WorldWideScience

Sample records for satellite events art

  1. ARTES: the future of satellite telecommunication

    Science.gov (United States)

    González-Blázquez, Angel; Detain, Dominique

    2005-08-01

    Throughout its 30-year existence, ESA has played a key role by providing telecommunications infrastructures that have allowed the in-orbit validation, qualification and demonstration of equipment, technology and services. In the past, this has been achieved through the provision of dedicated satellites like OTS, Marecs, Olympus and Artemis, as well as by the implementation of piggy-back payloads on other ESA or commercial satellites. Today, due to the importance of satellite telecommunications, ESA continues to support this sector mainly through its ARTES - Advanced Research in Telecommunications - Programme.

  2. 17th East European Conference on Advances in Databases and Information Systems and Associated Satellite Events

    CERN Document Server

    Cerquitelli, Tania; Chiusano, Silvia; Guerrini, Giovanna; Kämpf, Mirko; Kemper, Alfons; Novikov, Boris; Palpanas, Themis; Pokorný, Jaroslav; Vakali, Athena

    2014-01-01

    This book reports on state-of-art research and applications in the field of databases and information systems. It includes both fourteen selected short contributions, presented at the East-European Conference on Advances in Databases and Information Systems (ADBIS 2013, September 1-4, Genova, Italy), and twenty-six papers from ADBIS 2013 satellite events. The short contributions from the main conference are collected in the first part of the book, which covers a wide range of topics, like data management, similarity searches, spatio-temporal and social network data, data mining, data warehousing, and data management on novel architectures, such as graphics processing units, parallel database management systems, cloud and MapReduce environments. In contrast, the contributions from the satellite events are organized in five different parts, according to their respective ADBIS satellite event: BiDaTA 2013 - Special Session on Big Data: New Trends and Applications); GID 2013 – The Second International Workshop ...

  3. Sequencing Events: Exploring Art and Art Jobs.

    Science.gov (United States)

    Stephens, Pamela Geiger; Shaddix, Robin K.

    2000-01-01

    Presents an activity for upper-elementary students that correlates the actions of archaeologists, patrons, and artists with the sequencing of events in a logical order. Features ancient Egyptian art images. Discusses the preparation of materials, motivation, a pre-writing activity, and writing a story in sequence. (CMK)

  4. Causal relationships between solar proton events and single event upsets for communication satellites

    Science.gov (United States)

    Lohmeyer, W. Q.; Cahoy, K.; Liu, Shiyang

    In this work, we analyze a historical archive of single event upsets (SEUs) maintained by Inmarsat, one of the world's leading providers of global mobile satellite communications services. Inmarsat has operated its geostationary communication satellites and collected extensive satellite anomaly and telemetry data since 1990. Over the course of the past twenty years, the satellites have experienced more than 226 single event upsets (SEUs), a catch-all term for anomalies that occur in a satellite's electronics such as bit-flips, trips in power supplies, and memory changes in attitude control systems. While SEUs are seemingly random and difficult to predict, we correlate their occurrences to space weather phenomena, and specifically show correlations between SEUs and solar proton events (SPEs). SPEs are highly energetic protons that originate from solar coronal mass ejections (CMEs). It is thought that when these particles impact geostationary (GEO) satellites they can cause SEUs as well as solar array degradation. We calculate the associated statistical correlations that each SEU occurs within one day, one week, two weeks, and one month of 10 MeV SPEs between 10 - 10,000 particle flux units (pfu). However, we find that SPEs are most prevalent at solar maximum and that the SEUs on Inmarsat's satellites occur out of phase with the solar maximum. Ultimately, this suggests that SPEs are not the primary cause of the Inmarsat SEUs. A better understanding of the causal relationship between SPEs and SEUs will help the satellite communications industry develop component and operational space weather mitigation techniques as well as help the space weather community to refine radiation models.

  5. Mutual Events in the Uranian satellite system in 2007

    Science.gov (United States)

    Arlot, J. E.

    2008-09-01

    The equinox time on the giant planets When the Sun crosses the equatorial plane of a giant planet, it is the equinox time occurring every half orbit of the planet, i.e. every 6 years for Jupiter, 14 years for Saturn, 42 years for Uranus and 82 years for Neptune. Except Neptune, each planet have several major satellites orbiting in the equatorial plane, then, during the equinox time, the satellites will eclipse each other mutually. Since the Earth follows the Sun, during the equinox time, a terrestrial observer will see each satellite occulting each other during the same period. These events may be observed with photometric receivers since the light from the satellites will decrease during the events. The light curve will provide information on the geometric configuration of the the satellites at the time of the event with an accuracy of a few kilometers, not depending on the distance of the satellite system. Then, we are able to get an astrometric observation with an accuracy several times better than using direct imaging for positions. Equinox on Uranus in 2007 In 2007, it was equinox time on Uranus. The Sun crossed the equatorial plane of Uranus on December 6, 2007. Since the opposition Uranus-Sun was at the end of August 2007, observations were performed from May to December 2007. Since the declination of Uranus was between -5 and -6 degrees, observations were better to make in the southern hemisphere. However, some difficulties had to be solved: the faintness of the satellites (magnitude between 14 and 16), the brightness of the planet (magnitude 5) making difficult the photometric observation of the satellites. The used of K' filter associated to a large telescope allows to increase the number of observable events. Dynamics of the Uranian satellites One of the goals of the observations was to evaluate the accuracy of the current dynamical models of the motion of the satellites. This knowledge is important for several reasons: most of time the Uranian system is

  6. Error Analysis of Satellite Precipitation-Driven Modeling of Flood Events in Complex Alpine Terrain

    Directory of Open Access Journals (Sweden)

    Yiwen Mei

    2016-03-01

    Full Text Available The error in satellite precipitation-driven complex terrain flood simulations is characterized in this study for eight different global satellite products and 128 flood events over the Eastern Italian Alps. The flood events are grouped according to two flood types: rain floods and flash floods. The satellite precipitation products and runoff simulations are evaluated based on systematic and random error metrics applied on the matched event pairs and basin-scale event properties (i.e., rainfall and runoff cumulative depth and time series shape. Overall, error characteristics exhibit dependency on the flood type. Generally, timing of the event precipitation mass center and dispersion of the time series derived from satellite precipitation exhibits good agreement with the reference; the cumulative depth is mostly underestimated. The study shows a dampening effect in both systematic and random error components of the satellite-driven hydrograph relative to the satellite-retrieved hyetograph. The systematic error in shape of the time series shows a significant dampening effect. The random error dampening effect is less pronounced for the flash flood events and the rain flood events with a high runoff coefficient. This event-based analysis of the satellite precipitation error propagation in flood modeling sheds light on the application of satellite precipitation in mountain flood hydrology.

  7. Martial arts sports medicine: current issues and competition event coverage.

    Science.gov (United States)

    Nishime, Robert S

    2007-06-01

    More sports medicine professionals are becoming actively involved in the care of the martial arts athlete. Although there are many different forms of martial arts practiced worldwide, certain styles have shown a potential for increased participation in competitive-type events. Further research is needed to better understand the prevalence and profiles of injuries sustained in martial arts full-contact competitive events. Breaking down the martial art techniques into basic concepts of striking, grappling, and submission maneuvers, including choking and joint locking, may facilitate better understanding and management of injuries. This article outlines this approach and reviews the commonly encountered injuries and problems during martial arts full-contact competitions.

  8. A coordinated two-satellite study of energetic electron precipitation events

    International Nuclear Information System (INIS)

    Imhof, W.L.; Nakano, G.H.; Gaines, E.E.; Reagan, J.B.

    1975-01-01

    A new technique for studying the spatial/temporal variations of energetic electron precipitation events is investigated. Data are presented in which precipitating electrons were measured simultaneously on two coordinated polar-orbiting satellites and the bremsstrahlung produced by the electrons precipitating into the atmosphere was observed from one of the satellites. Two electron spectrometers measuring the intensities and energy spectra of electrons of >130 keV were located on the oriented satellite 1971-089A (altitude, approx. =800 km), whereas a single similar spectrometer measuring electrons of >160 keV was located on the spinning low-altitude (approx.750 km) satellite 1972-076B. The X rays of >50 keV were measured with a 50-cm 3 germanium spectrometer placed on the 1972-076B satellite. With the coordinated data a study is made of events in which large fluctuations were observed in the precipitating energetic electron intensities. In the examples presented the satellite X ray data alone demonstrate that the spatially integrated electron influx was constant in time, and when the X ray data are combined with the direct electron measurements from the two satellites, the resulting data suggest that the major features in the flux profiles were primarily spatial in nature. The combination of X ray and electron measurements from two satellites is shown to provide an important method for studying and attempting to resolve spatial and temporal effects

  9. CONTEMPORARY ART EVENTS IN TOURISM: THE CASE OF INTERNATIONAL ISTANBUL BIENNALE

    Directory of Open Access Journals (Sweden)

    Nazmi EROGLU,

    2017-02-01

    Full Text Available Known as a contemporary art event of the biennial is organized every two years and mostly take the name from host city. The name of biennial used firstly in Venice and it was organized first time in Venice as Venice Biennial. Biennials accessed to many cities of the world and has provided economic contributions except of the social and cultural contributions for the city. International Istanbul Biennial that organized since 1987 in Turkey is not known and realized enough in terms of contribution and potential in Turkey. Especially paying attention to provided and providing contribution of biennials are necessary in tourism field. In the research biennials were examined on the field of event tourism as contemporary art events. Also in this research tourism were associated and classified with biennials in the framework of literature. Making assessment about contemporary art events in tourism is made with example of İnternational İstanbul Biennials in Turkey. Some examples and suggestions were tried to give for understanding potential of contemporary art events in tourism and relationship between biennials and tourism. In addition, information is given about biennials that are at international level. The main purpose of the research is that paying attention to benefits which is provided and possible from İnternational Istanbul Biennial and emphasized to importance of event tourism in Turkey.

  10. The potential of satellite data to study individual wildfire events

    Science.gov (United States)

    Benali, Akli; López-Saldana, Gerardo; Russo, Ana; Sá, Ana C. L.; Pinto, Renata M. S.; Nikos, Koutsias; Owen, Price; Pereira, Jose M. C.

    2014-05-01

    Large wildfires have important social, economic and environmental impacts. In order to minimize their impacts, understand their main drivers and study their dynamics, different approaches have been used. The reconstruction of individual wildfire events is usually done by collection of field data, interviews and by implementing fire spread simulations. All these methods have clear limitations in terms of spatial and temporal coverage, accuracy, subjectivity of the collected information and lack of objective independent validation information. In this sense, remote sensing is a promising tool with the potential to provide relevant information for stakeholders and the research community, by complementing or filling gaps in existing information and providing independent accurate quantitative information. In this work we show the potential of satellite data to provide relevant information regarding the dynamics of individual large wildfire events, filling an important gap in wildfire research. We show how MODIS active-fire data, acquired up to four times per day, and satellite-derived burnt perimeters can be combined to extract relevant information wildfire events by describing the methods involved and presenting results for four regions of the world: Portugal, Greece, SE Australia and California. The information that can be retrieved encompasses the start and end date of a wildfire event and its ignition area. We perform an evaluation of the information retrieved by comparing the satellite-derived parameters with national databases, highlighting the strengths and weaknesses of both and showing how the former can complement the latter leading to more complete and accurate datasets. We also show how the spatio-temporal distribution of wildfire spread dynamics can be reconstructed using satellite-derived active-fires and how relevant descriptors can be extracted. Applying graph theory to satellite active-fire data, we define the major fire spread paths that yield

  11. An Unsupervised Anomalous Event Detection and Interactive Analysis Framework for Large-scale Satellite Data

    Science.gov (United States)

    LIU, Q.; Lv, Q.; Klucik, R.; Chen, C.; Gallaher, D. W.; Grant, G.; Shang, L.

    2016-12-01

    Due to the high volume and complexity of satellite data, computer-aided tools for fast quality assessments and scientific discovery are indispensable for scientists in the era of Big Data. In this work, we have developed a framework for automated anomalous event detection in massive satellite data. The framework consists of a clustering-based anomaly detection algorithm and a cloud-based tool for interactive analysis of detected anomalies. The algorithm is unsupervised and requires no prior knowledge of the data (e.g., expected normal pattern or known anomalies). As such, it works for diverse data sets, and performs well even in the presence of missing and noisy data. The cloud-based tool provides an intuitive mapping interface that allows users to interactively analyze anomalies using multiple features. As a whole, our framework can (1) identify outliers in a spatio-temporal context, (2) recognize and distinguish meaningful anomalous events from individual outliers, (3) rank those events based on "interestingness" (e.g., rareness or total number of outliers) defined by users, and (4) enable interactively query, exploration, and analysis of those anomalous events. In this presentation, we will demonstrate the effectiveness and efficiency of our framework in the application of detecting data quality issues and unusual natural events using two satellite datasets. The techniques and tools developed in this project are applicable for a diverse set of satellite data and will be made publicly available for scientists in early 2017.

  12. Satellite data driven modeling system for predicting air quality and visibility during wildfire and prescribed burn events

    Science.gov (United States)

    Nair, U. S.; Keiser, K.; Wu, Y.; Maskey, M.; Berendes, D.; Glass, P.; Dhakal, A.; Christopher, S. A.

    2012-12-01

    The Alabama Forestry Commission (AFC) is responsible for wildfire control and also prescribed burn management in the state of Alabama. Visibility and air quality degradation resulting from smoke are two pieces of information that are crucial for this activity. Currently the tools available to AFC are the dispersion index available from the National Weather Service and also surface smoke concentrations. The former provides broad guidance for prescribed burning activities but does not provide specific information regarding smoke transport, areas affected and quantification of air quality and visibility degradation. While the NOAA operational air quality guidance includes surface smoke concentrations from existing fire events, it does not account for contributions from background aerosols, which are important for the southeastern region including Alabama. Also lacking is the quantification of visibility. The University of Alabama in Huntsville has developed a state-of-the-art integrated modeling system to address these concerns. This system based on the Community Air Quality Modeling System (CMAQ) that ingests satellite derived smoke emissions and also assimilates NASA MODIS derived aerosol optical thickness. In addition, this operational modeling system also simulates the impact of potential prescribed burn events based on location information derived from the AFC prescribed burn permit database. A lagrangian model is used to simulate smoke plumes for the prescribed burns requests. The combined air quality and visibility degradation resulting from these smoke plumes and background aerosols is computed and the information is made available through a web based decision support system utilizing open source GIS components. This system provides information regarding intersections between highways and other critical facilities such as old age homes, hospitals and schools. The system also includes satellite detected fire locations and other satellite derived datasets

  13. Satellite-Observed Black Water Events off Southwest Florida: Implications for Coral Reef Health in the Florida Keys National Marine Sanctuary

    OpenAIRE

    Zhao, Jun; Hu, Chuanmin; Lapointe, Brian; Melo, Nelson; Johns, Elizabeth; Smith, Ryan

    2013-01-01

    A “black water” event, as observed from satellites, occurred off southwest Florida in 2012. Satellite observations suggested that the event started in early January and ended in mid-April 2012. The black water patch formed off central west Florida and advected southward towards Florida Bay and the Florida Keys with the shelf circulation, which was confirmed by satellite-tracked surface drifter trajectories. Compared with a previous black water event in 2002, the 2012 event was weaker in terms...

  14. Far from thunderstorm UV transient events in the atmosphere measured by Vernov satellite

    Science.gov (United States)

    Morozenko, Violetta; Klimov, Pavel; Khrenov, Boris; Gali, Garipov; Margarita, Kaznacheeva; Mikhail, Panasyuk; Sergei, Svertilov; Robert, Holzworth

    2016-04-01

    The steady self-contained classification of events such as sprites, elves, blue jets emerged for the period of transient luminous events (TLE) observation. In accordance with TLE origin theories the presence of the thunderstorm region where the lightnings with the large peak current generating in is necessary. However, some far-from-thunderstorm region events were also detected and revealed to us another TLE generating mechanisms. For the discovering of the TLE nature the Universitetsky-Tatiana-2 and Vernov satellites were equipped with ultraviolet (240-400 nm) and red-infrared ( >610 nm) detectors. In both detector it was carried out regardless the lightnings with the guidance by the flashes in the UV wavelength where lightning's emitting is quite faint. The lowered threshold on the Vernov satellite allowed to select the great amount of TLE with the numerous far-from-thunderstorm region events examples. such events were not conjuncted with lightning activity measured by global lightning location network (WWLLN) on the large area of approximately 107 km2 for 30 minutes before and after the time of registration. The characteristic features of this type of event are: the absence of significant signal in the red-infrared detector's channel; a relatively small number of photons (less than 5 ṡ 1021). A large number of without lightning flash were detected at high latitudes over the ocean (30°S - 60°S). Lightning activity in the magnetic conjugate point also was analyzed. The relationship of far-from-thunderstorm region events with the specific lightning discharges didn't confirmed. Far-from-thunderstorm events - a new type of transient phenomena in the upper atmosphere is not associated with the thunderstorm activity. The mechanism of such discharges is not clear, though it was accumulated a sufficient amount of experimental facts of the existence of such flashes. According to the data of Vernov satellite the temporal profile, duration, location with earth

  15. Satellite Collision Modeling with Physics-Based Hydrocodes: Debris Generation Predictions of the Iridium-Cosmos Collision Event and Other Impact Events

    International Nuclear Information System (INIS)

    Springer, H.K.; Miller, W.O.; Levatin, J.L.; Pertica, A.J.; Olivier, S.S.

    2010-01-01

    Satellite collision debris poses risks to existing space assets and future space missions. Predictive models of debris generated from these hypervelocity collisions are critical for developing accurate space situational awareness tools and effective mitigation strategies. Hypervelocity collisions involve complex phenomenon that spans several time- and length-scales. We have developed a satellite collision debris modeling approach consisting of a Lagrangian hydrocode enriched with smooth particle hydrodynamics (SPH), advanced material failure models, detailed satellite mesh models, and massively parallel computers. These computational studies enable us to investigate the influence of satellite center-of-mass (CM) overlap and orientation, relative velocity, and material composition on the size, velocity, and material type distributions of collision debris. We have applied our debris modeling capability to the recent Iridium 33-Cosmos 2251 collision event. While the relative velocity was well understood in this event, the degree of satellite CM overlap and orientation was ill-defined. In our simulations, we varied the collision CM overlap and orientation of the satellites from nearly maximum overlap to partial overlap on the outermost extents of the satellites (i.e, solar panels and gravity boom). As expected, we found that with increased satellite overlap, the overall debris cloud mass and momentum (transfer) increases, the average debris size decreases, and the debris velocity increases. The largest predicted debris can also provide insight into which satellite components were further removed from the impact location. A significant fraction of the momentum transfer is imparted to the smallest debris (< 1-5mm, dependent on mesh resolution), especially in large CM overlap simulations. While the inclusion of the smallest debris is critical to enforcing mass and momentum conservation in hydrocode simulations, there seems to be relatively little interest in their

  16. Single-event burnout of power MOSFET devices for satellite application

    International Nuclear Information System (INIS)

    Xue Yuxiong; Tian Kai; Cao Zhou; Yang Shiyu; Liu Gang; Cai Xiaowu; Lu Jiang

    2008-01-01

    Single-event burnout (SEB) sensitivity was tested for power MOSFET devices, JTMCS081 and JTMCS062, which were made in Institute of Microelectronics, Chinese Academy of Sciences, using californium-252 simulation source. SEB voltage threshold was found for devices under test (DUT). It is helpful for engineers to choose devices used in satellites. (authors)

  17. Maintaining relevance: an evaluation of health message sponsorship at Australian community sport and arts events.

    Science.gov (United States)

    Rosenberg, Michael; Ferguson, Renee

    2014-12-04

    Health message sponsorship at community sport and arts events is an established component of a health promotion settings approach. Recent increases in commercial sponsorship of sport and community events has swelled competition for consumer attention and potentially reduced the impact of health message sponsorship. The purpose of this study was to evaluate awareness, understandings and behavioural intentions of health messages promoted at sponsored community sport and arts events. Interview and self-administered surveys were completed by 2259 adults attending one of 29 sport and arts events held in Western Australia between 2008 and 2013. The surveys measured participant awareness of the health message promoted at the event, as well as comprehension, acceptance and behavioural intention as a result of exposure to health messages. Awareness of the sponsored health message was 58% across all sponsored events, with high levels of comprehension (74%) and acceptance (92%) among those aware of the health message. Forming behavioural intentions was significantly related to the type of sponsored message promoted at the event, being female and over 40 years of age. Messages about sun protection and promoting mental health were the most likely to result in behavioural intention. Health message sponsorship, at least within a comprehensive sponsorship program, appears to remain an effective health promotion strategy for generating awareness and behavioural intention among people attending sport and arts events. Remaining relevant within a modern sponsorship environment appears closely aligned to selecting health messages that promote behavioural action relevant to the sponsored event that are also supported by broader health promotion campaigns.

  18. 47 CFR 25.261 - Procedures for avoidance of in-line interference events for Non Geostationary Satellite Orbit...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Procedures for avoidance of in-line interference events for Non Geostationary Satellite Orbit (NGSO) Satellite Network Operations in the Fixed Satellite Service (FSS) Bands. 25.261 Section 25.261 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...

  19. MICROBIOLOGICAL MONITORING AND AUTOMATED EVENT SAMPLING AT KARST SPRINGS USING LEO-SATELLITES

    Science.gov (United States)

    Stadler, Hermann; Skritek, Paul; Sommer, Regina; Mach, Robert L.; Zerobin, Wolfgang; Farnleitner, Andreas H.

    2010-01-01

    Data communication via Low-Earth-Orbit Satellites between portable hydro-meteorological measuring stations is the backbone of our system. This networking allows automated event sampling with short time increments also for E.coli field analysis. All activities of the course of the event-sampling can be observed on an internet platform based on a Linux-Server. Conventionally taken samples by hand compared with the auto-sampling procedure revealed corresponding results and were in agreement to the ISO 9308-1 reference method. E.coli concentrations were individually corrected by event specific die-off rates (0.10–0.14 day−1) compensating losses due to sample storage at spring temperature in the auto sampler. Two large summer events 2005/2006 at a large alpine karst spring (LKAS2) were monitored including detailed analysis of E.coli dynamics (n = 271) together with comprehensive hydrological characterisations. High resolution time series demonstrated a sudden increase of E.coli concentrations in spring water (approx. 2 log10 units) with a specific time delay after the beginning of the event. Statistical analysis suggested the spectral absorbent coefficient measured at 254nm (SAC254) as an early warning surrogate for real time monitoring of faecal input. Together with the LEO-Satellite based system it is a helpful tool for Early-Warning-Systems in the field of drinking water protection. PMID:18776628

  20. Summary of the CTS Transient Event Counter data after one year of operation. [Communication Technology Satellite

    Science.gov (United States)

    Stevens, N. J.; Klinect, V. W.; Gore, J. V.

    1977-01-01

    The environmental charging of satellite surfaces during geomagnetic substorms is the apparent cause of a significant number of anomalous events occurring on geosynchronous satellites since the early 1970's. Electromagnetic pulses produced in connection with the differential charging of insulators can couple into the spacecraft harness and cause electronic switching anomalies. An investigation conducted to determine the response of the spacecraft surfaces to substorm particle fluxes makes use of a harness transient detector. The harness transient detector, called the Transient Event Counter (TEC) was built and integrated into the Canadian-American Communications Technology Satellite (CTS). A description of the TEC and its operational characteristics is given and the obtained data are discussed. The data show that the satellite surfaces appear to be charged to the point that discharges occur and that the discharge-induced transients couple into the wire harnesses.

  1. Satellite-Enhanced Dynamical Downscaling of Extreme Events

    Science.gov (United States)

    Nunes, A.

    2015-12-01

    Severe weather events can be the triggers of environmental disasters in regions particularly susceptible to changes in hydrometeorological conditions. In that regard, the reconstruction of past extreme weather events can help in the assessment of vulnerability and risk mitigation actions. Using novel modeling approaches, dynamical downscaling of long-term integrations from global circulation models can be useful for risk analysis, providing more accurate climate information at regional scales. Originally developed at the National Centers for Environmental Prediction (NCEP), the Regional Spectral Model (RSM) is being used in the dynamical downscaling of global reanalysis, within the South American Hydroclimate Reconstruction Project. Here, RSM combines scale-selective bias correction with assimilation of satellite-based precipitation estimates to downscale extreme weather occurrences. Scale-selective bias correction is a method employed in the downscaling, similar to the spectral nudging technique, in which the downscaled solution develops in agreement with its coarse boundaries. Precipitation assimilation acts on modeled deep-convection, drives the land-surface variables, and therefore the hydrological cycle. During the downscaling of extreme events that took place in Brazil in recent years, RSM continuously assimilated NCEP Climate Prediction Center morphing technique precipitation rates. As a result, RSM performed better than its global (reanalysis) forcing, showing more consistent hydrometeorological fields compared with more sophisticated global reanalyses. Ultimately, RSM analyses might provide better-quality initial conditions for high-resolution numerical predictions in metropolitan areas, leading to more reliable short-term forecasting of severe local storms.

  2. Utilization of Satellite Data to Identify and Monitor Changes in Frequency of Meteorological Events

    Science.gov (United States)

    Mast, J. C.; Dessler, A. E.

    2017-12-01

    Increases in temperature and climate variability due to human-induced climate change is increasing the frequency and magnitude of extreme heat events (i.e., heatwaves). This will have a detrimental impact on the health of human populations and habitability of certain land locations. Here we seek to utilize satellite data records to identify and monitor extreme heat events. We analyze satellite data sets (MODIS and AIRS land surface temperatures (LST) and water vapor profiles (WV)) due to their global coverage and stable calibration. Heat waves are identified based on the frequency of maximum daily temperatures above a threshold, determined as follows. Land surface temperatures are gridded into uniform latitude/longitude bins. Maximum daily temperatures per bin are determined and probability density functions (PDF) of these maxima are constructed monthly and seasonally. For each bin, a threshold is calculated at the 95th percentile of the PDF of maximum temperatures. Per each bin, an extreme heat event is defined based on the frequency of monthly and seasonal days exceeding the threshold. To account for the decreased ability of the human body to thermoregulate with increasing moisture, and to assess lethality of the heat events, we determine the wet-bulb temperature at the locations of extreme heat events. Preliminary results will be presented.

  3. Geostationary Communications Satellites as Sensors for the Space Weather Environment: Telemetry Event Identification Algorithms

    Science.gov (United States)

    Carlton, A.; Cahoy, K.

    2015-12-01

    Reliability of geostationary communication satellites (GEO ComSats) is critical to many industries worldwide. The space radiation environment poses a significant threat and manufacturers and operators expend considerable effort to maintain reliability for users. Knowledge of the space radiation environment at the orbital location of a satellite is of critical importance for diagnosing and resolving issues resulting from space weather, for optimizing cost and reliability, and for space situational awareness. For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to acquire and analyze archived data from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms, collectively called SEER (System Event Evaluation Routine), to statistically analyze power amplifier current and temperature telemetry by identifying deviations from nominal operations or other events and trends of interest. This paper focuses on our work in progress, which currently includes methods for detection of jumps ("spikes", outliers) and step changes (changes in the local mean) in the telemetry. We then examine available space weather data from the NOAA GOES and the NOAA-computed Kp index and sunspot numbers to see what role, if any, it might have played. By combining the results of the algorithm for many components, the spacecraft can be used as a "sensor" for the space radiation environment. Similar events occurring at one time across many component telemetry streams may be indicative of a space radiation event or system-wide health and safety concern. Using SEER on representative datasets of telemetry from Inmarsat and Intelsat, we find events that occur across all or many of

  4. Onsets of Solar Proton Events in Satellite and Ground Level Observations: A Comparison

    Science.gov (United States)

    He, Jing; Rodriguez, Juan V.

    2018-03-01

    The early detection of solar proton event onsets is essential for protecting humans and electronics in space, as well as passengers and crew at aviation altitudes. Two commonly compared methods for observing solar proton events that are sufficiently large and energetic to be detected on the ground through the creation of secondary radiation—known as ground level enhancements (GLEs)—are (1) a network of ground-based neutron monitors (NMs) and (2) satellite-based particle detectors. Until recently, owing to the different time resolution of the two data sets, it has not been feasible to compare these two types of observations using the same detection algorithm. This paper presents a comparison between the two observational platforms using newly processed >100 MeV 1 min count rates and fluxes from National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite (GOES) 8-12 satellites, and 1 min count rates from the Neutron Monitor Database. We applied the same detection algorithm to each data set (tuned to the different background noise levels of the instrument types). Seventeen SPEs with GLEs were studied: GLEs 55-70 from Solar Cycle 23 and GLE 71 from Solar Cycle 24. The median difference in the event detection times by GOES and NM data is 0 min, indicating no innate benefit in time of either system. The 10th, 25th, 75th, and 90th percentiles of the onset time differences (GOES minus NMs) are -7.2 min, -1.5 min, 2.5 min, and 4.2 min, respectively. This is in contrast to previous studies in which NM detections led GOES by 8 to 52 min without accounting for different alert protocols.

  5. A Metastatistical Approach to Satellite Estimates of Extreme Rainfall Events

    Science.gov (United States)

    Zorzetto, E.; Marani, M.

    2017-12-01

    The estimation of the average recurrence interval of intense rainfall events is a central issue for both hydrologic modeling and engineering design. These estimates require the inference of the properties of the right tail of the statistical distribution of precipitation, a task often performed using the Generalized Extreme Value (GEV) distribution, estimated either from a samples of annual maxima (AM) or with a peaks over threshold (POT) approach. However, these approaches require long and homogeneous rainfall records, which often are not available, especially in the case of remote-sensed rainfall datasets. We use here, and tailor it to remotely-sensed rainfall estimates, an alternative approach, based on the metastatistical extreme value distribution (MEVD), which produces estimates of rainfall extreme values based on the probability distribution function (pdf) of all measured `ordinary' rainfall event. This methodology also accounts for the interannual variations observed in the pdf of daily rainfall by integrating over the sample space of its random parameters. We illustrate the application of this framework to the TRMM Multi-satellite Precipitation Analysis rainfall dataset, where MEVD optimally exploits the relatively short datasets of satellite-sensed rainfall, while taking full advantage of its high spatial resolution and quasi-global coverage. Accuracy of TRMM precipitation estimates and scale issues are here investigated for a case study located in the Little Washita watershed, Oklahoma, using a dense network of rain gauges for independent ground validation. The methodology contributes to our understanding of the risk of extreme rainfall events, as it allows i) an optimal use of the TRMM datasets in estimating the tail of the probability distribution of daily rainfall, and ii) a global mapping of daily rainfall extremes and distributional tail properties, bridging the existing gaps in rain gauges networks.

  6. Satellite-Observed Black Water Events off Southwest Florida: Implications for Coral Reef Health in the Florida Keys National Marine Sanctuary

    Directory of Open Access Journals (Sweden)

    Brian Lapointe

    2013-01-01

    Full Text Available A “black water” event, as observed from satellites, occurred off southwest Florida in 2012. Satellite observations suggested that the event started in early January and ended in mid-April 2012. The black water patch formed off central west Florida and advected southward towards Florida Bay and the Florida Keys with the shelf circulation, which was confirmed by satellite-tracked surface drifter trajectories. Compared with a previous black water event in 2002, the 2012 event was weaker in terms of spatial and temporal coverage. An in situ survey indicated that the 2012 black water patch contained toxic K. brevis and had relatively low CDOM (colored dissolved organic matter and turbidity but high chlorophyll-a concentrations, while salinity was somewhat high compared with historical values. Further analysis revealed that the 2012 black water was formed by the K. brevis bloom initiated off central west Florida in late September 2011, while river runoff, Trichodesmium and possibly submarine groundwater discharge also played important roles in its formation. Black water patches can affect benthic coral reef communities by decreasing light availability at the bottom, and enhanced nutrient concentrations from black water patches support massive macroalgae growth that can overgrow coral reefs. It is thus important to continue the integrated observations where satellites provide synoptic and repeated observations of such adverse water quality events.

  7. Analysis of mutual events of Galilean satellites observed from VBO during 2014-2015

    Science.gov (United States)

    Vasundhara, R.; Selvakumar, G.; Anbazhagan, P.

    2017-06-01

    Results of analysis of 23 events of the 2014-2015 mutual event series from the Vainu Bappu Observatory are presented. Our intensity distribution model for the eclipsed/occulted satellite is based on the criterion that it simulates a rotational light curve that matches the ground-based light curve. Dichotomy in the scattering characteristics of the leading and trailing sides explains the basic shape of the rotational light curves of Europa, Ganymede and Callisto. In the case of Io, the albedo map (courtesy United States Geological Survey) along with global values of scattering parameters works well. Mean values of residuals in (O - C) along and perpendicular to the track are found to be -3.3 and -3.4 mas, respectively, compared to 'L2' theory for the seven 2E1/2O1 events. The corresponding rms values are 8.7 and 7.8 mas, respectively. For the five 1E3/1O3 events, the along and perpendicular to the track mean residuals are 5.6 and 3.2 mas, respectively. The corresponding rms residuals are 6.8 and 10.5 mas, respectively. We compare the results using the chosen model (Model 1) with a uniform but limb-darkened disc (Model 2). The residuals with Model 2 of the 2E1/2O1 and 1E3/1O3 events indicate a bias along the satellite track. The extent and direction of bias are consistent with the shift of the light centre from the geometric centre. Results using Model 1, which intrinsically takes into account the intensity distribution, show no such bias.

  8. Women that fight: The female participation in mixed martial arts events

    Directory of Open Access Journals (Sweden)

    Lisiane Caroline Rodrigues Hermes

    2016-01-01

    Full Text Available Sports marketing is in Mixed Martial Arts (MMA a strategic potential, either through the promotion and implementation of events or the interested in sports. Thus, the management of the sports event planning becomes strategic to measure it considers the participation of female athletes in MMA events. This study aims to analyze the participation of females in MMA events, highlighting the perception of the fighters on the current business scenario in this segment. The method is configured as an exploratory and descriptive research with a qualitative approach, where there is information content analysis obtained through an open questionnaire. The results showed that the MMA product planning females is working strategically towards attracting viewers and brand awareness. In addition, further notes to male dominance in this type of sport, emphasizing gender issues related to compensation of the athletes and their occupation. However, it is clear that athletes even challenged by this scenario, remain convinced of their choices by segment.

  9. Current state of art of satellite altimetry

    Science.gov (United States)

    Łyszkowicz, Adam Bolesław; Bernatowicz, Anna

    2017-12-01

    One of the fundamental problems of modern geodesy is precise defi nition of the gravitational fi eld and its changes in time. This is essential in positioning and navigation, geophysics, geodynamics, oceanography and other sciences related to the climate and Earth's environment. One of the major sources of gravity data is satellite altimetry that provides gravity data with almost 75% surface of the Earth. Satellite altimetry also provides data to study local, regional and global geophysical processes, the geoid model in the areas of oceans and seas. This technique can be successfully used to study the ocean mean dynamic topography. The results of the investigations and possible products of altimetry will provide a good material for the GGOS (Global Geodetic Observing System) and institutions of IAS (International Altimetry Service). This paper presents the achievements in satellite altimetry in all the above disciplines obtained in the last years. First very shorly basic concept of satellite altimetry is given. In order to obtain the highest accuracy on range measurements over the ocean improved of altimetry waveforms performed on the ground is described. Next, signifi cant improvements of sea and ocean gravity anomalies models developed presently is shown. Study of sea level and its extremes examined, around European and Australian coasts using tide gauges data and satellite altimetry measurements were described. Then investigations of the phenomenon of the ocean tides, calibration of altimeters, studies of rivers and ice-sheets in the last years are given.

  10. Current state of art of satellite altimetry

    Directory of Open Access Journals (Sweden)

    Łyszkowicz Adam Bolesław

    2017-12-01

    Full Text Available One of the fundamental problems of modern geodesy is precise defi nition of the gravitational fi eld and its changes in time. This is essential in positioning and navigation, geophysics, geodynamics, oceanography and other sciences related to the climate and Earth’s environment. One of the major sources of gravity data is satellite altimetry that provides gravity data with almost 75% surface of the Earth. Satellite altimetry also provides data to study local, regional and global geophysical processes, the geoid model in the areas of oceans and seas. This technique can be successfully used to study the ocean mean dynamic topography. The results of the investigations and possible products of altimetry will provide a good material for the GGOS (Global Geodetic Observing System and institutions of IAS (International Altimetry Service. This paper presents the achievements in satellite altimetry in all the above disciplines obtained in the last years. First very shorly basic concept of satellite altimetry is given. In order to obtain the highest accuracy on range measurements over the ocean improved of altimetry waveforms performed on the ground is described. Next, signifi cant improvements of sea and ocean gravity anomalies models developed presently is shown. Study of sea level and its extremes examined, around European and Australian coasts using tide gauges data and satellite altimetry measurements were described. Then investigations of the phenomenon of the ocean tides, calibration of altimeters, studies of rivers and ice-sheets in the last years are given.

  11. Cooperative and cognitive satellite systems

    CERN Document Server

    Chatzinotas, Symeon; De Gaudenzi, Riccardo

    2015-01-01

    Cooperative and Cognitive Satellite Systems provides a solid overview of the current research in the field of cooperative and cognitive satellite systems, helping users understand how to incorporate state-of-the-art communication techniques in innovative satellite network architectures to enable the next generation of satellite systems. The book is edited and written by top researchers and practitioners in the field, providing a comprehensive explanation of current research that allows users to discover future technologies and their applications, integrate satellite and terrestrial systems

  12. Revisiting "Narrow Bipolar Event" intracloud lightning using the FORTE satellite

    Science.gov (United States)

    Jacobson, A. R.; Light, T. E. L.

    2012-02-01

    The lightning stroke called a "Narrow Bipolar Event", or NBE, is an intracloud discharge responsible for significant charge redistribution. The NBE occurs within 10-20 μs, and some associated process emits irregular bursts of intense radio noise, fading at shorter timescales, sporadically during the charge transfer. In previous reports, the NBE has been inferred to be quite different from other forms of lightning strokes, in two ways: First, the NBE has been inferred to be relatively dark (non-luminous) compared to other lightning strokes. Second, the NBE has been inferred to be isolated within the storm, usually not participating in flashes, but when it is in a flash, the NBE has been inferred to be the flash initiator. These two inferences have sufficiently stark implications for NBE physics that they should be subjected to further independent test, with improved statistics. We attempt such a test with both optical and radio data from the FORTE satellite, and with lightning-stroke data from the Los Alamos Sferic Array. We show rigorously that by the metric of triggering the PDD optical photometer aboard the FORTE satellite, NBE discharges are indeed less luminous than ordinary lightning. Referred to an effective isotropic emitter at the cloud top, NBE light output is inferred to be less than ~3 × 108 W. To address isolation of NBEs, we first expand the pool of geolocated intracloud radio recordings, by borrowing geolocations from either the same flash's or the same storm's other recordings. In this manner we generate a pool of ~2 × 105 unique and independent FORTE intracloud radio recordings, whose slant range from the satellite can be inferred. We then use this slant range to calculate the Effective Radiated Power (ERP) at the radio source, in the passband 26-49 MHz. Stratifying the radio recordings by ERP into eight bins, from a lowest bin (140 kW), we document a trend for the radio recordings to become more isolated in time as the ERP increases. The highest

  13. Use of satellite and modeled soil moisture data for predicting event soil loss at plot scale

    Science.gov (United States)

    Todisco, F.; Brocca, L.; Termite, L. F.; Wagner, W.

    2015-09-01

    The potential of coupling soil moisture and a Universal Soil Loss Equation-based (USLE-based) model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e., the Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in situ measurements in which event observations at plot scale are available for the period 2008-2013. The results showed that including soil moisture observations in the event rainfall-runoff erosivity factor of the USLE enhances the capability of the model to account for variations in event soil losses, the soil moisture being an effective alternative to the estimated runoff, in the prediction of the event soil loss at Masse. The agreement between observed and estimated soil losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal to ~ 0.35 and a root mean square error (RMSE) of ~ 2.8 Mg ha-1. These results are particularly significant for the operational estimation of soil losses. Indeed, currently, soil moisture is a relatively simple measurement at the field scale and remote sensing data are also widely available on a global scale. Through satellite data, there is the potential of applying the SM4E model for large-scale monitoring and quantification of the soil erosion process.

  14. Use of satellite and modelled soil moisture data for predicting event soil loss at plot scale

    Science.gov (United States)

    Todisco, F.; Brocca, L.; Termite, L. F.; Wagner, W.

    2015-03-01

    The potential of coupling soil moisture and a~USLE-based model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in Central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e. the Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in situ measurements in which event observations at plot scale are available for the period 2008-2013. The results showed that including soil moisture observations in the event rainfall-runoff erosivity factor of the RUSLE/USLE, enhances the capability of the model to account for variations in event soil losses, being the soil moisture an effective alternative to the estimated runoff, in the prediction of the event soil loss at Masse. The agreement between observed and estimated soil losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal to of ~ 0.35 and a root-mean-square error (RMSE) of ~ 2.8 Mg ha-1. These results are particularly significant for the operational estimation of soil losses. Indeed, currently, soil moisture is a relatively simple measurement at the field scale and remote sensing data are also widely available on a global scale. Through satellite data, there is the potential of applying the SM4E model for large-scale monitoring and quantification of the soil erosion process.

  15. Current State of Art of Satellite Altimetry

    Directory of Open Access Journals (Sweden)

    Łyszkowicz Adam

    2017-12-01

    Full Text Available One of the fundamental problems of modern geodesy is precise definition of the gravitational field and its changes in time. This is essential in positioning and navigation, geo-physics, geodynamics, oceanography and other sciences related to the climate and Earth’s environment. One of the major sources of gravity data is satellite altimetry that provides gravity data with almost 75% surface of the Earth. Satellite altimetry also provides data to study local, regional and global geophysical processes, the geoid model in the areas of oceans and seas. This technique can be successfully used to study the ocean mean dynamic topography. The results of the investigations and possible products of altimetry will provide a good material for the GGOS (Global Geodetic Observing System and institutions of IAS (International Altimetry Service.

  16. Simultaneous ground-satellite observations of daytime traveling ionospheric disturbances over Japan using the GPS-TEC network and the CHAMP satellite

    Science.gov (United States)

    Moral, A. C.; Shiokawa, K.; Otsuka, Y.; Liu, H.; Nishioka, M.; Tsugawa, T.

    2017-12-01

    We report results of simultaneous ground-satellite measurements of daytime travelling ionospheric disturbances (TIDs) over Japan by using the GEONET GPS receiver network and the CHAMP satellite. For the two years of 2002 and 2008, we examined GPS measurements of TEC (Total Electron Content) and neutral and electron densities measured by CHAMP satellite. Total of fifteen TID events with clear southward moving structures in the GPS-TEC measurements are found by simultaneous ground-satellite measurements. On 2002, simultaneous events are only observed in January (1 event) and February (4 events). On 2008, ten events are observed around winter months (January (3 events), February (5), March (1), and October (1)). Neutral and electron densities measured by CHAMP show quasi-periodic fluctuations throughout the passages for all events. The CHAMP satellite crossed at least one clear TID phase front for all the events. We fitted a sinusoidal function to both ground and satellite data to obtain the frequencies and phase of the observed variations. We calculated the corresponding phase relationships between TEC variations and neutral and electron densities measured by CHAMP to categorize the events. In the presentations we report correspondence of these TID structures seen in the simultaneous ground-satellite observations by GPS-TEC and CHAMP, and discuss their phase relationship to identify the source of the daytime TIDs and specify how much of the observed variations are showing clear frequencies/or not in the nature at middle latitudes.

  17. Health in arts: are arts settings better than sports settings for promoting anti-smoking messages?

    Science.gov (United States)

    Davies, Christina; Knuiman, Matthew; Pikora, Terri; Rosenberg, Michael

    2015-05-01

    Tobacco smoking is a leading cause of preventable mortality and morbidity. Since 1991, the Western Australian Health Promotion Foundation (Healthway) has sponsored the arts and sport in exchange for cigarette smoke-free events, smoke-free policies and the promotion of anti-smoking messages (e.g. Quit, Smoke Free or Smarter than Smoking). As health promoters often look for innovative and effective settings to advocate health, and as the approach of sponsoring the arts to promote health to the general population is uncommon, the purpose of this study was to evaluate the effectiveness of 'health in arts' by measuring the cognitive impact (message awareness, comprehension, acceptance and intention) of promoting anti-smoking messages at arts events, and comparing findings to sports events, a more traditional health promotion setting. A secondary analysis of the 2004-2009 Healthway Sponsorship Monitor data was conducted. A total of 12 arts events (n = 592 respondents) and 9 sports events (n = 420 respondents) sponsored by Healthway to promote an anti-smoking message were evaluated. The study was cross-sectional in design. Participants were residents of Western Australia aged 15 years or above and attended events as part of an audience or as a spectator. Descriptive and regression analyses were conducted. After adjustment for demographic variables, smoking status and clustering, arts events were found to be as effective in promoting anti-smoking message awareness, comprehension and acceptance and twice as effective on intention to act (p = .03) compared with sports events. This study provides evidence of the effectiveness of arts sponsorship to promote health to the general population, that is, health in arts. Promoting an anti-smoking message in arts settings was as, or more, effective than in sports settings. Results suggest that the arts should be utilised to communicate and reinforce anti-smoking messages to the general population. The suitability of the arts to

  18. Constraining the age of rock art by dating a rockfall event using sediment and rock-surface luminescence dating techniques

    DEFF Research Database (Denmark)

    Chapot, Melissa; Sohbati, Reza; Murray, A.S.

    2012-01-01

    Optically stimulated luminescence (OSL) is used to determine the age of a rockfall event that removed part of the pictograph figures at the Great Gallery rock art panel in Canyonlands National Park, Utah, USA. Analyses from the outer millimeter of the buried surface of a rockfall boulder and quartz...... rock art with a controversial and unknown origin....

  19. Earth as art three

    Science.gov (United States)

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  20. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  1. Characterization And State-Of-The-Art Modeling Of Extreme Precipitation Events Over Africa During The Historical Period

    Science.gov (United States)

    Gibba, P.; Sylla, M. B.

    2015-12-01

    The ability of the state-of-the-art climate models to reproduce the mean spatial characteristics of extreme precipitation indices over Africa is evaluated. The ensembles of eight precipitation-based indices as defined by ETCCDI were extracted from seventeen CMIP5 GCMs and twelve CORDEX RCMs simulations based on absolute and percentile (95th) thresholds and computed from the 1975 to 2004 historical period. Daily precipitation indices calculated from GPCP and TRMM satellite-derived observation datasets during the period 1997 to 2012 and 1998 to 2011 respectively were also employed in this study for model validation. Results of spatial representation of the frequency of extreme precipitation events (R1mm, CDD, CWD and R95p) highlight a generally good consistency between the two observations. Equally, in the regional analysis some similarities exist in their median and interquartile (25th and 75th percentile) spread especially for CDD, CWD and R95p for most regions. In the associated intensities (SDII, RX5day, R95 and R95ptot), results indicate large spatial differences between the two observational datasets, with finer resolution TRMM generating higher rainfall intensities than the coarser resolution GPCP. TRMM has also demonstrated higher median and interquartile range as compared to GPCP. The CORDEX RCMs and CMIP5 GCMs simulations have estimated more number of extreme precipitation events, while underestimated the intensities. The differences between the models and observations can be as large as the typical model interquartile spread of the ensembles for some indices (R1mm, CWD, SDII and R95) in some regions. Meanwhile, CORDEX estimations are generally closer to the observations than CMIP5 in reproducing the frequency of extreme rainfall indices. For the estimation of rainfall intensities, CORDEX simulations are in most cases more consistence with TRMM observations whilst the CMIP5 GCMs simulations are closer to GPCP observations.

  2. Satellite failures revisited

    Science.gov (United States)

    Balcerak, Ernie

    2012-12-01

    In January 1994, the two geostationary satellites known as Anik-E1 and Anik-E2, operated by Telesat Canada, failed one after the other within 9 hours, leaving many northern Canadian communities without television and data services. The outage, which shut down much of the country's broadcast television for hours and cost Telesat Canada more than $15 million, generated significant media attention. Lam et al. used publicly available records to revisit the event; they looked at failure details, media coverage, recovery effort, and cost. They also used satellite and ground data to determine the precise causes of those satellite failures. The researchers traced the entire space weather event from conditions on the Sun through the interplanetary medium to the particle environment in geostationary orbit.

  3. Single event effect hardness for the front-end ASICs in the DAMPE satellite BGO calorimeter

    Science.gov (United States)

    Gao, Shan-Shan; Jiang, Di; Feng, Chang-Qing; Xi, Kai; Liu, Shu-Bin; An, Qi

    2016-01-01

    The Dark Matter Particle Explorer (DAMPE) is a Chinese scientific satellite designed for cosmic ray studies with a primary scientific goal of indirect detection of dark matter particles. As a crucial sub-detector, the BGO calorimeter measures the energy spectrum of cosmic rays in the energy range from 5 GeV to 10 TeV. In order to implement high-density front-end electronics (FEE) with the ability to measure 1848 signals from 616 photomultiplier tubes on the strictly constrained satellite platform, two kinds of 32-channel front-end ASICs, VA160 and VATA160, are customized. However, a space mission period of more than 3 years makes single event effects (SEEs) become threats to reliability. In order to evaluate SEE sensitivities of these chips and verify the effectiveness of mitigation methods, a series of laser-induced and heavy ion-induced SEE tests were performed. Benefiting from the single event latch-up (SEL) protection circuit for power supply, the triple module redundancy (TMR) technology for the configuration registers and the optimized sequential design for the data acquisition process, 52 VA160 chips and 32 VATA160 chips have been applied in the flight model of the BGO calorimeter with radiation hardness assurance. Supported by Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences (XDA04040202-4) and Fundamental Research Funds for the Central Universities (WK2030040048)

  4. Full Service ISDN Satellite (FSIS) network model for advanced ISDN satellite design and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The Full Service Integrated Services Digital Network (FSIS) network model for advanced satellite designs describes a model suitable for discrete event simulations. A top down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ACTS and the Interim Service ISDN Satellite (ISIS) perform ISDN protocol analyses and switching decisions in the terrestrial domain, whereas FSIS makes all its analyses and decisions on-board the ISDN satellite.

  5. First Satellite-detected Perturbations of Outgoing Longwave Radiation Associated with Blowing Snow Events over Antarctica

    Science.gov (United States)

    Yang, Yuekui; Palm, Stephen P.; Marshak, Alexander; Wu, Dong L.; Yu, Hongbin; Fu, Qiang

    2014-01-01

    We present the first satellite-detected perturbations of the outgoing longwave radiation (OLR) associated with blowing snow events over the Antarctic ice sheet using data from Cloud-Aerosol Lidar with Orthogonal Polarization and Clouds and the Earth's Radiant Energy System. Significant cloud-free OLR differences are observed between the clear and blowing snow sky, with the sign andmagnitude depending on season and time of the day. During nighttime, OLRs are usually larger when blowing snow is present; the average difference in OLRs between without and with blowing snow over the East Antarctic Ice Sheet is about 5.2 W/m2 for the winter months of 2009. During daytime, in contrast, the OLR perturbation is usually smaller or even has the opposite sign. The observed seasonal variations and day-night differences in the OLR perturbation are consistent with theoretical calculations of the influence of blowing snow on OLR. Detailed atmospheric profiles are needed to quantify the radiative effect of blowing snow from the satellite observations.

  6. Simultaneous measurements from the Millstone Hill radar and the Active satellite during the SAID/SAR arc event of the March 1990 CEDAR storm

    Directory of Open Access Journals (Sweden)

    M. Förster

    Full Text Available During a nearby passage of the Active satellite above the Millstone Hill radar on 21 March 1990 at local sunset, the satellite and the radar performed simultaneous measurements of upper ionospheric parameters in nearly the same spatial volume. For this purpose the radar carried out a special azimuth-elevation scan to track the satellite. Direct comparisons of radar data and in situ satellite measurements have been carried out quite rarely. In this case, the coincidence of co-ordinated measurements and active ionospheric-magnetospheric processes during an extended storm recovery phase presents a unique occasion resulting in a very valuable data set. The measurements show generally good agreement both during quiet prestorm and storm conditions and the combination of radar and satellite observations gives a more comprehensive picture of the physical processes involved. We find a close relationship between the rapid westward ion drift peak at subauroral latitudes (SAID event and the occurrence of a stable auroral red (SAR arc observed after sunset by an all-sky imager and reported in an earlier study of this event. The SAID electric field is caused by the penetration of energetic ions with energies between about 1 keV and 100 keV into the outer plasmasphere to a latitude equatorward of the extent of the plasmasheet electrons. Charge separation results in the observed polarisation field and the SAID. Unusually high molecular ion densities measured by the satellite at altitudes of 700-870 km at subauroral and auroral latitudes point on strong upward-directed ion acceleration processes and an intense neutral gas upwelling. These structures are collocated with a narrow trough in electron density and an electron temperature peak as observed simultaneously by the radar and the satellite probes.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; plasma temperature and density; Magnetospheric physics (plasmasphere.

  7. Inter-comparison of Rainfall Estimation from Radar and Satellite During 2016 June 23 Yancheng Tornado Event over Eastern China

    Science.gov (United States)

    Huang, C.; Chen, S.; Liang, Z.; Hu, B.

    2017-12-01

    ABSTRACT: On the afternoon of June 23, 2016, Yancheng city in eastern China was hit by a severe thunderstorm that produced a devastating tornado. This tornado was ranked as an EF4 on the Enhanced Fujita scale by China Meteorological Administration, and killed at least 99 people and injured 846 others (152 seriously). This study evaluates rainfall estimates from ground radar network and four satellite algorithms with a relatively dense rain gauge network over eastern China including Jiangsu province and its adjacent regions for the Yancheng June 23 Tornado extreme convective storm in different spatiotemporal scales (from 0.04° to 0.1° and hourly to event total accumulation). The radar network is composed of about 6 S-band Doppler weather radars. Satellite precipitation products include Integrated Multi-satellitE Retrievals for GPM (IMERG), Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS), and Global Satellite Mapping of Precipitation (GSMap). Relative Bias (RB), Root-Mean-Squared Error (RMSE), Correlation Coefficient (CC), Probability Of Detection (POD), False Alarm Ratio (FAR), and Critical Success Index (CSI) are used to quantify the performance of these precipitation products.

  8. Earth as art 4

    Science.gov (United States)

    ,

    2016-03-29

    Landsat 8 is the latest addition to the long-running series of Earth-observing satellites in the Landsat program that began in 1972. The images featured in this fourth installment of the Earth As Art collection were all acquired by Landsat 8. They show our planet’s diverse landscapes with remarkable clarity.Landsat satellites see the Earth as no human can. Not only do they acquire images from the vantage point of space, but their sensors record infrared as well as visible wavelengths of light. The resulting images often reveal “hidden” details of the Earth’s land surface, making them invaluable for scientific research.As with previous Earth As Art exhibits, these Landsat images were selected solely for their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation—only for your viewing pleasure. What do you see in these unique glimpses of the Earth’s continents, islands, and coastlines?

  9. Rare events: a state of the art

    International Nuclear Information System (INIS)

    Uppuluri, V.R.R.

    1980-12-01

    The study of rare events has become increasingly important in the context of nuclear safety. Some philosophical considerations, such as the framework for the definition of a rare event, rare events and science, rare events and trans-science, and rare events and public perception, are discussed. The technical work of the Task Force on problems of Rare Events in the Reliability Analysis of Nuclear Plants (1976-1978), sponsored by OECD, is reviewed. Some recent technical considerations are discussed, and conclusions are drawn. The appendix contains an essay written by Anne E. Beachey, under the title: A Study of Rare Events - Problems and Promises

  10. Visual events and the friendly eye: modes of educating vision in new educational settings in Danish art galleries

    DEFF Research Database (Denmark)

    Illeris, Helene

    2009-01-01

      New, experimental educational settings such as ‘art laboratories', ‘digital workshops' and ‘theme-based tours' are important to the processes of change towards more inclusive practices, which have been initiated in many Danish art galleries. While traditional gallery education was constructed...... as visual events, and it discusses how ‘the desiring eye' of some constructivist approaches, along with traditional practices of looking, have contributed to the formation of the modern, autonomous individual. The second part of the article analyses two cases from Danish art galleries and, inspired by Mieke...... in order to stimulate the ‘disciplined eye' or the ‘aesthetic eye' of the visitors, this article aims to discuss the practices of looking encouraged by contemporary and experimental educational projects. The first part of the article develops a theoretical perspective on educational settings conceived...

  11. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  12. Coupling rainfall observations and satellite soil moisture for predicting event soil loss in Central Italy

    Science.gov (United States)

    Todisco, Francesca; Brocca, Luca; Termite, Loris Francesco; Wagner, Wolfgang

    2015-04-01

    The accuracy of water soil loss prediction depends on the ability of the model to account for effects of the physical phenomena causing the output and the accuracy by which the parameters have been determined. The process based models require considerable effort to obtain appropriate parameter values and their failure to produce better results than achieved using the USLE/RUSLE model, encourages the use of the USLE/RUSLE model in roles of which it was not designed. In particular it is widely used in watershed models even at the event temporal scale. At hillslope scale, spatial variability in soil and vegetation result in spatial variations in soil moisture and consequently in runoff within the area for which soil loss estimation is required, so the modeling approach required to produce those estimates needs to be sensitive to those spatial variations in runoff. Some models include explicit consideration of runoff in determining the erosive stresses but this increases the uncertainty of the prediction due to the difficulty in parameterising the models also because the direct measures of surface runoff are rare. The same remarks are effective also for the USLE/RUSLE models including direct consideration of runoff in the erosivity factor (i.e. USLE-M by Kinnell and Risse, 1998, and USLE-MM by Bagarello et al., 2008). Moreover actually most of the rainfall-runoff models are based on the knowledge of the pre-event soil moisture that is a fundamental variable in the rainfall-runoff transformation. In addiction soil moisture is a readily available datum being possible to have easily direct pre-event measures of soil moisture using in situ sensors or satellite observations at larger spatial scale; it is also possible to derive the antecedent water content with soil moisture simulation models. The attempt made in the study is to use the pre-event soil moisture to account for the spatial variation in runoff within the area for which the soil loss estimates are required. More

  13. How Law Manifests Itself in Australian Aboriginal Art

    NARCIS (Netherlands)

    A.T.M. Schreiner (Agnes)

    2013-01-01

    markdownabstract__Abstract__ The article How Law Manifests Itself in Australian Aboriginal Art will discuss two events at the Aboriginal Art Museum Utrecht from the perspective of a meeting between two artistic and legal cultures. The first event, on the art and law of the Spinifex people,

  14. Oxygen ion uplift and satellite drag effects during the 30 October 2003 daytime superfountain event

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2007-03-01

    Full Text Available The prompt penetration of interplanetary electric fields (IEFs to the dayside low-latitude ionosphere during the first ~2 h of a superstorm is estimated and applied to a modified NRL SAMI2 code for the 30 October 2003 event. In our simulations, the dayside ionospheric O+ is convected to higher altitudes (~600 km and higher latitudes (~±25° to 30°, forming highly displaced equatorial ionospheric anomaly (EIA peaks. This feature plus others are consistent with previously published CHAMP electron (TEC measurements and with the dayside superfountain model. The rapid upward motion of the O+ ions causes neutral oxygen (O uplift due to ion-neutral drag. It is estimated that above ~400 km altitude the O densities within the displaced EIAs can be increased substantially over quiet time values. The latter feature will cause increased drag for low-altitude satellites. This newly predicted phenomenon is expected to be typical for superstorm/IEF events.

  15. Oxygen ion uplift and satellite drag effects during the 30 October 2003 daytime superfountain event

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2007-03-01

    Full Text Available The prompt penetration of interplanetary electric fields (IEFs to the dayside low-latitude ionosphere during the first ~2 h of a superstorm is estimated and applied to a modified NRL SAMI2 code for the 30 October 2003 event. In our simulations, the dayside ionospheric O+ is convected to higher altitudes (~600 km and higher latitudes (~±25° to 30°, forming highly displaced equatorial ionospheric anomaly (EIA peaks. This feature plus others are consistent with previously published CHAMP electron (TEC measurements and with the dayside superfountain model. The rapid upward motion of the O+ ions causes neutral oxygen (O uplift due to ion-neutral drag. It is estimated that above ~400 km altitude the O densities within the displaced EIAs can be increased substantially over quiet time values. The latter feature will cause increased drag for low-altitude satellites. This newly predicted phenomenon is expected to be typical for superstorm/IEF events.

