WorldWideScience

Sample records for satellite earth terminal

  1. The use of mobile satellite communication terminals

    Science.gov (United States)

    Law, P. A.

    The role of small portable terminals in military satellite systems is examined; the discussion embraces terminals with an antenna reflector diameter of seven meters or less. Emphasis is placed on the specification of MARMOSET (Marconi Mobile Satellite Earth Terminal). Also considered are ship-borne satellite terminals, the improved SCOT terminal, interoperability, reduced downlink power, and reliability and availability.

  2. Design description report for a photovoltaic power system for a remote satellite earth terminal

    Science.gov (United States)

    Marshall, N. A.; Naff, G. J.

    1987-01-01

    A photovoltaic (PV) power system has been installed as an adjunct to an agricultural school at Wawatobi on the large northern island of the Republic of Indonesia. Its purpose is to provide power for a satellite earth station and a classroom. The renewable energy developed supports the video and audio teleconferencing systems as well as the facility at large. The ground station may later be used to provide telephone service. The installation was made in support of the Agency for International Development's Rural Satellite Program, whose purpose is to demonstrate the use of satellite communications for rural development assistance applications. The objective of this particular PV power system is to demonstrate the suitability of a hybrid PV engine-generator configuration for remote satellite earth stations.

  3. Low Earth Orbiter: Terminal

    Science.gov (United States)

    Kremer, Steven E.; Bundick, Steven N.

    1999-01-01

    In response to the current government budgetary environment that requires the National Aeronautics and Space Administration (NASA) to do more with less, NASA/Goddard Space Flight Center's Wallops Flight Facility has developed and implemented a class of ground stations known as a Low Earth Orbiter-Terminal (LEO-T). This development thus provides a low-cost autonomous ground tracking service for NASA's customers. More importantly, this accomplishment provides a commercial source to spacecraft customers around the world to purchase directly from the company awarded the NASA contract to build these systems. A few years ago, NASA was driven to provide more ground station capacity for spacecraft telemetry, tracking, and command (TT&C) services with a decreasing budget. NASA also made a decision to develop many smaller, cheaper satellites rather than a few large spacecraft as done in the past. In addition, university class missions were being driven to provide their own TT&C services due to the increasing load on the NASA ground-tracking network. NASA's solution for this ever increasing load was to use the existing large aperture systems to support those missions requiring that level of performance and to support the remainder of the missions with the autonomous LEO-T systems. The LEO-T antenna system is a smaller, cheaper, and fully autonomous unstaffed system that can operate without the existing NASA support infrastructure. The LEO-T provides a low-cost, reliable space communications service to the expanding number of low-earth orbiting missions around the world. The system is also fostering developments that improve cost-effectiveness of autonomous-class capabilities for NASA and commercial space use. NASA has installed three LEO-T systems. One station is at the University of Puerto Rico, the second system is installed at the Poker Flat Research Range near Fairbanks, Alaska, and the third system is installed at NASA's Wallops Flight Facility in Virginia. This paper

  4. Spanish Earth Observation Satellite System

    Science.gov (United States)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  5. Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  6. Modular approach for satellite communication ground terminals

    Science.gov (United States)

    Gould, G. R.

    1984-01-01

    The trend in satellite communications is toward completely digital, time division multiple access (TDMA) systems with uplink and downlink data rates dictated by the type of service offered. Trunking terminals will operate in the 550 MBPS (megabit per second) region uplink and downlink, whereas customer premise service (CPS) terminals will operate in the 25 to 10 MBPS region uplink and in the 200 MBPS region downlink. Additional criteria for the ground terminals will be to maintain clock sychronization with the system and burst time integrity to within a matter of nanoseconds, to process required order-fire information, to provide adaptive data scrambing, and to compensate for variations in the user input output data rates, and for changes in range in the satellite communications links resulting from satellite perturbations in orbit. To achieve the required adaptability of a ground terminal to the above mentioned variables, programmable building blocks can be developed that will meet all of these requirements. To maintain system synchronization, i.e., all bursted data arriving at the satellite within assigned TDMA windows, ground terminal transmit data rates and burst timing must be maintained within tight tolerances. With a programmable synchronizer as the heart of the terminal timing generation, variable data rates and burst timing tolerances are achievable. In essence, the unit inputs microprocessor generated timing words and outputs discrete timing pulses.

  7. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  8. Uplink Power Control For Earth/Satellite/Earth Communication

    Science.gov (United States)

    Chakraborty, Dayamoy

    1994-01-01

    Proposed control subsystem adjusts power radiated by uplink transmitter in Earth station/satellite relay station/ Earth station communication system. Adjustments made to compensate for anticipated changes in attenuation by rain. Raw input is a received downlink beacon singal, amplitude of which affected not only by rain fade but also by scintillation, attenuation in atmospheric gases, and diurnal effects.

  9. Future Satellite Gravimetry and Earth Dynamics

    CERN Document Server

    Flury, Jakob

    2005-01-01

    Currently, a first generation of dedicated satellite missions for the precise mapping of the Earth’s gravity field is in orbit (CHAMP, GRACE, and soon GOCE). The gravity data from these satellite missions provide us with very new information on the dynamics of planet Earth. In particular, on the mass distribution in the Earth’s interior, the entire water cycle (ocean circulation, ice mass balance, continental water masses, and atmosphere), and on changes in the mass distribution. The results are fascinating, but still rough with respect to spatial and temporal resolution. Technical progress in satellite-to-satellite tracking and in gravity gradiometry will allow more detailed results in the future. In this special issue, Earth scientists develop visions of future applications based on follow-on high-precision satellite gravimetry missions.

  10. Landsat—Earth observation satellites

    Science.gov (United States)

    ,

    2015-11-25

    Since 1972, Landsat satellites have continuously acquired space-based images of the Earth’s land surface, providing data that serve as valuable resources for land use/land change research. The data are useful to a number of applications including forestry, agriculture, geology, regional planning, and education. Landsat is a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). NASA develops remote sensing instruments and the spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and data distribution. The result of this program is an unprecedented continuing record of natural and human-induced changes on the global landscape.

  11. Earth rotation parameters from satellite techniques

    Science.gov (United States)

    Thaller, Daniela; Beutler, Gerhard; Jäggi, Adrian; Meindl, Michael; Dach, Rolf; Sosnica, Krzysztof; Baumann, Christian

    2013-04-01

    It has been demonstrated since several years that satellite techniques are capable of determining Earth Rotation Parameters (ERPs) with a daily or even sub-daily resolution. Especially Global Navigation Satellite Systems (GNSS) with their huge amount of observations can determine time series of polar motion (PM) and length of day (LOD) rather well. But also SLR with its spherical satellites whose orbital motions are easy to model and that allow long orbital arc lengths can deliver valuable contributions to Earth rotation. We analyze GNSS solutions (using GPS and GLONASS) and SLR solutions (using LAGEOS) regarding their potential of estimating polar motion and LOD with daily and subdaily temporal resolution. A steadily improving modeling applied in the analysis of space-geodetic data aims at improved time series of geodetic parameters, e.g., the ERPs. The Earth's gravity field and especially its temporal variations are one point of interest for an improved modeling for satellite techniques. For modeling the short-periodic gravity field variations induced by mass variations in the atmosphere and the oceans the GRACE science team provides the Atmosphere and Ocean Dealiasing (AOD) products. They contain 6-hourly gravity fields of the atmosphere and the oceans. We apply these corrections in the analysis of satellite-geodetic data and show the impact on the estimated ERPs. It is well known that the degree-2 coefficients of the Earth's gravity field are correlated with polar motion and LOD. We show to what extent temporal variations in the degree-2 coefficients are influencing the ERP estimates.

  12. Operational evapotranspiration based on Earth observation satellites

    Science.gov (United States)

    Gellens-Meulenberghs, Françoise; Ghilain, Nicolas; Arboleda, Alirio; Barrios, Jose-Miguel

    2016-04-01

    Geostationary satellites have the potential to follow fast evolving atmospheric and Earth surface phenomena such those related to cloud cover evolution and diurnal cycle. Since about 15 years, EUMETSAT has set up a network named 'Satellite Application Facility' (SAF, http://www.eumetsat.int/website/home/Satellites/GroundSegment/Safs/index.html) to complement its ground segment. The Land Surface Analysis (LSA) SAF (http://landsaf.meteo.pt/) is devoted to the development of operational products derived from the European meteorological satellites. In particular, an evapotranspiration (ET) product has been developed by the Royal Meteorological Institute of Belgium. Instantaneous and daily integrated results are produced in near real time and are freely available respectively since the end of 2009 and 2010. The products cover Europe, Africa and the Eastern part of South America with the spatial resolution of the SEVIRI sensor on-board Meteosat Second Generation (MSG) satellites. The ET product algorithm (Ghilain et al., 2011) is based on a simplified Soil-Vegetation-Atmosphere transfer (SVAT) scheme, forced with MSG derived radiative products (LSA SAF short and longwave surface fluxes, albedo). It has been extensively validated against in-situ validation data, mainly FLUXNET observations, demonstrating its good performances except in some arid or semi-arid areas. Research has then been pursued to develop an improved version for those areas. Solutions have been found in reviewing some of the model parameterizations and in assimilating additional satellite products (mainly vegetation indices and land surface temperature) into the model. The ET products will be complemented with related latent and sensible heat fluxes, to allow the monitoring of land surface energy partitioning. The new algorithm version should be tested in the LSA-SAF operational computer system in 2016 and results should become accessible to beta-users/regular users by the end of 2016/early 2017. In

  13. Study on networking issues of medium earth orbit satellite communications systems

    Science.gov (United States)

    Araki, Noriyuki; Shinonaga, Hideyuki; Ito, Yasuhiko

    1993-01-01

    Two networking issues of communications systems with medium earth orbit (MEO) satellites, namely network architectures and location determination and registration methods for hand-held terminals, are investigated in this paper. For network architecture, five candidate architectures are considered and evaluated in terms of signaling traffic. For location determination and registration, two methods are discussed and evaluated.

  14. ESA Earth terminals in the European data relay system

    Science.gov (United States)

    Beck, T.

    1991-10-01

    The projected ESA earth terminal which will be the main traffic stations for the space/ground communications via the European Data Relay System (DRS) are considered. The major station and subsystem characteristics of these terminals as derived during the detailed definition phase by European industry are described.

  15. Satellite Quantum Communication via the Alphasat Laser Communication Terminal

    CERN Document Server

    Elser, Dominique; Khan, Imran; Stiller, Birgit; Marquardt, Christoph; Leuchs, Gerd; Saucke, Karen; Tröndle, Daniel; Heine, Frank; Seel, Stefan; Greulich, Peter; Zech, Herwig; Gütlich, Björn; Richter, Ines; Meyer, Rolf

    2015-01-01

    By harnessing quantum effects, we nowadays can use encryption that is in principle proven to withstand any conceivable attack. These fascinating quantum features have been implemented in metropolitan quantum networks around the world. In order to interconnect such networks over long distances, optical satellite communication is the method of choice. Standard telecommunication components allow one to efficiently implement quantum communication by measuring field quadratures (continuous variables). This opens the possibility to adapt our Laser Communication Terminals (LCTs) to quantum key distribution (QKD). First satellite measurement campaigns are currently validating our approach.

  16. Assessing the Impact of Earth Radiation Pressure Acceleration on Low-Earth Orbit Satellites

    Science.gov (United States)

    Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Kusche, Jürgen; Börger, Klaus

    2017-04-01

    The orbits of satellites are influenced by several external forces. The main non-gravitational forces besides thermospheric drag, acting on the surface of satellites, are accelerations due to the Earth and Solar Radiation Pres- sure (SRP and ERP, respectively). The sun radiates visible and infrared light reaching the satellite directly, which causes the SRP. Earth also emits and reflects the sunlight back into space, where it acts on satellites. This is known as ERP acceleration. The influence of ERP increases with decreasing distance to the Earth, and for low-earth orbit (LEO) satellites ERP must be taken into account in orbit and gravity computations. Estimating acceler- ations requires knowledge about energy emitted from the Earth, which can be derived from satellite remote sensing data, and also by considering the shape and surface material of a satellite. In this sensitivity study, we assess ERP accelerations based on different input albedo and emission fields and their modelling for the satellite missions Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE). As input fields, monthly 1°x1° products of Clouds and the Earth's Radiant En- ergy System (CERES), L3 are considered. Albedo and emission models are generated as latitude-dependent, as well as in terms of spherical harmonics. The impact of different albedo and emission models as well as the macro model and the altitude of satellites on ERP accelerations will be discussed.

  17. Navigation using local position determination from a mobile satellite terminal

    Science.gov (United States)

    Kee, Steven M.; Marquart, Robert C.

    The authors describe the implementation and performance evaluation of a location-determination system which uses a mobile satellite transmitter for one-way communications of position data for vehicle tracking. Field results have demonstrated that a mobile satellite terminal can provide reliable messaging and position reporting for many over-the-road applications. With installation techniques suitable for nontechnical personnel using a minimum of test equipment, the mobile terminal can provide proximity reporting adequate for most fleet dispatch requirements. Position data with one-way or two-way communications can improve the logistics and management of service fleets by eliminating deadhead mileage, maximizing route efficiencies, and heading off problems with up-to-date status information of transported loads.

  18. Earth Observation Satellites Scheduling Based on Decomposition Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Feng Yao

    2010-11-01

    Full Text Available A decomposition-based optimization algorithm was proposed for solving Earth Observation Satellites scheduling problem. The problem was decomposed into task assignment main problem and single satellite scheduling sub-problem. In task assignment phase, the tasks were allocated to the satellites, and each satellite would schedule the task respectively in single satellite scheduling phase. We adopted an adaptive ant colony optimization algorithm to search the optimal task assignment scheme. Adaptive parameter adjusting strategy and pheromone trail smoothing strategy were introduced to balance the exploration and the exploitation of search process. A heuristic algorithm and a very fast simulated annealing algorithm were proposed to solve the single satellite scheduling problem. The task assignment scheme was valued by integrating the observation scheduling result of multiple satellites. The result was responded to the ant colony optimization algorithm, which can guide the search process of ant colony optimization. Computation results showed that the approach was effective to the satellites observation scheduling problem.

  19. SATELLITE GRAVITY SURVEYING TECHNOLOGY AND RESEARCH OF EARTH'S GRAVITY FIELD

    Institute of Scientific and Technical Information of China (English)

    Ning Jinsheng

    2003-01-01

    This is a summarized paper. Two topics are discussed: Firstly, the concept, development and application of four kinds of satellite gravity surveying technology are introduced; Secondly, some problems of theory and method, which must be considered in the study of the Earth's gravity field based on satellite gravity data, are expounded.

  20. Satellite measurements of the earth's crustal magnetic field

    Science.gov (United States)

    Schnetzler, C. C.

    1989-01-01

    The literature associated with the Magsat mission has evaluated the capabilities and limitations of satellite measurements of the earth's crustal magnetic field, and demonstrated that there exists a 300-3000 km magnetic field, related to major features in the earth's crust, which is primarily caused by induction. Due to its scale and sensitivity, satellite data have been useful in the development of models for such large crustal features as subduction zones, submarine platforms, continental accretion boundaries, and rifts. Attention is presently given to the lack of agreement between laboratory and satellite estimates of lower crustal magnetization.

  1. Terminal-to-Terminal Calling for GEO Broadband Mobile Satellite Communication

    Institute of Scientific and Technical Information of China (English)

    Jinsheng Yang

    2015-01-01

    Satellite and terrestrial components of IMT⁃Advanced need to be integrated so that the traditional strengths of each compo⁃nent can be fully exploited. LTE/LTE⁃A is now a recognized foundation of terrestrial 4G networks, and mobile satellite net⁃works should be based on it. Long transmission delay is one of the main disadvantages of satellite communication, espe⁃cially in a GEO system, and terminal⁃to⁃terminal (TtT) design reduces this delay. In this paper, we propose a protocol archi⁃tecture based on LTE/LTE⁃A for GEO mobile satellite commu⁃nication. We propose a detailed call procedure and four TtT modes for this architecture. We describe the division of tasks between the satellite gateway (SAT⁃GW) and satellite as well as TtT processing in the physical layer of the satellite in or⁃der to reduce delay and ensure compatibility with a terrestrial LTE/LTE⁃A system.

  2. Resonance Caused by the Gravitational waves On an Earth Satellite

    Directory of Open Access Journals (Sweden)

    Mohamad Radwan

    2008-01-01

    Full Text Available The present work deals with the motion of an Earth satellite taking into account the oblateness of the Earth and of a passing Gravitational wave. The oblateness of the Earth is truncated beyond the second zonal harmonic, J2, which plays the role of the small parameter of the problem. The conditions for resonance are determined and the resonance resulting from the commensurabilities between the wave frequency and the mean motions of the satellite, the nodal regression, and the apsidal rotation are analyzed.

  3. Polar Operational Environmental Satellites: Looking at Earth

    Science.gov (United States)

    Aleman, Roberto M.

    2000-01-01

    A broad overview of the Polar Operational Environmental Satellites (POES) Project is presented at a very high level. A general description of the scientific instruments on the Television Infrared Observational Satellite (TIROS) spacecraft is presented with emphasis put on their mission and the products derived from the data. Actual pictures produced from POES instruments data are shown to help the audience relate our work to their everyday life, as affected by the weather systems.

  4. Polar Operational Environmental Satellites: Looking at Earth

    Science.gov (United States)

    Aleman, Roberto M.

    2000-01-01

    A broad overview of the Polar Operational Environmental Satellites (POES) Project is presented at a very high level. A general description of the scientific instruments on the Television Infrared Observational Satellite (TIROS) spacecraft is presented with emphasis put on their mission and the products derived from the data. Actual pictures produced from POES instruments data are shown to help the audience relate our work to their everyday life, as affected by the weather systems.

  5. Precise Orbit Determination of Earth's Satellites for Climate Change Investigation

    Science.gov (United States)

    Vespe, Francesco

    The tremendous improvement of the gravity field models which we are achieving with the last Earth's satellite missions like, CHAMP, GRACE and GOCE devoted to its recovery could make feasibile the use of precise orbit determination (POD) of Earth satellites as a tool for sensing global changes of some key atmosphere parameters like refractivity and extinction. Such improvements indeed, coupled with the huge number of running Earth's satellites and combinations of their orbital parameters (namely the nodes) in a gravity field free fashion (hereafter GFF) can magnify the solar radiation pressure acting on medium earth orbit satellites :GPS, Etalon and, in near real future GALILEO and its smooth modulation through the Earth's atmosphere (penumbra). We would remind that The GFF technique is able to cancel out with "n" satellite orbital parameters the first n-1 even zonal harmonics of the gravity field. Previously it was demonstrated that the signal we want to detect could in principle emerge from the noise threshold but, more refined models of the atmosphere would be needed to perform a more subtle analysis. So we will re-compute the signal features of penumbra by applying more refined atmospheric models. The analysis will be performed by including in GFF Earth's satellites equipped with DORIS systems (Jason, Spot 2-3-4-5, ENVISAT etc.) other than those ranged with SLR and GPS. The introduction of DORIS tracked satellites indeed will allow to cancel higher and higher order of even zonal harmonics and will make still more favourable the signal to noise budget. The analysis will be performed over a time span of at least few tens of years just to enhance probable climate signatures.

  6. Monitoring objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  7. SCAILET: An intelligent assistant for satellite ground terminal operations

    Science.gov (United States)

    Shahidi, A. K.; Crapo, J. A.; Schlegelmilch, R. F.; Reinhart, R. C.; Petrik, E. J.; Walters, J. L.; Jones, R. E.

    1993-05-01

    NASA Lewis Research Center has applied artificial intelligence to an advanced ground terminal. This software application is being deployed as an experimenter interface to the link evaluation terminal (LET) and was named Space Communication Artificial Intelligence for the Link Evaluation Terminal (SCAILET). The high-burst-rate (HBR) LET provides 30-GHz-transmitting and 20-GHz-receiving, 220-Mbps capability for wide band communications technology experiments with the Advanced Communication Technology Satellite (ACTS). The HBR-LET terminal consists of seven major subsystems. A minicomputer controls and monitors these subsystems through an IEEE-488 or RS-232 protocol interface. Programming scripts (test procedures defined by design engineers) configure the HBR-LET and permit data acquisition. However, the scripts are difficult to use, require a steep learning curve, are cryptic, and are hard to maintain. This discourages experimenters from utilizing the full capabilities of the HBR-LET system. An intelligent assistant module was developed as part of the SCAILET software. The intelligent assistant addresses critical experimenter needs by solving and resolving problems that are encountered during the configuring of the HBR-LET system. The intelligent assistant is a graphical user interface with an expert system running in the background. In order to further assist and familiarize an experimenter, an on-line hypertext documentation module was developed and included in the SCAILET software.

  8. From order to chaos in Earth satellite orbits

    CERN Document Server

    Gkolias, Ioannis; Gachet, Fabien; Rosengren, Aaron J

    2016-01-01

    We consider Earth satellite orbits in the range of semi-major axes where the perturbing effects of Earth's oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees of freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angles-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances which are of first importance to the space debris...

  9. Building Flexible Download Plans for Agile Earth-Observing Satellites

    OpenAIRE

    Maillard, A.; Verfaillie, G.; Pralet, C.; J. Jaubert; Desmousceaux, T.

    2014-01-01

    International audience; We consider the problem of downloading observa-tions for a next-generation agile Earth-observing satellite. The goal is to schedule file downloads during ground re-ception station visibility windows while minimizing infor-mation age and promoting the fair sharing of the satellite between users. It is a complex scheduling problem with constraints ranging from unsharable resources to time-dependent processing times. Usually, planning and sche-duling are done on the groun...

  10. Orbit Propagation and Determination of Low Earth Orbit Satellites

    OpenAIRE

    Ho-Nien Shou

    2014-01-01

    This paper represents orbit propagation and determination of low Earth orbit (LEO) satellites. Satellite global positioning system (GPS) configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP). The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan t...

  11. The EarthCARE satellite payload

    Science.gov (United States)

    Wallace, Kotska; Perez-Albinana, Abelardo; Lemanczyk, Jerzy; Heliere, Arnaud; Wehr, Tobias; Eisinger, Michael; Lefebvre, Alain; Nakatsuka, Hirotaka; Tomita, Eiichi

    2014-10-01

    EarthCARE is ESA's third Earth Explorer Core Mission, with JAXA providing one instrument. The mission facilitates unique data product synergies, to improve understanding of atmospheric cloud-aerosol interactions and Earth radiative balance, towards enhancing climate and numerical weather prediction models. This paper will describe the payload, consisting of two active instruments: an ATmospheric LIDar (ATLID) and a Cloud Profiling Radar (CPR), and two passive instruments: a Multi Spectral Imager (MSI) and a Broad Band Radiometer (BBR). ATLID is a UV lidar providing atmospheric echoes, with a vertical resolution of 100 m, up to 40 km altitude. Using very high spectral resolution filtering the relative contributions of particle (aerosols) and Rayleigh (molecular) back scattering will be resolved, allowing cloud and aerosol optical depth to be deduced. Particle scatter co- and cross-polarisation measurements will provide information about the cloud and aerosol particles' physical characteristics. JAXA's 94.05 GHz Cloud Profiling Radar operates with a pulse width of 3.3 μm and repetition frequency 6100 to 7500 Hz. The 2.5 m aperture radar will retrieve data on clouds and precipitation. Doppler shift measurements in the backscatter signal will furthermore allow inference of the vertical motion of particles to an accuracy of about 1 m/s. MSI's 500 m pixel data will provide cloud and aerosol information and give context to the active instrument measurements for 3-D scene construction. Four solar channels and three thermal infrared channels cover 35 km on one side to 115 km on the other side of the other instrument's observations. BBR measures reflected solar and emitted thermal radiation from the scene. To reduce uncertainty in the radiance to flux conversion, three independent view angles are observed for each scene. The combined data allows more accurate flux calculations, which can be further improved using MSI data.

  12. In-Orbit Earth Radiation Budget Satellite (ERBS) Battery Switch

    Science.gov (United States)

    Ahmad, Anisa; Enciso, Marlon; Rao, Gopalakrishna

    2000-01-01

    A viewgraph presentation outlines the Earth Radiation Budget Satellite (ERBS) power system and battery history. ERBS spacecraft and battery cell failures are listed with the reasons for failure. The battery management decision and stabilization of the batteries is discussed. Present battery operations are shown to be successful.

  13. Model of load distribution for earth observation satellite

    Science.gov (United States)

    Tu, Shumin; Du, Min; Li, Wei

    2017-03-01

    For the system of multiple types of EOS (Earth Observing Satellites), it is a vital issue to assure that each type of payloads carried by the group of EOS can be used efficiently and reasonably for in astronautics fields. Currently, most of researches on configuration of satellite and payloads focus on the scheduling for launched satellites. However, the assignments of payloads for un-launched satellites are bit researched, which are the same crucial as the scheduling of tasks. Moreover, the current models of satellite resources scheduling lack of more general characteristics. Referring the idea about roles-based access control (RBAC) of information system, this paper brings forward a model based on role-mining of RBAC to improve the generality and foresight of the method of assignments of satellite-payload. By this way, the assignment of satellite-payload can be mapped onto the problem of role-mining. A novel method will be introduced, based on the idea of biclique-combination in graph theory and evolutionary algorithm in intelligence computing, to address the role-mining problem of satellite-payload assignments. The simulation experiments are performed to verify the novel method. Finally, the work of this paper is concluded.

  14. Planning and Scheduling for Fleets of Earth Observing Satellites

    Science.gov (United States)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  15. The NASA Earth Science Program and Small Satellites

    Science.gov (United States)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  16. Interdisciplinary Earth Science Applications Using Satellite Radar Altimetry

    Science.gov (United States)

    Kuo, C.; Shum, C.; Lee, H.; Dai, C.; Yi, Y.

    2012-12-01

    Satellite altimetry was conceived as a space geodetic concept for ocean surface topography mapping in the NASA-sponsored 1969 Williamstown, MA Conference, and was tested as part of the passive and active radar payload (S192), along with a radiometer and a scatterometer, on Skylab-1 in May 14, 1973. Since then, numerous radar and laser satellite altimetry missions orbiting/flying-by the Earth, Mars, Mercury, Titan and the Moon have been launched, evolving from the original scientific objective of marine gravity field mapping to a geodetic tool to address interdisciplinary Earth and planetary sciences. The accuracy of the radar altimeter has improved from 0.9 m RMS for the S-192 Skylab Ku-band compressed-pulse altimeter, to 2 cm RMS (2 second average) for the dual-frequency pulse-limited radar altimetry and associated sensors onboard TOPEX/POSEIDON. Satellite altimetry has evolved into a unique cross-disciplinary geodetic tool in addressing contemporary Earth science problems including sea-level rise, large-scale general ocean circulation, ice-sheet mass balance, terrestrial hydrology, and bathymetry. Here we provide a concise review and describe specific results on the additional recent innovative and unconventional applications of interdisciplinary science research using satellite radar altimetry, including geodynamics, land subsidence, snow depth, wetland and cold region hydrology.

  17. From Order to Chaos in Earth Satellite Orbits

    Science.gov (United States)

    Gkolias, Ioannis; Daquin, Jérôme; Gachet, Fabien; Rosengren, Aaron J.

    2016-11-01

    We consider Earth satellite orbits in the range of semimajor axes where the perturbing effects of Earth’s oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of primary importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.

  18. Geosynchronous Earth Orbit/Low Earth Orbit Space Object Inspection and Debris Disposal: A Preliminary Analysis Using a Carrier Satellite With Deployable Small Satellites

    OpenAIRE

    Crockett, Derick A.

    2013-01-01

    Detailed observations of geosynchronous satellites from earth are very limited. To better inspect these high altitude satellites, the use of small, refuelable satellites is proposed. The small satellites are stationed on a carrier platform in an orbit near the population of geosynchronous satellites. A carrier platform equipped with deployable, refuelable SmallSats is a viable option to inspect geosynchronous satellites. The propellant requirement to transfer to a targeted geosynchronous sate...

  19. Integration of satellite fire products into MPI Earth System Model

    Science.gov (United States)

    Khlystova, Iryna G.; Kloster, Silvia

    2013-04-01

    Fires are the ubiquitous phenomenon affecting all natural biomes. Since the beginning of the satellite Era, fires are being continuously observed from satellites. The most interesting satellite parameter retrieved from satellite measurements is the burned area. Combined with information on biomass available for burning the burned area can be translated into climate relevant carbon emissions from fires into the atmosphere. In this study we integrate observed burned area into a global vegetation model to derive global fire emissions. Global continuous burned area dataset is provided by the Global Fire Emissions Dataset (GFED). GFED products were obtained from MODIS (and pre-MODIS) satellites and are available for the time period of 14 years (1997-2011). This dataset is widely used, well documented and supported by periodical updates containing new features. We integrate the global burned area product into the land model JSBACH, a part of the Earth-System model developed at the Max Plank Institute for Meteorology. The land model JSBACH simulates land biomass in terms of carbon content. Fire is an important disturbance process in the Earth's carbon cycle and affects mainly the carbon stored in vegetation. In the standard JSBACH version fire is represented by process based algorithms. Using the satellite data as an alternative we are targeting better comparability of modeled carbon emissions with independent satellite measurements of atmospheric composition. The structure of burned vegetation inside of a biome can be described as the balance between woody and herbaceous vegetation. GFED provides in addition to the burned area satellite derived information of the tree cover distribution within the burned area. Using this dataset, we can attribute the burned area to the respective simulated herbaceous or woody biomass within the vegetation model. By testing several extreme cases we evaluate the quantitative impact of vegetation balance between woody and herbaceous

  20. System implementation for Earth Radiation Budget Satellite System

    Science.gov (United States)

    Cooper, J. E.; Woerner, C. V.

    1978-01-01

    A description is presented of the instrument system which is needed for the Earth Radiation Budget Satellite System (ERBSS). The system is to be composed of instruments on two of NOAA's near-polar sun-synchronous Tiros-N/NOAA A through G series of operational satellites and on a NASA midinclination satellite of the Applications Explorer Mission (AEM) type referred to as ERBS-A/AEM. The Tiros-N/NOAA satellites will be in nominal 833 km altitude circular orbits with orbital inclinations of 98 deg. The AEM satellite will be in a circular orbit with an inclination of approximately 56 deg and a nominal altitude of 600 km. Each satellite will carry wide field-of-view (WFOV) and medium field-of-view (MFOV) sensors, a sensor for measuring the solar constant, and a narrow field-of-view (NFOV) cross-track scanner. The conceptual design of the W/MFOV instrument is discussed along with the conceptual design of the scanner.

  1. Flat Array Antennas for Ku-Band Mobile Satellite Terminals

    Directory of Open Access Journals (Sweden)

    Roberto Vincenti Gatti

    2009-01-01

    Full Text Available This work presents the advances in the development of two innovative flat array antennas for Ku-band mobile satellite terminals. The first antenna is specifically conceived for double-deck trains to allow a bi-directional high data rate satellite link. The available circular surface (diameter 80 cm integrates both a transmitting and a receiving section, operating in orthogonal linear polarizations. The TX frequency range is fully covered while the RX bandwidth is around 1 GHz arbitrarily allocated on the DVB range depending on requirements. The beam is steered in elevation through a phased array architecture not employing costly phase shifters, while the steering in azimuth is mechanical. Active BFNs allow excellent performance in terms of EIRP and G/T, maintaining extremely low profile. High antenna efficiency and low fabrication cost are ensured by the employment of innovative SIW (Substrate Integrated Waveguide structures. The second antenna, receiving-only, is designed for radio/video streaming services in mobile environment. Full DVB coverage is achieved thanks to cavity-backed patches operating in double linear polarization. Two independent broadband active BFNs allow simultaneous reception of both polarizations with full tracking capabilities and a squintless beam steering from 20∘ to 60∘ in elevation. A minimum gain of 20 dBi and G/T >−3 dB/∘K are achieved, while maintaining extremely compact size and flat profile. In the design of both antennas fabrication cost is considered as a driving factor, yet providing high performance with a flat profile and thus resulting in a great commercial potentiality.

  2. Earth Observing Satellite Orbit Design Via Particle Swarm Optimization

    Science.gov (United States)

    2014-08-01

    Earth Observing Satellite Orbit Design Via Particle Swarm Optimization Sharon Vtipil ∗ and John G. Warner ∗ US Naval Research Laboratory, Washington...number of passes per day given a satellite’s orbital altitude and inclination. These are used along with particle swarm optimization to determine optimal...well suited to use within a meta-heuristic optimization method such as the Particle Swarm Optimizer (PSO). This method seeks to find the optimal set

  3. Management approach recommendations. Earth Observatory Satellite system definition study (EOS)

    Science.gov (United States)

    1974-01-01

    Management analyses and tradeoffs were performed to determine the most cost effective management approach for the Earth Observatory Satellite (EOS) Phase C/D. The basic objectives of the management approach are identified. Some of the subjects considered are as follows: (1) contract startup phase, (2) project management control system, (3) configuration management, (4) quality control and reliability engineering requirements, and (5) the parts procurement program.

  4. Electric Propulsion for Low Earth Orbit Communication Satellites

    Science.gov (United States)

    Oleson, Steven R.

    1997-01-01

    Electric propulsion was evaluated for orbit insertion, satellite positioning and de-orbit applications on big (hundreds of kilograms) and little (tens of kilograms) low earth orbit communication satellite constellations. A simple, constant circumferential thrusting method was used. This technique eliminates the complex guidance and control required when shading of the solar arrays must be considered. Power for propulsion was assumed to come from the existing payload power. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion ammonia resistojets, ion, Hall, and pulsed plasma thrusters allowed an additional spacecraft per launch Typical orbit insertion and de-orbit times were found to range from a few days to a few months.

  5. Tracking target objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  6. Magnus Effect on a Spinning Satellite in Low Earth Orbit

    Science.gov (United States)

    Ramjatan, Sahadeo; Fitz-Coy, Norman; Yew, Alvin Garwai

    2016-01-01

    A spinning body in a flow field generates an aerodynamic lift or Magnus effect that displaces the body in a direction normal to the freestream flow. Earth orbiting satellites with substantial body rotation in appreciable atmospheric densities may generate a Magnus force to perturb orbital dynamics. We investigate the feasibility of using this effect for spacecraft at a perigee of 80km using the Systems Tool Kit (STK). Results show that for a satellite of reasonable properties, the Magnus effect doubles the amount of time in orbit. Orbital decay was greatly mitigated for satellites spinning at 10000 and 15000RPM. This study demonstrates that the Magnus effect has the potential to sustain a spacecraft's orbit at a low perigee altitude and could also serve as an orbital maneuver capability.

  7. Use of Earth Observing Satellites for Operational Hazard Support

    Science.gov (United States)

    Wood, H. M.; Lauritson, L.

    The National Oceanic and Atmospheric Administration (NOAA) relies on Earth observing satellite data to carry out its operational mission to monitor, predict, and assess changes in the Earth's atmosphere, land, and oceans. NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) uses satellite data to help lessen the impacts of natural and man-made disasters due to tropical cyclones, flash floods, heavy snowstorms, volcanic ash clouds (for aviation safety), sea ice (for shipping safety), and harmful algal blooms. Communications systems on NOAA satellites are used to support search and rescue and to relay data from data collection platforms to a variety of users. NOAA's Geostationary (GOES) and Polar (POES) Operational Environmental Satellites are used in conjunction with other satellites to support NOAA's operational mission. While NOAA's National Hurricane Center is responsible for predicting tropical cyclones affecting the U.S. mainland, NESDIS continuously monitors the tropics world wide, relaying valuable satellite interpretations of tropical systems strength and position to users throughout the world. Text messages are sent every six hours for tropical cyclones in the Western Pacific, South Pacific, and Indian Oceans. To support the monitoring, prediction, and assessment of flash floods and winter storms, NESDIS sends out text messages alerting U.S. weather forecast offices whenever NOAA satellite imagery indicates the occurrence of heavy rain or snow. NESDIS also produces a 24-hour rainfall composite graphic image covering those areas affected by heavy precipitation. The International Civil Aviation Organization (ICAO) and other aviation concerns recognized the need to keep aviators informed of volcanic hazards. To that end, nine Volcanic Ash Advisory Centers (VAAC's) were created to monitor volcanic ash plumes within their assigned airspace. NESDIS hosts one of the VAAC's. Although the NESDIS VAAC's primary responsibility is the

  8. Applications technology satellite F&G /ATS F&G/ mobile terminal.

    Science.gov (United States)

    Greenbaum, L. A.; Baker, J. L.

    1971-01-01

    The mobile terminal is a flexible, easily transportable system. The terminal design incorporates a combination of unique and proven hardware to provide maximum utility consistent with reliability. The flexibility built into the system will make it possible to satisfy the requirements of the applications technology satellite program concerned with the conduction of various spacecraft technology experiments. The terminal includes two parabolic antennas.

  9. An Earth Orbiting Satellite Service and Repair Facility

    Science.gov (United States)

    Berndt, Andrew; Cardoza, Mike; Chen, John; Daley, Gunter; Frizzell, Andy; Linton, Richard; Rast, Wayne

    1989-01-01

    A conceptual design was produced for the Geosynchronous Satellite Servicing Platform (GSSP), an orbital facility capable of repairing and servicing satellites in geosynchronous orbit. The GSSP is a man-tended platform, which consists of a habitation module, operations module, service bay and truss assembly. This design review includes an analysis of life support systems, thermal and power requirements, robotic and automated systems, control methods and navigation, and communications systems. The GSSP will utilize existing technology available at the time of construction, focusing mainly on modifying and integrating existing systems. The entire facility, along with two satellite retrieval vehicles (SRV), will be placed in geosynchronous orbit by the Advanced Launch System. The SRV will be used to ferry satellites to and from the GSSP. Technicians will be transferred from Earth to the GSSP and back in an Apollo-derived Crew Transfer Capsule (CTC). These missions will use advanced telerobotic equipment to inspect and service satellites. Four of these missions are tentatively scheduled per year. At this rate, the GSSP will service over 650 satelites during the projected 25 year lifespan.

  10. Harnessing Satellite Imageries in Feature Extraction Using Google Earth Pro

    Science.gov (United States)

    Fernandez, Sim Joseph; Milano, Alan

    2016-07-01

    Climate change has been a long-time concern worldwide. Impending flooding, for one, is among its unwanted consequences. The Phil-LiDAR 1 project of the Department of Science and Technology (DOST), Republic of the Philippines, has developed an early warning system in regards to flood hazards. The project utilizes the use of remote sensing technologies in determining the lives in probable dire danger by mapping and attributing building features using LiDAR dataset and satellite imageries. A free mapping software named Google Earth Pro (GEP) is used to load these satellite imageries as base maps. Geotagging of building features has been done so far with the use of handheld Global Positioning System (GPS). Alternatively, mapping and attribution of building features using GEP saves a substantial amount of resources such as manpower, time and budget. Accuracy-wise, geotagging by GEP is dependent on either the satellite imageries or orthophotograph images of half-meter resolution obtained during LiDAR acquisition and not on the GPS of three-meter accuracy. The attributed building features are overlain to the flood hazard map of Phil-LiDAR 1 in order to determine the exposed population. The building features as obtained from satellite imageries may not only be used in flood exposure assessment but may also be used in assessing other hazards and a number of other uses. Several other features may also be extracted from the satellite imageries.

  11. Small Earth Observing Satellites Flying with Large Satellites in the A-Train

    Science.gov (United States)

    Kelly, Angelita C.; Loverro, Adam; Case, Warren F.; Queruel, Nadege; Marechal, Chistophe; Barroso, Therese

    2009-01-01

    This paper/poster presents a real-life example of the benefits of flying small satellites with other satellites, large or small, and vice versa. Typically, most small satellites fly payloads consisting of one or two instruments and fly in orbits that are independent from that of other satellites. The science data from these satellites are either used in isolation or correlated with instrument data from other satellites. Data correlation with other satellites is greatly improved when the measurements of the same point or air mass are taken at approximately the same time. Scientists worldwide are beginning to take advantage of the opportunities for improved data correlation, or coincidental science, offered by the international Earth Observing Constellation known as the A-Train (sometimes referred to as the Afternoon Constellation). Most of the A-Train satellites are small - the A-Train is anchored by two large NASA satellites (EOS-Aqua and EOS-Aura), but consists also of 5 small satellites (CloudSat, CALIPSO, PARASOL, OCO and Glory these last two will join in 2009). By flying in a constellation, each mission benefits from coincidental observations from instruments on the other satellites in the constellation. Essentially, from a data point of view, the A-Train can be envisioned as a single, virtual science platform with multiple instruments. Satellites in the A-Train fly at 705 km in sun-synchronous orbits. Their mean local times at the equator are within seconds to a few minutes of each other. This paper describes the challenges of operating an international constellation of independent satellites from the U.S. and Europe to maximize the coincidental science opportunities while at the same time minimizing the level of operational interactions required between team members. The A-Train mission teams have been able to demonstrate that flying as members of an international constellation does not take away the flexibility to accommodate new requirements. Specific

  12. Al Gore attends Fall Meeting session on Earth observing satellite

    Science.gov (United States)

    Richman, Barbara T.

    2011-12-01

    Former U.S. vice president Al Gore, making unscheduled remarks at an AGU Fall Meeting session, said, "The reason you see so many pictures" of the Deep Space Climate Observatory (DSCOVR) satellite at this session is "that it already has been built." However, "because one of its primary missions was to help document global warming, it was canceled. So for those who are interested in struggling against political influence," Gore said, "the benefits have been documented well here." Gore made his comments after the third oral presentation at the 8 December session entitled "Earth Observations From the L1 (Lagrangian Point No. 1)," which focused on the capabilities of and progress on refurbishing DSCOVR. The satellite, formerly called Triana, had been proposed by Gore in 1998 to collect climate data. Although Triana was built, it was never launched: Congress mandated that before the satellite could be sent into space the National Academies of Science needed to confirm that the science it would be doing was worthwhile. By the time the scientific validation was complete, the satellite "was no longer compatible with the space shuttle manifest," Robert C. Smith, program manager for strategic integration at the NASA Goddard Space Flight Center, told Eos.

  13. Surveying earth resources by remote sensing from satellites

    Energy Technology Data Exchange (ETDEWEB)

    Otterman, J.; Lowman, P.D.; Salomonson, V.V.

    1976-04-01

    The techniques and recent results of orbital remote sensing, with emphasis on Landsat and Skylab imagery are reviewed. Landsat (formerly ERTS) uses electronic sensors (scanners and television) for repetitive observations with moderate ground resolution. The Skylab flights used a wider range of electro-optical sensors and returned film cameras with moderate and high ground resolution. Data from these programs have been used successfully in many fields. For mineral resources, satellite observations have proven valuable in geologic mapping and in exploration for metal, oil, and gas deposits, generally as a guide for other (conventional) techniques. Water resource monitoring with satellite data has included hydrologic mapping, soil moisture studies, and snow surveys. Marine resources have been studied, with applications in the fishing industry and in ocean transportation. Agricultural applications, benefiting from the repetitive coverage possible with satellites, have been especially promising. Crop inventories are being conducted, as well as inventories of timber and rangeland. Overgrazing has been monitored in several areas. Finally, environmental quality has also proven susceptible to orbital remote sensing; several types of water pollution have been successfully monitored. The effects of mining and other activities on the land can also be studied. The future of orbital remote sensing in global monitoring of the Earth's resources seems assured. However, efforts to extend spectral range, increase resolution, and solve cloud-cover problems must be continued. Broad applications of computer analysis techniques are vital to handle the immense amount of information produced by satellite sensors.

  14. Simulation of Motion of Satellite under the Effect of Oblateness of Earth and Atmospheric Drag

    CERN Document Server

    Sharma, Jaita; Pirzada, U M; Shah, Vishant

    2016-01-01

    The equations governing motion of the satellite under the effect of oblateness of Earth and atmospheric drag have been simulated, for a fixed initial position and three different initial velocities, till satellite collapses on Earth. Simulation of motion of artificial Earth satellite subject to the combined effects of oblate Earth and atmospheric drag is presented. The atmospheric model considered here takes in to account of exponential variation of the density with initial distance of Satellite from Earth's surface, scale height and radial distance. The minimum and maximum values of orbital elements and their variation over a time for different initial velocities have been reported.

  15. X-band 22W SSPA for earth observation satellite

    OpenAIRE

    Zoyo, M.; Cartier, N.; Touchais, J.Y.; Maynadier, P.; Midan, E.; Sgard, P.; Buret, H.; Peschoud, M.

    1999-01-01

    An X-band high power Solid-State Power Amplifier (SSPA) using power HFET chip devices has been successfully developed for the earth observation satellite payload of the SPOT 5 program. The use of MMIC chips for the low power section allows to decrease significantly the mass and the size of this equipment and to reduce the production cycle due to the reduced tuning effort. The hybrid technology is used in the driver module and the power level section because it is attractive in terms of power ...

  16. Co-ordination of satellite and data programs: The committee on earth observation satellites' approach

    Science.gov (United States)

    Embleton, B. J. J.; Kingwell, J.

    1997-01-01

    Every year, an average of eight new civilian remote sensing satellite missions are launched. Cumulatively, over 250 such missions, each with a cost equivalent in current value to between US 100 million to US 1000 million, have been sponsored by space agencies in perhaps two dozen countries. These missions produce data and information products which are vital for informed decision making all over the world, on matters relating to natural resource exploitation, health and safety, sustainable national development, infrastructure planning, and a host of other applications. By contributing to better scientific understanding of global changes in the atmosphere, land surface, oceans and ice caps, these silently orbiting sentinels in the sky make it possible for governments and industries to make wiser environmental policy decisions and support the economic development needs of humanity. The international Committee on Earth Observation Satellites (CEOS) is the premier world body for co-ordinating and planning civilian satellite missions for Earth observation. Through its technical working groups and special task teams, it endeavours to: • maximise the international benefits from Earth observation satellites; and • harmonise practice in calibration, validation, data management and information systems for Earth observation. CEOS encompasses not only space agencies (data providers), but also the great international scientific and operational programs which rely on Earth science data from space. The user organisations affiliated with CEOS, together with the mission operators, attempt to reconcile user needs with the complex set of considerations — including national interests, cost, schedule — which affect the undertaking of space missions. Without such an internationally co-ordinated consensual approach, there is a much greater risk of waste through duplication, and of missed opportunity, or through the absence of measurements of some vital physical or biological

  17. Solar power satellites: our next generation of satellites will deliver the sun's energy to Earth

    Science.gov (United States)

    Flournoy, Don M.

    2009-12-01

    The paper addresses the means for gathering energy from sunlight in space and transmitting it to Earth via Solar Power Satellites. The motivating factor is that the output of our sun is the largest potential energy source available, with the capability of providing inexhaustible quantities of clean electrical energy to every location on Earth. The challenge is that considerable financial, intellectual and diplomatic resources must be focused on designing and implementing new types of energy infrastructures in space and on the ground. These include: 1) next-generation space platforms, arrays, and power transmission systems; 2) more flexible and powerful launch vehicles for delivering materials to space; 3) specialized receivers, converters and storage systems on earth, and the in-orbit position allocations, spectrum and software that make these systems work together efficiently and safely.

  18. Application of altitude control techniques for low altitude earth satellites

    Science.gov (United States)

    Nickerson, K. G.; Herder, R. W.; Glass, A. B.; Cooley, J. L.

    1977-01-01

    The applications sensors of many low altitude earth satellites designed for recording surface or atmospheric data require near zero orbital eccentricities for maximum usefulness. Coverage patterns and altitude profiles require specified values of orbit semimajor axis. Certain initial combinations of semimajor axis, eccentricity, and argument of perigee can produce a so called 'frozen orbit' and minimum altitude variation which enhances sensor coverage. This paper develops information on frozen orbits and minimum altitude variation for all inclinations, generalizing previous results. In the altitude regions where most of these satellites function (between 200 and 1000 kilometers) strong atmospheric drag effects influence the evolution of the initial orbits. Active orbital maneuver control techniques to correct evolution of orbit parameters while minimizing the frequency of maneuvers are presented. The paper presents the application of theoretical techniques for control of near frozen orbits and expands upon the methods useful for simultaneously targeting several inplane orbital parameters. The applications of these techniques are illustrated by performance results from the Atmosphere Explorer (AE-3 and -5) missions and in preflight maneuver analysis and plans for the Seasat Oceanographic Satellite.

  19. Orbit Propagation and Determination of Low Earth Orbit Satellites

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available This paper represents orbit propagation and determination of low Earth orbit (LEO satellites. Satellite global positioning system (GPS configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP. The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF. As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.

  20. Earth Camp: Exploring Earth Change through the Use of Satellite Images and Scientific Practices

    Science.gov (United States)

    Baldridge, A.; Buxner, S.; Crown, D. A.; Colodner, D.; Orchard, A.; King, B.; Schwartz, K.; Prescott, A.; Prietto, J.; Titcomb, A.

