed quenching of satellites compared to central galaxies.

  20. Assimilation of satellite data into agrohydrological models to improve crop yield forecasts

    NARCIS (Netherlands)

    Vazifedoust, M.; Dam, van J.C.; Bastiaansen, W.G.M.; Feddes, R.A.

    2009-01-01

    This paper addresses the question of whether data assimilation of remotely sensed leaf area index and/or relative evapotranspiration estimates can be used to forecast total wheat production as an indicator of agricultural drought. A series of low to moderate resolution MODIS satellite data of the