  16. On the feasibility of using satellite gravity observations for detecting large-scale solid mass transfer events

    Science.gov (United States)

    Peidou, Athina C.; Fotopoulos, Georgia; Pagiatakis, Spiros

    2017-10-01

    The main focus of this paper is to assess the feasibility of utilizing dedicated satellite gravity missions in order to detect large-scale solid mass transfer events (e.g. landslides). Specifically, a sensitivity analysis of Gravity Recovery and Climate Experiment (GRACE) gravity field solutions in conjunction with simulated case studies is employed to predict gravity changes due to past subaerial and submarine mass transfer events, namely the Agulhas slump in southeastern Africa and the Heart Mountain Landslide in northwestern Wyoming. The detectability of these events is evaluated by taking into account the expected noise level in the GRACE gravity field solutions and simulating their impact on the gravity field through forward modelling of the mass transfer. The spectral content of the estimated gravity changes induced by a simulated large-scale landslide event is estimated for the known spatial resolution of the GRACE observations using wavelet multiresolution analysis. The results indicate that both the Agulhas slump and the Heart Mountain Landslide could have been detected by GRACE, resulting in {\\vert }0.4{\\vert } and {\\vert }0.18{\\vert } mGal change on GRACE solutions, respectively. The suggested methodology is further extended to the case studies of the submarine landslide in Tohoku, Japan, and the Grand Banks landslide in Newfoundland, Canada. The detectability of these events using GRACE solutions is assessed through their impact on the gravity field.

  17. TIME COURSE ALTERATIONS OF SATELLITE CELL EVENTS IN RESPONSE TO LIGHT MODERATE ENDURANCE TRAINING IN WHITE GASTROCNEMIUS MUSCLE OF THE RAT

    Directory of Open Access Journals (Sweden)

    Zong-Yan Cai

    2012-01-01

    Full Text Available This study investigated satellite cells and their related molecular events adapted to light moderate endurance training in the white gastrocnemius muscle of the rat. The white gastrocnemius muscle of male Sprague-Dawley rats that had been trained for 4 weeks and 8 weeks, with control rats being analysed alongside them, was selected for analysis (n=3 per group. The training protocol consisted of treadmill running at 20 m · min-1 for 30 min on a 0% grade, for 3 days · week-1. Immunohistochemical staining coupled with image analysis was used for quantification. To provide deeper insight into the cell layer, 40 sections per rat, corresponding to 120 values per group, were obtained as a mean value for statistical comparison. The results indicated that at week 4, training effects increased the vascular endothelial growth factor (VEGF content and c-met positive satellite cell numbers. At week 8, the training effect was attenuated for VEGF and c-met satellite cell numbers, but it increased in the muscle fibre area. Additionally, c-met positive satellite cell numbers correlated with VEGF content (r = 0.79, p<0.05. In conclusion, this study suggests that light moderate endurance training could stimulate satellite cell activation that might be related to VEGF signalling. Additionally, the satellite cells activated by moderate endurance training might contribute to slight growth in myocytes.

  18. Latitudinal extent of the January 2005 solar proton event in the Northern Hemisphere from satellite observations of hydroxyl

    Directory of Open Access Journals (Sweden)

    P. T. Verronen

    2007-11-01

    Full Text Available We utilise hydroxyl observations from the MLS/Aura satellite instrument to study the latitudinal extent of particle forcing in the northern polar region during the January 2005 solar proton event. MLS is the first satellite instrument to observe HOx changes during such an event. We also predict the hydroxyl changes with respect to the magnetic latitude by the Sodankylä Ion and Neutral Chemistry model, estimating the variable magnetic cutoff energies for protons using a parameterisation based on magnetosphere modelling and the planetary magnetic index Kp. In the middle and lower mesosphere, HOx species are good indicators of the changes in the atmosphere during solar proton events, because they respond rapidly to both increases and decreases in proton forcing. Also, atmospheric transport has a negligible effect on HOx because of its short chemical lifetime. The observations indicate the boundary of the proton forcing and a transition region, from none to the "full" effect, which ranges from about 57 to 64 degrees of magnetic latitude. When saturating the rigidity cutoff Kp at 6 in the model, as suggested by earlier studies using observations of cosmic radio noise absorption, the equatorward boundary of the transition region is offset by ≈2 degrees polewards compared with the data, thus the latitudinal extent of the proton forcing in the atmosphere is underestimated. However, the model predictions are in reasonable agreement with the MLS measurements when the Kp index is allowed to vary within its nominal range, i.e., from 1 to 9 in the cutoff calculation.

  19. Monitoring and forecasting of radiation hazard from great solar energetic particle events by using on-line one-min neutron monitor and satellite data

    International Nuclear Information System (INIS)

    Dorman, L. I.

    2007-01-01

    The method of automatically determining the start of great solar energetic particle (SEP) events are described on the basis of cosmic ray (CR) one-min observations by neutron monitors in real-time scale. It is shown that the probabilities of false alarms and missed triggers are negligible. After the start of SEP event, it is automatically determined by the method of coupling functions the SEP energy spectrum and flux for each minute of observations. By solving the inverse problem during few first minutes of SEP event, diffusion coefficient in the interplanetary space, source function on the Sun, and time of ejection of SEP into solar wind are determined. For extending obtained results into small energy range we use also available from Internet the satellite one-min CR data. This make possible to give forecast of space-time variation of SEP for more than 2 days and estimate expected radiation dose for satellite and aircraft. With each new minute of observations, the quality of forecast increased, and after ∼30 min became near 100%. (authors)

  20. Combining satellite imagery with forest inventory data to assess damage severity following a major blowdown event in northern Minnesota, USA

    Science.gov (United States)

    Mark D. Nelson; Sean P. Healey; W. Keith Moser; Mark H. Hansen

    2009-01-01

    Effects of a catastrophic blowdown event in northern Minnesota, USA were assessed using field inventory data, aerial sketch maps and satellite image data processed through the North American Forest Dynamics programme. Estimates were produced for forest area and net volume per unit area of live trees pre- and post-disturbance, and for changes in volume per unit area and...

  1. Advanced Deployable Structural Systems for Small Satellites

    Science.gov (United States)

    Belvin, W. Keith; Straubel, Marco; Wilkie, W. Keats; Zander, Martin E.; Fernandez, Juan M.; Hillebrandt, Martin F.

    2016-01-01

    One of the key challenges for small satellites is packaging and reliable deployment of structural booms and arrays used for power, communication, and scientific instruments. The lack of reliable and efficient boom and membrane deployment concepts for small satellites is addressed in this work through a collaborative project between NASA and DLR. The paper provides a state of the art overview on existing spacecraft deployable appendages, the special requirements for small satellites, and initial concepts for deployable booms and arrays needed for various small satellite applications. The goal is to enhance deployable boom predictability and ground testability, develop designs that are tolerant of manufacturing imperfections, and incorporate simple and reliable deployment systems.

  2. How Law Manifests Itself in Australian Aboriginal Art

    NARCIS (Netherlands)

    Schreiner, A.T.M.

    2013-01-01

    The article How Law Manifests Itself in Australian Aboriginal Art will discuss two events at the Aboriginal Art Museum Utrecht from the perspective of a meeting between two artistic and legal cultures. The first event, on the art and law of the Spinifex people, will prove to be of a private law

  3. Dust storm events over Delhi: verification of dust AOD forecasts with satellite and surface observations

    Science.gov (United States)

    Singh, Aditi; Iyengar, Gopal R.; George, John P.

    2016-05-01

    Thar desert located in northwest part of India is considered as one of the major dust source. Dust storms originate in Thar desert during pre-monsoon season, affects large part of Indo-Gangetic plains. High dust loading causes the deterioration of the ambient air quality and degradation in visibility. Present study focuses on the identification of dust events and verification of the forecast of dust events over Delhi and western part of IG Plains, during the pre-monsoon season of 2015. Three dust events have been identified over Delhi during the study period. For all the selected days, Terra-MODIS AOD at 550 nm are found close to 1.0, while AURA-OMI AI shows high values. Dust AOD forecasts from NCMRWF Unified Model (NCUM) for the three selected dust events are verified against satellite (MODIS) and ground based observations (AERONET). Comparison of observed AODs at 550 nm from MODIS with NCUM predicted AODs reveals that NCUM is able to predict the spatial and temporal distribution of dust AOD, in these cases. Good correlation (~0.67) is obtained between the NCUM predicted dust AODs and location specific observations available from AERONET. Model under-predicted the AODs as compared to the AERONET observations. This may be mainly because the model account for only dust and no anthropogenic activities are considered. The results of the present study emphasize the requirement of more realistic representation of local dust emission in the model both of natural and anthropogenic origin, to improve the forecast of dust from NCUM during the dust events.

  4. Visual events and the friendly eye: modes of educating vision in new educational settings in Danish art galleries

    Directory of Open Access Journals (Sweden)

    Helene Illeris

    2015-04-01

    Full Text Available New, experimental educational settings such as ‘art laboratories’, ‘digital workshops’ and ‘theme-based tours’ are important to the processes of change towards more inclusive practices, which have been initiated in many Danish art galleries. While traditional gallery education was constructed in order to stimulate the ‘disciplined eye’ or the ‘aesthetic eye’ of the visitors, this article aims to discuss the practices of looking encouraged by contemporary and experimental educational projects. The first part of the article develops a theoretical perspective on educational settings conceived as visual events, and it discusses how ‘the desiring eye’ of some constructivist approaches, along with traditional practices of looking, have contributed to the formation of the modern, autonomous individual. The second part of the article analyses two cases from Danish art galleries and, inspired by Mieke Bal, proposes the ‘friendly eye’ as a possible dialogical and collective practice of looking that can be stimulated in educational settings.

  5. 47 CFR 76.127 - Satellite sports blackout.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Satellite sports blackout. 76.127 Section 76... Sports Blackout § 76.127 Satellite sports blackout. (a) Upon the request of the holder of the broadcast rights to a sports event, or its agent, no satellite carrier shall retransmit to subscribers within the...

  6. Art-inspired Presentation of Earth Science Research

    Science.gov (United States)

    Bugbee, K.; Smith, D. K.; Smith, T.; Conover, H.; Robinson, E.

    2016-12-01

    This presentation features two posters inspired by modern and contemporary art that showcase different Earth science data at NASA's Global Hydrology Resource Center Distributed Active Archive Center (GHRC DAAC). The posters are intended for the science-interested public. They are designed to tell an interesting story and to stimulate interest in the science behind the art. "Water makes the World" is a photo mosaic of cloud water droplet and ice crystal images combined to depict the Earth in space. The individual images were captured using microphysical probes installed on research aircraft flown in the Mid-latitude Continental Convective Clouds Experiment (MC3E). MC3E was one of a series of ground validation field experiments for NASA's Global Precipitation Measurement (GPM) mission which collected ground and airborne precipitation datasets supporting the physical validation of satellite-based precipitation retrieval algorithms. "The Lightning Capital of the World" is laid out on a grid of black lines and primary colors in the style of Piet Mondrian. This neoplastic or "new plastic art" style was founded in the Netherlands and was used in art from 1917 to 1931. The poster colorfully describes the Catatumbo lightning phenomenon from a scientific, social and historical perspective. It is a still representation of a moving art project. To see this poster in action, visit the GHRC YouTube channel at http://tinyurl.com/hd6crx8 or stop by during the poster session. Both posters were created for a special Research as Art session at the 2016 Federation of Earth Science Information Partners (ESIP) summer meeting in Durham, NC. This gallery-style event challenged attendees to use visual media to show how the ESIP community uses data. Both of these visually appealing posters draw the viewer in and then provide information on the science data used, as well as links for more information available. The GHRC DAAC is a joint venture of NASA's Marshall Space Flight Center and the

  7. Art School

    OpenAIRE

    Lucas, Anna

    2015-01-01

    Art School is a body of research that focuses on the pedagogical environment and the conditions of creative thinking & material making. The outputs are films that embed reflexivity in their concept, process and form, further contextualised through International talks, events and curated screenings about Art School and the nature of artist’s process and pedagogy. The underlying research questions also address the significance of artist’s processes within the contemporary political and cultur...

  8. Representation of solar tides in the stratosphere and lower mesosphere in state-of-the-art reanalyses and in satellite observations

    Science.gov (United States)

    Sakazaki, Takatoshi; Fujiwara, Masatomo; Shiotani, Masato

    2018-02-01

    Atmospheric solar tides in the stratosphere and the lower mesosphere are investigated using temperature data from five state-of-the-art reanalysis data sets (MERRA-2, MERRA, JRA-55, ERA-Interim, and CFSR) as well as TIMED SABER and Aura MLS satellite measurements. The main focus is on the period 2006-2012 during which the satellite observations are available for direct comparison with the reanalyses. Diurnal migrating tides, semidiurnal migrating tides, and nonmigrating tides are diagnosed. Overall the reanalyses agree reasonably well with each other and with the satellite observations for both migrating and nonmigrating components, including their vertical structure and the seasonality. However, the agreement among reanalyses is more pronounced in the lower stratosphere and relatively weaker in the upper stratosphere and mesosphere. A systematic difference between SABER and the reanalyses is found for diurnal migrating tides in the upper stratosphere and the lower mesosphere; specifically, the amplitude of trapped modes in reanalyses is significantly smaller than that in SABER, although such difference is less clear between MLS and the reanalyses. The interannual variability and the possibility of long-term changes in migrating tides are also examined using the reanalyses during 1980-2012. All the reanalyses agree in exhibiting a clear quasi-biennial oscillation (QBO) in the tides, but the most significant indications of long-term changes in the tides represented in the reanalyses are most plausibly explained by the evolution of the satellite observing systems during this period. The tides are also compared in the full reanalyses produced by the Japan Meteorological Agency (i.e., JRA-55) and in two parallel data sets from this agency: one (JRA-55C) that repeats the reanalysis procedure but without any satellite data assimilated and one (JRA-55AMIP) that is a free-running integration of the model constrained only by observed sea surface temperatures. Many aspects

  9. The Art Of Planetary Science: An Exhibition - Bringing Together The Art And Science Communities To Engage The Public

    Science.gov (United States)

    Molaro, Jamie; Keane, Jamies; Peacock, Sarah; Schaefer, Ethan; Tanquary, Hannah

    2014-11-01

    The University of Arizona’s Lunar and Planetary Laboratory (LPL) presents the 2nd Annual The Art of Planetary Science: An Exhibition (TAPS) on 17-19 October 2014. This art exhibition and competition features artwork inspired by planetary science, alongside works created from scientific data. It is designed to connect the local art and science communities of Tucson, and engage the public together in celebration of the beauty and elegance of the universe. The exhibition is organized by a team of volunteer graduate students, with the help of LPL’s Space Imaging Center, and support from the LPL administration. Last year’s inaugural event featured over 150 works of art from 70 artists and scientists. A variety of mediums were represented, including paintings, photography, digital prints, sculpture, glasswork, textiles, film, and written word. Over 300 guests attended the opening. Art submission and event attendance are free, and open to anyone.The primary goal of the event is to present a different side of science to the public. Too often, the public sees science as dull or beyond their grasp. This event provides scientists the opportunity to demonstrate the beauty that they find in their science, by creating art out of their scientific data. These works utilized, for example, equations, simulations, visual representations of spacecraft data, and images of extra-terrestrial material samples. Viewing these works alongside more traditional artwork inspired by those same scientific ideas provided the audience a more complex, multifaceted view of the content that would not be possible viewing either alone. The event also provides a way to reach out specifically to the adult community. Most science outreach is targeted towards engaging children in STEM fields. While this is vital for the long term, adults have more immediate control over the perception of science and public policy that provides funding and research opportunities to scientists. We hope this event raises

  10. Arts Education in America: What the Declines Mean for Arts Participation. Based on the 2008 Survey of Public Participation in the Arts. Research Report #52

    Science.gov (United States)

    Rabkin, Nick; Hedberg, E. C.

    2011-01-01

    The Surveys of Public Participation in the Arts (SPPAs), conducted for the National Endowment for the Arts, have shown a steady decline in the rates of adult attendance at most "benchmark" arts events--specifically, classical music and jazz concerts, musical and non-musical plays, opera, and ballet performances--as well as declines in other forms…

  11. Demystifying Experiential Learning in the Performing Arts

    Science.gov (United States)

    Kindelan, Nancy

    2010-01-01

    The pedagogy of performing arts courses in theatre, film, music, and dance programs found in most liberal arts curricula is clearly experiential insofar as the making of art involves active engagement in classroom activities or events that are staged or filmed. But because many educators outside the arts perceive performing arts programs as solely…

  12. Multicultural Arts Education in the Post-Secondary Context?: Creating Installation and Performance Art in Surrey, Canada

    Science.gov (United States)

    Colby, Sasha

    2011-01-01

    In 2007, Simon Fraser University's satellite campus in Surrey, British Columbia, received an Official Languages Dissemination Grant from the Social Sciences and Humanities Research Council of Canada to examine the role of official bilingualism in the multilingual context through installation and performance art. This essay considers the processes…

  13. Critical Zen art history

    Directory of Open Access Journals (Sweden)

    Gregory P. A. Levin

    2016-12-01

    Full Text Available This essay sketches a history of the study of Zen art from the late nineteenth century to post-war reconsiderations, leading towards what I term “critical Zen art studies.” The latter, I suggest, has been undertaken by historians of art and others to challenge normative definitions of Zen art based on modern constructs, revise understanding of the types and functions of visual art important to Chan/Sŏn/Zen Buddhist monasteries, and study iconographies and forms not as a transparent aesthetic indices to Zen Mind or No Mind but as rhetorically, ritually, and socially complex, even unruly, events of representation.

  14. Forecasting the Impact of an 1859-calibre Superstorm on Satellite Resources

    Science.gov (United States)

    Odenwald, Sten; Green, James; Taylor, William

    2005-01-01

    We have assembled a database of operational satellites in orbit as of 2004, and have developed a series of simple models to assess the economic impacts to this resource caused by various scenarios of superstorm events possible during the next sunspot cycle between 2010 and 2014. Despite the apparent robustness of our satellite assets against the kinds of storms we have encountered during the satellite era, our models suggest a potential economic loss exceeding $10(exp 11) for satellite replacement and lost profitability caused by a once a century single storm similar to the 1859 superstorm. From a combination of power system and attitude control system (the most vulnerable) failures, we estimate that 80 satellites (LEO, MEO, GEO) may be disabled as a consequence of a superstorm event. Additional consequences may include the failure of many of the GPS, GLONASS and Galileo satellite systems in MEO. Approximately 98 LEO satellites that normally would not have re-entered for many decades, may prematurely de-orbit in ca 2021 as a result of the temporarily increased atmospheric drag caused by the superstorm event occurring in 2012. The $10(exp 11) International Space Station may lose at least 15 kilometers of altitude, placing it in critical need for re-boosting by an amount that is potentially outside the range of typical Space Shuttle operations during the previous solar maximum in ca 2000, and at a time when NASA plans to decommission the Space Shuttle. Several LEO satellites will unexpectedly be placed on orbits that enter the ISS zone of avoidance, requiring some action by ground personnel and ISS astronauts to avoid close encounters. Radiation effects on astronauts have also been considered and could include a range of possibilities from acute radiation sickness for astronauts inside spacecraft, to near-lethal doses during EVAs. The specifics depends very sensitively on the spectral hardness of the accompanying SPE event. Currently, the ability to forecast extreme

  15. Art for reward's sake: visual art recruits the ventral striatum.

    Science.gov (United States)

    Lacey, Simon; Hagtvedt, Henrik; Patrick, Vanessa M; Anderson, Amy; Stilla, Randall; Deshpande, Gopikrishna; Hu, Xiaoping; Sato, João R; Reddy, Srinivas; Sathian, K

    2011-03-01

    A recent study showed that people evaluate products more positively when they are physically associated with art images than similar non-art images. Neuroimaging studies of visual art have investigated artistic style and esthetic preference but not brain responses attributable specifically to the artistic status of images. Here we tested the hypothesis that the artistic status of images engages reward circuitry, using event-related functional magnetic resonance imaging (fMRI) during viewing of art and non-art images matched for content. Subjects made animacy judgments in response to each image. Relative to non-art images, art images activated, on both subject- and item-wise analyses, reward-related regions: the ventral striatum, hypothalamus and orbitofrontal cortex. Neither response times nor ratings of familiarity or esthetic preference for art images correlated significantly with activity that was selective for art images, suggesting that these variables were not responsible for the art-selective activations. Investigation of effective connectivity, using time-varying, wavelet-based, correlation-purged Granger causality analyses, further showed that the ventral striatum was driven by visual cortical regions when viewing art images but not non-art images, and was not driven by regions that correlated with esthetic preference for either art or non-art images. These findings are consistent with our hypothesis, leading us to propose that the appeal of visual art involves activation of reward circuitry based on artistic status alone and independently of its hedonic value. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Solar Radiation and Climate Experiment (SORCE) Satellite

    Science.gov (United States)

    2003-01-01

    This is a close-up of the NASA-sponsored Solar Radiation and Climate Experiment (SORCE) Satellite. The SORCE mission, launched aboard a Pegasus rocket January 25, 2003, will provide state of the art measurements of incoming x-ray, ultraviolet, visible, near-infrared, and total solar radiation. Critical to studies of the Sun and its effect on our Earth system and mankind, SORCE will provide measurements that specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation. Orbiting around the Earth accumulating solar data, SORCE measures the Sun's output with the use of state-of-the-art radiometers, spectrometers, photodiodes, detectors, and bolo meters engineered into instruments mounted on a satellite observatory. SORCE is carrying 4 instruments: The Total Irradiance Monitor (TIM); the Solar Stellar Irradiance Comparison Experiment (SOLSTICE); the Spectral Irradiance Monitor (SIM); and the XUV Photometer System (XPS).

  17. Figure 1. Associations between pre-ART clinical and laboratory ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Figure 1. Associations between pre-ART clinical and laboratory characteristics with subsequent TB-IRIS events. Figure 1. Associations between pre-ART clinical and laboratory characteristics with subsequent TB-IRIS events.

  18. Coordinated Cluster, ground-based instrumentation and low-altitude satellite observations of transient poleward-moving events in the ionosphere and in the tail lobe

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2001-09-01

    Full Text Available During the interval between 8:00–9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EISCAT Svalbard Radar (ESR at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches", with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( ± 5 min, the interplanetary magnetic field (IMF had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event, was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10–20 eV and the topside ionospheric enhancements seen by the ESR (at 400–700 km. We suggest that a potential barrier at the

  19. Coordinated Cluster, ground-based instrumentation and low-altitude satellite observations of transient poleward-moving events in the ionosphere and in the tail lobe

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    Full Text Available During the interval between 8:00–9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EISCAT Svalbard Radar (ESR at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches", with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( ± 5 min, the interplanetary magnetic field (IMF had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event, was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10–20 eV and the topside ionospheric enhancements seen by the ESR (at 400–700 km. We suggest that a potential barrier at the

  20. Art, fisheries and ethnobiology.

    Science.gov (United States)

    Begossi, Alpina; Caires, Rodrigo

    2015-02-23

    Nature is perceived in a variety of forms, and the perception of nature can also be expressed in different ways. Local art may represent the perception of nature by humans. It can embody perception, imagination and wisdom. Local art, in particular, reflects how people interact with nature. For example, when studying the representation of fish by different cultures, it is possible to access information on the fish species found in the environment, on its relative importance, and on historical events, among others. In this context, art can be used to obtain information on historical events, species abundance, ecology, and behaviour, for example. It can also serve to compare baselines by examining temporal and spatial scales. This study aims to analyse art and nature from a human ecological perspective: art can understood as an indicator of fish abundance or salience. Art has a variety of dimensions and perspectives. Art can also be associated with conservation ecology, being useful to reinterpret ecological baselines. A variety of paintings on fish, as well as paintings from local art, are explored in this study. They are analyzed as representing important fish, spatially and historically. A survey regarding the fish found in different paintings was conducted using art books and museum books. Pictures were taken by visiting museums, particularly for local or traditional art (Australia and Cape Town). The fish illustrated here seem to be commonly important in terms of salience. For example, Coryphaena spp. is abundant in Greece, Nile tilapia in Egypt, Gadus morhua in the Netherlands, as well as barracuda in Australia; salience is also applied to useful, noticeable or beautiful organisms, such as Carassius auratus (China). Another aspect of salience, the diversity of a group, is also represented by the panel where Uraspis uraspis appears to be depicted. Regarding the evaluation of baselines, we should consider that art may represent abundant fish in certain historic

  1. State of the Universe of Astronomy on Tap Public Outreach Events

    Science.gov (United States)

    Rice, Emily; Constellation of Astronomy on Tap Host Stars

    2018-01-01

    Astronomy on Tap (AoT, http://astronomyontap.org) is a series of free public outreach events featuring engaging science presentations combined with music, games, and prizes in a fun, interactive atmosphere. AoT events feature one or more presentations given primarily by local professional scientists and graduate students, but also by visiting scientists, undergraduate students, educators, amateur astronomers, writers, artists, and other astronomy enthusiasts. Events are held at social venues like bars, coffee shops, and art galleries in order to bring science, the stories behind the research, and updates on the latest astronomy news directly to the public in a relaxed, informal atmosphere. Since the first New York City event in April 2013, nearly 400 AoT-affiliated events have been held in over 30 locations worldwide and the expansion is accelerating. The casual, social nature of AoT events provides important professional development opportunities in networking and in science communication, which we describe in a separate poster. The flexible format and content of a typical AoT event is easy to adapt and expand based on the priorities, resources, and interests of local organizers. We present the 2017 launches, including the first events in Europe and the first events conducted in French and Spanish, summarize the Universe of ongoing AoT events, and share recommendations for launching new satellite locations, also described in detail in our “Launch Manifesto” available upon request.

  2. Sound Art Situations

    DEFF Research Database (Denmark)

    Krogh Groth, Sanne; Samson, Kristine

    2017-01-01

    and combine theories from several fields. Aspects of sound art studies, performance studies and contemporary art studies are presented in order to theoretically explore the very diverse dimensions of the two sound art pieces: Visual, auditory, performative, social, spatial and durational dimensions become......This article is an analysis of two sound art performances that took place June 2015 in outdoor public spaces in the social housing area Urbanplanen in Copenhagen, Denmark. The two performances were On the production of a poor acoustics by Brandon LaBelle and Green Interactive Biofeedback...... Environments (GIBE) by Jeremy Woodruff. In order to investigate the complex situation that arises when sound art is staged in such contexts, the authors of this article suggest exploring the events through approaching them as ‘situations’ (Doherty 2009). With this approach it becomes possible to engage...

  3. Martial Arts Club

    CERN Multimedia

    Martial Arts Club

    2010-01-01

    In July 2010, after five years of activity, the CERN Martial Arts held its first international Bujutsu seminar, gathering more than 40 participants from France, Switzerland, Sweden and Japan. The seminar was led by Master Shimazu Kenji, world-renowned martial arts expert based in Tokyo and headmaster of the Yagyu Shingan Ryu school, present in Europe specifically for the occasion. During nine days, participants got to discover the wide array of Bujutsu techniques and traditions of an ancestral martial art that finds its roots in the art and lives of Japanese samurais. Covering such varied subjects as self-defense techniques (Jujitsu), swordsmanship (Kenjutsu), through to healing techniques and etiquette, it encompasses all aspects of a way of life that still find echoes in today's modern Japanese society. The CERN Martial Arts club wishes to thank particularly the CERN Clubs Committee and its president Rachel Bray for their support in organizing this event. The CERN Martial Arts club, led by Sylvai...

  4. The art framework

    International Nuclear Information System (INIS)

    Green, C; Kowalkowski, J; Paterno, M; Fischler, M; Garren, L; Lu, Q

    2012-01-01

    Future “Intensity Frontier” experiments at Fermilab are likely to be conducted by smaller collaborations, with fewer scientists, than is the case for recent “Energy Frontier” experiments. art is a C++ event-processing framework designed with the needs of such experiments in mind. An evolution from the framework of the CMS experiment, art was designed and implemented to be usable by multiple experiments without imposing undue maintenance effort requirements on either the art developers or experiments using it. We describe the key requirements and features of art and the rationale behind evolutionary changes, additions and simplifications with respect to the CMS framework. In addition, our package distribution system and our collaborative model with respect to the multiple experiments using art helps keep the maintenance burden low. We also describe in-progress and future enhancements to the framework, including strategies we are using to allow multi-threaded use of the art framework in today's multi- and many-core environments.

  5. Progress in Understanding the Pre-Earthquake Associated Events by Analyzing IR Satellite Data

    Science.gov (United States)

    Ouzounov, Dimitar; Taylor, Patrick; Bryant, Nevin

    2004-01-01

    We present latest result in understanding the potential relationship between tectonic stress, electro-chemical and thermodynamic processes in the Earths crust and atmosphere with an increase in IR flux as a potential signature of electromagnetic (EM) phenomena that are related to earthquake activity, either pre-, co- or post seismic. Thermal infra-red (TIR) surveys performed by the polar orbiting (NOAA/AVHRR MODIS) and geosynchronous weather satellites (GOES, METEOSAT) gave an indication of the appearance (from days to weeks before the event) of "anomalous" space-time TIR transients that are associated with the location (epicenter and local tectonic structures) and time of a number of major earthquakes with M>5 and focal depths less than 50km. We analyzed broad category of associated pre-earthquake events, which provided evidence for changes in surface temperature, surface latent heat flux, chlorophyll concentrations, soil moisture, brightness temperature, emissivity of surface, water vapour in the atmosphere prior to the earthquakes occurred in Algeria, India, Iran, Italy, Mexico and Japan. The cause of such anomalies has been mainly related to the change of near-surface thermal properties due to complex lithosphere-hydrosphere-atmospheric interactions. As final results we present examples from the most recent (2000-2004) worldwide strong earthquakes and the techniques used to capture the tracks of EM emission mid-IR anomalies and a methodology for practical future use of such phenomena in the early warning systems.

  6. The Art in Visualizing Natural Landscapes from Space

    Science.gov (United States)

    Webley, P. W.; Shipman, J. S.; Adams, T.

    2017-12-01

    Satellite remote sensing data can capture the changing Earth at cm resolution, across hundreds of spectral channels, and multiple times per hour. There is an art in combining these datasets together to fully capture the beauty of our planet. The resulting artistic piece can be further transformed by building in an accompanying musical score, allowing for a deeper emotional connection with the public. We make use of visible, near, middle and long wave infrared and radar data as well as different remote sensing techniques to uniquely capture our changing landscape in the spaceborne data. We will generate visually compelling imagery and videos that represent hazardous events from dust storms to landslides and from volcanic eruptions to forest fires. We will demonstrate how specific features of the Earth's landscape can be emphasized through the use of different datasets and color combinations and how, by adding a musical score, we can directly connect with the viewer and heighten their experience. We will also discuss our process to integrate the different aspects of our project together and how it could be developed to capture the beauty of other planets across the solar system using spaceborne imagery and data. Bringing together experts in art installations, composing musical scores, and remote sensing image visualization can lead to new and exciting artistic representations of geoscience data. The resulting product demonstrates there is an art to visualizing remote sensing data to capture the beauty of our planet and that incorporating a musical score can take us all to new places and emotions to enhance our experience.

  7. Dr. Tulga Ersal at NSF Workshop Accessible Remote Testbeds ART'15

    Science.gov (United States)

    Event Archives Dr. Tulga Ersal at NSF Workshop Accessible Remote Testbeds ART'15 On November 12th, Dr Workshop on Accessible Remote Testbeds (ART'15) at Georgia Tech. From the event website: The rationale behind the ART'15 workshop is that remote-access testbeds could, if done right, significantly change how

  8. Guerilla Science: Outreach at music and art festival

    Science.gov (United States)

    Rosin, Mark

    2012-10-01

    Guerilla Science a non-profit science education organization that, since 2007, has brought live events to unconventional venues for science, such as music festivals, art galleries, banquets, department stores and theaters. Guerilla Science sets science free by taking it out of the lab and into the traditional domains of the arts. By producing events that mix science with art, music and play, they create unique opportunities for adult audiences to experience science in unorthodox ways, such as interactive events, games, live experiments, demonstrations and performances by academics, artists, musicians, actors, and professional science communicators. Much of Guerilla Science's work has focused on astrophysical and terrestrial plasmas, and this presentation will provide an overview of Guerilla Science's work in this area. Guerilla Science has produced over twenty events, receiving international media coverage, and directly reached over fifteen thousand members of the public.

  9. Satellite systems for personal applications concepts and technology

    CERN Document Server

    Richharia, Madhavendra

    2010-01-01

    Presents the concepts, technology, and role of satellite systems in support of personal applications, such as mobile and broadband communications, navigation, television, radio and multimedia broadcasting, safety of life services, etc. This book presents a novel perspective on satellite systems, reflecting the modern personal technology context, and hence a focus on the individual as end-user. The book begins by outlining key generic concepts before discussing techniques adopted in particular application areas; next, it exemplifies these techniques through discussion of state-of-art c

  10. Remote atomic clock synchronization via satellites and optical fibers

    OpenAIRE

    Piester, D.; Rost, M.; Fujieda, M.; Feldmann, T.; Bauch, A.

    2011-01-01

    In the global network of institutions engaged with the realization of International Atomic Time (TAI), atomic clocks and time scales are compared by means of the Global Positioning System (GPS) and by employing telecommunication satellites for two-way satellite time and frequency transfer (TWSTFT). The frequencies of the state-of-the-art primary caesium fountain clocks can be compared at the level of 10−15 (relative, 1 day averaging) and time scales can be synchronized...

  11. Expanding the Audience for the Performing Arts.

    Science.gov (United States)

    Andreasen, Alan R.

    Becoming involved in the arts is a process that involves movement through several stages, from disinterest to active attendance at and enthusiasm for performing arts events. Since target consumers at any time will differ in their placement on this continuum, marketing programs to expand arts audiences must first identify where each target segment…

  12. Multiple-Satellite Observation of Magnetic Dip Event During the Substorm on 10 October 2013

    Science.gov (United States)

    He, Zhaoguo; Chen, Lunjin; Zhu, Hui; Xia, Zhiyang; Reeves, G. D.; Xiong, Ying; Xie, Lun; Cao, Yong

    2017-09-01

    We present a multiple-satellite observation of the magnetic dip event during the substorm on 10 October 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the electromagnetic ion cyclotron (EMIC) wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show that the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enriches our understanding of magnetic dip evolution and demonstrates the important role of the magnetic dip for the coupling of radiation belt and ring current.

  13. Sport Art: Spectacle or Sacrament.

    Science.gov (United States)

    Studer, Ginny L., Ed.; And Others

    1982-01-01

    The chief objective of sport art is to capture that actual fleeting moment of excellent performance in a sporting event. In a series of articles, the significance of sport art is shown in its importance in recording historic contests and games, emphasizing social achievement and personal performance goals, and attempting to symbolize the depth of…

  14. Cohort Profile: Antiretroviral Therapy Cohort Collaboration (ART-CC)

    Science.gov (United States)

    May, Margaret T; Ingle, Suzanne M; Costagliola, Dominique; Justice, Amy C; de Wolf, Frank; Cavassini, Matthias; D’Arminio Monforte, Antonella; Casabona, Jordi; Hogg, Robert S; Mocroft, Amanda; Lampe, Fiona C; Dabis, François; Fätkenheuer, Gerd; Sterling, Timothy R; del Amo, Julia; Gill, M John; Crane, Heidi M; Saag, Michael S; Guest, Jodie; Brodt, Hans-Reinhard; Sterne, Jonathan AC

    2014-01-01

    The advent of effective combination antiretroviral therapy (ART) in 1996 resulted in fewer patients experiencing clinical events, so that some prognostic analyses of individual cohort studies of human immunodeficiency virus-infected individuals had low statistical power. Because of this, the Antiretroviral Therapy Cohort Collaboration (ART-CC) of HIV cohort studies in Europe and North America was established in 2000, with the aim of studying the prognosis for clinical events in acquired immune deficiency syndrome (AIDS) and the mortality of adult patients treated for HIV-1 infection. In 2002, the ART-CC collected data on more than 12,000 patients in 13 cohorts who had begun combination ART between 1995 and 2001. Subsequent updates took place in 2004, 2006, 2008, and 2010. The ART-CC data base now includes data on more than 70 000 patients participating in 19 cohorts who began treatment before the end of 2009. Data are collected on patient demographics (e.g. sex, age, assumed transmission group, race/ethnicity, geographical origin), HIV biomarkers (e.g. CD4 cell count, plasma viral load of HIV-1), ART regimen, dates and types of AIDS events, and dates and causes of death. In recent years, additional data on co-infections such as hepatitis C; risk factors such as smoking, alcohol and drug use; non-HIV biomarkers such as haemoglobin and liver enzymes; and adherence to ART have been collected whenever available. The data remain the property of the contributing cohorts, whose representatives manage the ART-CC via the steering committee of the Collaboration. External collaboration is welcomed. Details of contacts are given on the ART-CC website (www.art-cohort-collaboration.org). PMID:23599235

  15. Dwarfism in art.

    Science.gov (United States)

    Limon, Janusz

    2015-01-01

    Throughout the history of mankind the birth of a child with congenital malformation raised anxiety and torment, along with attempts to explain its origins. It is possible to find relics of such events in prehistoric rock drawings and primitive sculptures, in numerous art pieces produced through the centuries up to modern sculptures, paintings and drawings. The aim of the present article is to show how dwarfs were portrayed in a variety of art forms at different moments in the history of our world.

  16. Text mining for adverse drug events: the promise, challenges, and state of the art.

    Science.gov (United States)

    Harpaz, Rave; Callahan, Alison; Tamang, Suzanne; Low, Yen; Odgers, David; Finlayson, Sam; Jung, Kenneth; LePendu, Paea; Shah, Nigam H

    2014-10-01

    Text mining is the computational process of extracting meaningful information from large amounts of unstructured text. It is emerging as a tool to leverage underutilized data sources that can improve pharmacovigilance, including the objective of adverse drug event (ADE) detection and assessment. This article provides an overview of recent advances in pharmacovigilance driven by the application of text mining, and discusses several data sources-such as biomedical literature, clinical narratives, product labeling, social media, and Web search logs-that are amenable to text mining for pharmacovigilance. Given the state of the art, it appears text mining can be applied to extract useful ADE-related information from multiple textual sources. Nonetheless, further research is required to address remaining technical challenges associated with the text mining methodologies, and to conclusively determine the relative contribution of each textual source to improving pharmacovigilance.

  17. Il posizionamento satellitare compie trent’anni: lo stato dell’arte del GNSS

    Directory of Open Access Journals (Sweden)

    Fulvio Bernardini

    2008-03-01

    Full Text Available Satellite Positioning 30th anniversary: GNSS state of the art This year marks the 30th anniversary of the Satellite Positioning system. In 1978 the United States launched the first ever experimental satellite which formed the basis for the first Global Positioning System, commonly referred to as GPS. The system has evolved over the years from strict military use to more commercial mainstream applications. Today GPS is used in varied independent projects in the GNSS universe.

  18. Robust satellite techniques (RST for the thermal monitoring of earthquake prone areas: the case of Umbria-Marche October, 1997 seismic events

    Directory of Open Access Journals (Sweden)

    V. Tramutoli

    2008-06-01

    Full Text Available Several authors claim a space-time correlation between increases in Earth’s emitted Thermal Infra-Red (TIR radiation and earthquake occurrence. The main problems of such studies regard data analysis and interpretation, which are often done without a validation/confutation control. In this context, a robust data analysis technique (RST, i.e. Robust Satellite Techniques is proposed which permits a statistically based definition of TIR «anomaly » and uses a validation/confutation approach. This technique was already applied to satellite TIR surveys in seismic regions for about twenty earthquakes that occurred in the world. In this work RST is applied for the first time to a time sequence of seismic events. Nine years of Meteosat TIR observations have been analyzed to characterize the unperturbed TIR signal behaviour at specific observation times and locations. The main seismic events of the October 1997 Umbria-Marche sequence have been considered for validation, and relatively unperturbed periods (no earthquakes with Mb ? 4 were taken for confutation purposes. Positive time-space persistent TIR anomalies were observed during seismic periods, generally overlapping the principal tectonic lineaments of the region and sometimes focusing on the vicinity of the epicentre. No similar (in terms of relative intensity and space-time persistence TIR anomalies were detected during seismically unperturbed periods.

  19. Exploiting Deep Matching and SAR Data for the Geo-Localization Accuracy Improvement of Optical Satellite Images

    Directory of Open Access Journals (Sweden)

    Nina Merkle

    2017-06-01

    Full Text Available Improving the geo-localization of optical satellite images is an important pre-processing step for many remote sensing tasks like monitoring by image time series or scene analysis after sudden events. These tasks require geo-referenced and precisely co-registered multi-sensor data. Images captured by the high resolution synthetic aperture radar (SAR satellite TerraSAR-X exhibit an absolute geo-location accuracy within a few decimeters. These images represent therefore a reliable source to improve the geo-location accuracy of optical images, which is in the order of tens of meters. In this paper, a deep learning-based approach for the geo-localization accuracy improvement of optical satellite images through SAR reference data is investigated. Image registration between SAR and optical images requires few, but accurate and reliable matching points. These are derived from a Siamese neural network. The network is trained using TerraSAR-X and PRISM image pairs covering greater urban areas spread over Europe, in order to learn the two-dimensional spatial shifts between optical and SAR image patches. Results confirm that accurate and reliable matching points can be generated with higher matching accuracy and precision with respect to state-of-the-art approaches.

  20. To betray art history

    Directory of Open Access Journals (Sweden)

    Jae Emerling

    2016-12-01

    Full Text Available The work of Donald Preziosi represents one of the most sustained and often brilliant attempts to betray the modern discipline of art history by exposing its skillful shell game: precisely how and why it substitutes artifice, poetry, and representational schemes for putative facticity and objectivity (that desirous and yet ever elusive Kunstwissenschaft that art historians prattle on about. This attempt is inseparable from a sinuous, witty, involutive writing style that meanders between steely insight and coy suggestions of how art history could be performed otherwise. Preziosi’s writes art history. In doing so he betrays its disciplinary desires. It is this event of betrayal that has made his work so exciting to some, so troubling to others.

  1. Using Fuzzy SOM Strategy for Satellite Image Retrieval and Information Mining

    Directory of Open Access Journals (Sweden)

    Yo-Ping Huang

    2008-02-01

    Full Text Available This paper proposes an efficient satellite image retrieval and knowledge discovery model. The strategy comprises two major parts. First, a computational algorithm is used for off-line satellite image feature extraction, image data representation and image retrieval. Low level features are automatically extracted from the segmented regions of satellite images. A self-organization feature map is used to construct a two-layer satellite image concept hierarchy. The events are stored in one layer and the corresponding feature vectors are categorized in the other layer. Second, a user friendly interface is provided that retrieves images of interest and mines useful information based on the events in the concept hierarchy. The proposed system is evaluated with prominent features such as typhoons or high-pressure masses.

  2. Randomized trial of stopping or continuing ART among postpartum women with pre-ART CD4 ≥ 400 cells/mm3.

    Science.gov (United States)

    Currier, Judith S; Britto, Paula; Hoffman, Risa M; Brummel, Sean; Masheto, Gaerolwe; Joao, Esau; Santos, Breno; Aurpibul, Linda; Losso, Marcelo; Pierre, Marie F; Weinberg, Adriana; Gnanashanmugam, Devasena; Chakhtoura, Nahida; Klingman, Karin; Browning, Renee; Coletti, Anne; Mofenson, Lynne; Shapiro, David; Pilotto, Jose

    2017-01-01

    Health benefits of postpartum antiretroviral therapy (ART) for human immunodeficiency virus (HIV) positive women with high CD4+ T-counts have not been assessed in randomized trials. Asymptomatic, HIV-positive, non-breastfeeding women with pre-ART CD4+ T-cell counts ≥ 400 cells/mm3 started on ART during pregnancy were randomized up to 42 days after delivery to continue or discontinue ART. Lopinavir/ritonavir plus tenofovir/emtricitabine was the preferred ART regimen. The sample size was selected to provide 88% power to detect a 50% reduction from an annualized primary event rate of 2.07%. A post-hoc analysis evaluated HIV/AIDS-related and World Health Organization (WHO) Stage 2 and 3 events. All analyses were intent to treat. 1652 women from 52 sites in Argentina, Botswana, Brazil, China, Haiti, Peru, Thailand and the US were enrolled (1/2010-11/2014). Median age was 28 years and major racial categories were Black African (28%), Asian (25%) White (15%). Median entry CD4 count was 696 cells/mm3 (IQR 575-869), median ART exposure prior to delivery was 19 weeks (IQR 13-24) and 94% had entry HIV-1 RNA women randomized to continue ART, 189/827 (23%) had virologic failure; of the 155 with resistance testing, 103 (66%) failed without resistance to their current regimen, suggesting non-adherence. Overall, serious clinical events were rare among young HIV-positive post-partum women with high CD4 cell counts. Continued ART was safe and was associated with a halving of the rate of WHO 2/3 conditions. Virologic failure rates were high, underscoring the urgent need to improve adherence in this population. ClinicalTrials.gov NCT00955968.

  3. Is art a

    Directory of Open Access Journals (Sweden)

    Fabienne Crettaz von Roten

    2007-09-01

    Full Text Available This paper relates to a special case of science-society mediation set up during the Science et Cité festival 2005. This national event took place in about twenty cities in Switzerland to promote a closer cooperation between science and society via art (theatre, music, dance, exhibitions, cinema, etc., in order to reach the population at large. Results on the profile of the public, the role played by the cultural institutions involved, the motives of the visitors and the role of art in the science-society dialogue show that the goals aimed at by the festival's organisers were only partially reached. Moreover, the analyses shed light on the complex relation between art, science and society in public understanding of science activities.

  4. An application of GOCE satellite gravity to resolve mantle heterogeneity in Europe

    DEFF Research Database (Denmark)

    Herceg, Matija; Artemieva, Irina; Thybo, Hans

    2015-01-01

    The aim of this study is to obtain new information on the density structure of the European upper mantle by incorporating the state-of-the-art global gravity data derived from the GOCE satellite gravity mission and recently released seismic model for the crustal structure, EUNAseis. The residual ...... by seismic tomography. Furthermore, we compare our regional upper mantle density model with petrological studies of mantle-derived xenoliths from the Baltic shield and the Arkhangelsk region.......The aim of this study is to obtain new information on the density structure of the European upper mantle by incorporating the state-of-the-art global gravity data derived from the GOCE satellite gravity mission and recently released seismic model for the crustal structure, EUNAseis. The residual...

  5. The Lesbian Art Project.

    Science.gov (United States)

    Klein, Jennie

    2010-01-01

    Critics and artists influenced by the tenets of queer theory have dismissed much of the artwork made in the 1970s from a lesbian feminist perspective. The result has been very little being known or written about this pioneering work. This article is concerned with exploring an often overlooked aspect of lesbian art history: the activities and events associated with the Lesbian Art Project (LAP) founded by Terry Wolverton and Arlene Raven at the Woman's Building in Los Angeles. I argue that what is most significant about the LAP is the way in which the participants articulated lesbian identity and lesbian community through performance, art making, and writing.

  6. Quantifying offshore wind resources from satellite wind maps: Study area the North Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Barthelmie, Rebecca Jane; Christiansen, Merete B.

    2006-01-01

    Offshore wind resources are quantified from satellite synthetic aperture radar (SAR) and satellite scatterometer observations at local and regional scale respectively at the Horns Rev site in Denmark. The method for wind resource estimation from satellite observations interfaces with the wind atlas...... of the Horns Rev wind farm is quantified from satellite SAR images and compared with state-of-the-art wake model results with good agreement. It is a unique method using satellite observations to quantify the spatial extent of the wake behind large offshore wind farms. Copyright © 2006 John Wiley & Sons, Ltd....... analysis and application program (WAsP). An estimate of the wind resource at the new project site at Horns Rev is given based on satellite SAR observations. The comparison of offshore satellite scatterometer winds, global model data and in situ data shows good agreement. Furthermore, the wake effect...

  7. Maps of intersections in visual education: artistic event as pedagogy

    Directory of Open Access Journals (Sweden)

    Belidson Dias

    2013-12-01

    Full Text Available This article explores the artistic event as pedagogical in Visual Education. It lies in the encounter between the Pictorial Turn in education and the pedagogical turn in art. Drawing from Cultural Pedagogy it seeks to cover how and under what conditions an event can be both an educational and artistic event at the same and how are instituted the spaces that promote educational events as aesthetic experiences. In this article it was pointed out conceptual and methodological bases for distinguishing the space of intersection between art and Visual Education and its political and cultural implications: Participant Art, Cultural Pedagogy and their relationships among politics and aesthetics. In this sense it analyzes the crossings of frontiers both in art and education and creates possibilities for an understanding of pedagogy of dissent.

  8. Cosmic rays and other space weather effects influenced on satellite operation, technologies, biosphere and people health

    Science.gov (United States)

    Lev, Dorman

    2016-07-01

    Satellite anomalies (or malfunctions), including total distortion of electronics and loose of some satellites cost for Insurance Companies billions dollars per year. During especially active periods the probability of big satellite anomalies and their loosing increased very much. Now, when a great number of civil and military satellites are continuously worked for our practice life, the problem of satellite anomalies became very important. Many years ago about half of satellite anomalies were caused by technical reasons (for example, for Russian satellites Kosmos), but with time with increasing of production quality, this part became smaller and smaller. The other part, which now is dominated, caused by different space weather effects (energetic particles of CR and generated/trapped in the magnetosphere, and so on). We consider only satellite anomalies not caused by technical reasons: the total number of such anomalies about 6000 events, and separately for high and low altitude orbit satellites (5000 and about 800 events, correspondingly for high and low altitude satellites). No relation was found between low and high altitude satellite anomalies. Daily numbers of satellite anomalies, averaged by a superposed epoch method around sudden storm commencements and solar proton event onsets for high (>1500 km) and low (railway operation (possible, through induction currents), catastrophes in long-distance electric power lines and transformators, and in other ground technologies.

  9. The Art and Science of Long-Range Space Weather Forecasting

    Science.gov (United States)

    Hathaway, David H.; Wilson, Robert M.

    2006-01-01

    Long-range space weather forecasts are akin to seasonal forecasts of terrestrial weather. We don t expect to forecast individual events but we do hope to forecast the underlying level of activity important for satellite operations and mission pl&g. Forecasting space weather conditions years or decades into the future has traditionally been based on empirical models of the solar cycle. Models for the shape of the cycle as a function of its amplitude become reliable once the amplitude is well determined - usually two to three years after minimum. Forecasting the amplitude of a cycle well before that time has been more of an art than a science - usually based on cycle statistics and trends. Recent developments in dynamo theory -the theory explaining the generation of the Sun s magnetic field and the solar activity cycle - have now produced models with predictive capabilities. Testing these models with historical sunspot cycle data indicates that these predictions may be highly reliable one, or even two, cycles into the future.

  10. Multi-Satellite Observation Scheduling for Large Area Disaster Emergency Response

    Science.gov (United States)

    Niu, X. N.; Tang, H.; Wu, L. X.

    2018-04-01

    an optimal imaging plan, plays a key role in coordinating multiple satellites to monitor the disaster area. In the paper, to generate imaging plan dynamically according to the disaster relief, we propose a dynamic satellite task scheduling method for large area disaster response. First, an initial robust scheduling scheme is generated by a robust satellite scheduling model in which both the profit and the robustness of the schedule are simultaneously maximized. Then, we use a multi-objective optimization model to obtain a series of decomposing schemes. Based on the initial imaging plan, we propose a mixed optimizing algorithm named HA_NSGA-II to allocate the decomposing results thus to obtain an adjusted imaging schedule. A real disaster scenario, i.e., 2008 Wenchuan earthquake, is revisited in terms of rapid response using satellite resources and used to evaluate the performance of the proposed method with state-of-the-art approaches. We conclude that our satellite scheduling model can optimize the usage of satellite resources so as to obtain images in disaster response in a more timely and efficient manner.

  11. Tissue-specific stem cells: Lessons from the skeletal muscle satellite cell

    Science.gov (United States)

    Brack, Andrew S.; Rando, Thomas A.

    2012-01-01

    In 1961, the satellite cell was first identified when electron microscopic examination of skeletal muscle demonstrated a cell wedged between the plasma membrane of the muscle fiber and the basement membrane. In recent years it has been conclusively demonstrated that the satellite cell is the primary cellular source for muscle regeneration and is equipped with the potential to self renew, thus functioning as a bone fide skeletal muscle stem cell (MuSC). As we move past the 50th anniversary of the satellite cell, we take this opportunity to discuss the current state of the art and dissect the unknowns in the MuSC field. PMID:22560074

  12. The representation of time course events in visual arts and the development of the concept of time in children: a preliminary study.

    Science.gov (United States)

    Actis-Grosso, Rossana; Zavagno, Daniele

    2008-01-01

    By means of a careful search we found several representations of dynamic contents of events that show how the depiction of the passage of time in the visual arts has evolved gradually through a series of modifications and adaptations. The general hypothesis we started to investigate is that the evolution of the representation of the time course in visual arts is mirrored in the evolution of the concept of time in children, who, according to Piaget (1946), undergo three stages in their ability to conceptualize time. Crucial for our hypothesis is Stage II, in which children become progressively able to link the different phases of an event, but vacillate between what Piaget termed 'intuitive regulations', not being able to understand all the different aspects of a given situation. We found several pictorial representations - mainly dated back to the 14th to 15th century - that seem to fit within a Stage II of children's comprehension of time. According to our hypothesis, this type of pictorial representations should be immediately understood only by those children who are at Piaget's Stage II of time conceptualization. This implies that children at Stages I and III should not be able to understand the representation of time courses in the aforementioned paintings. An experiment was run to verify the agreement between children's collocation within Piaget's three stages - as indicated by an adaptation of Piaget's original experiment - and their understanding of pictorial representations that should be considered as Stage II type of representations of time courses. Despite the small sample of children examined so far, results seem to support our hypothesis. A follow-up (Experiment 2) on the same children was also run one year later in order to verify other possible explanations. Results from the two experiments suggest that the study of the visual arts can aid our understanding of the development of the concept of time, and it can also help to distinguish between the

  13. The economic impact of the Volksblad Arts Festival

    Directory of Open Access Journals (Sweden)

    A. J. Strydom

    2006-12-01

    Full Text Available Purpose: Arts festivals, as a form of event tourism, are becoming more and more popular in South Africa with new festivals developing annually. The Volksblad Arts Festival in Bloemfontein celebrated its fifth anniversary in 2005. The purpose of this paper is to indicate the economic impact of the annual Volksblad Arts Festival on the local economy of Bloemfontein. Results are also compared with research done at other popular festivals in South Africa. Design/Methodology/Approach: The main thrust of the paper is to determine the economic impact of the Volksblad Arts Festival in Bloemfontein. More than 400 visitor questionnaires and 72 business questionnaires were administered and successfully completed during the festival that took place from 12-17 July 2005. Findings: The results show that this festival generates R18 405 653. If one compares it to festivals such as the KKNK in Oudtshoorn, the National Arts Festival in Grahamstown and even Aardklop held in Potchefstroom, it is evident that Volksblad is a smaller festival and it is therefore also expected that the economic impact of the festival should be less. Implications: This paper presents a comprehensive approach to understanding the measurement of the economic impact of a festival like the Volksblad Arts Festival. It provides tourism managers of Bloemfontein with an indication of the potential of event tourism as a source of income for the city. It also indicates the need for more extensive marketing in order to increase the percentage of non-local visitors to the particular festival. Originality/Value: Bloemfontein is increasingly regarded as an event tourism destination rather than an end destination for leisure tourists. This research represents an original attempt to indicate the potential impact of events to the tourism managers of Bloemfontein as well as other destinations with similar interests.

  14. A study of the state of the art on the determination of the threshold values of the performance indicators for safety systems and initiating events of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kang, D. I.; Kim, K. Y.; Hwang, M. J.; Park, J. H.; Ha, J. J

    2004-02-01

    The threshold values of Korean Institute of Nuclear Safety (KINS) Performance Indicators (PIs)' determining the safety class of initiating events and safety systems can not sufficiently reflect the operating experience and PSA results of domestic NPPs. Therefore, the state of arts on the PI study of domestic and foreign countries is analyzed in order to reflect the operating experience and PSA results of domestic NPPs in the determination of the threshold values of the PIs for safety systems and initiating events of domestic NPPs. We identified the state of arts of PIs through reviewing the objectives and types of WANO, IAEA, NRC, OECD/NEA and domestic PIs, and the technical issues of the threshold values of SECY 99-007 and NUREG-1753. We also, identified the current status of recently developed MSPI (Mitigating System Performance Index) and IIIEI (Integrated Industry Initiating Event Indicator). From this study of the state of the arts on the PIs, we expect that if the NRC's MSPI and a PI similar to NRC's IIIEI would be introduced into the KINS, it is not necessary to determine the threshold values of PIs applied to the safety systems and initiating events of entire domestic NPPs. Otherwise the threshold values of PIs applied to the individual NPP should be developed using PSA models of typical reactor types. For the active development and use of the risk informed PIs for the domestic NPPs, we expect that the system and component reliability analysis and initiating events analysis for the domestic NPPs, MSPI, IIIEI, and PSA requirements for the PIs be further studied.

  15. Developing Financial Resources for School Arts Programs.

    Science.gov (United States)

    Green, Alan C.; Ambler, Nancy Morison

    This document provides a sampling of financial resources for fine arts programs in the schools and lists methods for submitting proposals and dealing with sponsors of funds. Financial sources for arts programs include school districts, organizations and institutions, special events, direct mail, individuals, associations and clubs, businesses and…

  16. Randomized trial of stopping or continuing ART among postpartum women with pre-ART CD4 ≥ 400 cells/mm3.

    Directory of Open Access Journals (Sweden)

    Judith S Currier

    Full Text Available Health benefits of postpartum antiretroviral therapy (ART for human immunodeficiency virus (HIV positive women with high CD4+ T-counts have not been assessed in randomized trials.Asymptomatic, HIV-positive, non-breastfeeding women with pre-ART CD4+ T-cell counts ≥ 400 cells/mm3 started on ART during pregnancy were randomized up to 42 days after delivery to continue or discontinue ART. Lopinavir/ritonavir plus tenofovir/emtricitabine was the preferred ART regimen. The sample size was selected to provide 88% power to detect a 50% reduction from an annualized primary event rate of 2.07%. A post-hoc analysis evaluated HIV/AIDS-related and World Health Organization (WHO Stage 2 and 3 events. All analyses were intent to treat.1652 women from 52 sites in Argentina, Botswana, Brazil, China, Haiti, Peru, Thailand and the US were enrolled (1/2010-11/2014. Median age was 28 years and major racial categories were Black African (28%, Asian (25% White (15%. Median entry CD4 count was 696 cells/mm3 (IQR 575-869, median ART exposure prior to delivery was 19 weeks (IQR 13-24 and 94% had entry HIV-1 RNA < 1000 copies/ml. After a median follow-up of 2.3 years, the primary composite endpoint rate was significantly lower than expected, and not significantly different between arms (continue arm 0.21 /100 person years(py; discontinue 0.31/100 py, Hazard ratio (HR 0.68, 95% CI: 0.19, 2.40. WHO Stage 2 and 3 events were significantly reduced with continued ART (2.08/100 py vs. 4.36/100 py in the discontinue arm; HR 0.48, 95%CI: 0.33, 0.70. Toxicity rates did not differ significantly between arms. Among women randomized to continue ART, 189/827 (23% had virologic failure; of the 155 with resistance testing, 103 (66% failed without resistance to their current regimen, suggesting non-adherence.Overall, serious clinical events were rare among young HIV-positive post-partum women with high CD4 cell counts. Continued ART was safe and was associated with a halving of the

  17. Long-term trends in mortality and AIDS-defining events after combination ART initiation among children and adolescents with perinatal HIV infection in 17 middle- and high-income countries in Europe and Thailand: A cohort study.

    Directory of Open Access Journals (Sweden)

    Ali Judd

    2018-01-01

    Full Text Available Published estimates of mortality and progression to AIDS as children with HIV approach adulthood are limited. We describe rates and risk factors for death and AIDS-defining events in children and adolescents after initiation of combination antiretroviral therapy (cART in 17 middle- and high-income countries, including some in Western and Central Europe (W&CE, Eastern Europe (Russia and Ukraine, and Thailand.Children with perinatal HIV aged 6 months of cART death and progression to AIDS were assessed. Of 3,526 children included, 32% were from the United Kingdom or Ireland, 30% from elsewhere in W&CE, 18% from Russia or Ukraine, and 20% from Thailand. At cART initiation, median age was 5.2 (IQR 1.4-9.3 years; 35% of children aged 400 c/mL predicted late death. Predictors of early and late progression to AIDS were similar. Study limitations include incomplete recording of US Centers for Disease Control (CDC disease stage B events and serious adverse events in some countries; events that were distributed over a long time period, and that we lacked power to analyse trends in patterns and causes of death over time.In our study, 3,526 children and adolescents with perinatal HIV infection initiated antiretroviral therapy (ART in countries in Europe and Thailand. We observed that over 40% of deaths occurred ≤6 months after cART initiation. Greater early mortality risk in infants, as compared to older children, and in Russia, Ukraine, or Thailand as compared to W&CE, raises concern. Current severe immune suppression, being underweight, and unsuppressed viral load were associated with a higher risk of death at >6 months after initiation of cART.