    2014-07-01

    Earth Camp is a NASA-funded program that gives students and teachers opportunities to explore local, regional, and global earth change through a combination of hands-on investigations and the use of satellite images. Each summer, 20 middle school and 20 high school students participate in a two-week leadership program investigating contemporary issues (e.g., changes in river sheds, water quality, and land use management) through hands-on investigations, analyzing remote sensing data, and working with experts. Each year, 20 teachers participate in a year-long professional development program that includes monthly workshops, field investigations on Mt. Lemmon in Tucson, Arizona, and a week-long summer design workshop. Teachers conduct investigations of authentic questions using satellite images and create posters to present results of their study of earth change. In addition, teachers design lesson plans to expand their students' ability to investigate earth change with 21st Century tools. Lessons can be used as classroom exercises or for after-school club programs. Independent evaluation has been an integral part of program development and delivery for all three audiences, enabling the program staff and participants to reflect on and continually improve their practice and learning over the three-year period.

  1. Mapping of satellite Earth observations using moving window block kriging

    Science.gov (United States)

    Tadić, J. M.; Qiu, X.; Yadav, V.; Michalak, A. M.

    2015-10-01

    Global gridded maps (a.k.a. Level 3 products) of Earth system properties observed by satellites are central to understanding the spatiotemporal variability of these properties. They also typically serve either as inputs into biogeochemical models or as independent data for evaluating such models. Spatial binning is a common method for generating contiguous maps, but this approach results in a loss of information, especially when the measurement noise is low relative to the degree of spatiotemporal variability. Such "binned" fields typically also lack a quantitative measure of uncertainty. Geostatistical mapping has previously been shown to make higher spatiotemporal resolution maps possible, and also provides a measure uncertainty associated with the gridded products. This study proposes a flexible moving window block kriging method that can be used as a tool for creating high spatiotemporal resolution maps from satellite data. It relies only on the assumption that the observed physical quantity exhibits spatial correlation that can be inferred from the observations. The method has several innovations relative to previously applied methods: (1) it provides flexibility in the spatial resolution of the contiguous maps, (2) it is applicable for physical quantities with varying spatiotemporal coverage (i.e., density of measurements) by utilizing a more general and versatile data sampling approach, and (3) it provides rigorous assessments of the uncertainty associated with the gridded products. The method is demonstrated by creating Level 3 products from observations of column-integrated carbon dioxide (XCO2) from the GOSAT (Greenhouse Gases Observing Satellite) satellite, and solar induced fluorescence (SIF) from the GOME-2 (Global Ozone Monitoring Experiment-2) instrument.

  2. Spacecraft design project: Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  3. Discovery of a Satellite around a Near-Earth Asteroid

    Science.gov (United States)

    1997-07-01

    In the course of the major observational programme of asteroids by the Institute of Planetary Exploration of the German Aerospace Research Establishment (DLR) [1] in Berlin, two of the staff astronomers, Stefano Mottola and Gerhard Hahn , have discovered a small satellite (moon) orbiting the asteroid (3671) Dionysus. The new measurements were obtained with the DLR CCD Camera attached at the 60-cm Bochum telescope at the ESO La Silla Observatory in Chile. This is only the second known case of an asteroid with a moon. Moons and planets Until recently, natural satellites were only known around the major planets . The Moon orbits the Earth, there are two tiny moons around Mars, each of the giant planets Jupiter, Saturn, Uranus and Neptune has many more, and even the smallest and outermost, Pluto, is accompanied by one [2]. However, the new discovery now strengthens the belief of many astronomers that some, perhaps even a substantial number of the many thousands of minor planets (asteroids) in the solar system may also possess their own moons. The first discovery of a satellite orbiting an asteroid was made by the NASA Galileo spacecraft, whose imagery, obtained during a fly-by of asteroid (253) Ida in August 1993, unveiled a small moon that has since been given the name Dactyl. (3671) Dionysus: an Earth-crossing asteroid In the framework of the DLR asteroid monitoring programme, image sequences are acquired to measure an asteroid's brightness variations caused by the changing amount of sunlight reflected from the asteroid's illuminated surface as it spins, due to its irregular shape. The brightness variations may be used to derive the asteroid's rotational properties, such as speed of rotation and spin axis orientation. Asteroid Dionysus [3] was put on the observing list because it belongs to a special class of asteroids, the members of which occasionally come very close to the Earth and have a small, but non-negligible chance of colliding with our planet. Most of

  4. Mapping of satellite Earth observations using moving window block kriging

    Directory of Open Access Journals (Sweden)

    J. M. Tadić

    2014-08-01

    Full Text Available Global gridded maps (a.k.a. Level 3 products of Earth system properties observed by satellites are central to understanding the spatiotemporal variability of these properties. They also typically serve either as inputs into biogeochemical models, or as independent data for evaluating such models. Spatial binning is a common method for generating contiguous maps, but this approach results in a loss of information, especially when the measurement noise is low relative to the degree of spatiotemporal variability. Such "binned" fields typically also lack a quantitative measure of uncertainty. Geostatistical mapping has previously been shown to make higher spatiotemporal resolution maps possible, and also provides a measure of the uncertainty associated with the gridded products. This study proposes a flexible moving window block kriging method that can be used as a tool for creating high spatiotemporal resolution maps from satellite data. It relies only on the assumption that the observed physical quantity exhibits spatial correlation that can be inferred from the observations. The method has several innovations relative to previously applied methods: (1 it provides flexibility in the spatial resolution of the contiguous maps (2 it is applicable for physical quantities with varying spatiotemporal coverage (i.e., density of measurements by utilizing a more general and versatile data sampling approach, and (3 it provides rigorous assessments of the uncertainty associated with the gridded products. The method is demonstrated by creating Level 3 products from observations of column-integrated carbon dioxide (XCO2 from the GOSAT satellite, and solar induced fluorescence (SIF from the GOME-2 instrument.

  5. The Coverage Analysis for Low Earth Orbiting Satellites at Low Elevation

    Directory of Open Access Journals (Sweden)

    Shkelzen Cakaj

    2014-07-01

    Full Text Available Low Earth Orbit (LEO satellites are used for public networking and for scientific purposes. Communication via satellite begins when the satellite is positioned in its orbital position. Ground stations can communicate with LEO satellites only when the satellite is in their visibility region. The duration of the visibility and the communication vary for each LEO satellite pass over the station, since LEO satellites move too fast over the Earth. The satellite coverage area is defined as a region of the Earth where the satellite is seen at a minimum predefined elevation angle. The satellite’s coverage area on the Earth depends on orbital parameters. The communication under low elevation angles can be hindered by natural barriers. For safe communication and for savings within a link budget, the coverage under too low elevation is not always provided. LEO satellites organized in constellations act as a convenient network solution for real time global coverage. Global coverage model is in fact the complementary networking process of individual satellite’s coverage. Satellite coverage strongly depends on elevation angle. To conclude about the coverage variation for low orbiting satellites at low elevation up to 10º, the simulation for attitudes from 600km to 1200km is presented through this paper.

  6. Influence of satellite motion on polarization qubits in a Space-Earth quantum communication link.

    Science.gov (United States)

    Bonato, Cristian; Aspelmeyer, Markus; Jennewein, Thomas; Pernechele, Claudio; Villoresi, Paolo; Zeilinger, Anton

    2006-10-16

    In a Space quantum-cryptography experiment a satellite pointing system is needed to send single photons emitted by the source on the satellite to the polarization analysis apparatus on Earth. In this paper a simulation is presented regarding how the satellite pointing systems affect the polarization state of the single photons, to help designing a proper compensation system.

  7. The Earth's gravity field from satellite geodesy - a 30 year adventure.

    Science.gov (United States)

    Rapp, R. H.

    1991-12-01

    The first information on the Earth's gravitational field from artificial satellite observations was published in 1958. The next years have seen a dramatic improvement in the resolution and accuracy of the series representation of the Earth's gravity field. The improvements have taken place slowly taking advantage of improved measurement accuracy and the increasing number of satellites. The proposed ARISTOTELES mission would provide the opportunity to take a significant leap in improving our knowledge of the Earth's gravity field.

  8. Polarimetric remote sensing of the Earth from satellites: a perspective

    Science.gov (United States)

    Mishchenko, M. I.; Glory APS Science Team

    2011-12-01

    attempt to launch a more accurate aerosol-cloud polarimeter, called APS, as part of the NASA Glory Mission failed on 4 March 2011. However, much useful information has been obtained with the air-borne version of APS called RSP. In this talk I will briefly summarize the main results obtained with POLDER and RSP and discuss the prospects of polarimetric remote sensing from Earth-orbiting satellites.

  9. Satellite co-locations as a link between SLR, GPS and Low Earth Orbiting (LEO) satellites

    Science.gov (United States)

    Melachroinos, S. A.; Lemoine, F. G.; Chinn, D. S.; Nicolas, J. B.; Zelensky, N. P.; Wimert, J.; Radway, Y.

    2013-12-01

    The procedure applied for the determination of the International Terrestrial Reference Frame (ITRF) requires the combination of all four major techniques of Space Geodesy. This combination is only possibly realized by the introduction of the local-ties between co-located techniques. A local-tie is the lever arm vector between the marker points on the sites where two or more space geodesy instruments operate. The local ties are used as additional observations with proper variances. They are usually derived from local surveys using either classical geodesy or the global navigation satellite systems (GNSS). The Global Positioning System (GPS) plays a major role in the ITRF combination by linking together all the other three techniques SLR, DORIS and VLBI (Altamimi and Collilieux 2009). However, discrepancies between local ties and space geodesy estimates are well known although the reasons for these discrepancies are often not clear. These discrepancies could be either due to errors in local ties and in coordinate estimates or in both. In this study, we use the tracking to G05-35 and G06-36 and one LEO by SLR sites and their combined orbits, earth rotation parameters (ERPs) and station positions in order to establish space-based co-location ties on the stations. The LEO satellite used in this experiment is Jason-2, which carries both GPS and SLR. Therefore from the data-processing point of view the LEO satellite is used as a fast moving station (Thaller et al. 2011). Jason-2 is also equipped with DORIS, but it will be included into another combined analysis. Subsequently, we compare the consistency of our space-based co-locations to the ones from ITRF08 and SLRF08 - IGb08 solutions.

  10. Changing inclination of earth satellites using the gravity of the moon

    OpenAIRE

    Karla de Souza Torres; Prado, A. F. B. A.

    2006-01-01

    We analyze the problem of the orbital control of an Earth's satellite using the gravity of the Moon. The main objective is to study a technique to decrease the fuel consumption of a plane change maneuver to be performed in a satellite that is in orbit around the Earth. The main idea of this approach is to send the satellite to the Moon using a single-impulsive maneuver, use the gravity field of the Moon to make the desired plane change of the trajectory, and then return the satellite to its n...

  11. Approximate analytic method for high-apogee twelve-hour orbits of artificial Earth's satellites

    Science.gov (United States)

    Vashkovyaka, M. A.; Zaslavskii, G. S.

    2016-09-01

    We propose an approach to the study of the evolution of high-apogee twelve-hour orbits of artificial Earth's satellites. We describe parameters of the motion model used for the artificial Earth's satellite such that the principal gravitational perturbations of the Moon and Sun, nonsphericity of the Earth, and perturbations from the light pressure force are approximately taken into account. To solve the system of averaged equations describing the evolution of the orbit parameters of an artificial satellite, we use both numeric and analytic methods. To select initial parameters of the twelve-hour orbit, we assume that the path of the satellite along the surface of the Earth is stable. Results obtained by the analytic method and by the numerical integration of the evolving system are compared. For intervals of several years, we obtain estimates of oscillation periods and amplitudes for orbital elements. To verify the results and estimate the precision of the method, we use the numerical integration of rigorous (not averaged) equations of motion of the artificial satellite: they take into account forces acting on the satellite substantially more completely and precisely. The described method can be applied not only to the investigation of orbit evolutions of artificial satellites of the Earth; it can be applied to the investigation of the orbit evolution for other planets of the Solar system provided that the corresponding research problem will arise in the future and the considered special class of resonance orbits of satellites will be used for that purpose.

  12. Present status and future plans of the Japanese earth observation satellite program

    Science.gov (United States)

    Tsuchiya, Kiyoshi; Arai, Kohei; Igarashi, Tamotsu

    Japan is now operating 3 earth observation satellites, i. e. MOS-1 (Marine Observation Satellite-1, Momo-1 in Japanese), EGS (Experimental Geodetic Satellite, Ajisai in Japanese) and GMS (Geostationary Meteorological Satellite, Himawari in Japanese). MOS-1 has 3 different sensors, MESSR (Multispectral Electronic Self Scanning Radiometer), VTIR (Visible and Thermal Infrared Radiometer) and MSR (Microwave Scanning Radiometer) in addition to DCS (Data Collection System). GMS has two sensors, VISSR (Visible and IR Spin Scan Radiometer) and SEM (Solar Environmental Monitor). EGS is equipped with reflecting mirrors of the sun light and laser reflecters. For the future earth observation satellites, ERS-1 (Earth Resources Satellite-1), MOS-1b, ADEOS (Advanced Earth Observing Satellite) are under development. Two sensors, AMSR (Advanced Microwave Scanning Radiometer) and ITIR (Intermediate Thermal IR Radiometer) for NASA's polar platform are initial stage of development. Study and planning are made for future earth observation satellites including Japanese polor platform, TRMM, etc.). The study for the second generation GMS has been made by the Committee on the Function of Future GMS under the request of Japan Meteorological Agency in FY 1987.

  13. Design of a Representative Low Earth Orbit Satellite to Improve Existing Debris Models

    Science.gov (United States)

    Clark, S.; Dietrich, A.; Werremeyer, M.; Fitz-Coy, N.; Liou, J.-C.

    2012-01-01

    This paper summarizes the process and methodologies used in the design of a small-satellite, DebriSat, that represents materials and construction methods used in modern day Low Earth Orbit (LEO) satellites. This satellite will be used in a future hypervelocity impact test with the overall purpose to investigate the physical characteristics of modern LEO satellites after an on-orbit collision. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was conducted in 1992. The target used for that experiment was a Navy Transit satellite (40 cm, 35 kg) fabricated in the 1960 s. Modern satellites are very different in materials and construction techniques from a satellite built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. The design of DebriSat will focus on designing and building a next-generation satellite to more accurately portray modern satellites. The design of DebriSat included a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 10 kg to 5000 kg. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions, and helped direct the design of DebriSat.

  14. A comparative study of spherical and flat-Earth geopotential modeling at satellite elevations

    Science.gov (United States)

    Parrott, M. H.; Hinze, W. J.; Braile, L. W.

    1985-01-01

    Flat-Earth and spherical-Earth geopotential modeling of crustal anomaly sources at satellite elevations are compared by computing gravity and scalar magnetic anomalies perpendicular to the strike of variably dimensioned rectangular prisms at altitudes of 150, 300, and 450 km. Results indicate that the error caused by the flat-Earth approximation is less than 10% in most geometric conditions. Generally, error increase with larger and wider anomaly sources at higher altitudes. For most crustal source modeling applications at conventional satellite altitudes, flat-Earth modeling can be justified and is numerically efficient.

  15. Multifunctional astronomical self-organizing system of autonomous navigation and orientation for artificial Earth satellites

    Science.gov (United States)

    Kuznetsov, V. I.; Danilova, T. V.

    2017-03-01

    We describe the methods and algorithms of a multifunctional astronomical system of the autonomous navigation and orientation for artificial Earth satellites based on the automatization of the system approach to the design and programming problems of the subject area.

  16. Satellite Data for All? Review of Google Earth Engine for Archaeological Remote Sensing

    Directory of Open Access Journals (Sweden)

    Omar A. Alcover Firpi

    2016-11-01

    Full Text Available A review of Google Earth Engine for archaeological remote sensing using satellite data. GEE is a freely accessible software option for processing remotely sensed data, part of the larger Google suite of products.

  17. Jupiter and Planet Earth. [planetary and biological evolution and natural satellites

    Science.gov (United States)

    1975-01-01

    The evolution of Jupiter and Earth are discussed along with their atmospheres, the radiation belts around both planets, natural satellites, the evolution of life, and the Pioneer 10. Educational study projects are also included.

  18. 78 FR 14952 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-08

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 2 Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit Space Stations AGENCY: Federal Communications Commission. ACTION: Proposed rule....

  19. Using Information From Prior Satellite Scans to Improve Cloud Detection Near the Day-Night Terminator

    Science.gov (United States)

    Yost, Christopher R.; Minnis, Patrick; Trepte, Qing Z.; Palikonda, Rabindra; Ayers, Jeffrey K.; Spangenberg, Doulas A.

    2012-01-01

    With geostationary satellite data it is possible to have a continuous record of diurnal cycles of cloud properties for a large portion of the globe. Daytime cloud property retrieval algorithms are typically superior to nighttime algorithms because daytime methods utilize measurements of reflected solar radiation. However, reflected solar radiation is difficult to accurately model for high solar zenith angles where the amount of incident radiation is small. Clear and cloudy scenes can exhibit very small differences in reflected radiation and threshold-based cloud detection methods have more difficulty setting the proper thresholds for accurate cloud detection. Because top-of-atmosphere radiances are typically more accurately modeled outside the terminator region, information from previous scans can help guide cloud detection near the terminator. This paper presents an algorithm that uses cloud fraction and clear and cloudy infrared brightness temperatures from previous satellite scan times to improve the performance of a threshold-based cloud mask near the terminator. Comparisons of daytime, nighttime, and terminator cloud fraction derived from Geostationary Operational Environmental Satellite (GOES) radiance measurements show that the algorithm greatly reduces the number of false cloud detections and smoothes the transition from the daytime to the nighttime clod detection algorithm. Comparisons with the Geoscience Laser Altimeter System (GLAS) data show that using this algorithm decreases the number of false detections by approximately 20 percentage points.

  20. Canadian EHF (28/19 GHz) satellite communication terminals for the Olympus program

    Science.gov (United States)

    Pike, C. J.; Bradley, D. R.; Hindson, D. J. M.

    Researchers at the Communications Research Center (CRC) are actively developing extremely high frequency (EHF) technology for the development of the Olympus satellite terminals. The specifications and performance evaluation of the terminals are presented from the radio frequency (RF) perspective as well as the digital approach using 70 MHz modems. Terminals constructed at CRC will be used to conduct experiments in the areas of rain fade countermeasures using an adaptive data rate transmission technique, in on-board processing (OBP) that will be demonstrated in a double-hop configuration using a surface acoustic wave demodulator, and in other user trials related to tele-education, and tele-medicine. Phase shift keyed (PSK) modems will be used for the rain fade countermeasures experiment. Terminals will also be used for demonstrations of point-to-point communications applicable to private business, tele-education and tele-medicine networks.

  1. Preliminary Analysis of a Novel SAR Based Emergency System for Earth Orbit Satellites using Galileo

    NARCIS (Netherlands)

    Gill, E.K.A.; Helderweirt, A.

    2010-01-01

    This paper presents a preliminary analysis of a novel Search and Rescue (SAR) based emergency system for Low Earth Orbit (LEO) satellites using the Galileo Global Navigation Satellite System (GNSS). It starts with a description of the space user SAR system including a concept description, mission ar

  2. Shallow-earth rheology from glacial isostasy and satellite gravity: a sensitivity analysis for GOCE

    NARCIS (Netherlands)

    Schotman, H.H.A.

    2008-01-01

    In recent years, satellite gravity missions have been launched that probe the earth's long- to mediumwavelength (1000 - 500 km) gravity field. The upcoming ESA satellite gravity mission GOCE is predicted to measure the gravity field with an accuracy of a few centimeters at spatial scales of 100 km.

  3. The EMC impact of SPS operations on low Earth orbit satellites

    Science.gov (United States)

    Grant, W. B.; Morrison, E. L., Jr.; Davis, K. C.

    1980-01-01

    The susceptibility of various operational and planned low Earth orbit satellites to solar power satellite (SPS) operations was examined. Functional degradation for the electronic systems on LANDSAT, the global positioning system, and the space telescope is described in relation to the amplitude of the SPS illumination components. Analyses include the modes of coupling to devices and subsystems, and performance effects in relation to satellite mission.

  4. The study of gravity gradient effect on attitude of low earth orbit satellite

    Science.gov (United States)

    Hamzah, Nor Hazadura; Yaacob, Sazali; Muthusamy, Hariharan; Hamzah, Norhizam; Ghazali, Najah

    2013-04-01

    Simulations and mathematical models are increasingly used to assist the process of decision making in engineering design. The objective of this paper is to simulate the linear attitude dynamics of small satellites under gravity gradient torque which is inherent in low earth orbit. The equations were first derived in their nonlinear form, and then manipulated and simulated in their linear form. Simulation results demonstrate the importance of choosing the appropriate values of satellite's moment of inertia in designing phase of a satellite.

  5. An autonomous navigation algorithm for high orbit satellite using star sensor and ultraviolet earth sensor.

    Science.gov (United States)

    Baohua, Li; Wenjie, Lai; Yun, Chen; Zongming, Liu

    2013-01-01

    An autonomous navigation algorithm using the sensor that integrated the star sensor (FOV1) and ultraviolet earth sensor (FOV2) is presented. The star images are sampled by FOV1, and the ultraviolet earth images are sampled by the FOV2. The star identification algorithm and star tracking algorithm are executed at FOV1. Then, the optical axis direction of FOV1 at J2000.0 coordinate system is calculated. The ultraviolet image of earth is sampled by FOV2. The center vector of earth at FOV2 coordinate system is calculated with the coordinates of ultraviolet earth. The autonomous navigation data of satellite are calculated by integrated sensor with the optical axis direction of FOV1 and the center vector of earth from FOV2. The position accuracy of the autonomous navigation for satellite is improved from 1000 meters to 300 meters. And the velocity accuracy of the autonomous navigation for satellite is improved from 100 m/s to 20 m/s. At the same time, the period sine errors of the autonomous navigation for satellite are eliminated. The autonomous navigation for satellite with a sensor that integrated ultraviolet earth sensor and star sensor is well robust.

  6. Earth's thermal radiation sensors for attitude determination systems of small satellites

    Science.gov (United States)

    Vertat, I.; Linhart, R.; Masopust, J.; Vobornik, A.; Dudacek, L.

    2017-07-01

    Satellite attitude determination is a complex process with expensive hardware and software and it could consume the most of resources (volume, mass, electric power), especially of small satellites as CubeSats. Thermal radiation infrared detectors could be one of useful sensors for attitude determination systems in such small satellites. Nowadays, these sensors are widely used in contact-less thermometers and thermo-cameras resulting in a low-cost technology. On low Earth orbits the infrared thermal sensors can be utilized for coarse attitude determination against a relative warm and close Earth's globe.

  7. Clouds and the Earth's Radiant Energy System (CERES) Visualization Single Satellite Footprint (SSF) Plot Generator

    Science.gov (United States)

    Barsi, Julia A.

    1995-01-01

    The first Clouds and the Earth's Radiant Energy System (CERES) instrument will be launched in 1997 to collect data on the Earth's radiation budget. The data retrieved from the satellite will be processed through twelve subsystems. The Single Satellite Footprint (SSF) plot generator software was written to assist scientists in the early stages of CERES data analysis, producing two-dimensional plots of the footprint radiation and cloud data generated by one of the subsystems. Until the satellite is launched, however, software developers need verification tools to check their code. This plot generator will aid programmers by geolocating algorithm result on a global map.

  8. 78 FR 39200 - Federal Earth Stations-Non-Federal Fixed Satellite Service Space Stations; Spectrum for Non...

    Science.gov (United States)

    2013-07-01

    ...-11341; FCC 13-65] Federal Earth Stations--Non-Federal Fixed Satellite Service Space Stations; Spectrum... interference protection for Fixed-Satellite Service (FSS) and Mobile- Satellite Service (MSS) earth stations... and the important role it will play in our nation's economy and technological innovation now and in...

  9. DETERMINATION OF THE EARTH’S GEOID BY SATELLITE OBSERVATIONS

    Science.gov (United States)

    Determinations of the geoid made by different authors have differed by more than forty meters in some geographic locations. The authors differed in...conducted with Doppler observations on satellites have shown moderate variations (rarely as much as 30 meters) in the geoid determined if the number of...satellite orbital inclinations employed is reduced by one. Reduction of the number of gravity parameters used to represent the geoid also resulted in

  10. The Design of Compass/BeiDou Navigation Satellite Terminal for Migrant Bird Research

    Directory of Open Access Journals (Sweden)

    Yaohui Li

    2014-01-01

    Full Text Available A terminal of Compass Navigation Satellite System (CNSS, which can not only support BeiDou-1 and BeiDou-2 but also support Global Positioning System (GPS, is designed to research the activities of the migrant birds, with our novel design of a multiband antenna. By a high-density integration, this terminal is designed with a compact size and light weight. When the terminal is assembled to a whooper swan, its flying trace is recorded by the CNSS, which is in agreement with that of GPS. The flying route map based on the CNSS is useful to check the situation and habit of the migrant bird, which is important for animal protection and bird flu outbreak prediction.

  11. Optical terminal definition for the Future Service Growth (FSG) module of the Advanced Tracking and Data Relay Satellite (ATDRSS)

    Science.gov (United States)

    Bruno, Ronald C.; Kalil, Ford

    1992-01-01

    Results are presented from preliminary analyses and definition studies for an optical terminal's incorporation into the FSG module of the ATDRS system, which must support crosslinks between selected relay satellites of a modified ATDRS constellation and thereby allow the placement of a relay satellite at an orbital location which eliminates the zone of exclusion. These studies have attempted to identify alternative constellations by means of one or more crosslinks, and to formulate the service-routing requirement for the FSG terminal. Attention is given to an FSG optical terminal that furnishes the functionality and performance required for a crosslink terminal.

  12. Optical terminal definition for the Future Service Growth (FSG) module of the Advanced Tracking and Data Relay Satellite (ATDRSS)

    Science.gov (United States)

    Bruno, Ronald C.; Kalil, Ford

    1992-01-01

    Results are presented from preliminary analyses and definition studies for an optical terminal's incorporation into the FSG module of the ATDRS system, which must support crosslinks between selected relay satellites of a modified ATDRS constellation and thereby allow the placement of a relay satellite at an orbital location which eliminates the zone of exclusion. These studies have attempted to identify alternative constellations by means of one or more crosslinks, and to formulate the service-routing requirement for the FSG terminal. Attention is given to an FSG optical terminal that furnishes the functionality and performance required for a crosslink terminal.

  13. Investigating the Role of Earth's Quasi-Satellite Resonance in the Accretion of Interplanetary Dust

    Science.gov (United States)

    Kortenkamp, S.

    2012-12-01

    We studied the orbital evolution of low inclination asteroidal interplanetary dust particles (IDPs) decaying towards 1 AU under the influence of radiation pressure, PR drag, and solar wind drag. We used a series of β values (the ratio of radiation pressure to central gravity) ranging from 0.0025 up to 0.02. Assuming a composition consistent with astronomical silicate and a particle density of 2.5 g cm-3 these β values correspond to diameters ranging from 200 down to 25 microns, respectively. Simulations with the larger IDPs (>50 microns) typically showed that 100% of the dust particles became temporarily trapped in mean-motion resonances outside Earth's orbit. When trapped in these outer resonances a dust particle's orbital eccentricity significantly increases (sometimes to e > 0.2) while its decay in semi-major axis is halted. Most dust particles eventually slip out of these outer resonances and their orbits continue decaying inwards toward 1 AU. We found that a significant fraction of the initial populations subsequently became trapped in 1:1 co-orbital resonance with Earth. In addition to traditional horseshoe type co-orbitals, IDPs also became trapped as so-called quasi-satellites. About 1% of the smallest IDPs (25 microns) and 10% of the largest (200 microns) became trapped in the quasi-satellite resonance for some length of time. Quasi-satellite IDPs always remain relatively near to Earth, within about 0.2-0.3 AU, and undergo two close-encounters with Earth each year. While resonant perturbations from Earth halt the decay in semi-major axis of quasi-satellite IDPs their eccentricities continue to decrease, forcing the IDPs onto more Earth-like orbits and causing them to spiral closer and closer to Earth. This has dramatic consequences for the relative velocity and distance of closest approach between Earth and the IDPs. After about 104 years in the quasi-satellite resonance IDPs are typically less than 0.1 AU from Earth and consistently coming within about

  14. Formation Flight of Earth Satellites on KAM Tori

    Science.gov (United States)

    2007-09-01

    analysis in 320km, 30◦ orbit, δϕ = 0.0001◦ 119 E8 . Cluster distance from chief satellite for tight formation analysis in 320km, 30◦ orbit, δϕ0 = 0.0001...become all the more apparent with the relatively recent focus on development and implementation of small satellite or microsatellite formations – groups ...of math - ematics. However, one can obtain a very basic idea of system behavior by investigating higher-dimensional tori using a method loosely

  15. Communications via the radio artificial earth satellite: Design of the tracking diagram and features for conducting QSO

    Science.gov (United States)

    Dobrozhanskiy, V.; Rybkin, V.

    1980-01-01

    A detailed examination is made of the operation of a transmitting artifical Earth satellite. A tracking diagram for the satellite is constructed. The zone of radio visibility can be determined based on the techniques proposed.

  16. Scheduler for monitoring objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Scot S; Pertica, Alexander J; Riot, Vincent J; De Vries, Willem H; Bauman, Brian J; Nikolaev, Sergei; Henderson, John R; Phillion, Donald W

    2015-04-28

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  17. Introducing multisensor satellite radiance-based evaluation for regional Earth System modeling

    Science.gov (United States)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; Aires, F.

    2014-07-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  18. Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling

    Science.gov (United States)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; hide

    2014-01-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  19. Adaptive Terminal Sliding Mode Control of Electromagnetic Spacecraft Formation Flying in Near-Earth Orbits

    Directory of Open Access Journals (Sweden)

    Jingrui Zhang

    2014-02-01

    Full Text Available An adaptive terminal sliding mode control for six-degree-of-freedom electromagnetic spacecraft formation flying (EMFF in near-Earth orbits is presented. By using terminal sliding mode (TSM technique, the output tracking error can converge to zero in finite time, and strong robustness with respect to disturbance forces can be guaranteed. Based on a rotated frame Fr and the adaptive TSM controller, the special magnetic moment of the steerable magnetic dipole is computed. The angular momentum management strategy (AMM is implemented in a periodically switching fashion, by which the angular momentum buildup was limited. Illustrative simulations of EMFF are conducted to verify the effectiveness of the proposed controller.

  20. The microwave noise environment at a geostationary satellite caused by the brightness of the earth

    Science.gov (United States)

    Smith, E. K.; Njoku, E. G.

    1985-01-01

    The microwave antenna temperature due to the earth in the satellite antenna beam has been computed for a series of longitudes for a satellite in geostationary orbit and for frequencies of 1 to 50 GHz. An earth-coverage beam is assumed for simplicity, but the technique is applicable to arbitrary beam shapes. Detailed calculations have been performed to account for varying land-ocean fractions within the field of view. Emission characteristics of the earth's atmosphere and surface are used with an accurate radiation transfer program to compute observed brightness temperatures. The value of 290 K commonly used for antenna temperature in satellite communication noise calculations is overly conservative, with more realistic values lying in the 60 to 240 K range.

  1. Aerodynamic Stability of Satellites in Elliptic Low Earth Orbits

    CERN Document Server

    Bailey, Matthew; Mancas, Stefan C; Udrea, Bogdan; Umeadi, Uchenna

    2013-01-01

    Topical observations of the thermosphere at altitudes below $200 \\, km$ are of great benefit in advancing the understanding of the global distribution of mass, composition, and dynamical responses to geomagnetic forcing, and momentum transfer via waves. The perceived risks associated with such low altitude and short duration orbits has prohibited the launch of Discovery-class missions. Miniaturization of instruments such as mass spectrometers and advances in the nano-satellite technology, associated with relatively low cost of nano-satellite manufacturing and operation, open an avenue for performing low altitude missions. The time dependent coefficients of a second order non-homogeneous ODE which describes the motion have a double periodic shape. Hence, they will be approximated using Jacobi elliptic functions. Through a change of variables the original ODE will be converted into Hill's ODE for stability analysis using Floquet theory. We are interested in how changes in the coefficients of the ODE affect the ...

  2. Communication Systems through Artificial Earth Satellites (Selected Pages)

    Science.gov (United States)

    1987-02-05

    POX Fs (8.2.11) is 0(F) dF If on input of weighing circuit fluctuation noise with uniform spectrum acts, spectral power density in numerator and...Possibly also realization MV with asynchronous operation of terrestrial stations, that we will designate through MVA . In the case MVA each terrestrial...according to the frequcrncy. With MVA through receiving-transmitting equipment of satellite into some tiMe intervals simultaneous possible passage of signals

  3. On identifying the specular reflection of sunlight in earth-monitoring satellite data.

    Energy Technology Data Exchange (ETDEWEB)

    Nelsen, James M., Jr.; Hohlfelder, Robert James; Jackson, Dale Clayton; Longenbaugh, Randolph S.

    2009-03-01

    Among the background signals commonly seen by Earth-monitoring satellites is the specular reflection of sunlight off of Earth's surface, commonly referred to as a glint. This phenomenon, involving liquid or ice surfaces, can result in the brief, intense illumination of satellite sensors appearing from the satellite perspective to be of terrestrial origin. These glints are important background signals to be able to identify with confidence, particularly in the context of analyzing data from satellites monitoring for transient surface or atmospheric events. Here we describe methods for identifying glints based on the physical processes involved in their production, including spectral fitting and polarization measurements. We then describe a tool that, using the WGS84 spheroidal Earth model, finds the latitude and longitude on Earth where a reflection of this type could be produced, given input Sun and satellite coordinates. This tool enables the user to determine if the surface at the solution latitude and longitude is in fact reflective, thus identifying the sensor response as a true glint or an event requiring further analysis.

  4. The Earth's gravity field from satellite geodesy: A 30 year adventure

    Science.gov (United States)

    Rapp, Richard H.

    1991-12-01

    The history of research in the Earth's gravity field from satellite geodesy is described and limitations of existing geopotential models are indicated. Although current solutions have made outstanding achievements, their limited accuracy restricts their use for some oceanographic applications. An example is discussed where there appears to be an incompatibility of the long wavelength geoid undulation obtained through satellite analysis with independent estimates that have become available. The future Aristoteles mission is seen as providing a significant leap in Earth gravity field knowledge improvement.

  5. Earth rotation, station coordinates and orbit determination from satellite laser ranging

    Science.gov (United States)

    Murata, Masaaki

    The Project MERIT, a special program of international colaboration to Monitor Earth Rotation and Intercompare the Techniques of observation and analysis, has come to an end with great success. Its major objective was to evaluate the ultimate potential of space techniques such as VLBI and satellite laser ranging, in contrast with the other conventional techniques, in the determination of rotational dynamics of the earth. The National Aerospace Laboratory (NAL) has officially participated in the project as an associate analysis center for satellite laser technique for the period of the MERIT Main Campaign (September 1983-October 1984). In this paper, the NAL analysis center results are presented.

  6. Mini-satellite exploration of very near earth space fuel objects

    Energy Technology Data Exchange (ETDEWEB)

    Zuppero, A.C.; Jacox, M.G.

    1992-09-19

    A prospecting plan is presented to assay near Earth objects (NEO) for their potential to yield rocket fuel. The plan calls out small satellites as the near-term means to achieve low cost surveys and deep subsurface sampling of NEO composition. The water bearing classes of NEO to be considered are limited to those accessible in short time and with small thrusters. These include the water bearing clay objects (phylosilicates) at nearly trivial distances from Earth, and the recently identified water ice objects such as comet ({number_sign}4015) 1979 VA. These objects are evaluated as small satellite prospecting and assay vehicle targets.

  7. Mini-satellite exploration of very near earth space fuel objects

    Energy Technology Data Exchange (ETDEWEB)

    Zuppero, A.C.; Jacox, M.G.

    1992-09-19

    A prospecting plan is presented to assay near Earth objects (NEO) for their potential to yield rocket fuel. The plan calls out small satellites as the near-term means to achieve low cost surveys and deep subsurface sampling of NEO composition. The water bearing classes of NEO to be considered are limited to those accessible in short time and with small thrusters. These include the water bearing clay objects (phylosilicates) at nearly trivial distances from Earth, and the recently identified water ice objects such as comet ([number sign]4015) 1979 VA. These objects are evaluated as small satellite prospecting and assay vehicle targets.

  8. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    Science.gov (United States)

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  9. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    Science.gov (United States)

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  10. Changing inclination of earth satellites using the gravity of the moon

    Directory of Open Access Journals (Sweden)

    Karla de Souza Torres

    2006-01-01

    Full Text Available We analyze the problem of the orbital control of an Earth's satellite using the gravity of the Moon. The main objective is to study a technique to decrease the fuel consumption of a plane change maneuver to be performed in a satellite that is in orbit around the Earth. The main idea of this approach is to send the satellite to the Moon using a single-impulsive maneuver, use the gravity field of the Moon to make the desired plane change of the trajectory, and then return the satellite to its nominal semimajor axis and eccentricity using a bi-impulsive Hohmann-type maneuver. The satellite is assumed to start in a Keplerian orbit in the plane of the lunar orbit around the Earth and the goal is to put it in a similar orbit that differs from the initial orbit only by the inclination. A description of the close-approach maneuver is made in the three-dimensional space. Analytical equations based on the patched conics approach are used to calculate the variation in velocity, angular momentum, energy, and inclination of the satellite. Then, several simulations are made to evaluate the savings involved. The time required by those transfers is also calculated and shown.

  11. Satellite laser ranging measurements in South Africa: Contributions to earth system sciences

    Directory of Open Access Journals (Sweden)

    Christina M. Botai

    2015-03-01

    Full Text Available This contribution reassesses progress in the development of satellite laser ranging (SLR technology and its scientific and societal applications in South Africa. We first highlight the current global SLR tracking stations within the framework of the International Laser Ranging Service (ILRS and the artificial satellites currently being tracked by these stations. In particular, the present work focuses on analysing SLR measurements at Hartebeesthoek Radio Astronomy Observatory (HartRAO, South Africa, based on the MOBLAS-6 SLR configuration. Generally, there is a weak geometry of ILRS stations in the southern hemisphere and the SLR tracking station at HartRAO is the only active ILRS station operating on the African continent. The SLR-derived products such as station positions and velocities, satellite orbits, components of earth's gravity field and their temporal variations, earth orientation parameters are collected, merged, achieved and distributed by the ILRS under the Crustal Dynamic Data Information System. These products are used in various research fields such as detection and monitoring of tectonic plate motion, crustal deformation, earth rotation, polar motion, and the establishment and monitoring of International Terrestrial Reference Frames, as well as modelling of the spatio-temporal variations of the earth's gravity field. The MOBLAS-6 tracking station is collocated with other geodetic techniques such as very long baseline interferometry and Global Navigation Satellite Systems, thus making this observatory a fiducial geodetic location. Some applications of the SLR data products are described within the context of earth system science.

  12. Optimization and Feasibility Analysis of Satellite Earth Station Power System Using Homer

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available Satellite earth stations which located in remote areas are one of many applications powered by the renewable energy sources. Ground system consists of ground station and control centers working together to support the spacecraft and the data user. Earth station consists of major subsystems, transmitter, receiver, antenna, tracking equipment, terrestrial interface equipment and power supply. Power subsystem is an important part that required for supplying the earth station with electrical power to continue communicating with its remote sensing satellite. This paper deals with simulation and optimal sizing of earth station power system using HOMER software. A combination of two energy sources (solar, and wind to provide a continuous electric power production is used to determine the optimum system operation. Three system configurations are compared with respect to the total net present cost (NPC and levelized cost of energy (COE. Also, economical study will be analyzed for energy demand and sensitivity analysis will be performed.

  13. Optimization and Feasibility Analysis of Satellite Earth Station Power System Using Homer

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available Satellite earth stations which located in remote areas are one of many applications powered by the renewable energy sources. Ground system consists of ground station and control centers working together to support the spacecraft and the data user. Earth station consists of major subsystems, transmitter, receiver, antenna, tracking equipment, terrestrial interface equipment and power supply. Power subsystem is an important part that required for supplying the earth station with electrical power to continue communicating with its remote sensing satellite. This paper deals with simulation and optimal sizing of earth station power system using HOMER software. A combination of two energy sources (solar, and wind to provide a continuous electric power production is used to determine the optimum system operation. Three system configurations are compared with respect to the total net present cost (NPC and levelized cost of energy (COE. Also, economical study will be analyzed for energy demand and sensitivity analysis will be performed.

  14. Spaceborne observations of a changing Earth - Contribution from ESÁ s operating and approved satellite missions.

    Science.gov (United States)

    Johannessen, J. A.

    2009-04-01

    The overall vision for ESÁs Earth Observation activities is to play a central role in developing the global capability to understand planet Earth, predict changes, and mitigate negative effects of global change on its populations. Since Earth observation from space first became possible more than forty years ago, it has become central to monitoring and understanding how the dynamics of the Earth System work. The greatest progress has been in meteorology, where space-based observations have become indispensable, but it is now also progressively penetrating many of the fields making up Earth sciences. Exploiting Earth observation from space presents major multidisciplinary challenges to the researches working in the Earth sciences, to the technologists who build the state-of-the-art sensors, and to the scientists interpreting measurements made of processes occurring on or within the Earth's surface and in its atmosphere. The scientific community has shown considerable imagination in rising to these challenges, and in exploiting the latest technological developments to measure from space the complex processes and interactions that occur in the Earth System. In parallel, there has been significant progress in developing computer models that represent the many processes that make up the Earth System, and the interactions and feedback between them. Success in developing this holistic view is inextricably linked to the data provided by Earth Observation systems. Satellites provide the fundamental, consistent, regular and global measurements needed to drive, parameterise, test and improve those Earth System models. These developments, together with changes in society's awareness of the need for information on a changing world, have repetitively supported the decisions on how ESA can best focus its resources, and those of the European community that it serves, in order to address critical issues in Earth System science. Moreover, it is a fact that many operational

  15. A 20 GHz low noise, low cost receiver for digital satellite communication system, ground terminal applications

    Science.gov (United States)

    Allen, Glen

    1988-01-01

    A 45 month effort for the development of a 20 GHz, low-noise, low-cost receiver for digital, satellite communication system, ground terminal applications is discussed. Six proof-of-concept receivers were built in two lots of three each. Performance was generally consistent between the two lots. Except for overall noise figure, parameters were within or very close to specification. While noise figure was specified as 3.5 dB, typical performance was measured at 3.0 to 5.5 dB, over the full temperature range of minus 30 C to plus 75 C.

  16. Bit Error Rate Due to Misalignment of Earth Station Antenna Pointing to Satellite

    Directory of Open Access Journals (Sweden)

    Wahyu Pamungkas

    2010-04-01

    Full Text Available One problem causing reduction of energy in satellite communications system is the misalignment of earth station antenna pointing to satellite. Error in pointing would affect the quality of information signal to energy bit in earth station. In this research, error in pointing angle occurred only at receiver (Rx antenna, while the transmitter (Tx antennas precisely point to satellite. The research was conducted towards two satellites, namely TELKOM-1 and TELKOM-2. At first, measurement was made by directing Tx antenna precisely to satellite, resulting in an antenna pattern shown by spectrum analyzer. The output from spectrum analyzers is drawn with the right scale to describe swift of azimuth and elevation pointing angle towards satellite. Due to drifting from the precise pointing, it influenced the received link budget indicated by pattern antenna. This antenna pattern shows reduction of power level received as a result of pointing misalignment. As a conclusion, the increasing misalignment of pointing to satellite would affect in the reduction of received signal parameters link budget of down-link traffic.

  17. Design Concepts for a Small Space-Based GEO Relay Satellite for Missions Between Low Earth and near Earth Orbits

    Science.gov (United States)

    Bhasin, Kul B.; Warner, Joseph D.; Oleson, Steven; Schier, James

    2014-01-01

    The main purpose of the Small Space-Based Geosynchronous Earth orbiting (GEO) satellite is to provide a space link to the user mission spacecraft for relaying data through ground networks to user Mission Control Centers. The Small Space Based Satellite (SSBS) will provide services comparable to those of a NASA Tracking Data Relay Satellite (TDRS) for the same type of links. The SSBS services will keep the user burden the same or lower than for TDRS and will support the same or higher data rates than those currently supported by TDRS. At present, TDRSS provides links and coverage below GEO; however, SSBS links and coverage capability to above GEO missions are being considered for the future, especially for Human Space Flight Missions (HSF). There is also a rising need for the capability to support high data rate links (exceeding 1 Gbps) for imaging applications. The communication payload on the SSBS will provide S/Ka-band single access links to the mission and a Ku-band link to the ground, with an optical communication payload as an option. To design the communication payload, various link budgets were analyzed and many possible operational scenarios examined. To reduce user burden, using a larger-sized antenna than is currently in use by TDRS was considered. Because of the SSBS design size, it was found that a SpaceX Falcon 9 rocket could deliver three SSBSs to GEO. This will greatly reduce the launch costs per satellite. Using electric propulsion was also evaluated versus using chemical propulsion; the power system size and time to orbit for various power systems were also considered. This paper will describe how the SSBS will meet future service requirements, concept of operations, and the design to meet NASA users' needs for below and above GEO missions. These users' needs not only address the observational mission requirements but also possible HSF missions to the year 2030. We will provide the trade-off analysis of the communication payload design in terms of

  18. An Autonomous Orbit Determination System for Earth Satellites

    Science.gov (United States)

    1989-12-01

    these points is warranted. For example, low-Earth orbits ( LEO ) can be expected to approach e - 0 with time, so it is particularly useful to examine how...0.77887 e + 0.52875 e x y z 7 Canis Major A A A Cairs) M-0.18485 e + 0.93984 e - 0.28728 e (Sirus) -xyz A A A 8 a Leo -0.86275 e + 0.46061 e...Filters for Orbit Determination and Estimation, PhD Dissertation. University of Illinois, Urbana-Champaign IL, 1986 (AD-A170680). 12. Brouwer , Dirk

  19. Asteroid (469219) 2016 HO3, the smallest and closest Earth quasi-satellite

    CERN Document Server

    Marcos, C de la Fuente

    2016-01-01

    A number of Earth co-orbital asteroids experience repeated transitions between the quasi-satellite and horseshoe dynamical states. Asteroids 2001 GO2, 2002 AA29, 2003 YN107 and 2015 SO2 are well-documented cases of such a dynamical behaviour. These transitions depend on the gravitational influence of other planets, owing to the overlapping of a multiplicity of secular resonances. Here, we show that the recently discovered asteroid (469219) 2016 HO3 is a quasi-satellite of our planet -the fifth one, joining the ranks of (164207) 2004 GU9, (277810) 2006 FV35, 2013 LX28 and 2014 OL339. This new Earth co-orbital also switches repeatedly between the quasi-satellite and horseshoe configurations. Its current quasi-satellite episode started nearly 100 yr ago and it will end in about 300 yr from now. The orbital solution currently available for this object is very robust and our full N-body calculations show that it may be a long-term companion (timescale of Myr) to our planet. Among the known Earth quasi-satellites, ...

  20. A novel emergency system for low earth orbit satellites using Galileo GNSS

    NARCIS (Netherlands)

    Gill, E.K.A.; Helderweirt, A.

    2010-01-01

    Low Earth Orbit (LEO) satellites have a limited direct contact time with the stations of their ground segment. This fundamentally constraints a timeliness reaction of the mission control center in case of emergency situations onboard the LEO spacecraft. To enable such a rapid reaction to emergency s

  1. Satellite Earth observation data to identify anthropogenic pressures in selected protected areas

    NARCIS (Netherlands)

    Nagendra, H.; Mairota, P.; Marangi, C.; Lucas, R.; Dimopoulos, P.; Honrado, J.P.; Niphadkara, M.; Mücher, C.A.; Tomaselli, V.; Panitsa, M.; Tarantino, C.; Manakos, I.; Blonda, P.

    2015-01-01

    Protected areas are experiencing increased levels of human pressure. To enable appropriate conservation action, it is critical to map and monitor changes in the type and extent of land cover/use and habitat classes, which can be related to human pressures over time. Satellite Earth observation (EO)

  2. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-29

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 2 and 25 Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit Space Stations AGENCY: Federal Communications Commission. ACTION: Proposed rule;...