  18. Arts-in-Business

    DEFF Research Database (Denmark)

    Darsø, Lotte

    2002-01-01

    forth new learning opportunities. The goal is to map the field, to develop new theory and to share the learning with our partners and networks. This paper proposes a theoretical framework of four categories of Arts-in-Business: "Metaphors", "Capabilities", "Events", and "Products". The main idea......Innovative Research in Management. The 2nd European Academy of Management (EURAM) Conference, Stockholm (Sweden). 2002 Short description: This positioning paper proposes a theoretical framework of four categories of Arts-in-Business. The main idea is to examine cases in relation to this model...... and to identify interesting trajectories of learning. Abstract: The Arts are being applied in business settings in new ways that give rise to a research field in the making. Learning Lab Denmark wants to contribute to this emerging field by identifying, examining and analysing international cases that could bring...

  19. Rainfall variability over southern Africa: an overview of current research using satellite and climate model data

    Science.gov (United States)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, satellite-derived rainfall data are used as a basis for undertaking model experiments using a state-of-the-art climate model, run at both high and low spatial resolution. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, a brief overview is given of the authors' research to date, pertaining to southern African rainfall. This covers (i) a description of present-day rainfall variability over southern Africa; (ii) a comparison of model simulated daily rainfall with the satellite-derived dataset; (iii) results from sensitivity testing of the model's domain size; and (iv) results from the idealised SST experiments.

  20. How Satellites Have Contributed to Building a Weather Ready Nation

    Science.gov (United States)

    Lapenta, W.

    2017-12-01

    NOAA's primary mission since its inception has been to reduce the loss of life and property, as well as disruptions from, high impact weather and water-related events. In recent years, significant societal losses resulting even from well forecast extreme events have shifted attention from the forecast alone toward ensuring societal response is equal to the risks that exist for communities, businesses and the public. The responses relate to decisions ranging from coastal communities planning years in advance to mitigate impacts from rising sea level, to immediate lifesaving decisions such as a family seeking adequate shelter during a tornado warning. NOAA is committed to building a "Weather-Ready Nation" where communities are prepared for and respond appropriately to these events. The Weather-Ready Nation (WRN) strategic priority is building community resilience in the face of increasing vulnerability to extreme weather, water, climate and environmental threats. To build a Weather-Ready Nation, NOAA is enhancing Impact-Based Decision Support Services (IDSS), transitioning science and technology advances into forecast operations, applying social science research to improve the communication and usefulness of information, and expanding its dissemination efforts to achieve far-reaching readiness, responsiveness and resilience. These four components of Weather-Ready Nation are helping ensure NOAA data, products and services are fully utilized to minimize societal impacts from extreme events. Satellite data and satellite products have been important elements of the national Weather Service (NWS) operations for more than 40 years. When one examines the uses of satellite data specific to the internal forecast and warning operations of NWS, two main applications are evident. The first is the use of satellite data in numerical weather prediction models; the second is the use of satellite imagery and derived products for mesoscale and short-range weather warning and

  1. JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis

    Science.gov (United States)

    Folmer, M. J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J. M.; Nelson, J. A., Jr.; Goldberg, M.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Satellite Proving Ground (PG) for Marine, Precipitation, and Satellite Analysis (MPS) has been demonstrating and evaluating Suomi National Polar-orbiting Partnership (S-NPP) products along with other polar-orbiting satellite platforms in preparation for the Joint Polar Satellite System - 1 (JPSS-1) launch in March 2017. The first S-NPP imagery was made available to the MPS PG during the evolution of Hurricane Sandy in October 2012 and has since been popular in operations. Since this event the MPS PG Satellite Liaison has been working with forecasters on ways to integrate single-channel and multispectral imagery from the Visible Infrared Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Advanced Very High Resolution Radiometer (AVHRR)into operations to complement numerical weather prediction and geostationary satellite savvy National Weather Service (NWS) National Centers. Additional unique products have been introduced to operations to address specific forecast challenges, including the Cooperative Institute for Research in the Atmosphere (CIRA) Layered Precipitable Water, the National Environmental Satellite, Data, and Information Service (NESDIS) Snowfall Rate product, NOAA Unique Combined Atmospheric Processing System (NUCAPS) Soundings, ozone products from the Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder/Advanced Technology Microwave Sounder (CrIS/ATMS), and Infrared Atmospheric Sounding Interferometer (IASI). In addition, new satellite domains have been created to provide forecasters at the NWS Ocean Prediction Center and Weather Prediction Center with better quality imagery at high latitudes. This has led to research projects that are addressing forecast challenges such as tropical to extratropical transition and explosive cyclogenesis. This presentation will provide examples of how the MPS PG has been introducing and integrating

  2. HALO | Arts at CERN

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2018-01-01

    In 2015, the artists participated in a research residency at CERN and began to work with data captured by ATLAS, one of the four detectors at the Large Hadron Collider (LHC) that sits in a cavern 100 metres below ground near the main site of CERN, in Meyrin (Switzerland). For Art Basel, they created HALO, an installation that surrounds visitors with data collected by the ATLAS experiment at the LHC. HALO consists of a 10 m wide cylinder defined by vertical piano wires, within which a 4-m tall screen displays particle collisions. The data also triggers hammers that strike the vertical wires and set up vibrations to create a truly multisensory experience. More info: https://arts.cern/event/unveiling-halo-art-basel

  3. Satellite Ocean Biology: Past, Present, Future

    Science.gov (United States)

    McClain, Charles R.

    2012-01-01

    Since 1978 when the first satellite ocean color proof-of-concept sensor, the Nimbus-7 Coastal Zone Color Scanner, was launched, much progress has been made in refining the basic measurement concept and expanding the research applications of global satellite time series of biological and optical properties such as chlorophyll-a concentrations. The seminar will review the fundamentals of satellite ocean color measurements (sensor design considerations, on-orbit calibration, atmospheric corrections, and bio-optical algorithms), scientific results from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate resolution Imaging Spectroradiometer (MODIS) missions, and the goals of future NASA missions such as PACE, the Aerosol, Cloud, Ecology (ACE), and Geostationary Coastal and Air Pollution Events (GeoCAPE) missions.

  4. Hopi and Anasazi Alignments and Rock Art

    Science.gov (United States)

    Bates, Bryan C.

    The interaction of light and shadow on ancestral Puebloan rock art, or rock art demarcating sunrise/set horizon points that align with culturally significant dates, has long been assumed to be evidence of "intentional construct" for marking time or event by the native creator. However, anthropological rock art research requires the scientific control of cultural time, element orientation and placement, structure, and association with other rock art elements. The evaluation of five exemplars challenges the oft-held assumption that "if the interaction occurs, it therefore supports intentional construct" and thereby conveys meaning to the native culture.

  5. Art, Scholarship, Community: Experiences of Viewing

    Directory of Open Access Journals (Sweden)

    Alice Eden

    2017-04-01

    Full Text Available This critical reflection originated in a visit to the ‘Artists and Academics’ exhibition held at Fargo Creative Village, Coventry, 26 November 2016. My thoughts about the exhibition have served as a springboard to consider ideas of scholarship, art and community more broadly. I use my research on British artists from the early twentieth century, their ideas about the processes of viewing art and the spiritual in art, to discuss examples in the exhibition. I conclude by considering how this collaborative event can bring academic ideas into conversation with artworks. I suggest that the resulting exchanges may enable viewers to think differently about art and scholarship as well as enrich academic practice.

  6. Satellite and ground-based remote sensing of aerosols during intense haze event of October 2013 over lahore, Pakistan

    Science.gov (United States)

    Tariq, Salman; Zia, ul-Haq; Ali, Muhammad

    2016-02-01

    Due to increase in population and economic development, the mega-cities are facing increased haze events which are causing important effects on the regional environment and climate. In order to understand these effects, we require an in-depth knowledge of optical and physical properties of aerosols in intense haze conditions. In this paper an effort has been made to analyze the microphysical and optical properties of aerosols during intense haze event over mega-city of Lahore by using remote sensing data obtained from satellites (Terra/Aqua Moderate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)) and ground based instrument (AErosol RObotic NETwork (AERONET)) during 6-14 October 2013. The instantaneous highest value of Aerosol Optical Depth (AOD) is observed to be 3.70 on 9 October 2013 followed by 3.12 on 8 October 2013. The primary cause of such high values is large scale crop residue burning and urban-industrial emissions in the study region. AERONET observations show daily mean AOD of 2.36 which is eight times higher than the observed values on normal day. The observed fine mode volume concentration is more than 1.5 times greater than the coarse mode volume concentration on the high aerosol burden day. We also find high values (~0.95) of Single Scattering Albedo (SSA) on 9 October 2013. Scatter-plot between AOD (500 nm) and Angstrom exponent (440-870 nm) reveals that biomass burning/urban-industrial aerosols are the dominant aerosol type on the heavy aerosol loading day over Lahore. MODIS fire activity image suggests that the areas in the southeast of Lahore across the border with India are dominated by biomass burning activities. A Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model backward trajectory showed that the winds at 1000 m above the ground are responsible for transport from southeast region of biomass burning to Lahore. CALIPSO derived sub-types of

  7. REFLECTIONS OF POLITICAL EVENT'S IN HORROR MOVIES

    OpenAIRE

    ŞİMŞEK, Gizem

    2014-01-01

    Social events have affected humans throughout the history of humanity causing the formation of many new movements and thoughts. Film industry, being the seventh art form, has also been affected by current social and political events thereby becoming transformed just like all other art forms. Horror movies which were first seen along with the first examples of movies in time became a genre by itself thanks to Hollywood and includes many film varieties that best reflect these transformations. ...

  8. REFLECTIONS OF POLITICAL EVENT'S IN HORROR MOVIES

    OpenAIRE

    ŞİMŞEK, Gizem

    2013-01-01

    Social events have affected humans throughout the history of humanity causing the formation of many new movements and thoughts. Film industry, being the seventh art form, has also been affected by current social and political events thereby becoming transformed just like all other art forms. Horror movies which were first seen along with the first examples of movies in time became a genre by itself thanks to Hollywood and includes many film varieties that best reflect these transformations. ...

  9. Entropy-Based Block Processing for Satellite Image Registration

    Directory of Open Access Journals (Sweden)

    Ikhyun Lee

    2012-11-01

    Full Text Available Image registration is an important task in many computer vision applications such as fusion systems, 3D shape recovery and earth observation. Particularly, registering satellite images is challenging and time-consuming due to limited resources and large image size. In such scenario, state-of-the-art image registration methods such as scale-invariant feature transform (SIFT may not be suitable due to high processing time. In this paper, we propose an algorithm based on block processing via entropy to register satellite images. The performance of the proposed method is evaluated using different real images. The comparative analysis shows that it not only reduces the processing time but also enhances the accuracy.

  10. Art expertise modulates the emotional response to modern art, especially abstract: an ERP investigation

    Science.gov (United States)

    Else, Jane E.; Ellis, Jason; Orme, Elizabeth

    2015-01-01

    Art is one of life’s great joys, whether it is beautiful, ugly, sublime or shocking. Aesthetic responses to visual art involve sensory, cognitive and visceral processes. Neuroimaging studies have yielded a wealth of information regarding aesthetic appreciation and beauty using visual art as stimuli, but few have considered the effect of expertise on visual and visceral responses. To study the time course of visual, cognitive and emotional processes in response to visual art we investigated the event-related potentials (ERPs) elicited whilst viewing and rating the visceral affect of three categories of visual art. Two groups, artists and non-artists viewed representational, abstract and indeterminate 20th century art. Early components, particularly the N1, related to attention and effort, and the P2, linked to higher order visual processing, was enhanced for artists when compared to non-artists. This effect was present for all types of art, but further enhanced for abstract art (AA), which was rated as having lowest visceral affect by the non-artists. The later, slow wave processes (500–1000 ms), associated with arousal and sustained attention, also show clear differences between the two groups in response to both type of art and visceral affect. AA increased arousal and sustained attention in artists, whilst it decreased in non-artists. These results suggest that aesthetic response to visual art is affected by both expertise and semantic content. PMID:27242497

  11. Fixed-focus camera objective for small remote sensing satellites

    Science.gov (United States)

    Topaz, Jeremy M.; Braun, Ofer; Freiman, Dov

    1993-09-01

    An athermalized objective has been designed for a compact, lightweight push-broom camera which is under development at El-Op Ltd. for use in small remote-sensing satellites. The high performance objective has a fixed focus setting, but maintains focus passively over the full range of temperatures encountered in small satellites. The lens is an F/5.0, 320 mm focal length Tessar type, operating over the range 0.5 - 0.9 micrometers . It has a 16 degree(s) field of view and accommodates various state-of-the-art silicon detector arrays. The design and performance of the objective is described in this paper.

  12. Major clinical outcomes in antiretroviral therapy (ART)-naive participants and in those not receiving ART at baseline in the SMART study

    DEFF Research Database (Denmark)

    Lundgren, Jens; Emery, Sean; Neuhaus, Jacqueline A

    2008-01-01

    BACKGROUND: The SMART study randomized 5,472 human immunodeficiency virus (HIV)-infected patients with CD4+ cell counts >350 cells/microL to intermittent antiretroviral therapy (ART; the drug conservation [DC] group) versus continuous ART (the viral suppression [VS] group). In the DC group......, participants started ART when the CD4+ cell count was ART at entry inform the early use of ART. METHODS: Patients who were either ART naive (n=249) or who had not been receiving ART for >or= 6 months (n=228) were analyzed. The following......). RESULTS: A total of 477 participants (228 in the DC group and 249 in the VS group) were followed (mean, 18 months). For outcome (iv), 21 and 6 events occurred in the DC (7 in ART-naive participants and 14 in those who had not received ART for >or= 6 months) and VS (2 in ART-naive participants and 4...

  13. Estimating Regional Scale Hydroclimatic Risk Conditions from the Soil Moisture Active-Passive (SMAP Satellite

    Directory of Open Access Journals (Sweden)

    Catherine Champagne

    2018-04-01

    Full Text Available Satellite soil moisture is a critical variable for identifying susceptibility to hydroclimatic risks such as drought, dryness, and excess moisture. Satellite soil moisture data from the Soil Moisture Active/Passive (SMAP mission was used to evaluate the sensitivity to hydroclimatic risk events in Canada. The SMAP soil moisture data sets in general capture relative moisture trends with the best estimates from the passive-only derived soil moisture and little difference between the data at different spatial resolutions. In general, SMAP data sets overestimated the magnitude of moisture at the wet extremes of wetting events. A soil moisture difference from average (SMDA was calculated from SMAP and historical Soil Moisture and Ocean Salinity (SMOS data showed a relatively good delineation of hydroclimatic risk events, although caution must be taken due to the large variability in the data within risk categories. Satellite soil moisture data sets are more sensitive to short term water shortages than longer term water deficits. This was not improved by adding “memory” to satellite soil moisture indices to improve the sensitivity of the data to drought, and there is a large variability in satellite soil moisture values with the same drought severity rating.

  14. Blasphemy or art: what art should be censored and who wants to censor it?

    Science.gov (United States)

    Dunkel, Curtis S; Hillard, Erin E

    2014-01-01

    Current events have marked the increasing tension between freedom of artistic expression and religious tolerance and sensitivity. While there have been several controversies in the West concerning art critical of Christianity, a more complex dynamic has arisen as some Western artists have created art critical of Islam. Research was undertaken to examine what aspects of artwork lead to the most aversive reactions and desire to ban art and individual differences in response to controversial art. Of particular interest was the response to artwork critical of Christianity in comparison to artwork critical of Islam. Studies 1 and 2 suggest that the artwork that mixes the sacred and profane (whether critical of Christianity or Islam) is particularly likely to elicit a negative emotional response and is more likely to be the target for censorship. Also consistent across Studies 1 and 2 individuals who based their moral foundation on purity and have Christian religious beliefs were more likely to endorse banning said artwork. In Study 3 an even more complex picture emerged in which non-Christians were more likely to endorse banning art critical of Islam in comparison to art critical of Christianity.

  15. Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction.

    Science.gov (United States)

    Soleimani, Hossein; Hensman, James; Saria, Suchi

    2017-08-21

    Missing data and noisy observations pose significant challenges for reliably predicting events from irregularly sampled multivariate time series (longitudinal) data. Imputation methods, which are typically used for completing the data prior to event prediction, lack a principled mechanism to account for the uncertainty due to missingness. Alternatively, state-of-the-art joint modeling techniques can be used for jointly modeling the longitudinal and event data and compute event probabilities conditioned on the longitudinal observations. These approaches, however, make strong parametric assumptions and do not easily scale to multivariate signals with many observations. Our proposed approach consists of several key innovations. First, we develop a flexible and scalable joint model based upon sparse multiple-output Gaussian processes. Unlike state-of-the-art joint models, the proposed model can explain highly challenging structure including non-Gaussian noise while scaling to large data. Second, we derive an optimal policy for predicting events using the distribution of the event occurrence estimated by the joint model. The derived policy trades-off the cost of a delayed detection versus incorrect assessments and abstains from making decisions when the estimated event probability does not satisfy the derived confidence criteria. Experiments on a large dataset show that the proposed framework significantly outperforms state-of-the-art techniques in event prediction.

  16. Living Sculptures: Performance Art in the Classroom

    Science.gov (United States)

    Pembleton, Matthew; LaJevic, Lisa

    2014-01-01

    What does an introduction to and engagement in performance art offer K-12 students? In this article, we respond to this question by proposing a lesson inspired by the artmaking practices of the contemporary artist Erwin Wurm. Performance art can be defined as any form of work that combines the artist's body and a live-action event with or…

  17. A Bayesian kriging approach for blending satellite and ground precipitation observations

    Science.gov (United States)

    Verdin, Andrew P.; Rajagopalan, Balaji; Kleiber, William; Funk, Christopher C.

    2015-01-01

    Drought and flood management practices require accurate estimates of precipitation. Gauge observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipitation data are an attractive alternative, though they tend to underestimate the magnitude of wet events due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipitation gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear function of satellite-derived estimates and any number of other variables—for this research we include elevation. Prior distributions are defined for all model parameters and the posterior distributions are obtained simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This functional framework is applied to model parameters obtained by sampling from the posterior distributions, and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior distributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this method by applying it to pentadal and monthly total precipitation fields during 2009. The model's performance and its inherent ability to capture wet events are investigated. We show that this blending method significantly improves upon the satellite-derived estimates and is also competitive in its ability to represent wet events. This procedure also provides a means to estimate a full conditional distribution

  18. New satellite altimetry products for coastal oceans

    Science.gov (United States)

    Dufau, Claire; Mercier, F.; Ablain, M.; Dibarboure, G.; Carrere, L.; Labroue, S.; Obligis, E.; Sicard, P.; Thibaut, P.; Birol, F.; Bronner, E.; Lombard, A.; Picot, N.

    Since the launch of Topex-Poseidon in 1992, satellite altimetry has become one of the most essential elements of the Earth's observing system. Its global view of the ocean state has permitted numerous improvements in the environment understanding, particularly in the global monitoring of climate changes and ocean circulation. Near the coastlines where human activities have a major impact on the ocean, satellite altimeter techniques are unfortunately limited by a growth of their error budget. This quality loss is due to land contamination in the altimetric and radiometric footprints but also to inaccurate geophysical corrections (tides, high-frequency processes linked to atmospheric forcing).Despite instrumental perturbations by emerged lands until 10 km (altimeter) and 50 km (radiometer) off the coasts, measurements are made and may contain useful information for coastal studies. In order to recover these data close to the coast, the French Spatial Agency (CNES) has funded the development of the PISTACH prototype dedicated to Jason-2 altimeter processing in coastal ocean. Since November 2008, these new satellite altimeter products have been providing new retracking solutions, several state-of-the-art or with higher resolution corrections in addition to standard fields. This presentation will present and illustrate this new set of satellite data for the coastal oceans.

  19. Comments on Regulation Issues in Modern Art Practice in Nigeria ...

    African Journals Online (AJOL)

    The practice of the visual arts in post-independence Nigeria has been variedly characterized. This has been more so since 1977 when the 2nd World Black and African Festival of Arts and Culture was held in Nigeria. This epochal event is, today, said to have engendered mercantilism, a decline in standard of art products, ...

  20. Soviet satellite communications science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Birch, J.N.; Campanella, S.J.; Gordon, G.D.; McElroy, D.R.; Pritchard, W.L.; Stamminger, R.

    1991-08-01

    This is a report by six US scientists and engineers concerning the current state of the art and projections of future Soviet satellite communications technologies. The panel members are experts in satellite stabilization, spacecraft environments, space power generation, launch systems, spacecraft communications sciences and technologies, onboard processing, ground stations, and other technologies that impact communications. The panel assessed the Soviet ability to support high-data-rate space missions at 128 Mbps by evaluating current and projected Soviet satellite communications technologies. A variety of space missions were considered, including Earth-to-Earth communications via satellites in geostationary or highly elliptical orbits, those missions that require space-to-Earth communications via a direct path and those missions that require space-to-Earth communications via a relay satellite. Soviet satellite communications capability, in most cases, is 10 years behind that of the United States and other industrialized nations. However, based upon an analysis of communications links needed to support these missions using current Soviet capabilities, it is well within the current Soviet technology to support certain space missions outlined above at rates of 128 Mbps or higher, although published literature clearly shows that the Soviet Union has not exceeded 60 Mbps in its current space system. These analyses are necessary but not sufficient to determine mission data rates, and other technologies such as onboard processing and storage could limit the mission data rate well below that which could actually be supported via the communications links. Presently, the Soviet Union appears to be content with data rates in the low-Earth-orbit relay via geostationary mode of 12 Mbps. This limit is a direct result of power amplifier limits, spacecraft antenna size, and the utilization of K{sub u}-band frequencies. 91 refs., 16 figs., 15 tabs.

  1. Quantitative Simulation of QARBM Challenge Events During Radiation Belt Enhancements

    Science.gov (United States)

    Li, W.; Ma, Q.; Thorne, R. M.; Bortnik, J.; Chu, X.

    2017-12-01

    Various physical processes are known to affect energetic electron dynamics in the Earth's radiation belts, but their quantitative effects at different times and locations in space need further investigation. This presentation focuses on discussing the quantitative roles of various physical processes that affect Earth's radiation belt electron dynamics during radiation belt enhancement challenge events (storm-time vs. non-storm-time) selected by the GEM Quantitative Assessment of Radiation Belt Modeling (QARBM) focus group. We construct realistic global distributions of whistler-mode chorus waves, adopt various versions of radial diffusion models (statistical and event-specific), and use the global evolution of other potentially important plasma waves including plasmaspheric hiss, magnetosonic waves, and electromagnetic ion cyclotron waves from all available multi-satellite measurements. These state-of-the-art wave properties and distributions on a global scale are used to calculate diffusion coefficients, that are then adopted as inputs to simulate the dynamical electron evolution using a 3D diffusion simulation during the storm-time and the non-storm-time acceleration events respectively. We explore the similarities and differences in the dominant physical processes that cause radiation belt electron dynamics during the storm-time and non-storm-time acceleration events. The quantitative role of each physical process is determined by comparing against the Van Allen Probes electron observations at different energies, pitch angles, and L-MLT regions. This quantitative comparison further indicates instances when quasilinear theory is sufficient to explain the observed electron dynamics or when nonlinear interaction is required to reproduce the energetic electron evolution observed by the Van Allen Probes.

  2. Let Our Powers Combine! Harnessing NASA's Earth Observatory Natural Event Tracker (EONET) in Worldview

    Science.gov (United States)

    Wong, Min Minnie; Ward, Kevin; Boller, Ryan; Gunnoe, Taylor; Baynes, Kathleen; King, Benjamin

    2016-01-01

    Constellations of NASA Earth Observing System (EOS) satellites orbit the earth to collect images and data about the planet in near real-time. Within hours of satellite overpass, you can discover where the latest wildfires, severe storms, volcanic eruptions, and dust and haze events are occurring using NASA's Worldview web application. By harnessing a repository of curated natural event metadata from NASA Earth Observatory's Natural Event Tracker (EONET), Worldview has moved natural event discovery to the forefront and allows users to select events-of-interest from a curated list, zooms to the area, and adds the most relevant imagery layers for that type of natural event. This poster will highlight NASA Worldviews new natural event feed functionality.

  3. The Future of Satellite Communications. Resource Management and the Needs of Nations.

    Science.gov (United States)

    Hinchman, Walter R.; Dunn, D. A.

    Recent events suggest that Intelsat (the 68-nation International Telecommunications Satellite Consortium) will coordinate a number of domestic and regional systems that provide satellite communications services, some of which will be maintained by Intelsat and some of which will be independent. This report addresses the problems of conflict in…

  4. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  5. Epigenetic reprogramming of pericentromeric satellite DNA in premalignant and malignant lesions

    DEFF Research Database (Denmark)

    Brückmann, Nadine Heidi; Pedersen, Christina Bøg; Ditzel, Henrik Jørn

    2018-01-01

    on pericentromeric satellites in primary melanocytes. This suggests that polycomb bodies form in cancer cells with global DNA demethylation to control the stability of pericentromeric satellite DNA. These results reveal a novel epigenetic perturbation specific to premalignant and malignant cells thatmaybe used...... as an early diagnostic marker for detection of precancerous changes and a new therapeutic entry point. Implications: Pericentromeric satellite DNA is epigenetically reprogrammed into polycomb bodies as a premalignant event with implications for transcriptional activity and genomic stability. Mol Cancer Res...

  6. Predicting extreme rainfall events over Jeddah, Saudi Arabia: Impact of data assimilation with conventional and satellite observations

    KAUST Repository

    Viswanadhapalli, Yesubabu

    2015-08-20

    The impact of variational data assimilation for predicting two heavy rainfall events that caused devastating floods in Jeddah, Saudi Arabia is studied using the Weather Research and Forecasting (WRF) model. On 25 November 2009 and 26 January 2011, the city was deluged with more than double the annual rainfall amount caused by convective storms. We used a high resolution, two-way nested domain WRF model to simulate the two rainfall episodes. Simulations include control runs initialized with National Center for Environmental Prediction (NCEP) Global Forecasting System (GFS) data and 3-Dimensional Variational (3DVAR) data assimilation experiments conducted by assimilating NCEP prepbufr and radiance observations. Observations from Automated Weather Stations (AWS), synoptic charts, radar reflectivity and satellite pictures from the Presidency of Meteorology and Environment (PME), Jeddah, Saudi Arabia are used to assess the forecasting results. To evaluate the impact of the different assimilated observational datasets on the simulation of the major flooding event of 2009, we conducted 3DVAR experiments assimilating individual sources and a combination of all data sets. Results suggest that while the control run had a tendency to predict the storm earlier than observed, the assimilation of profile observations greatly improved the model\\'s thermodynamic structure and lead to better representation of simulated rainfall both in timing and amount. The experiment with assimilation of all available observations compared best with observed rainfall in terms of timing of the storm and rainfall distribution, demonstrating the importance of assimilating different types of observations. Retrospective experiments with and without data assimilation, for three different model lead times (48, 72 and 96-h), were performed to examine the skill of WRF model to predict the heavy rainfall events. Quantitative rainfall analysis of these simulations suggests that 48-h lead time runs with

  7. Yugoslav Naive Art and Popular Culture

    Directory of Open Access Journals (Sweden)

    Meta Kordiš

    2009-12-01

    After the Second World War, the Yugoslav socialist state also strove to equalize and democratize society through art by minimizing the differences between the producers and consumers of art. Such a policy led to the decentralization of culture by forming various cultural and artistic institutions and by holding cultural events and spectacles in the countryside and peripheral areas. Through these various informal ideological mechanisms, the state apparatus exercised its authority in socializing its people in the spirit of Yugoslav socialist self-management and the ideology of brotherhood and unity by joining together the producers and consumers of naive art from various ethnicities, cultures, and social classes. Unfortunately this transformed naive art at its peak of popularity into a decorative and souvenir artifact with a pastoral image and folklore motifs. The encouragement from the authorities on the one hand and the market on the other produced and reproduced simple art forms and narrative contents without a complex iconography, which were consumed uncritically and on a large scale. Consequently, this completely denied the core of naive art and resulted in its final devaluation.

  8. Impact of antiretroviral therapy (ART) timing on chronic immune activation/inflammation and end-organ damage.

    Science.gov (United States)

    Rajasuriar, Reena; Wright, Edwina; Lewin, Sharon R

    2015-01-01

    The purpose of this review was to summarize recent studies on the effect of early antiretroviral therapy (ART) in HIV-infected patients on markers of immune activation/inflammation, viral persistence and serious non-AIDS events. Early ART, initiated within days to months of HIV infection, was associated with marked reduction in T-cell activation often reaching levels observed in HIV-uninfected individuals. However, the impact of early ART on markers of innate immune activation, microbial translocation and inflammation/coagulation was less clear. Early ART has also been associated with a significant reduction in the frequency of latently infected cells, which was greater if ART was initiated within days to weeks rather than months following infection. However, few studies have evaluated the relationship between immune activation and viral reservoirs, specifically following early ART. Early ART may potentially reduce serious non-AIDS events and associated mortality, but most of these studies have extrapolated from changes in surrogate markers, such as CD4 : CD8 ratio. Early ART was associated with beneficial effects on multiple markers of immune activation, inflammation and viral persistence. Longer term prospective studies are still needed to determine whether early ART translates to a significant reduction in serious non-AIDS events and mortality.

  9. The Hayden House Program: Community Involvement in the Arts.

    Science.gov (United States)

    Hampton, Grace

    1979-01-01

    Describes an arts and crafts program initiated at Hayden House, a low-income, racially integrated housing development in Phoenix, Arizona. The program, designed to promote pride and community cohesion, presented workshops and cultural events for both children and adults. This article is part of a theme issue on multicultural art. (SJL)

  10. Comparison of Satellite Rainfall Estimates and Rain Gauge Measurements in Italy, and Impact on Landslide Modeling

    Directory of Open Access Journals (Sweden)

    Mauro Rossi

    2017-12-01

    Full Text Available Landslides can be triggered by intense or prolonged rainfall. Rain gauge measurements are commonly used to predict landslides even if satellite rainfall estimates are available. Recent research focuses on the comparison of satellite estimates and gauge measurements. The rain gauge data from the Italian network (collected in the system database “Verifica Rischio Frana”, VRF are compared with the National Aeronautics and Space Administration (NASA Tropical Rainfall Measuring Mission (TRMM products. For the purpose, we couple point gauge and satellite rainfall estimates at individual grid cells, evaluating the correlation between gauge and satellite data in different morpho-climatological conditions. We then analyze the statistical distributions of both rainfall data types and the rainfall events derived from them. Results show that satellite data underestimates ground data, with the largest differences in mountainous areas. Power-law models, are more appropriate to correlate gauge and satellite data. The gauge and satellite-based products exhibit different statistical distributions and the rainfall events derived from them differ. In conclusion, satellite rainfall cannot be directly compared with ground data, requiring local investigation to account for specific morpho-climatological settings. Results suggest that satellite data can be used for forecasting landslides, only performing a local scaling between satellite and ground data.

  11. Robust satellite techniques for remote sensing of seismically active areas

    Energy Technology Data Exchange (ETDEWEB)

    Tramutoli, V; Di Bello, G [Potenza Univ., Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente; Pergola, N; Piscitelli, S [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate di Analisi Ambientale, Potenza (Italy)

    2001-04-01

    Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity) whose variable contributions to the investigated signal can be so high as to completely mask (or simulate) the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT) has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks) which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observation field also in the presence of highly variable contributions from atmospheric (transmittance), surface (emissivity and morphology) and observational (time/season, but also solar and satellite zenithal angles) conditions. This work presents the first preliminary results, based on several years of NOA A/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications) as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  12. Robust satellite techniques for remote sensing of seismically active areas

    Directory of Open Access Journals (Sweden)

    S. Piscitelli

    2001-06-01

    Full Text Available Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity whose variable contributions to the investigated signal can be so high as to completely mask (or simulate the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observational field also in the presence of highly variable contributions from atmospheric (transmittance, surface (emissivity and morphology and observational (time/season, but also solar and satellite zenithal angles conditions.This work presents the first preliminary results, based on several years of NOAA/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  13. The impact of a national mental health arts and film festival on stigma and recovery.

    Science.gov (United States)

    Quinn, N; Shulman, A; Knifton, L; Byrne, P

    2011-01-01

    This study aims to evaluate the impact of a national mental health arts festival for the general public, encompassing a wide variety of art forms and themes. An evaluation was undertaken with 415 attendees from 20 different events, combining qualitative and quantitative approaches. The findings demonstrate positive impact on the relationship between arts and mental health. Events increased positive attitudes, including positive representations of people's contributions, capabilities and potential to recover. They did not decrease negative attitudes. Intended behaviour change was modest and one film event increased audience perceptions of dangerousness. The paper argues that the arts can change stigma by constructing shared meanings and engaging audiences on an emotional level. Carefully programmed, collaborative, community-based arts festivals should form an integral part of national programmes to address stigma and to promote mental health and wellbeing, alongside traditional social marketing and public education approaches. © 2010 John Wiley & Sons A/S.

  14. A Feasible Approach for Implementing Greater Levels of Satellite Autonomy

    Science.gov (United States)

    Lindsay, Steve; Zetocha, Paul

    2002-01-01

    In this paper, we propose a means for achieving increasingly autonomous satellite operations. We begin with a brief discussion of the current state-of-the-art in satellite ground operations and flight software, as well as the real and perceived technical and political obstacles to increasing the levels of autonomy on today's satellites. We then present a list of system requirements that address these hindrances and include the artificial intelligence (AI) technologies with the potential to satisfy these requirements. We conclude with a discussion of how the space industry can use this information to incorporate increased autonomy. From past experience we know that autonomy will not just "happen," and we know that the expensive course of manually intensive operations simply cannot continue. Our goal is to present the aerospace industry with an analysis that will begin moving us in the direction of autonomous operations.

  15. Top quark event modelling and generators

    CERN Document Server

    Rahmat, Rahmat

    2016-01-01

    State-of-the-art theoretical predictions accurate to next-to-leading order QCD interfaced with Pythia8 and Herwig++ event generators are tested by comparing the unfolded ttbar differential data collected with the CMS detector at 8 TeV. These predictions are also compared with the underlying event activity distributions in ttbar events using CMS proton-proton data collected in 2015 at a center of mass energy of 13 TeV.

  16. Satellite skill in detecting extreme episodes in near-surface air quality

    Science.gov (United States)

    Ruiz, D. J.; Prather, M. J.

    2017-12-01

    Ozone (O3) contributes to ambient air pollution, adversely affecting public health, agriculture, and ecosystems. Reliable, long-term, densely distributed surface networks are required to establish the scale, intensity and repeatability of major pollution events (designated here in a climatological sense as air quality extremes, AQX as defined in Schnell's work). Regrettably, such networks are only available for North America (NA) and Europe (EU), which does not include many populated regions where the deaths associated with air pollution exposure are alarmingly high. Directly measuring surface pollutants from space without lidar is extremely difficult. Mapping of daily pollution events requires cross-track nadir scanners and these have limited sensitivity to surface O3 levels. This work examines several years of coincident surface and OMI satellite measurements over NA-EU, in combination with a chemistry-transport model (CTM) hindcast of that period to understand how the large-scale AQX episodes may extend into the free troposphere and thus be more amenable to satellite mapping. We show how extreme NA-EU episodes are measured from OMI and then look for such patterns over other polluted regions of the globe. We gather individual high-quality O3 surface site measurements from these other regions, to check on our satellite detection. Our approach with global satellite detection would avoid issues associated with regional variations in seasonality, chemical regime, data product biases; and it does not require defining a separate absolute threshold for each data product (surface site and satellite). This also enables coherent linking of the extreme events into large-scale pollution episodes whose magnitude evolves over 100's of km for several days. Tools used here include the UC Irvine CTM, which shows that much of the O3 surface variability is lost at heights above 2 km, but AQX local events are readily seen in a 0-3 km column average. The OMI data are taken from X

  17. Sensitivity of Distributed Hydrologic Simulations to Ground and Satellite Based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Singaiah Chintalapudi

    2014-05-01

    Full Text Available In this study, seven precipitation products (rain gauges, NEXRAD MPE, PERSIANN 0.25 degree, PERSIANN CCS-3hr, PERSIANN CCS-1hr, TRMM 3B42V7, and CMORPH were used to force a physically-based distributed hydrologic model. The model was driven by these products to simulate the hydrologic response of a 1232 km2 watershed in the Guadalupe River basin, Texas. Storm events in 2007 were used to analyze the precipitation products. Comparison with rain gauge observations reveals that there were significant biases in the satellite rainfall products and large variations in the estimated amounts. The radar basin average precipitation compared very well with the rain gauge product while the gauge-adjusted TRMM 3B42V7 precipitation compared best with observed rainfall among all satellite precipitation products. The NEXRAD MPE simulated streamflows matched the observed ones the best yielding the highest Nash-Sutcliffe Efficiency correlation coefficient values for both the July and August 2007 events. Simulations driven by TRMM 3B42V7 matched the observed streamflow better than other satellite products for both events. The PERSIANN coarse resolution product yielded better runoff results than the higher resolution product. The study reveals that satellite rainfall products are viable alternatives when rain gauge or ground radar observations are sparse or non-existent.

  18. Parametric analysis of lava dome-collapse events and pyroclastic deposits at Shiveluch volcano, Kamchatka, using visible and infrared satellite data

    Science.gov (United States)

    Krippner, Janine B.; Belousov, Alexander B.; Belousova, Marina G.; Ramsey, Michael S.

    2018-04-01

    For the years 2001 to 2013 of the ongoing eruption of Shiveluch volcano, a combination of different satellite remote sensing data are used to investigate the dome-collapse events and the resulting pyroclastic deposits. Shiveluch volcano in Kamchatka, Russia, is one of the world's most active dome-building volcanoes, which has produced some of the largest known historical block-and-ash flows (BAFs). Globally, quantitative data for deposits resulting from such large and long-lived dome-forming eruptions, especially like those at Shiveluch, are scarce. We use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared (TIR), shortwave infrared (SWIR), and visible-near infrared (VNIR) data to analyze the dome-collapse scars and BAF deposits that were formed during eruptions and collapse events in 2001, 2004, 2005, 2007, 2009, 2010, and two events in 2013. These events produced flows with runout distances of as far as 19 km from the dome, and with aerial extents of as much as 22.3 km2. Over the 12 years of this period of investigation, there is no trend in deposit area or runout distances of the flows through time. However, two potentially predictive features are apparent in our data set: 1) the largest dome-collapse events occurred when the dome exceeded a relative height (from dome base to top) of 500 m; 2) collapses were preceded by thermal anomalies in six of the cases in which ASTER data were available, although the areal extent of these precursory thermal areas did not generally match the size of the collapse events as indicated by scar area (volumes are available for three collapse events). Linking the deposit distribution to the area, location, and temperature profiles of the dome-collapse scars provides a basis for determining similar future hazards at Shiveluch and at other dome-forming volcanoes. Because of these factors, we suggest that volcanic hazard analysis and mitigation at volcanoes with similar BAF emplacement behavior may

  19. Art Therapy and Dissociative Disorders.

    Science.gov (United States)

    Engle, Patricia

    1997-01-01

    Demonstrates how art therapy helped a woman address her identity and memory difficulties while she managed her daily activities. The process helped her validate traumatic events in her history and provided a starting point for addressing internal conflicts. The client's artwork helped the therapist learn about the client's unconscious states. (MKA)

  20. CyberArts Showcase features artistic exploration of CAVE technology, live web cast

    OpenAIRE

    Watson-Bloch, Cathy

    2005-01-01

    Experience a 21st-century exploration of the place where art and science/technology meet, where reality and cyber worlds collide. The CyberArts Showcase, an innovative, virtual art museum of student works that uses technology to create inventive, interactive worlds of digital art, will be held from 5 p.m. to 8 p.m. on Friday, April 15, at Torgersen Hall on Virginia Tech's campus. Roberto Bocci, multimedia artist and professor of digital art at Georgetown University will open the event.

  1. Satellite Image Classification of Building Damages Using Airborne and Satellite Image Samples in a Deep Learning Approach

    Science.gov (United States)

    Duarte, D.; Nex, F.; Kerle, N.; Vosselman, G.

    2018-05-01

    The localization and detailed assessment of damaged buildings after a disastrous event is of utmost importance to guide response operations, recovery tasks or for insurance purposes. Several remote sensing platforms and sensors are currently used for the manual detection of building damages. However, there is an overall interest in the use of automated methods to perform this task, regardless of the used platform. Owing to its synoptic coverage and predictable availability, satellite imagery is currently used as input for the identification of building damages by the International Charter, as well as the Copernicus Emergency Management Service for the production of damage grading and reference maps. Recently proposed methods to perform image classification of building damages rely on convolutional neural networks (CNN). These are usually trained with only satellite image samples in a binary classification problem, however the number of samples derived from these images is often limited, affecting the quality of the classification results. The use of up/down-sampling image samples during the training of a CNN, has demonstrated to improve several image recognition tasks in remote sensing. However, it is currently unclear if this multi resolution information can also be captured from images with different spatial resolutions like satellite and airborne imagery (from both manned and unmanned platforms). In this paper, a CNN framework using residual connections and dilated convolutions is used considering both manned and unmanned aerial image samples to perform the satellite image classification of building damages. Three network configurations, trained with multi-resolution image samples are compared against two benchmark networks where only satellite image samples are used. Combining feature maps generated from airborne and satellite image samples, and refining these using only the satellite image samples, improved nearly 4 % the overall satellite image

  2. Overview of intercalibration of satellite instruments

    Science.gov (United States)

    Chander, G.; Hewison, T.J.; Fox, N.; Wu, X.; Xiong, X.; Blackwell, W.J.

    2013-01-01

    of change. This paper summarizes the state-of-the-art of post-launch radiometric calibration of remote sensing satellite instruments, through inter-calibration.

  3. ["Les Impatients": expression through art].

    Science.gov (United States)

    Lamontagne, Céline; Palardy, Lorraine

    2015-01-01

    The organization called "Les Impatients" was founded in 1992. Using a unique model, Les Impatients welcomes those with mental health issues who would like to express themselves through art. Les Impatients offers free creative workshops and encourages exchanges with the community through the sharing of its participants' creations. The name Les Impatients reinforces the idea that the organization does not consider those attending its workshops as patients, but rather creators who are eager to heal, develop their craft and find their place in society. The participants contribute to the collective objective of breaking down the stigma that surrounds mental illness.Les Impatients collaborates with various mental health organizations in Quebec, such as the Institut universitaire en santé mentale de Montréal (IUSMM) affiliated to the Université de Montréal, Douglas Mental Health University Institute (DMHUI), the Centre de santé et services sociaux Drummond (CSSS Drummond) and the Centre de santé et services sociaux Pierre-Boucher (CSSS Pierre-Boucher). Les Impatients offers more than 48 workshops in eight different locations to around 450 participants each week.Dissemination activities, remarkable events, original projects: Les Impatients stands out through its realizations. Examples are exhibitions, collections of love letters, comic books, CD, concerts, and reading nights. The organization's originality resides in the exploration of the links between the work of the participants and that of professional artists. An illustration of this interest is the annual Parle-moi d'amour auction-exhibition, which has been one of Les Impatients' major events since 1999.As part of its mission, Les Impatients conserves the works of art created by the participants during the workshops. Its collection includes more than 15,000 works of art from Les Impatients as well as pieces donated by collectors of unconventional art, commonly known as "art brut" or "outsider art". The

  4. Versatile Satellite Architecture and Technology: A New Architecture for Low Cost Satellite Missions for Solar-Terrestrial Studies

    Science.gov (United States)

    Cook, T. A.; Chakrabarti, S.; Polidan, R.; Jaeger, T.; Hill, L.

    2011-12-01

    Early in the 20th century, automobiles appeared as extraordinary vehicles - and now they are part of life everywhere. Late in the 20th century, internet and portable phones appeared as innovations - and now omni-present requirements. At mid-century, the first satellites were launched into space - and now 50 years later - "making a satellite" remains in the domain of highly infrequent events. Why do all universities and companies not have their own satellites? Why is the work force capable of doing so remarkably small? Why do highly focused science objectives that require just a glimpse from space never get a chance to fly? Historically, there have been two primary impediments to place an experiment in orbit - high launch costs and the high cost of spacecraft systems and related processes. The first problem appears to have been addressed through the availability of several low-cost (hands-on training for these participants and will leave an important legacy in developing a scientifically and technically competent workforce.

  5. ATTENDING LIVE PERFORMING ARTS EXPERIENCES. WHY AND HOW IS THE DECISION TAKEN?

    Directory of Open Access Journals (Sweden)

    Ciceo Andreea

    2012-07-01

    Full Text Available Across the last years, researchers around the world have shown a greater inclination towards the arts marketing, acknowledging its importance for the well being of arts organizations. Researches have been conducted for all kind of subjects trying to understand better both phenomena: the audience and the provider. However, these studies have their own particularities as they refer to certain cultures. Therefore, we need to look into our own yard and see whether or not such interests have been raised. Unfortunately, researches conducted in this area, in Romania, are very few. That is why the knowledge regarding the live performing arts audience is actually non-existent and from this fact comes the need of discovering more about this unknown. This paper attempts to make one of the first steps in this direction by exploring the audience’s motivations to attend live performing arts events and, moreover, the buying decision process. Why do audiences choose to attend live performing arts events? How they decide for it? Which are the sources of information they use? What makes a live performing arts event be a pleasant experience? Or rather an unpleasant one? These are all questions to which this paper provides answers. The way the author have chosen to answer these matters is by conducting a qualitative research that has the aim to explore the universe of this subject and to denote insights for a better understanding. The best method was considered to be the focus group for its advantage of bringing together people who have something in common – namely their frequency in live performing arts events, and facilitate communication between them in order to discover the needed information. Thus, it has been discovered that audiences’ motivations are mainly related to social and esteem needs, that is to say people attend these kind of events from their desire to spend their time in a pleasant manner with the people they like or because

  6. Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

    Directory of Open Access Journals (Sweden)

    J.-H. Koo

    2012-10-01

    Full Text Available Arctic ozone depletion events (ODEs are caused by halogen catalyzed ozone loss. In situ chemistry, advection of ozone-poor air mass, and vertical mixing in the lower troposphere are important factors affecting ODEs. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS, the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC, and the Arctic Intensive Ozonesonde Network Study (ARCIONS experiments (April 2008. Tropospheric BrO columns retrieved from satellite measurements and back trajectory calculations are also used to investigate the characteristics of observed ODEs. In situ observations from these field experiments are inadequate to validate tropospheric BrO columns derived from satellite measurements. In view of this difficulty, we construct an ensemble of tropospheric column BrO estimates from two satellite (OMI and GOME-2 measurements and with three independent methods of calculating stratospheric BrO columns. Furthermore, we select analysis methods that do not depend on the absolute magnitude of column BrO, such as time-lagged correlation analysis of ozone and tropospheric column BrO, to understand characteristics of ODEs. Time-lagged correlation analysis between in situ (surface and ozonesonde measurements of ozone and satellite derived tropospheric BrO columns indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (∼1 day transport from nearby regions with ozone depletion. The effect of in situ ozone loss is also evident in the diurnal variation difference between low (10th and 25th percentiles and higher percentiles of surface ozone concentrations at Alert, Canada. Aircraft observations indicate low-ozone air mass transported from adjacent high-BrO regions. Correlation analyses of ozone

  7. The Courage to Care-An innovative arts-based event to engage students and the local community to reflect on Australian nurses' roles in the First World War and after.

    Science.gov (United States)

    McAllister, Margaret; Davis, Susan; Brien, Donna Lee; Rogers, Irene; Flanagan, Wendy; Howie, Virginia; Dargusch, Jo

    2016-12-01

    There is a large body of work that documents the history of the nursing profession and the experiences of nurses during significant historical eras such as the First World War. Yet learning about nursing history is commonly a tiny, or absent, component in the undergraduate nursing curriculum. This paper discusses an innovative project that had multiple aims. A primary aim was to engage nursing students and educators in a project that valued nursing history by integrating it into an event to celebrate International Nurses Day. As the paper will explain, other aims were in organising the event so that it capitalised on particular creative arts strengths within the faculty, offering cross-disciplinary connections, engagement and appreciation. A Readers' Theatre event, involving academics and students in nursing, creative arts and education, was conceived, developed and performed for the community. The theme was the experiences of First World War nurses and how they encapsulated values important to nursing today - the 6 Cs - which guide high standards of nursing. The 6 Cs are care, compassion, competence, communication, courage and commitment. We called the Readers' Theatre "The Courage to Care", and this involved a 4month process of script development, event planning and a performance. This process and outcomes were evaluated, prompting a reflection on the strengths and challenges of working in this creative way to engage a wide group of stakeholders to advance the profession of nursing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Trends in the Global Small Satellite Ecosystem: Implications for Science Missions

    Science.gov (United States)

    Behrens, J.; Lal, B.

    2017-12-01

    Activity in the small satellite industry has increased in the recent years. New actors and nations have joined the evolving market globally in both the private and public sector. Progress in the smallsat sector has been driven, in part, by growing capabilities and falling costs of smallsats. Advancements include the miniaturization of technology for the small satellite platform, increased data processing capabilities, the ubiquitous presence of GPS enabling location and attitude determination, improvements in ground system costs and signal processing capabilities, and the deployment of inexpensive COTS parts. The emerging trends in the state of the art for smallsat technology, paired with planned smallsat constellation missions by both private and public actors, open the opportunity for new earth and remote sensing scientific endeavors. This presentation will characterize the drivers influencing the development of smallsat technology and the industry more generally. An overview will be provided for trends in the state of the art of smallsat technology, and secondary trends that influence the smallsat sector including infrastructure, demand, the satellite launch market, and the policy environment. These trends are mapped onto current and projected Earth observation needs, as identified by academic and governmental communities, to identify those that could be fulfilled by smallsats in the near and long term. A set of notional science missions that could be enabled, based on the various drivers identified, will be presented for both the near (3 years) and farther term (10 years).

  9. Events diary

    Science.gov (United States)

    2000-01-01

    From 18 January until 28 March the 2000 IEE Faraday Lecture will be touring venues in the UK, aiming to inspire and encourage students to choose a career in science and engineering. The lecture tour is being supported by communications and IT company, Marconi, and it is being presented by University College London. Interactive experiments for the audience of 14 - 16 year-olds will combine with a multimedia presentation on the theme `Time and Place in the Communications Age', exploring our ability to make precise measurements of time, place and space and how these impact on our personal and business lives. Among the curious facts from the lecture is the discovery that Cornwall rises and falls by 20 cm every time the tide moves in and out. The whole of the UK rises and falls by 50 cm every time the Moon goes by and the UK is actually 20 m shorter than was thought ten years ago, before the Global Positioning Satellite system was in operation. Attendance at the lectures is free and schools interested in booking tickets should visit the Faraday website at www.faraday.org.uk . Further details of the tour are available from the Faraday Lecture Office, Institution of Electrical Engineers, Michael Faraday House, Six Hills Way, Stevenage, Herts SG1 2AY (tel: 01438 313311, fax: 01438 742856, e-mail: faraday@iee.org.uk ). Among the `Strands' on the programme at the 2000 Edinburgh international science festival on 2 - 18 April are: visions of the future; time; the natural world; new materials; science book festival; science film festival. Festival programmes should be available soon from the festival office at 8 Lochend Road, Edinburgh EH6 8BR (tel: 0131 530 2001, fax: 0131 530 2002, e-mail: esf@scifest.demon.co.uk ). BA2000 will be one of the key features of the `creating SPARKS' festival where the sciences meet the arts in London during 6 - 30 September. Centred on South Kensington, and led by the British Association, creating SPARKS will be staged at such famous institutions

  10. Whose global art (history?: Ancient art as global art

    Directory of Open Access Journals (Sweden)

    Cynthia Colburn

    2016-12-01

    Full Text Available Discourse on global art or art history arguably dominates the field of art history today in terms of curriculum and research. This discourse cuts across time and space, impacting all art historical specializations, from prehistoric to contemporary, and from Africa to the Americas. Yet, the mainstream theoretical discourse on global art or art history focuses almost explicitly on contemporary and, to a lesser extent, modern art, operating from the premise that only these arts were created in an age of globalization and, thus, emphasize hybridity. This essay seeks to expand the mainstream theoretical discourse regarding global art to pre-modern examples, given that artistic exchange and hybridity dates as early as the prehistoric era all over the world and is not dependent on newer technologies. Indeed, one might argue that the study of pre-modern examples of global art could provide a powerful historical lens through which to analyze contemporary global art.

  11. The impacts of a major South African arts festival: The voices of the ...

    African Journals Online (AJOL)

    The impacts of a major South African arts festival: The voices of the community. ... five factors that were labelled: Positive economic impacts; Negative community impacts; ... Keywords: Events, arts festivals, resident, perception, tourism impacts.

  12. Validation of satellite daily rainfall estimates in complex terrain of Bali Island, Indonesia

    Science.gov (United States)

    Rahmawati, Novi; Lubczynski, Maciek W.

    2017-11-01

    Satellite rainfall products have different performances in different geographic regions under different physical and climatological conditions. In this study, the objective was to select the most reliable and accurate satellite rainfall products for specific, environmental conditions of Bali Island. The performances of four spatio-temporal satellite rainfall products, i.e., CMORPH25, CMORPH8, TRMM, and PERSIANN, were evaluated at the island, zonation (applying elevation and climatology as constraints), and pixel scales, using (i) descriptive statistics and (ii) categorical statistics, including bias decomposition. The results showed that all the satellite products had low accuracy because of spatial scale effect, daily resolution and the island complexity. That accuracy was relatively lower in (i) dry seasons and dry climatic zones than in wet seasons and wet climatic zones; (ii) pixels jointly covered by sea and mountainous land than in pixels covered by land or by sea only; and (iii) topographically diverse than uniform terrains. CMORPH25, CMORPH8, and TRMM underestimated and PERSIANN overestimated rainfall when comparing them to gauged rain. The CMORPH25 had relatively the best performance and the PERSIANN had the worst performance in the Bali Island. The CMORPH25 had the lowest statistical errors, the lowest miss, and the highest hit rainfall events; it also had the lowest miss rainfall bias and was relatively the most accurate in detecting, frequent in Bali, ≤ 20 mm day-1 rain events. Lastly, the CMORPH25 coarse grid better represented rainfall events from coastal to inlands areas than other satellite products, including finer grid CMORPH8.

  13. Satellite-Enhanced Regional Downscaling for Applied Studies: Extreme Precipitation Events in Southeastern South America

    Science.gov (United States)

    Nunes, A.; Gomes, G.; Ivanov, V. Y.

    2016-12-01

    Frequently found in southeastern South America during the warm season from October through May, strong and localized precipitation maxima are usually associated with the presence of mesoscale convective complexes (MCCs) travelling across the region. Flashfloods and landslides can be caused by these extremes in precipitation, with damages to the local communities. Heavily populated, southeastern South America hosts many agricultural activities and hydroelectric production. It encompasses one of the most important river basins in South America, the La Plata River Basin. Therefore, insufficient precipitation is equally prejudicial to the region socio-economic activities. MCCs are originated in the warm season of many regions of the world, however South American MCCs are related to the most severe thunderstorms, and have significantly contributed to the precipitation regime. We used the hourly outputs of Satellite-enhanced Regional Downscaling for Applied Studies (SRDAS), developed at the Federal University of Rio de Janeiro in Brazil, in the analysis of the dynamics and physical characteristics of MCCs in South America. SRDAS is the 25-km resolution downscaling of a global reanalysis available from January 1998 through December 2010. The Regional Spectral Model is the SRDAS atmospheric component and assimilates satellite-based precipitation estimates from the NOAA/Climate Prediction Center MORPHing technique global precipitation analyses. In this study, the SRDAS atmospheric and land-surface variables, global reanalysis products, infrared satellite imagery, and the physical retrievals from the Atmospheric Infrared Sounder (AIRS), on board of the NASA's Aqua satellite, were used in the evaluation of the MCCs developed in southeastern South America from 2008 and 2010. Low-level circulations and vertical profiles were analyzed together to establish the relevance of the moisture transport in connection with the upper-troposphere dynamics to the development of those MCCs.

  14. Satellite-based Flood Modeling Using TRMM-based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Greg Easson

    2007-12-01

    Full Text Available Increasingly available and a virtually uninterrupted supply of satellite-estimatedrainfall data is gradually becoming a cost-effective source of input for flood predictionunder a variety of circumstances. However, most real-time and quasi-global satelliterainfall products are currently available at spatial scales ranging from 0.25o to 0.50o andhence, are considered somewhat coarse for dynamic hydrologic modeling of basin-scaleflood events. This study assesses the question: what are the hydrologic implications ofuncertainty of satellite rainfall data at the coarse scale? We investigated this question onthe 970 km2 Upper Cumberland river basin of Kentucky. The satellite rainfall productassessed was NASA’s Tropical Rainfall Measuring Mission (TRMM Multi-satellitePrecipitation Analysis (TMPA product called 3B41RT that is available in pseudo real timewith a latency of 6-10 hours. We observed that bias adjustment of satellite rainfall data canimprove application in flood prediction to some extent with the trade-off of more falsealarms in peak flow. However, a more rational and regime-based adjustment procedureneeds to be identified before the use of satellite data can be institutionalized among floodmodelers.

  15. Transient SEU characterization of analog IC's for ESA's satellite

    International Nuclear Information System (INIS)

    Harboe-Soerensen, R.; Van Dooren, J.; Guerre, F.X.; Constans, H.; Berger, G.; Hajdas, W.

    1999-01-01

    Data analysis of four self switch-off power supply events in the SOHO satellite pointed strongly in the direction of being Cosmic Ray or Proton induced. Further analysis of the relevant power supply schematics identified a number of analog IC's capable of causing or contributing to such events. This paper concentrates on the testing aspects of these analog IC's and presents the results of a Single Event Effects (SEEs) test program. Ground testing, simulating the flight conditions, were carried out at both heavy ion and proton accelerators. (authors)

  16. Joint Attributes and Event Analysis for Multimedia Event Detection.

    Science.gov (United States)

    Ma, Zhigang; Chang, Xiaojun; Xu, Zhongwen; Sebe, Nicu; Hauptmann, Alexander G

    2017-06-15

    Semantic attributes have been increasingly used the past few years for multimedia event detection (MED) with promising results. The motivation is that multimedia events generally consist of lower level components such as objects, scenes, and actions. By characterizing multimedia event videos with semantic attributes, one could exploit more informative cues for improved detection results. Much existing work obtains semantic attributes from images, which may be suboptimal for video analysis since these image-inferred attributes do not carry dynamic information that is essential for videos. To address this issue, we propose to learn semantic attributes from external videos using their semantic labels. We name them video attributes in this paper. In contrast with multimedia event videos, these external videos depict lower level contents such as objects, scenes, and actions. To harness video attributes, we propose an algorithm established on a correlation vector that correlates them to a target event. Consequently, we could incorporate video attributes latently as extra information into the event detector learnt from multimedia event videos in a joint framework. To validate our method, we perform experiments on the real-world large-scale TRECVID MED 2013 and 2014 data sets and compare our method with several state-of-the-art algorithms. The experiments show that our method is advantageous for MED.

  17. Connecting Satellite-Based Precipitation Estimates to Users

    Science.gov (United States)

    Huffman, George J.; Bolvin, David T.; Nelkin, Eric

    2018-01-01

    Beginning in 1997, the Merged Precipitation Group at NASA Goddard has distributed gridded global precipitation products built by combining satellite and surface gauge data. This started with the Global Precipitation Climatology Project (GPCP), then the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), and recently the Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG). This 20+-year (and on-going) activity has yielded an important set of insights and lessons learned for making state-of-the-art precipitation data accessible to the diverse communities of users. Merged-data products critically depend on the input sensors and the retrieval algorithms providing accurate, reliable estimates, but it is also important to provide ancillary information that helps users determine suitability for their application. We typically provide fields of estimated random error, and recently reintroduced the quality index concept at user request. Also at user request we have added a (diagnostic) field of estimated precipitation phase. Over time, increasingly more ancillary fields have been introduced for intermediate products that give expert users insight into the detailed performance of the combination algorithm, such as individual merged microwave and microwave-calibrated infrared estimates, the contributing microwave sensor types, and the relative influence of the infrared estimate.