  3. Celebrate with SATELLITES: An International Polar Year Partnership to Study Earth's Materials

    Science.gov (United States)

    Hedley, Mikell Lynne; Czajkowski, Kevin; Struble, Janet; Benko, Terri; Shellito, Brad; Sheridan, Scott; Stasiuk, Mandy Munroe

    2009-01-01

    The SATELLITES program uses geospatial technologies to study surface temperatures of Earth's materials, such as sand, soil, grass, and water. Data are collected using Global Learning and Observations to Benefit the Environment (GLOBE) protocols, which are then used in research projects that are a part of the International Polar Year (IPY).…

  4. The impact of earth resources exploration from space. [technology assessment/LANDSAT satellites -technological forecasting

    Science.gov (United States)

    Nordberg, W.

    1975-01-01

    The use of Earth Resources Technology Satellites in solving global problems is examined. Topics discussed are: (1) management of food, water, and fiber resources; (2) exploration and management of energy and mineral resources; (3) protection of the environment; (4) protection of life and property; and (5) improvements in shipping and navigation.

  5. Piracy of Satellite Signals by Domestic Receive-Only Earth Stations.

    Science.gov (United States)

    Homan, Steven D.

    Innovations in technology have enabled homeowners to pirate satellite signals intended for cable television operators through the use of home earth-stations. Section 605 of the Communications Act of 1934, which governs reception of signals, is inadequate to regulate this situation because it appears that publication of received programing outside…

  6. Fundamentals of the route theory for satellite constellation design for Earth discontinuous coverage. Part 4: Compound satellite structures on orbits with synchronized nodal regression

    Science.gov (United States)

    Razoumny, Yury N.

    2016-12-01

    Basing on the theory results considered in the previous papers of the series for traditional one-tiered constellation formed on the orbits with the same values of altitudes and inclinations for all the satellites of the constellation, the method for constellation design using compound satellite structures on orbits with different altitudes and inclinations and synchronized nodal regression is developed. Compound, multi-tiered, satellite structures (constellations) are based on orbits with different values of altitude and inclination providing nodal regression synchronization. It is shown that using compound satellite constellations for Earth periodic coverage makes it possible to sufficiently improve the Earth coverage, as compared to the traditional constellations based on the orbits with common altitude and inclination for all the satellites of the constellation, and, as a consequence, to get new opportunities for the satellite constellation design for different types of prospective space systems regarding increasing the quality of observations or minimization of the number of the satellites required.

  7. A Model of the Earth's Magnetic Field From Two Years of Swarm Satellite Constellation Data

    Science.gov (United States)

    Olsen, N.; Finlay, C. C.; Kotsiaros, S.

    2015-12-01

    Two years of data from ESA's Swarm constellation mission are used to derive a model of the Earth's magnetic field and its time variation (secular variation). The model describes contributions from the core and lithosphere as well as large-scale contributions from the magnetosphere (and its Earth-induced counterpart). We use data from geomagnetic quiet times and co-estimate the Euler angles describing the rotation between the vector magnetometer instrument frame and the North-East-Center (NEC) frame. In addition to the magnetic field observations provided by each of the three Swarm satellites and alongtrack first differences we include the East-west magnetic gradient information provided by the lower Swarm satellite pair, thereby explicitly taking advantage of the constellation aspect of Swarm. We assess the spatial and temporal model resolution that can be obtained from two years of Swarm satellite data by comparison with other recent models that also include non-Swarm magnetic observations.

  8. Energy-Efficient Network Transmission between Satellite Swarms and Earth Stations Based on Lyapunov Optimization Techniques

    Directory of Open Access Journals (Sweden)

    Weiwei Fang

    2014-01-01

    Full Text Available The recent advent of satellite swarm technologies has enabled space exploration with a massive number of picoclass, low-power, and low-weight spacecraft. However, developing swarm-based satellite systems, from conceptualization to validation, is a complex multidisciplinary activity. One of the primary challenges is how to achieve energy-efficient data transmission between the satellite swarm and terrestrial terminal stations. Employing Lyapunov optimization techniques, we present an online control algorithm to optimally dispatch traffic load among different satellite-ground links for minimizing overall energy consumption over time. Our algorithm is able to independently and simultaneously make control decisions on traffic dispatching over intersatellite-links and up-down-links so as to offer provable energy and delay guarantees, without requiring any statistical information of traffic arrivals and link condition. Rigorous analysis and extensive simulations have demonstrated the performance and robustness of the proposed new algorithm.

  9. Linking Satellites Via Earth "Hot Spots" and the Internet to Form Ad Hoc Constellations

    Science.gov (United States)

    Mandl, Dan; Frye, Stu; Grosvenor, Sandra; Ingram, Mary Ann; Langley, John; Miranda, Felix; Lee, Richard Q.; Romanofsky, Robert; Zaman, Afoz; Popovic, Zoya

    2004-01-01

    As more assets are placed in orbit, opportunities emerge to combine various sets of satellites in temporary constellations to perform collaborative image collections. Often, new operations concepts for a satellite or set of satellites emerge after launch. To the degree with which new space assets can be inexpensively and rapidly integrated into temporary or "ad hoc" constellations, will determine whether these new ideas will be implemented or not. On the Earth Observing 1 (EO-1) satellite, a New Millennium Program mission, a number of experiments were conducted and are being conducted to demonstrate various aspects of an architecture that, when taken as a whole, will enable progressive mission autonomy. In particular, the target architecture will use adaptive ground antenna arrays to form, as close as possible, the equivalent of wireless access points for low earth orbiting satellites. Coupled with various ground and flight software and the Internet. the architecture enables progressive mission autonomy. Thus, new collaborative sensing techniques can be implemented post-launch. This paper will outline the overall operations concept and highlight details of both the research effort being conducted in satellites. Keywords: collaborative remote sensing smart antennas, adaptive antenna arrays, sensor webs. ad hoc constellations, mission autonomy and

  10. The Orbit and Future Motion of Earth Quasi-Satellite 2016 HO3

    Science.gov (United States)

    Chodas, Paul

    2016-10-01

    The newly discovered small asteroid 2016 HO3 is not only co-orbital with the Earth, it is currently trapped as a quasi-satellite, and it will remain a constant companion of our planet for centuries to come. Although it orbits the Sun, not the Earth, in a frame rotating with the Earth the asteroid appears to make yearly loops around our planet, and also bobs up and down through the ecliptic due to its 8-degree orbital inclination. What makes this asteroid a quasi-satellite is the fact that the Earth's gravity influences its motion so that it never wanders farther away than about 100 lunar distances. In the rotating frame, the asteroid's yearly cycles librate back and forth along the Earth's orbit, with a period of about 45 years. One other asteroid, 2003 YN107, followed a similar librational pattern from 1997 to 2006, but has since departed our vicinity. 2016 HO3, on the other hand, will continue to librate about our planet for centuries to come, making it the best and most stable example of a quasi-satellite to date.

  11. Properties of the moon, Mars, Martian satellites, and near-earth asteroids

    Science.gov (United States)

    Taylor, Jeffrey G.

    1989-01-01

    Environments and surface properties of the moon, Mars, Martian satellites, and near-earth asteroids are discussed. Topics include gravity, atmospheres, surface properties, surface compositions, seismicity, radiation environment, degradation, use of robotics, and environmental impacts. Gravity fields vary from large fractions of the earth's field such as 1/3 on Mars and 1/6 on the moon to smaller fractions of 0.0004 g on an asteroid 1 km in diameter. Spectral data and the analogy with meteor compositions suggest that near-earth asteroids may contain many resources such as water-rich carbonaceous materials and iron-rich metallic bodies. It is concluded that future mining and materials processing operations from extraterrestrial bodies require an investment now in both (1) missions to the moon, Mars, Phobos, Deimos, and near-earth asteroids and (2) earth-based laboratory research in materials and processing.

  12. High resolution earth observation satellites and services in the next decade a European perspective

    Science.gov (United States)

    Schreier, Gunter; Dech, Stefan

    2005-07-01

    Projects to use very high resolution optical satellite sensor data started in the late 90s and are believed to be the major driver for the commercialisation of earth observation. The global political security situation and updated legislative frameworks created new opportunities for high resolution, dual use satellite systems. In addition to new optical sensors, very high resolution synthetic aperture radars will become in the next few years an important component in the imaging satellite fleet. The paper will review the development in this domain so far, and give perspectives on future emerging markets and opportunities. With dual-use satellite initiatives and new political frameworks agreed between the European Commission and the European Space Agency (ESA), the European market becomes very attractive for both service suppliers and customers. The political focus on "Global Monitoring for Environment and Security" (GMES) and the "European Defence and Security Policy" drive and amplify this demand which ranges from low resolution climate monitoring to very high resolution reconnaissance tasks. In order to create an operational and sustainable GMES in Europe by 2007, the European infrastructure need to be adapted and extended. This includes the ESA SENTINEL and OXYGEN programmes, aiming for a fleet of earth observation satellites and an open and operational earth observation ground segment. The harmonisation of national and regional geographic information is driven by the European Commission's INSPIRE programme. The necessary satellite capacity to complement existing systems in the delivery of space based data required for GMES is currently under definition. Embedded in a market with global competition and in the global political framework of a Global Earth Observation System of Systems, European companies, agencies and research institutions are now contributing to this joint undertaking. The paper addresses the chances, risks and options for the future.

  13. Asteroid (469219) 2016 HO3, the smallest and closest Earth quasi-satellite

    Science.gov (United States)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2016-11-01

    A number of Earth co-orbital asteroids experience repeated transitions between the quasi-satellite and horseshoe dynamical states. Asteroids 2001 GO2, 2002 AA29, 2003 YN107 and 2015 SO2 are well-documented cases of such a dynamical behaviour. These transitions depend on the gravitational influence of other planets, owing to the overlapping of a multiplicity of secular resonances. Here, we show that the recently discovered asteroid (469219) 2016 HO3 is a quasi-satellite of our planet - the fifth one, joining the ranks of (164207) 2004 GU9, (277810) 2006 FV35, 2013 LX28, and 2014 OL339. This new Earth co-orbital also switches repeatedly between the quasi-satellite and horseshoe configurations. Its current quasi-satellite episode started nearly 100 yr ago and it will end in about 300 yr from now. The orbital solution currently available for this object is very robust and our full N-body calculations show that it may be a long-term companion (time-scale of Myr) to our planet. Among the known Earth quasi-satellites, it is the closest to our planet and as such, a potentially accessible target for future in situ study. Due to its presumably lengthy dynamical relationship with the Earth and given the fact that at present and for many decades this transient object remains well positioned with respect to our planet, the results of spectroscopic studies of this small body, 26-115 m, may be particularly useful to improve our understanding of the origins - local or captured - of Earth's co-orbital asteroid population. The non-negligible effect of the uncertainty in the value of the mass of Jupiter on the stability of this type of co-orbitals is also briefly explored.

  14. The design and implementation of a rescue terminal with vital signs telemonitoring based on Beidou 1 navigation satellite system.

    Science.gov (United States)

    Zhao, Junping; Zheng, Bing; Zhang, Xuan; Wang, Jun; Zhou, Yubin; Chen, Shifu; Zhang, Meikui; Zhou, Li; Chen, Xiaohong; Liu, Tongze

    2011-03-01

    This article presents the design and applications of a rescue terminal with positioning, vital signs sensing, and communicating function for special environment. The terminal provides three-dimensional positioning functionality via China's Beidou 1 Navigation Satellite (BD1) System and can collect users' vital signs with a set of wireless sensors. A controller of the terminal is in charge of processing data collected from the wireless sensors and communicating with the monitoring platform. With features such as small sizing, low power consumption, and accurate positioning, this terminal is very helpful in special circumstances such as disaster relief, dangerous outdoor sports and adventure monitoring, and antiterrorism activities.

  15. Satellite Earth observation data to identify climate and anthropogenic pressures on Bucharest periurban forests

    Energy Technology Data Exchange (ETDEWEB)

    Zoran, Maria; Savastru, Roxana; Savastru, Dan [National Institute of R& D for Optoelectronics, MG5 Bucharest-Magurele, 077125 Romania (Romania); Dida, Adrian [University Transylvania of Brasov, Brasov (Romania)

    2016-03-25

    Satellite Earth observation data in the visible and near-infrared (VNIR) wavelengths represent a useful source of information for forest systems monitoring through derived biogeophysical parameters (vegetation index, leaf area index, canopy cover, fraction of absorbed photosynthetically active radiation, chlorophyll content, net primary production, canopy water stress, etc.). Use of satellite remote sensing data to assess forest spatio-temporal changes due to climatic or anthropogenic stressors is an excellent example of the value of multispectral and multitemporal observations. Fusion technique was applied to time-series multispectral and multitemporal satellite imagery (NOAA AVHRR, MODIS Terra/Aqua, Landsat ETM and IKONOS satellite data) for periurban forest areas Cernica-Branesti, placed in the neighboring of Bucharest town, Romania, over 2002-2014 period.

  16. Effects of Plasma Drag on Low Earth Orbiting Satellites due to Heating of Earth's Atmosphere by Coronal Mass Ejections

    CERN Document Server

    Nwankwo, Victor U J

    2013-01-01

    Solar events, such as coronal mass ejections (CMEs) and solar flares, heat up the upper atmosphere and near-Earth space environment. Due to this heating and expansion of the outer atmosphere by the energetic ultraviolet, X-ray and particles expelled from the sun, the low Earth-Orbiting satellites (LEOS) become vulnerable to an enhanced drag force by the ions and molecules of the expanded atmosphere. Out of various types of perturbations, Earth directed CMEs play the most significant role. They are more frequent and intense during the active (solar maximum) phase of the sun's approximately 11-year cycle. As we are approaching another solar maximum later in 2013, it may be instructive to analyse the effects of the past solar cycles on the orbiting satellites using the archival data of space environment parameters as indicators. In this paper, we compute the plasma drag on a model LEOS due to the atmospheric heating by CMEs and other solar events as a function of the solar parameters. Using the current forecast ...

  17. Significant results from using earth observation satellites for mineral and energy resource exploration

    Science.gov (United States)

    Carter, William D.

    1981-01-01

    A large number of Earth-observation satellites orbit our world several times each day, providing new information about the land and sea surfaces and the overlying thin layer of atmosphere that makes our planet unique. Meteorological satellites have had the longest history of experimental use and most are now considered operational. The geologic information collected by the Landsat, Polar Orbiting Geophysical Observatory (POGO), Magsat, Heat Capacity Mapping Mission (HCMM) and Seasat land and ocean observation systems is being thoroughly tested, and some of these systems are now approaching operational use.

  18. Chinese Surveying and Control Network for Earth-Orbit Satellites and Deep Space Detection

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The relationship between the surveying and control network(CSN) for earth-orbit satellite and spatial geodesy, and the relationship between the CSN for deep space celestial bodies and detectors, and deep space detection are briefly summarized, and so are the basic technical needs of the deep space surveying and control network(DSN). Then, the techniques, the constituents and the distributing of Chinese satellite CSN (CSCSN) and other radio observing establishments in China are introduced. Lastly, with the primary CSCSN and other observing establishments, some projects for China to rebuild a more perfect CSCSN, and to establish a DSN are analyzed and stated.

  19. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    Science.gov (United States)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  20. NASA Perspectives on Earth Observations from Satellite or 50 Years of Meteorological Satellite Experiments-The NASA Perspective

    Science.gov (United States)

    Einaudi, Franco

    2010-01-01

    The NASA was established in 1959. From those very eady days to the present NASA has been intimately involved with NOAA and the scientific community in the development and operation of satellite and sensor experiments. The early efforts included experiments on the TIROS and geostationary Applications Technology Satellites (ATS) series. In the latter case the spin-scan cameras conceived by Verner Suomi, along with the TIROS cameras, opened new vistas at what could be done in meteorological studies with the daily, nearly global, synoptic views from space-borne sensors As the years passed and the Nimbus series of satellites came into being in the 1960's, more quantitative observations with longer-lifetime, increasingly capable, better calibrated instruments came into being. NASA, in collaboration with and in support of NOAA, implemented operational systems that we now know as the Polar Operational Environmental Satellite (POES) series and the Geostationary Operational Environmental Satellite (GOES) series that provided dependable, continuous, dedicated satellite observations for use by the weather and atmospheric science communities. Through the 1970's, 1980's, and 1990's improved, well-calibrated instruments with more spectral bands extending into the thermal and the microwave portions of the electromagnetic spectrum were provided to obtain accurate soundings of the atmosphere, atmospheric chemistry constituents such as ozone, global sea surface temperature, snow and ice extent, vegetation dynamics, etc. In the 1990's and up to the present the NASA/Earth Observing System (EOS) has been developed, implemented, and operated over many years to provide a very comprehensive suite of observations of the atmosphere, as well as land and ocean parameters. The future looks bright wherein the development of new systems, broadly described by the National Academy of Science Decadal Study, is now underway. NASA, along with collaborations with NOAA, other agencies, and the

  1. Fundamentals of the route theory for satellite constellation design for Earth discontinuous coverage. Part 1: Analytic emulation of the Earth coverage

    Science.gov (United States)

    Razoumny, Yury N.

    2016-11-01

    This paper opens a series of articles expounding the fundamentals of the route theory for satellite constellation design for Earth discontinuous coverage. In Part 1 of the series the analytical model for Earth coverage by satellites' swath conforming to the essential of discontinuous coverage, in contrast to continuous coverage, is presented. The analytic relations are consecutively derived for calculation of single- and multi-satellite Earth surface latitude coverage as well as for generating full set of typical satellite visibility zone time streams realized in the repeating latitude coverage pattern for given arbitrary satellite constellation. The analytic relations mentioned are used for developing the method for analysis of discontinuous coverage of fixed arbitrary Earth region for given satellite constellation using both deterministic and stochastic approaches. The method provides analysis of the revisit time for given satellite constellation, as a result of high speed (fractions of a second or seconds) computer calculations in a wide range of possible revisit time variations for different practical purposes with high accuracy which is at least on par with that provided by known numerical simulating methods based on direct modeling of the satellite observation mission, or in a number of cases is even superior to it.

  2. Sampling Errors of Monthly-mean Radiative Fluxes from the Earth Radiation Budget Satellite

    Science.gov (United States)

    Bess, T. Dale; Wong, Takmeng; Smith, G. Louis

    2002-01-01

    The Earth Radiation Experiment (ERBE) consisted of scanning and non-scanning radiometers on the dedicated Earth Radiation Budget Satellite ERBS) and also on the NOAA-9 and -10 operational spacecraft. The non-scanning radiometers included a pair of wide field-of-view (WFOV) radiometers for measuring outgoing longwave radiation and reflected solar radiation (Luther et al., 1986). The ERBS was placed into an orbit with 57 deg. inclination and 620 km altitude on 16 October 1984. The instruments began collecting data in November 1984 and the non-scanning radiometers provided data until June 2002, providing a 17-year data set.

  3. Imaging-Duration Embedded Dynamic Scheduling of Earth Observation Satellites for Emergent Events

    Directory of Open Access Journals (Sweden)

    Xiaonan Niu

    2015-01-01

    Full Text Available We present novel two-stage dynamic scheduling of earth observation satellites to provide emergency response by making full use of the duration of the imaging task execution. In the first stage, the multiobjective genetic algorithm NSGA-II is used to produce an optimal satellite imaging schedule schema, which is robust to dynamic adjustment as possible emergent events occur in the future. In the second stage, when certain emergent events do occur, a dynamic adjusting heuristic algorithm (CTM-DAHA is applied to arrange new tasks into the robust imaging schedule. Different from the existing dynamic scheduling methods, the imaging duration is embedded in the two stages to make full use of current satellite resources. In the stage of robust satellite scheduling, total task execution time is used as a robust indicator to obtain a satellite schedule with less imaging time. In other words, more imaging time is preserved for future emergent events. In the stage of dynamic adjustment, a compact task merging strategy is applied to combine both of existing tasks and emergency tasks into a composite task with least imaging time. Simulated experiments indicate that the proposed method can produce a more robust and effective satellite imaging schedule.

  4. Implementing earth observation and advanced satellite based atmospheric sounders for water resource and climate modelling

    DEFF Research Database (Denmark)

    Boegh, E.; Dellwik, Ebba; Hahmann, Andrea N.;

    This paper discusses preliminary remote sensing (MODIS) based hydrological modelling results for the Danish island Sjælland (7330 km2) in relation to project objectives and methodologies of a new research project “Implementing Earth observation and advanced satellite based atmospheric sounders...... for effective land surface representation in water resource modeling” (2009- 2012). The purpose of the new research project is to develop remote sensing based model tools capable of quantifying the relative effects of site-specific land use change and climate variability at different spatial scales....... For this purpose, a) internal catchment processes will be studied using a Distributed Temperature Sensing (DTS) system, b) Earth observations will be used to upscale from field to regional scales, and c) at the largest scale, satellite based atmospheric sounders and meso-scale climate modelling will be used...

  5. Optimal approach to the investigation of the Earth's gravitational field by means of satellite gradiometry.

    Science.gov (United States)

    Petrovskaya, M. S.

    The conventional approach to the recovery of the Earth's gravitational field from satellite gradiometry observations is based on constructing, from the start, several boundary value (BV) relations, each of them corresponding to a separate observable component of the gravity gradient (GG) tensor or a certain combination of them. In particular, one of such projects, the ARISTOTELES mission, assumes that only the radial and across-track components are accessible (by technical reasons). The purpose of the present paper is mainly to discuss the principle aspects of the problem of the Earth's potential recovering from satellite gradiometry, to give an optimal formulation of the problem and derive the basic boundary value equation in different forms.

  6. Earth Observatory Satellite system definition study. Report 4: Low cost management approach and recommendations

    Science.gov (United States)

    1974-01-01

    An analysis of low cost management approaches for the development of the Earth Observatory Satellite (EOS) is presented. The factors of the program which tend to increase costs are identified. The NASA/Industry interface is stressed to show how the interface can be improved to produce reduced program costs. Techniques and examples of cost reduction which can be applied to the EOS program are tabulated. Specific recommendations for actions to be taken to reduce costs in prescribed areas are submitted.

  7. Earth Observatory Satellite system definition study. Report no. 4: Management approach recommendations

    Science.gov (United States)

    1974-01-01

    A management approach for the Earth Observatory Satellite (EOS) which will meet the challenge of a constrained cost environment is presented. Areas of consideration are contracting techniques, test philosophy, reliability and quality assurance requirements, commonality options, and documentation and control requirements. The various functional areas which were examined for cost reduction possibilities are identified. The recommended management approach is developed to show the primary and alternative methods.

  8. SatelliteDL - An IDL Toolkit for the Analysis of Satellite Earth Observations - GOES, MODIS, VIIRS and CERES

    Science.gov (United States)

    Fillmore, D. W.; Galloy, M. D.; Kindig, D.

    2013-12-01

    SatelliteDL is an IDL toolkit for the analysis of satellite Earth observations from a diverse set of platforms and sensors. The design features an abstraction layer that allows for easy inclusion of new datasets in a modular way. The core function of the toolkit is the spatial and temporal alignment of satellite swath and geostationary data. IDL has a powerful suite of statistical and visualization tools that can be used in conjunction with SatelliteDL. Our overarching objective is to create utilities that automate the mundane aspects of satellite data analysis, are extensible and maintainable, and do not place limitations on the analysis itself. Toward this end we have constructed SatelliteDL to include (1) HTML and LaTeX API document generation, (2) a unit test framework, (3) automatic message and error logs, (4) HTML and LaTeX plot and table generation, and (5) several real world examples with bundled datasets available for download. For ease of use, datasets, variables and optional workflows may be specified in a flexible format configuration file. Configuration statements may specify, for example, a region and date range, and the creation of images, plots and statistical summary tables for a long list of variables. SatelliteDL enforces data provenance; all data should be traceable and reproducible. The output NetCDF file metadata holds a complete history of the original datasets and their transformations, and a method exists to reconstruct a configuration file from this information. Release 0.1.0 of SatelliteDL is anticipated for the 2013 Fall AGU conference. It will distribute with ingest methods for GOES, MODIS, VIIRS and CERES radiance data (L1) as well as select 2D atmosphere products (L2) such as aerosol and cloud (MODIS and VIIRS) and radiant flux (CERES). Future releases will provide ingest methods for ocean and land surface products, gridded and time averaged datasets (L3 Daily, Monthly and Yearly), and support for 3D products such as temperature and

  9. Handover aspects for a Low Earth Orbit (LEO) CDMA Land Mobile Satellite (LMS) system

    Science.gov (United States)

    Carter, P.; Beach, M. A.

    1993-01-01

    This paper addresses the problem of handoff in a land mobile satellite (LMS) system between adjacent satellites in a low earth orbit (LEO) constellation. In particular, emphasis is placed on the application of soft handoff in a direct sequence code division multiple access (DS-CDMA) LMS system. Soft handoff is explained in terms of terrestrial macroscopic diversity, in which signals transmitted via several independent fading paths are combined to enhance the link quality. This concept is then reconsidered in the context of a LEO LMS system. A two-state Markov channel model is used to simulate the effects of shadowing on the communications path from the mobile to each satellite during handoff. The results of the channel simulation form a platform for discussion regarding soft handoff, highlighting the potential merits of the scheme when applied in a LEO LMS environment.

  10. Human factors dimensions in the evolution of increasingly automated control rooms for near-earth satellites

    Science.gov (United States)

    Mitchell, C. M.

    1982-01-01

    The NASA-Goddard Space Flight Center is responsible for the control and ground support for all of NASA's unmanned near-earth satellites. Traditionally, each satellite had its own dedicated mission operations room. In the mid-seventies, an integration of some of these dedicated facilities was begun with the primary objective to reduce costs. In this connection, the Multi-Satellite Operations Control Center (MSOCC) was designed. MSOCC represents currently a labor intensive operation. Recently, Goddard has become increasingly aware of human factors and human-machine interface issues. A summary is provided of some of the attempts to apply human factors considerations in the design of command and control environments. Current and future activities with respect to human factors and systems design are discussed, giving attention to the allocation of tasks between human and computer, and the interface for the human-computer dialogue.

  11. Human factors dimensions in the evolution of increasingly automated control rooms for near-earth satellites

    Science.gov (United States)

    Mitchell, C. M.

    1982-01-01

    The NASA-Goddard Space Flight Center is responsible for the control and ground support for all of NASA's unmanned near-earth satellites. Traditionally, each satellite had its own dedicated mission operations room. In the mid-seventies, an integration of some of these dedicated facilities was begun with the primary objective to reduce costs. In this connection, the Multi-Satellite Operations Control Center (MSOCC) was designed. MSOCC represents currently a labor intensive operation. Recently, Goddard has become increasingly aware of human factors and human-machine interface issues. A summary is provided of some of the attempts to apply human factors considerations in the design of command and control environments. Current and future activities with respect to human factors and systems design are discussed, giving attention to the allocation of tasks between human and computer, and the interface for the human-computer dialogue.

  12. A Topology Control Strategy with Reliability Assurance for Satellite Cluster Networks in Earth Observation.

    Science.gov (United States)

    Chen, Qing; Zhang, Jinxiu; Hu, Ze

    2017-02-23

    This article investigates the dynamic topology control problemof satellite cluster networks (SCNs) in Earth observation (EO) missions by applying a novel metric of stability for inter-satellite links (ISLs). The properties of the periodicity and predictability of satellites' relative position are involved in the link cost metric which is to give a selection criterion for choosing the most reliable data routing paths. Also, a cooperative work model with reliability is proposed for the situation of emergency EO missions. Based on the link cost metric and the proposed reliability model, a reliability assurance topology control algorithm and its corresponding dynamic topology control (RAT) strategy are established to maximize the stability of data transmission in the SCNs. The SCNs scenario is tested through some numeric simulations of the topology stability of average topology lifetime and average packet loss rate. Simulation results show that the proposed reliable strategy applied in SCNs significantly improves the data transmission performance and prolongs the average topology lifetime.

  13. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    KAUST Repository

    McCabe, Matthew

    2016-10-25

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-Agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  14. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    Science.gov (United States)

    McCabe, Matthew F.; Houborg, Rasmus; Lucieer, Arko

    2016-10-01

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  15. SERB, a nano-satellite dedicated to the Earth-Sun relationship

    Science.gov (United States)

    Meftah, Mustapha; Bamas, Étienne; Cambournac, Pierre; Cherabier, Philippe; Demarets, Romain; Denis, Gaspard; Dion, Axel; Duroselle, Raphaël.; Duveiller, Florence; Eichner, Laetitia; Lozeve, Dimitri; Mestdagh, Guillaume; Ogier, Antoine; Oliverio, Romane; Receveur, Thibault; Souchet, Camille; Gilbert, Pierre; Poiet, Germain; Hauchecorne, Alain; Keckhut, Philippe; Sarkissian, Alain

    2016-05-01

    The Solar irradiance and Earth Radiation Budget (SERB) mission is an innovative proof-of-concept nano-satellite, with three ambitious scientific objectives. The nano-satellite aims at measuring on the same platform the absolute value of the total solar irradiance (TSI) and its variability, the ultraviolet (UV) solar spectral variability, and the different components of the Earth radiation budget. SERB is a joint project between CNES (Centre National d'Etudes Spatiales), Ecole polytechnique, and LATMOS (Laboratoire Atmospheres, Milieux, Observations Spatiales) scheduled for a launch in 2020-2021. It is a three-unit CubeSat (X-CubeSat II), developed by students from ´Ecole polytechnique. Critical components of instrumental payloads of future large missions (coatings, UV filters, etc.) can acquire the technical maturity by flying in a CubeSat. Nano-satellites also represent an excellent alternative for instrumentation testing, allowing for longer flights than rockets. More-over, specific scientific experiments can be performed by nano-satellites. This paper is intended to present the SERB mission and its scientific objectives.

  16. Constellation design for earth observation based on the characteristics of the satellite ground track

    Science.gov (United States)

    Luo, Xin; Wang, Maocai; Dai, Guangming; Song, Zhiming

    2017-04-01

    This paper responds to the increasing need for Earth observation missions and deals with the design of Repeating Sun-Synchronous Constellations (RSSCs) which takes into consideration of constellations composed of one or more orbital planes. Based on the mature design approach of Repeating Sun-synchronous orbits, a novel technique to design RSSCs is presented, which takes the second gravitational zonal harmonic into consideration. In order to obtain regular cycles of observation of the Earth by a single satellite, the orbital relationships have to be satisfied firstly are illustrated. Then, by making full analyses of the characteristics of the satellite ground track, orbital parameters are properly calculated to make other satellites pass on the same or different ground track of the single satellite. Last, single-plane or multi-plane constellations are used to improve the repetitions of the observation and the ground resolution. RSSCs allow observing the same region once at the same local time in a solar day and several times at the different local time in a solar day. Therefore, this kind of constellations meets all requirements for the remote sensing applications, which need to observe the same region under the same or different visible conditions. Through various case studies, the calculation technique is successfully demonstrated.

  17. LEOcom: communication system for low earth orbit satellites for voice, data and facsimile; LEOcom - sistema de comunicacao por satelites de orbita terrestre baixa para voz, dados e facsimile

    Energy Technology Data Exchange (ETDEWEB)

    Giacaglia, G.E.O.; Lamas, W.Q. [Universidade de Taubate (UNITAU), SP (Brazil). Programa de Pos-graduacao em Engenharia Mecanica], E-mail: giorgio@unitau.br; Ceballos, D.C. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Pereira, J.J. [Comando-Geral de Tecnologia Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil)

    2009-07-01

    This paper provides a basic description of a Communication System for Low Earth Orbit Satellites that can provide voice, data and facsimile to hundreds of countries located in equatorial land between + and - 20 deg latitude, reaching higher latitudes, depending on the location of the onshore terminal. As a point high, it emphasizes its opportunity to support the control of networks transmission of electricity, in any area, and plants generation, located in remote areas, and support any type of operation in these regions. It is the aim of this work to reactivate a good project for Brazil and the tropical world.

  18. Signals of Opportunity Earth Reflectometry (SoOp-ER): Enabling new microwave observations from small satellites

    Science.gov (United States)

    Garrison, J. L.; Piepmeier, J. R.; Shah, R.; Lin, Y. C.; Du Toit, C. F.; Vega, M. A.; Knuble, J. J.

    2016-12-01

    Several recent experiments have demonstrated remote sensing by reutilizing communication satellite transmissions as sources in a bistatic radar configuration. This technique, referred to as "Signals of Opportunity Earth Reflectometry" (SoOp-ER), combines aspects of passive radiometry, active scatterometry and radar altimetry, but is essentially a new and alternative approach to microwave remote sensing. Reflectometry was first demonstrated with Global Navigation Satellite System (GNSS) signals, enabled by their use of pseudorandom noise (PRN) codes for ranging. Two decades of research in GNSS reflectometry has culminated in the upcoming launches of several satellite missions within the next few years (TechDemoSat-1, CYGNSS, and GEROS-ISS). GNSS signals, however, have low power and are confined to a few L-band frequencies allocated to radionavigation. Communication satellites, in contrast, transmit in nearly all bands penetrating the Earth's atmosphere at very high radiated powers to assure a low bit-error-rate. High transmission power and a forward scatter geometry result in a very high signal to noise ratio at the receiver. Surface resolution is determined by the signal bandwidth, not the antenna beam. In many applications, this will allow small, low gain antennas to be used to make scientifically useful measurements. These features indicate that SoOp-ER instruments would be an ideal technology for microwave remote sensing from small platforms. SoOp-ER observations are referenced at the specular point and a constellation of small satellites, evenly spaced in the same orbit, would provide global coverage through parallel specular point ground tracks. This presentation will summarize the current instrument development work by the authors on three different application of SoOp-ER: P-band (230-270 MHz) sensing of root-zone soil moisture (RZSM), S-band sensing of ocean winds and Ku/Ka-band altimetry. Potential mission scenarios using small satellite constellations

  19. The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.

    Science.gov (United States)

    Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M

    2009-04-01

    We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.

  20. Looking Down on the Earth: How Satellites Have Revolutionized Our Understanding of Our Home Planet

    Science.gov (United States)

    Freilich, Michael

    2016-04-01

    Earth is a complex, dynamic system we do not yet fully understand. The Earth system, like the human body, comprises diverse components that interact in complex ways. We need to understand the Earth's atmosphere, lithosphere, hydrosphere, cryosphere, and biosphere as a single connected system. Our planet is changing on all spatial and temporal scales. This presentation will highlight how satellite observations are revolutionizing our understanding of and its response to natural or human-induced changes, and to improve prediction of climate, weather, and natural hazards. Bio: MICHAEL H. FREILICH, Director of the Earth Science Division, Science Mission Directorate at NASA Headquarters. Prior to NASA, he was a Professor and Associate Dean in the College of Oceanic and Atmospheric Sciences at Oregon State University. He received Ph.D. in Oceanography from Scripps Institution of Oceanography (Univ. of CA., San Diego) in 1982. Dr. Freilich's research focuses on the determination, validation, and geophysical analysis of ocean surface wind velocity measured by satellite-borne microwave radar and radiometer instruments. He has developed scatterometer and altimeter wind model functions, as well as innovative validation techniques for accurately quantifying the accuracy of spaceborne environmental measurements. Dr. Freilich has served on many NASA, National Research Council (NRC), and research community advisory and steering groups, including the WOCE Science Steering Committee, the NASA EOS Science Executive Committee, the NRC Ocean Studies Board, and several NASA data system review committees. Freilich's non-scientific passions include nature photography and soccer refereeing at the youth, high school, and adult levels.

  1. Looking Down on the Earth: How Satellites Have Revolutionized Our Understanding of Our Home Planet

    Science.gov (United States)

    Freilich, Michael

    2017-04-01

    Earth is a complex, dynamic system we do not yet fully understand. The Earth system, like the human body, comprises diverse components that interact in complex ways. We need to understand the Earth's atmosphere, lithosphere, hydrosphere, cryosphere, and biosphere as a single connected system. Our planet is changing on all spatial and temporal scales. This presentation will highlight how satellite observations are revolutionizing our understanding of and its response to natural or human-induced changes, and to improve prediction of climate, weather, and natural hazards. Bio: MICHAEL H. FREILICH, Director of the Earth Science Division, Science Mission Directorate at NASA Headquarters. Prior to NASA, he was a Professor and Associate Dean in the College of Oceanic and Atmospheric Sciences at Oregon State University. He received Ph.D. in Oceanography from Scripps Institution of Oceanography (Univ. of CA., San Diego) in 1982. Dr. Freilich's research focuses on the determination, validation, and geophysical analysis of ocean surface wind velocity measured by satellite-borne microwave radar and radiometer instruments. He has developed scatterometer and altimeter wind model functions, as well as innovative validation techniques for accurately quantifying the accuracy of spaceborne environmental measurements. Dr. Freilich has served on many NASA, National Research Council (NRC), and research community advisory and steering groups, including the WOCE Science Steering Committee, the NASA EOS Science Executive Committee, the NRC Ocean Studies Board, and several NASA data system review committees. Freilich's non-scientific passions include nature photography and soccer refereeing at the youth, high school, and adult levels.

  2. Estimation of residual microaccelerations on board an artificial earth satellite in the monoaxial solar orientation mode

    Science.gov (United States)

    Ignatov, A. I.; Sazonov, V. V.

    2013-09-01

    The mode of monoaxial solar orientation of a designed artificial Earth satellite (AES), intended for microgravitational investigations, is studied. In this mode the normal line to the plane of satellite’s solar batteries is permanently directed at the Sun, the absolute angular velocity of a satellite is virtually equal to zero. The mode is implemented by means of an electromechanical system of powered flywheels or gyrodynes. The calculation of the level of microaccelerations arising on board in such a mode, was carried out by mathematical modeling of satellite motion with respect to the center of masses under an effect of gravitational and restoring aerodynamic moments, as well as of the moment produced by the gyrosystem. Two versions of a law for controlling the characteristic angular momentum of a gyrosystem are considered. The first version provides only attenuation of satellite’s perturbed motion in the vicinity of the position of rest with the required velocity. The second version restricts, in addition, the increase in the accumulated angular momentum of a gyrosystem by controlling the angle of rotation of the satellite around the normal to the light-sensitive side of the solar batteries. Both control law versions are shown to maintain the monoaxial orientation mode to a required accuracy and provide a very low level of quasistatic microaccelerations on board the satellite.

  3. Precise Ground-In-the-Loop Orbit Control for Low Earth Observation Satellites

    Science.gov (United States)

    Arbinger, C.; D'Amico, S.; Eineder, M.

    The growing interest in earth observation missions equipped with space-borne optical and synthetic aperture radar (SAR) sensors drives the accuracy requirements with respect to orbit determination and control. Especially SAR interferometry with its capability to resolve the velocity of on-ground objects (e.g. for traffic monitoring, ocean currents and glacier monitoring) and to determine highly precise digital elevation models is of significant interest for scientific applications. These goals may be achieved using along-track and repeat-pass interferometry with a satellite formation, based on the precise orbit control of one satellite with respect to the osculating trajectory of the second satellite. Such a control concept will be realized by the German TerraSAR-X mission, with an expected launch in 2006, using a virtual formation, where a single satellite will be controlled in a tight manner with respect to a predefined osculating reference trajectory. This is very challenging, since common orbit disturbances, like for close twin formations, do not cancel out in this scenario. The predefined trajectory in the TerraSAR-X case could also be the orbit of a second satellite. The paper describes the generation of such a virtual reference orbit, discusses the ground-in-the-loop control concept and presents results from a long-term simulation.

  4. Remote Sensing Education and Development Countries: Multilateral Efforts through the Committee on Earth Observation Satellites (CEOS)

    Science.gov (United States)

    Charles, Leslie Bermann

    1998-01-01

    The Committee on Earth Observation Satellites (CEOS) is an international organization which coordinates space-based Earth observations world wide. Created in 1984, CEOS now comprises 38 national space agencies, regional organizations and international space-related and research groups. The aim of CEOS is to achieve international coordination in the planning of satellite missions for Earth observation and to maximize the utilization of data from these missions world-wide. With regard to developing countries, the fundamental aim of CEOS is to encourage the creation and maintenance of indigenous capability that is integrated into the local decision-making process, thereby enabling developing countries to obtain the maximum benefit from Earth observation. Obtaining adequate access to remote sensing information is difficult for developing countries and students and teachers alike. High unit data prices, the specialized nature of the technology , difficulty in locating specific data, complexities of copyright provisions, the emphasis on "leading edge" technology and research, and the lack of training materials relating to readily understood application are frequently noted obstacles. CEOS has developed an education CD-ROM which is aimed at increasing the integration of space-based data into school curricula, meeting the heretofore unsatisfied needs of developing countries for information about Earth observation application, data sources and future plans; and raising awareness around the world of the value of Earth observation data from space. The CD-ROM is designed to be used with an Internet web browser, increasing the information available to the user, but it can also be used on a stand-alone machine. It contains suggested lesson plans and additional resources for educators and users in developing countries.

  5. Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites

    Science.gov (United States)

    Cao, C.; Uprety, S.; Xiong, J.; Wu, A.; Jing, P.; Smith, D.; Chander, G.; Fox, N.; Ungar, S.

    2010-01-01

    Establishing satellite measurement consistency by using common desert sites has become increasingly more important not only for climate change detection but also for quantitative retrievals of geophysical variables in satellite applications. Using the Antarctic Dome C site (75°06′S, 123°21′E, elevation 3.2 km) for satellite radiometric calibration and validation (Cal/Val) is of great interest owing to its unique location and characteristics. The site surface is covered with uniformly distributed permanent snow, and the atmospheric effect is small and relatively constant. In this study, the long-term stability and spectral characteristics of this site are evaluated using well-calibrated satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Preliminary results show that despite a few limitations, the site in general is stable in the long term, the bidirectional reflectance distribution function (BRDF) model works well, and the site is most suitable for the Cal/Val of reflective solar bands in the 0.4–1.0 µm range. It was found that for the past decade, the reflectivity change of the site is within 1.35% at 0.64 µm, and interannual variability is within 2%. The site is able to resolve calibration biases between instruments at a level of ~1%. The usefulness of the site is demonstrated by comparing observations from seven satellite instruments involving four space agencies, including OrbView-2–SeaWiFS, Terra–Aqua MODIS, Earth Observing 1 (EO-1) – Hyperion, Meteorological Operational satellite programme (MetOp) – Advanced Very High Resolution Radiometer (AVHRR), Envisat Medium Resolution Imaging Spectrometer (MERIS) – dvanced Along-Track Scanning Radiometer (AATSR), and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Dome C is a promising candidate site for climate quality calibration of satellite radiometers towards more consistent satellite measurements, as part

  6. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  7. Survival probability and energy modification of hydrogen Energetic Neutral Atoms on their way from the termination shock to Earth orbit

    OpenAIRE

    Bzowski, M.

    2008-01-01

    Context: With the forthcoming launch of a NASA SMEX mission IBEX devoted to imaging of heliospheric interface by in-situ detection of Energetic Neutral Atoms (ENA) an important issue becomes recognizing of transport of these atoms from the termination shock of the solar wind to Earth orbit. Aims: Investigate modifications of energy and of survival probability of the H ENA detectable by IBEX (0.01 -- 6 keV) between the termination shock and Earth orbit taking into account the influence of the ...

  8. A comparative study of spherical and flat-Earth geopotential modeling at satellite elevations

    Science.gov (United States)

    Parrott, M. H.; Hinze, W. J.; Braile, L. W.; Vonfrese, R. R. B.

    1985-01-01

    Flat-Earth modeling is a desirable alternative to the complex spherical-Earth modeling process. These methods were compared using 2 1/2 dimensional flat-earth and spherical modeling to compute gravity and scalar magnetic anomalies along profiles perpendicular to the strike of variably dimensioned rectangular prisms at altitudes of 150, 300, and 450 km. Comparison was achieved with percent error computations (spherical-flat/spherical) at critical anomaly points. At the peak gravity anomaly value, errors are less than + or - 5% for all prisms. At 1/2 and 1/10 of the peak, errors are generally less than 10% and 40% respectively, increasing to these values with longer and wider prisms at higher altitudes. For magnetics, the errors at critical anomaly points are less than -10% for all prisms, attaining these magnitudes with longer and wider prisms at higher altitudes. In general, in both gravity and magnetic modeling, errors increase greatly for prisms wider than 500 km, although gravity modeling is more sensitive than magnetic modeling to spherical-Earth effects. Preliminary modeling of both satellite gravity and magnetic anomalies using flat-Earth assumptions is justified considering the errors caused by uncertainties in isolating anomalies.

  9. Determination of global Earth outgoing radiation at high temporal resolution using a theoretical constellation of satellites

    Science.gov (United States)

    Gristey, Jake J.; Chiu, J. Christine; Gurney, Robert J.; Han, Shin-Chan; Morcrette, Cyril J.

    2017-01-01

    New, viable, and sustainable observation strategies from a constellation of satellites have attracted great attention across many scientific communities. Yet the potential for monitoring global Earth outgoing radiation using such a strategy has not been explored. To evaluate the potential of such a constellation concept and to investigate the configuration requirement for measuring radiation at a time resolution sufficient to resolve the diurnal cycle for weather and climate studies, we have developed a new recovery method and conducted a series of simulation experiments. Using idealized wide field-of-view broadband radiometers as an example, we find that a baseline constellation of 36 satellites can monitor global Earth outgoing radiation reliably to a spatial resolution of 1000 km at an hourly time scale. The error in recovered daily global mean irradiance is 0.16 W m-2 and -0.13 W m-2, and the estimated uncertainty in recovered hourly global mean irradiance from this day is 0.45 W m-2 and 0.15 W m-2, in the shortwave and longwave spectral regions, respectively. Sensitivity tests show that addressing instrument-related issues that lead to systematic measurement error remains of central importance to achieving similar accuracies in reality. The presented error statistics therefore likely represent the lower bounds of what could currently be achieved with the constellation approach, but this study demonstrates the promise of an unprecedented sampling capability for better observing the Earth's radiation budget.

  10. MONITORING OF ENERGETIC PARTICLE ENVIRONMENT INSIDE THE CHINA-BRAZIL EARTH RESOURCE SATELLITE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    On 14 October 1999, the Chinese-Brazil earth resource satellite (CBERS-1) was launched in China. On board of the satellite there was an instrument designed at Peking University to detect the energetic particle radiation inside the satellite so the radiation fluxes of energetic particles in the cabin can be monitored continuously. Inside a satellite cabin, radiation environment consists of ether penetrated energetic particles or secondary radiation from satellite materials due to the interactions with primary cosmic rays.Purpose of the detectors are twofold, to monitor the particle radiation in the cabin and also to study the space radiation environment The data can be used to study the radiation environment and their effects on the electronics inside the satelhte cabin. On the other hand, the data are useful in study of geo-space energetic particle events such as solar proton events, particle precipitation and variations of the radiation belt since there should be some correlation between the radiation situation inside and outside the satellite.The instrument consists of two semi-conductor detectors for protons and electrons respectively. Each detector has two channels of energy ranges. They are 0.5-2MeV and ≥2MeV for electrons and 5-30MeV and 30-60MeV for protons. Counting rate for all channels are up to 104/(cm2@s)and power consumption is about 2.5 W. There are also the additional functions of CMOS TID (total integrated dose) effect and direct SEU monitoring. The data of CBMC was first sent back on Oct. 17 1999 and it's almost three years from then on. The detector has been working normally and the quality of data is good.The preliminary results of data analysis of CBMC not only reveal the effects of polar particle precipitation and radiation belt on radiation environment inside a satellite, but also show some important features of the geo-space energetic particle radiation.As one of the most important parameters of space weather, the energetic charged

  11. Experimental evaluation of self-calibrating cavity radiometers for use in earth flux radiation balance measurements from satellites

    Science.gov (United States)

    Hickey, J. R.; Karoli, A. R.; Alton, B. M.

    1982-01-01

    A method for evaluating out-of-field response of wide-field, earth-viewing satellite radiometers is described. The equipment which simulates the earth and space consists of a central blackbody surrounded by a cooled ring. The radiometric and orbital considerations are discussed. Some test results for prototype ERBE cavity sensors are included. This presentation is restricted to longwave radiative transfer

  12. Feasibility Analysis on the Utilization of the Iridium Satellite Communications Network for Resident Space Objects in Low Earth Orbit

    Science.gov (United States)

    2013-03-21

    equatorial speed. Ideally, the GEO satellite remains directly overhead in the absence of perturbing forces. Of course , perturbing forces exist and cause a...respectively. Assuming a mean Earth radius of 6371 km, the Earth- central angles and can be found from trigonometry using the footprint

  13. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    Science.gov (United States)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  14. Near-Earth asteroid satellite spins under spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, Shantanu P.; Margot, Jean-Luc [Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095 (United States)

    2015-02-01

    We develop a fourth-order numerical integrator to simulate the coupled spin and orbital motions of two rigid bodies having arbitrary mass distributions under the influence of their mutual gravitational potential. We simulate the dynamics of components in well-characterized binary and triple near-Earth asteroid systems and use surface of section plots to map the possible spin configurations of the satellites. For asynchronous satellites, the analysis reveals large regions of phase space where the spin state of the satellite is chaotic. For synchronous satellites, we show that libration amplitudes can reach detectable values even for moderately elongated shapes. The presence of chaotic regions in the phase space has important consequences for the evolution of binary asteroids. It may substantially increase spin synchronization timescales, explain the observed fraction of asychronous binaries, delay BYORP-type evolution, and extend the lifetime of binaries. The variations in spin rate due to large librations also affect the analysis and interpretation of light curve and radar observations.