  18. Regional positioning using a low Earth orbit satellite constellation

    Science.gov (United States)

    Shtark, Tomer; Gurfil, Pini

    2018-02-01

    Global and regional satellite navigation systems are constellations orbiting the Earth and transmitting radio signals for determining position and velocity of users around the globe. The state-of-the-art navigation satellite systems are located in medium Earth orbits and geosynchronous Earth orbits and are characterized by high launching, building and maintenance costs. For applications that require only regional coverage, the continuous and global coverage that existing systems provide may be unnecessary. Thus, a nano-satellites-based regional navigation satellite system in Low Earth Orbit (LEO), with significantly reduced launching, building and maintenance costs, can be considered. Thus, this paper is aimed at developing a LEO constellation optimization and design method, using genetic algorithms and gradient-based optimization. The preliminary results of this study include 268 LEO constellations, aimed at regional navigation in an approximately 1000 km × 1000 km area centered at the geographic coordinates [30, 30] degrees. The constellations performance is examined using simulations, and the figures of merit include total coverage time, revisit time, and geometric dilution of precision (GDOP) percentiles. The GDOP is a quantity that determines the positioning solution accuracy and solely depends on the spatial geometry of the satellites. Whereas the optimization method takes into account only the Earth's second zonal harmonic coefficient, the simulations include the Earth's gravitational field with zonal and tesseral harmonics up to degree 10 and order 10, Solar radiation pressure, drag, and the lunisolar gravitational perturbation.

  19. School of Culinary Arts & Food Technology - Summer Newsletter 2017

    OpenAIRE

    Murphy, James Peter

    2017-01-01

    The School of Culinary Arts and Food Technology, Summer Newsletter captured rfgw many events, research, awards, significant contributions ans special civic and community activities which the students and staff members of the school have successfully completed leading up to the summer period of 2017. These activities could not be completed without the on-going and active support of the schools 'INSPIRED' friends of Culinary Arts (sponsors).

  20. Evaluation of Version-7 TRMM Multi-Satellite Precipitation Analysis Product during the Beijing Extreme Heavy Rainfall Event of 21 July 2012

    Directory of Open Access Journals (Sweden)

    Yong Huang

    2013-12-01

    Full Text Available The latest Version-7 (V7 Tropical Rainfall Measuring Mission (TRMM Multi-satellite Precipitation Analysis (TMPA products were released by the National Aeronautics and Space Administration (NASA in December of 2012. Their performance on different climatology, locations, and precipitation types is of great interest to the satellite-based precipitation community. This paper presents a study of TMPA precipitation products (3B42RT and 3B42V7 for an extreme precipitation event in Beijing and its adjacent regions (from 00:00 UTC 21 July 2012 to 00:00 UTC 22 July 2012. Measurements from a dense rain gauge network were used as the ground truth to evaluate the latest TMPA products. Results are summarized as follows. Compared to rain gauge measurements, both 3B42RT and 3B42V7 generally captured the rainfall spatial and temporal pattern, having a moderate spatial correlation coefficient (CC, 0.6 and high CC values (0.88 over the broader Hebei, Beijing and Tianjin (HBT regions, but the rainfall peak is 6 h ahead of gauge observations. Overall, 3B42RT showed higher estimation than 3B42V7 over both HBT and Beijing. At the storm center, both 3B42RT and 3B42V7 presented a relatively large deviation from the temporal variation of rainfall and underestimated the storm by 29.02% and 36.07%, respectively. The current study suggests that the latest TMPA products still have limitations in terms of resolution and accuracy, especially for this type of extreme event within a latitude area on the edge of coverage of TRMM precipitation radar and microwave imager. Therefore, TMPA users should be cautious when 3B42RT and 3B42V7 are used to model, monitor, and forecast both flooding hazards in the Beijing urban area and landslides in the mountainous west and north of Beijing.

  1. Arts and Climate

    Science.gov (United States)

    Cegnar, T.

    2010-09-01

    Arts and climate science have more in common points than it appears at first glance. Artistic works can help us to directly or indirectly learn about climatic conditions and weather events in the past, but are also very efficient in raising awareness about climate change nowadays. Long scientific articles get very little response among general public, because most people don't want to read long articles. There is a need to communicate climate change issues more powerfully and more directly, with simple words, pictures, sculptures, installations. Artistic works can inspire people to take concrete action. A number of communication media can fit this purpose. Artists can speak to people on an emotional and intellectual level; they can help people to see things from another perspective and in new ways. Artists can motivate change; they have the freedom to weave facts, opinions, thoughts, emotion and colour all together. Paintings are witnesses of the past climatic conditions. We can learn from paintings, architectural constructions and sculptures about the vegetation, weather events, animals, and way of living. Mentioning only some few examples: old paintings in caves, also Flemish painters are often shown for their winter landscapes, and paintings are very useful to illustrate how fast glaciers are melting. At the end, we shall not forget that dilapidation of art masterpieces often depends on climatic conditions.

  2. Aesthetic Performativity in Urban Design and Art

    DEFF Research Database (Denmark)

    Samson, Kristine

    2015-01-01

    expressions relating to artistic practices, processes of urban development and temporary use. Temporary urban spaces, place-making through the arts, and urban spaces with cultural projects as catalysts for change are but a few of the labels designating those design practices. To put it simply, the field......, and how they engage the social life in the city. I am particularly interested in how these designs oscillate between what we formerly recognized as categories such as the art installation, urban design, cultural events and architecture....

  3. Programming a real-time operating system for satellite control applications Satellite Control Applications

    International Nuclear Information System (INIS)

    Omer, M.; Anjum, O.; Suddle, M.R.

    2004-01-01

    With the realization of ideas like formation flights and multi-body space vehicles the demands on an attitude control system have become increasingly complex. Even in its most simplified form, the control system for a typical geostationary satellite has to run various supervisory functions along with determination and control algorithms side by side. Within each algorithm it has to employ multiple actuation and sensing mechanisms and service real time interrupts, for example, in the case of actuator saturation and sensor data fusion. This entails the idea of thread scheduling and program synchronization, tasks specifically meant for a real time OS. This paper explores the embedding of attitude determination and control loop within the framework of a real time operating system provided for TI's DSP C6xxx series. The paper details out the much functionality provided within the scaleable real time kernel and the analysis and configuration tools available, It goes on to describe a layered implementation stack associated with a typical control for Geo Stationary satellites. An application for control is then presented in which state of the art analysis tools are employed to view program threads, synchronization semaphores, hardware interrupts and data exchange pipes operating in real time. (author)

  4. DebriSat: The New Hypervelocity Impact Test for Satellite Breakup Fragment Characterization

    Science.gov (United States)

    Cowardin, Heather

    2015-01-01

    To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models: DebriSat is intended to be representative of modern LEO satellites. Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. center dotA key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992. Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.

  5. Rapid response flood detection using the MSG geostationary satellite

    DEFF Research Database (Denmark)

    Proud, Simon Richard; Fensholt, Rasmus; Rasmussen, Laura Vang

    2011-01-01

    A novel technique for the detection of flooded land using satellite data is presented. This new method takes advantage of the high temporal resolution of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) series of satellites to derive several p...... of data gathered during the 2009 flooding events in West Africa shows that the presented method can detect floods of comparable size to the SEVIRI pixel resolution on a short timescale, making it a valuable tool for large scale flood mapping....

  6. Online Visualization and Analysis of Global Half-Hourly Infrared Satellite Data

    Science.gov (United States)

    Liu, Zhong; Ostrenga, Dana; Leptoukh, Gregory

    2011-01-01

    nfrared (IR) images (approximately 11-micron channel) recorded by satellite sensors have been widely used in weather forecasting, research, and classroom education since the Nimbus program. Unlike visible images, IR imagery can reveal cloud features without sunlight illumination; therefore, they can be used to monitor weather phenomena day and night. With geostationary satellites deployed around the globe, it is possible to monitor weather events 24/7 at a temporal resolution that polar-orbiting satellites cannot achieve at the present time. When IR data from multiple geostationary satellites are merged to form a single product--also known as a merged product--it allows for observing weather on a global scale. Its high temporal resolution (e.g., every half hour) also makes it an ideal ancillary dataset for supporting other satellite missions, such as the Tropical Rainfall Measuring Mission (TRMM), etc., by providing additional background information about weather system evolution.

  7. Comparison of three different methods of perturbing the potential vorticity field in mesoscale forecasts of Mediterranean heavy precipitation events: PV-gradient, PV-adjoint and PV-satellite

    Science.gov (United States)

    Vich, M.; Romero, R.; Richard, E.; Arbogast, P.; Maynard, K.

    2010-09-01

    Heavy precipitation events occur regularly in the western Mediterranean region. These events often have a high impact on the society due to economic and personal losses. The improvement of the mesoscale numerical forecasts of these events can be used to prevent or minimize their impact on the society. In previous studies, two ensemble prediction systems (EPSs) based on perturbing the model initial and boundary conditions were developed and tested for a collection of high-impact MEDEX cyclonic episodes. These EPSs perturb the initial and boundary potential vorticity (PV) field through a PV inversion algorithm. This technique ensures modifications of all the meteorological fields without compromising the mass-wind balance. One EPS introduces the perturbations along the zones of the three-dimensional PV structure presenting the local most intense values and gradients of the field (a semi-objective choice, PV-gradient), while the other perturbs the PV field over the MM5 adjoint model calculated sensitivity zones (an objective method, PV-adjoint). The PV perturbations are set from a PV error climatology (PVEC) that characterizes typical PV errors in the ECMWF forecasts, both in intensity and displacement. This intensity and displacement perturbation of the PV field is chosen randomly, while its location is given by the perturbation zones defined in each ensemble generation method. Encouraged by the good results obtained by these two EPSs that perturb the PV field, a new approach based on a manual perturbation of the PV field has been tested and compared with the previous results. This technique uses the satellite water vapor (WV) observations to guide the correction of initial PV structures. The correction of the PV field intents to improve the match between the PV distribution and the WV image, taking advantage of the relation between dark and bright features of WV images and PV anomalies, under some assumptions. Afterwards, the PV inversion algorithm is applied to run

  8. Mapping the Recent US Hurricanes Triggered Flood Events in Near Real Time

    Science.gov (United States)

    Shen, X.; Lazin, R.; Anagnostou, E. N.; Wanik, D. W.; Brakenridge, G. R.

    2017-12-01

    Synthetic Aperture Radar (SAR) observations is the only reliable remote sensing data source to map flood inundation during severe weather events. Unfortunately, since state-of-art data processing algorithms cannot meet the automation and quality standard of a near-real-time (NRT) system, quality controlled inundation mapping by SAR currently depends heavily on manual processing, which limits our capability to quickly issue flood inundation maps at global scale. Specifically, most SAR-based inundation mapping algorithms are not fully automated, while those that are automated exhibit severe over- and/or under-detection errors that limit their potential. These detection errors are primarily caused by the strong overlap among the SAR backscattering probability density functions (PDF) of different land cover types. In this study, we tested a newly developed NRT SAR-based inundation mapping system, named Radar Produced Inundation Diary (RAPID), using Sentinel-1 dual polarized SAR data over recent flood events caused by Hurricanes Harvey, Irma, and Maria (2017). The system consists of 1) self-optimized multi-threshold classification, 2) over-detection removal using land-cover information and change detection, 3) under-detection compensation, and 4) machine-learning based correction. Algorithm details are introduced in another poster, H53J-1603. Good agreements were obtained by comparing the result from RAPID with visual interpretation of SAR images and manual processing from Dartmouth Flood Observatory (DFO) (See Figure 1). Specifically, the over- and under-detections that is typically noted in automated methods is significantly reduced to negligible levels. This performance indicates that RAPID can address the automation and accuracy issues of current state-of-art algorithms and has the potential to apply operationally on a number of satellite SAR missions, such as SWOT, ALOS, Sentinel etc. RAPID data can support many applications such as rapid assessment of damage

  9. An art history of means: Arendt-Benjamin

    Directory of Open Access Journals (Sweden)

    Jae Emerling

    2009-12-01

    Full Text Available Transmissibility is an essential concept for any discourse on historiography and aesthetics. In fact, this concept traverses the contemporary impasse of art historical critical practice. Although explicitly associated with Walter Benjamin, the entirety of Hannah Arendt’s work on art and history is premised on transmissibility as well. It allows them to conceive a space of history from within the aesthetic, the world of artifice. This essay reads Benjamin and Arendt alongside and against one other in order to rethink art and history without resorting to eschatology or the histrionics of political theology. In creating this virtual historiography—Arendt-Benjamin—it conceives transmissibility as an aesthetic-historiographic concept that renders an openness between past and future, poiesis and aisthesis. Writing the history of art becomes the creation of a passage between what-has-been and artifice; it becomes the opening of history into life, an event of recollection.

  10. Church and art: from the second Vatican Council to today

    Directory of Open Access Journals (Sweden)

    Mauro Mantovani

    2014-12-01

    Full Text Available This text deals with the relationship between the Catholic Church and art from the Second Vatican Council to today. For this reason it considers some of the most important interventions about art by recent popes (Montini - Paul VI; Wojtyła - John Paul II; Ratzinger - Benedict XVI, Bergoglio - Francis also mentioning some activities that the Holy See is currently promoting. These pages are intended to offer a contribution, mainly theoretical, for those who are working in the field of the planning and promotion of artistic and cultural events, especially if these events are related to religious heritage.

  11. Impaired energy metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes

    DEFF Research Database (Denmark)

    Baraibar, Martín A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina

    2016-01-01

    Accumulation of oxidized proteins is a hallmark of cellular and organismal aging. Adult muscle stem cell (or satellite cell) replication and differentiation is compromised with age contributing to sarcopenia. However, the molecular events related to satellite cell dysfunction during aging are not...

  12. Gigantic Jets and the Tropical Paradigm: A Satellite Perspective

    Science.gov (United States)

    Lazarus, S. M.; Splitt, M. E.

    2017-12-01

    While not exclusively oceanic, gigantic jets (GJ) appear to have a preference for the tropical environment. In particular, a number of GJs have been observed in conjunction with tropical disturbances (i.e., weak tropical storms, depressions, and remnant lows). Given the remote aspect of TC convection and general lack of radar coverage, we explore this subset of events via analysis of their infrared and water vapor satellite presentations. The satellite perspective is relevant given that storm top mixing (dilution) of charge associated with storm-scale turbulence in this portion of the storm is thought to be connected to GJs. The thunderstorm overshoot, upper level divergence / outflow are examined in an effort to better understand the tropical paradigm. Specifically, an analysis of cloud top temperature, anvil expansion rates and asymmetries as well as placement of the GJ events with respect to the large (storm) scale circulation will be conducted.

  13. School of Culinary Arts & Food Technology - Spring Newsletter 2017

    OpenAIRE

    Murphy, James Peter

    2017-01-01

    The School of Culinary Arts and Food Technology, Spring Newsletter captured the many events, research, awards, significant contributions and special civic and community activities which the students and staff members of the school have successfully completed leading up to the Spring period of 2017. The successful completion of these activities would not be possible without the active and on-going support of the 'INSPIRED' friends of Culinary Arts (sponsors).

  14. School of Culinary Arts & Food Technology - Summer Newsletter 2018

    OpenAIRE

    Murphy, James Peter

    2018-01-01

    The School of Culinary Arts and Food Technology, Summer Newsletter captured the many events, research, awards, significant contributions and special civic and community activities which the students and staff members of the school have successfully completed up to the Summer period of 2018. The successful completion of these activities would not be possible without the active and on-going support of the 'INSPIRED' friends of Culinary Arts (school sponsors).

  15. School of Culinary Arts & Food Technology - Winter Newsletter 2017

    OpenAIRE

    Murphy, James Peter

    2017-01-01

    The School of Culinary Arts and Food Technology, Winter Newsletter captured the many events, research, awards, significant contributions and special civic and community activities which the students and staff members of the school have successfully completed leading up to the Winter period of 2017. The successful completion of these activities would not be possible without the active and on-going support of the 'INSPIRED' Friends of Culinary Arts (sponsors).

  16. Species Loss: Exploring Opportunities with Art-Science.

    Science.gov (United States)

    Harrower, Jennifer; Parker, Jennifer; Merson, Martha

    2018-04-25

    Human-induced global change has triggered the sixth major extinction event on earth with profound consequences for humans and other species. A scientifically literate public is necessary to find and implement approaches to prevent or slow species loss. Creating science-inspired art can increase public understanding of the current anthropogenic biodiversity crisis and help people connect emotionally to difficult concepts. In spite of the pressure to avoid advocacy and emotion, there is a rich history of scientists who make art, as well as art-science collaborations resulting in provocative work that engages public interest; however, such interdisciplinary partnerships can often be challenging to initiate and navigate. Here we explore the goals, impacts, cascading impacts and lessons learned from art-science collaborations, as well as ideas for collaborative projects. Using three case studies based on Harrower's scientific research into species interactions, we illustrate the importance of artists as a primary audience and the potential for a combination of art and science presentations to influence public understanding and concern related to species loss.

  17. 365 MAPPING MALARIA CASE EVENT AND FACTORS OF ...

    African Journals Online (AJOL)

    Osondu

    Key words: Malaria case event; prevention; vulnerability; GIS; Nigeria. Introduction. The mapping of ... Ethiopian Journal of Environmental Studies and Management Vol. 6 No.4 2013 ... review articles Tanser et al., (2000), indicate that. Satellite ...

  18. Creative Change: Art, Music, and Climate Science

    Science.gov (United States)

    Dahlberg, R. A.; Hoffman, J. S.; Maurakis, E. G.

    2017-12-01

    As part of ongoing climate science education initiatives, the Science Museum of Virginia hosted Creative Change in March 2017. The event featured multidisciplinary programming created by scientists, artists, and students reacting to and interpreting climate change and resiliency through a variety of artistic mediums and informal science education. Creative Change was developed in consideration of studies conducted at Columbia University that indicate traditional educational approaches, which rely heavily on scientific information and data literacy, fail to engage and inspire action in a majority of people. Our informal science education programming developed for Creative Change, by contrast, is inclusive to all ages and backgrounds, integrating scientific data and an artistic human touch. Our goal was to increase public awareness of climate change and resiliency through the humanities in support of the Museum's mission to inspire Virginians to enrich their lives through science. Visitors were invited to attend Coral Reef Fever, a dance performance of coral bleaching; high school and university art exhibitions; climate data performed by a string quartet; poetry, rap, and theater performances; and a panel discussion by artists and scientists on communicating science through the arts and humanities. Based on 26 post- event survey results, we found as a result that visitors enjoyed the event (mean of 9.58 out of 10), learned new information (9.07), and strongly agreed that the arts and humanities should be used more in communicating science concepts (9.77). Funded in part by Bond Bradley Endowment and NOAA ELG Award #NA15SEC0080009.

  19. Access NASA Satellite Global Precipitation Data Visualization on YouTube

    Science.gov (United States)

    Liu, Z.; Su, J.; Acker, J. G.; Huffman, G. J.; Vollmer, B.; Wei, J.; Meyer, D. J.

    2017-12-01

    Since the satellite era began, NASA has collected a large volume of Earth science observations for research and applications around the world. Satellite data at 12 NASA data centers can also be used for STEM activities such as disaster events, climate change, etc. However, accessing satellite data can be a daunting task for non-professional users such as teachers and students because of unfamiliarity of terminology, disciplines, data formats, data structures, computing resources, processing software, programing languages, etc. Over the years, many efforts have been developed to improve satellite data access, but barriers still exist for non-professionals. In this presentation, we will present our latest activity that uses the popular online video sharing web site, YouTube, to access visualization of global precipitation datasets at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). With YouTube, users can access and visualize a large volume of satellite data without necessity to learn new software or download data. The dataset in this activity is the 3-hourly TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Analysis (TMPA). The video consists of over 50,000 data files collected since 1998 onwards, covering a zone between 50°N-S. The YouTube video will last 36 minutes for the entire dataset record (over 19 years). Since the time stamp is on each frame of the video, users can begin at any time by dragging the time progress bar. This precipitation animation will allow viewing precipitation events and processes (e.g., hurricanes, fronts, atmospheric rivers, etc.) on a global scale. The next plan is to develop a similar animation for the GPM (Global Precipitation Measurement) Integrated Multi-satellitE Retrievals for GPM (IMERG). The IMERG provides precipitation on a near-global (60°N-S) coverage at half-hourly time interval, showing more details on precipitation processes and development, compared to the 3

  20. An Experimental System for a Global Flood Prediction: From Satellite Precipitation Data to a Flood Inundation Map

    Science.gov (United States)

    Adler, Robert

    2007-01-01

    Floods impact more people globally than any other type of natural disaster. It has been established by experience that the most effective means to reduce the property damage and life loss caused by floods is the development of flood early warning systems. However, advances for such a system have been constrained by the difficulty in estimating rainfall continuously over space (catchment-. national-, continental-. or even global-scale areas) and time (hourly to daily). Particularly, insufficient in situ data, long delay in data transmission and absence of real-time data sharing agreements in many trans-boundary basins hamper the development of a real-time system at the regional to global scale. In many countries around the world, particularly in the tropics where rainfall and flooding co-exist in abundance, satellite-based precipitation estimation may be the best source of rainfall data for those data scarce (ungauged) areas and trans-boundary basins. Satellite remote sensing data acquired and processed in real time can now provide the space-time information on rainfall fluxes needed to monitor severe flood events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models, which can be parameterized by a tailored geospatial database. An example that is a key to this progress is NASA's contribution to the Tropical Rainfall Measuring Mission (TRMM), launched in November 1997. Hence, in an effort to evolve toward a more hydrologically-relevant flood alert system, this talk articulates a module-structured framework for quasi-global flood potential naming, that is 'up to date' with the state of the art on satellite rainfall estimation and the improved geospatial datasets. The system is modular in design with the flexibility that permits changes in the model structure and in the choice of components. Four major components included in the system are: 1) multi-satellite precipitation estimation; 2) characterization of

  1. Galactic conformity and central/satellite quenching, from the satellite profiles of M* galaxies at 0.4 < z < 1.9 in the UKIDSS UDS

    Science.gov (United States)

    Hartley, W. G.; Conselice, C. J.; Mortlock, A.; Foucaud, S.; Simpson, C.

    2015-08-01

    We explore the redshift evolution of a curious correlation between the star formation properties of central galaxies and their satellites (`galactic conformity') at intermediate to high redshift (0.4 9.7, around central galaxies at the characteristic Schechter function mass, M ˜ M*. We fit the radial profiles of satellite number densities with simple power laws, finding slopes in the range -1.1 to -1.4 for mass-selected satellites, and -1.3 to -1.6 for passive satellites. We confirm the tendency for passive satellites to be preferentially located around passive central galaxies at 3σ significance and show that it exists to at least z ˜ 2. Meanwhile, the quenched fraction of satellites around star-forming galaxies is consistent with field galaxies of equal stellar masses. We find no convincing evidence for a redshift-dependent evolution of these trends. One simple interpretation of these results is that only passive central galaxies occupy an environment that is capable of independently shutting off star formation in satellite galaxies. By examining the satellites of higher stellar mass star-forming galaxies (log(M*/M⊙) > 11), we conclude that the origin of galactic conformity is unlikely to be exclusively due to the host dark matter halo mass. A halo-mass-independent correlation could be established by either formation bias or a more physical connection between central and satellite star formation histories. For the latter, we argue that a star formation (or active galactic nucleus) related outburst event from the central galaxy could establish a hot halo environment which is then capable of quenching both central and satellite galaxies.

  2. The Neuroscience of Art: A Research Program for the Next Decade?

    Science.gov (United States)

    Changeux, Jean Pierre

    2011-01-01

    Works of art can be viewed as elements of a human-specific nonverbal communication system, distinct from language. First, the cognitive abilities and skills required for art creation and perception are built from a cascade of events driven by a "genetic envelope". Essential for the understanding of artistic creation is its epigenetic variability.…

  3. Uncoupling of satellite DNA and centromeric function in the genus Equus.

    Science.gov (United States)

    Piras, Francesca M; Nergadze, Solomon G; Magnani, Elisa; Bertoni, Livia; Attolini, Carmen; Khoriauli, Lela; Raimondi, Elena; Giulotto, Elena

    2010-02-12

    In a previous study, we showed that centromere repositioning, that is the shift along the chromosome of the centromeric function without DNA sequence rearrangement, has occurred frequently during the evolution of the genus Equus. In this work, the analysis of the chromosomal distribution of satellite tandem repeats in Equus caballus, E. asinus, E. grevyi, and E. burchelli highlighted two atypical features: 1) several centromeres, including the previously described evolutionary new centromeres (ENCs), seem to be devoid of satellite DNA, and 2) satellite repeats are often present at non-centromeric termini, probably corresponding to relics of ancestral now inactive centromeres. Immuno-FISH experiments using satellite DNA and antibodies against the kinetochore protein CENP-A demonstrated that satellite-less primary constrictions are actually endowed with centromeric function. The phylogenetic reconstruction of centromere repositioning events demonstrates that the acquisition of satellite DNA occurs after the formation of the centromere during evolution and that centromeres can function over millions of years and many generations without detectable satellite DNA. The rapidly evolving Equus species gave us the opportunity to identify different intermediate steps along the full maturation of ENCs.

  4. Uncoupling of satellite DNA and centromeric function in the genus Equus.

    Directory of Open Access Journals (Sweden)

    Francesca M Piras

    2010-02-01

    Full Text Available In a previous study, we showed that centromere repositioning, that is the shift along the chromosome of the centromeric function without DNA sequence rearrangement, has occurred frequently during the evolution of the genus Equus. In this work, the analysis of the chromosomal distribution of satellite tandem repeats in Equus caballus, E. asinus, E. grevyi, and E. burchelli highlighted two atypical features: 1 several centromeres, including the previously described evolutionary new centromeres (ENCs, seem to be devoid of satellite DNA, and 2 satellite repeats are often present at non-centromeric termini, probably corresponding to relics of ancestral now inactive centromeres. Immuno-FISH experiments using satellite DNA and antibodies against the kinetochore protein CENP-A demonstrated that satellite-less primary constrictions are actually endowed with centromeric function. The phylogenetic reconstruction of centromere repositioning events demonstrates that the acquisition of satellite DNA occurs after the formation of the centromere during evolution and that centromeres can function over millions of years and many generations without detectable satellite DNA. The rapidly evolving Equus species gave us the opportunity to identify different intermediate steps along the full maturation of ENCs.

  5. Satellite Application for Disaster Management Information Systems

    Science.gov (United States)

    Okpanachi, George

    Abstract Satellites are becoming increasingly vital to modern day disaster management activities. Earth observation (EO) satellites provide images at various wavelengths that assist rapid-mapping in all phases of the disaster management cycle: mitigation of potential risks in a given area, preparedness for eventual disasters, immediate response to a disaster event, and the recovery/reconstruction efforts follo wing it. Global navigation satellite systems (GNSS) such as the Global Positioning System (GPS) assist all the phases by providing precise location and navigation data, helping manage land and infrastructures, and aiding rescue crews coordinate their search efforts. Effective disaster management is a complex problem, because it involves many parameters, which are usually not easy to measure and even identify: Analysis of current situation, planning, optimum resource management, coordination, controlling and monitoring current activities and making quick and correct decisions are only some of these parameters, whose complete list is very long. Disaster management information systems (DMIS) assist disaster management to analyse the situation better, make decisions and suggest further actions following the emergency plans. This requires not only fast and thorough processing and optimization abilities, but also real-time data provided to the DMIS. The need of DMIS for disaster’s real-time data can be satisfied by small satellites data utilization. Small satellites can provide up-to-data, plus a better media to transfer data. This paper suggests a rationale and a framework for utilization of small Satellite data by DMIS. DMIS should be used ‘’before’’, ‘’during’’ and ‘’after’’ the disasters. Data provided by the Small Satellites are almost crucial in any period of the disasters, because early warning can save lives, and satellite data may help to identify disasters before they occur. The paper also presents’ ‘when’’,

  6. Performance of the CMS Event Builder

    Energy Technology Data Exchange (ETDEWEB)

    Andre, J.M.; et al.

    2017-11-22

    The data acquisition system (DAQ) of the CMS experiment at the CERN Large Hadron Collider assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of to the high-level trigger farm. The DAQ architecture is based on state-of-the-art network technologies for the event building. For the data concentration, 10/40 Gbit/s Ethernet technologies are used together with a reduced TCP/IP protocol implemented in FPGA for a reliable transport between custom electronics and commercial computing hardware. A 56 Gbit/s Infiniband FDR Clos network has been chosen for the event builder. This paper presents the implementation and performance of the event-building system.

  7. Bias correction of satellite precipitation products for flood forecasting application at the Upper Mahanadi River Basin in Eastern India

    Science.gov (United States)

    Beria, H.; Nanda, T., Sr.; Chatterjee, C.

    2015-12-01

    High resolution satellite precipitation products such as Tropical Rainfall Measuring Mission (TRMM), Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts (ECMWF), etc., offer a promising alternative to flood forecasting in data scarce regions. At the current state-of-art, these products cannot be used in the raw form for flood forecasting, even at smaller lead times. In the current study, these precipitation products are bias corrected using statistical techniques, such as additive and multiplicative bias corrections, and wavelet multi-resolution analysis (MRA) with India Meteorological Department (IMD) gridded precipitation product,obtained from gauge-based rainfall estimates. Neural network based rainfall-runoff modeling using these bias corrected products provide encouraging results for flood forecasting upto 48 hours lead time. We will present various statistical and graphical interpretations of catchment response to high rainfall events using both the raw and bias corrected precipitation products at different lead times.

  8. ORBITS AND MASSES OF THE SATELLITES OF THE DWARF PLANET HAUMEA (2003 EL61)

    International Nuclear Information System (INIS)

    Ragozzine, D.; Brown, M. E.

    2009-01-01

    Using precise relative astrometry from the Hubble Space Telescope and the W. M. Keck Telescope, we have determined the orbits and masses of the two dynamically interacting satellites of the dwarf planet (136108) Haumea, formerly 2003 EL61. The orbital parameters of Hi'iaka, the outer, brighter satellite, match well the previously derived orbit. On timescales longer than a few weeks, no Keplerian orbit is sufficient to describe the motion of the inner, fainter satellite Namaka. Using a fully interacting three-point-mass model, we have recovered the orbital parameters of both orbits and the mass of Haumea and Hi'iaka; Namaka's mass is marginally detected. The data are not sufficient to uniquely determine the gravitational quadrupole of the nonspherical primary (described by J 2 ). The nearly coplanar nature of the satellites, as well as an inferred density similar to water ice, strengthen the hypothesis that Haumea experienced a giant collision billions of years ago. The excited eccentricities and mutual inclination point to an intriguing tidal history of significant semimajor axis evolution through satellite mean-motion resonances. The orbital solution indicates that Namaka and Haumea are currently undergoing mutual events and that the mutual event season will last for next several years.

  9. Political issues in contemporary art of Ukraine

    Directory of Open Access Journals (Sweden)

    Natalia Usenko

    2014-12-01

    Full Text Available At the beginning of the XXI century Ukrainian art observed activization of the artist’s interest for the political life of the country. The starting point was 2004, marked by protests against unfair elections in the country, the birth of the first “Maidan” and “Orange revolution”. In a number of artistic actions organized by art groups we can see the reflection of the revolution events and, later, the frustrations of its ideals. The most striking manifestation of political issues in contemporary art in Ukraine was the great creativity following the second “Maidan” (2013. In this spontaneous Performance everyone plays a role: the participants are the protesters, official persons, fighters of “Berkut” and interior force troops, journalists and others. Protesters’ tents, barricades, a statue of Lenin and “Maidan” itself (or Independence Square as a place of free will and creativity became the Symbols of the “Maidan” and its own art objects.

  10. Satellite-based quantum communication terminal employing state-of-the-art technology

    Science.gov (United States)

    Pfennigbauer, Martin; Aspelmeyer, Markus; Leeb, Walter R.; Baister, Guy; Dreischer, Thomas; Jennewein, Thomas; Neckamm, Gregor; Perdigues, Josep M.; Weinfurter, Harald; Zeilinger, Anton

    2005-09-01

    Feature Issue on Optical Wireless Communications (OWC) We investigate the design and the accommodation of a quantum communication transceiver in an existing classical optical communication terminal on board a satellite. Operation from a low earth orbit (LEO) platform (e.g., the International Space Station) would allow transmission of single photons and pairs of entangled photons to ground stations and hence permit quantum communication applications such as quantum cryptography on a global scale. Integration of a source generating entangled photon pairs and single-photon detection into existing optical terminal designs is feasible. Even more, major subunits of the classical terminals such as those for pointing, acquisition, and tracking as well as those providing the required electronic, thermal, and structural backbone can be adapted so as to meet the quantum communication terminal needs.

  11. Review of surface particulate monitoring of dust events using geostationary satellite remote sensing

    Science.gov (United States)

    Sowden, M.; Mueller, U.; Blake, D.

    2018-06-01

    The accurate measurements of natural and anthropogenic aerosol particulate matter (PM) is important in managing both environmental and health risks; however, limited monitoring in regional areas hinders accurate quantification. This article provides an overview of the ability of recently launched geostationary earth orbit (GEO) satellites, such as GOES-R (North America) and HIMAWARI (Asia and Oceania), to provide near real-time ground-level PM concentrations (GLCs). The review examines the literature relating to the spatial and temporal resolution required by air quality studies, the removal of cloud and surface effects, the aerosol inversion problem, and the computation of ground-level concentrations rather than columnar aerosol optical depth (AOD). Determining surface PM concentrations using remote sensing is complicated by differentiating intrinsic aerosol properties (size, shape, composition, and quantity) from extrinsic signal intensities, particularly as the number of unknown intrinsic parameters exceeds the number of known extrinsic measurements. The review confirms that development of GEO satellite products has led to improvements in the use of coupled products such as GEOS-CHEM, aerosol types have consolidated on model species rather than prior descriptive classifications, and forward radiative transfer models have led to a better understanding of predictive spectra interdependencies across different aerosol types, despite fewer wavelength bands. However, it is apparent that the aerosol inversion problem remains challenging because there are limited wavelength bands for characterising localised mineralogy. The review finds that the frequency of GEO satellite data exceeds the temporal resolution required for air quality studies, but the spatial resolution is too coarse for localised air quality studies. Continual monitoring necessitates using the less sensitive thermal infra-red bands, which also reduce surface absorption effects. However, given the

  12. On the Characterization of Rainfall Associated with U.S. Landfalling North Atlantic Tropical Cyclones Based on Satellite Data and Numerical Weather Prediction Outputs

    Science.gov (United States)

    Luitel, B. N.; Villarini, G.; Vecchi, G. A.

    2014-12-01

    When we talk about tropical cyclones (TCs), the first things that come to mind are strong winds and storm surge affecting the coastal areas. However, according to the Federal Emergency Management Agency (FEMA) 59% of the deaths caused by TCs since 1970 is due to fresh water flooding. Heavy rainfall associated with TCs accounts for 13% of heavy rainfall events nationwide for the June-October months, with this percentage being much higher if the focus is on the eastern and southern United States. This study focuses on the evaluation of precipitation associated with the North Atlantic TCs that affected the continental United States over the period 2007 - 2012. We evaluate the rainfall associated with these TCs using four satellite based rainfall products: Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA; both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); Climate Prediction Center (CPC) MORPHing technique (CMORPH). As a reference data we use gridded rainfall provided by CPC (Daily US Unified Gauge-Based Analysis of Precipitation). Rainfall fields from each of these satellite products are compared to the reference data, providing valuable information about the realism of these products in reproducing the rainfall associated with TCs affecting the continental United States. In addition to the satellite products, we evaluate the forecasted rainfall produced by five state-of-the-art numerical weather prediction (NWP) models: European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC). The skill of these models in reproducing TC rainfall is quantified for different lead times, and discussed in light of the performance of the satellite products.

  13. Face to Face Seismic Rays, Satellites and Sea Winds

    Indian Academy of Sciences (India)

    and determine important environmental and geological events. ... Government in the Department of Ocean Development (DOD). Here he ... It is comprised of about 24 active satellites in medium Earth orbit, control and monitoring stations. .... They were nice human beings but their classroom teachings consisted of facilitating ...

  14. Single event upsets correlated with environment

    International Nuclear Information System (INIS)

    Vampola, A.L.; Albin, F.; Lauriente, M.; Wilkinson, D.C.; Allen, J.

    1994-01-01

    Single Event Upset rates on satellites in different Earth orbits are correlated with solar protons and geomagnetic activity and also with the NASA AP8 proton model to extract information about satellite anomalies caused by the space environment. An extensive discussion of the SEU data base from the TOMS solid state recorder and an algorithm for correcting spontaneous upsets in it are included as an Appendix. SAMPEX and TOMS, which have the same memory chips, have similar normalized responses in the South Atlantic Anomaly. SEU rates due to solar protons over the polar caps are within expectations. No geomagnetic activity effects can be discerned in the SEU rates

  15. NOAA Satellites Provide a Keen View of the Martin Luther King Solar Storm of January 2005

    Science.gov (United States)

    Wilkinson, D. C.; Allen, J. H.

    2005-05-01

    Solar active region 0720 rotated onto the east limb on January 10th and put on a pyrotechnic display uncharacteristic for this phase of the solar cycle before disappearing beyond the west limb on January 23rd. On January 15th this region released the first of five X-class solar flares. The last of those flares, January 20th, was associated with an extraordinary ion storm whose effect reached Earth's surface. This paper highlights the record of this event made by NOAA's GOES satellites via their Space Environment Monitor (SEM) subsystems that measures X-ray, energetic particles, and the magnetic field vector at the satellite. Displays of those data are supplemented by neutron monitor data to illustrate their relationship to the January 20th Ground Level Event. GOES-12 is also equipped with the Solar X-ray Imager (SXI) that produces an image of the Sun in X-ray wavelengths once per minute. Movies created from those data perfectly illustrate the cause-and-effect relationship between intense solar activity and satellite disruptions. The flares on January 17th and 20th are closely followed by noise in the SXI telescope resulting from energetic ions penetrating SXI. Ions with sufficient velocity and atomic number can penetrate satellite components and deposit charge along their path. Sufficient charge deposition can introduce erroneous information into solid-state devices. A survey of satellites that experienced problems of this type during this event will also be presented.

  16. The visual arts at the biennial Burkinabè National Cultural Week | Ky ...

    African Journals Online (AJOL)

    Every two years the Ministry of Arts, Culture, and Tourism of Burkina Faso organises a National Cultural Week in Bobo Dioulasso. Its main objectives are to develop and promote Burkinabè culture and artists. This event, which includes numerous domains of art, nevertheless remains quite obviously a framework for the ...

  17. An integrated scheme to improve pan-sharpening visual quality of satellite images

    Directory of Open Access Journals (Sweden)

    A.K. Helmy

    2015-03-01

    In experiments with IKONOS, Quick Bird and GeoEye satellite data, we demonstrated that our scheme has good spectral quality and efficiency. Spectral and spatial quality metrics in terms of SAM, RASE, RMSE, CC, ERGAS and QNR are used in our experiments. We compared our scheme with the state-of-the-art pan-sharpening techniques and found that our new scheme improved quantitative and qualitative results.

  18. On Variability in Satellite Terrestrial Chlorophyll Fluorescence Measurements: Relationships with Phenology and Ecosystem-Atmosphere Carbon Exchange, Vegetation Structure, Clouds, and Sun-Satellite Geometry

    Science.gov (United States)

    Joiner, J.; Yoshida, Y.; Guanter, L.; Zhang, Y.; Vasilkov, A. P.; Schaefer, K. M.; Huemmrich, K. F.; Middleton, E.; Koehler, P.; Jung, M.; Tucker, C. J.; Lyapustin, A.; Wang, Y.; Frankenberg, C.; Berry, J. A.; Koster, R. D.; Reichle, R. H.; Lee, J. E.; Kawa, S. R.; Collatz, G. J.; Walker, G. K.; Van der Tol, C.

    2014-12-01

    Over the past several years, there have been several breakthroughs in our ability to detect the very small fluorescence emitted by chlorophyll in vegetation globally from space. There are now multiple instruments in space capable of measuring this signal at varying temporal and spatial resolutions. We will review the state-of-the-art with respect to these relatively new satellite measurements and ongoing studies that examine the relationships with photosynthesis. Now that we have a data record spanning more than seven years, we can examine variations due to seasonal carbon uptake, interannual variability, land-use changes, and water and temperature stress. In addition, we examine how clouds and satellite viewing geometry impact the signal. We compare and contrast these variations with those from popular vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), related to the potential photosynthesis as well as with measurements from flux tower gas exchange measurements and other model-based estimates of Global Primary Productivity (GPP). Vegetation fluorescence can be simulated in global vegetation models as well as with 1D canopy radiative transport models. We will describe how the satellite fluorescence data are being used to evaluate and potentially improve these models.

  19. Art Engineering and Kinetic Art

    Directory of Open Access Journals (Sweden)

    Barış Yılmaz

    2014-12-01

    Full Text Available Performing an art, either by painting or by sculpturing, requires to be interdisciplinary. When an artist creates his/her work of art, the process he/she realizes is supported by different engineering disciplines. Therefore, especially modern artists need to understand engineering science and this results in transforming artists into engineers. Opportunities provided by technology and science enable artists to expand his/her vision and to improve his/her works. Especially kinetic art has become an approach that combines art with engineering. Kinetic art, which is nourished with varied disciplines, is an excellent example to prove that art is interdisciplinary and to show the relationship between artist/art and engineering.

  20. Electron precipitation burst in the nighttime slot region measured simultaneously from two satellites

    International Nuclear Information System (INIS)

    Imhof, W.L.; Voss, H.D.; Mobilla, J.; Gaines, E.E.; Evans, D.S.

    1987-01-01

    Based on data acquired in 1982 with the Stimulated Emission of Energetic Particles payload on the low-altitude (170--280 km) S81-1 spacecraft and the Space Environment Monitor instrumentation on the NOAA 6 satellite (800--830 km), a study has been made of short-duration nighttime electron precipitation bursts at L = 2.0--35. From 54 passes of each satellite across the slot region simultaneously in time, 21 bursts were observed on the NOAA 6 spacecraft, and 76 on the S81-1 satellite. Five events, probably associated with lightning, were observed simultaneously from the two spacecraft within 1.2 s, providing a measure of the spatial extent of the bursts. This limited sample indicates that the intensity of precipitation events falls off with width in longitude and L shell but individual events extend as much as 5 0 in invariant latitude and 43 0 in longitude. The number of events above a given flux observed in each satellite was found to be approximately inversely proportional to the flux. The time average energy input to the atmosphere over the longitude range 180 0 E to 360 0 E at a local time of 2230 directly from short-duration bursts spanning a wide range of intensity enhancements was estimated to be about 6 x 10/sup -6/ ergs/cm 2 s in the northern hemisphere and about 1.5 x 10/sup -5/ ergs/cm 2 s in the southern hemisphere. In the south, this energy precipitation rate is lower than that from electrons in the drift loss cone by about 2 orders of magnitude. However, on the basis of these data alone we cannot discount weak bursts from being a major contributor to populating the drift loss cone with electrons which ultimately precipitate into the atmosphere. copyrightAmerican Geophysical Union 1987

  1. A treatment of the Zeeman effect using Stokes formalism and its implementation in the Atmospheric Radiative Transfer Simulator (ARTS)

    International Nuclear Information System (INIS)

    Larsson, Richard; Buehler, Stefan A.; Eriksson, Patrick; Mendrok, Jana

    2014-01-01

    This paper presents the practical theory that was used to implement the Zeeman effect using Stokes formalism in the Atmospheric Radiative Transfer Simulator (ARTS). ARTS now treats the Zeeman effect in a general manner for several gas species for all polarizations and takes into account variations in both magnetic and atmospheric fields along a full 3D geometry. We present how Zeeman splitting affects polarization in radiative transfer simulations and find that the effect may be large in Earth settings for polarized receivers in limb observing geometry. We find that not taking a spatially varying magnetic field into account can result in absolute errors in the measurement vector of at least 10 K in Earth magnetic field settings. The paper also presents qualitative tests for O 2 lines against previous models (61.15 GHz line) and satellite data from Odin-SMR (487.25 GHz line), and the overall consistency between previous models, satellite data, and the new ARTS Zeeman module seems encouraging. -- Highlights: • We implement the Zeeman effect with Stokes formalism in ARTS. • We give a practical theory for the implementation. • Examples of how the Zeeman effect change RT are presented. • Qualitative Odin-SMR O 2 limb sounding model indicates the Zeeman effect is necessary

  2. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique

    OpenAIRE

    Carolien Toté; Domingos Patricio; Hendrik Boogaard; Raymond van der Wijngaart; Elena Tarnavsky; Chris Funk

    2015-01-01

    Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day) gridded satellite rainfall products (TAMSAT African Rainfall Cl...

  3. Advances in analysis of pre-earthquake thermal anomalies by analyzing IR satellite data

    Science.gov (United States)

    Ouzounov, D.; Bryant, N.; Filizzola, C.; Pergola, N.; Taylor, P.; Tramutoli, V.

    Presented work addresses the possible relationship between tectonic stress, electro-chemical and thermodynamic processes in the atmosphere and increasing infrared (IR) flux as part of a larger family of electromagnetic (EM) phenomena related to earthquake activity. Thermal infra-red (TIR) surveys performed by polar orbiting (NOAA/AVHRR, MODIS) and geosynchronous weather satellites (GOES, METEOSAT) seems to indicate the appearance (from days to weeks before the event) of "anomalous" space-time TIR transients associated with the place (epicentral area, linear structures and fault systems) and the time of occurrence of a number of major earthquakes with M>5 and focal depths no deeper than 50km. As Earth emitted in 8-14 microns range the TIR signal measured from satellite strongly vary depending on meteorological conditions and other factors (space-time changes in atmospheric transmittance, time/season, solar and satellite zenithal angles and etc) independent from seismic activity, a preliminary definition of "anomalous TIR signal" should be given. To provide reliable discrimination of thermal anomalous area from the natural events (seasonal changes, local morphology) new robust approach (RAT) has been recently proposed (and successfully applied in the field of the monitoring of the major environmental risks) that permits to give a statistically based definition of thermal info-red (TIR) anomaly and reduce of false events detection. New techniques also were specifically developed to assure the precise co-registration of all satellite scenes and permit accurate time-series analysis of satellite observations. As final results we present examples of most recent 2000/2004 worldwide strong earthquakes and the techniques used to capture the tracks of thermal emission mid-IR anomalies and methodology for practical future use of such phenomena in the early warning systems.

  4. An Overview of Biomolecular Event Extraction from Scientific Documents.

    Science.gov (United States)

    Vanegas, Jorge A; Matos, Sérgio; González, Fabio; Oliveira, José L

    2015-01-01

    This paper presents a review of state-of-the-art approaches to automatic extraction of biomolecular events from scientific texts. Events involving biomolecules such as genes, transcription factors, or enzymes, for example, have a central role in biological processes and functions and provide valuable information for describing physiological and pathogenesis mechanisms. Event extraction from biomedical literature has a broad range of applications, including support for information retrieval, knowledge summarization, and information extraction and discovery. However, automatic event extraction is a challenging task due to the ambiguity and diversity of natural language and higher-level linguistic phenomena, such as speculations and negations, which occur in biological texts and can lead to misunderstanding or incorrect interpretation. Many strategies have been proposed in the last decade, originating from different research areas such as natural language processing, machine learning, and statistics. This review summarizes the most representative approaches in biomolecular event extraction and presents an analysis of the current state of the art and of commonly used methods, features, and tools. Finally, current research trends and future perspectives are also discussed.

  5. An Overview of Biomolecular Event Extraction from Scientific Documents

    Directory of Open Access Journals (Sweden)

    Jorge A. Vanegas

    2015-01-01

    Full Text Available This paper presents a review of state-of-the-art approaches to automatic extraction of biomolecular events from scientific texts. Events involving biomolecules such as genes, transcription factors, or enzymes, for example, have a central role in biological processes and functions and provide valuable information for describing physiological and pathogenesis mechanisms. Event extraction from biomedical literature has a broad range of applications, including support for information retrieval, knowledge summarization, and information extraction and discovery. However, automatic event extraction is a challenging task due to the ambiguity and diversity of natural language and higher-level linguistic phenomena, such as speculations and negations, which occur in biological texts and can lead to misunderstanding or incorrect interpretation. Many strategies have been proposed in the last decade, originating from different research areas such as natural language processing, machine learning, and statistics. This review summarizes the most representative approaches in biomolecular event extraction and presents an analysis of the current state of the art and of commonly used methods, features, and tools. Finally, current research trends and future perspectives are also discussed.

  6. Understanding the Driver of Energetic Electron Precipitation Using Coordinated Multi-Satellite Measurements

    Science.gov (United States)

    Capannolo, L.; Li, W.; Ma, Q.

    2017-12-01

    Electron precipitation into the upper atmosphere is one of the important loss mechanisms in the Earth's inner magnetosphere. Various magnetospheric plasma waves (i.e., chorus, plasmaspheric hiss, electromagnetic ion cyclotron waves, etc.) play an important role in scattering energetic electrons into the loss cone, thus enhance ionization in the upper atmosphere and affect ring current and radiation belt dynamics. The present study evaluates conjunction events where low-earth-orbiting satellites (twin AeroCube-6) and near-equatorial satellites (twin Van Allen Probes) are located roughly along the same magnetic field line. By analyzing electron flux variation at various energies (> 35 keV) measured by AeroCube-6 and wave and electron measurements by Van Allen Probes, together with quasilinear diffusion theory and modeling, we determine the physical process of driving the observed energetic electron precipitation for the identified electron precipitation events. Moreover, the twin AeroCube-6 also helps us understand the spatiotemporal effect and constrain the coherent size of each electron precipitation event.

  7. Real-time monitoring of seismic data using satellite telemetry

    Directory of Open Access Journals (Sweden)

    L. Merucci

    1997-06-01

    Full Text Available This article describes the ARGO Satellite Seismic Network (ARGO SSN as a reliable system for monitoring, collection, visualisation and analysis of seismic and geophysical low-frequency data, The satellite digital telemetry system is composed of peripheral geophysical stations, a centraI communications node (master sta- tion located in CentraI Italy, and a data collection and processing centre located at ING (Istituto Nazionale di Geofisica, Rome. The task of the peripheral stations is to digitalise and send via satellite the geophysical data collected by the various sensors to the master station. The master station receives the data and forwards them via satellite to the ING in Rome; it also performs alI the monitoring functions of satellite communications. At the data collection and processing centre of ING, the data are received and analysed in real time, the seismic events are identified and recorded, the low-frequency geophysical data are stored. In addition, the generaI sta- tus of the satellite network and of each peripheral station connected, is monitored. The procedure for analysjs of acquired seismic signals allows the automatic calculation of local magnitude and duration magnitude The communication and data exchange between the seismic networks of Greece, Spain and Italy is the fruit of a recent development in the field of technology of satellite transmission of ARGO SSN (project of European Community "Southern Europe Network for Analysis of Seismic Data"

  8. Art and Finance: Fine Art Derivatives

    Directory of Open Access Journals (Sweden)

    Francesco Strati

    2014-04-01

    Full Text Available This work is intended to introduce a new kind of asset, the so called art asset. This financial tool is an asset whose value is related to an art-work, and in particular to the artist reputation. It will be shown the evaluation of an art asset by using a particular kind of volatility, the α-hedging. This tool normalizes the prices volatility of the art-works of an artist (or an art-movement by a sentiment index referred to the Art Market. At last I shall show how the art assets’ values are related to an art-call option.

  9. Advance Power Technology Experiment for the Starshine 3 Satellite

    Science.gov (United States)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas; Bailey, Sheila (Technical Monitor); Hepp, A. (Technical Monitor)

    2001-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IWS) for evaluation.

  10. Cultivating Demand for the Arts: Arts Learning, Arts Engagement, and State Arts Policy. Summary

    Science.gov (United States)

    Zakaras, Laura; Lowell, Julia F.

    2008-01-01

    The findings summarized in this report are intended to shed light on what it means to cultivate demand for the arts, why it is necessary and important to cultivate this demand, and what state arts agencies (SAAs) and other arts and education policymakers can do to help. The research considered only the benchmark arts central to public policy:…

  11. Effects of solar proton events on dayglow observed by the TIMED/SABER satellite

    Science.gov (United States)

    Gao, Hong; Xu, Jiyao; Smith, Anne K.; Chen, Guang-Ming

    2017-07-01

    The effect of solar proton events on the daytime O2 and OH airglows and ozone and atomic oxygen concentrations in the mesosphere is studied using data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Five events occurred in September 2005, December 2006, March 2012, May 2013, and June 2015 that satisfy two criteria: the maximum proton fluxes are larger than 1000 pfu, and daytime data in the high latitude region are available from SABER. The event in December 2006 is studied in detail, and the effects of all five events are compared in brief. The results indicate that all four parameters in the mesosphere decrease during the events. During the event in 2006, the maximum depletions of O2 and OH dayglow emission rates and ozone and atomic oxygen volume mixing ratios at 70 km are respectively 31.6%, 37.0%, 42.4%, and 38.9%. The effect of the solar proton event changes with latitude, longitude, and altitude. The depletions due to the stronger events are larger on average than those due to the weaker events. The depletions of both dayglow emission rates are weaker than those of ozone and atomic oxygen. The responses of O2 and OH nightglow emissions around their peak altitudes to the SPEs are not as strong and regular as those for dayglow in the mesosphere.

  12. The long-term effects of space weather on satellite operations

    Directory of Open Access Journals (Sweden)

    D. T. Welling

    2010-06-01

    Full Text Available Integrated lifetime radiation damage may cause spacecraft to become more susceptible to operational anomalies by changing material characteristics of electronic components. This study demonstrates and quantifies the impact of these effects by examining the National Oceanic and Atmospheric Administration (NOAA National Geophysical Data Center (NGDC satellite anomaly database. Energetic particle data from the Geostationary Operational Environmental Satellites (GOES is used to construct the total lifetime particle exposure a satellite has received at the epoch of an anomaly. These values are compared to the satellite's chronological age and the average exposure per year (calculated over two solar cycles. The results show that many anomalies occur on satellites that have received a total lifetime high-energy particle exposure that is disproportionate to their age. In particular, 10.8% of all events occurred on satellites that received over two times more 20 to 40 MeV proton lifetime particle exposure than predicted using an average annual mean. This number inflates to 35.2% for 40 to 80 MeV protons and 33.7% for ≥2 MeV electrons. Overall, 73.5% of all anomalies occurred on a spacecraft that had experienced greater than two times the expected particle exposure for one of the eight particle populations used in this study. Simplistically, this means that the long term radiation background exposure matters, and that if the background radiation is elevated during the satellite's lifetime, the satellite is likely to experience more anomalies than satellites that have not been exposed to the elevated environment.

  13. Art and Finance: Fine Art Derivatives

    OpenAIRE

    Francesco Strati; Laura Quattrocchi

    2014-01-01

    This work is intended to introduce a new kind of asset, the so called art asset. This financial tool is an asset whose value is related to an art-work, and in particular to the artist reputation. It will be shown the evaluation of an art asset by using a particular kind of volatility, the α-hedging. This tool normalizes the prices volatility of the art-works of an artist (or an art-movement) by a sentiment index referred to the Art Market. At last we shall show how the art assets' values are ...

  14. Robust satellite techniques for monitoring volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Pergola, N.; Pietrapertosa, C. [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate, Tito Scalo, PZ (Italy); Lacava, T.; Tramutoli, V. [Potenza Universita' della Basilicata, Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente

    2001-04-01

    Through this paper the robust approach to monitoring volcanic aerosols by satellite is applied to an extended set of events affecting Stromboli and Etna volcanoes to assess its performance in automated detection of eruptive clouds and in monitoring pre-eruptive emission activities. Using only NOAA/AVHRR data at hand (without any specific atmospheric model or ancillary ground-based measurements) the proposed method automatically discriminates meteorological from eruptive volcanic clouds and, in several cases, identified pre-eruptive anomalies in the emission rates not identified by traditional methods. The main merit of this approach is its effectiveness in recognising field anomalies also in the presence of a highly variable surface background as well as its intrinsic exportability not only on different geographic areas but also on different satellite instrumental packages. In particular, the possibility to extend the proposed method to the incoming new MSG/SEVIRI satellite package (which is going to fly next year) with its improved spectral (specific bands for SO{sub 2}) and temporal (up to 15 min) resolutions has been evaluated representing the natural continuation of this work.

  15. Saturn satellites

    International Nuclear Information System (INIS)

    Ruskol, E.L.

    1981-01-01

    The characteristics of the Saturn satellites are discussed. The satellites close to Saturn - Janus, Mimas, Enceladus, Tethys, Dione and Rhea - rotate along the circular orbits. High reflectivity is attributed to them, and the density of the satellites is 1 g/cm 3 . Titan is one of the biggest Saturn satellites. Titan has atmosphere many times more powerful than that of Mars. The Titan atmosphere is a peculiar medium with a unique methane and hydrogen distribution in the whole Solar system. The external satellites - Hyperion, Japetus and Phoebe - are poorly investigated. Neither satellite substance density, nor their composition are known. The experimental data on the Saturn rings obtained on the ''Pioneer-11'' and ''Voyager-1'' satellites are presented [ru

  16. Joint Polar Satellite System: the United States New Generation Civilian Polar Orbiting Environmental Satellite System

    Science.gov (United States)

    Mandt, G.

    2017-12-01

    The Joint Polar Satellite System (JPSS) is the Nation's advanced series of polar-orbiting environmental satellites. JPSS represents significant technological and scientific advancements in observations used for severe weather prediction and environmental monitoring. The Suomi National Polar-orbiting Partnership (S-NPP) is providing state-of-the art atmospheric, oceanographic, and environmental data, as the first of the JPSS satellites while the second in the series, J-1, is scheduled to launch in October 2017. The JPSS baseline consists of a suite of four instruments: an advanced microwave and infrared sounders which are critical for weather forecasting; a leading-edge visible and infrared imager critical to data sparse areas such as Alaska and needed for environmental assessments such as snow/ice cover, droughts, volcanic ash, forest fires and surface temperature; and an ozone sensor primarily used for global monitoring of ozone and input to weather and climate models. The same suite of instruments that are on JPSS-1 will be on JPSS-2, 3 and 4. The JPSS-2 instruments are well into their assembly and test phases and are scheduled to be completed in 2018. The JPSS-2 spacecraft critical design review (CDR) is scheduled for 2Q 2018 with the launch in 2021. The sensors for the JPSS-3 and 4 spacecraft have been approved to enter into their acquisition phases. JPSS partnership with the US National Aeronautics and Space Agency (NASA) continues to provide a strong foundation for the program's success. JPSS also continues to maintain its important international relationships with European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and the Japan Aerospace Exploration Agency (JAXA). JPSS works closely with its user community through the Proving Ground and Risk Reduction (PGRR) Program to identify opportunities to maximize the operational application of current JPSS capabilities. The PGRR Program also helps identify and evaluate the use of JPSS

  17. Investigating the auroral electrojets with low altitude polar orbiting satellites

    DEFF Research Database (Denmark)

    Moretto, T.; Olsen, Nils; Ritter, P.

    2002-01-01

    Three geomagnetic satellite missions currently provide high precision magnetic field measurements from low altitude polar orbiting spacecraft. We demonstrate how these data can be used to determine the intensity and location of the horizontal currents that flow in the ionosphere, predominantly...... to another event for which the combined measurements of the three satellites provide a comprehensive view of the current systems. The analysis hereof reveals some surprising results concerning the connection between solar wind driver and the resulting ionospheric currents. Specifically, preconditioning.......8-0.9) is observed between the amplitudes of the derived currents and the commonly used auroral electro-jet indices based on magnetic measurements at ground. This points to the potential of defining an auroral activity index based on the satellite observations, which could be useful for space weather monitoring...

  18. Arte, só na aula de arte? = Art, only in the art class?

    Directory of Open Access Journals (Sweden)

    Martins, Mirian Celeste

    2011-01-01

    Full Text Available A pergunta que dá título ao artigo é o mote da conversa que o texto deseja compartilhar. O convite é para percorrer trajetos em encontros com a arte, com a palavra “estética”, com a potencialidade da arte contemporânea, com o “olhar de missão francesa” que teima em considerar a arte como expressão da beleza. No percurso, a proposição da leitura de uma imagem incompleta, tenta provocar idas e voltas conceituais na percepção do próprio ato de leitura oferecida como curadoria educativa na processualidade da mediação cultural. Declanchar, tirar a tranca. Não será esta a tarefa maior da mediação cultural: abrir o que estava travado, libertar o olhar amarrado ao já conhecido para ver além? Não será este o sentido da educação estética? Os territórios de arte de arte & cultura, instigando o pensamento rizomático, não seriam nutrição estética para ir além das obras de arte conhecidas e das biografias dos artistas? Na ampliação de horizontes, cabe ao leitor a resposta: Afinal, arte, só na aula de arte?