  15. A Model of the Earth's Magnetic Field From Two Year of Swarm Satellite Constellation Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Finlay, Chris; Tøffner-Clausen, Lars;

    More than two year of data from ESA's Swarm constellation mission are used to derive a model of the Earth’s magnetic field and its time variation (secular variation). The model describes contributions from the core and lithosphere as well as large-scale contributions from the magnetosphere (and its...... Earth-induced counterpart). We use data from geomagnetic quiet times and co-estimate the Euler angles describing the rotation between the vector magnetometer instrument frame and the North-East-Center (NEC) frame. In addition to the magnetic field observations provided by each of the three Swarm...... satellites and alongtrack first differences we include the East-west magnetic gradient information provided by the lower Swarm satellite pair, thereby explicitly taking advantage of the constellation aspect of Swarm. We assess the spatial and temporal model resolution that can be obtained from two years...

  16. Improving the Transition of Earth Satellite Observations from Research to Operations

    Science.gov (United States)

    Goodman, Steven J.; Lapenta, William M.; Jedlovec, Gary J.

    2004-01-01

    There are significant gaps between the observations, models, and decision support tools that make use of new data. These challenges include: 1) Decreasing the time to incorporate new satellite data into operational forecast assimilation systems, 2) Blending in-situ and satellite observing systems to produce the most accurate and comprehensive data products and assessments, 3) Accelerating the transition from research to applications through national test beds, field campaigns, and pilot demonstrations, and 4) Developing the partnerships and organizational structures to effectively transition new technology into operations. At the Short-term Prediction Research and Transition (SPORT) Center in Huntsville, Alabama, a NASA-NOAA-University collaboration has been developed to accelerate the infusion of NASA Earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The SPoRT Center research focus is to improve forecasts through new observation capability and the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues such as convective initiation and 24-hr quantitative precipitation forecasting. The near real-time availability of high-resolution experimental products of the atmosphere, land, and ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Infrared Spectroradiometer (AIRS), and lightning mapping systems provide an opportunity for science and algorithm risk reduction, and for application assessment prior to planned observations from the next generation of operational low Earth orbiting and geostationary Earth orbiting satellites. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future. The SPoRT Web page is at (http://www.ghcc.msfc.nasa.gov/sport).

  17. A vector method for synthesis of orbits and the structure of satellite constellations for multiswath periodic coverage of the Earth

    Science.gov (United States)

    Saulskiy, V. K.

    2016-07-01

    Single satellites and multisatellite constellations for the periodic coverage of the Earth are considered. The main feature is the use of several cameras with different swath widths. A vector method is proposed which makes it possible to find orbits minimizing the periodicities of coverage of a given area of Earth uniformly for all swaths. Their number is not limited, but the relative dimensions should satisfy the Fibonacci series or some new numerical sequences. The results apply to constellations of any number of satellites. Formulas were derived for calculating their structure, i.e., relative position in the constellation. Examples of orbits and the structure of constellations for the Earth's multiswath coverage are presented.

  18. The earth radiation budget satellite system of the early 1980's

    Science.gov (United States)

    Cooper, J. E.; Woerner, C. V.

    1978-01-01

    The overall program objective of the Earth Radiation Budget Satellite System is to gather the required radiation budget data and apply these data for a better understanding and prediction of climate. The paper describes the planned system, including the instruments and the associated sampling strategies and data analysis methods. Examination of mission implications reveals the need for a multisensor, multisatellite system consisting of high- and mid-inclination orbits. Each spacecraft will carry wide and medium field-of-view sensors, a sensor for measuring the solar constant, and a narrow field-of-view cross-track scanner.

  19. Eigensensitivity in integrated design. [of earth-pointing satellite's control system

    Science.gov (United States)

    Kenny, Sean P.; Hou, Gene J.; Belvin, W. K.

    1990-01-01

    An application of eigensensitivity analysis to the control-structure integrated design process is presented with an emphasis placed on computational efficiency improvement of the overall design optimization process. The computational efficiency of eigenvalue/vector sensitivity analysis is demonstrated using the Earth Pointing Satellite in the context of a control-structure integrated design program. Results for a 2 percent design variable perturbation with and without the effects of the actuator mass show a 42 and 52 percent reduction in CPU time, respectively.

  20. Low-Thrust Transfer Design of Low-Observable Geostationary Earth Orbit Satellite

    Directory of Open Access Journals (Sweden)

    Bing Hua

    2015-01-01

    Full Text Available With radar and surface-to-air missiles posing an increasing threat to on-orbit spacecraft, low-observable satellites play an important role in low-thrust transfers. This paper presents the design for a low-thrust geostationary earth orbit (GEO transfer control strategy which takes into consideration the low-observable constraint and discusses Earth shadow and perturbation. A control parameter optimization addresses the orbit transfer problem, and five thrust modes are used. Simulation results show that the method outlined in this paper is simple and feasible and results in reduced transfer time with a small amount of calculation. The method therefore offers a useful reference for low-thrust GEO transfer design.

  1. Sentinel Convoy: Synergetic Earth Observation with Satellites Flying in Formation with European Operational Missions

    Science.gov (United States)

    Regan, Amanda; Silvestrin, Pierluigi; Fernandez, Diego

    2016-08-01

    The successful launch of Sentinel-1A, Sentinel-1B, Sentinel-2A and Sentinel-3A signify the beginning of the dedicated space segment for the Copernicus Programme, which is the result of the partnership between the European Commission (EC) and the European Space Agency (ESA). These Sentinels are the first of a long-term operational series of Earth Observation (EO) satellites to be launched by Europe that will complement the already well-established series of meteorological missions.For the first time, these missions will provide a continuous and long term European capability for systematic observations of the Earth surface, its oceans and atmosphere to unprecedented accuracies, resolutions, and temporal coverage. If additional cost- effective missions could be flown together with these operational missions (including operational meteorological satellite series such as MetOp (Second Generation - SG) then the possibilities for meeting new Earth science and application objectives could be far- reaching e.g. fulfilling observational gaps, synergistic measurements of Earth system processes, etc. To explore this potential, the ESA initiated three exploratory paper studies (known as the EO-Convoy studies). The aim of these studies is two fold: Firstly, to identify scientific and operational objectives and needs that would benefit from additional in-orbit support. Secondly, to identify and develop a number of cost- effective mission concepts that would meet these objectives and needs. Each EO Convoy study is dedicated to a specific theme, namely: Study 1 - Ocean and Ice Applications, Study 2 - Land Applications and Study 3 - Atmospheric Applications.This paper will present the results of the EO-Convoy studies including an overview of the user needs and derived convoy concept descriptions. This paper shall focus on the resulting science benefits. Example convoy concepts to be presented include a passive C-band SAR flying with Sentinel-1 and possible free flying thermal

  2. Satellites Seek Gravity Signals for Remote Sensing the Seismotectonic Stresses in Earth

    Science.gov (United States)

    Liu, H.; Chen, J.; Li, J.

    2003-12-01

    The ability of the mantle to withstand stress-difference due to superimposed loads would appear to argue against flow in the Earth's mantle, but the ironic fact is that the satellite determined gravity variations are the evidence of density differences associated with mantle flow. The type of flow which is most likely to be involved concerns convection currents. For the past 4 decades, models of mantle convection have made remarkable advancements. Although a large body of evidence regarding the seafloor depth, heat flow, lithospheric strength and forces of slab-pull and swell-push has been obtained, the global seismotectonic stresses in the Earth are yet to be determined. The problem is that no one has been able to come up with a satisfactory scenario that must characterize the stresses in the Earth which cause earthquakes and create tectonic features. The stress generated by mantle convection under the crust are inferable from high degree (n>=13) spherical harmonics of the geopotential. Therefore, satellite gravity missions may be able to seek the Earth's gravity signals for investigating the seismotectonic effect of these subcrustal stresses. It is well known that subcrustal stress patterns for (137.0 from 1976 to 2000 is also given for reference. The intense seismicity in the subcrustal stress concentration belt (the ring of fire around the Pacific) is expected. A broad band of seismicity extends from southern Europe to southeast Europe to southeast Asia; this is associated with the subcrustal stress concentration belts in Europe, Africa, Arabian, and Asia. These results seem to provide significant insights into the origin of the earthquakes and formation of the world.

  3. Design of a search and rescue terminal based on the dual-mode satellite and CDMA network

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The current goal is to create a set of portable terminals with GPS/BD2 dual-mode satellite positioning, vital signs monitoring and wireless transmission functions. The terminal depends on an ARM processor to collect and combine data related to vital signs and GPS/BD2 location information, and sends the message to headquarters through the military CDMA network. It integrates multiple functions as a whole. The satellite positioning and wireless transmission capabilities are integrated into the motherboard, and the vital signs sensors used in the form of belts communicate with the board through Bluetooth. It can be adjusted according to the headquarters’ instructions. This kind of device is of great practical significance for operations during disaster relief, search and rescue of the wounded in wartime, non-war military operations and other special circumstances.

  4. Design of a search and rescue terminal based on the dual-mode satellite and CDMA network

    Science.gov (United States)

    Zhao, Junping; Zhang, Xuan; Zheng, Bing; Zhou, Yubin; Song, Hao; Song, Wei; Zhang, Meikui; Liu, Tongze; Zhou, Li

    2010-12-01

    The current goal is to create a set of portable terminals with GPS/BD2 dual-mode satellite positioning, vital signs monitoring and wireless transmission functions. The terminal depends on an ARM processor to collect and combine data related to vital signs and GPS/BD2 location information, and sends the message to headquarters through the military CDMA network. It integrates multiple functions as a whole. The satellite positioning and wireless transmission capabilities are integrated into the motherboard, and the vital signs sensors used in the form of belts communicate with the board through Bluetooth. It can be adjusted according to the headquarters' instructions. This kind of device is of great practical significance for operations during disaster relief, search and rescue of the wounded in wartime, non-war military operations and other special circumstances.

  5. Continuous tailward flow in the near-Earth magnetotail observed by TC-1 satellite

    Institute of Scientific and Technical Information of China (English)

    ZHANG LingQian; LIU ZhenXing; MA ZhiWei; PU ZuYin; WANG JiYe; SHEN Chao

    2007-01-01

    On July 11, 2004, a substorm process in the period of continuous tailward flow was observed by the joint exploration of the TC-1, IMAGE and ACE satellites. The substorm observed by the TC-1 in the near-Earth has three stages: the growth phase (from 11:43 to 12:19), the pre-expansion process (from 12:19 to 12:28) and the dipolarization process. The auroral brightening was at 12:26 recorded by the FUV instrument on IMAGE, and the dipolarization occurred two minutes later. During the 45 min period of the tailward flow, the magnetotail experienced the growth phase and the pre-expansion process. When the dipolarization process began, the TC-1 entered the plasma sheet and observed a high speed earthward flow. The field-aligned tailward flow is characterized by the low temperature and high density, which is consistent with the properties of the flow from the ionosphere detected in the near-Earth magnetotail by other satellites. The tailward flow is closely related with the southward interplanetary magnetic field (IMF), and may have an important effect on the substorm.

  6. Time-variable Earth's albedo model characteristics and applications to satellite sampling errors

    Science.gov (United States)

    Bartman, F. L.

    1981-01-01

    Characteristics of the time variable Earth albedo model are described. With the cloud cover multiplying factor adjusted to produce a global annual average albedo of 30.3, the global annual average cloud cover is 45.5 percent. Global annual average sunlit cloud cover is 48.5 percent; nighttime cloud cover is 42.7 percent. Month-to-month global average albedo is almost sinusoidal with maxima in June and December and minima in April and October. Month-to-month variation of sunlit cloud cover is similar, but not in all details. The diurnal variation of global albedo is greatest from November to March; the corresponding variation of sunlit cloud cover is greatest from May to October. Annual average zonal albedos and monthly average zonal albedos are in good agreement with satellite-measured values, with notable differences in the polar regions in some months and at 15 S. The albedo of some 10 deg by 10 deg. areas of the Earth versus zenith angle are described. Satellite albedo measurement sampling effects are described in local time and in Greenwich mean time.

  7. A model of Earth's magnetic field derived from 2 years of Swarm satellite constellation data

    Science.gov (United States)

    Olsen, Nils; Finlay, Christopher C.; Kotsiaros, Stavros; Tøffner-Clausen, Lars

    2016-07-01

    More than 2 years of magnetic field data taken by the three-satellite constellation mission Swarm are used to derive a model of Earth's magnetic field and its time variation. This model is called SIFMplus. In addition to the magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect of Swarm by including East-West magnetic intensity and vector field gradient information from the lower satellite pair. Along-track differences of the magnetic intensity as well as of the vector components provide further information concerning the North-South gradient. The SIFMplus model provides a description of the static lithospheric field that is very similar to models determined from CHAMP data, up to at least spherical harmonic degree n=75. Also the core field part of SIFMplus, with a quadratic time dependence for n ≤ 6 and a linear time dependence for n=7-15, demonstrates the possibility to determine high-quality field models from only 2 years of Swarm data, thanks to the unique constellation aspect of Swarm. To account for the magnetic signature caused by ionospheric electric currents at polar latitudes we co-estimate, together with the model of the core, lithospheric and large-scale magnetospheric fields, a magnetic potential that depends on quasi-dipole latitude and magnetic local time.

  8. Use of negotiated rulemaking in developing technical rules for low-Earth orbit mobile satellite systems

    Science.gov (United States)

    Taylor, Leslie A.

    Technical innovations have converged with the exploding market demand for mobile telecommunications to create the impetus for low-earth orbit (LEO) communications satellite systems. The so-called 'Little LEO's' propose use of VHF and UHF spectrum to provide position - location and data messaging services. The so-called 'Big LEO's' propose to utilize the RDSS bands to provide voice and data services. In the United States, several applications were filed with the U.S. Federal Communications Commission (FCC) to construct and operate these mobile satellite systems. To enable the prompt introduction of such new technology services, the FCC is using innovative approaches to process the applications. Traditionally, when the FCC is faced with 'mutually exclusive' applications, e.g. a grant of one would preclude a grant of the others, it uses selection mechanisms such as comparative hearings or lotteries. In the case of the LEO systems, the FCC has sought to avoid these time-consuming approaches by using negotiated rulemakings. The FCC's objective is to enable the multiple applicants and other interested parties to agree on technical and service rules which will enable the grant of all qualified applications. With regard to the VHF/UHF systems, the Advisory Committee submitted a consensus report to the FCC. The process for the systems operating in the bands above 1 GHz involved more parties and more issues but still provided the FCC useful technical information to guide the adoption of rules for the new mobile satellite service.

  9. KAGLVis - On-line 3D Visualisation of Earth-observing-satellite Data

    Science.gov (United States)

    Szuba, Marek; Ameri, Parinaz; Grabowski, Udo; Maatouki, Ahmad; Meyer, Jörg

    2015-04-01

    One of the goals of the Large-Scale Data Management and Analysis project is to provide a high-performance framework facilitating management of data acquired by Earth-observing satellites such as Envisat. On the client-facing facet of this framework, we strive to provide visualisation and basic analysis tool which could be used by scientists with minimal to no knowledge of the underlying infrastructure. Our tool, KAGLVis, is a JavaScript client-server Web application which leverages modern Web technologies to provide three-dimensional visualisation of satellite observables on a wide range of client systems. It takes advantage of the WebGL API to employ locally available GPU power for 3D rendering; this approach has been demonstrated to perform well even on relatively weak hardware such as integrated graphics chipsets found in modern laptop computers and with some user-interface tuning could even be usable on embedded devices such as smartphones or tablets. Data is fetched from the database back-end using a ReST API and cached locally, both in memory and using HTML5 Web Storage, to minimise network use. Computations, calculation of cloud altitude from cloud-index measurements for instance, can depending on configuration be performed on either the client or the server side. Keywords: satellite data, Envisat, visualisation, 3D graphics, Web application, WebGL, MEAN stack.

  10. Fast segmentation of satellite images using SLIC, WebGL and Google Earth Engine

    Science.gov (United States)

    Donchyts, Gennadii; Baart, Fedor; Gorelick, Noel; Eisemann, Elmar; van de Giesen, Nick

    2017-04-01

    Google Earth Engine (GEE) is a parallel geospatial processing platform, which harmonizes access to petabytes of freely available satellite images. It provides a very rich API, allowing development of dedicated algorithms to extract useful geospatial information from these images. At the same time, modern GPUs provide thousands of computing cores, which are mostly not utilized in this context. In the last years, WebGL became a popular and well-supported API, allowing fast image processing directly in web browsers. In this work, we will evaluate the applicability of WebGL to enable fast segmentation of satellite images. A new implementation of a Simple Linear Iterative Clustering (SLIC) algorithm using GPU shaders will be presented. SLIC is a simple and efficient method to decompose an image in visually homogeneous regions. It adapts a k-means clustering approach to generate superpixels efficiently. While this approach will be hard to scale, due to a significant amount of data to be transferred to the client, it should significantly improve exploratory possibilities and simplify development of dedicated algorithms for geoscience applications. Our prototype implementation will be used to improve surface water detection of the reservoirs using multispectral satellite imagery.

  11. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization

    Science.gov (United States)

    Smith, W. Kolby; Reed, Sasha C.; Cleveland, Cory C.; Ballantyne, Ashley P; Anderegg, William R. L.; Wieder, William R.; Liu, Yi Y; Running, Steven W.

    2015-01-01

    Atmospheric mass balance analyses suggest that terrestrial carbon (C) storage is increasing, partially abating the atmospheric [CO2] growth rate, although the continued strength of this important ecosystem service remains uncertain. Some evidence suggests that these increases will persist owing to positive responses of vegetation growth (net primary productivity; NPP) to rising atmospheric [CO2] (that is, ‘CO2 fertilization’). Here, we present a new satellite-derived global terrestrial NPP data set, which shows a significant increase in NPP from 1982 to 2011. However, comparison against Earth system model (ESM) NPP estimates reveals a significant divergence, with satellite-derived increases (2.8 ± 1.50%) less than half of ESM-derived increases (7.6  ±  1.67%) over the 30-year period. By isolating the CO2 fertilization effect in each NPP time series and comparing it against a synthesis of available free-air CO2 enrichment data, we provide evidence that much of the discrepancy may be due to an over-sensitivity of ESMs to atmospheric [CO2], potentially reflecting an under-representation of climatic feedbacks and/or a lack of representation of nutrient constraints. Our understanding of CO2 fertilization effects on NPP needs rapid improvement to enable more accurate projections of future C cycle–climate feedbacks; we contend that better integration of modelling, satellite and experimental approaches offers a promising way forward.

  12. From Earth to Heaven: Using `Newton's Cannon' Thought Experiment for Teaching Satellite Physics

    Science.gov (United States)

    Velentzas, Athanasios; Halkia, Krystallia

    2013-10-01

    Thought Experiments are powerful tools in both scientific thinking and in the teaching of science. In this study, the historical Thought Experiment (TE) `Newton's Cannon' was used as a tool to teach concepts relating to the motion of satellites to students at upper secondary level. The research instruments were: (a) a teaching-interview designed and implemented according to the Teaching Experiment methodology and (b) an open-ended questionnaire administered to students 2 weeks after the teaching-interview. The sample consisted of forty students divided into eleven groups. The teaching and learning processes which occurred during the teaching-interview were recorded and analyzed. The findings of the present study show that the use of the TE helped students to mentally construct a physical system which has nothing to do with their everyday experience (i.e. they had to imagine themselves as observers in a context in which the whole Earth was visible) and to draw conclusions about phenomena within this system. Specifically, students managed (1) to conclude that if an object is appropriately launched, it may be placed in an orbit around the Earth and to support this conclusion by giving necessary arguments, and (2) to realize that the same laws of physics describe, on the one hand, the motion of the Moon around the Earth (and the motion of other celestial bodies as well) and, on the other hand, the motion of `terrestrial' objects (i.e. objects on the Earth, such as a tennis ball). The main difficulties students met were caused by their idea that there is no gravity in the vacuum (i.e. the area outside of the Earth's atmosphere) and also by their everyday experience, according to which it is impossible for a projectile to move continuously parallel to the ground.

  13. True Color Images of the Earth created with the Geostationary Satellite Instrument MSG SEVIRI

    Science.gov (United States)

    Reuter, Maximilian

    2013-04-01

    One of the most famous pictures ever taken was by the crew of Apollo 17 in 1972, showing our Earth from a distance of about 45000km. This picture was named 'Blue Marble' and it reminds us of the beauty and uniqueness of our home planet. With geostationary satellites, such views of the Earth are possible without the need to have a photographer in space. However, up to the present, the production of such Blue Marble type images from geostationary satellite data has been impaired by the lack of channels in the visible spectral region. A method for the generation of full disk MSG (METEOSAT Second Generation) SEVIRI (Scanning-Enhanced Visible and Infrared Imager) true colour composite images will be presented. The algorithm mainly uses the SEVIRI channels VIS006 (0.6μm), NIR008 (0.8μm) and NIR016 (1.6μm). The lack of information in the blue and green parts of the visible spectrum is compensated by using data from NASA's (National Aeronautics and Space Administration's) Blue Marble next generation (BMNG) project to fill a look-up table (LUT) transforming RGB (red/green/blue) false colour composite images of VIS006/NIR008/NIR016 into true colour images. Tabulated radiative transfer calculations of a pure Rayleigh atmosphere are used to add an impression of Rayleigh scattering towards the sunlit horizon. The resulting images satisfy naive expectations: clouds are white or transparent, vegetated surfaces are greenish, deserts are sandy-coloured, the ocean is dark blue to black and a narrow halo due to Rayleigh scattering is visible at the sunlit horizon. Therefore, such images are easily interpretable also for inexperienced users not familiar with the characteristics of typical MSG false colour composite images. The images can be used for scientific applications to illustrate specific meteorological conditions or for non-scientific purposes, for example, for raising awareness in the public of the Earth's worthiness of protection.

  14. Gravitational mechanism of active life of the Earth, planets and satellites

    Science.gov (United States)

    Barkin, Yury

    2010-05-01

    From positions of geodynamic model of the forced gravitational swing, wobble and displacements of shells of a planet are studied and fundamental problems of geodynamics, geology, geophysics, planetary sciences are solved etc.: 1) The mechanism of cyclic variations of activity of natural processes in various time scales. 2) The power of endogenous activity of planetary natural processes on planets and satellites. 3) The phenomenon of polar inversion of natural processes on planets and satellites. 4) Spasmodic and catastrophic changes of activity of natural processes. 5) The phenomenon of twisting of hemispheres (latitude zones or belts) of celestial bodies. 6) Formation of the pear-shaped form of celestial bodies and the mechanism of its change. 7) The ordered planetary structures of geological formations. 8) The phenomena of bipolarity of celestial bodies and antipodality of geology formations. Mechanism. The fundamental feature of a structure of celestial bodies is their shell structure. The most investigated is the internal structure of the Earth. For the Moon and wide set of other bodies of solar system models of an internal structure have been constructed on the basis of the data of observations obtained at studying of their gravitational fields as a result of realization of the appropriate space missions. The basic components for the majority of celestial bodies are the core, the mantle and the crust. To other shells we concern atmospheres (for example, at Venus, Mars, the Titan etc.) and oceanic shells (the Titan, the Earth, Enceladus etc.). Shells are the complex (composite) formations. Planets and satellites are not spherical celestial bodies. The centers of mass of shells of the given planet (or the satellite) and their appropriate principal axes of inertia do not coincide. Accordingly, all their shells are characterized by the certain dynamic oblatenesses. Differences of dynamical oblatenesses results in various forced influences of external celestial

  15. 78 FR 14920 - Earth Stations Aboard Aircraft Communicating With Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-08

    ... forwarding and receiving communications signals via a system of satellites or reselling satellite... specialized telecommunications services, such as satellite tracking, communications telemetry, and radar... of Subjects in 47 CFR Parts 2 and 25 Frequency allocations, Satellites. Federal Communications...

  16. Feasibility Analysis Of Free Space Earth To Satellite Optical Link In Tropical Region

    Directory of Open Access Journals (Sweden)

    Norhanis Aida M. Nor

    2012-01-01

    Full Text Available Free Space Optics (FSO becomes a great attention because of the chances in transmitting data up to 2.5Gbps. There are a lot of advantages offered by FSO such as easily deployment with saving time and cost and no electromagnetic interference. In spite of the advantages, FSO has an uncontrolled drawback which is highly sensitive to atmospheric phenomena because uses air as tranmission medium. Current studies and researches are only focusing on FSO terrestrial link with short path length and based on data from temperate region. Therefore, this paper is aiming to provide feasibility analysis of FSO link from earth to satellite especially Low Earth Orbit (LEO based on atmospheric data in tropical region. The analysis will include the losses from geometrical attenuation, absorption, scintillation, haze attenuation, and rain attenuation. ABSTRAK: Ruang Bebas Optik (Free Space Optics (FSO mendapat perhatian kerana kebolehannya memancarkan data pada kelajuan tinggi. Di sebalik kelebihannya, FSO amat sensitif terhadap fenomena atmosfera kerana ia menggunakan udara sebagai perantara transmisi. Penyelidikan dan kajian terkini hanya memfokus kepada jalinan darat FSO dengan kepanjangan jarak pendek dan bergantung kepada kawasan tenang.  Oleh itu, kertas ini menyasarkan untuk memberikan analisis kebolehlaksanaan  jalinan FSO dari bumi ke satelit terutamanya Orbit Rendah Bumi (Low Earth Orbit (LEO bergantung kepada data atmosfera di kawasan tropika. Analisa termasuklah kehilangannya akibat pengecilan geometri, penyerapan, kelipan, pelemahan jerebu dan pelemahan hujan.KEYWORDS:  feasibility; Free Space Optics; availability; atmospheric attenuation; beam divergence angle; elevation angle

  17. Mapping the mass distribution of Earth's mantle using satellite-derived gravity gradients

    Science.gov (United States)

    Panet, Isabelle; Pajot-Métivier, Gwendoline; Greff-Lefftz, Marianne; Métivier, Laurent; Diament, Michel; Mandea, Mioara

    2014-02-01

    The dynamics of Earth's mantle are not well known. Deciphering mantle flow patterns requires an understanding of the global distribution of mantle density. Seismic tomography has been used to derive mantle density distributions, but converting seismic velocities into densities is not straightforward. Here we show that data from the GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission can be used to probe our planet's deep mass structure. We construct global anomaly maps of the Earth's gravitational gradients at satellite altitude and use a sensitivity analysis to show that these gravitational gradients image the geometry of mantle mass down to mid-mantle depths. Our maps highlight north-south-elongated gravity gradient anomalies over Asia and America that follow a belt of ancient subduction boundaries, as well as gravity gradient anomalies over the central Pacific Ocean and south of Africa that coincide with the locations of deep mantle plumes. We interpret these anomalies as sinking tectonic plates and convective instabilities between 1,000 and 2,500km depth, consistent with seismic tomography results. Along the former Tethyan Margin, our data also identify an east-west-oriented mass anomaly likely in the upper mantle. We suggest that by combining gravity gradients with seismic and geodynamic data, an integrated dynamic model for Earth can be achieved.

  18. The Matsu Wheel: A Cloud-based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    CERN Document Server

    Patterson, Maria T; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert; Handy, Matthew; Ly, Vuong; Mandl, Dan; Pederson, Shane; Pivarski, Jim; Powell, Ray; Spring, Jonathan; Wells, Walt

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for the cloud-based processing of Earth satellite imagery. A particular focus is the development of applications for detecting fires and floods to help support natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStack, Hadoop, MapReduce, Storm and related technologies. We describe a framework for efficient analysis of large amounts of data called the Matsu "Wheel." The Matsu Wheel is currently used to process incoming hyperspectral satellite data produced daily by NASA's Earth Observing-1 (EO-1) satellite. The framework is designed to be able to support scanning queries using cloud computing applications, such as Hadoop and Accumulo. A scanning query processes all, or most of the data, in a database or data repository. We also descri...

  19. The Matsu Wheel: A Cloud-based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    OpenAIRE

    Patterson, Maria T.; Anderson, Nikolas; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert; Handy, Matthew; Ly, Vuong; Mandl, Dan; Pederson, Shane; Pivarski, Jim; Powell, Ray; Spring, Jonathan; Wells, Walt

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for the cloud-based processing of Earth satellite imagery. A particular focus is the development of applications for detecting fires and floods to help support natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStac...

  20. Four identical satellites investigating the Earth's turbulent relationship with the Sun

    Science.gov (United States)

    1996-05-01

    Once in space, the four satellites will manoeuvre to an eccentric polar trajectory along which they will fly in tetrahedral formation for the next two years. They will take highly precise and, for the first time, three- dimensional measurements of the extraordinarily dynamic phenomena that occur where the solar wind meets the near- Earth environment. They will gather an unprecedented volume of very high- quality information on the magnetic storms, electric currents and particle accelerations that take place in the space surrounding our planet, which give rise to all manner of events, such as the aurorae in the polar regions, power cuts, breakdowns in telecommunication systems, or satellite malfunctions, and perhaps even changes in climate. The Cluster mission will also gather a host of fundamental information on the ionised gases whose behaviour physicists are trying to reproduce under laboratory conditions with the ultimate aim of generating thermonuclear energy. A cosmic battlefield The Sun's flames are lapping at the Earth's doorstep. In its constant state of effervescence/evaporation, it emits into space a wind charged with ions, electrons and protons which reach Earth at speeds of 1.5 to 3 million kph. Fortunately, our planet is armed with a natural shield against this onslaught: the magnetosphere, a distant magnetic, ionised extension of our atmosphere which slows and deflects the bulk of the stream of particles emitted by the Sun. This shield does not provide complete protection, however. Under constant buffeting from the interplanetary wind, the "fluid" magnetic screen is buckled, distorted and occasionally torn, causing small holes. When this happens, intense electric currents, magnetic storms and particle accelerations immediately develop. The overall interaction between the solar wind and the magnetosphere is so violent that the energy transferred can be as much as 1013 watts - equivalent to worldwide power consumption - and the currents induced run to

  1. The Transiting Exoplanet Survey Satellite (TESS): Discovering New Earths and Super-Earths in the Solar Neighborhood

    Science.gov (United States)

    Ricker, George R.

    2015-12-01

    The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In its two-year prime survey mission, TESS will monitor more than 200,000 bright stars in the solar neighborhood for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances.TESS stars will typically be 30-100 times brighter than those surveyed by the Kepler satellite; thus, TESS planets will be far easier to characterize with follow-up observations. For the first time it will be possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars.An additional data product from the TESS mission will be full frame images (FFI) with a cadence of 30 minutes or less. These FFI will provide precise photometric information for every object within the 2300 square degree instantaneous field of view of the TESS cameras. These objects will include more than 1 million stars and bright galaxies observed during sessions of several weeks. In total, more than 30 million objects brighter than I=16 will be precisely photometered during the two-year prime mission. In principle, the lunar-resonant TESS orbit could provide opportunities for an extended mission lasting more than a decade, with data rates in excess of 100 Mbits/s.An extended survey by TESS of regions surrounding the North and South Ecliptic Poles will provide prime exoplanet targets for characterization with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future.TESS will issue data releases every 4 months, inviting immediate community-wide efforts to study the new planets, as well as commensal survey candidates from the FFI. A NASA Guest

  2. An Assessment of the Space Radiation Environment in a Near Equatorial Low Earth Orbit Based on Razaksat-1 Satellite

    CERN Document Server

    Suparta, Wayan

    2015-01-01

    The Malaysian satellite RazakSAT-1 was designed to operate in a near-equatorial orbit (NEqO) and low earth orbit (LEO). However, after one year of operation in 2010, communication to the satellite was lost. This study attempted to identify whether space radiation sources could have caused the communication loss by comparing RazakSAT-1 with two functional satellites. Data on galactic cosmic rays (GCR), trapped protons, trapped electrons, and solar energetic particles (SEPs) obtained from Space Environment Information System (SPENVIS) was analyzed.

  3. Feasibility of a Constellation of Miniature Satellites for Performing Measurements of the Magnetic Field of the Earth

    DEFF Research Database (Denmark)

    Thomsen, Michael; Merayo, José M.G.; Brauer, Peter

    2008-01-01

    This paper studies the requirements for a small constellation of satellites to perform measurements of the magnetic field of the Earth and a payload and boom design for such a mission is discussed. After studying communication, power and mass requirements it is found that it is feasible to develop...... a 10 x 10 x 30 cm(3) satellite with a mass of about 2.5 kg, which can fulfill such a mission. We also study the feasibility of controlling a constellation of such small satellites by means of air drag by extracting one or more flaps. It is found that it is indeed possible, but for best performance...

  4. FCJ-201 Visual Evidence from Above: Assessing the Value of Earth Observation Satellites for Supporting Human Rights

    Directory of Open Access Journals (Sweden)

    Tanya Notley

    2016-03-01

    Full Text Available Public access to data collected by remote sensing Earth Observation Satellites has, until recently, been very limited. Now, citizens and rights advocacy groups are increasingly utilising satellite-collected images to interrogate justice issues; to document, prevent and verify rights abuses; and to imagine and propose social change. Yet while other communication technologies have received substantial critical analysis regarding their value as tools of social justice, activism and resistance, satellites have received comparatively scant attention. This article examines the uses of satellite-collected images in human rights contexts including the opportunities, challenges and risks they pose. We conclude this examination by arguing that if satellites are to be used effectively to collect evidence from above by rights advocates, greater attention to and capacity for ensuring accountability from below is required.

  5. The precision-processing subsystem for the Earth Resources Technology Satellite.

    Science.gov (United States)

    Chapelle, W. E.; Bybee, J. E.; Bedross, G. M.

    1972-01-01

    Description of the precision processor, a subsystem in the image-processing system for the Earth Resources Technology Satellite (ERTS). This processor is a special-purpose image-measurement and printing system, designed to process user-selected bulk images to produce 1:1,000,000-scale film outputs and digital image data, presented in a Universal-Transverse-Mercator (UTM) projection. The system will remove geometric and radiometric errors introduced by the ERTS multispectral sensors and by the bulk-processor electron-beam recorder. The geometric transformations required for each input scene are determined by resection computations based on reseau measurements and image comparisons with a special ground-control base contained within the system; the images are then printed and digitized by electronic image-transfer techniques.

  6. Gravitomagnetism in Metric Theories Analysis of Earth Satellites Results, and its Coupling with Spin

    CERN Document Server

    Camacho, A

    2002-01-01

    Employing the PPN formalism the gravitomagnetic field in different metric theories is considered in the analysis of the LAGEOS results. It will be shown that there are several models that predict exactly the same effect that general relativity comprises. In other words, these Earth satellites results can be taken as experimental evidence that the orbital angular momentum of a body does indeed generate space--time geometry, notwithstanding they do not endow general relativity with an outstanding status among metric theories. Additionally the coupling spin--gravitomagnetic field is analyzed with the introduction of the Rabi transitions that this field produces on a quantum system with spin 1/2. Afterwards, a continuous measurement of the energy of this system is introduced, and the consequences upon the corresponding probabilities of the involved gravitomagnetic field will be obtained. Finally, it will be proved that these proposals allows us, not only to confront against future experiments the usual assumption...

  7. Insolation data for solar energy conversion derived from satellite measurements of earth radiance

    Science.gov (United States)

    Thekaekara, M. P.

    1976-01-01

    Detailed knowledge of the irradiance of the sun at ground locations is essential for the design and evaluation of solar energy conversion systems. The primary source of such data is the global network of weather stations. Such stations are often too far apart and for most locations the data available are only daily total irradiance or monthly averages. Solar energy conversion programs require insolation data with considerably higher geographical and temporal resolution. Meteorological satellites gather routinely extensive data on the energy reflected and scattered into space by the earth-atmosphere system. A program has been initiated to use such data for deriving ground insolation for energy conversion. Some of the preliminary results of this program will be discussed.

  8. Modelling the Earth's Main Magnetic Field by the spinning Astrid-2 satellite

    DEFF Research Database (Denmark)

    Merayo, Jose Maria Garcia; Jørgensen, Peter Siegbjørn; Risbo, T.;

    1999-01-01

    and therefore the mapping of the Earth's magnetic field may be possible. The spinning of the spacecraft about a certain axis makes the stabilisation in space possible. This fact and the well distributed data over the globe makes the magnetic data well suited for the estimation of the magnetic field model......The Swedish micro-satellite Astrid-2 was successfully launched into a near polar orbit last December 98. Despite the fact that its primary mission was the research of Auroral phenomena, the magnetic instrumentation has been designed to accomplish high resolution vector field magnetic measurements...... at the spacecraft altitude (circa 1000km). Several methods for field modelling are presented in this paper with the assumption that the direction of the spin axis is nearly constant. In any case the orientation of the magnetometer is to bedetermined simultaneously with the instrument calibration and main field...

  9. The spinning Astrid-2 satellite used for modeling the Earth's main magnetic field

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Jørgensen, P.S.; Risbo, T.;

    2002-01-01

    , and therefore mapping of the Earth's magnetic field was possible. The spacecraft spins about a highly stable axis in space. This fact and the globally distributed data make the magnetic measurements well suited for the estimate of a magnetic field model at the spacecraft altitude (about 1000 km). This paper......The Swedish micro-satellite Astrid-2 was successfully launched into a near polar orbit in December 1998. Despite the fact that the primary science mission was auroral research, the magnetic instrument was designed to accomplish high-resolution and high-precision vector field magnetic measurements...... describes the initial analysis of the Astrid-2 magnetic data. As a result of the study of a single day (February 7, 1999), magnetically fairly quiet, it was possible to in-flight adjust the calibration of the magnetometer and find a magnetic field model fitting the scalar component of the measurements...

  10. Microwave maps of the polar ice of the earth. [from Nimbus-5 satellite

    Science.gov (United States)

    Gloersen, P.; Wilheit, T. T.; Chang, T. C.; Nordberg, W.; Campbell, W. J.

    1973-01-01

    Synoptic views of the entire polar regions of earth were obtained free of the usual persistent cloud cover using a scanning microwave radiometer operating at a wavelength of 1.55 cm on board the Nimbus-5 satellite. Three different views at each pole are presented utilizing data obtained at approximately one-month intervals during the winter of 1972-1973. The major discoveries resulting from an analysis of these data are as follows: (1) Large discrepancies exist between the climatic norm ice cover depicted in various atlases and the actual extent of the canopies. (2) The distribution of multiyear ice in the north polar region is markedly different from that predicted by existing ice dynamics models. (3) Irregularities in the edge of the Antarctic sea ice pack occur that have neither been observed previously nor anticipated. (4) The brightness temperatures of the Greenland and Antarctica glaciers show interesting contours probably related to the ice and snow morphologic structure.

  11. Origin of Lα{sup x} satellite in the light rare earths on the basis of plasmon theory

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Manjula, E-mail: rainbow-mjain@yahoo.co.in [Physics Department, Madhav Science College, Ujjain – 456010 (India); Shrivastava, B. D., E-mail: rashmibasant@gmail.com [School of Studies in Physics, Vikram University, Ujjain – 456010 (India)

    2015-07-31

    The origin of most of the X-ray satellites can be explained on the basis of multiple ionization theory. However, there are several satellites which can be explained on the basis of plasmon theory. When a plasmon is excited during the X-ray emission process, one can get a low energy satellite because energy is used up in exciting the plasmon oscillations in the electron gas. A plasmon on decay can also transfer its energy to the transiting electron which subsequently fills the core vacancy giving rise to a high energy satellite. In our laboratory, a new high energy satellite Lα{sup x} has been observed in the Lα - emission spectra of the oxides of some light rare earths on the high energy side of the diagram line Lα{sub 1}. In the present paper, the origin of this high energy satellite has been explained using the theory of plasma oscillations in solids. The energy separation of the satellite from the emission line Lα{sub 1} has been calculated and then compared with the theoretical separation based on the plasmon theory. The agreement between the theoretical and experimental values is found to be good. Hence, the observed satellite can be designated as plasmon satellite.

  12. 40 Years Young: Social Media for the World's Longest-Running Earth-Observation Satellite Program

    Science.gov (United States)

    Riebeek, H.; Rocchio, L. E.; Taylor, M.; Owen, T.; Allen, J. E.; Keck, A.

    2012-12-01

    With social media becoming a communication juggernaut it is essential to harness the medium's power to foster better science communication. On July 23, 2012, the Landsat Earth-observing satellite program celebrated the 40th anniversary of the first Landsat launch. To more effectively communicate the impact and importance of Landsat's four-decade long data record a carefully planned social media event was designed to supplement the day's traditional media communications. The social media event, dubbed the "Landsat Social," was modeled on and supported by the NASA Social methodology. The Landsat Social was the first such event for NASA Earth science not associated with a launch. For the Landsat Social, 23 social media-savvy participants were selected to attend a joint NASA/U.S. Geological Survey Landsat anniversary press event at the Newseum in Washington, D.C. The participants subsequently toured the NASA Goddard Space Flight Facility in Greenbelt, Maryland where they had the opportunity to learn about the latest Landsat satellite; visit the Landsat mission control; download and work with Landsat data; and meet Landsat scientists and engineers. All Landsat Social participants had Twitter accounts and used the #Landsat and #NASASocial hashtags to unify their commentary throughout the day. A few key Landsat messages were communicated to the Landsat Social participants at the event's onset. Propagation of this messaging was witnessed for the duration of the Landsat Social; and a spike in online Landsat interest followed. Here, we examine the Landsat 40th anniversary social event, explain impacts made, and report lessons learned.; Landsat Social attendees are busy tweeting, texting, and blogging as Project Scientist Dr. Jim Irons talks about the Landsat Data Continuity Mission in front of the Hyperwall at NASA Goddard Space Flight Center. Photo courtesy Bill Hrybyk.

  13. ARMA Prediction of SBAS Ephemeris and Clock Corrections for Low Earth Orbiting Satellites

    Directory of Open Access Journals (Sweden)

    Jeongrae Kim

    2015-01-01

    Full Text Available For low earth orbit (LEO satellite GPS receivers, space-based augmentation system (SBAS ephemeris/clock corrections can be applied to improve positioning accuracy in real time. The SBAS correction is only available within its service area, and the prediction of the SBAS corrections during the outage period can extend the coverage area. Two time series forecasting models, autoregressive moving average (ARMA and autoregressive (AR, are proposed to predict the corrections outside the service area. A simulated GPS satellite visibility condition is applied to the WAAS correction data, and the prediction accuracy degradation, along with the time, is investigated. Prediction results using the SBAS rate of change information are compared, and the ARMA method yields a better accuracy than the rate method. The error reductions of the ephemeris and clock by the ARMA method over the rate method are 37.8% and 38.5%, respectively. The AR method shows a slightly better orbit accuracy than the rate method, but its clock accuracy is even worse than the rate method. If the SBAS correction is sufficiently accurate comparing with the required ephemeris accuracy of a real-time navigation filter, then the predicted SBAS correction may improve orbit determination accuracy.

  14. A pseudo-magnetic flux rope observed by the THEMIS satellites in the Earth's magnetotail

    Science.gov (United States)

    Sarafopoulos, D. V.

    2011-10-01

    We investigate an extraordinary event showing all the typical magnetic flux rope (MFR) signatures, although it is not really a MFR structure. It occurred on 1 March 2008 in the Earth's magnetotail and was observed by a major tail conjunction of Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites. THEMIS B and C being located inside the central plasma sheet and almost symmetrically above and below the neutral sheet observed the same tailward retreating MFR-like structure: they indeed detected strong but oppositely directed cross-tail magnetic field excursions: positive “By core” for TH-C and negative for TH-B; an apparent inconsistency. We finally categorize the case under study as a pseudo-MFR event and we doubt that the previously studied MFR-like structures were really rope structures. We suggest that the By excursions are dictated by Ampere's law; they are produced by filamentary field-aligned currents (FACs) created in front of the “akis structure”, as it is introduced by Sarafopoulos (2008, 2010): In a locally thinned plasma sheet, the akis potentially causes charge separation due to non-adiabatic motion and stochastic scattering of ions. In turn, the newly tailward escaped ions drive field-aligned ionospheric currents in order to neutralize this region. We extensively discuss an additional and extremely rare phenomenon of “irregular MFR” cited in the literature and observed by the Cluster satellites; filamentary FACs suffice to reproduce all the observed magnetic field signatures, too.

  15. A Topology Control Strategy with Reliability Assurance for Satellite Cluster Networks in Earth Observation

    Science.gov (United States)

    Chen, Qing; Zhang, Jinxiu; Hu, Ze

    2017-01-01

    This article investigates the dynamic topology control problem of satellite cluster networks (SCNs) in Earth observation (EO) missions by applying a novel metric of stability for inter-satellite links (ISLs). The properties of the periodicity and predictability of satellites’ relative position are involved in the link cost metric which is to give a selection criterion for choosing the most reliable data routing paths. Also, a cooperative work model with reliability is proposed for the situation of emergency EO missions. Based on the link cost metric and the proposed reliability model, a reliability assurance topology control algorithm and its corresponding dynamic topology control (RAT) strategy are established to maximize the stability of data transmission in the SCNs. The SCNs scenario is tested through some numeric simulations of the topology stability of average topology lifetime and average packet loss rate. Simulation results show that the proposed reliable strategy applied in SCNs significantly improves the data transmission performance and prolongs the average topology lifetime. PMID:28241474

  16. The Effects of Solar Maximum on the Earth's Satellite Population and Space Situational Awareness

    Science.gov (United States)

    Johnson, Nicholas L.

    2012-01-01

    The rapidly approaching maximum of Solar Cycle 24 will have wide-ranging effects not only on the number and distribution of resident space objects, but also on vital aspects of space situational awareness, including conjunction assessment processes. The best known consequence of high solar activity is an increase in the density of the thermosphere, which, in turn, increases drag on the vast majority of objects in low Earth orbit. The most prominent evidence of this is seen in a dramatic increase in space object reentries. Due to the massive amounts of new debris created by the fragmentations of Fengyun-1C, Cosmos 2251 and Iridium 33 during the recent period of Solar Minimum, this effect might reach epic levels. However, space surveillance systems are also affected, both directly and indirectly, historically leading to an increase in the number of lost satellites and in the routine accuracy of the calculation of their orbits. Thus, at a time when more objects are drifting through regions containing exceptionally high-value assets, such as the International Space Station and remote sensing satellites, their position uncertainties increase. In other words, as the possibility of damaging and catastrophic collisions increases, our ability to protect space systems is degraded. Potential countermeasures include adjustments to space surveillance techniques and the resetting of collision avoidance maneuver thresholds.

  17. Earth's gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

    Science.gov (United States)

    Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.

    2017-09-01

    GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

  18. Earth's gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

    Science.gov (United States)

    Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.

    2017-02-01

    GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

  19. Earth Radiation Imbalance from a Constellation of 66 Iridium Satellites: Climate Science Aspects

    Science.gov (United States)

    Wiscombe, W.; Chiu, CJ. Y.

    2012-01-01

    The "global warming hiatus" since the 1998 El Nino, highlighted by Meehl et al., and the resulting "missing energy" problem highlighted by Trenberth et al., has opened the door to a more fundamental view of climate change than mere surface air temperature. That new view is based on two variables which are strongly correlated: the rate of change of ocean heat content d(OHC)/dt; and Earth Radiation Imbalance (ERI) at the top of the atmosphere, whose guesstimated range is 0.4 to 0.9 Watts per square meters (this imbalance being mainly due to increasing CO2). The Argo float array is making better and better measurements of OHC. But existing satellite systems cannot measure ERI to even one significant digit. So, climate model predictions of ERI are used in place of real measurements of it, and the satellite data are tuned to the climate model predictions. Some oceanographers say "just depend on Argo for understanding the global warming hiatus and the missing energy", but we don't think this is a good idea because d(OHC)/dt and ERI have different time scales and are never perfectly correlated. We think the ERB community needs to step up to measuring ERI correctly, just as oceanographers have deployed Argo to measure OHC correctly. This talk will overview a proposed constellation of 66 Earth radiation budget instruments, hosted on Iridium satellites, that will actually be able to measure ERI to at least one significant digit, thus enabling a crucial test of climate models. This constellation will also be able to provide ERI at two-hourly time scales and 500-km spatial scales without extrapolations from uncalibrated narrowband geostationary instruments, using the highly successful methods of GRACE to obtain spatial resolution. This high time resolution would make ERI a synoptic variable like temperature, and allow studies of ERI's response to fast-evolving phenomena like dust storms and hurricanes and even brief excursions of Total Solar Irradiance. Time permitting, we

  20. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Measurement of Earth's dragging of inertial frames

    Energy Technology Data Exchange (ETDEWEB)

    Ciufolini, Ignazio [Universita del Salento, Dipartimento Ingegneria dell' Innovazione, Lecce (Italy); Sapienza Universita di Roma, Scuola di Ingegneria Aerospaziale, Rome (Italy); Paolozzi, Antonio; Paris, Claudio [Sapienza Universita di Roma, Scuola di Ingegneria Aerospaziale, Rome (Italy); Museo della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome (Italy); Pavlis, Erricos C. [University of Maryland, Joint Center for Earth Systems Technology (JCET), Baltimore County (United States); Koenig, Rolf [GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam (Germany); Ries, John [University of Texas at Austin, Center for Space Research, Austin (United States); Gurzadyan, Vahe; Khachatryan, Harutyun; Mirzoyan, Sergey [Alikhanian National Laboratory and Yerevan State University, Center for Cosmology and Astrophysics, Yerevan (Armenia); Matzner, Richard [University of Texas at Austin, Theory Center, Austin (United States); Penrose, Roger [University of Oxford, Mathematical Institute, Oxford (United Kingdom); Sindoni, Giampiero [Sapienza Universita di Roma, DIAEE, Rome (Italy)

    2016-03-15

    We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure μ = (0.994 ± 0.002) ± 0.05, where μ is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity. (orig.)

  1. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model: Measurement of Earth's dragging of inertial frames.

    Science.gov (United States)

    Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C; Koenig, Rolf; Ries, John; Gurzadyan, Vahe; Matzner, Richard; Penrose, Roger; Sindoni, Giampiero; Paris, Claudio; Khachatryan, Harutyun; Mirzoyan, Sergey

    2016-01-01

    We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure [Formula: see text], where [Formula: see text] is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity.

  2. Fostering the uptake of satellite Earth Observation data for landslide hazard understanding: the CEOS Landslide Pilot

    Science.gov (United States)

    Kirschbaum, Dalia; Malet, Jean-Philippe; Roessner, Sigrid

    2017-04-01

    Landslides occur around the world, on every continent, and play an important role in the evolution of landscapes. They also represent a serious hazard in many areas of the world. Despite their importance, it has been estimated that past landslide and landslide potential maps cover less than 1% of the slopes in these landmasses. Systematic information on the type, abundance, and distribution of existing landslides is lacking. Even in countries where landslide information is abundant (e.g. Italy), the vast majority of landslides caused by meteorological (intense or prolonged rainfall, rapid snowmelt) or geophysical (earthquake) triggers go undetected. This paucity of knowledge has consequences on the design of effective remedial and mitigation measures. Systematic use of Earth observation (EO) data and technologies can contribute effectively to detect, map, and monitor landslides, and landslide prone hillsides, in different physiographic and climatic regions. The CEOS (Committee on Earth Observation Satellites) Working Group on Disasters has recently launched a Landslide Pilot (period 2017-2019) with the aim to demonstrate the effective exploitation of satellite EO across the full cycle of landslide disaster risk management, including preparedness, response, and recovery at global, regional, and local scales, with a distinct multi-hazard focus on cascading impacts and risks. The Landslide Pilot is focusing efforts on three objectives: 1. Establish effective practices for merging different Earth Observation data (e.g. optical and radar) to better monitor and map landslide activity over time and space. 2. Demonstrate how landslide products, models, and services can support disaster risk management for multi-hazard and cascading landslide events. 3. Engage and partner with data brokers and end users to understand requirements and user expectations and get feedback through the activities described in objectives 1-2. The Landslide Pilot was endorsed in April 2016 and work

  3. CHAOS-a model of the Earth's magnetic field derived from CHAMP, Orsted, and SAC-C magnetic satellite data

    DEFF Research Database (Denmark)

    Olsen, Nils; Luhr, H.; Sabaka, T.J.;

    2006-01-01

    We have derived a model of the near-Earth magnetic field (up to spherical harmonic degree n= 50 for the static field, and up to n = 18 for the first time derivative) using more than 6.5 yr of high-precision geomagnetic measurements from the three satellites Orsted, CHAMP and SAC-C taken between...

  4. Feasibility of a Constellation of Miniature Satellites for Performing Measurements of the Magnetic Field of the Earth

    DEFF Research Database (Denmark)

    Thomsen, Michael; Merayo, José M.G.; Brauer, Peter;

    2008-01-01

    This paper studies the requirements for a small constellation of satellites to perform measurements of the magnetic field of the Earth and a payload and boom design for such a mission is discussed. After studying communication, power and mass requirements it is found that it is feasible to develop...

  5. Spectral signatures of the ionospheric Alfvén resonator to be observed by low-Earth orbit satellite

    Science.gov (United States)

    Surkov, V. V.; Pilipenko, V. A.

    2016-03-01

    Interference of an incident and reflected Alfvén pulses propagating inside the ionospheric Alfvén resonator (IAR) is studied on the basis of a simple one-dimensional model. Particular emphasis has been placed on the analysis of spectral features of ultralow frequency (˜1-15 Hz) electric perturbations recently observed by Communications/Navigation Outage Forecasting System satellite. This "fingerprint" multiband spectral structure was observed when satellite descended in the terminator vicinity. Among factors affecting spectral structure the satellite position and distance from the IAR boundaries are most significant. It is concluded that the observed spectrograms exhibit modulation with "period" depending on propagation delay time of reflected Alfvén pulses in such a way that this effect can mask a spectral resonance structure resulted from excitation of IAR eigenmodes. The proposed interference effect is capable to produce a spectral pattern resembling a fingerprint which is compatible with the satellite observations.

  6. Experiences in Applying Earth Observing Satellite Technology in SERVIR Regions with an Emphasis on Disasters: Successes, Lessons and Paths Forward

    Science.gov (United States)

    Anderson, Eric

    2017-01-01

    Earth observing satellites offer a unique perspective of our environment from the vantage point of space. Repeated measurements of the Earths subsystems such as the biosphere, atmosphere, lithosphere, hydrosphere, and of humans interactions with their environments, allow for a better understanding of Earth system processes, and they can provide input for decision making in areas of environmental management and disaster risk reduction. SERVIR is a joint initiative of the US National Aeronautics and Space Administration (NASA) and the US Agency for International Development (USAID) that began in 2005 and has been active in applying Earth observations for sustainable development in many regions around the world, recently the Lower Mekong and West Africa regions. This talk will highlight some successes achieved and lessons learned through SERVIR in Central America, Eastern Southern Africa, and the Hindu Kush-Himalaya region, focusing on disasters. We will also present opportunities for enhanced decision making with Earth observations and geospatial technologies in the Lower Mekong region.

  7. Tracking Low Earth Orbit Small Debris with GPS Satellites as Bistatic Radar

    Science.gov (United States)

    Mahmud, M.; Qaisar, S.; Benson, C.

    2016-09-01

    Space debris is a growing problem and collisions are potentially lethal to satellites. Trajectories for small objects are predicted based on infrequent measurements, and the scale and therefore cost of maneuver required to avoid collisions is a function of trajectory accuracy. Frequent and precise observations will improve trajectory accuracy. In this paper, we extend on aspects of the feasibility of tracking space debris in Low Earth Orbit using emissions from GNSS satellites as bistatic radar illuminators. The wavelengths of GNSS signals are of order 20 cm and our primary focus is to track debris smaller than this, thereby maintaining phase stability of the scattered signals, enabling very long coherent processing intervals. However, the signals scattered by debris will be very weak at a terrestrial receiver, requiring the computationally expensive integration of a large number of signals, over an extended duration and with a large phased array. Detection of such weak signals in the presence of relatively strong direct-arrival signals requires extremely high cross-correlation protection. We show that sufficient cross-correlation protection can be obtained due to the large and varying Doppler shift, and also illustrate a novel processing approach utilizing downshifting of the collected signal to audio frequency. This technique dramatically reduces the cost and complexity of updating debris trajectories. The processing cost of preserving an uncertainty volume of many hundreds of meters around the predicted debris track is very modest, and searching within that uncertainty volume is undertaken at audio sampling rates. Moreover, we explore techniques that further lower the already modest cost of the non-linear search within the preserved uncertainty volume. We conclude with an outline of a system using these techniques that could provide centimetre level tracking of large quantities of small orbital objects at a modest cost.

  8. A study of L-dependent Pc3 pulsations observed by low Earth orbiting CHAMP satellite

    Directory of Open Access Journals (Sweden)

    D. C. Ndiitwani

    2010-02-01

    Full Text Available Field line resonances (FLR driven by compressional waves are an important mechanism for the generation of ULF geomagnetic pulsations observed at all latitudes during local daytime. References to observations of toroidal standing Alfvén mode oscillations with clearly L-dependent frequencies from spacecraft in the outer magnetosphere for L>3 are limited in the literature. Such observations in the inner magnetosphere for L<3 have not yet been reported in the literature. This study offers two interesting case studies of observations of ULF waves by the low Earth orbiting CHAMP satellite. The magnetic field measurements from CHAMP, which are of unprecedented accuracy and resolution, are compared to Hermanus magnetometer data for times when CHAMP crosses the ground station L-shell, namely for 13 February 2002 and 18 February 2003. The data were analysed for Pc3 pulsation activity using the Maximum Entropy Spectral Analysis (MESA method to visualise FLRs in the vector magnetometer data. For the first time observations of Pc3 toroidal oscillations with clearly L-dependent frequencies for lower L-shell values (L<3 observed by an LEO satellite are reported. These observations show FLR frequencies increasing as a function of decreasing latitude down to L=1.6 and then decreasing as a result of the larger plasma density of the upper ionosphere. The L-dependent frequency oscillations were observed in the presence of a broadband compressional wave spectrum. Our observations thus confirm the well-known magnetohydrodynamic (MHD wave theoretical prediction of a compressional wave being the driver of the field line resonance.

  9. Space in environmental diplomacy: Exploring the role of earth observing satellites for monitoring international environmental agreements

    Science.gov (United States)

    Johnston, Shaida Sahami

    This research determines under what conditions, and for what types of environmental treaties, Earth observation (EO) is useful for monitoring international environmental agreements. The research extracts specific monitoring requirements from nine multilateral environmental agreements (MEAs) and explores how satellite EO data can be used to support them. The technical characteristics of the sensor systems and science data products associated with current and planned EO satellites were analyzed and mapped to the MEA requirements, providing a significant step toward linking the EO community with the international treaty community implementing these environmental agreements. The research results include a listing and analysis of the positive and negative factors that influence whether EO data are useful for monitoring and verifying MEAs, analysis of existing international EO institutions, and a set of key findings describing the conditions under which EO data are most useful to the treaties. The use of EO data in various treaty phases is also analyzed, drawing the conclusion that EO data are most useful for monitoring and treaty refinement and not very useful for compliance verification or enforcement. MEAs manage compliance using governance structures that offer expertise and resources to assist states that are reported to be in non-compliance, rather than enforce compliance with sanctions or other punishments. In addition, the temporal and spatial resolution of the current and planned fleet of satellites does not provide the required detail needed for MEA verification. Identifying specific treaty implementation deficiencies requires additional information that cannot be gathered from EO data; on-site economic, social, and environmental conditions are critical elements in assessing compliance verification. But for environmental monitoring and assessments, MEA effectiveness reviews, and national reporting required for each MEA, EO data are very useful. They provide

  10. Survival probability and energy modification of hydrogen Energetic Neutral Atoms on their way from the termination shock to Earth orbit

    CERN Document Server

    Bzowski, M

    2008-01-01

    Contect: With the forthcoming launch of a NASA SMEX mission IBEX devoted to imaging of heliospheric interface by in-situ detection of Energetic Neutral Atoms (ENA) an important issue becomes recognizing of transport of these atoms from the termination shock of the solar wind to Earth orbit. Aims: Investigate modifications of energy and of survival probability of the H ENA detectable by IBEX (0.01 -- 6 keV) between the termination shock and Earth orbit taking into account the influence of the variable and anisotropic solar wind and solar EUV radiation. Methods: Energy change of the atoms is calculated by numerical simulations of orbits of the H ENA atoms from ~100 AU from the Sun down to Earth orbit, taking into account solar gravity and Lyman-$\\alpha$ radiation pressure, which is variable in time and depends on radial velocity of the atom. To calculate survival probabilities of the atoms against onization, a detailed 3D and time-dependent model of H ENA ionization based on observations of the solar wind and E...

  11. Using NASA's Giovanni Web Portal to Access and Visualize Satellite-Based Earth Science Data in the Classroom

    Science.gov (United States)

    Lloyd, S. A.; Acker, J. G.; Prados, A. I.; Leptoukh, G. G.

    2008-12-01

    One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite- based remote sensing datasets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable dataset to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface. Giovanni provides a simple way to visualize, analyze and access vast amounts of satellite-based Earth science data. Giovanni's features and practical examples of its use will be demonstrated, with an emphasis on how satellite remote sensing can help students understand recent events in the atmosphere and biosphere. Giovanni is actually a series of sixteen similar web-based data interfaces, each of which covers a single satellite dataset (such as TRMM, TOMS, OMI, AIRS, MLS, HALOE, etc.) or a group of related datasets (such as MODIS and MISR for aerosols, SeaWIFS and MODIS for ocean color, and the suite of A-Train observations co-located along the CloudSat orbital path). Recently, ground-based datasets have been included in Giovanni, including the Northern Eurasian Earth Science Partnership Initiative (NEESPI), and EPA fine particulate matter (PM2.5) for air quality. Model data such as the Goddard GOCART model and MERRA meteorological reanalyses (in process) are being increasingly incorporated into Giovanni to facilitate model- data intercomparison. A full suite of data

  12. Simple Laser Communications Terminal for Downlink from Earth Orbit at Rates Exceeding 10 Gb/s

    Science.gov (United States)

    Kovalik, Joseph M.; Hemmati, Hamid; Biswas, Abhijit; Roberts, William T.

    2013-01-01

    A compact, low-cost laser communications transceiver was prototyped for downlinking data at 10 Gb/s from Earth-orbiting spacecraft. The design can be implemented using flight-grade parts. With emphasis on simplicity, compactness, and light weight of the flight transceiver, the reduced-complexity design and development approach involves: 1. A high-bandwidth coarse wavelength division multiplexed (CWDM) (4 2.5 or 10-Gb/s data-rate) downlink transmitter. To simplify the system, emphasis is on the downlink. Optical uplink data rate is modest (due to existing and adequate RF uplink capability). 2. Highly simplified and compact 5-cm diameter clear aperture optics assembly is configured to single transmit and receive aperture laser signals. About 2 W of 4-channel multiplexed (1,540 to 1,555 nm) optically amplified laser power is coupled to the optical assembly through a fiber optic cable. It contains a highly compact, precision-pointing capability two-axis gimbal assembly to coarse point the optics assembly. A fast steering mirror, built into the optical path of the optical assembly, is used to remove residual pointing disturbances from the gimbal. Acquisition, pointing, and tracking are assisted by a beacon laser transmitted from the ground and received by the optical assembly, which will allow transmission of a laser beam. 3. Shifting the link burden to the ground by relying on direct detection optical receivers retrofitted to 1-m-diameter ground telescopes. 4. Favored mass and volume reduction over power-consumption reduction. The two major variables that are available include laser transmit power at either end of the link, and telescope aperture diameter at each end of the link. Increased laser power is traded for smaller-aperture diameters. 5. Use of commercially available spacequalified or qualifiable components with traceability to flight qualification (i.e., a flight-qualified version is commercially available). An example is use of Telecordia-qualified fiber

  13. Larmor electric field observed at the Earth's magnetopause by Polar satellite

    Energy Technology Data Exchange (ETDEWEB)

    Koga, D., E-mail: dkaqua@kyudai.jp; Gonzalez, W. D.; Silveira, M. V. D. [National Institute for Space Research - INPE, São José dos Campos, São Paulo (Brazil); Mozer, F. S. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States); Cardoso, F. R. [School of Engineering - EEL, University of São Paulo, Lorena, São Paulo (Brazil)

    2014-10-15

    We present, for the first time, observational evidence of a kinetic electric field near the X-line associated with asymmetric reconnection at the Earth's dayside magnetopause using Polar observations. On March 29, 2003, Polar satellite detected an asymmetric collisionless reconnection event. This event shows a unipolar Hall electric field signature and a simple deviation from the guide field during the magnetopause crossing, with the absence of an ion plasma jet outflow indicating that the magnetopause crossing was near the X-line. As expected from particle-in-cell simulations by Malakit et al. (Phys. Rev. Lett. 111, 135001 (2013)), an earthward pointing normal electric field appears in the magnetospheric side of the ion diffusion region. The electric field satisfies two necessary conditions for the existence of the finite ion Larmor radius effect: (1) the ion Larmor radius (r{sub g2}) is larger than the distance between the stagnation point and the edge of the ion diffusion region in the strong magnetic field side (δ{sub S2}) and (2) the spatial extent of the kinetic electric field (δ{sub EL}) is of the order of the ion Larmor radius. Furthermore, it is shown that the peak value of the Larmor electric field is comparable to the predicted value. The observation of the Larmor electric field can be valuable in other analyses to show that the crossing occurred near the X-line.

  14. Formation Flying Satellite Control Around the L2 Sun-Earth Libration Point

    Science.gov (United States)

    Hamilton, Nicholas H.

    2001-12-01

    A growing interest in formation flying satellites demands development and analysis of control and estimation algorithms for station-keeping and formation maneuvering. This thesis discusses the development of a discrete linear-quadratic- regulator control algorithm for formations in the vicinity of the L2 sun-earth libration point. The development of an appropriate Kalman filter is included as well. Simulations are created for the analysis of the station-keeping and various formation maneuvers of the Stellar Imager mission. The simulations provide tracking error, estimation error, and control effort results. From the control effort, useful design parameters such as AV and propellant mass are determined. For formation maneuvering, the drone spacecraft track to within 4 meters of their desired position and within 1.3 millimeters per second of their desired zero velocity. The filter, with few exceptions, keeps the estimation errors within their three-sigma values. Without noise, the controller performs extremely well, with the drones tracking to within several micrometers. Bach drone uses around 1 to 2 grams of propellant per maneuver, depending on the circumstances.

  15. Low Earth orbit satellite-to-ground optical scintillation: comparison of experimental observations and theoretical predictions.

    Science.gov (United States)

    Yura, Harold T; Kozlowski, David A

    2011-07-01

    Scintillation measurements of a 1064 nm laser at a 5 kHz sampling rate were made by an optical ground station at the European Space Agency observatory in Tenerife, Spain while tracking a low Earth orbit satellite during the spring and summer of 2010. The scintillation index (SI), the variance of irradiance normalized to the square of the mean, and power spectra measurements were compared to theoretical predictions based on the Kolmogorov spectrum, the Maui3 nighttime turbulence profile, weak scintillation finite-beam wave theory, included receiver, and source aperture averaging with no free-fitting parameters. Good agreement was obtained, not only for the magnitude of the observed fluctuations, but also for the corresponding elevation angle dependence and shape of the power spectra. Little variation was seen for the SI between daytime and nighttime links. For all elevation angles, ascending and descending, the observed scintillation over extensive regions of the atmosphere is consistent with log-normal statistics. Additionally, it appears from the results presented here that the nighttime turbulence profile for the atmosphere above the observatory in Tenerife is similar to that above Haleakala in Maui, Hawaii.

  16. A Test of General Relativity Using the LARES and LAGEOS Satellites and a GRACE Earth's Gravity Model

    CERN Document Server

    Ciufolini, Ignazio; Pavlis, Erricos C; Koenig, Rolf; Ries, John; Gurzadyan, Vahe; Matzner, Richard; Penrose, Roger; Sindoni, Giampiero; Paris, Claudio; Khachatryan, Harutyun; Mirzoyan, Sergey

    2016-01-01

    We present a test of General Relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS and LAGEOS 2 laser-ranged satellites together with the Earth's gravity field model GGM05S produced by the space geodesy mission GRACE. We measure $\\mu = (0.994 \\pm 0.002) \\pm 0.05$, where $\\mu$ is the Earth's dragging of inertial frames normalized to its General Relativity value, 0.002 is the 1-sigma formal error and 0.05 is the estimated systematic error mainly due to the uncertainties in the Earth's gravity model GGM05S. Our result is in agreement with the prediction of General Relativity.

  17. NPOESS Field Terminal Updates

    Science.gov (United States)

    Heckmann, G.; Route, G.

    2009-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD. The NPOESS satellites carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground data processing segment for NPOESS is the Interface Data Processing Segment (IDPS), developed by Raytheon Intelligence and Information Systems. The IDPS processes NPOESS satellite data to provide environmental data products (aka, Environmental Data Records or EDRs) to NOAA and DoD processing centers operated by the United States government. The IDPS will process EDRs beginning with the NPOESS Preparatory Project (NPP) and continuing through the lifetime of the NPOESS system. IDPS also provides the software and requirements for the Field Terminal Segment (FTS). NPOESS provides support to deployed field terminals by providing mission data in the Low Rate and High Rate downlinks (LRD/HRD), mission support data needed to generate EDRs and decryption keys needed to decrypt mission data during Selective data Encryption (SDE). Mission support data consists of globally relevant data, geographically constrained data, and two line element sets. NPOESS provides these mission support data via the Internet accessible Mission Support Data Server and HRD/LRD downlinks. This presentation will illustrate and describe the NPOESS capabilities in support of Field Terminal users. This discussion will include the mission support data available to Field Terminal users, content of the direct broadcast HRD and LRD

  18. Determination Gradients of the Earth's Magnetic Field from the Measurements of the Satellites and Inversion of the Kursk Magnetic Anomaly

    Science.gov (United States)

    Karoly, Kis; Taylor, Patrick T.; Geza, Wittmann

    2014-01-01

    We computed magnetic field gradients at satellite altitude, over Europe with emphasis on the Kursk Magnetic Anomaly (KMA). They were calculated using the CHAMP satellite total magnetic anomalies. Our computations were done to determine how the magnetic anomaly data from the new ESA/Swarm satellites could be utilized to determine the structure of the magnetization of the Earths crust, especially in the region of the KMA. Since the ten years of 2 CHAMP data could be used to simulate the Swarm data. An initial East magnetic anomaly gradient map of Europe was computed and subsequently the North, East and Vertical magnetic gradients for the KMA region were calculated. The vertical gradient of the KMA was determined using Hilbert transforms. Inversion of the total KMA was derived using Simplex and Simulated Annealing algorithms. Our resulting inversion depth model is a horizontal quadrangle with upper 300-329 km and lower 331-339 km boundaries.

  19. LEO卫星星下点轨迹保持策略优化研究%Optimal research on satellite track keeping strategy for low earth orbit satellite

    Institute of Scientific and Technical Information of China (English)

    崔鹏; 傅忠谦

    2013-01-01

    The most LEO(low earth orbit) satellites run in the sun-synchronous orbit.In order to keep their orbit character and achieve the work condition of satellite equipment,satellite track must be kept by orbit control.This paper analyses the local time of descending node is kept by inclination biased and effect for satellite track of inclination biased and decrease of major semi-axis and chronic change of inclination.It gives the keeping method and compute model of adding major semi-axis biased.The simulation results show that the method achieves the demand of track keeping,and the frequency of orbit control is decreased.There is important meaning in practice application.%在轨运行的LEO(low earth orbit)卫星绝大多数是太阳同步回归轨道,为了保持其轨道特性并满足星上载荷工作条件,必须进行星下点轨迹保持.分析了倾角偏置实现降交点地方时保持的同时对星下点轨迹漂移的影响,以及半长轴衰减和倾角长期变化引起的星下点轨迹漂移,给出了增大半长轴偏置量的星下点轨迹保持方法和计算模型.仿真结果显示,此方法不但满足轨迹保持要求,而且减小了轨道维持频度,在工程应用中有重要的意义.

  20. A service for the application of data quality information to NASA earth science satellite records

    Science.gov (United States)

    Armstrong, E. M.; Xing, Z.; Fry, C.; Khalsa, S. J. S.; Huang, T.; Chen, G.; Chin, T. M.; Alarcon, C.

    2016-12-01

    A recurring demand in working with satellite-based earth science data records is the need to apply data quality information. Such quality information is often contained within the data files as an array of "flags", but can also be represented by more complex quality descriptions such as combinations of bit flags, or even other ancillary variables that can be applied as thresholds to the geophysical variable of interest. For example, with Level 2 granules from the Group for High Resolution Sea Surface Temperature (GHRSST) project up to 6 independent variables could be used to screen the sea surface temperature measurements on a pixel-by-pixel basis. Quality screening of Level 3 data from the Soil Moisture Active Passive (SMAP) instrument can be become even more complex, involving 161 unique bit states or conditions a user can screen for. The application of quality information is often a laborious process for the user until they understand the implications of all the flags and bit conditions, and requires iterative approaches using custom software. The Virtual Quality Screening Service, a NASA ACCESS project, is addressing these issues and concerns. The project has developed an infrastructure to expose, apply, and extract quality screening information building off known and proven NASA components for data extraction and subset-by-value, data discovery, and exposure to the user of granule-based quality information. Further sharing of results through well-defined URLs and web service specifications has also been implemented. The presentation will focus on overall description of the technologies and informatics principals employed by the project. Examples of implementations of the end-to-end web service for quality screening with GHRSST and SMAP granules will be demonstrated.

  1. On the scale estimation using truncated swath measurements from low Earth orbiting satellites

    Science.gov (United States)

    Liu, Qi

    2013-05-01

    Truncation effect caused by limited swath width of low Earth orbiting (LEO) satellites results in inevitable underestimation of object scale when using pixel-counting methods. A new approach is proposed to obtain more accurate object scale through truncated measurements. The approach is based upon the mean object area fraction (MOAF), which depicts the relative population of object points in a varying-size domain and proves to be less sensitive to truncation effect. The MOAF-equivalent radius (MER) is deduced by comparing the actual MOAF with the standard one inferred from a circle object. Numerical simulations are implemented to demonstrate the MER characteristics. In contrast to area-equivalent radius (AER) that is merely determined by the absolute amount of object points, MER relies on the overall spatial structure of the object. For objects with irregular shapes, the MER value is generally smaller than AER in the absence of truncation. Nevertheless, taking the actual AER as true scale, MER has significantly reduced biases compared to AER once the object is truncated. This advantage can be reinforced when focusing on size statistics of analogous objects, because negative and positive biases associated with various truncation situations coexist in MER, against the uniform negative biases of AER. When applied to MODIS cloud mask data that are restricted in individual granules, MER has consistently larger values than AER for most truncated clouds. Compared with the explicitly problematic estimation from AER due to truncation, MER offers a notable elevation on the estimated cloud size and gets closer to the truth.

  2. Google Earth as a Vehicle to Integrating Multiple Layers of Environmental Satellite Data for Weather and Science Applications

    Science.gov (United States)

    Turk, F. J.; Miller, S. D.

    2007-12-01

    One of the main challenges facing current and future environmental satellite systems (e.g, the future National Polar Orbiting Environmental Satellite System (NPOESS)) is reaching and entraining the diverse user community via communication of how these systems address their particular needs. A necessary element to meeting this challenge is effective data visualization: facilitating the display, animation and layering of multiple satellite imaging and sounding sensors (providing complementary information) in a user-friendly and intuitive fashion. In light of the fact that these data are rapidly making their way into the classroom owing to efficient and timely data archival systems and dissemination over the Internet, there is a golden opportunity to leverage existing technology to introduce environmental science to wide spectrum of users. Google Earth's simplified interface and underlying markup language enables access to detailed global geographic information, and contains features which are both desirable and advantageous for geo-referencing and combining a wide range of environmental satellite data types. Since these satellite data are available with a variety of horizontal spatial resolutions (tens of km down to hundreds of meters), the imagery can be sub-setted (tiled) at a very small size. This allows low-bandwidth users to efficiently view and animate a sequence of imagery while zoomed out from the surface, whereas high-bandwidth users can efficiently zoom into the finest image resolution when viewing fine-scale phenomena such as fires, volcanic activity, as well as the details of meteorological phenomena such as hurricanes, rainfall, lightning, winds, etc. Dynamically updated network links allow for near real-time updates such that these data can be integrated with other Earth-hosted applications and exploited not only in the teaching environment, but also for operational users in the government and private industry sectors. To conceptualize how environmental

  3. Ku-band satellite data networks using very small aperture terminals. II - System design

    Science.gov (United States)

    Raychaudhuri, D.

    1987-12-01

    An overview is presented of system design for Ku-band star networks intended for interactive data applications. The component elements of such a network are discussed, and the critical items for performance, capacity, and cost are identified. A systematic design procedure combining delay-throughput characterization of the multiaccess inbound and TDM outbound channels with satellite link analysis is provided by which system components and their parameters are selected once the network response time and availability objectives are specified. The results are presented in the form of charts and tables which may serve as the basis for star network design over a range of typical traffic models, component parameters, and performance objectives. The methodology is potentially useful for evaluating alternative network architectures and traffic scenarios which may become important as VSAT technology evolves.

  4. VNIR, MWIR, and LWIR source assemblies for optical quality testing and spectro-radiometric calibration of earth observation satellites

    Science.gov (United States)

    Compain, Eric; Maquet, Philippe; Leblay, Pierrick; Gavaud, Eric; Marque, Julien; Glastre, Wilfried; Cortese, Maxime; Sugranes, Pierre; Gaillac, Stephanie; Potheau, Hervé

    2015-09-01

    This document presents several original OGSEs, Optical Ground Support Equipment, specifically designed and realized for the optical testing and calibration of earth observation satellites operating in a large spectral band from 0.4μm to 14.7μm. This work has been mainly supported by recent development dedicated to MTG, Meteosat Third Generation, the ESA next generation of meteorological satellites. The improved measurement capabilities of this new satellite generation has generated new challenging requirements for the associated optical test equipments. These improvements, based on design and component innovation will be illustrated for the MOTA, the GICS and the DEA OGSEs. MOTA and GICS are dedicated to the AIT, Assembly Integration and Test, of FCI, the Flexible Combined Imager of the imaging satellite MTG-I. DEA OGSE is dedicated to the AIT of the DEA, Detection Electronics Assembly, which is part of IRS instrument, an IR sounder part of MTG-S satellite. From an architectural point of view, the presented original designs enable to run many optical tests with a single system thanks to a limited configuration effort. Main measurement capabilities are optical quality testing (MTF based mainly on KEF measurement), Line of Sight (LoS) stability measurement, straylight analyses, VNIR-MWIR-LWIR focal plane array co-registration, and broadband large dynamic spectro-radiometric calibration. Depending on the AIT phase of the satellite, these source assemblies are operated at atmospheric pressure or under secondary vacuum. In operation, they are associated with an opto-mechanical projection system that enables to conjugate the image of the source assembly with the focal plane of the satellite instruments. These conjugation systems are usually based on high resolution, broadband collimator, and are optionally mounted on hexapod to address the entire field of instruments.

  5. General Purpose Satellites: a concept for affordable low earth orbit vehicles

    OpenAIRE

    Boyd, Austin W.; Fuhs, Allen E.

    1997-01-01

    A general purpose satellite has been designed which will be launched from the Space Shuttle using a NASA Get-Away-Special (GAS) canister. The design is based upon the use of a new extended GAS canister and a low profile launch mechanism. The satellite is cylindrical. measuring 19 inches in diameter and 35 inches long. The maximum vehicle weight is 250 pounds, of which 50 pounds is dedicated to user payloads. The remaining 200 pounds encompasses the satellite structure and support ...

  6. Description and primary results of Total Solar Irradiance Monitor, a solar-pointing instrument on an Earth observing satellite

    Science.gov (United States)

    Wang, Hongrui; Fang, Wei; Li, Huiduan

    2015-04-01

    Solar driving mechanism for Earth climate has been a controversial problem for centuries. Long-time data of solar activity is required by the investigations of the solar driving mechanism, such as Total Solar Irradiance (TSI) record. Three Total Solar Irradiance Monitors (TSIM) have been developed by Changchun Institute of Optics, Fine Mechanics and Physics for China Meteorological Administration to maintain continuities of TSI data series which lasted for nearly 4 decades.The newest TSIM has recorded TSI daily with accurate solar pointing on the FY-3C meteorological satellite since Oct 2013. TSIM/FY-3C has a pointing system for automatic solar tracking, onboard the satellite designed mainly for Earth observing. Most payloads of FY-3C are developed for observation of land, ocean and atmosphere. Consequently, the FY-3C satellite is a nadir-pointing spacecraft with its z axis to be pointed at the center of the Earth. Previous TSIMs onboard the FY-3A and FY-3B satellites had no pointing system, solar observations were only performed when the sun swept through field-of-view of the instruments. And TSI measurements are influenced inevitably by the solar pointing errors. Corrections of the solar pointing errors were complex. The problem is now removed by TSIM/FY-3C.TSIM/FY-3C follows the sun accurately by itself using its pointing system based on scheme of visual servo control. The pointing system is consisted of a radiometer package, two motors for solar tracking, a sun sensor and etc. TSIM/FY-3C has made daily observations of TSI for more than one year, with nearly zero solar pointing errors. Short time-scale variations in TSI detected by TSIM/FY-3C are nearly the same with VIRGO/SOHO and TIM/SORCE.Instrument details, primary results of solar pointing control, solar observations and etc will be given in the presentation.

  7. Periodic components of the atmospheric drag of Earth artificial satellites and their dependence on the state of space weather

    Science.gov (United States)

    Komendant, Volodymyr; Koshkin, Nikolay; Ryabov, Mikhail

    2016-07-01

    Based on the accumulated in the University Observatory extensive database of evolving orbital elements of low-orbit satellites, the behavior of the parameterwas studied, which characterizes their drag in the atmosphere of the Earth. The time spectra structure of drag of 25 artificial satellites is being studied by applying various methods of spectral analysis. Fifteen artificial satellites with circular orbits and ten artificial satellites with elliptical orbits are studied. The processed information includes ten years of observations that covers: declining and minimum phases of 23 ^{rd}(2005-2008) solar cycle; phases of rise and maximum of 24th(2009-2014) solar cycle. Time-frequency analysis of solar and geomagnetic activity indexes has been conducted. These indexes are: W - Wolf numbers; Sp - the total area of sunspot groups of the northern and southern hemispheres of the Sun, F10.7 - the solar radio flux at 10,7 cm; E - electron flux with energies more than 0,6 MeV i 2 MeV; planetary, high latitude and middle latitude geomagnetic index Ap. Periodograms of satellite's drag data, solar and geomagnetic activity indexes were constructed. In the atmospheric drag dynamics of satellites,the following periodswere detected: 6-year, 2.1-year, annual, semi-annual, 27-days, 13- and 11-days. Similar periods are identified in indexes of solar and geomagnetic activity. The ratios of the amplitudes of the spectral power of these periods vary in different phases of the solar cycle. The tables of the main periods in the drag of the artificial satellites and the main periods in the solar and geomagnetic activity indexes were obtained with the help of spectrograms. Their presence in certain phases of the solar cycle was researched. The calculation of multiple correlation' models of the orbital parameter characterizing the drag of satellites on various orbits, depending on the basic parameters of space weather has been done. These results have practical application for models

  8. The Matsu Wheel: A Cloud-Based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    Science.gov (United States)

    Patterson, Maria T.; Anderson, Nicholas; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert L.; Handy, Matthew; Ly, Vuong; Mandl, Daniel J.; Pederson, Shane; Pivarski, James; hide

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for cloud-based processing of Earth satellite imagery with practical applications to aid in natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStack, Hadoop, MapReduce and related technologies. We describe a framework for efficient analysis of large amounts of data called the Matsu "Wheel." The Matsu Wheel is currently used to process incoming hyperspectral satellite data produced daily by NASA's Earth Observing-1 (EO-1) satellite. The framework allows batches of analytics, scanning for new data, to be applied to data as it flows in. In the Matsu Wheel, the data only need to be accessed and preprocessed once, regardless of the number or types of analytics, which can easily be slotted into the existing framework. The Matsu Wheel system provides a significantly more efficient use of computational resources over alternative methods when the data are large, have high-volume throughput, may require heavy preprocessing, and are typically used for many types of analysis. We also describe our preliminary Wheel analytics, including an anomaly detector for rare spectral signatures or thermal anomalies in hyperspectral data and a land cover classifier that can be used for water and flood detection. Each of these analytics can generate visual reports accessible via the web for the public and interested decision makers. The result products of the analytics are also made accessible through an Open Geospatial Compliant (OGC)-compliant Web Map Service (WMS) for further distribution. The Matsu Wheel allows many shared data services to be performed together to efficiently use resources for processing hyperspectral satellite image data and other, e.g., large environmental datasets that may be analyzed for

  9. Characterization of an In-Situ Ground Terminal via a Geostationary Satellite

    Science.gov (United States)

    Piasecki, Marie; Welch, Bryan; Mueller, Carl

    2015-01-01

    In 2015, the Space Communications and Navigation (SCaN) Testbed project completed an S-Band ground station located at the NASA Glenn Research Center in Cleveland, Ohio. This S-Band ground station was developed to create a fully characterized and controllable dynamic link environment when testing novel communication techniques for Software Defined Radios and Cognitive Communication Systems. In order to provide a useful environment for potential experimenters, it was necessary to characterize various RF devices at both the component level in the laboratory and at the system level after integration. This paper will discuss some of the laboratory testing of the ground station components, with a particular focus emphasis on the near-field measurements of the antenna. It will then describe the methodology for characterizing the installed ground station at the system level via a Tracking and Data Relay Satellite (TDRS), with specific focus given to the characterization of the ground station antenna pattern, where the max TDRS transmit power limited the validity of the non-noise floor received power data to the antenna main lobe region. Finally, the paper compares the results of each test as well as provides lessons learned from this type of testing methodology.

  10. Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds

    Directory of Open Access Journals (Sweden)

    T. Heid

    2012-04-01

    Full Text Available By matching of repeat optical satellite images it is now possible to investigate glacier dynamics within large regions of the world and also between regions to improve knowledge about glacier dynamics in space and time. In this study we investigate whether the negative glacier mass balance seen over large parts of the world has caused the glaciers to change their speeds. The studied regions are Pamir, Caucasus, Penny Ice Cap, Alaska Range and Patagonia. In addition we derive speed changes for Karakoram, a region assumed to have positive mass balance and that contains many surge-type glaciers. We find that the mapped glaciers in the five regions with negative mass balance have over the last decades decreased their velocity at an average rate per decade of: 43 % in the Pamir, 8 % in the Caucasus, 25 % on Penny Ice Cap, 11 % in the Alaska Range and 20 % in Patagonia. Glaciers in Karakoram have generally increased their speeds, but surging glaciers and glaciers with flow instabilities are most prominent in this area. Therefore the calculated average speed change is not representative for this area.

  11. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    Directory of Open Access Journals (Sweden)

    S. Schweitzer

    2011-10-01

    Full Text Available LEO-LEO infrared-laser occultation (LIO is a new occultation technique between Low Earth Orbit (LEO satellites, which applies signals in the short wave infrared spectral range (SWIR within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We

  12. Conjunction Risks of Near-Earth Objects to Artificial Satellites: The Case of Asteroid 2015 VY105

    Science.gov (United States)

    Ryan, W.; Ryan, E.

    2016-09-01

    The close approach of near-Earth object 2015 VY105 on November 15, 2015 occurred less than 24 hours after discovery by the Catalina Sky Survey (located in Tucson, AZ). Based on the discovery metric information and follow up data from Magdalena Ridge Observatory (MRO) observations, it was clear that this asteroid would pass through the geostationary satellite belt. In particular, data indicated that although 2015 VY105 would come within approximately 200 km of the DirectTV 11 and 14 satellites, it would not impact either. The details of this analysis as well as characterization results acquired are presented. Further, examples of various other asteroids that have made close approaches within geostationary distances in the past (with both long and short lead times) are included for risk context.

  13. Fast and accurate prediction for aerodynamic forces and moments acting on satellites flying in Low-Earth Orbit

    Science.gov (United States)

    Jin, Xuhon; Huang, Fei; Hu, Pengju; Cheng, Xiaoli

    2016-11-01

    A fundamental prerequisite for satellites operating in a Low Earth Orbit (LEO) is the availability of fast and accurate prediction of non-gravitational aerodynamic forces, which is characterised by the free molecular flow regime. However, conventional computational methods like the analytical integral method and direct simulation Monte Carlo (DSMC) technique are found failing to deal with flow shadowing and multiple reflections or computationally expensive. This work develops a general computer program for the accurate calculation of aerodynamic forces in the free molecular flow regime using the test particle Monte Carlo (TPMC) method, and non-gravitational aerodynamic forces actiong on the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite is calculated for different freestream conditions and gas-surface interaction models by the computer program.

  14. Using SDO-EVE Satellite Data to Model for the First Time how Large Solar Flares Influence the Earths Ionosphere

    Science.gov (United States)

    Jensen, Joseph; Sojka, Jan; Schunk, Robert; David, Michael; Woods, Tom; Eparvier, Frank

    2012-10-01

    The earth's ionosphere is very important in our everyday life. During large solar flares the ionosphere expands to the point of disrupting communications from GPS, military, and commercial communications satellites, and even radio blackouts can occur. The EVE instrument on the SDO satellite has given unprecedented spectral resolution for the Extreme Ultraviolet(EUV) spectrum with a time cadence of 10 seconds. This has made it possible to analyze flare spectra as never before. Using the Time Dependent Ionospheric Model (TDIM) we have input this new spectral data for large solar flares and analyzed the effect on the ionosphere. We take as a test case the X1.6 flare on March 9, 2011. Even this minor X-class provides insight into how the ionospheric layers respond differently to solar flares.

  15. Techniques for computing regional radiant emittances of the earth-atmosphere system from observations by wide-angle satellite radiometers, phase 3

    Science.gov (United States)

    Pina, J. F.; House, F. B.

    1975-01-01

    Radiometers on earth orbiting satellites measure the exchange of radiant energy between the earth-atmosphere (E-A) system and space at observation points in space external to the E-A system. Observations by wideangle, spherical and flat radiometers are analyzed and interpreted with regard to the general problem of the earth energy budget (EEB) and to the problem of determining the energy budget of regions smaller than the field of view (FOV) of these radiometers.

  16. Exploring the possibility of following the movements of a bird from an artificial earth satellite

    Science.gov (United States)

    Mackay, R. S.

    1974-01-01

    The development of a harness to hold the transmitter is discussed along with satellite systems for monitoring the flight paths of the birds, and incorporating biological information into the tracking signal.

  17. A new model of Earth's radial conductivity structure derived from over 10 yr of satellite and observatory magnetic data

    DEFF Research Database (Denmark)

    Püthe, Christoph; Kuvshinov, Alexey; Khan, Amir;

    2015-01-01

    We present a newmodel of the radial (1-D) conductivity structure of Earth's mantle. This model is derived frommore than 10 yr of magnetic measurements from the satellites ørsted, CHAMP, SAC-C and the Swarm trio as well as the global network of geomagnetic observatories. After removal of core...... and crustal field as predicted by a recent field model, we fit the magnetic data with spherical harmonic coefficients describing ring current activity and associated induction effects and estimate global C-responses at periods between 1.5 and 150 d. The C-responses are corrected for 3-D effects due...

  18. Using NASA's Giovanni Web Portal to Access and Visualize Satellite-based Earth Science Data in the Classroom

    Science.gov (United States)

    Lloyd, Steven; Acker, James G.; Prados, Ana I.; Leptoukh, Gregory G.

    2008-01-01

    One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite-based remote sensing data sets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable data set to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface.

  19. An automated processing chains for surface temperature monitoring on Earth's most active volcanoes by optical data from multiple satellites

    Science.gov (United States)

    Silvestri, Malvina; Musacchio, Massimo; Fabrizia Buongiorno, Maria

    2017-04-01

    The Geohazards Exploitation Platform, or GEP is one of six Thematic Exploitation Platforms developed by ESA to serve data user communities. As a new element of the ground segment delivering satellite results to users, these cloud-based platforms provide an online environment to access information, processing tools, computing resources for community collaboration. The aim is to enable the easy extraction of valuable knowledge from vast quantities of satellite-sensed data now being produced by Europe's Copernicus programme and other Earth observation satellites. In this context, the estimation of surface temperature on active volcanoes around the world is considered. E2E processing chains have been developed for different satellite data (ASTER, Landsat8 and Sentinel 3 missions) using thermal infrared (TIR) channels by applying specific algorithms. These chains have been implemented on the GEP platform enabling the use of EO missions and the generation of added value product such as surface temperature map, from not skilled users. This solution will enhance the use of satellite data and improve the dissemination of the results saving valuable time (no manual browsing, downloading or processing is needed) and producing time series data that can be speedily extracted from a single co-registered pixel, to highlight gradual trends within a narrow area. Moreover, thanks to the high-resolution optical imagery of Sentinel 2 (MSI), the detection of lava maps during an eruption can be automatically obtained. The proposed lava detection method is based on a contextual algorithm applied to Sentinel-2 NIR (band 8 - 0.8 micron) and SWIR (band 12 - 2.25 micron) data. Examples derived by last eruptions on active volcanoes are showed.

  20. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    Directory of Open Access Journals (Sweden)

    S. Schweitzer

    2011-05-01

    Full Text Available LEO-LEO infrared-laser occultation (LIO is a new occultation technique between Low Earth Orbit (LEO satellites, which applies signals in the short wave infrared spectral range (SWIR within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO method, recently introduced by Kirchengast and Schweitzer (2011, that enables to retrieve thermodynamic profiles (pressure, temperature, humidity and accurate altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. For enabling trace species retrieval based on differential transmission, the LIO signals are spectrally located as pairs, one in the centre of a suitable absorption line of a target species (absorption signal and one close by but outside of any absorption lines (reference signal. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss the atmospheric influences on the transmission and differential transmission of LIO signals. Refraction effects, trace species absorption (by target species, and cross-sensitivity to foreign species, aerosol extinction and Rayleigh scattering are studied in detail. The influences of clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation are discussed as well. We show that the influence of defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle and by a design with close frequency spacing of absorption and reference signals within 0.5 %. The influences of Rayleigh scattering and thermal radiation on the received signal intensities are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions but this

  1. The evolution of Earth Observation satellites in Europe and its impact on the performance of emergency response services

    Science.gov (United States)

    Denis, Gil; de Boissezon, Hélène; Hosford, Steven; Pasco, Xavier; Montfort, Bruno; Ranera, Franck

    2016-10-01

    The paper reviews the evolution of Earth Observation systems in Europe and Worldwide and analyses the potential impact of their performance in support of emergency response services. Earth Observation satellites play already a significant role in supporting the action of first responders in case of major disasters. The main principle is the coordinated use of satellites in order to ensure a rapid response and the timely delivery of images and geospatial information of the area affected by the event. The first part of the paper reviews the main instruments and evaluates their current performance. The International Charter "Space and Major Disasters", signed in October 2000, was the first international initiative aimed at establishing a unified system for the acquisition of space data. The charter is a cooperation agreement between space agencies and operators of space systems. At regional level, a similar instrument exists in Asia: Sentinel-Asia. In the frame of the European programme Copernicus, the emergency management service was launched in 2009. Geo-information products derived from space imagery are delivered during all phases of the emergency management cycle, in either rush or non-rush mode, free of charge for the users. In both cases, the capacities were historically drawn from national missions, funded with public money and directly operated by the space agencies or by national operators.

  2. Quantum Cryptography for Secure Communications to Low-Earth Orbit Satellites

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.; Lamoreaux, S.K.; Morgan, G.L.; Peterson, C.G.; Twyeffort, E.; Simmons, C.M.; Nordholt, J.E.

    1999-06-03

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Quantum cryptography is an emerging technology in which two parties may simultaneously generate shared, secret cryptographic key material using the transmission of quantum states of light. The security of these transmissions is based on the inviolability of the laws of quantum mechanics. An adversary can neither successfully tap the quantum transmissions, nor evade detection. Key material is built up using the transmission of a single-photon per bit. We have developed an experimental quantum cryptography system based on the transmission of non-orthogonal single-photon polarization states to generate shared key material over line-of-sight optical links. Our results provide strong evidence that cryptographic key material could be generated on demand between a ground station and a satellite (or between two satellites), allowing a satellite to be securely re-keyed on in orbit.