  19. Gap analysis of service quality at Innibos Arts Festival

    Directory of Open Access Journals (Sweden)

    Lisa Welthagen

    2014-01-01

    Full Text Available Events, specifically festivals, have experienced significant growth in South Africa over the past ten years in size, numbers, diversity and popularity (Van Zyl, 2011. Arts festivals have become a feature in the South African cultural landscape and long term success and sustainability of these events rely on the emphasis of service quality, thereby highlighting sustainability of festivals and events. The questionnaire, based on the SERVQUAL model and an adaption of the Grönroos model was used to identify service perceptions and expectations of service quality at Innibos National Arts Festival in Mbombela, South Africa. The data were collected in two phases, the first prior to the festival to measure attendee’s expectations, and the second after the festival to measure the attendee’s experience of service quality at the festival . The statistical analysis was performed on a construct level as well as an individual variable level. This study aimed at quantifying the gap between attendee’s expectations and perceptions of service quality and overall customer satisfaction.

  20. Constraining relationships between rainfall and landsliding with satellite derived rainfall measurements and landslide inventories.

    Science.gov (United States)

    Marc, Odin; Malet, Jean-Philippe; Stumpf, Andre; Gosset, Marielle

    2017-04-01

    In mountainous and hilly regions, landslides are an important source of damage and fatalities. Landsliding correlates with extreme rainfall events and may increase with climate change. Still, how precipitation drives landsliding at regional scales is poorly understood quantitatively in part because constraining simultaneously landsliding and rainfall across large areas is challenging. By combining optical images acquired from satellite observation platforms and rainfall measurements from satellite constellations we are building a database of landslide events caused by with single storm events. We present results from storm-induced landslides from Brazil, Taiwan, Micronesia, Central America, Europe and the USA. We present scaling laws between rainfall metrics derived by satellites (total rainfall, mean intensity, antecedent rainfall, ...) and statistical descriptors of landslide events (total area and volume, size distribution, mean runout, ...). Total rainfall seems to be the most important parameter driving non-linearly the increase in total landslide number, and area and volume. The maximum size of bedrock landslides correlates with the total number of landslides, and thus with total rainfall, within the limits of available topographic relief. In contrast, the power-law scaling exponent of the size distribution, controlling the relative abundance of small and large landslides, appears rather independent of the rainfall metrics (intensity, duration and total rainfall). These scaling laws seem to explain both the intra-storm pattern of landsliding, at the scale of satellite rainfall measurements ( 25kmx25km), and the different impacts observed for various storms. Where possible, we evaluate the limits of standard rainfall products (TRMM, GPM, GSMaP) by comparing them to in-situ data. Then we discuss how slope distribution and other geomorphic factors (lithology, soil presence,...) modulate these scaling laws. Such scaling laws at the basin scale and based only on a

  1. Daryl Lindsay and the appreciation of indigenous art: no mere collection of interesting curiosities

    Directory of Open Access Journals (Sweden)

    Benjamin Thomas

    2011-06-01

    Full Text Available In an era when the acceptance of Indigenous art within our galleries is assumed confidently as self-evident, it is easy to overlook how such a remarkable transformation occurred almost within the space of a decade. Even more misunderstood is the prominent role Daryl Lindsay played in the early acceptance and legitimisation of Australian indigenous art. Within months of becoming director of the NGV, Lindsay prepared a major exhibition of primitive art, including Australian indigenous works, an event that became the defining catalyst for a cultural shift towards indigenous art. In the early 1960s, in the influential role of chair of the Commonwealth Art Advisory Board, Lindsay advocated for the inclusion of Australian Aboriginal art, chosen for aesthetic merit as a dedicated collecting stream in the future NGA. It was a decisive objective, and one that was a central tenet of his vision for Australian art. Yet it is clear that Lindsays role in encouraging the re-evaluation of Australian Indigenous art remains poorly understood within the field of Australian gallery practice. Even within recent years, art historians have misattributed later events as being the catalyst for change, either positioning Lindsay as a reactionary late in his term as director, or placing him outside the formative years of the shift in attitude altogether. This paper explores Lindsays young adult experiences in Central Australia, the backdrop for his empathy with Australian Indigenous culture, and the remarkable shift in Australian Art Museum practice undertaken during his directorship that saw Indigenous artefacts exhibited and appreciated for their artistic merit.

  2. Transcom's next move: Improvements to DOE's transportation satellite tracking systems

    International Nuclear Information System (INIS)

    Harmon, L.H.; Harris, A.D. III; Driscoll, K.L.; Ellis, L.G.

    1990-01-01

    In today's society, the use of satellites is becoming the state-of-the-art method of tracking shipments. The United States Department of Energy (US DOE) has advanced technology in this area with its transportation tracking and communications system, TRANSCOM, which has been in operation for over one year. TRANSCOM was developed by DOE to monitor selected, unclassified shipments of radioactive materials across the country. With the latest technology in satellite communications, Long Range Navigation (Loran), and computer networks, TRANSCOM tracks shipments in near-real time, disseminates information on each shipment to authorized users of the system, and offers two-way communications between vehicle operators and TRANSCOM users anywhere in the country. TRANSCOM's successful tracking record, during fiscal year 1989, includes shipments of spent fuel, cesium, uranium hexafluoride, and demonstration shipments for the Waste Isolation Pilot Plant (WIPP). Plans for fiscal year 1990 include tracking additional shipments, implementing system enhancements designed to meet the users' needs, and continuing to research the technology of tracking systems so that TRANSCOM can provide its users with the newest technology available in satellite communications. 3 refs., 1 fig

  3. Distribution and Variability of Satellite-Derived Signals of Isolated Convection Initiation Events Over Central Eastern China

    Science.gov (United States)

    Huang, Yipeng; Meng, Zhiyong; Li, Jing; Li, Wanbiao; Bai, Lanqiang; Zhang, Murong; Wang, Xi

    2017-11-01

    This study combined measurements from the Chinese operational geostationary satellite Fengyun-2E (FY-2E) and ground-based weather radars to conduct a statistical survey of isolated convection initiation (CI) over central eastern China (CEC). The convective environment in CEC is modulated by the complex topography and monsoon climate. From May to August 2010, a total of 1,630 isolated CI signals were derived from FY-2E using a semiautomated method. The formation of these satellite-derived CI signals peaks in the early afternoon and occurs with high frequency in areas with remarkable terrain inhomogeneity (e.g., mountain, water, and mountain-water areas). The high signal frequency areas shift from northwest CEC (dry, high altitude) in early summer to southeast CEC (humid, low altitude) in midsummer along with an increasing monthly mean frequency. The satellite-derived CI signals tend to have longer lead times (the time difference between satellite-derived signal formation and radar-based CI) in the late morning and afternoon than in the early morning and night. During the early morning and night, the distinction between cloud top signatures and background terrestrial radiation becomes less apparent, resulting in delayed identification of the signals and thus short and even negative lead times. A decline in the lead time is observed from May to August, likely due to the increasing cloud growth rate and warm-rain processes. Results show increasing lead times with increasing landscape elevation, likely due to more warm-rain processes over the coastal sea and plain, along with a decreasing cloud growth rate from hill and mountain to the plateau.

  4. Precipitation Characteristics in West and East Africa from Satellite and in Situ Observations

    Science.gov (United States)

    Dezfuli, Amin K.; Ichoku, Charles M.; Mohr, Karen I.; Huffman, George J.

    2017-01-01

    Using in situ data, three precipitation classes are identified for rainy seasons of West and East Africa: weak convective rainfall (WCR), strong convective rainfall (SCR), and mesoscale convective systems (MCSs).Nearly 75% of the total seasonal precipitation is produced by the SCR and MCSs, even though they represent only 8% of the rain events. Rain events in East Africa tend to have a longer duration and lower intensity than in West Africa, reflecting different characteristics of the SCR and MCS events in these two regions. Surface heating seems to be the primary convection trigger for the SCR, particularly in East Africa, whereas the WCR requires a dynamical trigger such as low-level convergence. The data are used to evaluate the performance of the recently launched Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG)project. The IMERG-based precipitation shows significant improvement over its predecessor, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), particularly in capturing the MCSs, due to its improved temporal resolution.

  5. In situ statistical observations of EMIC waves by Arase satellite

    Science.gov (United States)

    Nomura, R.; Matsuoka, A.; Teramoto, M.; Nose, M.; Yoshizumi, M.; Fujimoto, A.; Shinohara, M.; Tanaka, Y.

    2017-12-01

    We present in situ statistical survey of electromagnetic ion cyclotron (EMIC) waves observed by Arase satellite from 3 March to 16 July 2017. We identified 64 events using the fluxgate magnetometer (MGF) on the satellite. The EMIC wave is the key phenomena to understand the loss dynamics of MeV-energy electrons in the radiation belt. We will show the radial and latitudinal dependence of the wave occurance rate and the wave parameters (frequency band, coherence, polarization, and ellipticity). Especially the EMIC waves observed at localized weak background magnetic field will be discussed for the wave excitation mechanism in the deep inner magnetosphere.

  6. Mapping and Visualization of The Deepwater Horizon Oil Spill Using Satellite Imagery

    Science.gov (United States)

    Ferreira Pichardo, E.

    2017-12-01

    Satellites are man-made objects hovering around the Earth's orbit and are essential for Earth observation, i.e. the monitoring and gathering of data about the Earth's vital systems. Environmental Satellites are used for atmospheric research, weather forecasting, and warning as well as monitoring extreme weather events. These satellites are categorized into Geosynchronous and Low Earth (Polar) orbiting satellites. Visualizing satellite data is critical to understand the Earth's systems and changes to our environment. The objective of this research is to examine satellite-based remotely sensed data that needs to be processed and rendered in the form of maps or other forms of visualization to understand and interpret the satellites' observations to monitor the status, changes and evolution of the mega-disaster Deepwater Horizon Spill that occurred on April 20, 2010 in the Gulf of Mexico. In this project, we will use an array of tools and programs such as Python, CSPP and Linux. Also, we will use data from the National Oceanic and Atmospheric Administration (NOAA): Polar-Orbiting Satellites Terra Earth Observing System AM-1 (EOS AM-1), and Aqua EOS PM-1 to investigate the mega-disaster. Each of these satellites carry a variety of instruments, and we will use the data obtained from the remote sensor Moderate-Resolution Imaging Spectroradiometer (MODIS). Ultimately, this study shows the importance of mapping and visualizing data such as satellite data (MODIS) to understand the extents of environmental impacts disasters such as the Deepwater Horizon Oil spill.

  7. Serialising languages: Satellite-framed, verb-framed or neither ...

    African Journals Online (AJOL)

    The diversity in the coding of the core schema of motion, i.e., Path, has led to a traditional typology of languages into verb-framed and satellite-framed languages. In the former Path is encoded in verbs and in the latter it is encoded in non-verb elements that function as sisters to co-event expressing verbs such as manner ...

  8. Evidence of transport of hazy air masses from satellite imagery

    International Nuclear Information System (INIS)

    Lyons, W.A.

    1980-01-01

    Some observations of major aerosol events in the atmosphere by meteorological satellites are reviewed. The events included a massive plume of smoke from a Hawaiian volcanic eruption, dust plumes originating from the Sahara Desert and the central U.S., smoke from a small forest fire, and sulfate aerosol hazes. It is concluded that the routine detection and tracking of synoptic-scale pollution episodes, along with quantitative measurements of their intensity, are entirely feasible with existing spacecraft and data analysis systems

  9. Parallel processor for fast event analysis

    International Nuclear Information System (INIS)

    Hensley, D.C.

    1983-01-01

    Current maximum data rates from the Spin Spectrometer of approx. 5000 events/s (up to 1.3 MBytes/s) and minimum analysis requiring at least 3000 operations/event require a CPU cycle time near 70 ns. In order to achieve an effective cycle time of 70 ns, a parallel processing device is proposed where up to 4 independent processors will be implemented in parallel. The individual processors are designed around the Am2910 Microsequencer, the AM29116 μP, and the Am29517 Multiplier. Satellite histogramming in a mass memory system will be managed by a commercial 16-bit μP system

  10. Sponsorship, Ambushing, and Counter-Strategy: Effects upon Memory for Sponsor and Event

    Science.gov (United States)

    Humphreys, Michael S.; Cornwell, T. Bettina; McAlister, Anna R.; Kelly, Sarah J.; Quinn, Emerald A.; Murray, Krista L.

    2010-01-01

    Corporate sponsorship of sports, causes, and the arts has become a mainstream communications tool worldwide. The unique marketing opportunities associated with major events also attract nonsponsoring companies seeking to form associations with the event (ambushing). There are strategies available to brands and events which have been ambushed;…

  11. Using Deep Learning for Targeted Data Selection, Improving Satellite Observation Utilization for Model Initialization

    Science.gov (United States)

    Lee, Y. J.; Bonfanti, C. E.; Trailovic, L.; Etherton, B.; Govett, M.; Stewart, J.

    2017-12-01

    At present, a fraction of all satellite observations are ultimately used for model assimilation. The satellite data assimilation process is computationally expensive and data are often reduced in resolution to allow timely incorporation into the forecast. This problem is only exacerbated by the recent launch of Geostationary Operational Environmental Satellite (GOES)-16 satellite and future satellites providing several order of magnitude increase in data volume. At the NOAA Earth System Research Laboratory (ESRL) we are researching the use of machine learning the improve the initial selection of satellite data to be used in the model assimilation process. In particular, we are investigating the use of deep learning. Deep learning is being applied to many image processing and computer vision problems with great success. Through our research, we are using convolutional neural network to find and mark regions of interest (ROI) to lead to intelligent extraction of observations from satellite observation systems. These targeted observations will be used to improve the quality of data selected for model assimilation and ultimately improve the impact of satellite data on weather forecasts. Our preliminary efforts to identify the ROI's are focused in two areas: applying and comparing state-of-art convolutional neural network models using the analysis data from the National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) weather model, and using these results as a starting point to optimize convolution neural network model for pattern recognition on the higher resolution water vapor data from GOES-WEST and other satellite. This presentation will provide an introduction to our convolutional neural network model to identify and process these ROI's, along with the challenges of data preparation, training the model, and parameter optimization.

  12. Evaluation of satellite-retrieved extreme precipitation using gauge observations

    Science.gov (United States)

    Lockhoff, M.; Zolina, O.; Simmer, C.; Schulz, J.

    2012-04-01

    Precipitation extremes have already been intensively studied employing rain gauge datasets. Their main advantage is that they represent a direct measurement with a relatively high temporal coverage. Their main limitation however is their poor spatial coverage and thus a low representativeness in many parts of the world. In contrast, satellites can provide global coverage and there are meanwhile data sets available that are on one hand long enough to be used for extreme value analysis and that have on the other hand the necessary spatial and temporal resolution to capture extremes. However, satellite observations provide only an indirect mean to determine precipitation and there are many potential observational and methodological weaknesses in particular over land surfaces that may constitute doubts concerning their usability for the analysis of precipitation extremes. By comparing basic climatological metrics of precipitation (totals, intensities, number of wet days) as well as respective characteristics of PDFs, absolute and relative extremes of satellite and observational data this paper aims at assessing to which extent satellite products are suitable for analysing extreme precipitation events. In a first step the assessment focuses on Europe taking into consideration various satellite products available, e.g. data sets provided by the Global Precipitation Climatology Project (GPCP). First results indicate that satellite-based estimates do not only represent the monthly averaged precipitation very similar to rain gauge estimates but they also capture the day-to-day occurrence fairly well. Larger differences can be found though when looking at the corresponding intensities.

  13. 47 CFR 25.157 - Consideration of NGSO-like satellite applications.

    Science.gov (United States)

    2010-10-01

    ...-directional antennas. (b) Each NGSO-like satellite system application will be reviewed to determine whether it... licensee's bandwidth selection in both the uplink and downlink band shall not preclude other licensees from... to make another selection. (g)(1) In the event that an applicants' license is cancelled for any...

  14. Forecasting E > 50-MeV Proton Events with the Proton Prediction System (PPS)

    Science.gov (United States)

    Kahler, S. W.; White, S. M.; Ling, A. G.

    2017-12-01

    Forecasting solar energetic (E > 10 MeV) particle (SEP) events is an important element of space weather. While several models have been developed for use in forecasting such events, satellite operations are particularly vulnerable to higher-energy (> 50 MeV) SEP events. Here we validate one model, the proton prediction system (PPS), which extends to that energy range. We first develop a data base of E > 50-MeV proton events > 1.0 proton flux units (pfu) events observed on the GOES satellite over the period 1986 to 2016. We modify the PPS to forecast proton events at the reduced level of 1 pfu and run PPS for four different solar input parameters: (1) all > M5 solar X-ray flares; (2) all > 200 sfu 8800-MHz bursts with associated > M5 flares; (3) all > 500 sfu 8800-MHz bursts; and (4) all > 5000 sfu 8800-MHz bursts. For X-ray flare inputs the forecasted event peak intensities and fluences are compared with observed values. The validation contingency tables and skill scores are calculated for all groups and used as a guide to use of the PPS. We plot the false alarms and missed events as functions of solar source longitude.

  15. THE THEME OF THE CRUCIFIXION OF CHRIST IN VISUAL ARTS

    Directory of Open Access Journals (Sweden)

    Adrian STOLERIU

    2015-06-01

    Full Text Available The Crucifixion of Christ is one of the major Biblical events in the context of the four Gospels, also marking one of the most frequently met themes in the iconography of Christian art. The focus of the paper is to underline the main aspects of the visual representation of this tense moment in the history of Christianity, referring to representative works of the artistic heritage inspired by the event of Christ’s death on the cross. Thus, a number of famous works of art history are analyzed in relation to the described composition, the represented characters and their importance. They belong both to traditional artistic fields, such as painting, to modern ones, thus taking into account some of the most popular film representations on this topic.

  16. ASTER satellite observations for international disaster management

    Science.gov (United States)

    Duda, K.A.; Abrams, M.

    2012-01-01

    When lives are threatened or lost due to catastrophic disasters, and when massive financial impacts are experienced, international emergency response teams rapidly mobilize to provide urgently required support. Satellite observations of affected areas often provide essential insight into the magnitude and details of the impacts. The large cost and high complexity of developing and operating satellite flight and ground systems encourages international collaboration in acquiring imagery for such significant global events in order to speed delivery of critical information to help those affected, and optimize spectral, spatial, and temporal coverage of the areas of interest. The International Charter-Space and Major Disasters was established to enable such collaboration in sensor tasking during times of crisis and is often activated in response to calls for assistance from authorized users. Insight is provided from a U.S. perspective into sensor support for Charter activations and other disaster events through a description of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which has been used to support emergency situations for over a decade through its expedited tasking and near real-time data delivery capabilities. Examples of successes achieved and challenges encountered in international collaboration to develop related systems and fulfill tasking requests suggest operational considerations for new missions as well as areas for future enhancements.

  17. Polar cap flow channel events: spontaneous and driven responses

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2010-11-01

    Full Text Available We present two case studies of specific flow channel events appearing at the dusk and/or dawn polar cap boundary during passage at Earth of interplanetary (IP coronal mass ejections (ICMEs on 10 January and 25 July 2004. The channels of enhanced (>1 km/s antisunward convection are documented by SuperDARN radars and dawn-dusk crossings of the polar cap by the DMSP F13 satellite. The relationship with Birkeland currents (C1–C2 located poleward of the traditional R1–R2 currents is demonstrated. The convection events are manifest in ground magnetic deflections obtained from the IMAGE (International Monitor for Auroral Geomagnetic Effects Svalbard chain of ground magnetometer stations located within 71–76° MLAT. By combining the ionospheric convection data and the ground magnetograms we are able to study the temporal behaviour of the convection events. In the two ICME case studies the convection events belong to two different categories, i.e., directly driven and spontaneous events. In the 10 January case two sharp southward turnings of the ICME magnetic field excited corresponding convection events as detected by IMAGE and SuperDARN. We use this case to determine the ground magnetic signature of enhanced flow channel events (the NH-dusk/By<0 variant. In the 25 July case a several-hour-long interval of steady southwest ICME field (Bz<0; By<0 gave rise to a long series of spontaneous convection events as detected by IMAGE when the ground stations swept through the 12:00–18:00 MLT sector. From the ground-satellite conjunction on 25 July we infer the pulsed nature of the polar cap ionospheric flow channel events in this case. The typical duration of these convection enhancements in the polar cap is 10 min.

  18. Ozone Satellite Data Synergy and Combination with Non-satellite Data in the AURORA project

    Science.gov (United States)

    Cortesi, U.; Tirelli, C.; Arola, A.; Dragani, R.; Keppens, A.; Loenen, E.; Masini, A.; Tsiakos, , C.; van der A, R.; Verberne, K.

    2017-12-01

    The geostationary satellite constellation composed of TEMPO (North America), SENTINEL-4 (Europe) and GEMS (Asia) missions is a major instance of space component in the fundamentally new paradigm aimed at integrating information on air quality from a wide variety of sources. Space-borne data on tropospheric composition from new generation satellites have a growing impact in this context because of their unprecedented quantity and quality, while merging with non-satellite measurements and other types of auxiliary data via state-of-the-art modelling capabilities remains essential to fit the purpose of highly accurate information made readily available at high temporal and spatial resolution, both in analysis and forecast mode. Proper and effective implementation of this paradigm poses severe challenges to science, technology and applications that must be addressed in a closely interconnected manner to pave the way to high quality products and innovative services. Novel ideas and tools built on these three pillars are currently under investigation in the AURORA (Advanced Ultraviolet Radiation and Ozone Retrieval for Applications) Horizon 2020 project of the European Commission. The primary goal of the project is the proof of concept of a synergistic approach to the exploitation of Sentinel-4 and -5 Ozone measurements in the UV, Visible and Thermal Infrared based on the combination of an innovative data fusion method and assimilation models. The scientific objective shares the same level of priority with the technological effort to realize a prototype data processor capable to manage the full data processing chain and with the development of two downstream applications for demonstration purposes. The presentation offers a first insight in mid-term results of the project, which is mostly based on the use of synthetic data from the atmospheric Sentinels. Specific focus is given to the role of satellite data synergy in integrated systems for air quality monitoring, in

  19. Artful creation

    DEFF Research Database (Denmark)

    Darsø, Lotte

    2013-01-01

    An introduction to the field of Arts-in-Business outlining 4 different approaches: 1) Art as decoration, 2) Art as intertainment, 3) Arts as instrumental, 4) Art as strategic......An introduction to the field of Arts-in-Business outlining 4 different approaches: 1) Art as decoration, 2) Art as intertainment, 3) Arts as instrumental, 4) Art as strategic...

  20. Numerical Simulations to Assess ART and MART Performance for Ionospheric Tomography of Chapman Profiles.

    Science.gov (United States)

    Prol, Fabricio S; Camargo, Paulo O; Muella, Marcio T A H

    2017-01-01

    The incomplete geometrical coverage of the Global Navigation Satellite System (GNSS) makes the ionospheric tomographic system an ill-conditioned problem for ionospheric imaging. In order to detect the principal limitations of the ill-conditioned tomographic solutions, numerical simulations of the ionosphere are under constant investigation. In this paper, we show an investigation of the accuracy of Algebraic Reconstruction Technique (ART) and Multiplicative ART (MART) for performing tomographic reconstruction of Chapman profiles using a simulated optimum scenario of GNSS signals tracked by ground-based receivers. Chapman functions were used to represent the ionospheric morphology and a set of analyses was conducted to assess ART and MART performance for estimating the Total Electron Content (TEC) and parameters that describes the Chapman function. The results showed that MART performed better in the reconstruction of the electron density peak and ART gave a better representation for estimating TEC and the shape of the ionosphere. Since we used an optimum scenario of the GNSS signals, the analyses indicate the intrinsic problems that may occur with ART and MART to recover valuable information for many applications of Telecommunication, Spatial Geodesy and Space Weather.

  1. Using Satellite Imagery to Identify Tornado Damage Tracks and Recovery from the April 27, 2011 Severe Weather Outbreak

    Science.gov (United States)

    Cole, Tony A.; Molthan, Andrew L.; Bell, Jordan R.

    2014-01-01

    Emergency response to natural disasters requires coordination between multiple local, state, and federal agencies. Single, relatively weak tornado events may require comparatively simple response efforts; but larger "outbreak" events with multiple strong, long-track tornadoes can benefit from additional tools to help expedite these efforts. Meteorologists from NOAA's National Weather Service conduct field surveys to map tornado tracks, assess damage, and determine the tornado intensity following each event. Moderate and high resolution satellite imagery can support these surveys by providing a high-level view of the affected areas. Satellite imagery could then be used to target areas for immediate survey or to corroborate the results of the survey after it is completed. In this study, the feasibility of using satellite imagery to identify tornado damage tracks was determined by comparing the characteristics of tracks observed from low-earth orbit to tracks assessed during the official NWS storm survey process. Of the 68 NWS confirmed centerlines, 24 tracks (35.3%) could be distinguished from other surface features using satellite imagery. Within each EF category, 0% of EF-0, 3% of EF-1, 50% of EF-2, 77.7% of EF-3, 87.5% of EF-4 and 100% of EF-5 tornadoes were detected. It was shown that satellite data can be used to identify tornado damage tracks in MODIS and ASTER NDVI imagery, where damage to vegetation creates a sharp drop in values though the minimum EF-category which can be detected is dependent upon the type of sensor used and underlying vegetation. Near-real time data from moderate resolution sensors compare favorably to field surveys after the event and suggest that the data can provide some value in the assessment process.

  2. A Satellite Data-Driven, Client-Server Decision Support Application for Agricultural Water Resources Management

    Science.gov (United States)

    Johnson, Lee F.; Maneta, Marco P.; Kimball, John S.

    2016-01-01

    Water cycle extremes such as droughts and floods present a challenge for water managers and for policy makers responsible for the administration of water supplies in agricultural regions. In addition to the inherent uncertainties associated with forecasting extreme weather events, water planners need to anticipate water demands and water user behavior in a typical circumstances. This requires the use decision support systems capable of simulating agricultural water demand with the latest available data. Unfortunately, managers from local and regional agencies often use different datasets of variable quality, which complicates coordinated action. In previous work we have demonstrated novel methodologies to use satellite-based observational technologies, in conjunction with hydro-economic models and state of the art data assimilation methods, to enable robust regional assessment and prediction of drought impacts on agricultural production, water resources, and land allocation. These methods create an opportunity for new, cost-effective analysis tools to support policy and decision-making over large spatial extents. The methods can be driven with information from existing satellite-derived operational products, such as the Satellite Irrigation Management Support system (SIMS) operational over California, the Cropland Data Layer (CDL), and using a modified light-use efficiency algorithm to retrieve crop yield from the synergistic use of MODIS and Landsat imagery. Here we present an integration of this modeling framework in a client-server architecture based on the Hydra platform. Assimilation and processing of resource intensive remote sensing data, as well as hydrologic and other ancillary information occur on the server side. This information is processed and summarized as attributes in water demand nodes that are part of a vector description of the water distribution network. With this architecture, our decision support system becomes a light weight 'app' that

  3. The growing impact of satellite data in daily life

    Science.gov (United States)

    Stramondo, Salvatore

    2015-04-01

    Satellite images have a growing role in our daily life. Weather previsions, telecommunications, environmental planning, disaster mitigation and monitoring: these are only some of the fieldworks where space remote sensing data, and related processing techniques, provide extremely useful information to policy/decision makers, scientists, or to the "simple" citizen. The demonstration of the level of attention provided by the International Community to the impact of new technologies and satellite Earth Observation, in particular, onto everyday life is testified by the recent and forthcoming project calls. Horizon 2020, for instance, identified "Societal challenges" and "Science with and for Society" among the main pillars. In sub-themes we may read references to the "Environment", "Secure societies", "Climate changes", and many others, most of which soliciting the use of remote sensing technologies. In such scenario the scientists should be conscious about the capabilities and the implications in applying new technologies. Recent examples might be explanatory. Satellite data properly managed can be used to measure millimetric and/or centimetric movements of buildings and infrastructures. It has been demonstrated how long term monitoring of urban areas detecting pre-collapse deformations might provide useful hints to prevent such dramatic events. Or, in different frameworks, satellite data can be an advanced instrument for intelligence and military purposes. With such premises, ethic issues assume a key role to properly address the use of satellite technologies.

  4. Connections and lingering presence as cocreated art.

    Science.gov (United States)

    Dempsey, Leona F

    2008-10-01

    Parse described nursing practice as a performing art where the nurse is like a dancer. Just as in any dance performance, unplanned events may occur. When a nurse is artistically living, unique and meaningful performances might emerge from unplanned events. In this practice column, the author describes how shifting experiences surfaced with unforeseen connections and lingering presence during her study of feeling confined. In her study she was in true presence with men living in prison, who were diagnosed with severe mental illness. The humanbecoming school of thought was the nursing perspective guiding the research study.

  5. Art Therapy Teaching as Performance Art

    Science.gov (United States)

    Moon, Bruce L.

    2012-01-01

    This viewpoint asserts that art therapy education is a form of performance art. By designing class sessions as performance artworks, art therapy educators can help their students become more fully immersed in their studies. This view also can be extended to conceptualizing each semester--and the entire art therapy curriculum--as a complex and…

  6. Modeling Documents with Event Model

    Directory of Open Access Journals (Sweden)

    Longhui Wang

    2015-08-01

    Full Text Available Currently deep learning has made great breakthroughs in visual and speech processing, mainly because it draws lessons from the hierarchical mode that brain deals with images and speech. In the field of NLP, a topic model is one of the important ways for modeling documents. Topic models are built on a generative model that clearly does not match the way humans write. In this paper, we propose Event Model, which is unsupervised and based on the language processing mechanism of neurolinguistics, to model documents. In Event Model, documents are descriptions of concrete or abstract events seen, heard, or sensed by people and words are objects in the events. Event Model has two stages: word learning and dimensionality reduction. Word learning is to learn semantics of words based on deep learning. Dimensionality reduction is the process that representing a document as a low dimensional vector by a linear mode that is completely different from topic models. Event Model achieves state-of-the-art results on document retrieval tasks.

  7. A limited area model intercomparison on the 'Montserrat-2000' flash-flood event using statistical and deterministic methods

    Directory of Open Access Journals (Sweden)

    S. Mariani

    2005-01-01

    Full Text Available In the scope of the European project Hydroptimet, INTERREG IIIB-MEDOCC programme, limited area model (LAM intercomparison of intense events that produced many damages to people and territory is performed. As the comparison is limited to single case studies, the work is not meant to provide a measure of the different models' skill, but to identify the key model factors useful to give a good forecast on such a kind of meteorological phenomena. This work focuses on the Spanish flash-flood event, also known as 'Montserrat-2000' event. The study is performed using forecast data from seven operational LAMs, placed at partners' disposal via the Hydroptimet ftp site, and observed data from Catalonia rain gauge network. To improve the event analysis, satellite rainfall estimates have been also considered. For statistical evaluation of quantitative precipitation forecasts (QPFs, several non-parametric skill scores based on contingency tables have been used. Furthermore, for each model run it has been possible to identify Catalonia regions affected by misses and false alarms using contingency table elements. Moreover, the standard 'eyeball' analysis of forecast and observed precipitation fields has been supported by the use of a state-of-the-art diagnostic method, the contiguous rain area (CRA analysis. This method allows to quantify the spatial shift forecast error and to identify the error sources that affected each model forecasts. High-resolution modelling and domain size seem to have a key role for providing a skillful forecast. Further work is needed to support this statement, including verification using a wider observational data set.

  8. A new system to quantify uncertainties in LEO satellite position determination due to space weather events

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a new system for quantitative assessment of uncertainties in LEO satellite position caused by storm time changes in space environmental...

  9. Market segmentation of visitors at three selected arts festivals in South Africa

    Directory of Open Access Journals (Sweden)

    V. Pissoort

    2007-12-01

    Full Text Available Purpose: The purpose of this article is to examine the market segmentation of visitors at three Arts Festivals in South Africa. The Arts Festivals were Innibos, Oppikoppi and Volksblad. Problem investigated: The literature review clearly shows that, in order for marketers of festivals to use scarce resources effectively and efficiently, it is paramount to do market segmentation. The advantages of market segmentation lie in an increase in visitor numbers, better image, and by creating a competitive advantage to name but a few. Method of research: The research was conducted by means of structured questionnaires at the three arts festivals. The data was used to compile a profile of each Festival. The significance of the correlation between the three Festivals and their profiles were tested by using effect sizes and Chi-square. A sample size of 452 questionnaires for Volksblad, 573 questionnaires for Innibos and 201 for Oppikoppi was used. Findings: The results show that the visitor profile variables that are significant for market segmentation purposes include:language; the province in which Festival attendees reside; days spent at the Festival; and the size of the travelling group.These results confirmed but also contradicted a number of similar studies conducted. The results also clearly showed the different profiles of each of the three arts festivals. Value of research: This was the first time such research was undertaken at smaller Arts Festivals in South Africa and is useful for planning and marketing purposes. Conclusion: Due to the increase in the number of festivals and events in South Africa as well as competition in general,marketers and organisers of these events and festivals are required to understand and target the right markets. Hence, this type of research is important and necessitates marketers and event organisers to follow a more scientific approach.

  10. Celestial Seasonings: Astronomy and Rock Art in the American Southwest

    Science.gov (United States)

    Krupp, E. C.

    1994-12-01

    Astronomical interpretations of prehistoric rock art have played a significant part in the development of modern archaeoastronomy since 1975, when interest was renewed in the possibility that the Crab supernova explosion of 1054 A.D. was represented in rock art of the American Southwest. (This hypothesis was actually first formulated in 1955.) In the last two decades, a variety of astronomical functions for rock art have been proposed and investigated. These include representation of specific historical celestial events, symbolic representation of elements of celestial myths, star maps, markers for astronomical observing stations markers for celestially tempered shrines, images intended to invoke and exploit cosmo-magical power, seasonally significant light-and-shadow displays. Examples of astronomical connotations in prehistoric rock art from the Southwest and California illustrate the necessity of understanding the culture in any attempt to understand its astronomy.

  11. Statistical Image Properties in Large Subsets of Traditional Art, Bad Art, and Abstract Art.

    Science.gov (United States)

    Redies, Christoph; Brachmann, Anselm

    2017-01-01

    Several statistical image properties have been associated with large subsets of traditional visual artworks. Here, we investigate some of these properties in three categories of art that differ in artistic claim and prestige: (1) Traditional art of different cultural origin from established museums and art collections (oil paintings and graphic art of Western provenance, Islamic book illustration and Chinese paintings), (2) Bad Art from two museums that collect contemporary artworks of lesser importance (© Museum Of Bad Art [MOBA], Somerville, and Official Bad Art Museum of Art [OBAMA], Seattle), and (3) twentieth century abstract art of Western provenance from two prestigious museums (Tate Gallery and Kunstsammlung Nordrhein-Westfalen). We measured the following four statistical image properties: the fractal dimension (a measure relating to subjective complexity); self-similarity (a measure of how much the sections of an image resemble the image as a whole), 1st-order entropy of edge orientations (a measure of how uniformly different orientations are represented in an image); and 2nd-order entropy of edge orientations (a measure of how independent edge orientations are across an image). As shown previously, traditional artworks of different styles share similar values for these measures. The values for Bad Art and twentieth century abstract art show a considerable overlap with those of traditional art, but we also identified numerous examples of Bad Art and abstract art that deviate from traditional art. By measuring statistical image properties, we quantify such differences in image composition for the first time.

  12. Extreme flood event analysis in Indonesia based on rainfall intensity and recharge capacity

    Science.gov (United States)

    Narulita, Ida; Ningrum, Widya

    2018-02-01

    Indonesia is very vulnerable to flood disaster because it has high rainfall events throughout the year. Flood is categorized as the most important hazard disaster because it is causing social, economic and human losses. The purpose of this study is to analyze extreme flood event based on satellite rainfall dataset to understand the rainfall characteristic (rainfall intensity, rainfall pattern, etc.) that happened before flood disaster in the area for monsoonal, equatorial and local rainfall types. Recharge capacity will be analyzed using land cover and soil distribution. The data used in this study are CHIRPS rainfall satellite data on 0.05 ° spatial resolution and daily temporal resolution, and GSMap satellite rainfall dataset operated by JAXA on 1-hour temporal resolution and 0.1 ° spatial resolution, land use and soil distribution map for recharge capacity analysis. The rainfall characteristic before flooding, and recharge capacity analysis are expected to become the important information for flood mitigation in Indonesia.

  13. National Dance Education Organization: Building a Future for Dance Education in the Arts

    Science.gov (United States)

    Bonbright, Jane; McGreevy-Nichols, Susan

    2012-01-01

    The field of dance arts education in the United States is in an entirely different place today than it was at the turn of the century. Much of this change is due to a convergence of events that involved: federal and state legislation, policy, and funding that supported dance in arts education; a forty-year transition of dance out of departments of…

  14. [Art-chance and art-experience in classical Greece].

    Science.gov (United States)

    Ban, Deokjin

    2011-06-30

    In Classical Greece, works defining the nature of art appeared in the various disciplines like medicine, rhetoric, dietetics, architecture and painting. Hippocratic authors tried to show that an art of medicine existed indeed. They contrasted the concept of art with that of chance, not experience that Plato and Aristotle distinguished from art. In fact there are similarities and discrepancies between Hippocratic epistemology and Platoic epistemology. Hippocratic authors maintained that the products of chance were not captured by art. They distinguished the domain of art charactered by explanatory knowledge and prediction from the domain of chance ruled by the unexplained and the unforeseeable. They minimized the role of luck and believed the role of art. Hippocratic authors thought that professional ability contained both knowledge and experience. In Hippocratic corpus, experience is a synonym of competence and usually has a positive meaning. But Plato gave empirical knowledge the disdainful sense and decided a ranking between two types of knowledge. Both Hippocratic authors and Plato held that a genuine art had connection with explanatory knowledge of the nature of its subject matter. A common theme that goes through arguments about art-chance and art-chance is the connection between art and nature. Hippocratic authors and Plato regarded art as a highly systematic process. Art provides us with general and explanatory knowledge of human nature. Art and nature is a mutual relationship. The systematic understanding of nature helps us gain the exactness of art and an exact art helps us understand nature well.

  15. Performance of the CMS Event Builder

    CERN Document Server

    Andre, Jean-Marc Olivier; Branson, James; Brummer, Philipp Maximilian; Chaze, Olivier; Cittolin, Sergio; Contescu, Cristian; Craigs, Benjamin Gordon; Darlea, Georgiana Lavinia; Deldicque, Christian; Demiragli, Zeynep; Dobson, Marc; Doualot, Nicolas; Erhan, Samim; Fulcher, Jonathan Richard; Gigi, Dominique; Gladki, Maciej Szymon; Glege, Frank; Gomez Ceballos, Guillelmo; Hegeman, Jeroen Guido; Holzner, Andre Georg; Janulis, Mindaugas; Jimenez Estupinan, Raul; Masetti, Lorenzo; Meijers, Franciscus; Meschi, Emilio; Mommsen, Remigius; Morovic, Srecko; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph Maria Ernst; Petrova, Petia; Pieri, Marco; Racz, Attila; Reis, Thomas; Sakulin, Hannes; Schwick, Christoph; Simelevicius, Dainius; Zejdl, Petr

    2017-01-01

    The data acquisition system (DAQ) of the CMS experiment at the CERN Large Hadron Collider (LHC) assembles events at a rate of 100 kHz. It transports event data at an aggregate throughput of ~100 GB/s to the high-level trigger (HLT) farm. The CMS DAQ system has been completely rebuilt during the first long shutdown of the LHC in 2013/14. The new DAQ architecture is based on state-of-the-art network technologies for the event building. For the data concentration, 10/40 Gb/s Ethernet technologies are used together with a reduced TCP/IP protocol implemented in FPGA for a reliable transport between custom electronics and commercial computing hardware. A 56 Gb/s Infiniband FDR CLOS network has been chosen for the event builder. We report on the performance of the event builder system and the steps taken to exploit the full potential of the network technologies.

  16. Does short-term virologic failure translate to clinical events in antiretroviral-naïve patients initiating antiretroviral therapy in clinical practice?

    DEFF Research Database (Denmark)

    NN, NN; Mugavero, Michael J; May, Margaret

    2008-01-01

    , nevirapine, lopinavir/ritonavir, nelfinavir, or abacavir as third drugs in combination with a zidovudine and lamivudine nucleoside reverse transcriptase inhibitor backbone. MAIN OUTCOME MEASURES: Short-term (24-week) virologic failure (>500 copies/ml) and clinical events within 2 years of ART initiation.......58-2.22), lopinavir/ritonavir (1.32, 95% CI = 1.12-1.57), nelfinavir (3.20, 95% CI = 2.74-3.74), and abacavir (2.13, 95% CI = 1.82-2.50). However, the rate of clinical events within 2 years of ART initiation appeared higher only with nevirapine (adjusted hazard ratio for composite outcome measure 1.27, 95% CI = 1......OBJECTIVE: To determine whether differences in short-term virologic failure among commonly used antiretroviral therapy (ART) regimens translate to differences in clinical events in antiretroviral-naïve patients initiating ART. DESIGN: Observational cohort study of patients initiating ART between...

  17. Art in the Service of Science

    Science.gov (United States)

    Asmus, J. F.

    In fields such as studio art, art conservation, archaeology, anthropology, music, and architecture it is often understood that many of the advances emerge from the introduction of new developments from science and technology. Scientific research is often justified on the basis of its past as well as potential future fallout into other endeavors as diverse as medicine, manufacturing, and the humanities. The diffusion of scientific innovation into the practice of art conservation has been punctuated by the introduction of a series of diverse technologies. Trace element and isotopic analyses, infrared imaging, ultraviolet fluorescence inspection, advanced coatings and adhesives, scanning electron microscopy, and photon/electron microprobes are notable examples. For the past thirty years various laser technologies have demonstrated utility in the practice of art conservation, as well. These include photon cleaning and divestment, holographic display and nondestructive analysis, surface characterization through laser fluorescence, radiation scattering and absorption, as well as laser-induced ultrasound. At the dawn of laser technology's introduction into the art conservation field (1972-74) the Center for Art/Science Studies (CASS) was established at the University of California, San Diego (UCSD) with the hope of accelerating and broadening the diffusion of scientific developments into art conservation practice. Surprisingly, one of the first events in the CASS/UCSD transpired when a Visual Arts Department student employed a primitive laser statue cleaner to "correct" a silk-screen print. In the course of maintaining her laser this art student discovered a dramatically improved method for aligning the complex optical beam train by utilizing her artistic training. A few months later another CASS/UCSD student in the Photographic Arts Program (while modifying a ruby laser to experiment with theater-lighting special effects) discovered an improved laser beam

  18. Assessment of satellite-based precipitation estimates over Paraguay

    Science.gov (United States)

    Oreggioni Weiberlen, Fiorella; Báez Benítez, Julián

    2018-04-01

    Satellite-based precipitation estimates represent a potential alternative source of input data in a plethora of meteorological and hydrological applications, especially in regions characterized by a low density of rain gauge stations. Paraguay provides a good example of a case where the use of satellite-based precipitation could be advantageous. This study aims to evaluate the version 7 of the Tropical Rainfall Measurement Mission Multi-Satellite Precipitation Analysis (TMPA V7; 3B42 V7) and the version 1.0 of the purely satellite-based product of the Climate Prediction Center Morphing Technique (CMORPH RAW) through their comparison with daily in situ precipitation measurements from 1998 to 2012 over Paraguay. The statistical assessment is conducted with several commonly used indexes. Specifically, to evaluate the accuracy of daily precipitation amounts, mean error (ME), root mean square error (RMSE), BIAS, and coefficient of determination (R 2) are used, and to analyze the capability to correctly detect different precipitation intensities, false alarm ratio (FAR), frequency bias index (FBI), and probability of detection (POD) are applied to various rainfall rates (0, 0.1, 0.5, 1, 2, 5, 10, 20, 40, 60, and 80 mm/day). Results indicate that TMPA V7 has a better performance than CMORPH RAW over Paraguay. TMPA V7 has higher accuracy in the estimation of daily rainfall volumes and greater precision in the detection of wet days (> 0 mm/day). However, both satellite products show a lower ability to appropriately detect high intensity precipitation events.

  19. Digital optical feeder links system for broadband geostationary satellite

    Science.gov (United States)

    Poulenard, Sylvain; Mège, Alexandre; Fuchs, Christian; Perlot, Nicolas; Riedi, Jerome; Perdigues, Josep

    2017-02-01

    An optical link based on a multiplex of wavelengths at 1.55μm is foreseen to be a valuable solution for the feeder link of the next generation of high-throughput geostationary satellite. The main satellite operator specifications for such link are an availability of 99.9% over the year, a capacity around 500Gbit/s and to be bent-pipe. Optical ground station networks connected to Terabit/s terrestrial fibers are proposed. The availability of the optical feeder link is simulated over 5 years based on a state-of-the-art cloud mask data bank and an atmospheric turbulence strength model. Yearly and seasonal optical feeder link availabilities are derived and discussed. On-ground and on-board terminals are designed to be compliant with 10Gbit/s per optical channel data rate taking into account adaptive optic systems to mitigate the impact of atmospheric turbulences on single-mode optical fiber receivers. The forward and return transmission chains, concept and implementation, are described. These are based on a digital transparent on-off keying optical link with digitalization of the DVB-S2 and DVB-RCS signals prior to the transmission, and a forward error correcting code. In addition, the satellite architecture is described taking into account optical and radiofrequency payloads as well as their interfaces.

  20. Research as Art: Using figures to make science approachable

    Science.gov (United States)

    Rabinowitz, H. S.; Barth, A.; Russell, J. B.; Frischkorn, K.; Yehudai, M.

    2017-12-01

    As scientists, we spend a significant amount of time thinking about how best to express the results of our research through figures. These can range from graphs to microscope images to movies, but they all serve the purpose of communicating complicated ideas to our colleagues in the scientific community. One component of scientific data representation that is often overlooked is the aesthetic of the image. Many images produced for data communication and publication are visually engaging even to a lay audience, allowing them to serve as a point of entry to learning about scientific research for the non-specialist. To help researchers embrace this secondary goal of scientific figures, we have instituted an annual event at the Lamont-Doherty Earth Observatory of Columbia University (LDEO) called Research as Art. For this event, scientists submit figures from their work that they see as artistic. These figures are displayed in a gallery-type exhibit for the community to appreciate. This year, the exhibit included movie and sculpture categories, allowing for attendees to interact with a broader range of scientific work. Each piece is accompanied by a brief, non-technical caption. Research as Art provides a gateway for scientists from a broad range of disciplines within the Earth Sciences to learn about work that is entirely unrelated to their own. After the event, attendees commented that they had never before thought about how a non-specialist would view their figures and that they would keep this in mind when making future figures. Thus, one of the biggest benefits of exhibits such as this is to teach scientists to view our work through a non-specialist's eyes. However, future plans for Research as Art include establishing a temporary exhibit at a local bar to expand the reach to a broader segment of the Columbia University area community. Our figures are art, and when we start to treat them that way, we open a world of possibilities for teaching the public about our

  1. Art Rocks with Rock Art!

    Science.gov (United States)

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  2. Discharge estimation in arid areas with the help of optical satellite data

    Science.gov (United States)

    Mett, M.; Aufleger, M.

    2009-04-01

    The MENA region is facing severe water scarcity. Overexploitation of groundwater resources leads to an ongoing drawdown of the water tables, salinisation and desertification of vast areas. To make matters worse enormous birth-rates, economic growth and refugees from conflict areas let the need for water explode. In the context of climate change this situation will even worsen and armed conflicts are within the bounds of possibility. To ease water scarcity many innovative techniques like artificial groundwater recharge are being developed or already state of the art. But missing hydrological information (for instance discharge data) often prevents design and efficient operation of such measures. Especially in poor countries hydrological measuring devices like gage stations are often missing, in a bad status or professionals of the water sector are absent. This leads to the paradox situation that in many arid regions water resources are indeed available but they cannot be utilised because they are not known. Nowadays different approaches are being designed to obtain hydrological information from perennial river systems with the help of satellite techniques. Mostly they are based on hydraulic parameters like river dimensions, roughness and water levels which can be derived from satellite data. By using conventional flow formulas and additional field investigations the discharge can be estimated. Another methodology derived information about maximum flow depth and flow width from optical sensors of high resolution to calculate discharge of the rivers whilst the flood. Attempts to derive discharge information from structural components of the river and fluviomorphologic changes due to changing flow regimes are in the focus of recent research. One attempt used Synthetic Aperture Radar (SAR) data to estimate discharge in braided river systems. Other attempts used airborne SAR imagery to obtain information about sinuosity and total river width of perennial braided river

  3. Global transients in ultraviolet and red-infrared ranges from data of Universitetsky-Tatiana-2 satellite

    Science.gov (United States)

    Garipov, G. K.; Khrenov, B. A.; Klimov, P. A.; Klimenko, V. V.; Mareev, E. A.; Martines, O.; Mendoza, E.; Morozenko, V. S.; Panasyuk, M. I.; Park, I. H.; Ponce, E.; Rivera, L.; Salazar, H.; Tulupov, V. I.; Vedenkin, N. N.; Yashin, I. V.

    2013-01-01

    Light detectors sensitive to wavelength ranges 240-400 nm and beyond 610 nm (which we refer to, for simplicity, as the UV and Red bands) on board Universitetsky-Tatiana-2 satellite have detected transient flashes in the atmosphere of duration 1-128 ms. Measured ratio of the number of Red photons to the number of UV photons indicates that source of transient radiation is at high atmosphere altitude (>50 km). Distribution of events with various photon numbers Qa in the atmosphere found to be different for "luminous" events Qa = 1023 - 1026 (with exponent of differential distribution -2.2) and for "faint" events Qa = 1021 - 1023 (with exponent - 0.97). Luminous event parameters (atmosphere altitude, energy released to radiation, and temporal profiles) are similar to observed elsewhere parameters of transient luminous events (TLE) of elves, sprites, halo, and gigantic blue jets types. Global map of luminous events demonstrates concentration to equatorial zones (latitudes 30°N to 30°S) above continents. Faint events (with number of photons Qa = 1020 - 5ṡ 1021) are distributed more uniformly over latitudes and longitudes. Phenomenon of series of transients registered every minute along satellite orbit (from 3 to 16 transients in one series) was observed. Most TLE-type events belonged to series. Single transients are in average fainter than serial ones. Some transients belonging to series occurs far away of thunderstorm regions. Origin of faint single transients is not clear; several hypothetical models of their production are discussed.

  4. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique

    NARCIS (Netherlands)

    Tote, C.; Patricio, D.; Boogaard, H.L.; Wijngaart, van der R.; Tarnavsky, E.; Funk, C.

    2015-01-01

    Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and

  5. Simulation of tsunami effects on sea surface salinity using MODIS satellite data

    International Nuclear Information System (INIS)

    Ramlan, N E F; Genderen, J van; Hashim, M; Marghany, M

    2014-01-01

    Remote sensing technology has been recognized as powerful tool for environmental disaster studies. Ocean surface salinity is considered as a major element in the marine environment. In this study, we simulate the 2004 tsunami's impact on a physical ocean parameter using the least square algorithm to retrieve sea surface salinity (SSS) from MODIS satellite data. The accuracy of this work has been examined using the root mean of sea surface salinity retrieved from MODIS satellite data. The study shows a comprehensive relationship between the in situ measurements and least square algorithm with high r 2 of 0.95, and RMS of bias value of ±0.9 psu. In conclusion, the least square algorithm can be used to retrieve SSS from MODIS satellite data during a tsunami event

  6. New perspectives for high accuracy SLR with second generation geodesic satellites

    Science.gov (United States)

    Lund, Glenn

    1993-01-01

    This paper reports on the accuracy limitations imposed by geodesic satellite signatures, and on the potential for achieving millimetric performances by means of alternative satellite concepts and an optimized 2-color system tradeoff. Long distance laser ranging, when performed between a ground (emitter/receiver) station and a distant geodesic satellite, is now reputed to enable short arc trajectory determinations to be achieved with an accuracy of 1 to 2 centimeters. This state-of-the-art accuracy is limited principally by the uncertainties inherent to single-color atmospheric path length correction. Motivated by the study of phenomena such as postglacial rebound, and the detailed analysis of small-scale volcanic and strain deformations, the drive towards millimetric accuracies will inevitably be felt. With the advent of short pulse (less than 50 ps) dual wavelength ranging, combined with adequate detection equipment (such as a fast-scanning streak camera or ultra-fast solid-state detectors) the atmospheric uncertainty could potentially be reduced to the level of a few millimeters, thus, exposing other less significant error contributions, of which by far the most significant will then be the morphology of the retroreflector satellites themselves. Existing geodesic satellites are simply dense spheres, several 10's of cm in diameter, encrusted with a large number (426 in the case of LAGEOS) of small cube-corner reflectors. A single incident pulse, thus, results in a significant number of randomly phased, quasi-simultaneous return pulses. These combine coherently at the receiver to produce a convolved interference waveform which cannot, on a shot to shot basis, be accurately and unambiguously correlated to the satellite center of mass. This paper proposes alternative geodesic satellite concepts, based on the use of a very small number of cube-corner retroreflectors, in which the above difficulties are eliminated while ensuring, for a given emitted pulse, the return

  7. Common Sense Approach to the Restoration of Sacred Art

    Directory of Open Access Journals (Sweden)

    Alphonso Lopez Pinto

    2014-12-01

    Full Text Available In this paper, Sacred Art is examined as an imitation of historia. Historia interprets historical human events as empirical, material and real while seeking to understand their moral and spiritual significance. It is from historia that sacred art can be understood, where Christ and the saints are portrayed in the integrity of their human natures united to symbols representing Divinity or grace in order to present a visual/contemplative narrative. Mortimer Adler rightly sees that the vision of the beautiful is inherently contemplative, thus sacred iconography provides a language that can form the common sense of men and women.

  8. International Collaboration in Satellite Observations for Disaster Management

    Science.gov (United States)

    Duda, Kenneth A.; Abrams, Michael

    2012-01-01

    When lives are threatened or lost due to catastrophic disasters, and when massive financial impacts are experienced, international emergency response teams rapidly mobilize to provide urgently required support. Satellite observations of affected areas often provide essential insight into the magnitude and details of the impacts. The large cost and high complexity of developing and operating satellite flight and ground systems encourages international collaboration in acquiring imagery for such significant global events in order to speed delivery of critical information to help those affected, and optimize spectral, spatial, and temporal coverage of the areas of interest. The International Charter-Space and Major Disasters was established to enable such collaboration in sensor tasking during times of crisis and is often activated in response to calls for assistance from authorized users. Insight is provided from a U.S. perspective into sensor support for Charter activations and other disaster events through a description of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which has been used to support emergency situations for over a decade through its expedited tasking and near real-time data delivery capabilities. Examples of successes achieved and challenges encountered in international collaboration to develop related systems and fulfill tasking requests suggest operational considerations for new missions as well as areas for future enhancements.

  9. Barriers and facilitators of ART adherence in Hawassa town ...

    African Journals Online (AJOL)

    unhcc

    The coding process was preceded by open coding, axial and selective coding. To manage the overall ... 2016;30(2):66-77]. Keywords: Grounded theory, ART, HIV/AIDS, qualitative research ..... emotional/psychological support and social events were reported as barriers ..... were put on mono-therapy instead of dual or triple.

  10. Leveraging the NPS Femto Satellite for Alternative Satellite Communication Networks

    Science.gov (United States)

    2017-09-01

    programmed for eventual integration with the Iridium Network , which is then tested. C. THESIS ORGANIZATION The thesis addresses these questions...NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS by Faisal S. Alshaya September 2017 Co-Advisors: Steven J. Iatrou...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE LEVERAGING THE NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS 5

  11. Development and validation of satellite-based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2016-02-01

    A satellite-based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5 % for classifying clear (V ≥ 30 km), moderate (10 km ≤ V United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  12. Development and validation of satellite based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2015-10-01

    A satellite based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5% for classifying Clear (V ≥ 30 km), Moderate (10 km ≤ V United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network, and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  13. Old Friends, Bookends: Art Educators and Art Therapists

    Science.gov (United States)

    Allison, Amanda

    2013-01-01

    This viewpoint presents a reflection on a meaningful relationship that developed between a university art education department and a local art therapy studio. Such partnerships are desirable and mutually beneficial because of the significant interest many art educators have in the field of art therapy. The author, an art educator, describes the…

  14. Arts of urban exploration

    DEFF Research Database (Denmark)

    Pinder, David

    2005-01-01

    to the city’ and ‘writing the city’. Through addressing recent cases of psychogeographical experimentation in terms of these themes, the paper raises broad questions about artistic practices and urban exploration to introduce this theme issue on ‘Arts of urban exploration’ and to lead into the specific......This paper addresses ways in which artists and cultural practitioners have recently been using forms of urban exploration as a means of engaging with, and intervening in, cities. It takes its cues from recent events on the streets of New York that involved exploring urban spaces through artistic...

  15. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  16. An Assessment of State-of-the-Art Mean Sea Surface and Geoid Models of the Arctic Ocean: Implications for Sea Ice Freeboard Retrieval

    DEFF Research Database (Denmark)

    Skourup, Henriette; Farrell, Sinéad Louise; Hendricks, Stefan

    2017-01-01

    in a given model in the high frequency domain, primarily due to unresolved gravity features, can result in errors in the estimated along-track freeboard. These errors are exacerbated in areas with a sparse lead distribution in consolidated ice pack conditions. Additionally model errors can impact ocean......State-of-the-art Arctic Ocean mean sea surface (MSS) models and global geoid models (GGMs) are used to support sea ice freeboard estimation from satellite altimeters, as well as in oceanographic studies such as mapping sea level anomalies and mean dynamic ocean topography. However, errors...... geostrophic currents, derived from satellite altimeter data, while remaining biases in these models may impact longer-term, multi-sensor oceanographic time-series of sea level change in the Arctic. This study focuses on an assessment of five state-of-the-art Arctic MSS models (UCL13/04, DTU15...

  17. "Data Day" and "Data Night" Definitions - Towards Producing Seamless Global Satellite Imagery

    Science.gov (United States)

    Schmaltz, J. E.

    2017-12-01

    For centuries, the art and science of cartography has struggled with the challenge of mapping the round earth on to a flat page, or a flat computer monitor. Earth observing satellites with continuous monitoring of our planet have added the additional complexity of the time dimension to this procedure. The most common current practice is to segment this data by 24-hour Coordinated Universal Time (UTC) day and then split the day into sun side "Data Day" and shadow side "Data Night" global imagery that spans from dateline to dateline. Due to the nature of satellite orbits, simply binning the data by UTC date produces significant discontinuities at the dateline for day images and at Greenwich for night images. Instead, imagery could be generated in a fashion that follows the spatial and temporal progression of the satellite which would produce seamless imagery everywhere on the globe for all times. This presentation will explore approaches to produce such imagery but will also address some of the practical and logistical difficulties in implementing such changes. Topics will include composites versus granule/orbit based imagery, day/night versus ascending/descending definitions, and polar versus global projections.

  18. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  19. Exploring the Full Spectrum: the Power of Combining Art and Science

    Science.gov (United States)

    Camnasio, Sara; Fonda, Enrico

    2016-01-01

    Science is publicly perceived as a challenging discipline open only to a small elite of extremely intelligent individuals. Its historic deficiency of women and racial minorities has helped to keep it on a outwardly unreachable pedestal far higher than the public's reach. One way we can pull science out its stiff academic walls is to incorporate it into an artistic performance. I have produced a multi-disciplinary performance event, called "The View From Nowhere", which combined dance, physics and philosophy, all in one evening. The event is part of a long-term series which will attempt to translate scientific concepts into a diverse range of works by international choreographers. Because of the success of this series, both in the public feedback as well as in the amount of educational baggage acquired by the participants, I analyzed the structure of my own event and compared it to other existing ones to generate a model for multidisciplinary collaborations between the arts and the sciences. I will present a general structure for building collaborations between artists and scientists, more specifically in the context of visual, sound and performance art. From outlining the psychological aspects of human learning and their relationship with science communication, to discussing the potential of art as educational medium, I will discuss how science-inspired performances along with a pedagogy of the topic by a scientist allows a wider pool of people to have access to topics which are normally difficult to grasp in a traditional academic context. I will also be presenting the outline of a current APS-funded, long-term project which aims to build artistic collaborations between researchers in fluid dynamics from NYU, Georgia Tech, and University of Maryland and international artists which will result in an exhibit on the topic of quantum fluids at the New York City art venue Pioneer Works.