  3. Method and associated apparatus for capturing, servicing, and de-orbiting earth satellites using robotics

    Science.gov (United States)

    Cepollina, Frank J. (Inventor); Burns, Richard D. (Inventor); Holz, Jill M. (Inventor); Corbo, James E. (Inventor); Jedhrich, Nicholas M. (Inventor)

    2009-01-01

    This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR; and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time, as well as the ability to intervene using manual override to teleoperate the robot.In one embodiment, a vehicle used for carrying out the method of this invention comprises an ejection module, which includes the robot, and a de-orbit module. Once servicing is completed by the robot, the ejection module separates from the de-orbit module, leaving the de-orbit module attached to the satellite for de-orbiting the same at a future time. Upon separation, the ejection module can either de-orbit itself or rendezvous with another satellite for servicing. The ability to de-orbit a spacecraft further allows the opportunity to direct the landing of the spent satellite in a safe location away from population centers, such as the ocean.

  4. Low-latitude Pi2 oscillations observed by polar Low Earth Orbiting satellite

    Science.gov (United States)

    Thomas, Neethal; Vichare, Geeta; Sinha, A. K.; Rawat, Rahul

    2015-09-01

    Low-latitude Pi2 pulsations in the topside ionosphere are investigated using vector magnetic field measurements from LEO satellite, CHAMP, and underneath ground station. Substorm-associated Pi2s are initially identified using high-resolution data from Indian station Shillong, during 2007-2009, and are further classified into three subgroups of Pi2 band (6-25 mHz), based on its frequency. During nighttime, coherent in-phase oscillations are observed in the compressional component at satellite and horizontal component at underneath ground station for all the Pi2 events, irrespective of the Pi2 frequency. We observe that the identification of daytime Pi2s at CHAMP (compressional component) depends on the frequency of Pi2 oscillation; i.e., 40%, 45%, and 100% of Pi2 events observed in dayside ground station with frequency between 6-10 mHz, 10-15 mHz, and 15-25 mHz were identified at satellite, respectively. At CHAMP during daytime, the presence of a dominant power in the lower frequencies of Pi2 band, which is unique to satellite, is consistently observed and can modify the Pi2 oscillations. Pi2s having frequency >15 mHz are less affected by these background frequencies, and a clear signature of daytime Pi2s at CHAMP is possible to observe, provided that contribution from non-Pi2 frequencies at satellite from the lower end of Pi2 band is eliminated. Daytime Pi2s identified in the topside ionosphere showed coherent but mostly opposite phase oscillations with underneath ground station, and satellite-to-ground amplitude ratio is, in general, found to be less than 1. Present results indicate that a combination of fast cavity-mode oscillations and an instantaneous transmission of Pi2 electric field from high- to low-latitude ionosphere is responsible for the observation of daytime Pi2s.

  5. An Assessment of Relativistic Effects for Low Earth Orbiters: The GRACE Satellites

    Science.gov (United States)

    2007-01-01

    IOP PUBLISHING METROLOGIA Metrologia 44 (2007) 484–490 doi:10.1088/0026-1394/44/6/007 An assessment of relativistic effects for low Earth orbiters...for the larger-eccentricity orbit is shown in figure 2(b). Metrologia , 44 (2007) 484–490 485 K M Larson et al Figure 1. Amplitude of the once/rev...486 Metrologia , 44 (2007) 484–490 Assessment of relativistic effects for low Earth orbiters combination was launched on TOPEX in 1992. Unfortunately

  6. Moscow State University near-Earth radiation monitoring satellite system: current status and development

    Science.gov (United States)

    Panasyuk, Mikhail

    2016-07-01

    Radiation measurements using instruments have been designed and manufacturing in the Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University and installed onboard different satellites,i.e. LEO -"Meteor", ISS, GPS - GLONASS, GEO - "Electro" are presented as a basis of radiation monitoring system for control of radiation condition with a goal for to decrease radiation risk of spacecraft's damage on different orbits. Development of this system including radiation measurements onboard "Lomonosov"(LEO) satellite will be presented as well together with future project of multispacecraft LEO system for radiation monitoring.

  7. Cyberinfrastructure Initiatives of the Committee on Earth Observation Satellites (CEOS) Working Group on Information Systems and Services (WGISS)

    Science.gov (United States)

    McDonald, K. R.; Faundeen, J. L.; Petiteville, I.

    2005-12-01

    The Committee on Earth Observation Satellites (CEOS) was established in 1984 in response to a recommendation from the Economic Summit of Industrialized Nations Working Group on Growth, Technology, and Employment's Panel of Experts on Satellite Remote Sensing. CEOS participants are Members, who are national or international governmental organizations who operate civil spaceborne Earth observation satellites, and Associates who are governmental organizations with civil space programs in development or international scientific or governmental bodies who have an interest in and support CEOS objectives. The primary objective of CEOS is to optimize benefits of satellite Earth observations through cooperation of its participants in mission planning and in development of compatible data products, formats, services, applications and policies. To pursue its objectives, CEOS establishes working groups and associated subgroups that focus on relevant areas of interest. While the structure of CEOS has evolved over its lifetime, today there are three permanent working groups. One is the Working Group on Calibration and Validation that addresses sensor-specific calibration and validation and geophysical parameter validation. A second is the Working Group on Education, Training, and Capacity Building that facilitates activities that enhance international education and training in Earth observation techniques, data analysis, interpretation and applications, with a particular focus on developing countries. The third permanent working group is the Working Group on Information Systems and Services (WGISS). The purpose of WGISS is to promote collaboration in the development of the systems and services based on international standards that manage and supply the Earth observation data and information from participating agencies' missions. WGISS places great emphasis on the use of demonstration projects involving user groups to solve the critical interoperability issues associated with the

  8. Coherence and phase structure of compressional ULF waves at low-Earth-orbit observed by the Swarm satellites

    Science.gov (United States)

    Heilig, Balázs; Sutcliffe, Peter R.

    2016-04-01

    Different types of ultra low frequency (ULF waves), such as dayside compressional Pc3-Pc4 waves, Pc2 and Pc1 waves, Pc3-Pc4 field line resonances, night side and day side Pi2s, etc. have been successfully identified in the topside ionosphere. ULF observations in this region can help us to understand the wave structure in the magnetosphere, wave propagation, and also the effects of the ionosphere (transmission, reflection, mode conversion). Because of the fast orbiting of the LEO satellites Fourier analysis is not applicable, special techniques (wavelet analysis, maximum entropy method) are needed to resolve ULF signals, as well as to discriminate between spatial and wave structures. In this paper we present results of a study of Pc3 compressional waves observed at low-Earth-orbit (LEO) by the Swarm satellites. The particular emphasis has been to investigate the distribution of wave coherence and phase difference as functions of magnetic latitude and local time. This is the first time that a study of this nature has been carried out using magnetic field data from multiple LEO satellites. We believe that our study provides the first observational evidence to support the prediction by the inductive thin ionosphere model that incident Alfvén mode waves are partially converted into compressional mode waves by the ionosphere.

  9. Installing the earth station of Ka-band satellite frequency in Malaysia: conceptual framework for site decision

    Science.gov (United States)

    Mahmud, M. R.; Reba, M. N. M.; Jaw, S. W.; Arsyad, A.; Ibrahim, M. A. M.

    2017-05-01

    This paper developed a conceptual framework in determining the suitable location in installing the earth station for Ka-band satellite communication in Malaysia. This current evolution of high throughput satellites experienced major challenge due to Malaysian climate. Because Ka-band frequency is highly attenuated by the rainfall; it is an enormous challenge to define the most appropriate site for the static communication. Site diversity, a measure to anticipate this conflict by choosing less attenuated region and geographically change the transmission strategy on season basis require accurate spatio-temporal information on the geographical, environmental and hydro-climatology at local scale. Prior to that request, this study developed a conceptual framework to cater the needs. By using the digital spatial data, acquired from site measurement and remote sensing, the proposed framework applied a multiple criteria analysis to perform the tasks of site selection. With the advancement of high resolution remotely sensed data, site determination can be conducted as in Malaysia; accommodating a new, fast, and effective satellite communication. The output of this study is one of the pioneer contributions to create a high tech-society.

  10. Comparing near-earth and satellite remote sensing based phenophase estimates: an analysis using multiple webcams and MODIS (Invited)

    Science.gov (United States)

    Hufkens, K.; Richardson, A. D.; Migliavacca, M.; Frolking, S. E.; Braswell, B. H.; Milliman, T.; Friedl, M. A.

    2010-12-01

    In recent years several studies have used digital cameras and webcams to monitor green leaf phenology. Such "near-surface" remote sensing has been shown to be a cost effective means of accurately capturing phenology. Specifically, it allows for accurate tracking of intra- and inter-annual phenological dynamics at high temporal frequency and over broad spatial scales compared to visual observations or tower-based fAPAR and broadband NDVI measurements. Near surface remote sensing measurements therefore show promise for bridging the gap between traditional in-situ measurements of phenology and satellite remote sensing data. For this work, we examined the relationship between phenophase estimates derived from satellite remote sensing (MODIS) and near-earth remote sensing derived from webcams for a select set of sites with high-quality webcam data. A logistic model was used to characterize phenophases for both the webcam and MODIS data. We documented model fit accuracy, phenophase estimates, and model biases for both data sources. Our results show that different vegetation indices (VI's) derived from MODIS produce significantly different phenophase estimates compared to corresponding estimates derived from webcam data. Different VI's showed markedly different radiometric properties, and as a result, influenced phenophase estimates. The study shows that phenophase estimates are not only highly dependent on the algorithm used but also depend on the VI used by the phenology retrieval algorithm. These results highlight the need for a better understanding of how near-earth and satellite remote data relate to eco-physiological and canopy changes during different parts of the growing season.

  11. Exploring Google Earth Engine platform for big data processing: classification of multi-temporal satellite imagery for crop mapping

    Science.gov (United States)

    Shelestov, Andrii; Lavreniuk, Mykola; Kussul, Nataliia; Novikov, Alexei; Skakun, Sergii

    2017-02-01

    Many applied problems arising in agricultural monitoring and food security require reliable crop maps at national or global scale. Large scale crop mapping requires processing and management of large amount of heterogeneous satellite imagery acquired by various sensors that consequently leads to a “Big Data” problem. The main objective of this study is to explore efficiency of using the Google Earth Engine (GEE) platform when classifying multi-temporal satellite imagery with potential to apply the platform for a larger scale (e.g. country level) and multiple sensors (e.g. Landsat-8 and Sentinel-2). In particular, multiple state-of-the-art classifiers available in the GEE platform are compared to produce a high resolution (30 m) crop classification map for a large territory ( 28,100 km2 and 1.0 M ha of cropland). Though this study does not involve large volumes of data, it does address efficiency of the GEE platform to effectively execute complex workflows of satellite data processing required with large scale applications such as crop mapping. The study discusses strengths and weaknesses of classifiers, assesses accuracies that can be achieved with different classifiers for the Ukrainian landscape, and compares them to the benchmark classifier using a neural network approach that was developed in our previous studies. The study is carried out for the Joint Experiment of Crop Assessment and Monitoring (JECAM) test site in Ukraine covering the Kyiv region (North of Ukraine) in 2013. We found that Google Earth Engine (GEE) provides very good performance in terms of enabling access to the remote sensing products through the cloud platform and providing pre-processing; however, in terms of classification accuracy, the neural network based approach outperformed support vector machine (SVM), decision tree and random forest classifiers available in GEE.

  12. Iceland rising: Solid Earth response to ice retreat inferred from satellite radar interferometry and visocelastic modeling

    NARCIS (Netherlands)

    Auriac, A.; Spaans, K.H.; Sigmundsson, F.; Hooper, A.; Schmidt, P.; Lund, B.

    2013-01-01

    A broad uplift occurs in Iceland in response to the retreat of ice caps, which began circa 1890. Until now, this deformation signal has been measured primarily using GPS at points some distance away from the ice caps. Here, for the first time we use satellite radar interferometry (interferometric sy

  13. Radiation budget and related measurements in 1985 and beyond. [earth radiation budget satellite system

    Science.gov (United States)

    1978-01-01

    Development of systems for obtaining radiation budget and cloud data is discussed. Instruments for measuring total solar irradiance, total infrared flux, reflected solar flux, and cloud heights and properties are considered. Other topics discussed include sampling by multiple satellites, user identification, and determination of the parameters that need to be measured.

  14. Next-generation satellite gravimetry for measuring mass transport in the Earth system

    NARCIS (Netherlands)

    Teixeira Encarnação, J.

    2015-01-01

    The main objective of the thesis is to identify the optimal set-up for future satellite gravimetry missions aimed at monitoring mass transport in the Earth’s system.The recent variability of climatic patterns, the spread of arid regions and associ- ated changes in the hydrological cycle, and vigorou

  15. The role of high-resolution geomagnetic field models for investigating ionospheric currents at low Earth orbit satellites

    Science.gov (United States)

    Stolle, Claudia; Michaelis, Ingo; Rauberg, Jan

    2016-07-01

    Low Earth orbiting geomagnetic satellite missions, such as the Swarm satellite mission, are the only means to monitor and investigate ionospheric currents on a global scale and to make in situ measurements of F region currents. High-precision geomagnetic satellite missions are also able to detect ionospheric currents during quiet-time geomagnetic conditions that only have few nanotesla amplitudes in the magnetic field. An efficient method to isolate the ionospheric signals from satellite magnetic field measurements has been the use of residuals between the observations and predictions from empirical geomagnetic models for other geomagnetic sources, such as the core and lithospheric field or signals from the quiet-time magnetospheric currents. This study aims at highlighting the importance of high-resolution magnetic field models that are able to predict the lithospheric field and that consider the quiet-time magnetosphere for reliably isolating signatures from ionospheric currents during geomagnetically quiet times. The effects on the detection of ionospheric currents arising from neglecting the lithospheric and magnetospheric sources are discussed on the example of four Swarm orbits during very quiet times. The respective orbits show a broad range of typical scenarios, such as strong and weak ionospheric signal (during day- and nighttime, respectively) superimposed over strong and weak lithospheric signals. If predictions from the lithosphere or magnetosphere are not properly considered, the amplitude of the ionospheric currents, such as the midlatitude Sq currents or the equatorial electrojet (EEJ), is modulated by 10-15 % in the examples shown. An analysis from several orbits above the African sector, where the lithospheric field is significant, showed that the peak value of the signatures of the EEJ is in error by 5 % in average when lithospheric contributions are not considered, which is in the range of uncertainties of present empirical models of the EEJ.

  16. Evaluating the strength of the land-atmosphere moisture feedback in Earth system models using satellite observations

    Science.gov (United States)

    Levine, Paul A.; Randerson, James T.; Swenson, Sean C.; Lawrence, David M.

    2016-12-01

    The relationship between terrestrial water storage (TWS) and atmospheric processes has important implications for predictability of climatic extremes and projection of future climate change. In places where moisture availability limits evapotranspiration (ET), variability in TWS has the potential to influence surface energy fluxes and atmospheric conditions. Where atmospheric conditions, in turn, influence moisture availability, a full feedback loop exists. Here we developed a novel approach for measuring the strength of both components of this feedback loop, i.e., the forcing of the atmosphere by variability in TWS and the response of TWS to atmospheric variability, using satellite observations of TWS, precipitation, solar radiation, and vapor pressure deficit during 2002-2014. Our approach defines metrics to quantify the relationship between TWS anomalies and climate globally on a seasonal to interannual timescale. Metrics derived from the satellite data were used to evaluate the strength of the feedback loop in 38 members of the Community Earth System Model (CESM) Large Ensemble (LENS) and in six models that contributed simulations to phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop in LENS were stronger than in the satellite observations in tropical and temperate regions. Feedbacks in the selected CMIP5 models were not as strong as those found in LENS, but were still generally stronger than those estimated from the satellite measurements. Consistent with previous studies conducted across different spatial and temporal scales, our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere. We describe several possible mechanisms that may contribute to this bias, and discuss pathways through which models may overestimate ET or overestimate the sensitivity of ET to TWS.

  17. Dynamical evolution of interplanetary dust particles trapped in Earth's horseshoe and quasi-satellite co-orbital resonance regions

    Science.gov (United States)

    Kortenkamp, Stephen J.

    2016-10-01

    We use numerical integrations to model the orbital evolution of IDPs decaying from the asteroid belt into the inner solar system under the influence of radiation pressure, Poynting-Roberston light drag, and solar wind drag. In our models the ratio of radiation pressure to solar gravity ranges from 0.0025 up to 0.02, corresponding to IDP diameters ranging from about 200 microns down to about 25 microns, respectively. In this size range nearly 100% of IDPs become temporarily trapped in mean-motion resonances just outside Earth's orbit. While trapped in these outer resonances the orbital eccentricities of IDPs significantly increases. This causes most IDPs to eventually escape the resonances, allowing their orbits to continue decaying inwards past 1 AU. We've shown previously (Kortenkamp, Icarus 226, 1550-1558, 2013) that significant fractions of IDPs in this size range can subsequently become trapped in Earth's co-orbital horseshoe and quasi-satellite resonance regions, with semi-major axes just inside of 1 AU. Here, we present new results on the long-term effects of Earth's varying orbital eccentricity and inclination on the trapping and evolution of these co-orbital IDPs.

  18. Validation of Earth atmosphere models using solar EUV observations from the CORONAS and PROBA2 satellites in occultation mode

    Science.gov (United States)

    Slemzin, Vladimir; Ulyanov, Artyom; Gaikovich, Konstantin; Kuzin, Sergey; Pertsov, Andrey; Berghmans, David; Dominique, Marie

    2016-02-01

    Aims: Knowledge of properties of the Earth's upper atmosphere is important for predicting the lifetime of low-orbit spacecraft as well as for planning operation of space instruments whose data may be distorted by atmospheric effects. The accuracy of the models commonly used for simulating the structure of the atmosphere is limited by the scarcity of the observations they are based on, so improvement of these models requires validation under different atmospheric conditions. Measurements of the absorption of the solar extreme ultraviolet (EUV) radiation in the upper atmosphere below 500 km by instruments operating on low-Earth orbits (LEO) satellites provide efficient means for such validation as well as for continuous monitoring of the upper atmosphere and for studying its response to the solar and geomagnetic activity. Method: This paper presents results of measurements of the solar EUV radiation in the 17 nm wavelength band made with the SPIRIT and TESIS telescopes on board the CORONAS satellites and the SWAP telescope on board the PROBA2 satellite in the occulted parts of the satellite orbits. The transmittance profiles of the atmosphere at altitudes between 150 and 500 km were derived from different phases of solar activity during solar cycles 23 and 24 in the quiet state of the magnetosphere and during the development of a geomagnetic storm. We developed a mathematical procedure based on the Tikhonov regularization method for solution of ill-posed problems in order to retrieve extinction coefficients from the transmittance profiles. The transmittance profiles derived from the data and the retrieved extinction coefficients are compared with simulations carried out with the NRLMSISE-00 atmosphere model maintained by Naval Research Laboratory (USA) and the DTM-2013 model developed at CNES in the framework of the FP7 project ATMOP. Results: Under quiet and slightly disturbed magnetospheric conditions during high and low solar activity the extinction coefficients

  19. Tests of daily time variable Earth gravity field solutions for precise orbit determination of altimetry satellites

    Science.gov (United States)

    Rudenko, Sergei; Gruber, Christian

    2016-04-01

    This study makes use of current GFZ monthly and daily gravity field products from 2002 to 2014 based on radial basis functions (RBF) instead of time variable gravity field modeling for precise orbit determination of altimetry satellites. Since some monthly solutions are missing in the GFZ GRACE RL05a solution and in order to reach a better quality for the precise orbit determination, daily generated RBF solutions obtained from Kalman filtered GRACE data processing and interpolated in case of gaps have been used. Moreover, since the geopotential coefficients of low degrees are better determined using SLR observations to geodetic satellites like Lageos, Stella, Starlette and Ajisai than from GRACE observations, these terms are co-estimated in the RBF solutions by using apriori SLR-derived values up to degree and order 4. Precise orbits for altimetry satellites Envisat (2002-2012), Jason-1 (2002-2013) and Jason-2 (2008-2014) are then computed over the given time intervals using this approach and compared with the orbits obtained when using other models such as EIGEN-6S4. An analysis of the root-mean-square values of the observation fits of SLR and DORIS observations and the orbit arcs overlaps will allow us to draw a conclusion on the quality of the RBF solution and to use these new trajectories for sea level trend estimates and geophysical application.

  20. Aircraft data collection in support of NASA's earth observing satellite missions

    Science.gov (United States)

    NASA's Earth observing missions have been providing global information on soil moisture, vegetation, and precipitation that is crucial for hydrological and agricultural applications. For example, accurate soil moisture information is a key component in land surface and agricultural models used for w...

  1. Basic research and data analysis for the National Geodetic Satellite program and for the Earth Surveys program

    Science.gov (United States)

    1972-01-01

    Current research is reported on precise and accurate descriptions of the earth's surface and gravitational field and on time variations of geophysical parameters. A new computer program was written in connection with the adjustment of the BC-4 worldwide geometric satellite triangulation net. The possibility that an increment to accuracy could be transferred from a super-control net to the basic geodetic (first-order triangulation) was investigated. Coordinates of the NA9 solution were computed and were transformed to the NAD datum, based on GEOS 1 observations. Normal equations from observational data of several different systems and constraint equations were added and a single solution was obtained for the combined systems. Transformation parameters with constraints were determined, and the impact of computers on surveying and mapping is discussed.

  2. The electrical conductivity of the Earth's upper mantle as estimated from satellite measured magnetic field variations. Ph.D. Thesis

    Science.gov (United States)

    Didwall, E. M.

    1981-01-01

    Low latitude magnetic field variations (magnetic storms) caused by large fluctuations in the equatorial ring current were derived from magnetic field magnitude data obtained by OGO 2, 4, and 6 satellites over an almost 5 year period. Analysis procedures consisted of (1) separating the disturbance field into internal and external parts relative to the surface of the Earth; (2) estimating the response function which related to the internally generated magnetic field variations to the external variations due to the ring current; and (3) interpreting the estimated response function using theoretical response functions for known conductivity profiles. Special consideration is given to possible ocean effects. A temperature profile is proposed using conductivity temperature data for single crystal olivine. The resulting temperature profile is reasonable for depths below 150-200 km, but is too high for shallower depths. Apparently, conductivity is not controlled solely by olivine at shallow depths.

  3. Hybrid Differential Evolution Optimisation for Earth Observation Satellite Scheduling with Time-Dependent Earliness-Tardiness Penalties

    Directory of Open Access Journals (Sweden)

    Guoliang Li

    2017-01-01

    Full Text Available We study the order acceptance and scheduling (OAS problem with time-dependent earliness-tardiness penalties in a single agile earth observation satellite environment where orders are defined by their release dates, available processing time windows ranging from earliest start date to deadline, processing times, due dates, sequence-dependent setup times, and revenues. The objective is to maximise total revenue, where the revenue from an order is a piecewise linear function of its earliness and tardiness with reference to its due date. We formulate this problem as a mixed integer linear programming model and develop a novel hybrid differential evolution (DE algorithm under self-adaptation framework to solve this problem. Compared with classical DE, hybrid DE employs two mutation operations, scaling factor adaptation and crossover probability adaptation. Computational tests indicate that the proposed algorithm outperforms classical DE in addition to two other variants of DE.

  4. Systems definition space-based power conversion systems. [for satellite power transmission to earth

    Science.gov (United States)

    1976-01-01

    Potential space-located systems for the generation of electrical power for use on Earth are discussed and include: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; and (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Systems (1) and (2) would utilize a microwave beam system to transmit their output to Earth. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.

  5. Operation of the computer model for direct atomic oxygen exposure of Earth satellites

    Science.gov (United States)

    Bourassa, R. J.; Gruenbaum, P. E.; Gillis, J. R.; Hargraves, C. R.

    1995-01-01

    One of the primary causes of material degradation in low Earth orbit (LEO) is exposure to atomic oxygen. When atomic oxygen molecules collide with an orbiting spacecraft, the relative velocity is 7 to 8 km/sec and the collision energy is 4 to 5 eV per atom. Under these conditions, atomic oxygen may initiate a number of chemical and physical reactions with exposed materials. These reactions contribute to material degradation, surface erosion, and contamination. Interpretation of these effects on materials and the design of space hardware to withstand on-orbit conditions requires quantitative knowledge of the atomic oxygen exposure environment. Atomic oxygen flux is a function of orbit altitude, the orientation of the orbit plan to the Sun, solar and geomagnetic activity, and the angle between exposed surfaces and the spacecraft heading. We have developed a computer model to predict the atomic oxygen exposure of spacecraft in low Earth orbit. The application of this computer model is discussed.

  6. UAS Satellite Earth Station Emission Limits for Terrestrial System Interference Protection

    Science.gov (United States)

    Kerczewski, Robert J.; Bishop, William D.

    2017-01-01

    Unmanned aircraft systems (UAS) will have a major impact on future aviation. Medium and large UA operating at altitudes above 3000 feet will require access to non-segregated, that is, controlled airspace. In order for unmanned aircraft to be integrated into the airspace and operate with other commercial aircraft, a very reliable command and control (C2, a. k. a. control and non-payload communications, (CNPC)) link is required. For operations covering large distances or over remote locations, a beyond-line-of-sight (BLOS) CNPC link would need to be implemented through satellite. Significant progress has taken place on several fronts to advance the integration of UAS into controlled airspace, including the recent completion of Minimum Operational Performance Standards (MOPS) for terrestrial line-of-sight (LOS) UAS command and control (C2) links. The development of MOPS for beyond line-of-sight C2 satellite communication links is underway. Meanwhile the allocation of spectrum for UAS C2 by the International Telecommunications Union Radiocommunication Sector (ITU-R) has also progressed. Spectrum for LOS C2 was allocated at the 2012 World Radiocommunication Conference (WRC-12), and for BLOS C2 an allocation was made at WRC-15, under WRC-15 Resolution 155. Resolution 155, however, does not come into effect until several other actions have been completed. One of these required actions is the identification of a power flux density (pfd) limit on the emissions of UAS Ku-Band satellite communications transmitters reaching the ground. The pfd limit is intended to protect terrestrial systems from harmful interference. WRC-19 is expected to finalize the pfd limit. In preparation for WRC-19, analyses of the required pfd limit are on-going, and supporting activities such as propagation modeling are also planned. This paper provides the status of these activities.

  7. The key role of Satellite Laser Ranging towards the integrated estimation of geometry, rotation and gravitational field of the Earth

    Science.gov (United States)

    Blossfeld, Mathis

    2015-01-01

    In 2007, the Global Geodetic Observing System (GGOS) was installed as a full component of the International Association of Geodesy (IAG). One primary goal of GGOS is the integration of geometric and gravimetric observation techniques to estimate consistent geodetic-geophysical parameters. Thereby, GGOS is based on the data and services of the IAG. Besides the combination of different geodetic techniques, also the common estimation of the station coordinates (TRF), Earth Orientation Parameters (EOP) and coefficients of the Earth's gravitational field (Stokes coefficients) is necessary in order to reach this goal. However, the combination of all geometric and gravimetric observation techniques is not yet fully realized. A major step towards the GGOS idea of parameter integration would be the understanding of the existing correlations between the above mentioned fundamental geodetic parameter groups. This topic is the major objective of this thesis. One possibility to study the interactions is the use of Satellite Laser Ranging (SLR) in an intertechnique combination with Global Navigation Satellite Systems (GNSS) and Very Long Baseline Interferometry (VLBI) or the intra-technique combination of multiple SLR-tracked satellites. SLR plays a key role in this thesis since it is the unique technique which is sensitive to all parameter groups and allows an integrated parameter estimation with very high accuracy. The present work is based on five first-author publications which are supplemented by four co-author publications. In this framework, for the first time an extensive discussion of a refined global Terrestrial Reference Frame (TRF) estimation procedure, the estimation of so-called Epoch Reference Frames (ERFs) is presented. In contrast to the conventional linear station motion model, the ERFs provide frequently estimated station coordinates and Earth Orientation Parameters (EOP) which allow to approximate not modeled non-linear station motions very accurately

  8. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  9. Evaluating the design of satellite scanning radiometers for earth radiation budget measurements with system simulations. Part 1: Instantaneous estimates

    Science.gov (United States)

    Stowe, Larry; Ardanuy, Philip; Hucek, Richard; Abel, Peter; Jacobowitz, Herbert

    1991-10-01

    A set of system simulations was performed to evaluate candidate scanner configurations to fly as a part of the Earth Radiation Budget Instrument (ERBI) on the polar platforms during the 1990's. The simulation is considered of instantaneous sampling (without diurnal averaging) of the longwave and shortwave fluxes at the top of the atmosphere (TOA). After measurement and subsequent inversion to the TOA, the measured fluxes were compared to the reference fluxes for 2.5 deg lat/long resolution targets. The reference fluxes at this resolution are obtained by integrating over the 25 x 25 = 625 grid elements in each target. The differences between each of these two resultant spatially averaged sets of target measurements (errors) are taken and then statistically summarized. Five instruments are considered: (1) the Conically Scanning Radiometer (CSR); (2) the ERBE Cross Track Scanner; (3) the Nimbus-7 Biaxial Scanner; (4) the Clouds and Earth's Radiant Energy System Instrument (CERES-1); and (5) the Active Cavity Array (ACA). Identical studies of instantaneous error were completed for many days, two seasons, and several satellite equator crossing longitudes. The longwave flux errors were found to have the same space and time characteristics as for the shortwave fluxes, but the errors are only about 25 pct. of the shortwave errors.

  10. Rapid, High-Resolution Detection of Environmental Change over Continental Scales from Satellite Data - the Earth Observation Data Cube

    Science.gov (United States)

    Lewis, Adam; Lymburner, Leo; Purss, Matthew B. J.; Brooke, Brendan; Evans, Ben; Ip, Alex; Dekker, Arnold G.; Irons, James R.; Minchin, Stuart; Mueller, Norman

    2015-01-01

    The effort and cost required to convert satellite Earth Observation (EO) data into meaningful geophysical variables has prevented the systematic analysis of all available observations. To overcome these problems, we utilise an integrated High Performance Computing and Data environment to rapidly process, restructure and analyse the Australian Landsat data archive. In this approach, the EO data are assigned to a common grid framework that spans the full geospatial and temporal extent of the observations - the EO Data Cube. This approach is pixel-based and incorporates geometric and spectral calibration and quality assurance of each Earth surface reflectance measurement. We demonstrate the utility of the approach with rapid time-series mapping of surface water across the entire Australian continent using 27 years of continuous, 25 m resolution observations. Our preliminary analysis of the Landsat archive shows how the EO Data Cube can effectively liberate high-resolution EO data from their complex sensor-specific data structures and revolutionise our ability to measure environmental change.

  11. Use of the Earth Observing One (EO-1) Satellite for the Namibia SensorWeb Flood Early Warning Pilot

    Science.gov (United States)

    Mandl, Daniel; Frye, Stuart; Cappelaere, Pat; Handy, Matthew; Policelli, Fritz; Katjizeu, McCloud; Van Langenhove, Guido; Aube, Guy; Saulnier, Jean-Francois; Sohlberg, Rob; Silva, Julie; Kussul, Nataliia; Skakun, Sergii; Ungar, Stephen; Grossman, Robert

    2012-01-01

    The Earth Observing One (EO-1) satellite was launched in November 2000 as a one year technology demonstration mission for a variety of space technologies. After the first year, it was used as a pathfinder for the creation of SensorWebs. A SensorWeb is the integration of variety of space, airborne and ground sensors into a loosely coupled collaborative sensor system that automatically provides useful data products. Typically, a SensorWeb is comprised of heterogeneous sensors tied together with a messaging architecture and web services. Disasters are the perfect arena to use SensorWebs. One SensorWeb pilot project that has been active since 2009 is the Namibia Early Flood Warning SensorWeb pilot project. The Pilot Project was established under the auspices of the Namibian Ministry of Agriculture Water and Forestry (MAWF)/Department of Water Affairs, the Committee on Earth Observing Satellites (CEOS)/Working Group on Information Systems and Services (WGISS) and moderated by the United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER). The effort began by identifying and prototyping technologies which enabled the rapid gathering and dissemination of both space-based and ground sensor data and data products for the purpose of flood disaster management and water-borne disease management. This was followed by an international collaboration to build small portions of the identified system which was prototyped during that past few years during the flood seasons which occurred in the February through May timeframe of 2010 and 2011 with further prototyping to occur in 2012. The SensorWeb system features EO-1 data along with other data sets from such satellites as Radarsat, Terra and Aqua. Finally, the SensorWeb team also began to examine the socioeconomic component to determine the impact of the SensorWeb technology and how best to assist in the infusion of this technology in lesser affluent areas with low levels of basic

  12. Modelling the Earth's Main Magnetic Field by the spinning Astrid-2 satellite

    DEFF Research Database (Denmark)

    Merayo, Jose Maria Garcia; Jørgensen, Peter Siegbjørn; Risbo, T.

    1999-01-01

    and therefore the mapping of the Earth's magnetic field may be possible. The spinning of the spacecraft about a certain axis makes the stabilisation in space possible. This fact and the well distributed data over the globe makes the magnetic data well suited for the estimation of the magnetic field model...... at the spacecraft altitude (circa 1000km). Several methods for field modelling are presented in this paper with the assumption that the direction of the spin axis is nearly constant. In any case the orientation of the magnetometer is to bedetermined simultaneously with the instrument calibration and main field...

  13. A Model of the Earth's Magnetic Field From Two Year of Swarm Satellite Constellation Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Finlay, Chris; Tøffner-Clausen, Lars

    More than two year of data from ESA's Swarm constellation mission are used to derive a model of the Earth’s magnetic field and its time variation (secular variation). The model describes contributions from the core and lithosphere as well as large-scale contributions from the magnetosphere (and its...... Earth-induced counterpart). We use data from geomagnetic quiet times and co-estimate the Euler angles describing the rotation between the vector magnetometer instrument frame and the North-East-Center (NEC) frame. In addition to the magnetic field observations provided by each of the three Swarm...

  14. Peak Satellite-to-Earth Data Rates Derived From Measurements of a 20 Gbps Bread-Board Modem

    Science.gov (United States)

    Landon, David G.; Simons, Rainee N.; Wintucky, Edwin G.; Sun, Jun Y.; Winn, James S.; Laraway, Stephen A.; McIntire, William K.; Metz, John L.; Smith, Francis J.

    2011-01-01

    A prototype data link using a Ka-band space qualified, high efficiency 200 W TWT amplifier and a bread-board modem emulator were created to explore the feasibility of very high speed communications in satellite-to-earth applications. Experiments were conducted using a DVB-S2-like waveform with modifications to support up to 20 Gbps through the addition of 128-Quadrature Amplitude Modulation (QAM). Limited by the bandwidth of the amplifier, a constant peak symbol rate of 3.2 Giga-symbols/sec was selected and the modulation order was varied to explore what peak data rate might be supported by an RF link through this amplifier. Using 128-QAM, an implementation loss of 3 dB was observed at 20 Gbps, and the loss decreased as data rate or bandwidth were reduced. Building on this measured data, realistic link budget calculations were completed. Low-Earth orbit (LEO) missions based on this TWTA with reasonable hardware assumptions and antenna sizing are found to be bandwidth-limited, rather than power-limited, making the spectral efficiency of 9/10-rate encoded 128-QAM very attractive. Assuming a bandwidth allocation of 1 GHz, these computations indicate that low-Earth orbit vehicles could achieve data rates up to 5 Gbps-an order of magnitude beyond the current state-of-practice, yet still within the processing power of a current FPGA-based software-defined modem. The measured performance results and a description of the experimental setup are presented to support these conclusions.

  15. Encke's special perturbation technique associated with the KS regularized variables. I - Satellite motions in the earth's gravitational field with axial symmetry

    Science.gov (United States)

    Awad, Mervat El-Sayed

    1988-10-01

    A special perturbation technique of Encke type associated with the Kustaanheimo-Stiefel (KS) regularized variables is developed for satellite motions in the earth's gravitational field with axial symmetry. Its computational algorithm is of recursive nature and could be applied to any perturbed conic motion, whatever the number of the zonal harmonic coefficients may be. Applications of the algorithm are also included.

  16. Time and frequency requirement for the earth and ocean physics applications program. [characteristics and orbital mechanics of artificial satellites for data acquisition

    Science.gov (United States)

    Vonbun, F. O.

    1972-01-01

    The application of time and frequency standards to the Earth and Ocean Physics Applications Program (EOPAP) is discussed. The goals and experiments of the EOPAP are described. Methods for obtaining frequency stability and time synchronization are analyzed. The orbits, trajectories, and characteristics of the satellites used in the program are reported.

  17. 我国资源卫星的社会效益及其CVM评价%Social benefit of China Earth Resource Satellite and its CVM evaluation method

    Institute of Scientific and Technical Information of China (English)

    闫相斌; 李一军; 梁迎春; 褚芳芳

    2009-01-01

    应用条件价值法对我国资源卫星的社会效益进行了定量评价.研究发现,民众认为我国资源卫星的社会效益主要体现在促进科学教育、社会生活改善和产业发展等几个方面,我国绝大部分民众在经济条件允许的情况下,愿意为资源卫星的社会效益支付费用.通过对调研数据的分析,估算出我国民众对资源卫星社会效益的总支付意愿约为96.7亿元人民币/年.%Contingent valuation method was adopted to evlauate social benefit of China Earth Resource Satellite. We discovered that the public regards China Earth Resource Satellite's social benefit mainly exist in promoting science and education, people's daily life, and industries. Most of public would like to pay for the social benefits of China Earth Resource Satellite under the condition of they have payment ablillity. By analyzing collected data, the total willingness to pay for the social benefit of China Earth Resource Satellite is about 9.67 billion RMB yuan each year.

  18. Earth's lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements

    DEFF Research Database (Denmark)

    Maus, S.; Rother, M.; Hemant, K.;

    2006-01-01

    The CHAMP magnetic field mission is providing highly reliable measurements from which the global lithospheric magnetic field can be determined in unprecedented resolution and accuracy. Using almost 5 yr of data, we derive our fourth generation lithospheric field model termed MF4, which is expanded...... to spherical harmonic degree and order 90. After subtracting from the full magnetic field observations predicted fields from an internal field model up to degree 15, an external field model up to degree two, and the predicted magnetic field signatures for the eight dominant ocean tidal constituents, we fit...... of the lithospheric field down to an altitude of about 50 km at lower latitudes, with reduced accuracy in the polar regions. Crustal features come out significantly sharper than in previous models. In particular, bands of magnetic anomalies along subduction zones become visible by satellite for the first time....

  19. Basic Mechanics of Planet-Satellite Interaction with special reference to Earth-Moon System

    CERN Document Server

    Sharma, Bijay Kumar

    2008-01-01

    In1879 George Howard Darwin theoretically analyzed the outward spiraling orbit of Moon and the subsequent lengthening of the Mean Solar Day. The author redid the same analysis based on the fact that Moon was receding at the rate of 3.8 cm per annum. Basic Mechanics of Earth-Moon is worked out and various system parameters are optimized to fit the given boundary condition obtained by Apollo Mission and other modern means of observations. Based on this theoretical formulation the theoretical graph of the lengthening of the Mean Solar Day with respect to time is drawn and is compared with the observational graph of the same based on pale ontological data, paleo tidal data and iron-banded formation. The observational data on Mean Solar Day is found to follow the theoretical smooth curve in post-Cambrian Era but is found to deviate in the remote past. This deviation is corrected by taking the evolving form of Moment of Inertia of Earth. The deviation of the observed data prompts the Author to suggest that the leng...

  20. Validation of Earth atmosphere models using solar EUV observations from the CORONAS and PROBA2 satellites in occultation mode

    Directory of Open Access Journals (Sweden)

    Slemzin Vladimir

    2016-01-01

    Full Text Available Aims: Knowledge of properties of the Earth’s upper atmosphere is important for predicting the lifetime of low-orbit spacecraft as well as for planning operation of space instruments whose data may be distorted by atmospheric effects. The accuracy of the models commonly used for simulating the structure of the atmosphere is limited by the scarcity of the observations they are based on, so improvement of these models requires validation under different atmospheric conditions. Measurements of the absorption of the solar extreme ultraviolet (EUV radiation in the upper atmosphere below 500 km by instruments operating on low-Earth orbits (LEO satellites provide efficient means for such validation as well as for continuous monitoring of the upper atmosphere and for studying its response to the solar and geomagnetic activity. Method: This paper presents results of measurements of the solar EUV radiation in the 17 nm wavelength band made with the SPIRIT and TESIS telescopes on board the CORONAS satellites and the SWAP telescope on board the PROBA2 satellite in the occulted parts of the satellite orbits. The transmittance profiles of the atmosphere at altitudes between 150 and 500 km were derived from different phases of solar activity during solar cycles 23 and 24 in the quiet state of the magnetosphere and during the development of a geomagnetic storm. We developed a mathematical procedure based on the Tikhonov regularization method for solution of ill-posed problems in order to retrieve extinction coefficients from the transmittance profiles. The transmittance profiles derived from the data and the retrieved extinction coefficients are compared with simulations carried out with the NRLMSISE-00 atmosphere model maintained by Naval Research Laboratory (USA and the DTM-2013 model developed at CNES in the framework of the FP7 project ATMOP. Results: Under quiet and slightly disturbed magnetospheric conditions during high and low solar activity the

  1. Spatial Dynamic Wideband Modeling of the MIMO Satellite-to-Earth Channel

    Directory of Open Access Journals (Sweden)

    Andreas Lehner

    2014-01-01

    response (CIR time series depending on the movement profile of a land mobile terminal is presented in this paper. Based on high precise wideband measurements in L-band the model reproduces the correlated shadowing and multipath conditions in rich detail. The model includes time and space variant echo signals appearing and disappearing in dependence on the receive antenna position and movement, and the actual azimuths and elevations to the various signal sources. Attenuation and path delays relative to the hypothetical line of sight (LOS ensure usability for ranging purposes. Parameters for car and pedestrian applications in urban and suburban environments are provided. The channel characteristics are determined independently of the transmitted signal. Therefore the usability, for example, for GPS and GALILEO, as well as wideband communication services from hovering platforms, is given.

  2. From horseshoe to quasi-satellite and back again: the curious dynamics of Earth co-orbital asteroid 2015 SO2

    CERN Document Server

    Marcos, C de la Fuente

    2015-01-01

    Earth co-orbitals of the horseshoe type are interesting objects to study for practical reasons. They are relatively easy to access from our planet and that makes them attractive targets for sample return missions. Here, we show that near-Earth asteroid (NEA) 2015 SO2 is a transient co-orbital to the Earth that experiences a rather peculiar orbital evolution characterised by recurrent, alternating horseshoe and quasi-satellite episodes. It is currently following a horseshoe trajectory, the ninth asteroid known to do so. Besides moving inside the 1:1 mean motion resonance with the Earth, it is subjected to a Kozai resonance with the value of the argument of perihelion librating around 270 degrees. Contrary to other NEAs, asteroid 2015 SO2 may have remained in the vicinity of Earth's co-orbital region for a few hundreds of thousands of years.

  3. Satellite Collectors of Solar Energy for Earth and Colonized Planet Habitats

    Science.gov (United States)

    Kusiolek, Richard

    it to absorb more energy and making the antenna collector 20 times more efficient than planar designs. A tracking pedestal powered by betavoltaics can follow the sun. With a 500-sun photovoltaic cell underneath a Fresnal lens magnifies and distributes the sun's energy at 500 times. Primary results and the main conclusions This idea is revolutionary and utilizes satellite tracking abilities to follow the sun, maintaining a constant energy source that can reach 700 to 800 degrees. This technology will have many applications, from instant fresh water in the form of steam to the use of fiber optics to filter natural light through a building. With the direction of the oil and energy costs continuing to spiral upward, there has been recent emphasis on alternative energy that is transmitted from space. Satellite antenna manufacturers can move quickly to production and create a revolution in sustainable energy that was never thought of before. The efforts of the United States, Russia, China, and India to colonize the Moon and Mars would be greatly enhanced by use of satellite solar collectors and betavoltaics electrical energy technologies for the colonies' habitats. Introduction This study was undertaken for the Global environment is in a crisis. The rich oil producing countries of Russia, Saudi Arabia, Venezuela, and Africa, have been at war to gain monopoly power and to restrict the space based explorations of the solar system. The physics of solar energy transmission to electrical mechanical energy is unique in improving the economies of the entire community of Nations. It is easy to produce satellite antennas, thus, satellite antennas can now be used as solar panels which can generate free power from the sun by converting sunlight to electricity. Solar Panels require no moving parts; have zero emissions, and no maintenance. These antennas will revolutionize the use of solar rays from the sun to benefit a global grid. These "collectors of free energy" are able to harness

  4. Approach for earth observation satellite real-time and playback data transmission scheduling

    Institute of Scientific and Technical Information of China (English)

    Jun Li

    2015-01-01

    The scheduling of earth observation satel ites (EOSs) data transmission is a complex combinatorial optimization prob-lem. Current researches mainly deal with this problem on the assumption that the data transmission mode is fixed, either play-back or real-time transmission. Considering the characteristic of the problem, a multi-satel ite real-time and playback data trans-mission scheduling model is established and a novel algorithm based on quantum discrete particle swarm optimization (QDPSO) is proposed. Furthermore, we design the longest compatible trans-mission chain mutation operator to enhance the performance of the algorithm. Final y, some experiments are implemented to vali-date correctness and practicability of the proposed algorithm.

  5. A Political History of U.S. Commercial Remote Sensing, 1984-2007: Conflict, Collaboration, and the Role of Knowledge in the High-Tech World of Earth Observation Satellites

    OpenAIRE

    Thompson, Kenneth Parker

    2007-01-01

    The political history of U.S. commercial remote sensing began in 1984 when the U.S. government first attempted to commercialize its civil earth observation satellite system â Landsat. Since then, the high technology of earth imaging satellite systems has generated intense debates and policy conflicts, primarily centered on U.S. government concerns over the national security and foreign policy implications of high-resolution commercial satellite systems. Conversely, proponents of commerc...

  6. Program on stimulating operational private sector use of Earth observation satellite information

    Science.gov (United States)

    Eastwood, L. F., Jr.; Foshage, J.; Gomez, G.; Kirkpatrick, B.; Konig, B.; Stein, R. (Principal Investigator)

    1981-01-01

    Ideas for new businesses specializing in using remote sensing and computerized spatial data systems were developd. Each such business serves as an 'information middleman', buying raw satellite or aircraft imagery, processing these data, combining them in a computer system with customer-specific information, and marketing the resulting information products. Examples of the businesses the project designed are: (1) an agricultural facility site evaluation firm; (2) a mass media grocery price and supply analyst and forecaster; (3) a management service for privately held woodlots; (4) a brokerage for insulation and roofing contractors, based on infrared imagery; (5) an expanded real estate information service. In addition, more than twenty-five other commercially attractive ideas in agribusiness, forestry, mining, real estate, urban planning and redevelopment, and consumer information were created. The commercial feasibility of the five business was assessed. This assessment included market surveys, revenue projections, cost analyses, and profitability studies. The results show that there are large and enthusiastic markets willing to pay for the services these businesses offer, and that the businesses could operate profitably.

  7. e-Infrastuctures interoperability: the Geohazards Exploitation Platform for the use of satellite earth observations in Geosciences

    Science.gov (United States)

    Caumont, Herve; Brito, Fabrice; Mathot, Emmanuel; Barchetta, Francesco; Loeschau, Frank

    2015-04-01

    We present recent achievements with the Geohazards Exploitation Platform (GEP), a European contribution to the GEO SuperSites, and its interoperability with the MEDiterranean SUpersite Volcanoes (MED-SUV) e- infrastructure. The GEP is a catalyst for the use of satellite Earth observation missions, providing data to initiatives such as the GEO Geohazard Supersites and Natural Laboratories (GSNL), the Volcano and Seismic Hazards CEOS Pilots or the European Plate Observing System (EPOS). As satellite sensors are delivering increasing amounts of data, researchers need more computational science tools and services. The GEP contribution in this regard allows scientists to access different data types, relevant to the same area and phenomena and to directly stage selected inputs to scalable processing applications that deliver EO-based science products. With the GEP concept of operation for improved collaboration, a partner can bring its processing tools, use from his workspace other shared toolboxes and access large data repositories. GEP is based on Open Source Software components, on a Cloud Services architecture inheriting a range of ESA and EC funded innovations, and is associating the scientific community and SMEs in implementing new capabilities. Via MED-SUV, we are making discoverable and accessible a large number of products over the Mt. Etna, Vesu- vius/Campi Flegrei volcanic areas, which are of broader interest for Geosciences researchers, so they can process ENVISAT MERIS, ENVISAT ASAR, and ERS SAR data (both Level 1 and Level 2) hosted in the ESA clusters and in ESA's Virtual Archive, TerraSAR-X data hosted in DLR's Virtual Archive, as well as data hosted in other dedicated MED-SUV Virtual Archives (e.g. for LANDSAT, EOS-1). GEP will gradually access Sentinel-1A data, other space agencies data and value-added products. Processed products can also be published and archived on the MED-SUV e-Infrastructure. In this effort, data policy rules applied to the

  8. Short-term prediction of rain attenuation level and volatility in Earth-to-Satellite links at EHF band

    Science.gov (United States)

    de Montera, L.; Mallet, C.; Barthès, L.; Golé, P.