  20. Tethered Satellite System Contingency Investigation Board

    Science.gov (United States)

    1992-11-01

    The Tethered Satellite System (TSS-1) was launched aboard the Space Shuttle Atlantis (STS-46) on July 31, 1992. During the attempted on-orbit operations, the Tethered Satellite System failed to deploy successfully beyond 256 meters. The satellite was retrieved successfully and was returned on August 6, 1992. The National Aeronautics and Space Administration (NASA) Associate Administrator for Space Flight formed the Tethered Satellite System (TSS-1) Contingency Investigation Board on August 12, 1992. The TSS-1 Contingency Investigation Board was asked to review the anomalies which occurred, to determine the probable cause, and to recommend corrective measures to prevent recurrence. The board was supported by the TSS Systems Working group as identified in MSFC-TSS-11-90, 'Tethered Satellite System (TSS) Contingency Plan'. The board identified five anomalies for investigation: initial failure to retract the U2 umbilical; initial failure to flyaway; unplanned tether deployment stop at 179 meters; unplanned tether deployment stop at 256 meters; and failure to move tether in either direction at 224 meters. Initial observations of the returned flight hardware revealed evidence of mechanical interference by a bolt with the level wind mechanism travel as well as a helical shaped wrap of tether which indicated that the tether had been unwound from the reel beyond the travel by the level wind mechanism. Examination of the detailed mission events from flight data and mission logs related to the initial failure to flyaway and the failure to move in either direction at 224 meters, together with known preflight concerns regarding slack tether, focused the assessment of these anomalies on the upper tether control mechanism. After the second meeting, the board requested the working group to complete and validate a detailed integrated mission sequence to focus the fault tree analysis on a stuck U2 umbilical, level wind mechanical interference, and slack tether in upper tether

  1. A DEA Approach for Selecting a Bundle of Tickets for Performing Arts Events

    DEFF Research Database (Denmark)

    Baldin, Andrea

    2017-01-01

    tackle the issue of identifying the most efficient subset of the events scheduled to offer as a bundle. We formulate this problem following the choice-based network Revenue Management approach. Assuming the price as fixed on two types of events, lowbrow and highbrow, proposed by the theatre, the purchase...... decision is modelled on the basis of two random variables: the available time and the reservation price per perfomance. The super-efficiency DEA model will be implemented in order to find the most efficient combination of events to be bundled, defined as the one that offers the most favourable trade...

  2. The influence of traditional medicine and religion on discontinuation of ART in an urban informal settlement in Nairobi, Kenya.

    Science.gov (United States)

    Unge, Christian; Ragnarsson, Anders; Ekström, Anna Mia; Indalo, Dorcus; Belita, Alice; Carter, Jane; Ilako, Festus; Södergård, Björn

    2011-07-01

    The objective of this study was to explore the influence of traditional medicine and religion on discontinuation of antiretroviral therapy (ART) in one of Africa's largest informal urban settlement, Kibera, in Nairobi, Kenya. Semi-structured face-to-face interviews were conducted with 20 patients discontinuing the African Medical and Research Foundation (AMREF) ART program in Kibera due to issues related to traditional medicine and religion. Traditional medicine and religion remain important in many people's lives after ART initiation, but these issues are rarely addressed in a positive way during ART counseling. Many patients found traditional medicine and their religious beliefs to be in conflict with clinic treatment advice. Patients described a decisional process, prior to the actual drop-out from the ART program that involved a trigger event, usually a specific religious event, or a meeting with someone using traditional medicine that influenced them to take the decision to stop ART. Discontinuation of ART could be reduced if ART providers acknowledged and addressed the importance of religious issues and traditional medicine in the lives of patients, especially in similar resource-poor settings. Telling patients not to mix ART and traditional medicine appeared counter-productive in this setting. Introducing an open discussion around religious beliefs and the pros and cons of traditional medicine as part of standard counseling, may prevent drop-out from ART when side effects or opportunistic infections occur.

  3. Satellite images of the September 2013 flood event in Lyons, Colorado

    Science.gov (United States)

    Cole, Christopher J.; Friesen, Beverly A.; Wilds, Stanley; Noble, Suzanne; Warner, Harumi; Wilson, Earl M.

    2013-01-01

    The U.S. Geological Survey (USGS) Special Applications Science Center (SASC) produced an image base map showing high-resolution remotely sensed data over Lyons, Colorado—a city that was severely affected by the flood event that occurred throughout much of the Colorado Front Range in September of 2013. The 0.5-meter WorldView-2 data products were created from imagery collected by DigitalGlobe on September 13 and September 24, 2013, during and following the flood event. The images shown on this map were created to support flood response efforts, specifically for use in determining damage assessment and mitigation decisions. The raw, unprocessed imagery were orthorectified and pan-sharpened to enhance mapping accuracy and spatial resolution, and reproduced onto a cartographic base map. These maps are intended to provide a snapshot representation of post-flood ground conditions, which may be useful to decisionmakers and the general public. The SASC also provided data processing and analysis support for other Colorado flood-affected areas by creating cartographic products, geo-corrected electro-optical and radar image mosaics, and GIS water cover files for use by the Colorado National Guard, the National Park Service, the U.S. Forest Service, and the flood response community. All products for this International Charter event were uploaded to the USGS Hazards Data Distribution System (HDDS) website (http://hdds.usgs.gov/hdds2/) for distribution.

  4. Propagation Characteristics of Electromagnetic Waves Recorded by the Four CLUSTER Satellites

    International Nuclear Information System (INIS)

    Parrot, M.; Santolik, O.; Cornilleau-Wehrlin, N.; Maksimovic, M.; Harvey, Ch.

    2001-01-01

    This paper will describe the methods we use to determine the propagation characteristics of electromagnetic waves observed by the four CLUSTER satellites. The data is recorded aboard CLUSTER by the STAFF (Spatio-Temporal Analysis of Field Fluctuations) spectrum analyser. This instrument has several modes of operation, and can provide the spectral matrix of three magnetic and two electric components. This spectral matrix is processed by a dedicated software (PRASSADCO: Propagation Analysis of STAFF-SA Data with Coherency Tests) in order to determine the wave normal directions with respect to the DC magnetic field. PRASSADCO also provides a number of alternative methods to estimate wave polarisation and propagation parameters, such as the Poynting vector, and the refractive index. It is therefore possible to detect the source extension of various electromagnetic waves using the 4 satellites. Results of this data processing will be shown here for one event observed by one satellite. (author)

  5. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    Science.gov (United States)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  6. Forecasting E > 50-MeV proton events with the proton prediction system (PPS)

    Science.gov (United States)

    Kahler, Stephen W.; White, Stephen M.; Ling, Alan G.

    2017-11-01

    Forecasting solar energetic (E > 10-MeV) particle (SEP) events is an important element of space weather. While several models have been developed for use in forecasting such events, satellite operations are particularly vulnerable to higher-energy (≥50-MeV) SEP events. Here we validate one model, the proton prediction system (PPS), which extends to that energy range. We first develop a data base of E ≥ 50-MeV proton events >1.0 proton flux units (pfu) events observed on the GOES satellite over the period 1986-2016. We modify the PPS to forecast proton events at the reduced level of 1 pfu and run PPS for four different solar input parameters: (1) all ≥M5 solar X-ray flares; (2) all ≥200 sfu 8800-MHz bursts with associated ≥M5 flares; (3) all ≥500 sfu 8800-MHz bursts; and (4) all ≥5000 sfu 8800-MHz bursts. The validation contingency tables and skill scores are calculated for all groups and used as a guide to use of the PPS. We plot the false alarms and missed events as functions of solar source longitude, and argue that the longitude-dependence employed by PPS does not match modern observations. Use of the radio fluxes as the PPS driver tends to result in too many false alarms at the 500 sfu threshold, and misses more events than the soft X-ray predictor at the 5000 sfu threshold.

  7. Using Spatial Reinforcement Learning to Build Forest Wildfire Dynamics Models From Satellite Images

    Directory of Open Access Journals (Sweden)

    Sriram Ganapathi Subramanian

    2018-04-01

    Full Text Available Machine learning algorithms have increased tremendously in power in recent years but have yet to be fully utilized in many ecology and sustainable resource management domains such as wildlife reserve design, forest fire management, and invasive species spread. One thing these domains have in common is that they contain dynamics that can be characterized as a spatially spreading process (SSP, which requires many parameters to be set precisely to model the dynamics, spread rates, and directional biases of the elements which are spreading. We present related work in artificial intelligence and machine learning for SSP sustainability domains including forest wildfire prediction. We then introduce a novel approach for learning in SSP domains using reinforcement learning (RL where fire is the agent at any cell in the landscape and the set of actions the fire can take from a location at any point in time includes spreading north, south, east, or west or not spreading. This approach inverts the usual RL setup since the dynamics of the corresponding Markov Decision Process (MDP is a known function for immediate wildfire spread. Meanwhile, we learn an agent policy for a predictive model of the dynamics of a complex spatial process. Rewards are provided for correctly classifying which cells are on fire or not compared with satellite and other related data. We examine the behavior of five RL algorithms on this problem: value iteration, policy iteration, Q-learning, Monte Carlo Tree Search, and Asynchronous Advantage Actor-Critic (A3C. We compare to a Gaussian process-based supervised learning approach and also discuss the relation of our approach to manually constructed, state-of-the-art methods from forest wildfire modeling. We validate our approach with satellite image data of two massive wildfire events in Northern Alberta, Canada; the Fort McMurray fire of 2016 and the Richardson fire of 2011. The results show that we can learn predictive, agent

  8. The Effects of Arts-Integrated Instruction on Students' Memory for Science Content: Results from a Randomized Control Trial Study

    Science.gov (United States)

    Hardiman, Mariale; JohnBull, Ranjini Mahinda; Carran, Deborah

    2017-01-01

    Strong correlational evidence suggests that involvement in the arts improves students' academic outcomes and memory of learning events (e.g., Peppler et al., 2014; Robinson, 2013; Scripps & Paradis, 2014). It is unclear, however, whether the improved outcomes are the result of general exposure to the arts, arts integrated into content…

  9. Monitoring activities of satellite data processing services in real-time with SDDS Live Monitor

    Science.gov (United States)

    Duc Nguyen, Minh

    2017-10-01

    This work describes Live Monitor, the monitoring subsystem of SDDS - an automated system for space experiment data processing, storage, and distribution created at SINP MSU. Live Monitor allows operators and developers of satellite data centers to identify errors occurred in data processing quickly and to prevent further consequences caused by the errors. All activities of the whole data processing cycle are illustrated via a web interface in real-time. Notification messages are delivered to responsible people via emails and Telegram messenger service. The flexible monitoring mechanism implemented in Live Monitor allows us to dynamically change and control events being shown on the web interface on our demands. Physicists, whose space weather analysis models are functioning upon satellite data provided by SDDS, can use the developed RESTful API to monitor their own events and deliver customized notification messages by their needs.

  10. Kriging and local polynomial methods for blending satellite-derived and gauge precipitation estimates to support hydrologic early warning systems

    Science.gov (United States)

    Verdin, Andrew; Funk, Christopher C.; Rajagopalan, Balaji; Kleiber, William

    2016-01-01

    Robust estimates of precipitation in space and time are important for efficient natural resource management and for mitigating natural hazards. This is particularly true in regions with developing infrastructure and regions that are frequently exposed to extreme events. Gauge observations of rainfall are sparse but capture the precipitation process with high fidelity. Due to its high resolution and complete spatial coverage, satellite-derived rainfall data are an attractive alternative in data-sparse regions and are often used to support hydrometeorological early warning systems. Satellite-derived precipitation data, however, tend to underrepresent extreme precipitation events. Thus, it is often desirable to blend spatially extensive satellite-derived rainfall estimates with high-fidelity rain gauge observations to obtain more accurate precipitation estimates. In this research, we use two different methods, namely, ordinary kriging and κ-nearest neighbor local polynomials, to blend rain gauge observations with the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates in data-sparse Central America and Colombia. The utility of these methods in producing blended precipitation estimates at pentadal (five-day) and monthly time scales is demonstrated. We find that these blending methods significantly improve the satellite-derived estimates and are competitive in their ability to capture extreme precipitation.

  11. STAR: FPGA-based software defined satellite transponder

    Science.gov (United States)

    Davalle, Daniele; Cassettari, Riccardo; Saponara, Sergio; Fanucci, Luca; Cucchi, Luca; Bigongiari, Franco; Errico, Walter

    2013-05-01

    This paper presents STAR, a flexible Telemetry, Tracking & Command (TT&C) transponder for Earth Observation (EO) small satellites, developed in collaboration with INTECS and SITAEL companies. With respect to state-of-the-art EO transponders, STAR includes the possibility of scientific data transfer thanks to the 40 Mbps downlink data-rate. This feature represents an important optimization in terms of hardware mass, which is important for EO small satellites. Furthermore, in-flight re-configurability of communication parameters via telecommand is important for in-orbit link optimization, which is especially useful for low orbit satellites where visibility can be as short as few hundreds of seconds. STAR exploits the principles of digital radio to minimize the analog section of the transceiver. 70MHz intermediate frequency (IF) is the interface with an external S/X band radio-frequency front-end. The system is composed of a dedicated configurable high-speed digital signal processing part, the Signal Processor (SP), described in technology-independent VHDL working with a clock frequency of 184.32MHz and a low speed control part, the Control Processor (CP), based on the 32-bit Gaisler LEON3 processor clocked at 32 MHz, with SpaceWire and CAN interfaces. The quantization parameters were fine-tailored to reach a trade-off between hardware complexity and implementation loss which is less than 0.5 dB at BER = 10-5 for the RX chain. The IF ports require 8-bit precision. The system prototype is fitted on the Xilinx Virtex 6 VLX75T-FF484 FPGA of which a space-qualified version has been announced. The total device occupation is 82 %.

  12. Scripting Module for the Satellite Orbit Analysis Program (SOAP)

    Science.gov (United States)

    Carnright, Robert; Paget, Jim; Coggi, John; Stodden, David

    2008-01-01

    This add-on module to the SOAP software can perform changes to simulation objects based on the occurrence of specific conditions. This allows the software to encompass simulation response of scheduled or physical events. Users can manipulate objects in the simulation environment under programmatic control. Inputs to the scripting module are Actions, Conditions, and the Script. Actions are arbitrary modifications to constructs such as Platform Objects (i.e. satellites), Sensor Objects (representing instruments or communication links), or Analysis Objects (user-defined logical or numeric variables). Examples of actions include changes to a satellite orbit ( v), changing a sensor-pointing direction, and the manipulation of a numerical expression. Conditions represent the circumstances under which Actions are performed and can be couched in If-Then-Else logic, like performing v at specific times or adding to the spacecraft power only when it is being illuminated by the Sun. The SOAP script represents the entire set of conditions being considered over a specific time interval. The output of the scripting module is a series of events, which are changes to objects at specific times. As the SOAP simulation clock runs forward, the scheduled events are performed. If the user sets the clock back in time, the events within that interval are automatically undone. This script offers an interface for defining scripts where the user does not have to remember the vocabulary of various keywords. Actions can be captured by employing the same user interface that is used to define the objects themselves. Conditions can be set to invoke Actions by selecting them from pull-down lists. Users define the script by selecting from the pool of defined conditions. Many space systems have to react to arbitrary events that can occur from scheduling or from the environment. For example, an instrument may cease to draw power when the area that it is tasked to observe is not in view. The contingency

  13. Arts Impact: Lessons from ArtsBridge

    Science.gov (United States)

    Shimshon-Santo, Amy R.

    2010-01-01

    Arts Impact summarizes lessons learned at the ArtsBridge Program. It is informed by in-depth participant observation, logic modeling, and quantitative evaluation of program impact on K-12 students in inner city schools and arts students at the University of California Los Angeles over a two year period. The case study frames its analysis through a…

  14. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  15. The Humans in Space Art Program - Engaging the Mind, and the Heart, in Science

    Science.gov (United States)

    McPhee, J. C.

    2017-12-01

    How can we do a better job communicating about space, science and technology, getting more people engaged, understanding the impact that future space exploration will have on their lives, and thinking about how they can contribute? Humans naturally express their visions and interests through various forms of artistic expression because art is inherently capable of expressing not only the "what and how" but also the "why" of ideas. Offering opportunities that integrate space, science and technology with art allows more people to learn about space, relay their visions of the future, and discuss why exploration and research are important. The Humans in Space Art Program, managed by the nonprofit SciArt Exchange, offers a science-integrated-with-art opportunity. Through international online competitions, we invite participants to share their visions of the future using visual, literary, musical and video art. We then use their artwork in multi-media displays and live performances online, locally worldwide, and in space to engage listeners and viewers. The Program has three projects, targeting different types of participants: the Youth Competition (ages 10-18), the Challenge (college and early career) and Celebrity Artist-Fed Engagement (CAFÉ: professional artists). To date, the Program has received 3400 artworks from over 52 countries and displayed the artwork in 110 multi-media events worldwide, on the International Space Station and bounced off the Moon. 100,000's have thus viewed artwork considering topics such as: why we explore; where and how we will go and when; and what we will do when we arrive. The Humans in Space Art Program is a flexible public engagement model applicable to multiple settings, including classrooms, art and entertainment events, and scientific conferences. It provides a system to accessibly inspire all ages about space, science and technology, making them hungry to learn more and to take a personal role.

  16. Aspects of Cultural Landscape Application on Classical Stage Art. Ballet Performance in the Open Space as a Significant Element of the Cultural Landscape

    Directory of Open Access Journals (Sweden)

    Jelena Lebedeva

    2016-04-01

    Full Text Available The article examines the applications aspects of cultural landscape for the preparation of the classical performing arts staging. Research findings highlighted that the cultural landscape (parks, estates, castles, bastions, etc. objects occupies an increasingly important role in public recreation and classical art development programs. At the same time it is noted that event’s aesthetic and emotional quality suffers due to the fact that no specific attention was given for the preparation of the event space. More methodological materials are necessary for preparation of this type of design spaces. In Lithuania classical performing arts events in cultural landscape open spaces are based on XVI–XVII century tradition and has good prospects for modern development. A review of some of the classical art events installations, based on the importance of quality of open spaces influence on the emotional impact, that should be an integral part of the cultural event. The author summarizes his experience of ballet events in open spaces in the cultural landscape – Klaipėda, Trakai. Presented is Tchaikovsky's ballet “Swan Lake” construction in Klaipėda John Hill project that includes infrastructure and environmental design concept: audience space, stage design, stage design performance solutions. Analogous key decisions are later adapted to the ballet performance in the natural environment of the lake Trakai. Experience of this project dictated the necessity of deeper understanding and methodological basis for the classical performing arts analysis and design.

  17. Organisational Art

    DEFF Research Database (Denmark)

    Ferro-Thomsen, Martin

    creation of a practical utopia (?heterotopia?) in the organisational context. The case study makes use of both art- and organisational theory. The thesis concludes with an outline of a framework for OA that is derived from contemporary theory of mainly Relational Aesthetics (Bourriaud), Conceptual Art......University of Copenhagen / Learning Lab Denmark. 2005 Kort beskrivelse: Organisational Art is a tentative title for an art form that works together with organisations to produce art. This is most often done together with non-artist members of the organisation and on-site in their social context. OA...... is characterised as socially engaged, conceptual, discursive, site-specific and contextual. Abstract: This investigation is about Organisational Art (OA), which is a tentative title for an art form that works together with organisations (companies, institutions, communities, governments and NGOs) to produce art...

  18. Support for Arts Education. State Arts Agency Fact Sheet

    Science.gov (United States)

    National Assembly of State Arts Agencies, 2011

    2011-01-01

    Supporting lifelong learning in the arts is a top priority for state arts agencies. By supporting arts education in the schools, state arts agencies foster young imaginations, address core academic standards, and promote the critical thinking and creativity skills essential to a 21st century work force. State arts agencies also support…

  19. An Inquiry of How Art Education Policies Are Reflected in Art Teacher Preparation: Examining the Standards for Visual Arts and Art Teacher Certification

    Science.gov (United States)

    Lim, Kyungeun

    2017-01-01

    Policy changes influence various aspects of art education such as K-12 art education curricula, state licensure systems, and contexts of art teacher preparation. Despite strong relationships between art education policy and practical fields, few studies have attempted to understand art education from the perspective of policy analysis. This study…

  20. Evaluating an Art-Based Intervention to Improve Practicing Nurses' Observation, Description, and Problem Identification Skills.

    Science.gov (United States)

    Nease, Beth M; Haney, Tina S

    Astute observation, description, and problem identification skills provide the underpinning for nursing assessment, surveillance, and prevention of failure to rescue events. Art-based education has been effective in nursing schools for improving observation, description, and problem identification. The authors describe a randomized controlled pilot study testing the effectiveness of an art-based educational intervention aimed at improving these skills in practicing nurses.

  1. Satellite constraints on surface concentrations of particulate matter

    Science.gov (United States)

    Ford Hotmann, Bonne

    (below 700 hPa), which cannot be explained by vertical mixing; we conclude that the discrepancy is due to a missing source of aerosols above the surface layer in summer. Next, we examine the usefulness of deriving premature mortality estimates from "satellite-based" PM2.5 concentrations. In particular, we examine how uncertainties in the model AOD-to-surface-PM2.5 relationship, satellite retrieved AOD, and particulars of the concentration-response function can impact these mortality estimates. We find that the satellite-based estimates suggest premature mortality due to chronic PM2.5 exposure is 2-16% higher in the U.S. and 4-13% lower in China compared to model-based estimates. However, this difference is overshadowed by the uncertainty in the methodology, which we quantify to be on order of 20% for the model-to- surface-PM2.5 relationship, 10% for the satellite AOD and 30-60% or greater with regards to the application of concentration response functions. Because there is a desire for acute exposure estimates, especially with regards to extreme events, we also examine how premature mortality due to acute exposure can be estimated from global models and satellite-observations. We find similar differences between model and satellite-based mortality estimates as with chronic exposure. However the range of uncertainty is much larger on these shorter timescales. This work suggests that although satellites can be useful for constraining model estimates of PM2.5, national mortality estimates from the two methods are not significantly different. In order to improve the efficacy of satellite-based PM2.5 mortality estimates, future work will need to focus on improving the model representation of the regional AOD-to-surface-PM2.5 relationship, reducing biases in satellite-retrieved AOD and advancing our understanding of personal and population-level responses to PM2.5 exposure.

  2. VISUAL ART APPRECIATION IN NIGERIA: THE ZARIA ART ...

    African Journals Online (AJOL)

    ndubuisi

    2017-02-02

    Feb 2, 2017 ... award a Diploma certificate in art, Nigerian College of Arts, Science and ... the activities of NCAST which was the first institution of higher learning in Nigeria to award .... The Zaria Art Society was a product of an informal discussion between .... of young men from the Zaria art school who were inspired and ...

  3. The Liberal Arts and the Martial Arts.

    Science.gov (United States)

    Levine, Donald N.

    1984-01-01

    Liberal arts and the martial arts are compared from the perspective that courses of training in the martial arts often constitute exemplary educational programs and are worth examining closely. Program characteristics, individual characteristics fostered by them, the relationship between liberal and utilitarian learning, and the moral…

  4. The Return of the Body: Performance Art and Art Education.

    Science.gov (United States)

    Green, Gaye Leigh

    1999-01-01

    Explains that performance art incorporates different artistic forms, emphasizes the process of art over the product, and blurs the line between life and art. Discusses the history of performance art, highlights the Performance Art, Culture, and Pedagogy Symposium, and provides examples of how to use performance art in the classroom. (CMK)

  5. A space weather forecasting system with multiple satellites based on a self-recognizing network.

    Science.gov (United States)

    Tokumitsu, Masahiro; Ishida, Yoshiteru

    2014-05-05

    This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  6. A Space Weather Forecasting System with Multiple Satellites Based on a Self-Recognizing Network

    Directory of Open Access Journals (Sweden)

    Masahiro Tokumitsu

    2014-05-01

    Full Text Available This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV. The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  7. Managing satisfaction in cultural events: Exploring the role of core and peripheral product

    Directory of Open Access Journals (Sweden)

    Manuel Cuadrado-García

    2017-01-01

    Full Text Available This paper measures satisfaction with a cultural event following an innovative approach by differentiating between the art form itself (core product and the main attributes connected with it (augmented product. 122 individuals (out of 820 visitors were interviewed on their overall satisfaction and on different aspects of their visiting experience. Multivariate techniques such as ANOVA, principal component factor analysis and regression were performed to analyse the data. Results show the importance of both the core and the peripheral product in measuring satisfaction with a cultural event, thereby highlighting their importance for product management in the arts. The small sample, the specificity of the data and the bias of the distribution have prevented further multivariate analysis. A future area of research is on antecedents to customer satisfaction in the arts field. The contribution of peripheral elements to satisfaction should not be underestimated. Despite artists’ freedom to produce the work of art, a series of peripheral elements should be designed along with the other variables of the marketing mix in order to adapt and differentiate the artistic production to the target audience. This paper contributes a different perspective to measuring satisfaction in the arts context while considering the role of the core product and its peripherals.

  8. Use of satellite imagery to identify vegetation cover changes following the Waldo Canyon Fire event, Colorado, 2012-2013

    Science.gov (United States)

    Cole, Christopher J.; Friesen, Beverly A.; Wilson, Earl M.

    2014-01-01

    The Waldo Canyon Fire of 2012 was one of the most destructive wildfire events in Colorado history. The fire burned a total of 18,247 acres, claimed 2 lives, and destroyed 347 homes. The Waldo Canyon Fire continues to pose challenges to nearby communities. In a preliminary emergency assessment conducted in 2012, the U.S. Geological Survey (USGS) concluded that drainage basins within and near the area affected by the Waldo Canyon Fire pose a risk for future debris flow events. Rainfall over burned, formerly vegetated surfaces resulted in multiple flood and debris flow events that affected the cities of Colorado Springs and Manitou Springs in 2013. One fatality resulted from a mudslide near Manitou Springs in August 2013. Federal, State, and local governments continue to monitor these hazards and other post-fire effects, along with the region’s ecological recovery. At the request of the Colorado Springs Office of Emergency Management, the USGS Special Applications Science Center developed a geospatial product to identify vegetation cover changes following the 2012 Waldo Canyon Fire event. Vegetation cover was derived from July 2012 WorldView-2 and September 2013 QuickBird multispectral imagery at a spatial resolution of two meters. The 2012 image was collected after the fire had reached its maximum extent. Per-pixel increases and decreases in vegetation cover were identified by measuring spectral changes that occurred between the 2012 and 2013 image dates. A Normalized Difference Vegetation Index (NDVI), and Green-Near Infrared Index (GRNIR) were computed from each image. These spectral indices are commonly used to characterize vegetation cover and health condition, due to their sensitivity to detect foliar chlorophyll content. Vector polygons identifying surface-cover feature boundaries were derived from the 2013 imagery using image segmentation software. This geographic software groups similar image pixels into vector objects based upon their spatial and spectral

  9. Monitoring activities of satellite data processing services in real-time with SDDS Live Monitor

    Directory of Open Access Journals (Sweden)

    Duc Nguyen Minh

    2017-01-01

    Full Text Available This work describes Live Monitor, the monitoring subsystem of SDDS – an automated system for space experiment data processing, storage, and distribution created at SINP MSU. Live Monitor allows operators and developers of satellite data centers to identify errors occurred in data processing quickly and to prevent further consequences caused by the errors. All activities of the whole data processing cycle are illustrated via a web interface in real-time. Notification messages are delivered to responsible people via emails and Telegram messenger service. The flexible monitoring mechanism implemented in Live Monitor allows us to dynamically change and control events being shown on the web interface on our demands. Physicists, whose space weather analysis models are functioning upon satellite data provided by SDDS, can use the developed RESTful API to monitor their own events and deliver customized notification messages by their needs.

  10. Satellite myths

    Science.gov (United States)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  11. Communication satellite applications

    Science.gov (United States)

    Pelton, Joseph N.

    The status and future of the technologies, numbers and services provided by communications satellites worldwide are explored. The evolution of Intelsat satellites and the associated earth terminals toward high-rate all-digital telephony, data, facsimile, videophone, videoconferencing and DBS capabilities are described. The capabilities, services and usage of the Intersputnik, Eutelsat, Arabsat and Palapa systems are also outlined. Domestic satellite communications by means of the Molniya, ANIK, Olympus, Intelsat and Palapa spacecraft are outlined, noting the fast growth of the market and the growing number of different satellite manufacturers. The technical, economic and service definition issues surrounding DBS systems are discussed, along with presently operating and planned maritime and aeronautical communications and positioning systems. Features of search and rescue and tracking, data, and relay satellite systems are summarized, and services offered or which will be offered by every existing or planned communication satellite worldwide are tabulated.

  12. Study of Education Satellite Communication Demonstration. Third Quarterly Progress Report. Report of Activities and Accomplishments January 11, 1975 to April 10, 1975.

    Science.gov (United States)

    Syracuse Univ. Research Corp., NY. Educational Policy Research Center.

    A report on the Education Satellite Communication Demonstration (ESCD) describes activities of the evaluators during the first quarter of 1975, including staff trips and site visits and activities of various staff members. A calendar of future events in satellites, telecommunications, and education is included, with revision on dates and new…

  13. Making Climate Change Visceral Through the Arts

    Science.gov (United States)

    Bilodeau, C.

    2016-12-01

    Through their affective power, the arts offer a more visceral understanding of our global crisis and have a greater potential to inspire people to take action than scientific data alone. In this talk, I will look at three projects that use art to translate scientific data into sensory experiences, galvanize communities around visions of a positive future, and make climate change relevant to our lives. Jill Pelto's work makes science visible. A recent graduate from the University of Maine, Pelto practices what she calls glaciogenic art. As an artist and scientist, she uses her creative skills to communicate information about extreme environmental issues. Pelto's watercolors merge scientific data commonly found on graphs with the interpretation of that data in the form of illustrations. The result is an immediate understanding of the science and its implications. The Land Art Generator Initiative provides a platform for artists, architects, landscape architects, and other creatives working with engineers and scientists to bring forward human-centered solutions for sustainable energy infrastructures that enhance the city as works of public art while cleanly powering thousands of homes. Land Art Generator works are optimistic reminders that there is still time to make positive changes. Climate Change Theatre Action was a series of 100 readings and performances of climate change plays, poems and songs, written by writers from all six continents, presented in over 25 countries in support of the United Nations 2015 Paris Climate Conference. Events ranged from informal readings in classrooms to fully-staged performances, and often included presentations and/or panel conversations with scientists. The project reached people from all walks of life (including homeless youth and refugees) and had a powerful impact on audiences.

  14. Inter-Comparison of High-Resolution Satellite Precipitation Products over Central Asia

    Directory of Open Access Journals (Sweden)

    Hao Guo

    2015-06-01

    Full Text Available This paper examines the spatial error structures of eight precipitation estimates derived from four different satellite retrieval algorithms including TRMM Multi-satellite Precipitation Analysis (TMPA, Climate Prediction Center morphing technique (CMORPH, Global Satellite Mapping of Precipitation (GSMaP and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN. All the original satellite and bias-corrected products of each algorithm (3B42RTV7 and 3B42V7, CMORPH_RAW and CMORPH_CRT, GSMaP_MVK and GSMaP_Gauge, PERSIANN_RAW and PERSIANN_CDR are evaluated against ground-based Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE over Central Asia for the period of 2004 to 2006. The analyses show that all products except PERSIANN exhibit overestimation over Aral Sea and its surrounding areas. The bias-correction improves the quality of the original satellite TMPA products and GSMaP significantly but slightly in CMORPH and PERSIANN over Central Asia. 3B42RTV7 overestimates precipitation significantly with large Relative Bias (RB (128.17% while GSMaP_Gauge shows consistent high correlation coefficient (CC (>0.8 but RB fluctuates between −57.95% and 112.63%. The PERSIANN_CDR outperforms other products in winter with the highest CC (0.67. Both the satellite-only and gauge adjusted products have particularly poor performance in detecting rainfall events in terms of lower POD (less than 65%, CSI (less than 45% and relatively high FAR (more than 35%.

  15. The Effects of Climate Variability on Phytoplankton Composition in the Equatorial Pacific Ocean using a Model and a Satellite-Derived Approach

    Science.gov (United States)

    Rousseaux, C. S.; Gregg, W. W.

    2012-01-01

    Compared the interannual variation in diatoms, cyanobacteria, coccolithophores and chlorophytes from the NASA Ocean Biogeochemical Model with those derived from satellite data (Hirata et al. 2011) between 1998 and 2006 in the Equatorial Pacific. Using NOBM, La Ni a events were characterized by an increase in diatoms (correlation with MEI, r=-0.81, Pphytoplankton community in response to climate variability. However, satellite-derived phytoplankton groups were all negatively correlated with climate variability (r ranged from -0.39 for diatoms to -0.64 for coccolithophores, Pphytoplankton groups except diatoms than NOBM. However, the different responses of phytoplankton to intense interannual events in the Equatorial Pacific raises questions about the representation of phytoplankton dynamics in models and algorithms: is a phytoplankton community shift as in the model or an across-the-board change in abundances of all phytoplankton as in the satellite-derived approach.

  16. ArtsIN: Arts Integration and Infusion Framework

    Science.gov (United States)

    Hartle, Lynn C.; Pinciotti, Patricia; Gorton, Rebecca L.

    2015-01-01

    Teaching to meet the diverse learning needs of twenty-first century, global learners can be challenging, yet a growing body of research points to the proved successes of arts-infused and integrated curricula, especially for building capacity for learning and motivation. This article presents the ArtsIN: Arts Integration and Infusion framework, a…

  17. Does short-term virologic failure translate to clinical events in antiretroviral-naïve patients initiating antiretroviral therapy in clinical practice?

    NARCIS (Netherlands)

    Mugavero, Michael J; May, Margaret; Harris, Ross; Saag, Michael S; Costagliola, Dominique; Egger, Matthias; Phillips, Andrew; Günthard, Huldrych F; Dabis, Francois; Hogg, Robert; de Wolf, Frank; Fatkenheuer, Gerd; Gill, M John; Justice, Amy; D'Arminio Monforte, Antonella; Lampe, Fiona; Miró, Jose M; Staszewski, Schlomo; Sterne, Jonathan A C; Niesters, Bert

    2008-01-01

    OBJECTIVE: To determine whether differences in short-term virologic failure among commonly used antiretroviral therapy (ART) regimens translate to differences in clinical events in antiretroviral-naïve patients initiating ART. DESIGN: Observational cohort study of patients initiating ART between

  18. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique

    Directory of Open Access Journals (Sweden)

    Carolien Toté

    2015-02-01

    Full Text Available Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day gridded satellite rainfall products (TAMSAT African Rainfall Climatology And Time-series (TARCAT v2.0, Famine Early Warning System NETwork (FEWS NET Rainfall Estimate (RFE v2.0, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS are compared to independent gauge data (2001–2012. This is done using pairwise comparison statistics to evaluate the performance in estimating rainfall amounts and categorical statistics to assess rain-detection capabilities. The analysis was performed for different rainfall categories, over the seasonal cycle and for regions dominated by different weather systems. Overall, satellite products overestimate low and underestimate high dekadal rainfall values. The RFE and CHIRPS products perform as good, generally outperforming TARCAT on the majority of statistical measures of skill. TARCAT detects best the relative frequency of rainfall events, while RFE underestimates and CHIRPS overestimates the rainfall events frequency. Differences in products performance disappear with higher rainfall and all products achieve better results during the wet season. During the cyclone season, CHIRPS shows the best results, while RFE outperforms the other products for lower dekadal rainfall. Products blending thermal infrared and passive microwave imagery perform better than infrared only products and particularly when meteorological patterns are more complex, such as over the coastal, central and south regions of Mozambique, where precipitation is influenced by frontal systems.

  19. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique

    Science.gov (United States)

    Tote, Carolien; Patricio, Domingos; Boogaard, Hendrik; van der Wijngaart, Raymond; Tarnavsky, Elena; Funk, Christopher C.

    2015-01-01

    Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day) gridded satellite rainfall products (TAMSAT African Rainfall Climatology And Time-series (TARCAT) v2.0, Famine Early Warning System NETwork (FEWS NET) Rainfall Estimate (RFE) v2.0, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS)) are compared to independent gauge data (2001–2012). This is done using pairwise comparison statistics to evaluate the performance in estimating rainfall amounts and categorical statistics to assess rain-detection capabilities. The analysis was performed for different rainfall categories, over the seasonal cycle and for regions dominated by different weather systems. Overall, satellite products overestimate low and underestimate high dekadal rainfall values. The RFE and CHIRPS products perform as good, generally outperforming TARCAT on the majority of statistical measures of skill. TARCAT detects best the relative frequency of rainfall events, while RFE underestimates and CHIRPS overestimates the rainfall events frequency. Differences in products performance disappear with higher rainfall and all products achieve better results during the wet season. During the cyclone season, CHIRPS shows the best results, while RFE outperforms the other products for lower dekadal rainfall. Products blending thermal infrared and passive microwave imagery perform better than infrared only products and particularly when meteorological patterns are more complex, such as over the coastal, central and south regions of Mozambique, where precipitation is influenced by frontal systems.

  20. Probability model for worst case solar proton event fluences

    International Nuclear Information System (INIS)

    Xapsos, M.A.; Summers, G.P.; Barth, J.L.; Stassinopoulos, E.G.; Burke, E.A.

    1999-01-01

    The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary orbits, polar orbits and on interplanetary missions. A predictive model of worst case solar proton event fluences is presented. It allows the expected worst case event fluence to be calculated for a given confidence level and for periods of time corresponding to space missions. The proton energy range is from >1 to >300 MeV, so that the model is useful for a variety of radiation effects applications. For each proton energy threshold, the maximum entropy principle is used to select the initial distribution of solar proton event fluences. This turns out to be a truncated power law, i.e., a power law for smaller event fluences that smoothly approaches zero at a maximum fluence. The strong agreement of the distribution with satellite data for the last three solar cycles indicates this description captures the essential features of a solar proton event fluence distribution. Extreme value theory is then applied to the initial distribution of events to obtain the model of worst case fluences

  1. Cultivating Demand for the Arts: Arts Learning, Arts Engagement, and State Arts Policy

    Science.gov (United States)

    Zakaras, Laura; Lowell, Julia F.

    2008-01-01

    To shed light on the decline in demand for the nonprofit arts, the authors describe what it means to cultivate demand for the arts, examine how well U.S. institutions are serving this function, and discuss whether it is in the public interest to make such cultivation a higher priority than it has been in the past. The authors propose that a strong…

  2. The Art of Memory: "Social Bookmarking Hamburg"

    Directory of Open Access Journals (Sweden)

    Noga Stiassny

    2018-02-01

    Full Text Available At the end of November 2016, a unique and intruding art project took place in the city of Hamburg, Germany, a result of collaboration between German artists and a Chinese artist, who all seek to commemorate the Chinese victims who lived in the city pre- World War II but had to suffer the injustices of the Nazi regime. The project lasted three days and was presented in various locations throughout the city, while including many artistic mediums alongside scholarly work. By referring to the main events of that weekend, the paper traces after a “forgotten” past that many people refuse to look at, not to say to take responsibility for it, while in contrast, the art continues to extract it from the depths of oblivion and forced amnesia – to the dismay of many.

  3. Diagnosing low earth orbit satellite anomalies using NOAA-15 electron data associated with geomagnetic perturbations

    Science.gov (United States)

    Ahmad, Nizam; Herdiwijaya, Dhani; Djamaluddin, Thomas; Usui, Hideyuki; Miyake, Yohei

    2018-05-01

    A satellite placed in space is constantly affected by the space environment, resulting in various impacts from temporary faults to permanent failures depending on factors such as satellite orbit, solar and geomagnetic activities, satellite local time, and satellite construction material. Anomaly events commonly occur during periods of high geomagnetic activity that also trigger plasma variation in the low Earth orbit (LEO) environment. In this study, we diagnosed anomalies in LEO satellites using electron data from the Medium Energy Proton and Electron Detector onboard the National Oceanic and Atmospheric Administration (NOAA)-15 satellite. In addition, we analyzed the fluctuation of electron flux in association with geomagnetic disturbances 3 days before and after the anomaly day. We selected 20 LEO anomaly cases registered in the Satellite News Digest database for the years 2000-2008. Satellite local time, an important parameter for anomaly diagnosis, was determined using propagated two-line element data in the SGP4 simplified general perturbation model to calculate the longitude of the ascending node of the satellite through the position and velocity vectors. The results showed that the majority of LEO satellite anomalies are linked to low-energy electron fluxes of 30-100 keV and magnetic perturbations that had a higher correlation coefficient ( 90%) on the day of the anomaly. The mean local time calculation for the anomaly day with respect to the nighttime migration of energetic electrons revealed that the majority of anomalies (65%) occurred on the night side of Earth during the dusk-to-dawn sector of magnetic local time.

  4. History of Satellite TV Broadcasting and Satellite Broadcasting Market in Turkey

    Directory of Open Access Journals (Sweden)

    Mihalis KUYUCU

    2015-09-01

    Full Text Available The present study analyses the satellite broadcasting that is the first important development that emerged as a result of digitalization in communication technologies and its reflections in Turkey. As the first milestone in the globalization of television broadcasting, satellite broadcasting provided substantial contribution towards the development of the media. Satellite bro adcasting both increased the broadcasting quality and geographical coverage of the television media. A conceptual study was carried out in the first part of the study in connection with the history of satellite broadcasting in Turkey and across the world. In the research part of the study, an analysis was performed on 160 television channels that broadcast in Turkey via Turksat Satellite. Economic structure of the television channels broadcasting in Turkey via satellite was studied and an analysis was perfo rmed on the operational structure of the channels. As a result of the study, it was emphasized that the television channels broadcasting via satellite platform also use other platforms for the purpose of spreading their broadcasts and television channel ow ners make investments in different branches of the media, too. Capital owners invest in different business areas other than the media although television channels broadcasting via Turksat mostly focus on thematic broadcasting and make effort to generate ec onomic income from advertisements. Delays are encountered in the course of the convergence between the new media and television channels that broadcast only from the satellite platform and such television channels experience more economic problems than the other channels. New media and many TV broadcasting platforms emerged as a result of the developments in the communication technologies. In television broadcasting, satellite platform is not an effective platform on its own. Channels make effort to reach t o more people by using other platforms in addition to

  5. Arte Brasileno Erudito y Arte Brasileno Popular. (Brazilian Fine Art and Brazilian Popular Art)

    Science.gov (United States)

    Valladares, Clarival Do Prado

    1969-01-01

    Class differences in Brazil explain the inequality between the art produced in the high strata of society and that originating in the economically inferior communities. Genuine expression of art degenerates for two reasons: the influence of modern industrial civilization and the tendency to satisfy the taste of the acquisitive group. (Author/MF)

  6. Performative, Arts-Based, or Arts-Informed? Reflections on the Development of Arts-Based Research in Music Therapy.

    Science.gov (United States)

    Ledger, Alison; McCaffrey, Tríona

    2015-01-01

    Arts-based research (ABR) has emerged in music therapy in diverse ways, employing a range of interpretive paradigms and artistic media. It is notable that no consensus exists as to when and where the arts are included in the research process, or which music therapy topics are most suited to arts-based study. This diversity may pose challenges for music therapists who are developing, reading, and evaluating arts-based research. This paper provides an updated review of arts-based research literature in music therapy, along with four questions for researchers who are developing arts-based research. These questions are 1) When should the arts be introduced? 2) Which artistic medium is appropriate? 3) How should the art be understood? and 4) What is the role of the audience? We argue that these questions are key to understanding arts-based research, justifying methods, and evaluating claims arising from arts-based research. Rather than defining arts-based research in music therapy, we suggest that arts-based research should be understood as a flexible research strategy appropriate for exploring the complexities of music therapy practice. © the American Music Therapy Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Relative tracking control of constellation satellites considering inter-satellite link

    Science.gov (United States)

    Fakoor, M.; Amozegary, F.; Bakhtiari, M.; Daneshjou, K.

    2017-11-01

    In this article, two main issues related to the large-scale relative motion of satellites in the constellation are investigated to establish the Inter Satellite Link (ISL) which means the dynamic and control problems. In the section related to dynamic problems, a detailed and effective analytical solution is initially provided for the problem of satellite relative motion considering perturbations. The direct geometric method utilizing spherical coordinates is employed to achieve this solution. The evaluation of simulation shows that the solution obtained from the geometric method calculates the relative motion of the satellite with high accuracy. Thus, the proposed analytical solution will be applicable and effective. In the section related to control problems, the relative tracking control system between two satellites will be designed in order to establish a communication link between the satellites utilizing analytical solution for relative motion of satellites with respect to the reference trajectory. Sliding mode control approach is employed to develop the relative tracking control system for body to body and payload to payload tracking control. Efficiency of sliding mode control approach is compared with PID and LQR controllers. Two types of payload to payload tracking control considering with and without payload degree of freedom are designed and suitable one for practical ISL applications is introduced. Also, Fuzzy controller is utilized to eliminate the control input in the sliding mode controller.

  8. Mobile satellite service communications tests using a NASA satellite

    Science.gov (United States)

    Chambers, Katherine H.; Koschmeder, Louis A.; Hollansworth, James E.; ONeill, Jack; Jones, Robert E.; Gibbons, Richard C.

    1995-01-01

    Emerging applications of commercial mobile satellite communications include satellite delivery of compact disc (CD) quality radio to car drivers who can select their favorite programming as they drive any distance; transmission of current air traffic data to aircraft; and handheld communication of data and images from any remote corner of the world. Experiments with the enabling technologies and tests and demonstrations of these concepts are being conducted before the first satellite is launched by utilizing an existing NASA spacecraft.

  9. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  10. Multilingual event extraction for epidemic detection.

    Science.gov (United States)

    Lejeune, Gaël; Brixtel, Romain; Doucet, Antoine; Lucas, Nadine

    2015-10-01

    This paper presents a multilingual news surveillance system applied to tele-epidemiology. It has been shown that multilingual approaches improve timeliness in detection of epidemic events across the globe, eliminating the wait for local news to be translated into major languages. We present here a system to extract epidemic events in potentially any language, provided a Wikipedia seed for common disease names exists. The Daniel system presented herein relies on properties that are common to news writing (the journalistic genre), the most useful being repetition and saliency. Wikipedia is used to screen common disease names to be matched with repeated characters strings. Language variations, such as declensions, are handled by processing text at the character-level, rather than at the word level. This additionally makes it possible to handle various writing systems in a similar fashion. As no multilingual ground truth existed to evaluate the Daniel system, we built a multilingual corpus from the Web, and collected annotations from native speakers of Chinese, English, Greek, Polish and Russian, with no connection or interest in the Daniel system. This data set is available online freely, and can be used for the evaluation of other event extraction systems. Experiments for 5 languages out of 17 tested are detailed in this paper: Chinese, English, Greek, Polish and Russian. The Daniel system achieves an average F-measure of 82% in these 5 languages. It reaches 87% on BEcorpus, the state-of-the-art corpus in English, slightly below top-performing systems, which are tailored with numerous language-specific resources. The consistent performance of Daniel on multiple languages is an important contribution to the reactivity and the coverage of epidemiological event detection systems. Most event extraction systems rely on extensive resources that are language-specific. While their sophistication induces excellent results (over 90% precision and recall), it restricts their

  11. Monitoring Natural Events Globally in Near Real-Time Using NASA's Open Web Services and Tools

    Science.gov (United States)

    Boller, Ryan A.; Ward, Kevin Alan; Murphy, Kevin J.

    2015-01-01

    Since 1960, NASA has been making global measurements of the Earth from a multitude of space-based missions, many of which can be useful for monitoring natural events. In recent years, these measurements have been made available in near real-time, making it possible to use them to also aid in managing the response to natural events. We present the challenges and ongoing solutions to using NASA satellite data for monitoring and managing these events.

  12. Art Therapy: What Is Art Therapy?

    Science.gov (United States)

    ... individual, couples, family, and group therapy formats. Art therapy is an effective treatment for people experiencing developmental, medical, educational, and social or psychological impairment. Individuals who benefit from art therapy include ...

  13. Enhancing STEM Education through Cubesats: Using Satellite Integration as a Teaching Tool at a Non-Tech School

    Science.gov (United States)

    Bernardes, S.; Cotten, D. L.

    2016-12-01

    University-based satellite programs have been successfully used as a platform for teaching STEM related fields, bringing tremendous benefits to graduate and undergraduate education. Considering their infrastructure and curricula, tech schools have traditionally been considered logical candidates for hosting such programs. More recently, with the dissemination of small satellites initiatives, non-tech schools have been presented the opportunity of developing satellite design and implementation programs. This work reports on the experiences and challenges associated with implementing a satellite program at the University of Georgia (UGA), a non-tech university. With funding from the Air Force Research Laboratory's (AFRL) University Nanosat Program (UNP) and NASA's Undergraduate Student Instrument Project (USIP) a team of undergraduates at UGA has recently been tasked with building two small satellites and helping to create a Small Satellite Research Laboratory (SSRL) at the university. Unique features of the satellite program at UGA include its team of students from a broad range of backgrounds and departments (Engineering, Computer Science, Art, Business, and Geography) and the previous exposure of many of these students to synergistic technologies, including arduino and unmanned aerial systems. We show how informal exposure to those technologies and willingness of students to focus on areas outside of their field of study can benefit from the implementation of satellite programs. In this regard, we report on methods and techniques used to find and recruit driven and knowledgeable students to work in a high paced field such as satellite system integration. We show how students and faculty from multiple departments have collaborated to reach a common, far reaching goal and describe our proposed methods to evaluate and measure educational goals based around SSRL and its projects. We also present the challenges associated with the lack of a developed engineering

  14. Sustained attention in skilled and novice martial arts athletes: a study of event-related potentials and current sources.

    Science.gov (United States)

    Sanchez-Lopez, Javier; Silva-Pereyra, Juan; Fernandez, Thalia

    2016-01-01

    Background. Research on sports has revealed that behavioral responses and event-related brain potentials (ERP) are better in expert than in novice athletes for sport-related tasks. Focused attention is essential for optimal athletic performance across different sports but mainly in combat disciplines. During combat, long periods of focused attention (i.e., sustained attention) are required for a good performance. Few investigations have reported effects of expertise on brain electrical activity and its neural generators during sport-unrelated attention tasks. The aim of the present study was to assess the effect of expertise (i.e., skilled and novice martial arts athletes) analyzing the ERP during a sustained attention task (Continuous Performance Task; CPT) and the cortical three-dimensional distribution of current density, using the sLORETA technique. Methods. CPT consisted in an oddball-type paradigm presentation of five stimuli (different pointing arrows) where only one of them (an arrow pointing up right) required a motor response (i.e., target). CPT was administered to skilled and novice martial arts athletes while EEG were recorded. Amplitude ERP data from target and non-target stimuli were compared between groups. Subsequently, current source analysis for each ERP component was performed on each subject. sLORETA images were compared by condition and group using Statistical Non-Parametric Mapping analysis. Results. Skilled athletes showed significant amplitude differences between target and non-target conditions in early ERP components (P100 and P200) as opposed to the novice group; however, skilled athletes showed no significant effect of condition in N200 but novices did show a significant effect. Current source analysis showed greater differences in activations in skilled compared with novice athletes between conditions in the frontal (mainly in the Superior Frontal Gyrus and Medial Frontal Gyrus) and limbic (mainly in the Anterior Cingulate Gyrus) lobes

  15. Street-art

    OpenAIRE

    Rybnikářová, Klára

    2009-01-01

    This thesis is concerned with the street-art and graffiti phenomenon. The theoretical research is focused on presenting the essence and character of this art style, while also watching it from socio-cultural point of view and observing it in context of art history. The theoretical study is followed by the didactical part of thesis, where I present possibilities of using the street-art theme in art education programs in the school setting. My thesis is concluded with a discussion of a practica...

  16. IN A PARALLEL UNIVERSE: HOW ART EXPLOITS TECHNOLOGY

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Technical innovation in the arts creates new opportunities for perceptual shifts that lead to lasting achievements. One of the most important events took place in the 15th century not far from CERN on the other side of the Alps in Venice. Titian, in one life time, exploited these new material developments to expand the range of expression like no other artist of his generation. Titian was able to harness these new innovations to emerge as the supreme competitor and hustler, a notion that seems very much a part of the modern promotion of art as exemplified by Warhol , Jeff Koons and Damian Hirst. The language of science and technology has created social networks, changed the mediums and the subject of fine art. Fast forward to CERN 2012, the most expensive experiment in the history of science. The knowledge of dark matter will either help confirm, or not, the Standard Model. This information will be part of what Michel Foucault calls "epistemological breaks", shifts in consciousness that change our p...

  17. Satellite hole formation during dewetting: experiment and simulation

    International Nuclear Information System (INIS)

    Neto, Chiara; Jacobs, Karin; Seemann, Ralf; Blossey, Ralf; Becker, Juergen; Gruen, Guenther

    2003-01-01

    The dewetting of thin polymer films on solid substrates has been studied extensively in recent years. These films can decay either by nucleation events or by spinodal dewetting, essentially only depending on the interface potential describing the short- and long-range intermolecular interactions between the interfaces and the initial film thickness. Here, we describe experiments and simulations concerned with the decay of polystyrene thin films. The rupture of the film occurs by the formation of a correlated pattern of holes ('satellite holes') along the liquid rims accumulating at the channel borders. The development of this complex film rupture process, which is neither simply spinodal nor nucleation dewetting, can be mimicked precisely by making use of a novel simulation code based on a rigorous mathematical treatment of the thin film equation and on the knowledge of the effective interface potential of the system. The conditions that determine the appearance and the position of the satellite holes around pre-existing holes are discussed

  18. Satellite hole formation during dewetting: experiment and simulation

    CERN Document Server

    Neto, C; Seemann, R; Blossey, R; Becker, J; Grün, G

    2003-01-01

    The dewetting of thin polymer films on solid substrates has been studied extensively in recent years. These films can decay either by nucleation events or by spinodal dewetting, essentially only depending on the interface potential describing the short- and long-range intermolecular interactions between the interfaces and the initial film thickness. Here, we describe experiments and simulations concerned with the decay of polystyrene thin films. The rupture of the film occurs by the formation of a correlated pattern of holes ('satellite holes') along the liquid rims accumulating at the channel borders. The development of this complex film rupture process, which is neither simply spinodal nor nucleation dewetting, can be mimicked precisely by making use of a novel simulation code based on a rigorous mathematical treatment of the thin film equation and on the knowledge of the effective interface potential of the system. The conditions that determine the appearance and the position of the satellite holes around ...

  19. The state-of-the-art of ART sealants.

    Science.gov (United States)

    Frencken, Jo E

    2014-03-01

    Sealing caries-prone pits and fissure systems is an effective caries-preventive measure. There are basically two types of sealant materials: glass-ionomer and resin-based materials. Low- and medium-viscosity glass-ionomers were initially used and showed a low level of retention. With the advent of the ART approach in the mid-nineties, high-viscosity glass-ionomers were introduced as sealant material and the retention rate of ART sealants increased substantially. As the effectiveness of a sealant is measured by its capacity to prevent (dentine) carious lesion development, sealant retention is considered a surrogate endpoint. The ART sealant protocol is described. Systematic reviews and meta-analysis covering low- medium- and high-viscosity glass-ionomer (ART) sealants have concluded that there is no evidence that either glass-ionomer or resin-based sealants prevent dentine carious lesions better. The annual dentine carious lesion development in teeth with high-viscosity glass-ionomer ART sealants over the first three years is 1%. These ART sealants have a high capacity of preventing carious lesion development. Because no electricity and running water is required, ART sealants can be placed both inside and outside the dental surgery. High-viscosity glass-ionomer ART sealants can be used alongside resin-based sealants.41:119-124

  20. Art as a key tool for engaging the public with the ICESat-2 mission

    Science.gov (United States)

    Casasanto, V.; Markus, T.

    2017-12-01

    NASA's Ice, Cloud, and land Elevation Satellite (ICESat-2), to be launched in the Fall of 2018, will measure the height of Earth from space using lasers, collecting the most precise and detailed account yet of our planet's elevation. The mission will allow scientists to investigate how global warming is changing the planet's icy polar regions and to take stock of Earth's vegetation. ICESat-2's emphasis on polar ice, as well as its unique measurement approach, has provided an intriguing and accessible focus for the mission's education and outreach programs. Sea ice and land ice are areas have experienced significant change in recent years. It is key to communicate what is happening, why we are measuring these areas and their importance to our global climate. Art is a powerful tool to inspire, engage, and provide an emotional connection to these remote areas. This paper will detail ICESat-2's art/science collaborations, including results from a unique collaboration with art and design school the Savannah College of Art Design (SCAD). Additional programs will be discussed including a multimedia live music program to engage on an emotional level, to communicate the importance of the polar regions to our global climate, and to inspire to take action.

  1. The state-of-the-art of ART restorations.

    Science.gov (United States)

    Frencken, Jo E

    2014-04-01

    ART is less anxiety- and pain-provoking than traditional restorative treatments; administration of local anaesthesia is rarely required. Systematic reviews have provided evidence of the high level of effectiveness of high-viscosity glass-ionomer ART restoration in restoring single-surface cavities, both in primary and permanent posterior teeth, but its survival rates in restoring multiple-surface cavities in primary posterior teeth needs to be improved. Insufficient information is available regarding the survival rates of multiple-surface ART restorations in permanent teeth. Evidence from these reviews indicates no difference in the survival rates of single-surface high-viscosity glass-ionomer ART restorations and amalgam restorations in primary and permanent posterior teeth. Where indicated, high-viscosity glass-ionomer ART restorations can be used alongside traditional restorations. ART provides a much more acceptable introduction to dental restorative care than the traditional 'injection, drill and fill'.

  2. Art + Bioéthique : expériences interdisciplinaires dans une galerie émergente

    Directory of Open Access Journals (Sweden)

    Lorrain, Aïda

    2016-09-01

    Full Text Available This review retraces the exhibition and the principle events of the collaborative project Art + Bioéthique. These were held at the Montreal gallery Espace Projet from February 25 to March 21, 2016.

  3. Optimized Parallel Discrete Event Simulation (PDES) for High Performance Computing (HPC) Clusters

    National Research Council Canada - National Science Library

    Abu-Ghazaleh, Nael

    2005-01-01

    The aim of this project was to study the communication subsystem performance of state of the art optimistic simulator Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES...

  4. Arts Education Beyond Art : Teaching Art in Times of Change

    NARCIS (Netherlands)

    van Heusden, Bernard; Gielen, Pascal

    2015-01-01

    People and societies thrive on a versatile and imaginative awareness. Yet the critical debate on arts education is still too often about the qualities of artefacts and technical skills, and tends to neglect issues such as the critical function of the arts in society, artistic cognition and cognitive

  5. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  6. Satellite image collection optimization

    Science.gov (United States)

    Martin, William

    2002-09-01

    Imaging satellite systems represent a high capital cost. Optimizing the collection of images is critical for both satisfying customer orders and building a sustainable satellite operations business. We describe the functions of an operational, multivariable, time dynamic optimization system that maximizes the daily collection of satellite images. A graphical user interface allows the operator to quickly see the results of what if adjustments to an image collection plan. Used for both long range planning and daily collection scheduling of Space Imaging's IKONOS satellite, the satellite control and tasking (SCT) software allows collection commands to be altered up to 10 min before upload to the satellite.

  7. State Arts Agency Fact Sheet: Support for Arts Education

    Science.gov (United States)

    Online Submission, 2015

    2015-01-01

    This national overview of state arts agency grants and services for arts education includes summary statistics and geographic distribution. The fact sheet uses data from Final Descriptive Reports of state arts agency grant-making activities submitted annually to the National Assembly of State Arts Agencies (NASAA) and the National Endowment for…

  8. Early Flood Detection for Rapid Humanitarian Response: Harnessing Near Real-Time Satellite and Twitter Signals

    Directory of Open Access Journals (Sweden)

    Brenden Jongman

    2015-10-01

    Full Text Available Humanitarian organizations have a crucial role in response and relief efforts after floods. The effectiveness of disaster response is contingent on accurate and timely information regarding the location, timing and impacts of the event. Here we show how two near-real-time data sources, satellite observations of water coverage and flood-related social media activity from Twitter, can be used to support rapid disaster response, using case-studies in the Philippines and Pakistan. For these countries we analyze information from disaster response organizations, the Global Flood Detection System (GFDS satellite flood signal, and flood-related Twitter activity analysis. The results demonstrate that these sources of near-real-time information can be used to gain a quicker understanding of the location, the timing, as well as the causes and impacts of floods. In terms of location, we produce daily impact maps based on both satellite information and social media, which can dynamically and rapidly outline the affected area during a disaster. In terms of timing, the results show that GFDS and/or Twitter signals flagging ongoing or upcoming flooding are regularly available one to several days before the event was reported to humanitarian organizations. In terms of event understanding, we show that both GFDS and social media can be used to detect and understand unexpected or controversial flood events, for example due to the sudden opening of hydropower dams or the breaching of flood protection. The performance of the GFDS and Twitter data for early detection and location mapping is mixed, depending on specific hydrological circumstances (GFDS and social media penetration (Twitter. Further research is needed to improve the interpretation of the GFDS signal in different situations, and to improve the pre-processing of social media data for operational use.

  9. Evaluation of Integrated Multi-satellitE Retrievals for GPM with All Weather Gauge Observations over CONUS

    Science.gov (United States)

    Chen, S.; Qi, Y.; Hu, B.; Hu, J.; Hong, Y.

    2015-12-01

    The Global Precipitation Measurement (GPM) mission is composed of an international network of satellites that provide the next-generation global observations of rain and snow. Integrated Multi-satellitE Retrievals for GPM (IMERG) is the state-of-art precipitation products with high spatio-temporal resolution of 0.1°/30min. IMERG unifies precipitation measurements from a constellation of research and operational satellites with the core sensors dual-frequency precipitation radar (DPR) and microwave imager (GMI) on board a "Core" satellite. Additionally, IMERG blends the advantages of currently most popular satellite-based quantitative precipitation estimates (QPE) algorithms, i.e. TRMM Multi-satellite Precipitation Analysis (TMPA), Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). The real-time and post real-time IMERG products are now available online at https://stormpps.gsfc.nasa.gov/storm. In this study, the final run post real-time IMERG is evaluated with all-weather manual gauge observations over CONUS from June 2014 through May 2015. Relative Bias (RB), Root-Mean-Squared Error (RMSE), Correlation Coefficient (CC), Probability Of Detection (POD), False Alarm Ratio (FAR), and Critical Success Index (CSI) are used to quantify the performance of IMERG. The performance of IMERG in estimating snowfall precipitation is highlighted in the study. This timely evaluation with all-weather gauge observations is expected to offer insights into performance of IMERG and thus provide useful feedback to the algorithm developers as well as the GPM data users.

  10. Early snowmelt events: detection, distribution, and significance in a major sub-arctic watershed

    International Nuclear Information System (INIS)

    Semmens, Kathryn Alese; Ramage, Joan; Bartsch, Annett; Liston, Glen E

    2013-01-01

    High latitude drainage basins are experiencing higher average temperatures, earlier snowmelt onset in spring, and an increase in rain on snow (ROS) events in winter, trends that climate models project into the future. Snowmelt-dominated basins are most sensitive to winter temperature increases that influence the frequency of ROS events and the timing and duration of snowmelt, resulting in changes to spring runoff. Of specific interest in this study are early melt events that occur in late winter preceding melt onset in the spring. The study focuses on satellite determination and characterization of these early melt events using the Yukon River Basin (Canada/USA) as a test domain. The timing of these events was estimated using data from passive (Advanced Microwave Scanning Radiometer—EOS (AMSR-E)) and active (SeaWinds on Quick Scatterometer (QuikSCAT)) microwave remote sensors, employing detection algorithms for brightness temperature (AMSR-E) and radar backscatter (QuikSCAT). The satellite detected events were validated with ground station meteorological and hydrological data, and the spatial and temporal variability of the events across the entire river basin was characterized. Possible causative factors for the detected events, including ROS, fog, and positive air temperatures, were determined by comparing the timing of the events to parameters from SnowModel and National Centers for Environmental Prediction North American Regional Reanalysis (NARR) outputs, and weather station data. All melt events coincided with above freezing temperatures, while a limited number corresponded to ROS (determined from SnowModel and ground data) and a majority to fog occurrence (determined from NARR). The results underscore the significant influence that warm air intrusions have on melt in some areas and demonstrate the large temporal and spatial variability over years and regions. The study provides a method for melt detection and a baseline from which to assess future change

  11. Medieval Day at Reynolds: An Interdisciplinary Learning Event

    Science.gov (United States)

    Morrison, Nancy S.

    2012-01-01

    Medieval Day at Reynolds turned a typical Friday class day into an interdisciplinary learning event, which joined faculty and students into a community of learners. From classrooms issued tales of Viking and Mongol conquests, religious crusaders, deadly plague, and majestic cathedrals and art, all told by costumed faculty members with expertise in…

  12. Vienna VLBI and Satellite Software (VieVS) for Geodesy and Astrometry

    Science.gov (United States)

    Böhm, Johannes; Böhm, Sigrid; Boisits, Janina; Girdiuk, Anastasiia; Gruber, Jakob; Hellerschmied, Andreas; Krásná, Hana; Landskron, Daniel; Madzak, Matthias; Mayer, David; McCallum, Jamie; McCallum, Lucia; Schartner, Matthias; Teke, Kamil

    2018-04-01

    The Vienna VLBI and Satellite Software (VieVS) is state-of-the-art Very Long Baseline Interferometry (VLBI) analysis software for geodesy and astrometry. VieVS has been developed at Technische Universität Wien (TU Wien) since 2008, where it is used for research purposes and for teaching space geodetic techniques. In the past decade, it has been successfully applied on Very Long Baseline Interferometry (VLBI) observations for the determination of celestial and terrestrial reference frames as well as for the estimation of celestial pole offsets, universal Time (UT1-UTC), and polar motion based on least-squares adjustment. Furthermore, VieVS is equipped with tools for scheduling and simulating VLBI observations to extragalactic radio sources as well as to satellites and spacecraft, features which proved to be very useful for a variety of applications. VieVS is now available as version 3.0 and we do provide the software to all interested persons and institutions. A wiki with more information about VieVS is available at http://vievswiki.geo.tuwien.ac.at/.

  13. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  14. Evolution in the lineament patterns associated to strong earthquakes revealed by satellite observations

    Science.gov (United States)

    Soto-Pinto, C. A.; Arellano-Baeza, A. A.; Ouzounov, D. P.

    2011-12-01

    We study the temporal evolution of the stress patterns in the crust by using high-resolution (10-300 m) satellite images from MODIS and ASTER satellite sensors. We are able to detect some changes in density and orientation of lineaments preceding earthquake events. A lineament is generally defined as a straight or a somewhat curved feature in the landscape visible in a satellite image as an aligned sequence of pixels of a contrasting intensity compared to the background. The system of lineaments extracted from the satellite images is not identical to the geological lineaments; nevertheless, it generally reflects the structure of the faults and fractures in the Earth's crust. Our analysis has shown that the system of lineaments is very dynamical, and the significant number of lineaments appeared approximately one month before an earthquake, while one month after the earthquake the lineament configuration returned to its initial state. These features were not observed in the test areas that are free of any seismic activity in that period (null hypothesis). We have designed a computational prototype capable to detect lineament evolution and to utilize both ASTER and MODIS satellite L1/L2. We will demonstrate the first successful test results for several Mw> 5 earthquakes in Chile, Peru, China, and California (USA).

  15. DebriSat - A Planned Laboratory-Based Satellite Impact Experiment for Breakup Fragment Characterization

    Science.gov (United States)

    Liou, J.-C.; Fitz-Coy, N.; Werremeyer, M.; Huynh, T.; Voelker, M.; Opiela, J.

    2012-01-01

    DebriSat is a planned laboratory ]based satellite hypervelocity impact experiment. The goal of the project is to characterize the orbital debris that would be generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 's US Navy Transit satellite. There are three phases to this project: the design and fabrication of an engineering model representing a modern, 50-cm/50-kg class LEO satellite known as DebriSat; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area ]to ]mass ratio, density, shape, material composition, optical properties, and radar cross ]section distributions, will be used to supplement the DoD fs and NASA fs satellite breakup models to better describe the breakup outcome of a modern satellite. Updated breakup models will improve mission planning, environmental models, and event response. The DebriSat project is sponsored by the Air Force fs Space and Missile Systems Center and the NASA Orbital Debris Program Office. The design and fabrication of DebriSat is led by University of Florida with subject matter experts f support from The Aerospace Corporation. The major milestones of the project include the complete fabrication of DebriSat by September 2013, the hypervelocity impact of DebriSat at the Air Force fs Arnold Engineering Development Complex in early 2014, and fragment characterization and data analyses in late 2014.

  16. Next-Generation Satellite Precipitation Products for Understanding Global and Regional Water Variability

    Science.gov (United States)

    Hou, Arthur Y.

    2011-01-01

    A major challenge in understanding the space-time variability of continental water fluxes is the lack of accurate precipitation estimates over complex terrains. While satellite precipitation observations can be used to complement ground-based data to obtain improved estimates, space-based and ground-based estimates come with their own sets of uncertainties, which must be understood and characterized. Quantitative estimation of uncertainties in these products also provides a necessary foundation for merging satellite and ground-based precipitation measurements within a rigorous statistical framework. Global Precipitation Measurement (GPM) is an international satellite mission that will provide next-generation global precipitation data products for research and applications. It consists of a constellation of microwave sensors provided by NASA, JAXA, CNES, ISRO, EUMETSAT, DOD, NOAA, NPP, and JPSS. At the heart of the mission is the GPM Core Observatory provided by NASA and JAXA to be launched in 2013. The GPM Core, which will carry the first space-borne dual-frequency radar and a state-of-the-art multi-frequency radiometer, is designed to set new reference standards for precipitation measurements from space, which can then be used to unify and refine precipitation retrievals from all constellation sensors. The next-generation constellation-based satellite precipitation estimates will be characterized by intercalibrated radiometric measurements and physical-based retrievals using a common observation-derived hydrometeor database. For pre-launch algorithm development and post-launch product evaluation, NASA supports an extensive ground validation (GV) program in cooperation with domestic and international partners to improve (1) physics of remote-sensing algorithms through a series of focused field campaigns, (2) characterization of uncertainties in satellite and ground-based precipitation products over selected GV testbeds, and (3) modeling of atmospheric processes and

  17. The Upper Atmosphere Research Satellite: From Coffee Table Art to Quantitative Science

    Science.gov (United States)

    Douglass, Anne R.

    1999-01-01

    The Upper Atmosphere Research Satellite (UARS) has provided an unprecedented set of observations of constituents of the stratosphere. When used in combination with data from other sources and appropriate modeling tools, these observations are useful for quantitative evaluation of stratospheric photochemical processes. This is illustrated by comparing ozone observations from airborne Differential Absorption Lidar (DIAL), from the Polar Ozone and Aerosol Measurement (POAM), from the Microwave Limb Sounder (MLS), and from the Halogen occultation Experiment (HALOE) with ozone fields generated with a three dimensional model. For 1995-96, at polar latitudes, observations from DIAL flights on December 9 and January 30, and POAM and MLS between late December and late January are compared with ozone fields from the GSFC 3D chemistry and transport model. Data from the three platforms consistently show that the observed ozone has a negative trend relative to the modeled ozone, and that the trend is uniform in time between early and mid winter, with no obvious dependence on proximity to the vortex edge. The importance of chlorine catalyzed photochemistry to this ozone loss is explored by comparing observations from MLS and HALOE with simulations for other northern winters, particularly 1997-98.

  18. Anik-E1 and E2 satellite failures of January 1994 revisited

    Science.gov (United States)

    Lam, H.-L.; Boteler, D. H.; Burlton, B.; Evans, J.

    2012-10-01

    The consecutive failures of the geosynchronous Anik-E1 communication satellite on January 20, 1994, and Anik-E2 about nine hours later on January 21 (both incidents occurred on January 20 local time) received considerable publicity because the malfunctions of the satellites disrupted television and computer data transmissions across Canada, as well as telephone services to remote northern communities for hours. This often-cited event is revisited here with materials not covered before. Using publicly available information, Anik-E failure details, media coverage, recovery effort and cost incurred are first presented. This is then followed by scrutiny of space weather conditions pertinent to the occurrences of the Anik-E upsets. We trace the space weather episode's inception on the Sun, propagation through interplanetary medium, and manifestation in magnetic field variations as well as in energetic electron flux increases, and its eventual impact on the Anik-Es. The genesis of the energetic electron enhancements that have been blamed for the satellite malfunctions is thus traceable via high-speed solar wind stream with Alfven wave fluctuations to a longitudinally wide coronal hole on the Sun. Furthermore, strong magnetic pulsations preceding electron flux peaks indicate Pc5 ULF (Ultra Low Frequency) waves as a probable acceleration mechanism for the energetic electron flux enhancement that resulted in the internal charging of the Anik-Es. The magnetic fluctuations may even be possible triggers for the subsequent discharge that caused the satellites to malfunction. This incident illustrates that satellite operators should be on alert for elevated high-energy electron environment that is above established thresholds, as specifications in satellite design may not render a satellite immune from internal charging.

  19. Performing Art-Based Research: Innovation in Graduate Art Therapy Education

    Science.gov (United States)

    Moon, Bruce L.; Hoffman, Nadia

    2014-01-01

    This article presents an innovation in art therapy research and education in which art-based performance is used to generate, embody, and creatively synthesize knowledge. An art therapy graduate student's art-based process of inquiry serves to demonstrate how art and performance may be used to identify the research question, to conduct a process…

  20. Detector and event visualization with sketchup at the CMS experiment

    International Nuclear Information System (INIS)

    Sakuma, Tai; McCauley, Thomas

    2014-01-01

    We have created 3D models of the CMS detector and particle collision events in SketchUp, a 3D modelling program. SketchUp provides a Ruby API which we use to interface with the CMS Detector Description to create 3D models of the CMS detector. With the Ruby API, we also have created an interface to the JSON-based event format used for the iSpy event display to create 3D models of CMS events. These models have many applications related to 3D representation of the CMS detector and events. Figures produced based on these models were used in conference presentations, journal publications, technical design reports for the detector upgrades, art projects, outreach programs, and other presentations

  1. Theory of satellite geodesy applications of satellites to geodesy

    CERN Document Server

    Kaula, William M

    2000-01-01

    The main purpose of this classic text is to demonstrate how Newtonian gravitational theory and Euclidean geometry can be used and developed in the earth's environment. The second is to collect and explain some of the mathematical techniques developed for measuring the earth by satellite.Book chapters include discussions of the earth's gravitational field, with special emphasis on spherical harmonies and the potential of the ellipsoid; matrices and orbital geometry; elliptic motion, linear perturbations, resonance, and other aspects of satellite orbit dynamics; the geometry of satellite obser

  2. Assimilation of Real-Time Satellite And Human Sensor Networks for Modeling Natural Disasters

    Science.gov (United States)

    Aulov, O.; Halem, M.; Lary, D. J.

    2011-12-01

    We describe the development of underlying technologies needed to address the merging of a web of real time satellite sensor Web (SSW) and Human Sensor Web (HSW) needed to augment the US response to extreme events. As an initial prototyping step and use case scenario, we consider the development of two major system tools that can be transitioned from research to the responding operational agency for mitigating coastal oil spills. These tools consist of the capture of Situation Aware (SA) Social Media (SM) Data, and assimilation of the processed information into forecasting models to provide incident decision managers with interactive virtual spatial temporal animations superimposed with probabilistic data estimates. The system methodologies are equally applicable to the wider class of extreme events such as plume dispersions from volcanoes or massive fires, major floods, hurricane impacts, radioactive isotope dispersions from nuclear accidents, etc. A successful feasibility demonstration of this technology has been shown in the case of the Deepwater Horizon Oil Spill where Human Sensor Networks have been combined with a geophysical model to perform parameter assessments. Flickr images of beached oil were mined from the spill area, geolocated and timestamped and converted into geophysical data. This data was incorporated into General NOAA Operational Modeling Environment (GNOME), a Lagrangian forecast model that uses near real-time surface winds, ocean currents, and satellite shape profiles of oil to generate a forecast of plume movement. As a result, improved estimates of diffusive coefficients and rates of oil spill were determined. Current approaches for providing satellite derived oil distributions are collected from a satellite sensor web of operational and research sensors from many countries, and a manual analysis is performed by NESDIS. A real time SA HSW processing system based on geolocated SM data from sources such as Twitter, Flickr, YouTube etc., greatly

  3. 76 FR 16842 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2011-03-25

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that one meeting of the Arts Advisory Panel to the National Council on the Arts... (ending time is approximate): Arts Education (application review): April 14, 2011, by teleconference. This...

  4. 76 FR 70510 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2011-11-14

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that ten meetings of the Arts Advisory Panel to the National Council on the Arts... (ending times are approximate): Arts Education (application review): November 29-December 2, 2011 in Room...

  5. 76 FR 20719 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2011-04-13

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that nine meetings of the Arts Advisory Panel to the National Council on the Arts..., evaluation, and recommendations on financial assistance under the National Foundation on the Arts and the...

  6. Communicating martial arts knowledge: Conferring over a wealth of possibilities

    Directory of Open Access Journals (Sweden)

    George Jennings

    2017-08-01

    Full Text Available The 3rd Annual Martial Arts Studies Conference held at Cardiff University (11-13 July, 2017 was an eclectic collection of keynotes, papers, workshops, networking and social events. It connected PhD students, established professors and practitioner-instructors in university lecture rooms, public parks and music halls across three days of academic, social and physical activities. From historical studies of Chinese martial arts to the performance of Indian styles, it brought together scholars, practitioner-researchers and martial artists for a supportive, but also scholarly, gathering – one which was both thematically open but at the same united by an exploration of the communication of embodied research and knowledge. In sum, the conference demonstrated that martial arts studies, as a still young field, shows a wealth of promise, with emerging leaders, topics and debates that will stimulate future research, cross-continental collaboration and intercultural dialogue.

  7. Satellite Radiation Products for Ocean Biology and Biogeochemistry: Needs, State-of-the-Art, Gaps, Development Priorities, and Opportunities

    Directory of Open Access Journals (Sweden)

    Robert Frouin

    2018-02-01

    Full Text Available Knowing the spatial and temporal distribution of the underwater light field, i.e., the spectral and angular structure of the radiant intensity at any point in the water column, is essential to understanding the biogeochemical processes that control the composition and evolution of aquatic ecosystems and their impact on climate and reaction to climate change. At present, only a few properties are reliably retrieved from space, either directly or via water-leaving radiance. Existing satellite products are limited to planar photosynthetically available radiation (PAR and ultraviolet (UV irradiance above the surface and diffuse attenuation coefficient. Examples of operational products are provided, and their advantages and drawbacks are examined. The usefulness and convenience of these products notwithstanding, there is a need, as expressed by the user community, for other products, i.e., sub-surface planar and scalar fluxes, average cosine, spectral fluxes (UV to visible, diurnal fluxes, absorbed fraction of PAR by live algae (APAR, surface albedo, vertical attenuation, and heating rate, and for associating uncertainties to any product on a pixel-by-pixel basis. Methodologies to obtain the new products are qualitatively discussed in view of most recent scientific knowledge and current and future satellite missions, and specific algorithms are presented for some new products, namely sub-surface fluxes and average cosine. A strategy and roadmap (short, medium, and long term for usage and development priorities is provided, taking into account needs and readiness level. Combining observations from satellites overpassing at different times and geostationary satellites should be pursued to improve the quality of daily-integrated radiation fields, and products should be generated without gaps to provide boundary conditions for general circulation and biogeochemical models. Examples of new products, i.e., daily scalar PAR below the surface, daily average

  8. 75 FR 19664 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2010-04-15

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that four meetings of the Arts Advisory Panel to the National Council on the Arts... recommendations on financial assistance under the National Foundation on the Arts and the Humanities Act of 1965...

  9. 75 FR 35845 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2010-06-23

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that three meetings of the Arts Advisory Panel to the National Council on the Arts... the National Foundation on the Arts and the Humanities Act of 1965, as amended, including information...

  10. 76 FR 41308 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2011-07-13

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that two meetings of the Arts Advisory Panel to the National Council on the Arts... recommendations on financial assistance under the National Foundation on the Arts and the Humanities Act of 1965...

  11. 75 FR 41902 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2010-07-19

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that three meetings of the Arts Advisory Panel to the National Council on the Arts... financial assistance under the National Foundation on the Arts and the Humanities Act of 1965, as amended...

  12. 75 FR 44815 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2010-07-29

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that one meeting of the Arts Advisory Panel to the National Council on the Arts... National Foundation on the Arts and the Humanities Act of 1965, as amended, including information given in...

  13. 76 FR 28244 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2011-05-16

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that one meeting of the Arts Advisory Panel to the National Council on the Arts... Foundation on the Arts and the Humanities Act of 1965, as amended, including information given in confidence...

  14. 76 FR 81542 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2011-12-28

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that a meeting of the Arts Advisory Panel to the National Council on the Arts will... (ending times are approximate): Media Arts (application review): January 24-26, 2012 in Room 716. A...

  15. Randomized trial of time-limited interruptions of protease inhibitor-based antiretroviral therapy (ART vs. continuous therapy for HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Cynthia Firnhaber

    Full Text Available The clinical outcomes of short interruptions of PI-based ART regimens remains undefined.A 2-arm non-inferiority trial was conducted on 53 HIV-1 infected South African participants with viral load 450 cells/µl on stavudine (or zidovudine, lamivudine and lopinavir/ritonavir. Subjects were randomized to a sequential 2, 4 and 8-week ART interruptions or b continuous ART (cART. Primary analysis was based on the proportion of CD4 count >350 cells(c/ml over 72 weeks. Adherence, HIV-1 drug resistance, and CD4 count rise over time were analyzed as secondary endpoints.The proportions of CD4 counts >350 cells/µl were 82.12% for the intermittent arm and 93.73 for the cART arm; the difference of 11.95% was above the defined 10% threshold for non-inferiority (upper limit of 97.5% CI, 24.1%; 2-sided CI: -0.16, 23.1. No clinically significant differences in opportunistic infections, adverse events, adherence or viral resistance were noted; after randomization, long-term CD4 rise was observed only in the cART arm.We are unable to conclude that short PI-based ART interruptions are non-inferior to cART in retention of immune reconstitution; however, short interruptions did not lead to a greater rate of resistance mutations or adverse events than cART suggesting that this regimen may be more forgiving than NNRTIs if interruptions in therapy occur.ClinicalTrials.gov NCT00100646.

  16. Ensemble Assimilation Using Three First-Principles Thermospheric Models as a Tool for 72-hour Density and Satellite Drag Forecasts

    Science.gov (United States)

    Hunton, D.; Pilinski, M.; Crowley, G.; Azeem, I.; Fuller-Rowell, T. J.; Matsuo, T.; Fedrizzi, M.; Solomon, S. C.; Qian, L.; Thayer, J. P.; Codrescu, M.

    2014-12-01

    Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by variability in the density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. As the population of satellites in Earth orbit grows, higher space-weather prediction accuracy is required for critical missions, such as accurate catalog maintenance, collision avoidance for manned and unmanned space flight, reentry prediction, satellite lifetime prediction, defining on-board fuel requirements, and satellite attitude dynamics. We describe ongoing work to build a comprehensive nowcast and forecast system for neutral density, winds, temperature, composition, and satellite drag. This modeling tool will be called the Atmospheric Density Assimilation Model (ADAM). It will be based on three state-of-the-art coupled models of the thermosphere-ionosphere running in real-time, using assimilative techniques to produce a thermospheric nowcast. It will also produce, in realtime, 72-hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition. We will review the requirements for the ADAM system, the underlying full-physics models, the plethora of input options available to drive the models, a feasibility study showing the performance of first-principles models as it pertains to satellite-drag operational needs, and review challenges in designing an assimilative space-weather prediction model. The performance of the ensemble assimilative model is expected to exceed the performance of current empirical and assimilative density models.

  17. Detection and monitoring of two dust storm events by multispectral modis images.

    Digital Repository Service at National Institute of Oceanography (India)

    Mehta P.S.; Kunte, P.D.

    of Oman, over Arabian Sea to the coast of Pakistan. The dust storm lasted over the Arabian Sea till 30th March. MODIS sensors on both Terra and Aqua Satellites captured images of both events. From the difference in emissive/transmissive nature...

  18. POGO satellite orbit corrections: an opportunity to improve the quality of the geomagnetic field measurements?

    DEFF Research Database (Denmark)

    Stockmann, Reto; Christiansen, Freddy; Olsen, Nils

    2015-01-01

    We present an attempt to improve the quality of the geomagnetic field measurements from the Polar Orbiting Geophysical Observatory (POGO) satellite missions in the late 1960s. Inaccurate satellite positions are believed to be a major source of errors for using the magnetic observations for field...... modelling. To improve the data, we use aniterative approach consisting of two main parts: one is a main field modelling process to obtain the radial fieldgradient to perturb the orbits and the other is the state-of-the-art GPS orbit modelling software BERNESE to calculatenew physical orbits. We report....... With this approach, weeliminate the orbit discontinuities at midnight but only tiny quality improvements could be achieved forgeomagnetically quiet data. We believe that improvements to the data are probably still possible, but it would require the original tracking observations to be found....

  19. Satellite Communications

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Satellite Communications. Arthur C Clarke wrote a seminal paper in 1945 in wireless world. Use three satellites in geo-synchronous orbit to enable intercontinental communications. System could be realised in '50 to 100 years'

  20. 75 FR 26284 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2010-05-11

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that nine meetings of the Arts Advisory Panel to the National Council on the Arts... meeting, from 3 p.m. to 3:30 p.m. EDT, will be closed. Folk and Traditional Arts (application review...

  1. Genetics in the art and art in genetics.

    Science.gov (United States)

    Bukvic, Nenad; Elling, John W

    2015-01-15

    "Healing is best accomplished when art and science are conjoined, when body and spirit are probed together", says Bernard Lown, in his book "The Lost Art of Healing". Art has long been a witness to disease either through diseases which affected artists or diseases afflicting objects of their art. In particular, artists have often portrayed genetic disorders and malformations in their work. Sometimes genetic disorders have mystical significance; other times simply have intrinsic interest. Recognizing genetic disorders is also an art form. From the very beginning of my work as a Medical Geneticist I have composed personal "algorithms" to piece together evidence of genetics syndromes and diseases from the observable signs and symptoms. In this paper we apply some 'gestalt' Genetic Syndrome Diagnostic algorithms to virtual patients found in some art masterpieces. In some the diagnosis is clear and in others the artists' depiction only supports a speculative differential diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A Low-Complexity UEP Methodology Demonstrated on a Turbo-Encoded Wavelet Image Satellite Downlink

    Directory of Open Access Journals (Sweden)

    Salemi Eric

    2008-01-01

    Full Text Available Realizing high-quality digital image transmission via a satellite link, while optimizing resource distribution and minimizing battery consumption, is a challenging task. This paper describes a methodology to optimize a turbo-encoded wavelet-based satellite downlink progressive image transmission system with unequal error protection (UEP techniques. To achieve that goal, we instantiate a generic UEP methodology onto the system, and demonstrate that the proposed solution has little impact on the average performance, while greatly reducing the run-time complexity. Based on a simple design-time distortion model and a low-complexity run-time algorithm, the provided solution can dynamically tune the system's configuration to any bitrate constraint or channel condition. The resulting system outperforms in terms of peak signal-to-noise ratio (PSNR, a state-of-the-art, fine-tuned equal error protection (EEP solution by as much as 2 dB.

  3. A Low-Complexity UEP Methodology Demonstrated on a Turbo-Encoded Wavelet Image Satellite Downlink

    Directory of Open Access Journals (Sweden)

    Eric Salemi

    2008-01-01

    Full Text Available Realizing high-quality digital image transmission via a satellite link, while optimizing resource distribution and minimizing battery consumption, is a challenging task. This paper describes a methodology to optimize a turbo-encoded wavelet-based satellite downlink progressive image transmission system with unequal error protection (UEP techniques. To achieve that goal, we instantiate a generic UEP methodology onto the system, and demonstrate that the proposed solution has little impact on the average performance, while greatly reducing the run-time complexity. Based on a simple design-time distortion model and a low-complexity run-time algorithm, the provided solution can dynamically tune the system's configuration to any bitrate constraint or channel condition. The resulting system outperforms in terms of peak signal-to-noise ratio (PSNR, a state-of-the-art, fine-tuned equal error protection (EEP solution by as much as 2 dB.

  4. Precise Time Synchronisation and Ranging in Nano-Satellite Swarms

    Science.gov (United States)

    Laabs, Martin; Plettemeier, Dirk

    2015-04-01

    Precise time synchronization and ranging is very important for a variety of scientific experiments with more than two nano-satellites: For synthetic aperture radar (SAR) applications, for example, the radar signal phase (which corresponds to a synchronized time) as well as the location must be known on each satellite forming synthetic antenna. Also multi-static radar systems, MIMO radar systems or radio tomography applications will take advantage from highly accurate synchronization and position determination. We propose a method for synchronizing the time as well as measuring the distance between nano-satellites very precisely by utilizing mm-wave radio links. This approach can also be used for time synchronization of more than two satellites and accordingly determinating the precise relative location of nano-satellites in space. The time synchronization signal is modulated onto a mm-wave carrier. In the simplest form it is a harmonic sinusoidal signal with a frequency in the MHz range. The distance is measured with a frequency sweep or short pulse modulated onto a different carrier frequency. The sweep or pulse transmission start is synchronized to the received time synchronization. The time synchronization transmitter receives the pulse/sweep signal and can calculate the (double) time of flight for both signals. This measurement can be easily converted to the distance. The use of a mm-wave carrier leads to small antennas and the free space loss linked to the high frequency reduces non line of sight echoes. It also allows a high sweep/pulse bandwidth enabling superior ranging accuracy. Additionally, there is also less electromagnetic interference probability since telemetry and scientific applications typically do not use mm-wavefrequencies. Since the system is working full-duplex the time synchronization can be performed continuously and coherently. Up to now the required semiconductor processes did not achieve enough gain/bandwidth to realize this concept at

  5. Art and soul: powerful and powerless art in Singapore

    OpenAIRE

    T C Chang

    2008-01-01

    Public art in urban areas offers a window on a city’s soul. Art in the form of sculptures, monuments, and other creative expressions can inform us of the ways artists think of the urban environment, the goals of policy makers in art installations, and the way members of the public interact with art and with each other in the city. Taking Singapore as a case study, I argue that contemporary public art has the power to inform place identity and inspire community aspirations. Unlike the hard pow...

  6. Art and brain: the relationship of biology and evolution to art.

    Science.gov (United States)

    Zaidel, Dahlia W

    2013-01-01

    Visual art, as with all other arts, is spontaneously created only by humans and is ubiquitously present to various extents in all societies today. Exploring the deep roots of art from cognitive, neurological, genetic, evolutionary, archaeological, and biological perspectives is essential for the full understanding of why we have art, and what art is about. The cognitive basis of art is symbolic, abstract, and referential thinking. However, archaeological markers of symbolic activity by early humans are not associated with art production. There is an enormously large time gap between the activity and the appearance of sporadic art by early Homo sapiens, and another large time delay before appearance of enduring practice of art. The aesthetic aspect of art is not considered to be the initial impetus for creating it. Instead, archaeological markers suggest that the early beginnings of art are associated with development of stratified societies where external visual identifiers by way of body ornaments and decorations were used. The major contributing forces for the consistency in art-making are presumed to be the formation of socioculture, intragroup cooperation, increased group size, survival of skillful artisans, and favorable demographic conditions. The biological roots of art are hypothesized to parallel aspects of our ancestry, specifically animal courtship displays, where signals of health and genetic quality are exhibited for inspection by potential mates. Viewers assess displayed art for talent, skill, communicative, and aesthetic-related qualities. Interdisciplinary discussions of art reflect the current approach to full understanding of the nature of art. © 2013 Elsevier B.V. All rights reserved.

  7. Art Toys in the contemporary art scene

    Directory of Open Access Journals (Sweden)

    Laura Sernissi

    2014-03-01

    Full Text Available The Art Toys phenomenon, better known as Art Toy Movement, was born in China in the mid-nineties and quickly spread out to the rest of the world. The toys are an artistic production of serial sculpture, made by handcrafts or on an industrial scale. There are several types of toys, such as custom toys and canvas toys, synonyms of designer toys, although they are often defined according to the constituent material, such as vinyl toys (plastic and plush toys (fabric. Art toys are the heirs of an already pop-surrealist and neo-pop circuit, which since the eighties of the twentieth century has pervaded the Japanese-American art scene, winking to the playful spirit of the avant-garde of the early century. Some psychoanalytic, pedagogical and anthropological studies about “play theories”, may also help us to understand and identify these heterogeneous products as real works of art and not simply as collectible toys.

  8. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  9. Improved Orbit Determination and Forecasts with an Assimilative Tool for Atmospheric Density and Satellite Drag Specification

    Science.gov (United States)

    Crowley, G.; Pilinski, M.; Sutton, E. K.; Codrescu, M.; Fuller-Rowell, T. J.; Matsuo, T.; Fedrizzi, M.; Solomon, S. C.; Qian, L.; Thayer, J. P.

    2016-12-01

    Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by the variability in density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of LEO satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. We describe ongoing work to build a comprehensive nowcast and forecast system for specifying the neutral atmospheric state related to orbital drag conditions. The system outputs include neutral density, winds, temperature, composition, and the satellite drag derived from these parameters. This modeling tool is based on several state-of-the-art coupled models of the thermosphere-ionosphere as well as several empirical models running in real-time and uses assimilative techniques to produce a thermospheric nowcast. This software will also produce 72 hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition and using near real-time and predicted space weather data and indices as the inputs. Features of this technique include: • Satellite drag specifications with errors lower than current models • Altitude coverage up to 1000km • Background state representation using both first principles and empirical models • Assimilation of satellite drag and other datatypes • Real time capability • Ability to produce 72-hour forecasts of the atmospheric state In this paper, we will summarize the model design and assimilative architecture, and present preliminary validation results. Validation results will be presented in the context of satellite orbit errors and compared with several leading atmospheric models including the High Accuracy Satellite Drag Model, which is currently used

  10. Utilization of satellite images to understand the dynamics of Pampas shallow lakes

    Directory of Open Access Journals (Sweden)

    V. S. Aliaga

    2016-06-01

    Full Text Available The aim of this study was to analyze satellite images of different spatial resolutions to interpret the morphometric behavior of six shallow lakes of the Pampas, Argentina. These are characterized by having different rainfall regimes. Morphometric response considering each location, site conditions and dry and wet extreme events is analyzed. Standardized Precipitation Index (IEP for determination of wet, dry and normal years was used. This analysis showed that the Pampas shallow lakes do not behave in the same way to the rainfall events. Its origin, socio-economic use and rainfall patterns affect their spatiotemporal variation and morphometric.

  11. Deep ART Neural Model for Biologically Inspired Episodic Memory and Its Application to Task Performance of Robots.

    Science.gov (United States)

    Park, Gyeong-Moon; Yoo, Yong-Ho; Kim, Deok-Hwa; Kim, Jong-Hwan

    2017-06-26

    Robots are expected to perform smart services and to undertake various troublesome or difficult tasks in the place of humans. Since these human-scale tasks consist of a temporal sequence of events, robots need episodic memory to store and retrieve the sequences to perform the tasks autonomously in similar situations. As episodic memory, in this paper we propose a novel Deep adaptive resonance theory (ART) neural model and apply it to the task performance of the humanoid robot, Mybot, developed in the Robot Intelligence Technology Laboratory at KAIST. Deep ART has a deep structure to learn events, episodes, and even more like daily episodes. Moreover, it can retrieve the correct episode from partial input cues robustly. To demonstrate the effectiveness and applicability of the proposed Deep ART, experiments are conducted with the humanoid robot, Mybot, for performing the three tasks of arranging toys, making cereal, and disposing of garbage.

  12. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  13. The 2005 and 2012 major drought events in Iberia: monitoring vegetation dynamics and crop yields using satellite data.

    Science.gov (United States)

    Gouveia, Célia M.; Trigo, Ricardo M.

    2014-05-01

    large sectors of Iberia for up to seven months (out of eleven) of the vegetative cycle. While in the case of the drought episode of 2005 the impact on vegetation covered roughly 2/3 of the Iberian Peninsula (Gouveia et al., 2012), whereas in the recent episode of 2012 the deficit in greenness affected a more restrictive area located in central Iberia. The vegetation response to water stress was also analysed and compared for different land cover types. Results revealed a stronger vulnerability to drought events for arable land with severe impacts on cereals crop productions and yield (namely wheat), for Portugal and Spain in both years, however slightly less severe for 2012. In conclusion, and from an operational point of view, our results reveal the ability of the developed methodology to monitor vegetation stress and droughts in Iberia. Acknowledgments: This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project QSECA (PTDC/AAG-GLO/4155/2012) Garcia-Herrera R., Paredes D., Trigo R. M., Trigo I. F., Hernandez E., Barriopedro D. and Mendes M. A., 2007: The Outstanding 2004/05 Drought in the Iberian Peninsula: Associated Atmospheric Circulation, J. Hydrometeorol., 8, 483-498. Gouveia C., Trigo R. M., and DaCamara C. C., 2009: Drought and vegetation stress monitoring in Portugal using satellite data, Nat. Hazards Earth Syst. Sci., 9, 185-195, doi:10.5194/nhess-9-185- 2009. Gouveia C.M., Bastos A., Trigo R.M., DaCamara C.C., 2012: Drought impacts on vegetation in the pre and post-fire events over Iberian Peninsula". Natural Hazards Earth System Sciences, 12, 3123-3137, 2012, doi:10.5194/nhess-12-3123-2012. Hoerling M., Eischeid J., Perlwitz J., Quan X., Zhang T., Pegion P., 2012: On the Increased Frequency of Mediterranean Drought. J. Climate, 25, 2146-2161. doi: http://dx.doi.org/10.1175/JCLI-D-11-00296.1 Trigo R.M., Añel J., Barriopedro D., García-Herrera R., Gimeno L., Nieto R., Castillo R., Allen

  14. 25 years of satellite beacon studies in Japan

    Science.gov (United States)

    Sinno, K.

    The occurrence of ionospheric scintillation exhibits behavior similar to both that of TEC fluctuations and night time ionospheric spread-F. The scintillations are also noted to vary in the same fashion diurnally and seasonally, having a principal maximum at about midnight during the summer. These characteristics also apply to the 1.7 GHz scintillation detected by the ETS-II and GMS satellites. Attention is presently given to the scintillation's frequency dependence, the development of severe scintillation events, and the enhancement of midlatitude scintillation due to field-aligned irregularities.

  15. Mathematics and Martial Arts as Connected Art Forms

    Science.gov (United States)

    Hekimoglu, Serkan

    2010-01-01

    Parallels between martial arts and mathematics are explored. Misguided public perception of both disciplines, students' misconceptions, and the similarities between proofs and katas are among the striking commonalities between martial arts and mathematics. The author also reflects on what he has learned in his martial arts training, and how this…

  16. Knots in Art

    OpenAIRE

    Jablan, Slavik; Radović, Ljiljana; Sazdanović, Radmila; Zeković, Ana

    2012-01-01

    We analyze applications of knots and links in the Ancient art, beginning from Babylonian, Egyptian, Greek, Byzantine and Celtic art. Construction methods used in art are analyzed on the examples of Celtic art and ethnical art of Tchokwe people from Angola or Tamil art, where knots are constructed as mirror-curves. We propose different methods for generating knots and links based on geometric polyhedra, suitable for applications in architecture and sculpture.

  17. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    Science.gov (United States)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  18. Satellite education: The national technological university

    International Nuclear Information System (INIS)

    Waugh, J.D.

    1989-01-01

    National Technological University (NTU) was founded to address the wide-ranging educational needs of the employed technical professional. A state-of-the-art satellite delivery system allows nationwide coverage by participating engineering colleges. Established in 1984, NTU is now a nonprofit effort of 24 engineering colleges. The NTU network grew rapidly to its present configuration, and enrollment patterns clearly demonstrate the need and acceptance of the concept. Each member school teaches its own courses (with on-campus students enrolled) over the network and awards its own grades. Receiving sites at NTU are operated by a sponsoring organization (i.e., the employer) in accordance with NTU guidelines. Masters degrees are offered in electrical engineering, computer engineering, computer science, engineering management, and manufacturing engineering. Several certificate programs are also available. Typically, NTU telecasts 80 credit courses each term. Over 50,000 attend continuing education courses, tutorials, and research teleconferences each year. Newly acquired channels will enable further expansion

  19. Energetic electron precipitation characteristics observed from Antarctica during a flux dropout event

    Science.gov (United States)

    Clilverd, Mark A.; Cobbett, Neil; Rodger, Craig J.; Brundell, James B.; Denton, Michael H.; Hartley, David P.; Rodriguez, Juan V.; Danskin, Donald; Raita, Tero; Spanswick, Emma L.

    2013-11-01

    from two autonomous VLF radio receiver systems installed in a remote region of the Antarctic in 2012 is used to take advantage of the juxtaposition of the L = 4.6 contour, and the Hawaii-Halley, Antarctica, great circle path as it passes over thick Antarctic ice shelf. The ice sheet conductivity leads to high sensitivity to changing D region conditions, and the quasi constant L shell highlights outer radiation belt processes. The ground-based instruments observed several energetic electron precipitation events over a moderately active 24 h period, during which the outer radiation belt electron flux declined at most energies and subsequently recovered. Combining the ground-based data with low and geosynchronous orbiting satellite observations on 27 February 2012, different driving mechanisms were observed for three precipitation events with clear signatures in phase space density and electron anisotropy. Comparison between flux measurements made by Polar-orbiting Operational Environmental Satellites (POES) in low Earth orbit and by the Antarctic instrumentation provides evidence of different cases of weak and strong diffusion into the bounce loss cone, helping to understand the physical mechanisms controlling the precipitation of energetic electrons into the atmosphere. Strong diffusion events occurred as the bounce loss cone. Two events had a factor of about 3 to 10 times more >30 keV flux than was reported by POES, more consistent with strong diffusion conditions.

  20. Thermospheric density and satellite drag modeling

    Science.gov (United States)

    Mehta, Piyush Mukesh

    GRACE satellites. Moving toward accurate atmospheric models and absolute densities requires physics based models for CD. Closed-form solutions of CD have been developed and exist for a handful of simple geometries (flat plate, sphere, and cylinder). However, for complex geometries, the Direct Simulation Monte Carlo (DSMC) method is an important tool for developing CD models. DSMC is computationally intensive and real-time simulations for CD are not feasible. Therefore, parameterized models for CD are required. Modeling CD for an RSO requires knowledge of the gas-surface interaction (GSI) that defines the manner in which the atmospheric particles exchange momentum and energy with the surface. The momentum and energy exchange is further influenced by likely adsorption of atomic oxygen that may partially or completely cover the surface. An important parameter that characterizes the GSI is the energy accommodation coefficient, α. An innovative and state-of-the-art technique of developing parameterized drag coefficient models is presented and validated using the GRACE satellite. The effect of gas-surface interactions on physical drag coefficients is examined. An attempt to reveal the nature of gas-surface interactions at altitudes above 500 km is made using the STELLA satellite. A model that can accurately estimate CD has the potential to: (i) reduce the sources of uncertainty in the drag model, (ii) improve density estimates by resolving time-varying biases and moving toward absolute densities, and (iii) increase data sources for density estimation by allowing for the use of a wide range of RSOs as information sources. Results from this work have the potential to significantly improve the accuracy of conjunction analysis and SSA.

  1. SatelliteDL: a Toolkit for Analysis of Heterogeneous Satellite Datasets

    Science.gov (United States)

    Galloy, M. D.; Fillmore, D.

    2014-12-01

    SatelliteDL is an IDL toolkit for the analysis of satellite Earth observations from a diverse set of platforms and sensors. The core function of the toolkit is the spatial and temporal alignment of satellite swath and geostationary data. The design features an abstraction layer that allows for easy inclusion of new datasets in a modular way. Our overarching objective is to create utilities that automate the mundane aspects of satellite data analysis, are extensible and maintainable, and do not place limitations on the analysis itself. IDL has a powerful suite of statistical and visualization tools that can be used in conjunction with SatelliteDL. Toward this end we have constructed SatelliteDL to include (1) HTML and LaTeX API document generation,(2) a unit test framework,(3) automatic message and error logs,(4) HTML and LaTeX plot and table generation, and(5) several real world examples with bundled datasets available for download. For ease of use, datasets, variables and optional workflows may be specified in a flexible format configuration file. Configuration statements may specify, for example, a region and date range, and the creation of images, plots and statistical summary tables for a long list of variables. SatelliteDL enforces data provenance; all data should be traceable and reproducible. The output NetCDF file metadata holds a complete history of the original datasets and their transformations, and a method exists to reconstruct a configuration file from this information. Release 0.1.0 distributes with ingest methods for GOES, MODIS, VIIRS and CERES radiance data (L1) as well as select 2D atmosphere products (L2) such as aerosol and cloud (MODIS and VIIRS) and radiant flux (CERES). Future releases will provide ingest methods for ocean and land surface products, gridded and time averaged datasets (L3 Daily, Monthly and Yearly), and support for 3D products such as temperature and water vapor profiles. Emphasis will be on NPP Sensor, Environmental and

  2. Art or Science: Operational Logistics as Applied to Op Art

    Science.gov (United States)

    2006-02-13

    FINAL 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Art or Science : Operational Logistics as Applied to Op Art 5a. CONTRACT... Art or Science ? Operational Logistics as applied to Operational Art By Milo L. Shank Major, USMC A paper submitted to the...than just a science . Keeping Thorpe’s work in context, it was written circa World War One, before Operational Art was an established and accepted

  3. Installation Art

    DEFF Research Database (Denmark)

    Petersen, Anne Ring

    . In Installation Art: Between Image and Stage, Anne Ring Petersen aims to change that. She begins by exploring how installation art developed into an interdisciplinary genre in the 1960s, and how its intertwining of the visual and the performative has acted as a catalyst for the generation of new artistic......Despite its large and growing popularity – to say nothing of its near-ubiquity in the world’s art scenes and international exhibitions of contemporary art –installation art remains a form whose artistic vocabulary and conceptual basis have rarely been subjected to thorough critical examination...... phenomena. It investigates how it became one of today’s most widely used art forms, increasingly expanding into consumer, popular and urban cultures, where installation’s often spectacular appearance ensures that it meets contemporary demands for sense-provoking and immersive cultural experiences. The main...

  4. Installation Art

    DEFF Research Database (Denmark)

    Petersen, Anne Ring

    Despite its large and growing popularity – to say nothing of its near-ubiquity in the world’s art scenes and international exhibitions of contemporary art –installation art remains a form whose artistic vocabulary and conceptual basis have rarely been subjected to thorough critical examination....... In Installation Art: Between Image and Stage, Anne Ring Petersen aims to change that. She begins by exploring how installation art developed into an interdisciplinary genre in the 1960s, and how its intertwining of the visual and the performative has acted as a catalyst for the generation of new artistic...... phenomena. It investigates how it became one of today’s most widely used art forms, increasingly expanding into consumer, popular and urban cultures, where installation’s often spectacular appearance ensures that it meets contemporary demands for sense-provoking and immersive cultural experiences. The main...

  5. Knots in Art

    Directory of Open Access Journals (Sweden)

    Radmila Sazdanović

    2012-06-01

    Full Text Available We analyze applications of knots and links in the Ancient art, beginning from Babylonian, Egyptian, Greek, Byzantine and Celtic art. Construction methods used in art are analyzed on the examples of Celtic art and ethnical art of Tchokwe people from Angola or Tamil art, where knots are constructed as mirror-curves. We propose different methods for generating knots and links based on geometric polyhedra, suitable for applications in architecture and sculpture.

  6. Pre-seismic anomalies from optical satellite observations: a review

    Science.gov (United States)

    Jiao, Zhong-Hu; Zhao, Jing; Shan, Xinjian

    2018-04-01

    Detecting various anomalies using optical satellite data prior to strong earthquakes is key to understanding and forecasting earthquake activities because of its recognition of thermal-radiation-related phenomena in seismic preparation phases. Data from satellite observations serve as a powerful tool in monitoring earthquake preparation areas at a global scale and in a nearly real-time manner. Over the past several decades, many new different data sources have been utilized in this field, and progressive anomaly detection approaches have been developed. This paper reviews the progress and development of pre-seismic anomaly detection technology in this decade. First, precursor parameters, including parameters from the top of the atmosphere, in the atmosphere, and on the Earth's surface, are stated and discussed. Second, different anomaly detection methods, which are used to extract anomalous signals that probably indicate future seismic events, are presented. Finally, certain critical problems with the current research are highlighted, and new developing trends and perspectives for future work are discussed. The development of Earth observation satellites and anomaly detection algorithms can enrich available information sources, provide advanced tools for multilevel earthquake monitoring, and improve short- and medium-term forecasting, which play a large and growing role in pre-seismic anomaly detection research.

  7. Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe

    Directory of Open Access Journals (Sweden)

    G. Guerova

    2016-11-01

    Full Text Available Global navigation satellite systems (GNSSs have revolutionised positioning, navigation, and timing, becoming a common part of our everyday life. Aside from these well-known civilian and commercial applications, GNSS is now an established atmospheric observing system, which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60–70 % of atmospheric warming. In Europe, the application of GNSS in meteorology started roughly two decades ago, and today it is a well-established field in both research and operation. This review covers the state of the art in GNSS meteorology in Europe. The advances in GNSS processing for derivation of tropospheric products, application of GNSS tropospheric products in operational weather prediction and application of GNSS tropospheric products for climate monitoring are discussed. The GNSS processing techniques and tropospheric products are reviewed. A summary of the use of the products for validation and impact studies with operational numerical weather prediction (NWP models as well as very short weather prediction (nowcasting case studies is given. Climate research with GNSSs is an emerging field of research, but the studies so far have been limited to comparison with climate models and derivation of trends. More than 15 years of GNSS meteorology in Europe has already achieved outstanding cooperation between the atmospheric and geodetic communities. It is now feasible to develop next-generation GNSS tropospheric products and applications that can enhance the quality of weather forecasts and climate monitoring. This work is carried out within COST Action ES1206 advanced global navigation satellite systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC, http://gnss4swec.knmi.nl.

  8. Validation and Variation of Upper Layer Thickness in South China Sea from Satellite Altimeter Data

    Directory of Open Access Journals (Sweden)

    Nan-Jung Kuo

    2008-06-01

    Full Text Available Satellite altimeter data from 1993 to 2005 has been used to analyze the seasonal variation and the interannual variability of upper layer thickness (ULT in the South China Sea (SCS. Base on in-situ measurements, the ULT is defined as the thickness from the sea surface to the depth of 16°C isotherm which is used to validate the result derived from satellite altimeter data. In comparison with altimeter and in-situ derived ULTs yields a correlation coefficient of 0.92 with a slope of 0.95 and an intercept of 6 m. The basin averaged ULT derived from altimeter is 160 m in winter and 171 m in summer which is similar to the in-situ measurements of 159 m in winter and 175 m in summer. Both results also show similar spatial patterns. It suggests that the sea surface height data derived from satellite sensors are usable for study the variation of ULT in the semi-closed SCS. Furthermore, we also use satellite derived ULT to detect the development of eddy. Interannual variability of two meso-scale cyclonic eddies and one anticyclonic eddy are strongly influenced by El Niño events. In most cases, there are highly positive correlations between ULT and sea surface temperature except the periods of El Niño. During the onset of El Niño event, ULT is deeper when sea surface temperature is lower.

  9. Science on Stage: Engaging and teaching scientific content through performance art

    Science.gov (United States)

    Posner, Esther

    2016-04-01

    Engaging teaching material through performance art and music can improve the long-term retention of scientific content. Additionally, the development of effective performance skills are a powerful tool to communicate scientific concepts and information to a broader audience that can have many positive benefits in terms of career development and the delivery of professional presentations. While arts integration has been shown to increase student engagement and achievement, relevant artistic materials are still required for use as supplemental activities in STEM (science, technology, engineering, mathematics) courses. I will present an original performance poem, "Tectonic Petrameter: A Journey Through Earth History," with instructions for its implementation as a play in pre-university and undergraduate geoscience classrooms. "Tectonic Petrameter" uses a dynamic combination of rhythm and rhyme to teach the geological time scale, fundamental concepts in geology and important events in Earth history. I propose that using performance arts, such as "Tectonic Petrameter" and other creative art forms, may be an avenue for breaking down barriers related to teaching students and the broader non-scientific community about Earth's long and complex history.

  10. Artfulness

    DEFF Research Database (Denmark)

    Chemi, Tatiana

    2011-01-01

    a collage of previously published materials on Artfulness, in this journal targeted teachers for dysfunctional behaviour children.......a collage of previously published materials on Artfulness, in this journal targeted teachers for dysfunctional behaviour children....

  11. ARTHUR DANTO: ¿ARTE POST-HISTÓRICO O ARTE CONTEMPORÁNEO?

    OpenAIRE

    R., MARÍA DEL CARMEN OLEAS

    2013-01-01

    Resumen:El arte contemporáneo es un concepto difícil de definir y Arthur Danto, como filósofo del arte ha sido uno de los que ha tratado de hacerlo. La siguiente reflexión intenta una aproximación al pensamiento de Danto sobre el arte contemporáneo al que él llama “arte post histórico”. Para Danto, el arte ha muerto y todo lo que sucede después de su muerte es arte post histórico: es de esta manera que él define al arte contemporáneo. Desde un punto de vista filosófico, el arte contemporáneo ...

  12. To the Vandals They Are Stone: A Profane Pre-History of the German Temple of Art, 1794-1830

    OpenAIRE

    Goff, Alice M.

    2015-01-01

    This is the story of how German writers, scholars, bureaucrats and custodians of art at all levels witnessed and participated in the French despoliations of European art collections over the course of the Revolutionary and Napoleonic Wars, and how in the aftermath of these events they developed new ideas about the place and purpose of art in modern cultural and political life at the beginning of the nineteenth century. In this period German scholars were forming new theories about the autonom...

  13. Medical Art Therapy

    Directory of Open Access Journals (Sweden)

    Birgul Aydin

    2012-03-01

    Full Text Available Art therapy is a form of expressive therapy that uses art materials. Art therapy combines traditional psychotherapeutic theories and techniques with an understanding of the psychological aspects of the creative process, especially the affective properties of the different art materials. Medical art therapy has been defined as the clinical application of art expression and imagery with individuals who are physically ill, experiencing physical trauma or undergoing invasive or aggressive medical procedures such as surgery or chemotherapy and is considered as a form of complementary or integrative medicine. Several studies have shown that patients with physical illness benefit from medical art therapy in different aspects. Unlike other therapies, art therapy can take the patients away from their illness for a while by means of creative activities during sessions, can make them forget the illness or lost abilities. Art therapy leads to re-experiencing normality and personal power even with short creative activity sessions. In this article definition, influence and necessity of medical art therapy are briefly reviewed.

  14. Fiber optical sensing on-board communication satellites

    Science.gov (United States)

    Hurni, A.; Lemke, N. M. K.; Roner, M.; Obermaier, J.; Putzer, P.; Kuhenuri Chami, N.

    2017-11-01

    Striving constantly to reduce mass, AIT effort and overall cost of the classical point-to-point wired temperature sensor harness on-board telecommunication satellites, OHB System (formerly Kayser-Threde) has introduced the Hybrid Sensor Bus (HSB) system. As a future spacecraft platform element, HSB relies on electrical remote sensor units as well as fiber-optical sensors, both of which can serially be connected in a bus architecture. HSB is a modular measurement system with many applications, also thanks to the opportunities posed by the digital I²C bus. The emphasis, however, is on the introduction of fiber optics and especially fiber-Bragg grating (FBG) temperature sensors as disruptive innovation for the company's satellite platforms. The light weight FBG sensors are directly inscribed in mechanically robust and radiation tolerant fibers, reducing the need for optical fiber connectors and splices to a minimum. Wherever an FBG sensor shall be used, the fiber is glued together with a corresponding temperature transducer to the satellites structure or to a subsystem. The transducer is necessary to provide decoupling of mechanical stress, but simultaneously ensure a high thermal conductivity. HSB has been developed in the frame of an ESA-ARTES program with European and German co-funding and will be verified as flight demonstrator on-board the German Heinrich Hertz satellite (H2Sat). In this paper the Engineering Model development of HSB is presented and a Fiber-optical Sensor Multiplexer for a more flexible sensor bus architecture is introduced. The HSB system aims at telecommunication satellite platforms with an operational life time beyond 15 years in geostationary orbit. It claims a high compatibility in terms of performance and interfaces with existing platforms while it was designed with future applications with increased radiation exposure already in mind. In its basic configuration HSB consists of four modules which are the Power Supply Unit, the HSB

  15. Simultaneous Radar and Satellite Data Storm-Scale Assimilation Using an Ensemble Kalman Filter Approach for 24 May 2011

    Science.gov (United States)

    Jones, Thomas A.; Stensrud, David; Wicker, Louis; Minnis, Patrick; Palikonda, Rabindra

    2015-01-01

    Assimilating high-resolution radar reflectivity and radial velocity into convection-permitting numerical weather prediction models has proven to be an important tool for improving forecast skill of convection. The use of satellite data for the application is much less well understood, only recently receiving significant attention. Since both radar and satellite data provide independent information, combing these two sources of data in a robust manner potentially represents the future of high-resolution data assimilation. This research combines Geostationary Operational Environmental Satellite 13 (GOES-13) cloud water path (CWP) retrievals with Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity to examine the impacts of assimilating each for a severe weather event occurring in Oklahoma on 24 May 2011. Data are assimilated into a 3-km model using an ensemble adjustment Kalman filter approach with 36 members over a 2-h assimilation window between 1800 and 2000 UTC. Forecasts are then generated for 90 min at 5-min intervals starting at 1930 and 2000 UTC. Results show that both satellite and radar data are able to initiate convection, but that assimilating both spins up a storm much faster. Assimilating CWP also performs well at suppressing spurious precipitation and cloud cover in the model as well as capturing the anvil characteristics of developed storms. Radar data are most effective at resolving the 3D characteristics of the core convection. Assimilating both satellite and radar data generally resulted in the best model analysis and most skillful forecast for this event.

  16. Assessment of global precipitation measurement satellite products over Saudi Arabia

    Science.gov (United States)

    Mahmoud, Mohammed T.; Al-Zahrani, Muhammad A.; Sharif, Hatim O.

    2018-04-01

    Most hydrological analysis and modeling studies require reliable and accurate precipitation data for successful simulations. However, precipitation measurements should be more representative of the true precipitation distribution. Many approaches and techniques are used to collect precipitation data. Recently, hydrometeorological and climatological applications of satellite precipitation products have experienced a significant improvement with the emergence of the latest satellite products, namely, the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) products, which can be utilized to estimate and analyze precipitation data. This study focuses on the validation of the IMERG early, late and final run rainfall products using ground-based rain gauge observations throughout Saudi Arabia for the period from October 2015 to April 2016. The accuracy of each IMERG product is assessed using six statistical performance measures to conduct three main evaluations, namely, regional, event-based and station-based evaluations. The results indicate that the early run product performed well in the middle and eastern parts as well as some of the western parts of the country; meanwhile, the satellite estimates for the other parts fluctuated between an overestimation and an underestimation. The late run product showed an improved accuracy over the southern and western parts; however, over the northern and middle parts, it showed relatively high errors. The final run product revealed significantly improved precipitation estimations and successfully obtained higher accuracies over most parts of the country. This study provides an early assessment of the performance of the GPM satellite products over the Middle East. The study findings can be used as a beneficial reference for the future development of the IMERG algorithms.

  17. Study of cloud properties using airborne and satellite measurements

    Science.gov (United States)

    Boscornea, Andreea; Stefan, Sabina; Vajaiac, Sorin Nicolae

    2014-08-01

    The present study investigates cloud microphysics properties using aircraft and satellite measurements. Cloud properties were drawn from data acquired both from in situ measurements with state of the art airborne instrumentation and from satellite products of the MODIS06 System. The used aircraft was ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research, property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania, which is specially equipped for this kind of research. The main tool of the airborne laboratory is a Cloud, Aerosol and Precipitation Spectrometer - CAPS (30 bins, 0.51- 50 μm). The data was recorded during two flights during the winter 2013-2014, over a flat region in the south-eastern part of Romania (between Bucharest and Constanta). The analysis of cloud particle size variations and cloud liquid water content provided by CAPS can explain cloud processes, and can also indicate the extent of aerosols effects on clouds. The results, such as cloud coverage and/or cloud types, microphysical parameters of aerosols on the one side and the cloud microphysics parameters obtained from aircraft flights on the other side, was used to illustrate the importance of microphysics cloud properties for including the radiative effects of clouds in the regional climate models.

  18. Using Satellite Data to Monitor the Impacts of CyanoHAB Events on Drinking Water: A Texas Case Study

    Science.gov (United States)

    Overview of CYAN and it's mission to support the environmental management and public use of U.S. lakes and estuaries by providing a capability of detecting and quantifying algal blooms and related water quality using satellite data records.