    2008-08-01

    This paper shows how nonlinear models originally developed in the finance field can be used to predict rain attenuation level and volatility in Earth-to-Satellite links operating at the Extremely High Frequencies band (EHF, 20 50 GHz). A common approach to solving this problem is to consider that the prediction error corresponds only to scintillations, whose variance is assumed to be constant. Nevertheless, this assumption does not seem to be realistic because of the heteroscedasticity of error time series: the variance of the prediction error is found to be time-varying and has to be modeled. Since rain attenuation time series behave similarly to certain stocks or foreign exchange rates, a switching ARIMA/GARCH model was implemented. The originality of this model is that not only the attenuation level, but also the error conditional distribution are predicted. It allows an accurate upper-bound of the future attenuation to be estimated in real time that minimizes the cost of Fade Mitigation Techniques (FMT) and therefore enables the communication system to reach a high percentage of availability. The performance of the switching ARIMA/GARCH model was estimated using a measurement database of the Olympus satellite 20/30 GHz beacons and this model is shown to outperform significantly other existing models. The model also includes frequency scaling from the downlink frequency to the uplink frequency. The attenuation effects (gases, clouds and rain) are first separated with a neural network and then scaled using specific scaling factors. As to the resulting uplink prediction error, the error contribution of the frequency scaling step is shown to be larger than that of the downlink prediction, indicating that further study should focus on improving the accuracy of the scaling factor.

  9. Short-term prediction of rain attenuation level and volatility in Earth-to-Satellite links at EHF band

    Directory of Open Access Journals (Sweden)

    L. de Montera

    2008-08-01

    Full Text Available This paper shows how nonlinear models originally developed in the finance field can be used to predict rain attenuation level and volatility in Earth-to-Satellite links operating at the Extremely High Frequencies band (EHF, 20–50 GHz. A common approach to solving this problem is to consider that the prediction error corresponds only to scintillations, whose variance is assumed to be constant. Nevertheless, this assumption does not seem to be realistic because of the heteroscedasticity of error time series: the variance of the prediction error is found to be time-varying and has to be modeled. Since rain attenuation time series behave similarly to certain stocks or foreign exchange rates, a switching ARIMA/GARCH model was implemented. The originality of this model is that not only the attenuation level, but also the error conditional distribution are predicted. It allows an accurate upper-bound of the future attenuation to be estimated in real time that minimizes the cost of Fade Mitigation Techniques (FMT and therefore enables the communication system to reach a high percentage of availability. The performance of the switching ARIMA/GARCH model was estimated using a measurement database of the Olympus satellite 20/30 GHz beacons and this model is shown to outperform significantly other existing models.

    The model also includes frequency scaling from the downlink frequency to the uplink frequency. The attenuation effects (gases, clouds and rain are first separated with a neural network and then scaled using specific scaling factors. As to the resulting uplink prediction error, the error contribution of the frequency scaling step is shown to be larger than that of the downlink prediction, indicating that further study should focus on improving the accuracy of the scaling factor.

  10. An efficient stable optical polariser module for calibration of the S4UVN earth observation satellite

    Science.gov (United States)

    Rolt, Stephen; Calcines, Ariadna; Lomanowski, Bartosz; Bramall, David; Shaw, Benjamin

    2016-07-01

    We describe here an optical polariser module intended to deliver well characterised polarised light to an imaging spectrometer instrument. The instrument in question is the Sentinel-4/UVN Earth observation imaging spectrometer due to be deployed in 2019 in a geostationary orbit. The polariser module described here will be used in the ground based calibration campaign for this instrument. One critical task of the calibration campaign will be the highly accurate characterisation of the polarisation sensitivity of instrument. The polariser module provides a constant, uniform source of linearly polarised light whose direction can be adjusted without changing the output level or uniformity of the illumination. A critical requirement of the polariser module is that the illumination is uniform across the exit pupil. Unfortunately, a conventional Glan-Taylor arrangement cannot provide this uniformity due to the strong variation in transmission at a refractive surface for angles close to the critical angle. Therefore a modified prism arrangement is proposed and this is described in detail. Detailed tolerance modelling and straylight modelling is also reported here.

  11. Global land cover mapping using Earth observation satellite data: Recent progresses and challenges

    Science.gov (United States)

    Ban, Yifang; Gong, Peng; Giri, Chandra

    2015-05-01

    Land cover is an important variable for many studies involving the Earth surface, such as climate, food security, hydrology, soil erosion, atmospheric quality, conservation biology, and plant functioning. Land cover not only changes with human caused land use changes, but also changes with nature. Therefore, the state of land cover is highly dynamic. In winter snow shields underneath various other land cover types in higher latitudes. Floods may persist for a long period in a year over low land areas in the tropical and subtropical regions. Forest maybe burnt or clear cut in a few days and changes to bare land. Within several months, the coverage of crops may vary from bare land to nearly 100% crops and then back to bare land following harvest. The highly dynamic nature of land cover creates a challenge in mapping and monitoring which remains to be adequately addressed. As economic globalization continues to intensify, there is an increasing trend of land cover/land use change, environmental pollution, land degradation, biodiversity loss at the global scale, timely and reliable information on global land cover and its changes is urgently needed to mitigate the negative impact of global environment change.

  12. Coping with the deluge of ';Big Data': The challenge of exploiting satellite earth observation data in the new era of High Performance Data

    Science.gov (United States)

    Purss, M. B.; Lewis, A.; Ip, A.; Wyborn, L. A.

    2013-12-01

    Australia's Earth Observation Program has acquired and archived satellite data for the Australian Government since the establishment of the Australian Landsat Station in 1979. Data have been acquired from many sensors and platforms including ERS, EnviSAT, MODIS, ASTER, SPOT and ALOS, although the bulk of the continuous observations are from the Landsat instruments. The Landsat mission is the longest continuous environmental monitoring experiment in history; producing a global archive of earth observations spanning over 41 years. Geoscience Australia maintains an archive of Landsat data for Australia and produces products and information to support the delivery of government policy objectives. Future Earth observation missions promise an exponential increase in the volumes of open data from Earth observing satellites. For the Australian region the NASA/USGS Landsat-8 satellite is now contributing up to 50 GB of data per day and ESA's Sentinel-2 constellation (due for launch in early 2014) will provide close to 500 GB of data per day to Australia's existing archive of earth observation data. With just these two new data sources the Australian Satellite Earth Observation archive is expected to grow to around 1 PB by the end of 2014. Extracting information from satellite data is a long-standing challenge made more difficult by increased data volumes. Recognising this issue, the Australian Government funded the ';Unlocking the Landsat Archive' (ULA) consortium project from 2010 to 2013 to process Australia's Landsat archive to fully calibrated sensor and scene independent data products for the period from 1998 to 2012 and to investigate methods of arranging this archive so that it can be exploited to produce value added information products. The data outputs from the ULA project, currently totalling close to 400 TB, have become a fundamental component of Australia's eResearch infrastructure. The data are hosted on the National Computational Infrastructure (NCI) and are

  13. Forced-folding by laccolith and saucer-shaped sill intrusions on the Earth, planets and icy satellites

    Science.gov (United States)

    Michaut, Chloé

    2017-04-01

    Horizontal intrusions probably initially start as cracks, with negligible surface deformation. Once their horizontal extents become large enough compared to their depths, they make room for themselves by lifting up their overlying roofs, creating characteristic surface deformations that can be observed at the surface of planets. We present a model where magma flows below a thin elastic overlying layer characterized by a flexural wavelength Λ and study the dynamics and morphology of such a magmatic intrusion. Our results show that, depending on its size, the intrusion present different shapes and thickness-to-radius relationships. During a first phase, elastic bending of the overlying layer is the main source of driving pressure in the flow; the pressure decreases as the flow radius increases, the intrusion is bell-shaped and its thickness is close to being proportional to its radius. When the intrusion radius becomes larger than 4 times Λ, the flow enters a gravity current regime and progressively develops a pancake shape with a flat top. We study the effect of topography on flow spreading in particular in the case where the flow is constrained by a lithostatic barrier within a depression, such as an impact crater on planets or a caldera on Earth. We show that the resulting shape for the flow depends on the ratio between the flexural wavelength of the layer overlying the intrusion and the depression radius. The model is tested against terrestrial data and is shown to well explain the size and morphology of laccoliths and saucer-shaped sills on Earth. We use our results to detect and characterize shallow solidified magma reservoirs in the crust of terrestrial planets and potential shallow water reservoirs in the ice shell of icy satellites.

  14. Peptide synthesis triggered by comet impacts: A possible method for peptide delivery to the early Earth and icy satellites

    Science.gov (United States)

    Sugahara, Haruna; Mimura, Koichi

    2015-09-01

    We performed shock experiments simulating natural comet impacts in an attempt to examine the role that comet impacts play in peptide synthesis. In the present study, we selected a mixture of alanine (DL-alanine), water ice, and silicate (forsterite) to make a starting material for the experiments. The shock experiments were conducted under cryogenic conditions (77 K), and the shock pressure range achieved in the experiments was 4.8-25.8 GPa. The results show that alanine is oligomerized into peptides up to tripeptides due to the impact shock. The synthesized peptides were racemic, indicating that there was no enantioselective synthesis of peptides from racemic amino acids due to the impact shock. We also found that the yield of linear peptides was a magnitude higher than those of cyclic diketopiperazine. Furthermore, we estimated the amount of cometary-derived peptides to the early Earth based on two models (the Lunar Crating model and the Nice model) during the Late Heavy Bombardment (LHB) using our experimental data. The estimation based on the Lunar Crating model gave 3 × 109 mol of dialanine, 4 × 107 mol of trialanine, and 3 × 108 mol of alanine-diketopiperazine. Those based on the Nice model, in which the main impactor of LHB is comets, gave 6 × 1010 mol of dialanine, 1 × 109 mol of trialanine, and 8 × 109 mol of alanine-diketopiperazine. The estimated amounts were comparable to those originating from terrestrial sources (Cleaves, H.J., Aubrey, A.D., Bada, J.L. [2009]. Orig. Life Evol. Biosph. 39, 109-126). Our results indicate that comet impacts played an important role in chemical evolution as a supplier of linear peptides, which are important for further chemical evolution on the early Earth. Our study also highlights the importance of icy satellites, which were formed by comet accumulation, as prime targets for missions searching for extraterrestrial life.

  15. Advanced Communications Technology Satellite (ACTS) Fade Compensation Protocol Impact on Very Small-Aperture Terminal Bit Error Rate Performance

    Science.gov (United States)

    Cox, Christina B.; Coney, Thom A.

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) communications system operates at Ka band. ACTS uses an adaptive rain fade compensation protocol to reduce the impact of signal attenuation resulting from propagation effects. The purpose of this paper is to present the results of an analysis characterizing the improvement in VSAT performance provided by this protocol. The metric for performance is VSAT bit error rate (BER) availability. The acceptable availability defined by communication system design specifications is 99.5% for a BER of 5E-7 or better. VSAT BER availabilities with and without rain fade compensation are presented. A comparison shows the improvement in BER availability realized with rain fade compensation. Results are presented for an eight-month period and for 24 months spread over a three-year period. The two time periods represent two different configurations of the fade compensation protocol. Index Terms-Adaptive coding, attenuation, propagation, rain, satellite communication, satellites.

  16. Measuring the Value of Earth Observation Information with the Gravity Research and Climate Experiment (GRACE) Satellite

    Science.gov (United States)

    Bernknopf, R.; Kuwayama, Y.; Brookshire, D.; Macauley, M.; Zaitchik, B.; Pesko, S.; Vail, P.

    2014-12-01

    Determining how much to invest in earth observation technology depends in part on the value of information (VOI) that can be derived from the observations. We design a framework and then evaluate the value-in-use of the NASA Gravity Research and Climate Experiment (GRACE) for regional water use and reliability in the presence of drought. As a technology that allows measurement of water storage, the GRACE Data Assimilation System (DAS) provides information that is qualitatively different from that generated by other water data sources. It provides a global, reproducible grid of changes in surface and subsurface water resources on a frequent and regular basis. Major damages from recent events such as the 2012 Midwest drought and the ongoing drought in California motivate the need to understand the VOI from remotely sensed data such as that derived from GRACE DAS. Our conceptual framework models a dynamic risk management problem in agriculture. We base the framework on information from stakeholders and subject experts. The economic case for GRACE DAS involves providing better water availability information. In the model, individuals have a "willingness to pay" (wtp) for GRACE DAS - essentially, wtp is an expression of savings in reduced agricultural input costs and for costs that are influenced by regional policy decisions. Our hypothesis is that improvements in decision making can be achieved with GRACE DAS measurements of water storage relative to data collected from groundwater monitoring wells and soil moisture monitors that would be relied on in the absence of GRACE DAS. The VOI is estimated as a comparison of outcomes. The California wine grape industry has features that allow it to be a good case study and a basis for extrapolation to other economic sectors. We model water use in this sector as a sequential decision highlighting the attributes of GRACE DAS input as information for within-season production decisions as well as for longer-term water reliability.

  17. Summary of the Geocarto International Special Issue on "NASA Earth Science Satellite Data for Applications to Public Health" to be Published in Early 2014

    Science.gov (United States)

    Quattrochi, Dale A.

    2013-01-01

    At the 2011 Applied Science Public Health review held in Santa Fe, NM, it was announced that Dr. Dale Quattrochi from the NASA Marshall Space Flight Center, John Haynes, Program Manager for the Applied Sciences Public Health program at NASA Headquarters, and Sue Estes, Deputy Program Manager for the NASA Applied Sciences Public Health Program located at the Universities Space Research Association (USRA) at the National Space Science and Technology Center (NSSTC) in Huntsville, AL, would edit a special issue of the journal Geocarto International on "NASA Earth Science Satellite Data for Applications to Public Health". This issue would be focused on compiling research papers that use NASA Earth Science satellite data for applications to public health. NASA's Public Health Program concentrates on advancing the realization of societal and economic benefits from NASA Earth Science in the areas of infectious disease, emergency preparedness and response, and environmental health (e.g., air quality). This application area as a focus of the NASA Applied Sciences program, has engaged public health institutions and officials with research scientists in exploring new applications of Earth Science satellite data as an integral part of public health decision- and policy-making at the local, state and federal levels. Of interest to this special issue are papers submitted on are topics such as epidemiologic surveillance in the areas of infectious disease, environmental health, and emergency response and preparedness, national and international activities to improve skills, share data and applications, and broaden the range of users who apply Earth Science satellite data in public health decisions, or related focus areas.. This special issue has now been completed and will be published n early 2014. This talk will present an overview of the papers that will be published in this special Geocarto International issue.

  18. Design of a Low-Cost Single-Board Computer System for Use In Low-Earth Orbit Small Satellite Missions

    OpenAIRE

    Milani, Dino

    1996-01-01

    A single-board computer system created specifically to meet the demands of a new generation of small satellite missions is being designed, built and tested by students at the University of New Hampshire. The Satellite Single-Board Computer (SSBC) is an Intel 80C186 based system that is qualified for explicit use in low-earth orbit missions. The SSBC serves as a low-cost, high-quality alternative to commercially available systems which are usually very costly and designed for much harsher spac...

  19. Measurements by Mail: Satellite-Controlled Balloons for Making Real-Time Atmospheric Observations Anywhere on Earth

    Science.gov (United States)

    Voss, P. B.

    2008-12-01

    While most of the atmosphere is only a few tens of kilometers overhead, gaining access to this critical region of the earth system is notoriously difficult. Aircraft have been highly successful as atmospheric research platforms but their use can be limited by high costs, complex logistics, and need for ground-support infrastructure. While small Unmanned Aerial Systems (UAS) carry far fewer instruments, they promise to overcome some of these limitations, especially if regulatory and air safety issues can be resolved. Here we describe five years of development on a new type of unmanned platform that can be flown with far fewer restrictions than current UAS. This altitude-controlled balloon can be mailed to collaborators almost anywhere in the world, launched within hours, and flown remotely from our laboratory via satellite link. It can be commanded to perform soundings, track atmospheric layers, or navigate divergent wind fields over periods ranging from days to potentially weeks; meteorological and chemical observations from the balloon are processed on the ground and distributed via the internet in near real time. These controlled balloons have been used in several recent atmospheric research campaigns and are now providing new possibilities for long-distance collaboration, low-cost deployments, and research in previously inaccessible parts of the lower atmosphere.

  20. Monitoring urban impervious surface area change using China-Brazil Earth Resources Satellites and HJ-1 remote sensing images

    Science.gov (United States)

    Du, Peijun; Xia, Junshi; Feng, Li

    2015-01-01

    Impervious surface area (ISA) plays an important role in monitoring urbanization and related environmental changes, and has become a hotspot in urban and environmental studies. Xuzhou City, located in northwest Jiangsu Province, China, is chosen as the study area, and two scenes of China-Brazil Earth Resources Satellites images and one scene of HJ-1 image are employed to estimate ISA percentage and analyze the change trend from 2001 to 2009. Using a linear spectral mixture model (LSMM) and nonlinear backpropagation neural network (BPNN) method, all pixels are decomposed to derive four fraction images representing the abundance of four endmembers: vegetation, high-albedo objects, low-albedo objects, and soil. The ISA percentage is then derived by the combination of high- and low-albedo fraction images after removing the influence of water. Some high spatial resolution images are selected to validate the ISA estimation results, and the experimental results indicate that the accuracy of BPNN is higher than LSMM. By comparing the urban ISA abundances derived by BPNN from three dates, it is found that the ISA of Xuzhou City has increased rapidly from 2001 to 2009, especially in the northeast and southeast regions, corresponding to the urban planning scheme and fast urbanization. Compared to other medium remote sensing images, the revisit cycle of HJ-1 multispectral image is only two days, demonstrating the potential of such data for ISA extraction in urbanization, disaster, and other related applications.

  1. A Novel Double Cluster and Principal Component Analysis-Based Optimization Method for the Orbit Design of Earth Observation Satellites

    Directory of Open Access Journals (Sweden)

    Yunfeng Dong

    2017-01-01

    Full Text Available The weighted sum and genetic algorithm-based hybrid method (WSGA-based HM, which has been applied to multiobjective orbit optimizations, is negatively influenced by human factors through the artificial choice of the weight coefficients in weighted sum method and the slow convergence of GA. To address these two problems, a cluster and principal component analysis-based optimization method (CPC-based OM is proposed, in which many candidate orbits are gradually randomly generated until the optimal orbit is obtained using a data mining method, that is, cluster analysis based on principal components. Then, the second cluster analysis of the orbital elements is introduced into CPC-based OM to improve the convergence, developing a novel double cluster and principal component analysis-based optimization method (DCPC-based OM. In DCPC-based OM, the cluster analysis based on principal components has the advantage of reducing the human influences, and the cluster analysis based on six orbital elements can reduce the search space to effectively accelerate convergence. The test results from a multiobjective numerical benchmark function and the orbit design results of an Earth observation satellite show that DCPC-based OM converges more efficiently than WSGA-based HM. And DCPC-based OM, to some degree, reduces the influence of human factors presented in WSGA-based HM.

  2. The Near Earth Object Surveillance Satellite: Mission status and CCD evolution after 18 months on-orbit

    Science.gov (United States)

    Wallace, B.; Scott, R.; Sale, M.

    2014-09-01

    The Near Earth Object Surveillance Satellite (NEOSSat) is a small telescope equipped microsatellite designed to perform both Space Situational Awareness (SSA) experiments and asteroid detection. NEOSSat was launched on 25 February 2013, however, due to time pressures, NEOSSat was launched with only the minimal software required to keep the spacecraft safe. The time pressure also resulted in the spacecraft undergoing reduced system and environmental testing on the ground. The full software suite, required to obtain imagery and maintain stable pointing, has since been uploaded to the spacecraft. NEOSSat has obtained imagery since June 2013, with the shutter both open and closed, but as of March 2014 has not achieved the fine pointing required to obtain scientifically useful data. The collected imagery is being used to characterize the on-board CCD camera. While gain and dark current values agree with pre-launch values, unexpected artefacts have appeared in the images. Methods for mitigating the artefacts through image processing have been developed, and spacecraft-level fixes are currently being investigated. In addition, damage from high energy particles impacting the CCD has produced hot pixels in imagery. We have been able to measure the evolution of these hot pixels over several months, both in terms of numbers and characteristics; these results will be presented. In addition, early results from the mission (image quality issues and evolution, early imagery examples), as well as the mission status (including fine pointing), will be discussed.

  3. Towards a standard licensing scheme for the access and use of satellite earth observation data for disaster management

    Science.gov (United States)

    Clark, Nathan E.

    2017-10-01

    This paper explores from the view of the data recipient and user the complexities of creating a common licensing scheme for the access and use of satellite earth observation (EO) data in international disaster management (DM) activities. EO data contributions in major disaster events often involve numerous data providers with separate licensing mechanisms for controlling the access, uses, and distribution of data by the end users. A lack of standardization among the terminology, wording, and conditions within these licenses creates a complex legal environment for users, and often prevents them from using, sharing and combining datasets in an effective and timely manner. It also creates uncertainty among data providers as to the types of licensing controls that should be applied in disaster scenarios. This paper builds from an ongoing comparative analysis of the common and conflicting conditions among data licenses that must be addressed in order to facilitate easier access and use of EO data within the DM sector and offers recommendations towards the alignment of the structural and technical aspects of licenses among data providers.

  4. 13C-NMR STUDY ON THE CHAIN TERMINAL STRUCTURE OF POLY-1,3-PENTADIENE POLYMERIZED WITH RARE EARTH CATALYST

    Institute of Scientific and Technical Information of China (English)

    XIE Demin; GONG Zhi; WANG Fosong

    1987-01-01

    The sequence distribution and the terminal structures of poly-1,3-pentadiene chains obtained by rare earth catalyst and effect of polymerization temperature on microstructure of the polymer have been investigated by 13C-NMR method. According to experimental results it was supposed that terminal active growing chain of the polymer would be four types of anti- and syn-η3-allyl structures. When polymerization temperature was reduced, the content of cis-1,4-poly-1,3-pentadiene increases. It can be explained by isomerization between anti- and syn-η3-allyl. The process forming trans-1,2 unit instead of 3,4-unit were also described.

  5. New fire diurnal cycle characterizations to improve fire radiative energy assessments made from low-Earth orbit satellites sampling

    Science.gov (United States)

    Andela, N.; Kaiser, J. W.; van der Werf, G. R.; Wooster, M. J.

    2015-03-01

    Accurate near real time fire emissions estimates are required for air quality forecasts. To date, most approaches are based on satellite-derived estimates of fire radiative power (FRP), which can be converted to fire radiative energy (FRE) which is directly related to fire emissions. Uncertainties in these FRE estimations are often substantial. This is for a large part because the most often used low-Earth orbit satellite-based instruments like the MODerate-resolution Imaging Spectroradiometer (MODIS) have a relatively poor sampling of the usually pronounced fire diurnal cycle. In this paper we explore the spatial variation of this fire diurnal cycle and its drivers. Specifically, we assess how representing the fire diurnal cycle affects FRP and FRE estimations when using data collected at MODIS overpasses. Using data assimilation we explored three different methods to estimate hourly FRE, based on an incremental sophistication of parameterizing the fire diurnal cycle. We sampled data from the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) at MODIS detection opportunities to drive the three approaches. The full SEVIRI time-series, providing full coverage of the diurnal cycle, were used to evaluate the results. Our study period comprised three years (2010-2012), and we focussed on Africa and the Mediterranean basin to avoid the use of potentially lower quality SEVIRI data obtained at very far off-nadir view angles. We found that the fire diurnal cycle varies substantially over the study region, and depends on both fuel and weather conditions. For example, more "intense" fires characterized by a fire diurnal cycle with high peak fire activity, long duration over the day, and with nighttime fire activity are most common in areas of large fire size (i.e., large burned area per fire event). These areas are most prevalent in relatively arid regions. Ignoring the fire diurnal cycle as done currently in some approaches caused structural

  6. Community effect triggers terminal differentiation of myogenic cells derived from muscle satellite cells by quenching Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Michiko [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Aging Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 (Japan); Mukai, Atsushi; Shiomi, Kosuke [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Song, Si-Yong [Institute of Neuroscience, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki-shi, Kagawa 769-2193 (Japan); Hashimoto, Naohiro, E-mail: nao@ncgg.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2011-01-15

    A high concentration of bone morphogenetic proteins (BMPs) stimulates myogenic progenitor cells to undergo heterotopic osteogenic differentiation. However, the physiological role of the Smad signaling pathway during terminal muscle differentiation has not been resolved. We report here that Smad1/5/8 was phosphorylated and activated in undifferentiated growing mouse myogenic progenitor Ric10 cells without exposure to any exogenous BMPs. The amount of phosphorylated Smad1/5/8 was severely reduced during precocious myogenic differentiation under the high cell density culture condition even in growth medium supplemented with a high concentration of serum. Inhibition of the Smad signaling pathway by dorsomorphin, an inhibitor of Smad activation, or noggin, a specific antagonist of BMP, induced precocious terminal differentiation of myogenic progenitor cells in a cell density-dependent fashion even in growth medium. In addition, Smad1/5/8 was transiently activated in proliferating myogenic progenitor cells during muscle regeneration in rats. The present results indicate that the Smad signaling pathway is involved in a critical switch between growth and differentiation of myogenic progenitor cells both in vitro and in vivo. Furthermore, precocious cell density-dependent myogenic differentiation suggests that a community effect triggers the terminal muscle differentiation of myogenic cells by quenching the Smad signaling.

  7. Propagation Measurement on Earth-Sky Signal Effects for High Speed Train Satellite Channel in Tropical Region at Ku-Band

    Directory of Open Access Journals (Sweden)

    Abdulmajeed H. J. Al-Jumaily

    2015-01-01

    Full Text Available Recent advances in satellite communication technologies in the tropical regions have led to significant increase in the demand for services and applications that require high channel quality for mobile satellite terminals. Determination and quantification of these requirements are important to optimize service quality, particularly in the Malaysian region. Moreover, the tests on current satellite propagation models were carried out at temperate regions whose environmental characteristics are much different from those in Malaysia. This difference renders these propagation models inapplicable and irrelevant to tropical regions in general. This paper presents the link characteristics observations and performance analysis with propagation measurements done in tropical region to provide an accurate database regarding rain and power arches supply (PAs attenuations in the tropics for mobile scenarios. Hence, an extension for improving the performance assessment and analysis of satellite/transmission has been achieved. The Malaysia propagation measurement for mobile scenario (Malaysia-PMMS enables first-hand coarse estimation and attenuation analysis, because the attenuation resulting from rain and PAs becomes easily amenable for measurement. Parallel to that, the measured attenuation has been compared with that of the simulated output at noise floor level. The underlying analytical tool is validated by measurements specific at tropical region, for dynamic model of mobile satellite links operating at higher than 10 GHz.

  8. Satellite Ocean Color Data Merging Using a Bio-optical model: A Path for Earth Science Data Records ?

    Science.gov (United States)

    Maritorena, S.; Siegel, D. A.; Hembise Fanton D'Andon, O.; Mangin, A.; Frew, J.; Nelson, N.

    2009-12-01

    The characteristics and benefits of ocean color merged data sets created using a semi-analytical model and the normalized water-leaving radiance observations from the SeaWiFS, MODIS-AQUA and MERIS ocean color missions are presented. Merged data products are coalesced from multiple mission observations into a single data product with better spatial and temporal coverage than the individual missions. Using the data from SeaWiFS, MODIS-AQUA and MERIS for the 2002-2009 time period, the average daily coverage of a merged product is ~25% of the world ocean which is nearly twice that of any single mission’s observations. The frequency at which a particular area is sampled from space is also greatly improved in merged data as some areas can be sampled as frequently as 64% of the time (in days). The merged data are validated through matchup analyses and by comparing them to the data sets obtained from individual missions. Further, a complete error budget was developed which accounts for uncertainty associated with input water-leaving radiances, the bio-optical model and uncertainty estimates for the output products (i.e. the chlorophyll concentration, the combined dissolved and detrital absorption coefficient and the particulate backscattering coefficient). These merged products and their uncertainties at each pixel were developed within the NASA MEASURES (http://wiki.icess.ucsb.edu/measures/index.php/Main_Page) and ESA GlobColour (http://www.globcolour.info/) projects and are available to the scientific community. The merging approach has many potential benefits for the creation of Earth Science Data Records from satellite ocean color observations.

  9. The Role of Anchor Stations in the Validation of Earth Observation Satellite Data and Products. The Valencia and the Alacant Anchor Stations

    Science.gov (United States)

    Lopez-Baeza, Ernesto; Geraldo Ferreira, A.; Saleh-Contell, Kauzar

    Space technology facilitates humanity and science with a global revolutionary view of the Earth through the acquisition of Earth Observation satellite data. Satellites capture information over different spatial and temporal scales and assist in understanding natural climate processes and in detecting and explaining climate change. Accurate Earth Observation data is needed to describe climate processes by improving the parameterisations of different climate elements. Algorithms to produce geophysical parameters from raw satellite observations should go through selection processes or participate in inter-comparison programmes to ensure performance reliability. Geophysical parameter datasets, obtained from satellite observations, should pass a quality control before they are accepted in global databases for impact, diagnostic or sensitivity studies. Calibration and Validation, or simply "Cal/Val", is the activity that endeavours to ensure that remote sensing products are highly consistent and reproducible. This is an evolving scientific activity that is becoming increasingly important as more long-term studies on global change are undertaken, and new satellite missions are launched. Calibration is the process of quantitatively defining the system responses to known, controlled signal inputs. Validation refers to the process of assessing, by independent means, the quality of the data products derived from the system outputs. These definitions are generally accepted and most often used in the remote sensing context to refer specifically and respectively to sensor radiometric calibration and geophysical parameter validation. Anchor Stations are carefully selected locations at which instruments measure quantities that are needed to run, calibrate or validate models and algorithms. These are needed to quanti-tatively evaluate satellite data and convert it into geophysical information. The instruments collect measurements of basic quantities over a long timescale

  10. Videoconferencing via Satellite: Opening Congress to the People. Final Report.

    Science.gov (United States)

    Wood, Fred B.; And Others

    This evaluative study investigated through actual demonstrations the effectiveness of satellite videoconferencing in providing a new mechanism for informed dialogue between congressmen and constituents, thus strengthening the legislative process. In this experiment, the use of NASA's portable earth terminal was instrumental in making satellite…

  11. Robust Satellite Techniques for monitoring earth emitted radiation in the Japanese seismic area by using MTSAT observations in the TIR spectral range

    Science.gov (United States)

    Genzano, Nicola; Filizzola, Carolina; Hattori, Katsumi; Lisi, Mariano; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio

    2016-04-01

    Since eighties, the fluctuations of Earth's thermally emitted radiation, measured by satellite sensors operating in the thermal infrared (TIR) spectral range, have been associated with the complex process of preparation for major earthquakes. But, like other claimed earthquake precursors (seismological, physical, chemical, biological, etc.) they have been for long-time considered with some caution by scientific community. The lack of a rigorous definition of anomalous TIR signal fluctuations and the scarce attention paid to the possibility that other causes (e.g. meteorological) different from seismic activity could be responsible for the observed TIR variations were the main causes of such skepticism. Compared with previously proposed approaches the general change detection approach, named Robust Satellite Techniques (RST), showed good ability to discriminate anomalous TIR signals possibly associated to seismic activity, from the normal variability of TIR signal due to other causes. Thanks to its full exportability on different satellite packages, since 2001 RST has been implemented on TIR images acquired by polar (e.g. NOAA-AVHRR, EOS -MODIS) and geostationary (e.g. MSG-SEVIRI, NOAA-GOES/W, GMS-5/VISSR) satellite sensors, in order to verify the presence (or absence) of TIR anomalies in presence (absence) of earthquakes (with M>4) in different seismogenic areas around the world (e.g. Italy, Greece, Turkey, India, Taiwan, etc.). In this paper, the RST data analysis approach has been implemented on TIR satellite records collected over Japan by the geostationary satellite sensor MTSAT (Multifunctional Transport SATellites) and RETIRA (Robust Estimator of TIR Anomalies) index was used to identify Significant Sequences of TIR Anomalies (SSTAs) in a possible space-time relations with seismic events. Achieved results will be discussed in the perspective of a multi-parametric approach for a time-Dependent Assessment of Seismic Hazard (t-DASH).

  12. Effects of the Earth Albedo and Thermic Emissivity on Geodetic Satellite Trajectories: a Mean Model from 2000-2016 data sets.

    Science.gov (United States)

    Deleflie, Florent; Sammuneh, Muhammad Ali; Coulot, David; Pollet, Arnaud; Biancale, Richard; Capderou, Michel

    2017-04-01

    Part of the energy received on the Earth from the Sun is split into two components, a short wave component which corresponds to the visible emissivity of the Earth's surface (albedo), and the long wave part corresponding to the thermic emissivity (infrared wavelengths). These two components induce small non gravitational forces on the orbits of artificial satellites, towards the radial direction (mainly), that we are evaluating to derive a mean model. The first step to evaluate the mean amplitudes and periods of the generaetd perturbations consists in comparing post-fit adjustment of geodetic satellites to SLR data, in two dynamical models accounting or not accounting for empirical forces standing for such effects: the orbits of the geodetic satellite STARLETTE, Stella, Ajisai, Lageos 1 and Lageos 2 are carried out in such a way over the period 2000-2016, with the GINS GRGS orbit computation s/w. We then use three kinds of data sets to investigate the mean amplitudes of the perturbations, and to investigate features on regional spatial scales: (i) Stephens tables, (Stephens, 1980), ECMWF (European Centre for Medium-Range Weather Forecasts ) data sets (that are available at GRGS, Groupe de Recherche de Géodésie Spatiale, France), and CERES (Clouds and the Earth's Radiant Energy System) data sets (publickly available).We analyze what is the data set leading to the lowest residual level. Then, following an approach close to the one developed by Stephens, we propose a set of monthly grids that are averaged over the period 2000-2016, and that is evaluated through the orbit computation of the above-mentioned satellites.

  13. Secure voice for mobile satellite applications

    Science.gov (United States)

    Vaisnys, Arvydas; Berner, Jeff

    The initial system studies are described which were performed at JPL on secure voice for mobile satellite applications. Some options are examined for adapting existing Secure Telephone Unit III (STU-III) secure telephone equipment for use over a digital mobile satellite link, as well as for the evolution of a dedicated secure voice mobile earth terminal (MET). The work has included some lab and field testing of prototype equipment. The work is part of an ongoing study at JPL for the National Communications System (NCS) on the use of mobile satellites for emergency communications. The purpose of the overall task is to identify and enable the technologies which will allow the NCS to use mobile satellite services for its National Security Emergency Preparedness (NSEP) communications needs. Various other government agencies will also contribute to a mobile satellite user base, and for some of these, secure communications will be an essential feature.

  14. Secure voice for mobile satellite applications

    Science.gov (United States)

    Vaisnys, Arvydas; Berner, Jeff

    1990-01-01

    The initial system studies are described which were performed at JPL on secure voice for mobile satellite applications. Some options are examined for adapting existing Secure Telephone Unit III (STU-III) secure telephone equipment for use over a digital mobile satellite link, as well as for the evolution of a dedicated secure voice mobile earth terminal (MET). The work has included some lab and field testing of prototype equipment. The work is part of an ongoing study at JPL for the National Communications System (NCS) on the use of mobile satellites for emergency communications. The purpose of the overall task is to identify and enable the technologies which will allow the NCS to use mobile satellite services for its National Security Emergency Preparedness (NSEP) communications needs. Various other government agencies will also contribute to a mobile satellite user base, and for some of these, secure communications will be an essential feature.

  15. Model of a neural network inertial satellite navigation system capable of estimating the earth's gravitational field gradient

    Science.gov (United States)

    Devyatisil'nyi, A. S.

    2016-09-01

    A model for recognizing inertial and satellite data on an object's motion that are delivered by a set of distributed onboard sensors (newtonmeters, gyros, satellite receivers) has been described. Specifically, the model is capable of estimating the parameters of the gravitational field.

  16. Fault location of two-parallel transmission line for double phase-to-earth fault using one-terminal data

    Institute of Scientific and Technical Information of China (English)

    张庆超; 段晖; 耿超; 宋文南

    2003-01-01

    An accurate algorithm for fault location of double phase-to-earth fault on transmission line of direct ground neutral system is presented. The algorithm, which employs the faulted phase network and zero-sequence network as fault-location model in which the source impedance at the remote end is not involved, ef-fectively eliminates the effect of load flow and fault resistance on the accuracy of fault location. The algorithm achieves accurate location by measuring only one local end data and is used in a procedure that provides automatic determination of faulted types and phases, and does not require the engineer to specify them. Simulation results showed the effectiveness of the algorithm under the condition of double phase-to-earth fault.

  17. Fault location of two-parallel transmission line for double phase-to-earth fault using one-terminal data

    Institute of Scientific and Technical Information of China (English)

    张庆超; 段晖; 耿超; 宋文南

    2003-01-01

    An accurate algorithm for fault location of double phase-to-earth fault on transmission line of direct ground neutral system is presented. The algorithm, which employs the faulted phase network and zero-sequence network as fault-location model in which the source impedance at the remote end is not involved, effectively eliminates the effect of load flow and fault resistance on the accuracy of fault location. The algorithm achieves accurate location by measuring only one local end data and is used in a procedure that provides automatic determination of faulted types and phases, and does not require the engineer to specify them. Simulation results showed the effectiveness of the algorithm under the condition of double phase-to-earth fault.

  18. Earth Eclipse Status Analysis of Beidou Navigation Satellites%北斗导航卫星地影状态分析

    Institute of Scientific and Technical Information of China (English)

    毛悦; 宋小勇; 贾小林; 吴显兵

    2014-01-01

    为满足我国卫星导航系统状态切换中地影时间确定以及卫星轨道确定中太阳辐射压建模等需求,针对GEO、IGSO、MEO三类导航卫星,采用柱形与锥形地影模型进行了地影因子及本影区持续时间差异分析。在此基础上以地影期持续天数,本影区持续时间为分析对象,对卫星轨道根数与地影状态之间的关系进行了较全面分析。指出柱形地影模型对GEO卫星的计算误差相对较大;对于GEO卫星,当太阳赤纬绝对值小于84.240°时,将经历一年两次的地影期;在卫星6个开普勒轨道根数中,地影天数随轨道高度增大而降低;与偏心率及近地点幅角相比,升交点赤经、轨道倾角是地影状态的主要影响因素。%To meet the need of earth eclipse time determination in satellite navigation system’s state switching and solar radiation pressure modeling in orbit determination , this paper analysed the difference among cylindrical and conical shadow model in eclipse factor and umbra duration calculation for three types of navigation satellites (GEO ,IGSO ,MEO) .And then the number of days suffering earth eclipse in a years’time and the umbra duration in one day are analysed in order to obtain the relationship between orbit elements and earth eclipse status . Through these analyses , this paper comes to the conclusion that the cylindrical model calculation error of GEO satellite is larger than that of IGSO and MEO .GEO satellite will suffer earth eclipse twice a year when the absolute value of solar declination is less then 8 4.24 0 degree .In the six Kepler orbital elements ,the number of days of the earth eclipse will be reduced according to the increase of semi-major axis .Compared with the eccentricity and perigee ,RAAN and the orbital inclination are the main factors which influence the state of the earth’s eclipse .

  19. Assessing gaps in irrigated agricultural productivity through satellite earth observations-A case study of the Fergana Valley, Central Asia

    Science.gov (United States)

    Löw, Fabian; Biradar, Chandrashekhar; Fliemann, Elisabeth; Lamers, John P. A.; Conrad, Christopher

    2017-07-01

    Improving crop area and/or crop yields in agricultural regions is one of the foremost scientific challenges for the next decades. This is especially true in irrigated areas because sustainable intensification of irrigated crop production is virtually the sole means to enhance food supply and contribute to meeting food demands of a growing population. Yet, irrigated crop production worldwide is suffering from soil degradation and salinity, reduced soil fertility, and water scarcity rendering the performance of irrigation schemes often below potential. On the other hand, the scope for improving irrigated agricultural productivity remains obscure also due to the lack of spatial data on agricultural production (e.g. crop acreage and yield). To fill this gap, satellite earth observations and a replicable methodology were used to estimate crop yields at the field level for the period 2010/2014 in the Fergana Valley, Central Asia, to understand the response of agricultural productivity to factors related to the irrigation and drainage infrastructure and environment. The results showed that cropping pattern, i.e. the presence or absence of multi-annual crop rotations, and spatial diversity of crops had the most persistent effects on crop yields across observation years suggesting the need for introducing sustainable cropping systems. On the other hand, areas with a lower crop diversity or abundance of crop rotation tended to have lower crop yields, with differences of partly more than one t/ha yield. It is argued that factors related to the infrastructure, for example, the distance of farms to the next settlement or the density of roads, had a persistent effect on crop yield dynamics over time. The improvement potential of cotton and wheat yields were estimated at 5%, compared to crop yields of farms in the direct vicinity of settlements or roads. In this study it is highlighted how remotely sensed estimates of crop production in combination with geospatial technologies

  20. Chasing the Black Smoke: Building Software for CALIPSO Satellite Data to Aid in Tracking and Identifying Sources of Aerosols and their Impact on the Earth's Climate

    Science.gov (United States)

    Mercer, G. A.

    2015-12-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite is a NASA Earth observation that analyzes aerosol particles suspended in the Earth's atmosphere. Researchers use visualized CALIPSO data to track the global distribution, dispersion, and source of aerosols. There currently exists a tool for displaying CALIPSO data, but this tool does not support needed features for tracking aerosols such as selecting regions of data and sharing those selected regions, making tracking specific airborne objects difficult for researchers. Adding these necessary features to the current CALIPSO visualization tool is difficult, as the tool is written in Interactive Data Language (IDL), a proprietary and obscure language and writing additional features for the tool would require a specialized development team. This topic will focus on release of a new tool for visualization CALIPSO's atmospheric data, or the Visualization of CALIPSO (VOCAL) open source Python program. The talk will explain why VOCAL will serve as the successor to the current visualization tool for CALIPSO data, what new features VOCAL brings to the table for researchers, and how this new tool can further support the tracking and identification of aerosols in the Earth's atmosphere.

  1. Design and testing of the navigation model for three axis stabilized earth oriented satellites applied to the ATS-6 satellite image data base

    Science.gov (United States)

    Kuhlow, W. W.; Chatters, G. C.

    1977-01-01

    An earth edge methodology has been developed to account for the relative attitude changes between successive ATS-6 images which allows reasonable high quality wind sets to be produced. The method consists of measuring the displacements of the right and left infrared earth edges between successive ATS-6 images as a function of scan line; from these measurements the attitude changes can be deduced and used to correct the apparent cloud displacement measurements. The wind data sets generated from ATS-6 using the earth-edge methodology were compared with those derived from the SMS-1 images (and model) covering the same time period. Quantitative comparisons for low level trade cumuli were made at interpolated uniformly spaced grid points and for selected individual comparison clouds. Selected individual comparison clouds, the root-mean-square differences for the U and V components were 1.0 and 1.2 meters per second with a maximum wind direction difference of 15 deg.

  2. Studies of Geomagnetic Pulsations Using Magnetometer Data from the CHAMP Low-Earth-Orbit Satellite and Ground-Based Stations: a Review

    Directory of Open Access Journals (Sweden)

    P R Sutcliffe

    2011-06-01

    Full Text Available We review research on geomagnetic pulsations carried out using magnetic field measurements from the CHAMP low-Earth-orbit (LEO satellite and ground-based stations in South Africa and Hungary. The high quality magnetic field measurements from CHAMP made it possible to extract and clearly resolve Pi2 and Pc3 pulsations in LEO satellite data. Our analyses for nighttime Pi2 pulsations are indicative of a cavity mode resonance. However, observations of daytime Pi2 pulsation events identified in ground station data show no convincing evidence of their occurrence in CHAMP data. We also studied low-latitude Pc3 pulsations and found that different types of field line resonant structure occur, namely discrete frequencies driven by a narrow band source and L-dependent frequencies driven by a broad band source.

  3. Accounting of fundamental components of the rotation parameters of the Earth in the formation of a high-accuracy orbit of navigation satellites

    Science.gov (United States)

    Markov, Yu. G.; Mikhailov, M. V.; Pochukaev, V. N.

    2012-07-01

    An analysis of perturbing factors influencing the motion of a navigation satellite (NS) is carried out, and the degree of influence of each factor on the GLONASS orbit is estimated. It is found that fundamental components of the Earth's rotation parameters (ERP) are one substantial factor commensurable with maximum perturbations. Algorithms for the calculation of orbital perturbations caused by these parameters are given; these algorithms can be implemented in a consumer's equipment. The daily prediction of NS coordinates is performed on the basis of real GLONASS satellite ephemerides transmitted to a consumer, using the developed prediction algorithms taking the ERP into account. The obtained accuracy of the daily prediction of GLONASS ephemerides exceeds by tens of times the accuracy of the daily prediction performed using algorithms recommended in interface control documents.

  4. TYCHO: Demonstrator and operational satellite mission to Earth-Moon-Libration point EML-4 for communication relay provision as a service

    Science.gov (United States)

    Hornig, Andreas; Homeister, Maren

    2015-03-01

    In the current wake of mission plans to the Moon and to Earth-Moon Libration points (EML) by several agencies and organizations, TYCHO identifies the key role of telecommunication provision for the future path of lunar exploration. It demonstrates an interesting extension to existing communication methods to the Moon and beyond by combining innovative technology with a next frontier location and the commercial space communication sector. It is evident that all communication systems will rely on direct communication to Earth ground stations. In case of EML-2 missions around HALO orbits or bases on the far side of the Moon, it has to be extended by communication links via relay stations. The innovative approach is that TYCHO provides this relay communication to those out-of-sight lunar missions as a service. TYCHO will establish a new infrastructure for future missions and even create a new market for add-on relay services. The TMA-0 satellite is TYCHO's first phase and a proposed demonstrator mission to the Earth-Moon Libration point EML-4. It demonstrates relay services needed for automated exploratory and manned missions (Moon bases) on the rim (>90°E and >90°W) and far side surface, to lunar orbits and even to EML-2 halo orbits (satellites and space stations). Its main advantage is the permanent availability of communication coverage. This will provide full access to scientific and telemetry data and furthermore to crucial medical monitoring and safety. The communication subsystem is a platform for conventional communication but also a test-bed for optical communication with high data-rate LASER links to serve the future needs of manned bases and periodic burst data-transfer from lunar poles. The operational TMA-1 satellite is a stand-alone mission integrated into existing space communication networks to provide open communication service to external lunar missions. Therefore the long-time stable libration points EML-4 and -5 are selected to guarantee an

  5. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL)

    Science.gov (United States)

    1996-01-01

    This Failure Modes and Effects Analysis (FMEA) is for the Advanced Microwave Sounding Unit-A (AMSU-A) instruments that are being designed and manufactured for the Meteorological Satellites Project (METSAT) and the Earth Observing System (EOS) integrated programs. The FMEA analyzes the design of the METSAT and EOS instruments as they currently exist. This FMEA is intended to identify METSAT and EOS failure modes and their effect on spacecraft-instrument and instrument-component interfaces. The prime objective of this FMEA is to identify potential catastrophic and critical failures so that susceptibility to the failures and their effects can be eliminated from the METSAT/EOS instruments.

  6. SeaWiFS Technical Report Series. Volume 42; Satellite Primary Productivity Data and Algorithm Development: A Science Plan for Mission to Planet Earth

    Science.gov (United States)

    Falkowski, Paul G.; Behrenfeld, Michael J.; Esaias, Wayne E.; Balch, William; Campbell, Janet W.; Iverson, Richard L.; Kiefer, Dale A.; Morel, Andre; Yoder, James A.; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)

    1998-01-01

    Two issues regarding primary productivity, as it pertains to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Program and the National Aeronautics and Space Administration (NASA) Mission to Planet Earth (MTPE) are presented in this volume. Chapter 1 describes the development of a science plan for deriving primary production for the world ocean using satellite measurements, by the Ocean Primary Productivity Working Group (OPPWG). Chapter 2 presents discussions by the same group, of algorithm classification, algorithm parameterization and data availability, algorithm testing and validation, and the benefits of a consensus primary productivity algorithm.

  7. Advanced communications technology satellite high burst rate link evaluation terminal power control and rain fade software test plan, version 1.0

    Science.gov (United States)

    Reinhart, Richard C.