  19. 75 FR 11940 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2010-03-12

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that a meeting of the Arts Advisory Committee will be held by teleconference from... National Foundation on the Arts and the Humanities Act of 1965, as amended, including information given in...

  20. 76 FR 78316 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2011-12-16

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that eleven meetings of the Arts Advisory Panel to the National Council on the Arts will be held at the Nancy Hanks Center, 1100 Pennsylvania Avenue NW., Washington, DC, 20506 as...

  1. Anachronic concepts, art historical containers and historiographical practices in contemporary art

    OpenAIRE

    Eva Kernbauer

    2017-01-01

    This paper examines the historiographical potential of contemporary art, asking how artworks have been envisaged to challenge, shape and undermine art historical models and how their contribution has been taken into view by theorists. Working through art historiographical models from Kubler to Panofsky and Benjamin, it reconsiders some aspects of the contested relationship between art and art history. It proposes a reconsideration of the ‘anachronic’ as a much discussed term in recent art the...

  2. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  3. In a Time of Change: Integrating the Arts and Humanities with Climate Change Science in Alaska

    Science.gov (United States)

    Leigh, M.; Golux, S.; Franzen, K.

    2011-12-01

    The arts and humanities have a powerful capacity to create lines of communication between the public, policy and scientific spheres. A growing network of visual and performing artists, writers and scientists has been actively working together since 2007 to integrate scientific and artistic perspectives on climate change in interior Alaska. These efforts have involved field workshops and collaborative creative processes culminating in public performances and a visual art exhibit. The most recent multimedia event was entitled In a Time of Change: Envisioning the Future, and challenged artists and scientists to consider future scenarios of climate change. This event included a public performance featuring original theatre, modern dance, Alaska Native Dance, poetry and music that was presented concurrently with an art exhibit featuring original works by 24 Alaskan visual artists. A related effort targeted K12 students, through an early college course entitled Climate Change and Creative Expression, which was offered to high school students at a predominantly Alaska Native charter school and integrated climate change science, creative writing, theatre and dance. Our program at Bonanza Creek Long Term Ecological Research (LTER) site is just one of many successful efforts to integrate arts and humanities with science within and beyond the NSF LTER Program. The efforts of various LTER sites to engage the arts and humanities with science, the public and policymakers have successfully generated excitement, facilitated mutual understanding, and promoted meaningful dialogue on issues facing science and society. The future outlook for integration of arts and humanities with science appears promising, with increasing interest from artists, scientists and scientific funding agencies.

  4. ASSESSMENT OF SATELLITE PRECIPITATION PRODUCTS IN THE PHILIPPINE ARCHIPELAGO

    Directory of Open Access Journals (Sweden)

    M. D. Ramos

    2016-06-01

    Full Text Available Precipitation is the most important weather parameter in the Philippines. Made up of more than 7100 islands, the Philippine archipelago is an agricultural country that depends on rain-fed crops. Located in the western rim of the North West Pacific Ocean, this tropical island country is very vulnerable to tropical cyclones that lead to severe flooding events. Recently, satellite-based precipitation estimates have improved significantly and can serve as alternatives to ground-based observations. These data can be used to fill data gaps not only for climatic studies, but can also be utilized for disaster risk reduction and management activities. This study characterized the statistical errors of daily precipitation from four satellite-based rainfall products from (1 the Tropical Rainfall Measuring Mission (TRMM, (2 the CPC Morphing technique (CMORPH of NOAA and (3 the Global Satellite Mapping of Precipitation (GSMAP and (4 Precipitation Estimation from Remotely Sensed information using Artificial Neural Networks (PERSIANN. Precipitation data were compared to 52 synoptic weather stations located all over the Philippines. Results show GSMAP to have over all lower bias and CMORPH with lowest Mean Absolute Error (MAE and Root Mean Square Error (RMSE. In addition, a dichotomous rainfall test reveals GSMAP and CMORPH have low Proportion Correct (PC for convective and stratiform rainclouds, respectively. TRMM consistently showed high PC for almost all raincloud types. Moreover, all four satellite precipitation showed high Correct Negatives (CN values for the north-western part of the country during the North-East monsoon and spring monsoonal transition periods.

  5. Assessment of Satellite Precipitation Products in the Philippine Archipelago

    Science.gov (United States)

    Ramos, M. D.; Tendencia, E.; Espana, K.; Sabido, J.; Bagtasa, G.

    2016-06-01

    Precipitation is the most important weather parameter in the Philippines. Made up of more than 7100 islands, the Philippine archipelago is an agricultural country that depends on rain-fed crops. Located in the western rim of the North West Pacific Ocean, this tropical island country is very vulnerable to tropical cyclones that lead to severe flooding events. Recently, satellite-based precipitation estimates have improved significantly and can serve as alternatives to ground-based observations. These data can be used to fill data gaps not only for climatic studies, but can also be utilized for disaster risk reduction and management activities. This study characterized the statistical errors of daily precipitation from four satellite-based rainfall products from (1) the Tropical Rainfall Measuring Mission (TRMM), (2) the CPC Morphing technique (CMORPH) of NOAA and (3) the Global Satellite Mapping of Precipitation (GSMAP) and (4) Precipitation Estimation from Remotely Sensed information using Artificial Neural Networks (PERSIANN). Precipitation data were compared to 52 synoptic weather stations located all over the Philippines. Results show GSMAP to have over all lower bias and CMORPH with lowest Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). In addition, a dichotomous rainfall test reveals GSMAP and CMORPH have low Proportion Correct (PC) for convective and stratiform rainclouds, respectively. TRMM consistently showed high PC for almost all raincloud types. Moreover, all four satellite precipitation showed high Correct Negatives (CN) values for the north-western part of the country during the North-East monsoon and spring monsoonal transition periods.

  6. Graphical User Interface in Art

    Science.gov (United States)

    Gwilt, Ian

    This essay discusses the use of the Graphical User Interface (GUI) as a site of creative practice. By creatively repositioning the GUI as a work of art it is possible to challenge our understanding and expectations of the conventional computer interface wherein the icons and navigational architecture of the GUI no longer function as a technological tool. These artistic recontextualizations are often used to question our engagement with technology and to highlight the pivotal place that the domestic computer has taken in our everyday social, cultural and (increasingly), creative domains. Through these works the media specificity of the screen-based GUI can broken by dramatic changes in scale, form and configuration. This can be seen through the work of new media artists who have re-imagined the GUI in a number of creative forms both, within the digital, as image, animation, net and interactive art, and in the analogue, as print, painting, sculpture, installation and performative event. Furthermore as a creative work, the GUI can also be utilized as a visual way-finder to explore the relationship between the dynamic potentials of the digital and the concretized qualities of the material artifact.

  7. CERN Library | Book presentation: "CMS: the art of science" | 26 April

    CERN Multimedia

    CERN Library

    2016-01-01

    "CMS: the art of science", by Michael Hoch, Ian Shipsey, Daniel Denegri, Stephen Preece and Mick Storr.   Tuesday 26 April at 4 p.m. Council Chamber (503 1-001) The physicist as artist: Michael Hoch photographed the extraordinary science cabinet of wonders CMS (the Compact Muon Solenoid Experiment) at CERN. With a foreword by François Englert, 2013 Nobel Laureate in Physics and co-discoverer of the Higgs boson. "CMS: the art of science", by Michael Hoch, Ian Shipsey, Daniel Denegri, Stephen Preece and Mick Storr, Lammerhuber, 2016, ISBN 9783903101043. More information at: https://indico.cern.ch/event/523057/.

  8. The American Satellite Company (ASC) satellite deployed from payload bay

    Science.gov (United States)

    1985-01-01

    The American Satellite Company (ASC) communications satellite is deployed from the payload bay of the Shuttle Discovery. A portion of the cloudy surface of the earth can be seen to the left of the frame.

  9. THE SPECIFICS OF ART INFORMATION AND COMMUNICATION IN ART CLASSES

    Directory of Open Access Journals (Sweden)

    Maja Hrvanović

    2013-09-01

    Full Text Available In this study, the author puts forward the hypothesis that the representation of information of artistic type in art classes affects the formation of judgement of taste as one of the most important factors for intensifying and memorising the experience of artistic content. The function of art education is to enable an individual to „read“ the work of art, to supply him with skills and knowledge necessary to recognise formally significant determinants in art. Creation of new conceptual design, functional usage of visual information in communication process, individuality in shaping their own criteria, are just some of the determinants of artistic development. Art education accorded with development of technology and visual communication is necessary for human development of young individuals and improvement of their general level of culture. Conceptually – concrete art can uncritically be understood as direct and „comprehensible“. The observer with basic artistic education has no difficulties in expressing judgement about realistic work of art, because all mental functions, by analogy, occur with the experience. Art formed in the area of symbolic self-expression, areal structure, requires special knowledge and skills to overcome sensed and decorative levels when experiencing a work of art. The classes of art education should teach the students the methods of judging the artistic quality, to significantly influence their ability of critical analysis, interpretation and formation of judgement of taste

  10. Applications of FBG sensors on telecom satellites

    Science.gov (United States)

    Abad, S.; Araújo, F. M.; Ferreira, L. A.; Pedersen, F.; Esteban, M. A.; McKenzie, I.; Karafolas, N.

    2017-11-01

    Monitoring needs of spacecraft are rapidly increasing due to new and more challenging missions, along with demands to reduce launching costs by minimizing the manufacture, assembly, integration and test time and employing new low weight materials balanced by the need for maximizing system lifetime while maintaining good reliability. Conventional electronic sensors are characterized by their low multiplexing capability and their EMI/RF susceptibility and it is in this scenario that Fiber Optic Sensors (FOS) in general, and more specifically Fiber Bragg Grating (FBG) technology offers important benefits, improving in various ways the already deployed sensing subsystems (e.g. reducing the weight associated with sensor cabling, increasing the number of sensing points) and enabling new monitoring applications that were not possible by using conventional sensing technologies. This work presents the activities performed and the lessons learnt in the frame of ESA's ARTES-5 project "Fiber Optic Sensing Subsystem for Spacecraft Health Monitoring in Telecommunication Satellites". This project finished in July 2009, with the implementation and testing of two different demonstrators employing FBG sensor technology: FBG sensors for temperature monitoring in high voltage environments, and in particular in several parts of electric propulsion subsystems [1], and FBG sensors for thermal monitoring of array-antennas during RF testing [2]. In addition, the contacts performed with different actors within the space community allowed the identification of a special area of interest for the substitution of regular thermocouple instrumentation by FBG technology for thermal vacuum ground testing of satellites.

  11. Ghost Dancing the Grand Canyon. Southern Paiute Rock Art, Ceremony, and Cultural Landscapes.

    Science.gov (United States)

    Stoffle; Loendorf; Austin; Halmo; Bulletts

    2000-02-01

    Combining rock art studies with ethnohistory, contemporary ethnographic analysis, and the interpretations of people who share the cultural traditions being studied, this paper documents a rock art site in Kanab Creek Canyon that appears to have been the location of a Ghost Dance ceremony performed by Southern Paiute and perhaps Hualapai people in the late 1800s. Using the site as a point of departure, it focuses on the way in which synergistic associations among place, artifact, resources, events, and historic and contemporary Indian people contribute to the construction of a contextual cultural landscape.

  12. Art Appreciation as a Learned Competence: A Museum-based Qualitative Study of Adult Art Specialist and Art Non-Specialist Visitors

    Directory of Open Access Journals (Sweden)

    Rajka Bračun Sova

    2015-12-01

    Full Text Available Since Bourdieu, it has been argued that art appreciation requires “knowledge”. The focus of this qualitative study was to examine art appreciation as a learned competence by exploring two different groups of museum visitors: art specialists and art non-specialists. The research was conducted at Moderna galerija in Ljubljana. Twenty-three adults were recruited and accompanied during their visit to the museum. Participants were requested to “think out loud”, which meant to talk about what they saw, thought, and felt about the artworks. There was a short interview conducted with each participant before entering the museum to gain insight into their art-related and museum-visiting experience. The analysis of the data revealed that some processes of art appreciation were similar within the two groups. Both art specialists and art non-specialists interact with museum objects physically and intellectually; they see contents and formal qualities as a whole; they respond emotionally to artworks; appreciation includes their personal experience; they search museum interpretation/information for their understanding. Some noticeable differences were found. Art specialists respond to artworks with more understanding and are willing to put more effort into art appreciation, whereas art non-specialists respond with less understanding and put less effort into art appreciation. This paper focuses on the differences between the two groups; reflective and spontaneous appreciation of art, objective and subjective appreciation of art and the effort put into art appreciation. The paper ends with a discussion of the implications of the study for the teaching of art and museum education.

  13. Satellite-based emission constraint for nitrogen oxides: Capability and uncertainty

    Science.gov (United States)

    Lin, J.; McElroy, M. B.; Boersma, F.; Nielsen, C.; Zhao, Y.; Lei, Y.; Liu, Y.; Zhang, Q.; Liu, Z.; Liu, H.; Mao, J.; Zhuang, G.; Roozendael, M.; Martin, R.; Wang, P.; Spurr, R. J.; Sneep, M.; Stammes, P.; Clemer, K.; Irie, H.

    2013-12-01

    Vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) retrieved from satellite remote sensing have been employed widely to constrain emissions of nitrogen oxides (NOx). A major strength of satellite-based emission constraint is analysis of emission trends and variability, while a crucial limitation is errors both in satellite NO2 data and in model simulations relating NOx emissions to NO2 columns. Through a series of studies, we have explored these aspects over China. We separate anthropogenic from natural sources of NOx by exploiting their different seasonality. We infer trends of NOx emissions in recent years and effects of a variety of socioeconomic events at different spatiotemporal scales including the general economic growth, global financial crisis, Chinese New Year, and Beijing Olympics. We further investigate the impact of growing NOx emissions on particulate matter (PM) pollution in China. As part of recent developments, we identify and correct errors in both satellite NO2 retrieval and model simulation that ultimately affect NOx emission constraint. We improve the treatments of aerosol optical effects, clouds and surface reflectance in the NO2 retrieval process, using as reference ground-based MAX-DOAS measurements to evaluate the improved retrieval results. We analyze the sensitivity of simulated NO2 to errors in the model representation of major meteorological and chemical processes with a subsequent correction of model bias. Future studies will implement these improvements to re-constrain NOx emissions.

  14. Discovering the Art of Mathematics: Using String Art to Investigate Calculus

    Science.gov (United States)

    von Renesse, Christine; Ecke, Volker

    2016-01-01

    One goal of our Discovering the Art of Mathematics project is to empower students in the liberal arts to become confident creators of art and imaginative creators of mathematics. In this paper, we describe our experience with using string art to guide liberal arts students in exploring ideas of calculus. We provide excerpts from our inquiry-based…

  15. Satellite versus ground-based estimates of burned area: A comparison between MODIS based burned area and fire agency reports over North America in 2007

    Science.gov (United States)

    Stephane Mangeon; Robert Field; Michael Fromm; Charles McHugh; Apostolos Voulgarakis

    2015-01-01

    North American wildfire management teams routinely assess burned area on site during firefighting campaigns; meanwhile, satellite observations provide systematic and global burned-area data. Here we compare satellite and ground-based daily burned area for wildfire events for selected large fires across North America in 2007 on daily timescales. In a sample of 26 fires...

  16. Reconsidering experiential knowledge in the relation of art and science practices

    DEFF Research Database (Denmark)

    Ejsing-Duun, Stine; Søndergaard, Morten; Allen, Jamie

    2013-01-01

    of interdisciplinary research and practice. In this paper, we investigate the discursive and communicative relation between different disciplines, in social and experiential events (conferences, festivals, and the like). For this purpose, we will build upon the experiences and observations from various ‘Remix......’ situations in which art-scientists meet in conference and festival settings....

  17. The GNSS polarimetric radio-occultation technique to sense precipitation events: a new concept to be tested aboard PAZ Low Earth Satellite

    Science.gov (United States)

    Tomás, Sergio; Oliveras, Santi; Cardellach, Estel; Rius, Antonio

    2013-04-01

    The Radio Occultation and Heavy Precipitation (ROHP) experiment, to be conducted aboard the Spanish PAZ satellite, consists of a radio occultation (RO) mission provided with dual-polarization capabilities. The research with polarimetric RO data has the goal of assessing the capabilities and limitations of this technique to infer profiles of heavy precipitation. The technique aims to provide vertical profiles of precipitation simultaneously to the vertical profiles of thermodynamic parameters (standard RO products) perfectly collocated both in space and time. If successful, the polarimetric RO will represent the first technique able to provide these complementary information on precipitation. This is a relevant input for studies on heavy and violent rainfall events, which being poorly represented by the current-generation of Numerical Weather Prediction and General Circulation Models appear to be difficult to forecast on all time-scales. The Low Earth Orbiter hosting this experiment, to be launched in 2013, will orbit at 500 km altitude in a near-Polar orbit. The Radio Occulation payload includes a RO GNSS receiver and a dual polarization (H/V) limb oriented antenna to capture the signals of setting GNSS transmitters. NOAA and UCAR participate in the ground-segment of the radiometric experiment to enable near-real time dissemination of the level-1 standard RO products. The space-based GNSS RO technique scans the atmosphere vertically at fine resolution (close to 300 meter in the troposphere) by precisely measure the delay between a GNSS transmitter and a GNSS receiver aboard a Low Earth Orbiter, when the former is setting below or rising above the Earth limb. The standard, thermodynamical, products are extracted from the excess delay induced by the atmosphere at different layers. This presentation will not focus on this well-established application, but a novel concept using polarimetry to also retrieve rain information. The precipitation-measurement principle is

  18. Preaching as art (imaging the unseen and art as homiletics (verbalising the unseen: Towards the aesthetics of iconic thinking and poetic communication in homiletics

    Directory of Open Access Journals (Sweden)

    Daniel Louw

    2016-12-01

    Full Text Available The article investigates the hypothesis that preaching implies more than merely verbalising, proclaiming and rhetoric reasoning. Preaching is fundamentally the art of poetic seeing; an aesthetic event on an ontic and spiritual level; that is, it provides vocabulary and images in order to help people to discover meaning in life (preaching as the art of foolishness. In this regard, preaching should provide God-images that open up the dimension of aesthetics and provide vistas of the ‘unseen’. The iconic dimension of preaching is about symbols and metaphors that help people to ‘see’ in everyday life (a poetic gaze the presence of God in such a way that tragic events, the awareness of death and the anguish about the fear for loss and rejection become events for signifying life and for healing (the quest for wholeness. It is argued that practical theology should be about a liturgy of life. In this regard, the ‘ugliness of God’ becomes an aesthetic category in a Christian spiritual approach to iconography. In order to do this a critical approach to praxis thinking should probe into the realm of paradigms, especially paradigms that describe the ‘power of God’. Due to the assumption that the depiction of God’s power was predominantly influenced by the Serapis, Zeus and Roman cult (Emperor mystique, a paradigm shift from omni-categories (pantokrator to bowel categories (passio Dei in the homiletic depiction of God is proposed.

  19. Seeking salience in engaging art: A short story about attention, artistic value, and neuroscience.

    Science.gov (United States)

    Seeley, William P

    2018-01-01

    It has recently been suggested that research in neuroscience of art has failed to bring art into focus in the laboratory. Two general arguments are brought to bear in the regard. The common perceptual mechanisms argument observes that neuroscientists working within this field develop models to explain art relative to the ways that artworks are fine-tuned to the operations of perceptual systems. However, these perceptual explanations apply equally to how viewers come to recognize and understand art and nonart objects and events. Therefore these explanations fail to disambiguate artworks from other things. They fail to locate art. This observation points to a deeper problem. What interests us in art is how what we perceive has been used to show us what the work represents. Our understanding of art is governed by a range of productive and evaluative normative conventions that govern how we ought to look at a work and evaluate how it was made. The normative dimension of appreciation argument suggests that these aspects of our engagement with artworks lie outside the scope of neuroscientific explanations of art. This chapter provides a sketch of a diagnostic recognition framework for engaging art that resolves both problems and helps explains how artworks function within the social institution of the artworld to facilitate a communicative exchange between artists and consumers. © 2018 Elsevier B.V. All rights reserved.

  20. Trends in mobile satellite communication

    Science.gov (United States)

    Johannsen, Klaus G.; Bowles, Mike W.; Milliken, Samuel; Cherrette, Alan R.; Busche, Gregory C.

    1993-01-01

    Ever since the U.S. Federal Communication Commission opened the discussion on spectrum usage for personal handheld communication, the community of satellite manufacturers has been searching for an economically viable and technically feasible satellite mobile communication system. Hughes Aircraft Company and others have joined in providing proposals for such systems, ranging from low to medium to geosynchronous orbits. These proposals make it clear that the trend in mobile satellite communication is toward more sophisticated satellites with a large number of spot beams and onboard processing, providing worldwide interconnectivity. Recent Hughes studies indicate that from a cost standpoint the geosynchronous satellite (GEOS) is most economical, followed by the medium earth orbit satellite (MEOS) and then by the low earth orbit satellite (LEOS). From a system performance standpoint, this evaluation may be in reverse order, depending on how the public will react to speech delay and collision. This paper discusses the trends and various mobile satellite constellations in satellite communication under investigation. It considers the effect of orbital altitude and modulation/multiple access on the link and spacecraft design.

  1. Academic Training Lectures | The Art of Way Finding | 9-10 December

    CERN Multimedia

    2015-01-01

    Please note that the next series of Academic Training Lectures will take place on 9 and 10 December. The lectures will be given by John Huth (Harvard University (US)).   The Art of Way Finding (1/2) on Wednesday, 9 December from 11 a.m. to 12 p.m. https://indico.cern.ch/event/436443/ The Art of Way Finding (2/2) on Thursday, 10 December from 11 a.m. to 12 p.m. http://indico.cern.ch/event/436444/ at CERN, Council Chamber (503-1-001)  Description: In the modern era we've become accustomed to the instantaneous transfer of information filtered by applications that act as a kind of guardian of information. In the realm of finding one’s way, we use GPS and devices that take us from point A to point B without giving it a second thought. Are we slowly losing the cognitive processes that our ancestors had, and at what price? I use the theme of navi...

  2. JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis

    Science.gov (United States)

    Folmer, Michael J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J.; Nelson, J.; Goldberg, M.; Sjoberg, W.

    2016-01-01

    The ocean prediction center at the national hurricane center's tropical analysis and forecast Branch, the Weather Prediction center and the Satellite analysis branch of NESDIS make up the Satellite Proving Ground for Marine, Precipitation and Satellite Analysis. These centers had early exposure to JPSS products using the S-NPP Satellite that was launched in 2011. Forecasters continue to evaluate new products in anticipation for the launch of JPSS-1 sometime in 2017.

  3. 40 Years Young: Social Media for the World's Longest-Running Earth-Observation Satellite Program

    Science.gov (United States)

    Riebeek, H.; Rocchio, L. E.; Taylor, M.; Owen, T.; Allen, J. E.; Keck, A.

    2012-12-01

    With social media becoming a communication juggernaut it is essential to harness the medium's power to foster better science communication. On July 23, 2012, the Landsat Earth-observing satellite program celebrated the 40th anniversary of the first Landsat launch. To more effectively communicate the impact and importance of Landsat's four-decade long data record a carefully planned social media event was designed to supplement the day's traditional media communications. The social media event, dubbed the "Landsat Social," was modeled on and supported by the NASA Social methodology. The Landsat Social was the first such event for NASA Earth science not associated with a launch. For the Landsat Social, 23 social media-savvy participants were selected to attend a joint NASA/U.S. Geological Survey Landsat anniversary press event at the Newseum in Washington, D.C. The participants subsequently toured the NASA Goddard Space Flight Facility in Greenbelt, Maryland where they had the opportunity to learn about the latest Landsat satellite; visit the Landsat mission control; download and work with Landsat data; and meet Landsat scientists and engineers. All Landsat Social participants had Twitter accounts and used the #Landsat and #NASASocial hashtags to unify their commentary throughout the day. A few key Landsat messages were communicated to the Landsat Social participants at the event's onset. Propagation of this messaging was witnessed for the duration of the Landsat Social; and a spike in online Landsat interest followed. Here, we examine the Landsat 40th anniversary social event, explain impacts made, and report lessons learned.; Landsat Social attendees are busy tweeting, texting, and blogging as Project Scientist Dr. Jim Irons talks about the Landsat Data Continuity Mission in front of the Hyperwall at NASA Goddard Space Flight Center. Photo courtesy Bill Hrybyk.

  4. Visual art appreciation in Nigeria: The Zaria art society experience ...

    African Journals Online (AJOL)

    There is no doubt that one of the greatest creative impetuses injected into Nigerian art was made possible by, among other things, the activities of the first art institution in Nigeria to award a Diploma certificate in art, Nigerian College of Arts, Science and Technology (NCAST). NCAST started in 1953/54 at their Ibadan branch ...

  5. DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING OF CLOUDS AND RADIATION USING ARM DATA, FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Minnis, Patrick [NASA Langley Research Center, Hampton, VA

    2013-06-28

    During the period, March 1997 – February 2006, the Principal Investigator and his research team co-authored 47 peer-reviewed papers and presented, at least, 138 papers at conferences, meetings, and workshops that were supported either in whole or in part by this agreement. We developed a state-of-the-art satellite cloud processing system that generates cloud properties over the Atmospheric Radiation (ARM) surface sites and surrounding domains in near-real time and outputs the results on the world wide web in image and digital formats. When the products are quality controlled, they are sent to the ARM archive for further dissemination. These products and raw satellite images can be accessed at http://cloudsgate2.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-experiment-homepage&exp=ARM and are used by many in the ARM science community. The algorithms used in this system to generate cloud properties were validated and improved by the research conducted under this agreement. The team supported, at least, 11 ARM-related or supported field experiments by providing near-real time satellite imagery, cloud products, model results, and interactive analyses for mission planning, execution, and post-experiment scientific analyses. Comparisons of cloud properties derived from satellite, aircraft, and surface measurements were used to evaluate uncertainties in the cloud properties. Multiple-angle satellite retrievals were used to determine the influence of cloud structural and microphysical properties on the exiting radiation field.

  6. From soil in art towards Soil Art

    Science.gov (United States)

    Feller, C.; Landa, E. R.; Toland, A.; Wessolek, G.

    2015-02-01

    The range of art forms and genres dealing with soil is wide and diverse, spanning many centuries and artistic traditions, from prehistoric painting and ceramics to early Renaissance works in Western literature, poetry, paintings, and sculpture, to recent developments in cinema, architecture and contemporary art. Case studies focused on painting, installation, and cinema are presented with the view of encouraging further exploration of art about, in, with, or featuring soil or soil conservation issues, created by artists, and occasionally scientists, educators or collaborative efforts thereof.

  7. The satellite situation center

    International Nuclear Information System (INIS)

    Teague, M.J.; Sawyer, D.M.; Vette, J.I.

    1982-01-01

    Considerations related to the early planning for the International Magnetospheric Study (IMS) took into account the desirability of an establishment of specific entities for generating and disseminating coordination information for both retrospective and predictive periods. The organizations established include the IMS/Satellite Situation Center (IMS/SSC) operated by NASA. The activities of the SSC are related to the preparation of reports on predicted and actually achieved satellite positions, the response to inquiries, the compilation of information on satellite experiments, and the issue of periodic status summaries. Attention is given to high-altitude satellite services, other correlative satellite services, non-IMS activities of the SSC, a summary of the SSC request activity, and post-IMS and future activities

  8. Plan of Time Management of Satellite Positioning System using Quasi-zenith Satellite

    Science.gov (United States)

    Takahashi, Yasuhiro; Fujieda, Miho; Amagai, Jun; Yokota, Shoichiro; Kimura, Kazuhiro; Ito, Hiroyuki; Hama, Shin'ichi; Morikawa, Takao; Kawano, Isao; Kogure, Satoshi

    The Quasi-Zenith satellites System (QZSS) is developed as an integrated satellite service system of communication, broadcasting and positioning for mobile users in specified regions of Japan from high elevation angle. Purposes of the satellite positioning system using Quasi-Zenith satellite (QZS) are to complement and augment the GPS. The national institutes concerned have been developing the positioning system using QZS since 2003 and will carry out experiments and researches in three years after the launch. In this system, National Institute of Information and Communications Technology (NICT) is mainly in charge of timing system for the satellite positioning system using QZS, such as onboard hydrogen maser atomic clock and precise time management system of the QZSS. We started to develop the engineering model of the time management system for the QZSS. The time management system for the QZSS will be used to compare time differences between QZS and earth station as well as to compare between three onboard atomic clocks. This paper introduces time management of satellite positioning system using the QZSS.

  9. Ice Sheet Change Detection by Satellite Image Differencing

    Science.gov (United States)

    Bindschadler, Robert A.; Scambos, Ted A.; Choi, Hyeungu; Haran, Terry M.

    2010-01-01

    Differencing of digital satellite image pairs highlights subtle changes in near-identical scenes of Earth surfaces. Using the mathematical relationships relevant to photoclinometry, we examine the effectiveness of this method for the study of localized ice sheet surface topography changes using numerical experiments. We then test these results by differencing images of several regions in West Antarctica, including some where changes have previously been identified in altimeter profiles. The technique works well with coregistered images having low noise, high radiometric sensitivity, and near-identical solar illumination geometry. Clouds and frosts detract from resolving surface features. The ETM(plus) sensor on Landsat-7, ALI sensor on EO-1, and MODIS sensor on the Aqua and Terra satellite platforms all have potential for detecting localized topographic changes such as shifting dunes, surface inflation and deflation features associated with sub-glacial lake fill-drain events, or grounding line changes. Availability and frequency of MODIS images favor this sensor for wide application, and using it, we demonstrate both qualitative identification of changes in topography and quantitative mapping of slope and elevation changes.

  10. Sentinel-2: next generation satellites for optical land observation from space

    Science.gov (United States)

    Lautenschläger, G.; Gessner, R.; Gockel, W.; Haas, C.; Schweickert, G.; Bursch, S.; Welsch, M.; Sontag, H.

    2013-10-01

    The first Sentinel-2 satellites, which constitute the next generation of operational Earth observation satellites for optical land monitoring from space, are undergoing completion in the facilities at Astrium ready for launch end 2014. Sentinel-2 will feature a major breakthrough in the area of optical land observation since it will for the first time enable continuous and systematic acquisition of all land surfaces world-wide with the Multi-Spectral Instrument (MSI), thus providing the basis for a truly operational service. Flying in the same orbital plane and spaced at 180°, the constellation of two satellites, designed for an in-orbit nominal operational lifetime of 7 years each, will acquire all land surfaces in only 5 days at the equator. In order to support emergency operations, the satellites can further be operated in an extended observation mode allowing to image any point on Earth even on a daily basis. MSI acquires images in 13 spectral channels from Visible-to-Near Infrared (VNIR) to Short Wave Infrared (SWIR) with a swath of almost 300 km on ground and a spatial resolution up to 10 m. The data ensure continuity to the existing data sets produced by the series of Landsat and SPOT satellites, and will further provide detailed spectral information to enable derivation of biophysical or geophysical products. Excellent geometric image quality performances are achieved with geolocation better than 16 m, thanks to an innovative instrument design in conjunction with a high-performance satellite AOCS subsystem centered around a 2-band GPS receiver, high-performance star trackers and a fiberoptic gyro. To cope with the high data volume on-board, data are compressed using a state-of-the-art wavelet compression scheme. Thanks to a powerful mission data handling system built around a newly developed very large solid-state mass memory based on flash technology, on-board compression losses will be kept to a minimum. The Sentinel-2 satellite design features a highly

  11. Testing an advanced satellite technique for dust detection as a decision support system for the air quality assessment

    Science.gov (United States)

    Falconieri, Alfredo; Filizzola, Carolina; Femiano, Rossella; Marchese, Francesco; Sannazzaro, Filomena; Pergola, Nicola; Tramutoli, Valerio; Di Muro, Ersilia; Divietri, Mariella; Crisci, Anna Maria; Lovallo, Michele; Mangiamele, Lucia; Vaccaro, Maria Pia; Palma, Achille

    2014-05-01

    In order to correctly apply the European directive for air quality (2008/50/CE), local Authorities are often requested to discriminate the possible origin (natural/anthropic) of anomalous concentration of pollutants in the air (art.20 Directive 2008/50/CE). In this framework, it's been focused on PM10 and PM2,5 concentrations and sources. In fact, depending on their origin, appropriate counter-measures can be taken devoted to prevent their production (e.g. by traffic restriction) or simply to reduce their impact on citizen health (e.g. information campaigns). In this context suitable satellite techniques can be used in order to identify natural sources (particularly Saharan dust, but also volcanic ash or forest fire smoke) that can be responsible of over-threshold concentration of PM10/2,5 in populated areas. In the framework of the NIBS (Networking and Internationalization of Basilicata Space Technologies) project, funded by the Basilicata Region within the ERDF 2007-2013 program, the School of Engineering of University of Basilicata, the Institute of Methodologies for Environmental Analysis of National Research Council (IMAA-CNR) and the Regional Agency for the Protection of the Environment of Basilicata Region (ARPAB) have started a collaboration devoted to assess the potential of the use of advanced satellite techniques for Saharan dust events identification to support ARPAB activities related to the application of the European directive for air quality (2008/50/CE) in Basilicata region. In such a joint activity, the Robust Satellite Technique (RST) approach has been assessed and tested as a decision support system for monitoring and evaluating air quality at local and regional level. In particular, RST-DUST products, derived by processing high temporal resolution data provided by SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensor on board Meteosat Second Generation platforms, have been analysed together with PM10 measurements performed by the ground

  12. The Influence of Art on children´s art expression in school practice

    OpenAIRE

    VÁŇOVÁ, Jana

    2010-01-01

    Diploma Thesis ?The Influence of Art on Children´s Art Expression in School Practice? Deals with Evaluation of Possibilities Arttherapeutic Elements of Roznov Art Therapy and the Ways of Use Receptive Art Therapy in Art Lessons at Secondary School. There is Described Children´s Art Expression in the Age between 12 and 15 and Possible Impact of Art Form on Shaping Children´s Art Expression. It Evaluates the Importance of Methodical Intervention of Roznov Art Therapy Elements.

  13. Nuclear Waste State-of-the-Art Report 2007 - responsibility of current generation, freedom of future generations. Main report from the Swedish National Council for Nuclear Waste (KASAM)

    International Nuclear Information System (INIS)

    2007-01-01

    The state-of-the-art report presented by the Swedish National Council for Nuclear Waste (KASAM) in 2007 is of a slightly different character than the state-of-the-art reports published previously. This year KASAM felt the need to provide an overall picture in relatively easily accessible form of all its assessments since the first state-of-the-art report in 1986. Some of it has of course been rendered obsolete by subsequent events, but surprisingly much is still relevant. The purpose of this main report to provide an overall picture in relatively easily accessible form of all our assessments since the first state-of-the-art report in 1986. Some of it has of course been rendered obsolete by subsequent events, but surprisingly much is still relevant. Another purpose is to describe in general terms the course of events within which these assessments were made in order to contribute to a fundamental understanding of the complexity of managing the nuclear waste issue

  14. Modeling of discharge-triggered electric field redistribution on the interior components of a satellite

    International Nuclear Information System (INIS)

    Varga, L.; Horvath, E.B.

    1999-01-01

    This work examines an electrostatic charging/discharging cycle of a populated circuit board inside an equipment housing of a satellite at GEO. Component potentials and electric field strengths are examined before and after a common ground discharge event. Field reversal after the discharge suggests that favourable conditions exist for charge dissipation from dielectrics. (authors)

  15. Art Medium and Art Infrastructure Development in Contemporary Indonesian Art

    Directory of Open Access Journals (Sweden)

    A. Rikrik Kusmara

    2013-11-01

    Full Text Available This research review Indonesian contemporary artists that used the various media in the presentation in his works over the years since 2000 until now. Survey at Pameran Besar Indonesia "Manifesto" in May 2008, were around 670 Indonesian living artists, 350 are consistently professional artists, 41 artists who utilize a variety of media in each works and 6 of them are artists who used a various of media on their solo exhibition including combining conventional media with new media and installation approaches. 6 artists are analyzed on the structure of the media presentation configuration their used, and generally they used more than 3 types of media in their solo exhibition, first, painting/drawing, second, sculpture/object/installation, and third video/photography. In the study of each exhibition process, generally utilizing the curatorial and sponsored by promotor (gallery. This research shows a rapid development of economic infrastructure in Indonesian the art in 2000-an era with the emergence of many auction hall, a new generation of collectors and galleries, and the Asian art market and global orientation, it became one of the holding in contemporary art of Indonesia, has been shifting art situation from cultural appreciation in the era of 90-to an era to cultural production.

  16. The cyborg between bio-art and disturbatory art

    Directory of Open Access Journals (Sweden)

    Jean Cardoso

    2017-06-01

    Full Text Available http://dx.doi.org/10.5007/2175-8026.2017v70n2p29 The presence of the cyborg in contemporary times, as understood by the biologist and philosopher Donna Haraway in Antropologia do Ciborgue (2009, brings with it a set of signs that make up our world. Among these signs are transgender operations that the anthropologist and poet Luís Quintais criticizes in the work Uma arte do degelo (2015 by means of the performative effect of bio-art. However, when we compare this effect with the concept of disturbatory art of the philosopher Arthur Danto, present in the work The Philosophical Disenfranchisement of Art (1986, the ethics of bio-art as proposed by Quintais weakens in vitality. However, this article resorts to imaginary of the writer Fausto Fawcett in the work Favelost (2012 as way of dialoguing with the theorists present in this research in order to open perspectives to new worlds for the post-human.

  17. Art investment in South Africa: Portfolio diversification and art market efficiency

    Directory of Open Access Journals (Sweden)

    Ferdi Botha

    2016-09-01

    Full Text Available Art has been suggested as a good way to diversify investment portfolios during times of financial uncertainty. The argument is that art exhibits different risk and return characteristics to conventional investments in other asset classes. The new Citadel art price index offered the opportunity to test this theory in the South African context. Moreover, this paper tests whether art prices are efficient. The Citadel index uses the hedonic regression method with observations drawn from the top 100, 50 and 20 artists by sales volume, giving approximately 29 503 total auction observations. The Index consists of quarterly data from the period 2000Q1 to 2013Q3. A vector autoregression of the art price index, Johannesburg stock exchange all-share index, house price index, and South African government bond index were used. Results show that, when there are increased returns on the stock market in a preceding period and wealth increases, there is a change in the Citadel art price index in the same direction. No significant difference was found between the house price index and the art price index, or between the art and government bond price indices. The art market is also found to be inefficient, thereby exacerbating the risk of investing in art. Overall, the South African art market does not offer the opportunity to diversify portfolios dominated by either property, bonds, or shares.

  18. Rock Art

    Science.gov (United States)

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  19. Satellite Assessment of Bio-Optical Properties of Northern Gulf of Mexico Coastal Waters Following Hurricanes Katrina and Rita

    OpenAIRE

    Lohrenz, Steven E.; Cai, Wei-Jun; Chen, Xiaogang; Tuel, Merritt

    2008-01-01

    The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS A...

  20. REMATERIALIZED TENDENCIES IN MEDIA ART?FROM SILICON TO CARBON-BASED ART

    Directory of Open Access Journals (Sweden)

    DANIEL LÓPEZ DEL RINCÓN

    2013-01-01

    Full Text Available The importance of digitality in Media Art theories consolidated the aesthetic of dematerialization, as it shifted the value of materiality in this field. However, the advent of new forms of technological art, such as Bio Art, which uses laboratory technologies in an aesthetic way to manipulate life, demonstrates the crisis of this paradigm and the trend of rematerialization. This paper investigates the role of materiality, even in the more dematerialized realms of Media Art: the digital technologies. We focus on two art forms that combine new technologies and life sciences: Artificial life, which involves the intangible features of Media Art, and Bio Art, which interprets materiality in a radical manner, by choosing life as the raw material for artistic creation.

  1. REMATERIALIZED TENDENCIES IN MEDIA ART? FROM SILICON TO CARBON-BASED ART

    Directory of Open Access Journals (Sweden)

    Daniel López del Rincón

    2013-01-01

    Full Text Available The importance of digitality in Media Art theories consolidated the aesthetic of dematerialization, as it shifted the value of materiality in this field. However, the advent of new forms of technological art, such as Bio Art, which uses laboratory technologies in an aesthetic way to manipulate life, demonstrates the crisis of this paradigm and the trend of rematerialization. This paper investigates the role of materiality, even in the more dematerialized realms of Media Art: the digital technologies. We focus on two art forms that combine new technologies and life sciences: Artificial life, which involves the intangible features of Media Art, and Bio Art, which interprets materiality in a radical manner, by choosing life as the raw material for artistic creation.

  2. New aspects of the ionospheric response to the October 2003 superstorms from multiple-satellite observations

    Science.gov (United States)

    Lei, Jiuhou; Wang, Wenbin; Burns, Alan G.; Yue, Xinan; Dou, Xiankang; Luan, Xiaoli; Solomon, Stanley C.; Liu, Yong C.-M.

    2014-03-01

    The total electron content (TEC) data measured by the Jason, CHAMP, GRACE, and SAC-C satellites, the in situ electron densities from CHAMP and GRACE, and the vertical E × B drifts from the ROCSAT, have been utilized to examine the ionospheric response to the October 2003 superstorms. The combination of observations from multiple satellites provides a unique global view of ionospheric storm effects, especially over the Pacific Ocean and American regions, which were under sunlit conditions during the main phases of the October 2003 superstorms. The main results of this study are as follows: (1) There were substantial increases in TEC in the daytime at low and middle latitudes during both superstorms. (2) The enhancements were greater during the 30 October superstorm and occurred over a wider range of local times. (3) They also tended to peak at earlier local times during this second event. (4) These TEC enhancement events occurred at the local times when there were enhancements in the upward vertical drift. (5) The strong upward vertical drifts are attributed to penetration electric fields, suggesting that these penetration electric fields played a significant role in the electron density enhancements during these superstorms. Overall, the main contribution of this study is the simultaneous view of the storm time ionospheric response from multiple satellites, and the association of local time differences in ionospheric plasma response with measured vertical drift variations.

  3. The artful mind meets art history: toward a psycho-historical framework for the science of art appreciation.

    Science.gov (United States)

    Bullot, Nicolas J; Reber, Rolf

    2013-04-01

    Research seeking a scientific foundation for the theory of art appreciation has raised controversies at the intersection of the social and cognitive sciences. Though equally relevant to a scientific inquiry into art appreciation, psychological and historical approaches to art developed independently and lack a common core of theoretical principles. Historicists argue that psychological and brain sciences ignore the fact that artworks are artifacts produced and appreciated in the context of unique historical situations and artistic intentions. After revealing flaws in the psychological approach, we introduce a psycho-historical framework for the science of art appreciation. This framework demonstrates that a science of art appreciation must investigate how appreciators process causal and historical information to classify and explain their psychological responses to art. Expanding on research about the cognition of artifacts, we identify three modes of appreciation: basic exposure to an artwork, the artistic design stance, and artistic understanding. The artistic design stance, a requisite for artistic understanding, is an attitude whereby appreciators develop their sensitivity to art-historical contexts by means of inquiries into the making, authorship, and functions of artworks. We defend and illustrate the psycho-historical framework with an analysis of existing studies on art appreciation in empirical aesthetics. Finally, we argue that the fluency theory of aesthetic pleasure can be amended to meet the requirements of the framework. We conclude that scientists can tackle fundamental questions about the nature and appreciation of art within the psycho-historical framework.

  4. The Future of Satellite Communications Technology.

    Science.gov (United States)

    Nowland, Wayne

    1985-01-01

    Discusses technical advances in satellite technology since the 1960s, and the International Telecommunications Satellite Organization's role in these developments; describes how AUSSAT, Australia's domestic satellite system, exemplifies the latest developments in satellite technology; and reviews satellite system features, possible future…

  5. Satellite and Ground Based Monitoring of Aerosol Plumes

    International Nuclear Information System (INIS)

    Doyle, Martin; Dorling, Stephen

    2002-01-01

    Plumes of atmospheric aerosol have been studied using a range of satellite and ground-based techniques. The Sea-viewing WideField-of-view Sensor (SeaWiFS) has been used to observe plumes of sulphate aerosol and Saharan dust around the coast of the United Kingdom. Aerosol Optical Thickness (AOT) was retrieved from SeaWiFS for two events; a plume of Saharan dust transported over the United Kingdom from Western Africa and a period of elevated sulphate experienced over the Easternregion of the UK. Patterns of AOT are discussed and related to the synoptic and mesoscale weather conditions. Further observation of the sulphate aerosol event was undertaken using the Advanced Very High Resolution Radiometer instrument(AVHRR). Atmospheric back trajectories and weather conditions were studied in order to identify the meteorological conditions which led to this event. Co-located ground-based measurements of PM 10 and PM 2.5 were obtained for 4sites within the UK and PM 2.5/10 ratios were calculated in order to identify any unusually high or low ratios(indicating the dominant size fraction within the plume)during either of these events. Calculated percentiles ofPM 2.5/10 ratios during the 2 events examined show that these events were notable within the record, but were in noway unique or unusual in the context of a 3 yr monitoring record. Visibility measurements for both episodes have been examined and show that visibility degradation occurred during both the sulphate aerosol and Saharan dust episodes

  6. Decision Support for Flood Event Prediction and Monitoring

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Liang, Gengsheng

    2007-01-01

    In this paper the development of Web GIS based decision support system for flood events is presented. To improve flood prediction we developed the decision support system for flood prediction and monitoring that integrates hydrological modelling and CARIS GIS. We present the methodology for data...... integration, floodplain delineation, and online map interfaces. Our Web-based GIS model can dynamically display observed and predicted flood extents for decision makers and the general public. The users can access Web-based GIS that models current flood events and displays satellite imagery and digital...... elevation model integrated with flood plain area. The system can show how the flooding prediction based on the output from hydrological modeling for the next 48 hours along the lower Saint John River Valley....

  7. Subtropical Low Cloud Responses to Central and Eastern Pacific El Nino Events

    Science.gov (United States)

    Rapp, A. D.; Bennartz, R.; Jiang, J. H.; Kato, S.; Olson, W. S.; Pinker, R. T.; Su, H.; Taylor, P. C.

    2014-12-01

    The eastern Pacific El Niño event in 2006-2007 and the central Pacific El Niño event during 2009-2010 exhibit opposite responses in the top of atmosphere (TOA) cloud radiative effects. These responses are driven by differences in large-scale circulation that result in significant low cloud anomalies in the subtropical southeastern Pacific. Both the vertical profile of cloud fraction and cloud water content are reduced during the eastern Pacific El Niño; however, the shift in the distribution of cloud characteristics and the physical processes underlying these changes need further analysis. The NASA Energy and Water Cycle Study (NEWS) Clouds and Radiation Working Group will use a synthesis of NEWS data products, A-Train satellite measurements, reanalysis, and modeling approaches to further explore the differences in the low cloud response to changes in the large-scale forcing, as well as try to understand the physical mechanism driving the observed changes in the low clouds for the 2006/07 and 2009/10 distinct El Niño events. The distributions of cloud macrophysical, microphysical, and radiative properties over the southeast Pacific will first be compared for these two events using a combination of MODIS, CloudSat/CALIPSO, and CERES data. Satellite and reanalysis estimates of changes in the vertical temperature and moisture profiles, lower tropospheric stability, winds, and surface heat fluxes are then used to identify the drivers for observed differences in the clouds and TOA radiative effects.

  8. Counseling as an Art: The Creative Arts in Counseling.

    Science.gov (United States)

    Gladding, Samuel T.

    In this book counseling approaches with a variety of populations are examined using these creative arts: music; dance/movement; imagery; visual arts; literature; drama; and play and humor. It is noted that all of these arts are process-oriented, emotionally sensitive, socially directed, and awareness-focused. Chapter 1 discusses the history,…

  9. How art changes your brain: differential effects of visual art production and cognitive art evaluation on functional brain connectivity.

    Science.gov (United States)

    Bolwerk, Anne; Mack-Andrick, Jessica; Lang, Frieder R; Dörfler, Arnd; Maihöfner, Christian

    2014-01-01

    Visual art represents a powerful resource for mental and physical well-being. However, little is known about the underlying effects at a neural level. A critical question is whether visual art production and cognitive art evaluation may have different effects on the functional interplay of the brain's default mode network (DMN). We used fMRI to investigate the DMN of a non-clinical sample of 28 post-retirement adults (63.71 years ±3.52 SD) before (T0) and after (T1) weekly participation in two different 10-week-long art interventions. Participants were randomly assigned to groups stratified by gender and age. In the visual art production group 14 participants actively produced art in an art class. In the cognitive art evaluation group 14 participants cognitively evaluated artwork at a museum. The DMN of both groups was identified by using a seed voxel correlation analysis (SCA) in the posterior cingulated cortex (PCC/preCUN). An analysis of covariance (ANCOVA) was employed to relate fMRI data to psychological resilience which was measured with the brief German counterpart of the Resilience Scale (RS-11). We observed that the visual art production group showed greater spatial improvement in functional connectivity of PCC/preCUN to the frontal and parietal cortices from T0 to T1 than the cognitive art evaluation group. Moreover, the functional connectivity in the visual art production group was related to psychological resilience (i.e., stress resistance) at T1. Our findings are the first to demonstrate the neural effects of visual art production on psychological resilience in adulthood.

  10. Arts@CERN | ACCELERATE Austria | 19 May | IdeaSquare

    CERN Multimedia

    2016-01-01

    Arts@CERN welcomes you to a talk by architects Sandra Manninger and Matias Del Campo, at IdeaSquare (Point 1) on May 19 at 6:00 p.m.   Sensible Bodies - architecture, data, and desire. Sandra and Matias are the winning architects for ACCELERATE Austria. Focusing on the notion of geometry, they are at CERN during the month of May, as artists in residence. Their research highlights how to go beyond beautiful data to discover something that could be defined voluptuous data. This coagulation of numbers, algorithms, procedures and programs uses the forces of thriving nature and, passing through the calculation of a multi-core processor, knits them with human desire. Read more. ACCELERATE Austria is supported by The Department of Arts of the Federal Chancellery of Austria. Thursday, May 19 at 6:00 p.m. at IdeaSquare.  See event on Indico. 

  11. From the art of war to fight with art

    DEFF Research Database (Denmark)

    Clausen, Lars

    2015-01-01

    systems theory with art. Martin Nore through his visual art develops and activistic form of system theory, where therapeutic intervention turns into societal self-therapy for broken meaning horizons and unintended consequences of the current massage of the form peace/war. The activistic systems...... theoretical art, the "artivistic" perspective developed from the broken minds of war experiences, diagnosed with Post-Traumatic Stress Disorder and Traumatic Brain Injury. Since then, it has broadened the perspective to demonstrate its capacity to work with the distinction between civil society and its...... outside. This is the fight with art, where the predominant selfdescriptions in western societies are questioned on their selflimitations and insufficient strategies of deparadoxation. In Martins art, the paradox of the structural coupling of body, mind and society as both distinct from each other...

  12. Handoff algorithm for mobile satellite systems with ancillary terrestrial component

    KAUST Repository

    Sadek, Mirette

    2012-06-01

    This paper presents a locally optimal handoff algorithm for integrated satellite/ground communication systems. We derive the handoff decision function and present the results in the form of tradeoff curves between the number of handoffs and the number of link degradation events in a given distance covered by the mobile user. This is a practical receiver-controlled handoff algorithm that optimizes the handoff process from a user perspective based on the received signal strength rather than from a network perspective. © 2012 IEEE.

  13. Three Approaches to Teaching Art Methods Courses: Child Art, Visual Culture, and Issues-Based Art Education

    Science.gov (United States)

    Chang, EunJung; Lim, Maria; Kim, Minam

    2012-01-01

    In this article, three art educators reflect on their ideas and experiences in developing and implementing innovative projects for their courses focusing on art for elementary education majors. They explore three different approaches. The three areas that are discussed in depth include: (1) understanding child art; (2) visual culture; and (3)…

  14. Plasma and field observations of a compressional Pc 5 wave event

    International Nuclear Information System (INIS)

    Baumjohann, W.; Sckopke, N.; LaBelle, J.; Klecker, B.; Luehr, H.; Glassmeier, K.H.

    1987-01-01

    On October 24, 1984, the AMPTE/IRM satellite, on its inbound orbit in the 1,300 LT sector, observed a strong compressional Pc 5 event lasting for about an hour. The use of data from the full complement of detectors aboard the spacecraft allowed for detailed measurements of field and particle oscillations, with the latter covering energies from a few electron volts up to tens of keV (electrons) or even 1 MeV (protons). Both energetic proton and electron fluxes were anticorrelated with the compressional magnetic field oscillations, indicating that the event belongs to the class of in-phase events. But the energetic proton data also exhibited a new feature: Flux minima and maxima at low energies were observed somewhat later than those at higher energies. The magnetic and plasma pressure oscillations satisfy the pressure balance equation for the drift mirror mode much better than that for drift compressional Alfven waves. However, the classical criterion for the onset of the mirror instability is not satisfied. The low-energy particles showed clear signatures of gradient convection due to the wave electric field with the protons additionally undergoing gyration acceleration. The period of the pulsation decreased while the satellite was moving inward, in agreement with the individual L shell resonance model. But in contrast to earlier observations the periods of the compressional and transverse oscillations differed significantly (by ∼ 25%). The authors interpret this as Doppler shift due to spacecraft motion since in the present event the transverse oscillations did not have the purely radial (poloidal) polarization common to other published cases

  15. Satellite Communications for ATM

    Science.gov (United States)

    Shamma, Mohammed A.

    2003-01-01

    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  16. Identification of tropospheric emissions sources from satellite observations: Synergistic use of HCHO, NO2, and SO2 trace gas measurements

    Science.gov (United States)

    Marbach, T.; Beirle, S.; Khokhar, F.; Platt, U.

    2005-12-01

    We present case studies for combined HCHO, NO2, and SO2 satellite observations, derived from GOME measurements. Launched on the ERS-2 satellite in April 1995, GOME has already performed continuous operations over 8 years providing global observations of the different trace gases. In this way, satellite observations provide unique opportunities for the identifications of trace gas sources. The satellite HCHO observations provide information concerning the localization of biomass burning (intense source of HCHO). The principal biomass burning areas can be observed in the Amazon basin region and in central Africa Weaker HCHO sources (south east of the United States, northern part of the Amazon basin, and over the African tropical forest), not correlated with biomass burning, could be due to biogenic isoprene emissions. The HCHO data can be compared with NO2 and SO2 results to identify more precisely the tropospheric sources (biomass burning events, human activities, additional sources like volcanic emissions). Biomass burning are important tropospheric sources for both HCHO and NO2. Nevertheless HCHO reflects more precisely the biomass burning as it appears in all biomass burning events. NO2 correlate with HCHO over Africa (grassland fires) but not over Indonesia (forest fires). In south America, an augmentation of the NO2 concentrations can be observed with the fire shift from the forest to grassland vegetation. So there seems to be a dependence between the NO2 emissions during biomass burning and the vegetation type. Other high HCHO, SO2, and NO2 emissions can be correlated with climatic events like the El Nino in 1997, which induced dry conditions in Indonesia causing many forest fires.

  17. Negated bio-events: analysis and identification

    Science.gov (United States)

    2013-01-01

    Background Negation occurs frequently in scientific literature, especially in biomedical literature. It has previously been reported that around 13% of sentences found in biomedical research articles contain negation. Historically, the main motivation for identifying negated events has been to ensure their exclusion from lists of extracted interactions. However, recently, there has been a growing interest in negative results, which has resulted in negation detection being identified as a key challenge in biomedical relation extraction. In this article, we focus on the problem of identifying negated bio-events, given gold standard event annotations. Results We have conducted a detailed analysis of three open access bio-event corpora containing negation information (i.e., GENIA Event, BioInfer and BioNLP’09 ST), and have identified the main types of negated bio-events. We have analysed the key aspects of a machine learning solution to the problem of detecting negated events, including selection of negation cues, feature engineering and the choice of learning algorithm. Combining the best solutions for each aspect of the problem, we propose a novel framework for the identification of negated bio-events. We have evaluated our system on each of the three open access corpora mentioned above. The performance of the system significantly surpasses the best results previously reported on the BioNLP’09 ST corpus, and achieves even better results on the GENIA Event and BioInfer corpora, both of which contain more varied and complex events. Conclusions Recently, in the field of biomedical text mining, the development and enhancement of event-based systems has received significant interest. The ability to identify negated events is a key performance element for these systems. We have conducted the first detailed study on the analysis and identification of negated bio-events. Our proposed framework can be integrated with state-of-the-art event extraction systems. The

  18. Multipoint observations of coronal mass ejection and solar energetic particle events on Mars and Earth during November 2001

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Vennerstrøm, Susanne; Brain, D. A.

    2011-01-01

    and Geostationary Operational Environmental Satellite (GOES) data to study ICMEs and SEPs at Earth, we present a detailed study of three CMEs and flares in late November 2001. In this period, Mars trailed Earth by 56 degrees solar longitude so that the two planets occupied interplanetary magnetic field lines...... not only ICME events but also SEP events at Mars, with good results providing a consistent picture of the events when combined with near-Earth data....

  19. Sangkulirang Mangkalihat: The Earliest Prehistoric Rock-Art in the World

    Science.gov (United States)

    Imam Gozali Sumantri, Dirga; Soeria Atmadja, Dicky A. S.; Setiawan, Pindi

    2018-05-01

    Borneo island, a part of Sundaland - a great mainland in South East Asia thousands of years ago - is the largest island in Indonesian Archipelago. In the middle-eastern of East Borneo, lies a peninsula karst region named Sangkulirang Mangkalihat. The region's biodiversity contains many species of flora and fauna which are part of karst ecosystem. Surprisingly, thousands prehistoric rock art paintings and engraving were found here, spread over 48 inland caves in seven different karst mountain areas. The rock arts are painted on the ceiling, wall, and hollow of the cave depends on the meaning. They illustrate forms such as spiritual images (zoomorphic and antropomorphic) for sacred spiritual meaning, and social phenomenon images (tools and weapons) for description of daily life. From all those rock-arts, hand paintings are the most common elements appeared. Compared to other paintings, these are the only negative images using different techniques. Radiocarbon dating indicated that the rock-arts at Tewet Cave in Sangkulirang Mangkalihat is 40,000 BP. It is much earlier compared to Lascaux Cave (35,400 BP) and Chauvet Cave (32,000) in France which were previously known as the earliest one in the world. Rock arts and some archeological findings also indicate the migration of Austronesian People. During the migration, Borneo's climate and land cover were changing from time to time. Continental climate occurred when all Sundaland was still dry (40,000-21,000 BP), followed by tropical savanna climate and archipelagic climate (12,000-7.000 BP), and then Tropical Rainforest consecutively (1,000 BP). Correlatively, geological interpretations from such areas indicate land cover changes. These changes effected Austronesian ways of living, e.g. from hunting to fishing, and were depicted clearly on their paintings. Today, - as observed from time series satellite images - industrial activities such as karst exploitation for cement production and land clearing for palm

  20. Arquitectura, arte funcional

    Directory of Open Access Journals (Sweden)

    Monjo Carrió, Juan

    1985-10-01

    Full Text Available The begining of this work is devoted to the analysis of the concepts of Art, Science and Technique and their historical evolution, distinguishing between "fine arts" and "technique arts". Following, Architect and Architecture terms are defined both conceptual and professionally, analysing as well its historical evolution and pointing out the interdependence between the architectural conception as "fine art" and the constructive technology as "technique art", finally reminding the necessary scientific base of this one (Construction Physics. Consequently, the need for architecture professionals of constructive technology knowledge, is also reminded. At last, the functional character of the Architecture (Architecture as a "functional art" is analysed, going over the three basic aspects of this functionality (Integrity-firmitas, Habitability-utilitas and Aesthetics-venustas.Se inicia el trabajo analizando los conceptos de Arte, Ciencia y Técnica y su evolución histórica, distinguiendo entre ¡as "bellas artes" y las "artes técnicas". A continuación se definen los conceptos de Arquitecto y Arquitectura, tanto conceptual como profesionalmente, analizando, asimismo, su evolución histórica y haciendo hincapié en la interdependencia entre la concepción arquitectónica como "bella arte" y la tecnología constructiva como "arte técnica", para terminar recordando la necesaria base científica de esta última (la Física de la Construcción. Como consecuencia, se recuerda la necesidad de los conocimientos de la tecnología constructiva en los arquitectos profesionales. Por último, se analiza el carácter funcional de la Arquitectura (Arquitectura como "arte funcional" y se hace un breve recorrido por los tres aspectos básicos de esa funcionalidad (Integridad-firmitas, Habitabilidad-utilitas y Estética-venustas.