    1993-01-01

    The Power Control and Rain Fade Software was developed at the NASA Lewis Research Center to support the Advanced Communications Technology Satellite High Burst Rate Link Evaluation Terminal (ACTS HBR-LET). The HBR-LET is an experimenters terminal to communicate with the ACTS for various experiments by government, university, and industry agencies. The Power Control and Rain Fade Software is one segment of the Control and Performance Monitor (C&PM) Software system of the HBR-LET. The Power Control and Rain Fade Software automatically controls the LET uplink power to compensate for signal fades. Besides power augmentation, the C&PM Software system is also responsible for instrument control during HBR-LET experiments, control of the Intermediate Frequency Switch Matrix on board the ACTS to yield a desired path through the spacecraft payload, and data display. The Power Control and Rain Fade Software User's Guide, Version 1.0 outlines the commands and procedures to install and operate the Power Control and Rain Fade Software. The Power Control and Rain Fade Software Maintenance Manual, Version 1.0 is a programmer's guide to the Power Control and Rain Fade Software. This manual details the current implementation of the software from a technical perspective. Included is an overview of the Power Control and Rain Fade Software, computer algorithms, format representations, and computer hardware configuration. The Power Control and Rain Fade Test Plan provides a step-by-step procedure to verify the operation of the software using a predetermined signal fade event. The Test Plan also provides a means to demonstrate the capability of the software.

  8. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  9. Comprehensive Study on Small and Low Cost Satellite Technology for Earth Observation with Case Study for Indonesia: Projection for 2002-2022

    Science.gov (United States)

    Djojodihardjo, Harijono

    and economic progress, while facing global competitiveness locally as opportunities and challenges. Of particular importance is the utilization and development of earth observation capabilities for environmental natural resources imperatives to this end is quite significant. On one hand there may appear challenges to achieve unique and high quality requirements on many of the elements of social and economic progress, i.e. natural resources, human resources, market opportunities and geographical advantage; on the other hand one may face constraints in the financial system, cultural inertia and paradigm, and the need to carry forward large momentum that may pull back technological and economic progress that may be characterized by a "roller coaster" dynamics. Satellite Technology for Earth Observation, its Utilization and Development is carried out with Indonesian Development Interest in mind. Space System Services and Players are identified. Mission objectives associated with Urban and Rural Areas as well as Satellite-Based Multimedia Technology Applications For Promoting Rural Development will be identified. System design analysis and synthesis will be elaborated and some alternatives will be presented following a unified system outlook. Ground Segment and Space Segment Architecture will be elaborated by carrying out Architecture Optimization.

  10. Uses of communication satellites in water utility operations

    Science.gov (United States)

    Tighe, W. S.

    This paper proposes a system to serve the communications needs of the operating side of a water utility and estimates the requirements and capabilities of the equipment needed. The system requires the shared use of a satellite transponder with 100% backup. Messages consist of data packets containing data and control information, plus voice transmission. Satellite communication may have a price advantage in some instances over wire line or VHF radio and have greater survivability in case of a natural disaster. Water and other utilities represent a significant market for low cost mass produced satellite earth terminals.

  11. Analysis of rain fade duration models for Earth-to-satellite path based on data measured in Malaysia

    Science.gov (United States)

    Dao, Hassan; Rafiqul, Islam Md; Al-Khateeb, Khalid A. S.

    2013-12-01

    Statistical analysis of rain fade duration is crucial information for system engineer to design and plan a fade mitigation technique (FMT) for the satellite communication system. An investigation is carried out based on data measured of one year period in Kuala Lumpur, Malaysia from satellite path of MEASAT3. This paper presents statistical analysis of measured fade duration on high elevation angle (77.4°) in Ku-band compared to three prediction models of fade duration. It is found that none of the models could predict measured fade duration distribution accurately.

  12. 全球导航星座的远地/深空导航应用研究%The application research of global navigation constellation for HEO (high earth orbit) satellites and deep-space satellites

    Institute of Scientific and Technical Information of China (English)

    赵雯雯; 张立新; 蒙艳松; 宋志强

    2011-01-01

    It has been widely studied that GNSS(global navigation satellite system) offers navigation for Ground-Based users and LEO(low earth orbit.) users. At present, it mainly depends on Ground-Based measurement and control system that HEO satellites and deep-space satellites determine their orbits and attitude, and synchronize their time. The Ground-Based measurement and control system which has complex equipment and high investment can't support abundant aerocrafts at the same time, and can't operate autonomously. This article studied the possibility of orbit determination, attitude determination, and time synchronization with global navigation constellation for HEO satellites and deep-space satellites, and consequently achieved the extended applications of global navigation constellation. It found out a high efficient way for global navigation constellation to operating as time and space reference for constellation networks, in order that constellation networks autonomously operate and navigate. And it also putted forward a solution to realize passive navigation for HEO satellites and deep-space satellites by skillfully designing the links between satellites, without increasing equipment on satellites. The research focused on the number of visible satellites and GDOP(geometric dilution of precision) value. The precision of positioning and time determination was also analyzed in order to provide new ideas for the construction of global navigation constellation.%全球卫星导航系统为低轨和地面用户提供导航服务已有广泛的研究.中高轨卫星以及深空卫星的定轨、定姿和时间同步,目前主要利用地面测控系统完成,存在设备复杂、投资高、无法同时支持大量飞行器、无法自主运行等缺点.本文研究中高轨卫星和深空卫星利用全球导航星座进行定轨、定姿和授时服务的可行性,实现其扩展应用,寻求全球导航星座作为天基网时空基准的高效途径,使得天基网的

  13. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites

    Science.gov (United States)

    Belward, Alan S.; Skøien, Jon O.

    2015-05-01

    This paper presents a compendium of satellites under civilian and/or commercial control with the potential to gather global land-cover observations. From this we show that a growing number of sovereign states are acquiring capacity for space based land-cover observations and show how geopolitical patterns of ownership are changing. We discuss how the number of satellites flying at any time has progressed as a function of increased launch rates and mission longevity, and how the spatial resolutions of the data they collect has evolved. The first such satellite was launched by the USA in 1972. Since then government and/or private entities in 33 other sovereign states and geopolitical groups have chosen to finance such missions and 197 individual satellites with a global land-cover observing capacity have been successfully launched. Of these 98 were still operating at the end of 2013. Since the 1970s the number of such missions failing within 3 years of launch has dropped from around 60% to less than 20%, the average operational life of a mission has almost tripled, increasing from 3.3 years in the 1970s to 8.6 years (and still lengthening), the average number of satellites launched per-year/per-decade has increased from 2 to 12 and spatial resolution increased from around 80 m to less than 1 m multispectral and less than half a meter for panchromatic; synthetic aperture radar resolution has also fallen, from 25 m in the 1970s to 1 m post 2007. More people in more countries have access to data from global land-cover observing spaceborne missions at a greater range of spatial resolutions than ever before. We provide a compendium of such missions, analyze the changes and shows how innovation, the need for secure data-supply, national pride, falling costs and technological advances may underpin the trends we document.

  14. Spore-Forming Thermophilic Bacterium within Artificial Meteorite Survives Entry into the Earth's Atmosphere on FOTON-M4 Satellite Landing Module.

    Science.gov (United States)

    Slobodkin, Alexander; Gavrilov, Sergey; Ionov, Victor; Iliyin, Vyacheslav

    2015-01-01

    One of the key conditions of the lithopanspermia hypothesis is that microorganisms situated within meteorites could survive hypervelocity entry from space through the Earth's atmosphere. So far, all experimental proof of this possibility has been based on tests with sounding rockets which do not reach the transit velocities of natural meteorites. We explored the survival of the spore-forming thermophilic anaerobic bacterium, Thermoanaerobacter siderophilus, placed within 1.4-cm thick basalt discs fixed on the exterior of a space capsule (the METEORITE experiment on the FOTON-M4 satellite). After 45 days of orbital flight, the landing module of the space vehicle returned to Earth. The temperature during the atmospheric transit was high enough to melt the surface of basalt. T. siderophilus survived the entry; viable cells were recovered from 4 of 24 wells loaded with this microorganism. The identity of the strain was confirmed by 16S rRNA gene sequence and physiological tests. This is the first report on the survival of a lifeform within an artificial meteorite after entry from space orbit through Earth's atmosphere at a velocity that closely approached the velocities of natural meteorites. The characteristics of the artificial meteorite and the living object applied in this study can serve as positive controls in further experiments on testing of different organisms and conditions of interplanetary transport.

  15. Spore-Forming Thermophilic Bacterium within Artificial Meteorite Survives Entry into the Earth's Atmosphere on FOTON-M4 Satellite Landing Module.

    Directory of Open Access Journals (Sweden)

    Alexander Slobodkin

    Full Text Available One of the key conditions of the lithopanspermia hypothesis is that microorganisms situated within meteorites could survive hypervelocity entry from space through the Earth's atmosphere. So far, all experimental proof of this possibility has been based on tests with sounding rockets which do not reach the transit velocities of natural meteorites. We explored the survival of the spore-forming thermophilic anaerobic bacterium, Thermoanaerobacter siderophilus, placed within 1.4-cm thick basalt discs fixed on the exterior of a space capsule (the METEORITE experiment on the FOTON-M4 satellite. After 45 days of orbital flight, the landing module of the space vehicle returned to Earth. The temperature during the atmospheric transit was high enough to melt the surface of basalt. T. siderophilus survived the entry; viable cells were recovered from 4 of 24 wells loaded with this microorganism. The identity of the strain was confirmed by 16S rRNA gene sequence and physiological tests. This is the first report on the survival of a lifeform within an artificial meteorite after entry from space orbit through Earth's atmosphere at a velocity that closely approached the velocities of natural meteorites. The characteristics of the artificial meteorite and the living object applied in this study can serve as positive controls in further experiments on testing of different organisms and conditions of interplanetary transport.

  16. Cirrus Crystal Terminal Velocities.

    Science.gov (United States)

    Heymsfield, Andrew J.; Iaquinta, Jean

    2000-04-01

    Cirrus crystal terminal velocities are of primary importance in determining the rate of transport of condensate from upper- to middle-tropospheric levels and profoundly influence the earth's radiation balance through their effect on the rate of buildup or decay of cirrus clouds. In this study, laboratory and field-based cirrus crystal drag coefficient data, as well as analytical descriptions of cirrus crystal shapes, are used to derive more physically based expressions for the velocities of cirrus crystals than have been available in the past.Polycrystals-often bullet rosettes-are shown to be the dominant crystal types in synoptically generated cirrus, with columns present in varying but relatively large percentages, depending on the cloud. The two critical parameters needed to calculate terminal velocity are the drag coefficient and the ratio of mass to cross-sectional area normal to their fall direction. Using measurements and calculations, it is shown that drag coefficients from theory and laboratory studies are applicable to crystals of the types found in cirrus. The ratio of the mass to area, which is shown to be relatively independent of the number of bullets in the rosette, is derived from an analytic model that represents bullet rosettes containing one to eight bullets in 19 primary geometric configurations. The ratio is also derived for columns. Using this information, a general set of equations is developed to calculate the terminal velocities and masses in terms of the aspect ratio (width divided by length), ice density, and rosette maximum dimension. Simple expressions for terminal velocity and mass as a function of bullet rosette maximum dimension are developed by incorporating new information on bullet aspect ratios.The general terminal velocity and mass relations are then applied to a case from the First International Satellite Cloud Climatology Project (ISCCP) Research Experiment (FIRE) 2, when size spectra from a balloon-borne ice crystal

  17. Study of time-lapse processing for dynamic hydrologic conditions. [electronic satellite image analysis console for Earth Resources Technology Satellites imagery

    Science.gov (United States)

    Serebreny, S. M.; Evans, W. E.; Wiegman, E. J.

    1974-01-01

    The usefulness of dynamic display techniques in exploiting the repetitive nature of ERTS imagery was investigated. A specially designed Electronic Satellite Image Analysis Console (ESIAC) was developed and employed to process data for seven ERTS principal investigators studying dynamic hydrological conditions for diverse applications. These applications include measurement of snowfield extent and sediment plumes from estuary discharge, Playa Lake inventory, and monitoring of phreatophyte and other vegetation changes. The ESIAC provides facilities for storing registered image sequences in a magnetic video disc memory for subsequent recall, enhancement, and animated display in monochrome or color. The most unique feature of the system is the capability to time lapse the imagery and analytic displays of the imagery. Data products included quantitative measurements of distances and areas, binary thematic maps based on monospectral or multispectral decisions, radiance profiles, and movie loops. Applications of animation for uses other than creating time-lapse sequences are identified. Input to the ESIAC can be either digital or via photographic transparencies.

  18. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  19. 低轨卫星精密定轨中重力场模型误差的补偿%Reducing Influence of Gravity Model Error in Precise Orbit Determination of Low Earth Orbit Satellites

    Institute of Scientific and Technical Information of China (English)

    郭金来; 胡敏; 赵齐乐; 郭道玉

    2007-01-01

    Based on the orbit integration and orbit fitting method, the influence of the characters of the gravity model, with different precisions, on the movement of low Earth orbit satellites was studied. The way and the effect of absorbing the influence of gravity model error on CHAMP and GRACE satellite orbits, using linear and periodical empirical acceleration models and the so-called "pseudo-stochastic pulses" model, were also analyzed.

  20. A technique for measurement of earth station antenna G/T by radio stars and Applications Technology Satellites.

    Science.gov (United States)

    Kochevar, H. J.

    1972-01-01

    A new technique has been developed to accurately measure the G/T of a small aperture antenna using geostationary satellites and the well established radio star method. A large aperture antenna having the capability of accurately measuring its G/T by using a radio star of known power density is used to obtain an accurate G/T to use as a reference. The CNR of both the large and small aperture antennas are then measured using an Applications Technology Satellite (ATS). After normalizing the two C/N ratios to the large antenna system noise temperature the G/T or the gain G of the small aperture antenna can then be determined.

  1. Earth Oblateness and Relative Sun Motion Considerations in the Determination of an Ideal Orbit for the Nimbus Meteorological Satellite

    Science.gov (United States)

    Bandeen, William R.

    1961-01-01

    It is desired that the Nimbus meteorological satellite always cross the equator around local noon and, half-an-orbit later, cross the equator in the other direction around local midnight. The application of the phenomenon of nodal regression toward this end is discussed, and an analysis of the parameters angles of inclination, periods, and heights of such "ideal" circular orbits is presented. Also, the relative motion of the apparent versus the fictitious mean sun is briefly discussed.

  2. Inversion methods for satellite studies of the Earth Radiation Budget - Development of algorithms for the ERBE mission

    Science.gov (United States)

    Smith, G. L.; Green, R. N.; Avis, L. M.; Suttles, J. T.; Wielicki, B. A.; Raschke, E.; Davies, R.

    1986-01-01

    The Earth Radiation Budget Experiment carries a three-channel scanning radiometer and a set of nadir-looking wide and medium field-of-view instruments for measuring the radiation emitted from earth and the solar radiation reflected from earth. This paper describes the algorithms which are used to compute the radiant exitances at a reference level ('top of the atmosphere') from these measurements. Methods used to analyze data from previous radiation budget experiments are reviewed, and the rationale for the present algorithms is developed. The scanner data are converted to radiances by use of spectral factors, which account for imperfect spectral response of the optics. These radiances are converted to radiant exitances at the reference level by use of directional models, which account for anisotropy of the radiation as it leaves the earth. The spectral factors and directional models are selected on the basis of the scene, which is identified on the basis of the location and the long-wave and shortwave radiances. These individual results are averaged over 2.5 x 2.5 deg regions. Data from the wide and medium field-of-view instruments are analyzed by use of the traditional shape factor method and also by use of a numerical filter, which permits resolution enhancement along the orbit track.

  3. Design and analysis of the satellite laser communications network

    Science.gov (United States)

    Ren, Pei-an; Qian, Fengchen; Liu, Qiang; Jin, Linlin

    2015-02-01

    A satellite laser communications network structure with two layers and multiple domains has been proposed, which performance has been simulated by OPENT. To simulation, we design several OPNET models of the network's components based on a satellite constellation with two layers and multiple domains, as network model, node model, MAC layer protocol and optical antenna model. The network model consists of core layer and access layer. The core network consists of four geostationary orbit (GEO) satellites which are uniformly distributed in the geostationary orbit. The access network consists of 6 low Earth orbit (LEO) satellites which is the walker delta (walk-δ) constellation with three orbit planes. In access layer, each plane has two satellites, and the constellation is stably. The satellite constellation presented for space laser network can meet the demand of coverage in the middle and low latitude by a few satellites. Also several terminal device models such as the space laser transmitter, receiver, protocol layer module and optical antenna have been designed according to the inter-satellite links in different orbits t from GEO to LEO or GEO to ground. The influence to network of different transmitting throughput, receiving throughput, network protocol and average time delay are simulated. Simulation results of network coverage, connectivity and traffic load performance in different scenes show that the satellite laser network presented by the paper can be fit for high-speed satellite communications. Such analysis can provide effective reference for the research of satellite laser networking and communication protocol.

  4. A Model for the Handover Traffic and Channel Occupancy Time in LEO Satellite Networks

    Institute of Scientific and Technical Information of China (English)

    WangJingyu; YaoYongyang

    1995-01-01

    This paper presents a method to determine the parameters of the traffic model for the LEO satellite networks-the handover traffic and the mean channel occupancy time.The main idea is that the handover traffic is mainly due to the movement of the satellites and the velocity of the mobile terminals and earth rotation is ignored.The performance level can be calculated accord-ing to different handover queuing model.

  5. Communication satellite technology trends

    Science.gov (United States)

    Cuccia, Louis

    1986-01-01

    A chronology of space-Earth interconnectivity is presented. The Advanced Communications Technology Satellite (ACTS) system, Land Mobile Satellite, space-Earth antennas, impact of antenna size on coverage, intersatellite links are outlined. This presentation is represented by graphs and charts only.

  6. The impact of the new Earth gravity models on the measurement of the Lense-Thirring effect with a new satellite

    CERN Document Server

    Iorio, L

    2005-01-01

    In this paper we investigate the opportunities offered by the new Earth gravity models from the dedicated CHAMP and, especially, GRACE missions to the project of measuring the general relativistic Lense-Thirring effect with a new Earth's artificial satellite. It turns out that it would be possible to abandon the stringent, and expensive, requirements on the orbital geometry of the originally prosed LARES mission (same semimajor axis a=12270 km of the existing LAGEOS and inclination i=70 deg) by inserting the new spacecraft in a relatively low, and cheaper, orbit (a=7500-8000 km, i\\sim 70 deg) and suitably combining its node Omega with those of LAGEOS and LAGEOS II in order to cancel out the first even zonal harmonic coefficients of the multipolar expansion of the terrestrial gravitational potential J_2, J_4 along with their temporal variations. The total systematic error due to the mismodelling in the remaining even zonal harmonics would amount to \\sim 1% and would be insensitive to departures of the inclinat...

  7. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites........ The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...

  8. Determination of the Earth gravity Field Parameters in Persian Gulf and Oman Sea with the Satellite Altimetry Data

    Science.gov (United States)

    Emadi, S. R.; Najafi-Alamardi, M.; Toosi, K. N.; Sedighi, M.; Nankali, H. R.

    2006-07-01

    Satellite altimetry provides continuous, accur ate, and homogenous data ser ies in marine areas .Th e Sea Surf ace Heigh ts (SSH) ex tracted from altimetry data w as used in a method sear ching for the least squares of the sea surface topography to simultaneously d etermine the geoidal height and the sea surface topography as well in the Persian Gulf and the Oman sea. This is contrary to th e methods wh ich r equire the knowledge of one parameter to estimate the other. The North and East componen ts of the deflections of vertical w ere also estimated by differentiating the der ived geoid al heights in the corresponding directions, and finally the free- air grav ity anomalies w ere computed utilizing the inverse V ening- Meinesz integral.

  9. Research Progress and Development Trends of U.S.Military Satellite Communication Terminals%美军卫星通信终端的研究现状与发展趋势*

    Institute of Scientific and Technical Information of China (English)

    刘红军

    2013-01-01

      随着软件无线电技术的快速发展和实践应用,原本数量众多且种类多样的美军军用卫星通信终端也即将迎来更新换代和整合。在介绍美三军最新一代卫星通信终端研制现状的基础上,研究了美军新一代卫星通信终端发展的特点,分析了美军卫星通信终端的未来发展趋势,总结了从中获得的启示。%With the rapid development and practical application of software defined radio(SDR), U. S military Satellite Communication ( SATCOM) terminals are evolving to softwaredefined, modular, and multifunctional terminals . The next generation SATCOM terminal programs of U. S army, navy, and air force are introduced, the characteristics of these terminals are analyzed, the future trend of U. S military SATCOM terminals is summarized,and what we can learn from it is presented .

  10. Analytic model for the long-term evolution of circular Earth satellite orbits including lunar node regression

    Science.gov (United States)

    Zhu, Ting-Lei; Zhao, Chang-Yin; Zhang, Ming-Jiang

    2017-04-01

    This paper aims to obtain an analytic approximation to the evolution of circular orbits governed by the Earth's J2 and the luni-solar gravitational perturbations. Assuming that the lunar orbital plane coincides with the ecliptic plane, Allan and Cook (Proc. R. Soc. A, Math. Phys. Eng. Sci. 280(1380):97, 1964) derived an analytic solution to the orbital plane evolution of circular orbits. Using their result as an intermediate solution, we establish an approximate analytic model with lunar orbital inclination and its node regression be taken into account. Finally, an approximate analytic expression is derived, which is accurate compared to the numerical results except for the resonant cases when the period of the reference orbit approximately equals the integer multiples (especially 1 or 2 times) of lunar node regression period.

  11. Solution set on the natural satellite formation orbits under first-order earth's non-spherical perturbation

    Institute of Scientific and Technical Information of China (English)

    Humei Wang; Wei Yang; Junfeng Li

    2005-01-01

    Using the reference orbital element approach, the precise governing equations for the relative motion of formation flight are formulated. A number of ideal formations with respect to an elliptic orbit can be designed based on the relative motion analysis from the equations. The features of the oscillating reference orbital elements are studied by using the perturbation theory. The changes in the relative orbit under perturbation are divided into three categories, termed scale enlargement, drift and distortion respectively. By properly choosing the initial mean orbital elements for the leader and follower satellites, the deviations from originally regular formation orbit caused by the perturbation can be suppressed. Thereby the natural formation is set up. It behaves either like non-disturbed or need little control to maintain.The presented reference orbital element approach highlights the kinematics properties of the relative motion and is convenient to incorporate the results of perturbation analysis on orbital elements. This method of formation design has advantages over other methods in seeking natural formation and in initializing formation.

  12. A contrastive study on the influences of radial and three-dimensional satellite gravity gradiometry on the accuracy of the Earth's gravitational field recovery

    Institute of Scientific and Technical Information of China (English)

    Zheng Wei; Hsu Hou-Tse; Zhong Min; Yun Mei-Juan

    2012-01-01

    The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer (GOCE),up to 250 degrees,influenced by the radial gravity gradient Vzz and three-dimensional gravity gradient Vij from the satellite gravity gradiometry (SGG) are contrastively demonstrated based on the analytical error model and numerical simulation,respectively.Firstly,the new analytical error model of the cumulative geoid height,influenced by the radial gravity gradient Vzz and three-dimensional gravity gradient Vij are established,respectively.In 250 degrees,the GOCE cumulative geoid height error measured by the radial gravity gradient Vzz is about 21/2 times higher than that measured by the three-dimensional gravity gradient Vij. Secondly,the Earth's gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient Vzz and three-dimensional gravity gradient Vij by numerical simulation,respectively.The study results show that when the measurement errorof the gravity gradient is 3 × 10-12/s2,the cumulative geoid height errors using the radial gravity gradient Vzz and three-dimensional gravity gradient Vij are 12.319 cm and 9.295 cm at 250 degrees,respectively.The accuracy of the cumulative geoid height using the three-dimensional gravity gradient Vij is improved by 30%-40% on average compared with that using the radial gravity gradient Vzz in 250 degrees.Finally,by mutual verification of the analytical error model and numerical simulation,the orders of magnitude from the accuracies of the Earth's gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients,respectively.Therefore,it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10-13/s2-10-15/s2 for precisely producing the next-generation GOCE Follow-On Earth gravity field model with a high spatial resolution.

  13. DIORAMA Model of Satellite Body Orientation

    Energy Technology Data Exchange (ETDEWEB)

    Werley, Kenneth Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-04

    The DIORAMA GPS satellite platform orientation model is described. Satellites need to keep sensors pointed towards the earth and solar panels oriented to face the sun (when not in the earth’s shadow) while they orbit the earth.

  14. Scientific Satellites

    Science.gov (United States)

    1967-01-01

    followed Hale’s into orbit. In 1879, Jules Verne wrote about launching small satellites with a gun possessing a muzzle velocity of 10 000 m/sec (ref. 3...was activated in 1950.11 It was located only a few tens of miles from the spot where Jules Verne had his Baltimore Gun Club fire a manned projectile to...principle, satellites can be launched by a single impulse applied at the Earth’s surface-say, with a large cannon, & la Jules Verne (sec. 8-3). In

  15. High-Resolution NDVI from Planet's Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture

    KAUST Repository

    Houborg, Rasmus

    2016-09-19

    Planet Labs ("Planet") operate the largest fleet of active nano-satellites in orbit, offering an unprecedented monitoring capacity of daily and global RGB image capture at 3-5 m resolution. However, limitations in spectral resolution and lack of accurate radiometric sensor calibration impact the utility of this rich information source. In this study, Planet\\'s RGB imagery was translated into a Normalized Difference Vegetation Index (NDVI): a common metric for vegetation growth and condition. Our framework employs a data mining approach to build a set of rule-based regression models that relate RGB data to atmospherically corrected Landsat-8 NDVI. The approach was evaluated over a desert agricultural landscape in Saudi Arabia where the use of near-coincident (within five days) Planet and Landsat-8 acquisitions in the training of the regression models resulted in NDVI predictabilities with an r2 of approximately 0.97 and a Mean Absolute Deviation (MAD) on the order of 0.014 (~9%). The MAD increased to 0.021 (~14%) when the Landsat NDVI training image was further away (i.e., 11-16 days) from the corrected Planet image. In these cases, the use of MODIS observations to inform on the change in NDVI occurring between overpasses was shown to significantly improve prediction accuracies. MAD levels ranged from 0.002 to 0.011 (3.9% to 9.1%) for the best performing 80% of the data. The technique is generic and extendable to any region of interest, increasing the utility of Planet\\'s dense time-series of RGB imagery.

  16. Impact of nanoparticles and colloids on glacial meltwater: A comparative study of rare earth elements in glacial meltwater rivers and terminal lakes in Iceland and New Zealand

    Science.gov (United States)

    Tepe, Nathalie; Bau, Michael

    2014-05-01

    Global warming accelerates the retreat of glaciers in both polar and temperate climatic regions and enhances the input of glacial meltwater and its load of particulates, colloids and nanoparticles into the ocean. In addition to the worldwide trend imposed by global warming, enhanced glacial melting in Iceland is occasionally caused by high geothermal heat flux and/or sub-glacial eruptions related to volcanic activity. This might even cause catastrophic melting events. We here report results of geochemical studies of meltwater rivers from southern Iceland sampled between 2010 and 2013 and of glacial terminal lakes and one meltwater river from the Southern Alps in New Zealand's South Island from 2013. In addition to the dissolved concentrations of Rare Earths and Yttrium (REY) in 200 nm-filtered waters, we also studied the respective filter residues (particles >200 nm). The REY are highly particle-reactive and show low solubilties, and therefore only a small fraction of the total REY concentration determined in 200 nm-filtered freshwaters is truly dissolved, whereas the majority is associated with colloids and nanoparticles. Nevertheless, in 200 nm-filtered water samples the REY are often below the lower limit of quantification even by sensitive analytical techniques such as ICPMS. The chemical composition of glacial meltwater rivers in Iceland is affected by volcanic eruptions due to the input of (colloid- and nano-) particles from volcanic ashes, whereas the chemical composition of glacial terminal lakes and meltwater rivers in New Zealand is affected by particles derived by erosion of rocks in the respective catchment. In marked contrast to Iceland, single events do play a minor role in New Zealand. In Iceland, all studied meltwater rivers display the same shale-normalized REY patterns with pronounced depletion of light and heavy REY relative to the middle REY (LaSN/GdSN: 0.41-0.45; GdSN/YbSN: 1.70-2.44). They show positive Eu anomalies, but no La, Ce or Y

  17. On the differential properties of internal magnetic field models at the Earth's surface and at satellite altitudes

    Science.gov (United States)

    Webers, Wigor A.

    2007-03-01

    The inverse theory of potential fields shows that the correspondence between the internal magnetic field of the Earth and its field sources is unique when the potential field is known in all points of the three-dimensional space including all points of the source region (cp., e.g. Diesselhorst, H., 1939. Magnetische Felder und Kräfte. Johann Ambrosius Barth Verlag, Leipzig). Thus, to determine the sources of the field it is not sufficient to know the potential field in the space external to the sources. Moreover, field models derived from finite sets of potential field observations emphasize different source properties because of measurement errors. In this study, I argue that improved internal field models can be developed from multi-altitude magnetic observations by imposing more effective constraints on the poorly conditioned downward continuation problem. In particular, the convergence behaviour of spherical harmonic field models can be used to improve the downward continuation of the higher truncation index terms. A high quality approximation of the field continuation is essential when the field models are interpreted for relatively small field contributions such as from the lithospheric sources. The relations between the potential field and its sources including the problems of potential field continuations - upward and downward - are governed by the theory of ill-posed inverse problems (cp., e.g. Anger, G., 1990. Inverse Problems in Differential Equations. Akademie/Plenum Press, Berlin/London; Anger, G., Gorenflo, R., Jochmann, H., Moritz, H., Webers, W. (Eds.), 1993. Inverse Problems: Principles and Applications in Geophysics, Technology, and Medicine. Akademie, Berlin; Huestis, S.P., Parker, R.L., 1979. Upward and downward continuations as inverse problems. Geophys. J. R. Astr. Soc. 57, 171-188; Rösler, R., 1981. Über die Fehlerfortpflanzung bei Potentialfeldtransformationen. Gerlands Beitr. Gephys. 90, 47-57).

  18. Satellite and Ground Signatures of Kinetic and Inertial Scale ULF Alfven Waves Propagating in Warm Plasma in Earth's Magnetosphere

    Science.gov (United States)

    Rankin, R.; Sydorenko, D.

    2015-12-01

    Results from a 3D global numerical model of Alfven wave propagation in a warm multi-species plasma in Earth's magnetosphere are presented. The model uses spherical coordinates, accounts for a non-dipole magnetic field, vertical structure of the ionosphere, and an air gap below the ionosphere. A realistic density model is used. Below the exobase altitude (2000 km) the densities and the temperatures of electrons, ions, and neutrals are obtained from the IRI and MSIS models. Above the exobase, ballistic (originating from the ionosphere and returning to ionosphere) and trapped (bouncing between two reflection points above the ionosphere) electron populations are considered similar to [Pierrard and Stegen (2008), JGR, v.113, A10209]. Plasma parameters at the exobase provided by the IRI are the boundary conditions for the ballistic electrons while the [Carpenter and Anderson (1992), JGR, v.97, p.1097] model of equatorial electron density defines parameters of the trapped electron population. In the simulations that are presented, Alfven waves with frequencies from 1 Hz to 0.01 Hz and finite azimuthal wavenumbers are excited in the magnetosphere and compared with Van Allen Probes data and ground-based observations from the CARISMA array of ground magnetometers. When short perpendicular scale waves reflect form the ionosphere, compressional Alfven waves are observed to propagate across the geomagnetic field in the ionospheric waveguide [e.g., Lysak (1999), JGR, v.104, p.10017]. Signals produced by the waves on the ground are discussed. The wave model is also applied to interpret recent Van Allen Probes observations of kinetic scale ULF waves that are associated with radiation belt electron dynamics and energetic particle injections.

  19. Operational monitoring and forecasting of bathing water quality through exploiting satellite Earth observation and models: The AlgaRisk demonstration service

    Science.gov (United States)

    Shutler, J. D.; Warren, M. A.; Miller, P. I.; Barciela, R.; Mahdon, R.; Land, P. E.; Edwards, K.; Wither, A.; Jonas, P.; Murdoch, N.; Roast, S. D.; Clements, O.; Kurekin, A.

    2015-04-01

    Coastal zones and shelf-seas are important for tourism, commercial fishing and aquaculture. As a result the importance of good water quality within these regions to support life is recognised worldwide and a number of international directives for monitoring them now exist. This paper describes the AlgaRisk water quality monitoring demonstration service that was developed and operated for the UK Environment Agency in response to the microbiological monitoring needs within the revised European Union Bathing Waters Directive. The AlgaRisk approach used satellite Earth observation to provide a near-real time monitoring of microbiological water quality and a series of nested operational models (atmospheric and hydrodynamic-ecosystem) provided a forecast capability. For the period of the demonstration service (2008-2013) all monitoring and forecast datasets were processed in near-real time on a daily basis and disseminated through a dedicated web portal, with extracted data automatically emailed to agency staff. Near-real time data processing was achieved using a series of supercomputers and an Open Grid approach. The novel web portal and java-based viewer enabled users to visualise and interrogate current and historical data. The system description, the algorithms employed and example results focussing on a case study of an incidence of the harmful algal bloom Karenia mikimotoi are presented. Recommendations and the potential exploitation of web services for future water quality monitoring services are discussed.

  20. Cycle-life testing of 100-Ah class lithium-ion battery in a simulated geosynchronous-Earth-orbit satellite operation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianming; Sone, Yoshitsugu; Naito, Hitoshi; Yamada, Chisa; Segami, Go; Kibe, Koichi [Institute of Aerospace Technology, Japan Aerospace Exploration Agency, Tsukuba Space Center, Sengen 2-1-1, Ibaraki 305-8505 (Japan)

    2006-09-29

    In this paper, we review our work on cycle-life testing of a 100-Ah class lithium-ion battery in a simulated geosynchronous-Earth-orbit (GEO) satellite operation. The battery consists of ten 100-Ah lithium-ion (10) cells in a series, with a high energy density exceeding 100Whkg{sup -1} at the battery level. We simulate the eclipse period in real-time testing with five depth-of-discharge (DOD) patterns at an ambient temperature of 15{sup o}C. We also simulate a sun-shine period in 8-day thermally accelerated full-charge storage at an ambient temperature of 25{sup o}C, which in our experience corresponds to full-charge storage of a half-year operation at 0{sup o}C. Eighteen eclipse seasons have presently been completed, corresponding to 9 years of GEO operation. The battery maintained a high voltage near 3.4V at the end of the discharge, even when the DOD was set at 70%. The voltage dispersion of 10 cells was also sufficiently small in the range of 48mV. The cell temperature reached a maximum of 29{sup o}C and maintained minimal dispersion smaller than 4{sup o}C even when the battery was discharged at a high DOD of 70%. (author)

  1. Design of a Free and Open Source Data Processing, Archiving, and Distribution Subsystem for the Ground Receiving Station of the Philippine Scientific Earth Observation Micro-Satellite

    Science.gov (United States)

    Aranas, R. K. D.; Jiao, B. J. D.; Magallon, B. J. P.; Ramos, M. K. F.; Amado, J. A.; Tamondong, A. M.; Tupas, M. E. A.

    2016-06-01

    The Philippines's PHL-Microsat program aims to launch its first earth observation satellite, DIWATA, on the first quarter of 2016. DIWATA's payload consists of a high-precision telescope (HPT), spaceborne multispectral imager (SMI) with liquid crystal tunable filter (LCTF), and a wide field camera (WFC). Once launched, it will provide information about the Philippines, both for disaster and environmental applications. Depending on the need, different remote sensing products will be generated from the microsatellite sensors. This necessitates data processing capability on the ground control segment. Rather than rely on commercial turnkey solutions, the PHL-Microsat team, specifically Project 3:DPAD, opted to design its own ground receiving station data subsystems. This paper describes the design of the data subsystems of the ground receiving station (GRS) for DIWATA. The data subsystems include: data processing subsystem for automatic calibration and georeferencing of raw images as well as the generation of higher level processed data products; data archiving subsystem for storage and backups of both raw and processed data products; and data distribution subsystem for providing a web-based interface and product download facility for the user community. The design covers the conceptual design of the abovementioned subsystems, the free and open source software (FOSS) packages used to implement them, and the challenges encountered in adapting the existing FOSS packages to DIWATA GRS requirements.

  2. DESIGN OF A FREE AND OPEN SOURCE DATA PROCESSING, ARCHIVING, AND DISTRIBUTION SUBSYSTEM FOR THE GROUND RECEIVING STATION OF THE PHILIPPINE SCIENTIFIC EARTH OBSERVATION MICRO-SATELLITE

    Directory of Open Access Journals (Sweden)

    R. K. D. Aranas

    2016-06-01

    Full Text Available The Philippines’s PHL-Microsat program aims to launch its first earth observation satellite, DIWATA, on the first quarter of 2016. DIWATA’s payload consists of a high-precision telescope (HPT, spaceborne multispectral imager (SMI with liquid crystal tunable filter (LCTF, and a wide field camera (WFC. Once launched, it will provide information about the Philippines, both for disaster and environmental applications. Depending on the need, different remote sensing products will be generated from the microsatellite sensors. This necessitates data processing capability on the ground control segment. Rather than rely on commercial turnkey solutions, the PHL-Microsat team, specifically Project 3:DPAD, opted to design its own ground receiving station data subsystems. This paper describes the design of the data subsystems of the ground receiving station (GRS for DIWATA. The data subsystems include: data processing subsystem for automatic calibration and georeferencing of raw images as well as the generation of higher level processed data products; data archiving subsystem for storage and backups of both raw and processed data products; and data distribution subsystem for providing a web-based interface and product download facility for the user community. The design covers the conceptual design of the abovementioned subsystems, the free and open source software (FOSS packages used to implement them, and the challenges encountered in adapting the existing FOSS packages to DIWATA GRS requirements.

  3. 622 Mbps High-speed satellite communication system for WINDS

    Science.gov (United States)

    Ogawa, Yasuo; Hashimoto, Yukio; Yoshimura, Naoko; Suzuki, Ryutaro; Gedney, Richard T.; Dollard, Mike

    2006-07-01

    WINDS is the experimental communications satellite currently under joint development by Japanese Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT). The high-speed satellite communication system is very effective for quick deployment of high-speed networks economically. The WINDS will realize ultra high-speed networking and demonstrate operability of satellite communication systems in high-speed internet. NICT is now developing high-speed satellite communication system for WINDS. High-speed TDMA burst modem with high performance TPC error correction is underdevelopment. Up to the DAC on the transmitter and from the ADC on the receiver, all modem functions are performed in the digital processing technology. Burst modem has been designed for a user data rate up to 1244 Mbps. NICT is developing the digital terminal as a user interface and a network controller for this earth station. High compatibility with the Internet will be provided.

  4. Action planning for agile earth-observing satellite mission planning problem%面向动作序列的敏捷卫星任务规划问题

    Institute of Scientific and Technical Information of China (English)

    孙凯; 白国庆; 陈英武; 贺仁杰; 邢立宁

    2012-01-01

    针对新一代敏捷卫星对地观测任务规划问题,考虑了直拍直传、立体成像、多条带拼接等复杂任务需求和观测、数据下传、对日定向等九种卫星动作,在任务规划的同时进行卫星动作规划.设计并实现了前瞻启发式构造算法,算法满足卫星存储、能量等复杂约束,在前瞻过程中每次决定当前任务是否安排.采用基于专家知识的多种启发式规则决定任务安排与安排卫星动作序列.仿真实例及实际工程应用表明,算法可以在很短的时间内给出较好的结果,证明了本文方法对于敏捷卫星任务规划问题的适用性.%The mission of Earth observing satellite (EOS) is to acquire photographs of specified areas on Earth surface at the requests of users. The goal is to select a feasible task sequence to maximize the sum of weights. This research presents the mission planning problem of the next-generation agile Earth-observing satellite(AEOS). The complex user requests(including multi-strip area, real time download request, and stereoscopic request) and complex satellite constraints were considered, covering eight satellite actions(including observe action, data download, SSR Erase action, attitude movement, heliocentric pointing, geocentric pointing, and instrument action) . A chronological look ahead algorithm was designed to solve the problem, heuristic rules based on expert knowledge were used to make choices and arrange satellite actions, which satisfy all satellite physical constraints and operational constraints. For the current experiment instances and applications, the algorithm can give results in very short time. Experiment results suggest that our algorithm works well for the agile earth-observing satellite planning problem.

  5. Declassified intelligence satellite photographs

    Science.gov (United States)

    ,

    1998-01-01

    Recently declassified photographs from spy satellites are an important addition to the record of the Earth?s land surface held by the U.S. Geological Survey (USGS). More than 800,000 high-resolution photos taken between 1959 through 1972 were made available by Executive Order of the President. The collection is held at the USGS EROS Data Center, near Sioux Falls, S. Dak., and are offered for public sale. For some purposes in earth science studies, these photos extend the record of changes in the land surface another decade back in time from the advent of the Landsat earth-observing satellite program.

  6. GEO中高分辨率民用光学对地观测卫星发展研究%Development Analysis on GEO Civil Optical Earth Observation Satellites with Mid-high Resolution

    Institute of Scientific and Technical Information of China (English)

    于龙江; 刘云鹤

    2013-01-01

    The development of state-of-art GEO civil optical earth observation satellites with mid-high resolution is investigated, including COMS, GEO-Africa, GEO-Oculus, etc. The mission and main functions of these satellites are analyzed. The system level design and main technology approach of these satellites are summarized and compared. Finally, several issues that are important in GEO mid-high resolution civil optical earth observation satellites technology are discussed, such as selection of focal detector, high stability attitude control, jitter rejection, heat management in the night, etc. The research results could be instructions to the development of China's GEO civil optical earth observation satellites with mid-high resolution.%调研了国外地球静止轨道(GEO)中高分辨率民用光学对地观测卫星的发展情况,其中包括“通信海洋-气象卫星”(COMS)、GEO-Africa和GEO-Oculus等卫星;分析了卫星的任务范围和主要功能;对卫星总体设计方案和采用的主要技术途径进行了归纳和对比.对发展GEO中高分辨率民用光学对地观测卫星需要注意的探测器选型、高稳定度姿态控制、微振动抑制、夜晚阶段的热控等相关问题进行了分析,可为中国发展同类卫星提供参考.

  7. An extended global Earth system data record on daily landscape freeze-thaw status determined from satellite passive microwave remote sensing

    Science.gov (United States)

    Kim, Youngwook; Kimball, John S.; Glassy, Joseph; Du, Jinyang

    2017-02-01

    The landscape freeze-thaw (FT) signal determined from satellite microwave brightness temperature (Tb) observations has been widely used to define frozen temperature controls on land surface water mobility and ecological processes. Calibrated 37 GHz Tb retrievals from the Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I), and SSM/I Sounder (SSMIS) were used to produce a consistent and continuous global daily data record of landscape FT status at 25 km grid cell resolution. The resulting FT Earth system data record (FT-ESDR) is derived from a refined classification algorithm and extends over a larger domain and longer period (1979-2014) than prior FT-ESDR releases. The global domain encompasses all land areas affected by seasonal frozen temperatures, including urban, snow- and ice-dominant and barren land, which were not represented by prior FT-ESDR versions. The FT retrieval is obtained using a modified seasonal threshold algorithm (MSTA) that classifies daily Tb variations in relation to grid-cell-wise FT thresholds calibrated using surface air temperature data from model reanalysis. The resulting FT record shows respective mean annual spatial classification accuracies of 90.3 and 84.3 % for evening (PM) and morning (AM) overpass retrievals relative to global weather station measurements. Detailed data quality metrics are derived characterizing the effects of sub-grid-scale open water and terrain heterogeneity, as well as algorithm uncertainties on FT classification accuracy. The FT-ESDR results are also verified against other independent cryospheric data, including in situ lake and river ice phenology, and satellite observations of Greenland surface melt. The expanded FT-ESDR enables new investigations encompassing snow- and ice-dominant land areas, while the longer record and favorable accuracy allow for refined global change assessments that can better distinguish transient weather extremes, landscape phenological shifts

  8. Experimental Satellite 2 Successfully Launched

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    Small satellite Experimental Satellite 2 (SY-2) was launched by LM-2C launch vehicle from Xichang Satellite Launch Center on Nov. 18, 2004. Later the satellite entered the preset sun-synchronous orbit, which is 700 kilometers above the earth. The launch was the eighthmission this year by China Aerospace Science and Technology Corporation(CASC), which aims to test the technology of the satellite, conduct survey and monitoring of the land and resources and geographical environment on a trial basis.

  9. Measurement-based perturbation theory and differential equation parameter estimation for high-precision high-resolution reconstruction of the Earth's gravitational field from satellite tracking measurements

    CERN Document Server

    Xu, Peiliang

    2016-01-01

    The numerical integration method has been routinely used to produce global standard gravitational models from satellite tracking measurements of CHAMP/GRACE types. It is implemented by solving the differential equations of the partial derivatives of a satellite orbit with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical point of view, satellite gravimetry from satellite tracking is the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in satellite gravimetry and statistics, is groundless. We use three different methods to derive new local solutions to the Newton's nonlinear governing differential equations of motion with a nominal reference orbit. Bearing in mind that satellite orbits ...

  10. The effect of temperature cycling typical of low earth orbit satellites on thin films of YBa2Cu3O(7-x)

    Science.gov (United States)

    Mogro-Campero, A.; Turner, L. G.; Bogorad, A.; Herschitz, R.

    1990-01-01

    The refrigeration of superconductors in space poses a challenging problem. The problem could be less severe if superconducting materials would not have to be cooled when not in use. Thin films of the YBa2Cu3O(7-x) (YBCO) superconductor were subjected to thermal cycling, which was carried out to simulate a large number of eclipses of a low earth orbit satellite. Electrical measurements were performed to find the effect of the temperature cycling. Thin films of YBCO were formed by coevaporation of Y, BaF2, and Cu and postannealing in wet oxygen at 850 C for 3.5 h. The substrates used were (100) SrTiO3, polycrystalline alumina, and oxidized silicon; the last two have an evaporated zirconia layer. Processing and microstructure studies of these types of films have been published. THe zero resistance transition temperatures of the samples used in this study were 91, 82, and 86 K, respectively. The samples were characterized by four point probe electrical measurements as a function of temperature. The parameters measured were: the zero resistance transition temperature, the 10 to 90 percent transition width, and the room temperature resistance, normalized to that measured before temperature cycling. The results for two samples are presented. Each sample had a cumulative exposure. Cycling in atmospheric pressure nitrogen was performed at a rate of about 60 cycles per day, whereas in vacuum the rate was only about 10 cycles per day. The results indicate only little or no changes in the parameters measured. Degradation of superconducting thin films of YBCO has been reported due to storage in nitrogen. It is believed that the relatively good performance of films after temperature cycling is related to the fact that BaF2 was used as an evaporation source. The latest result on extended temperature cycling indicates significant degradation. Further tests of extended cycling will be carried out to provide additional data and to clarify this preliminary finding.

  11. The GNSS polarimetric radio-occultation technique to sense precipitation events: a new concept to be tested aboard PAZ Low Earth Satellite

    Science.gov (United States)

    Tomás, Sergio; Oliveras, Santi; Cardellach, Estel; Rius, Antonio

    2013-04-01

    The Radio Occultation and Heavy Precipitation (ROHP) experiment, to be conducted aboard the Spanish PAZ satellite, consists of a radio occultation (RO) mission provided with dual-polarization capabilities. The research with polarimetric RO data has the goal of assessing the capabilities and limitations of this technique to infer profiles of heavy precipitation. The technique aims to provide vertical profiles of precipitation simultaneously to the vertical profiles of thermodynamic parameters (standard RO products) perfectly collocated both in space and time. If successful, the polarimetric RO will represent the first technique able to provide these complementary information on precipitation. This is a relevant input for studies on heavy and violent rainfall events, which being poorly represented by the current-generation of Numerical Weather Prediction and General Circulation Models appear to be difficult to forecast on all time-scales. The Low Earth Orbiter hosting this experiment, to be launched in 2013, will orbit at 500 km altitude in a near-Polar orbit. The Radio Occulation payload includes a RO GNSS receiver and a dual polarization (H/V) limb oriented antenna to capture the signals of setting GNSS transmitters. NOAA and UCAR participate in the ground-segment of the radiometric experiment to enable near-real time dissemination of the level-1 standard RO products. The space-based GNSS RO technique scans the atmosphere vertically at fine resolution (close to 300 meter in the troposphere) by precisely measure the delay between a GNSS transmitter and a GNSS receiver aboard a Low Earth Orbiter, when the former is setting below or rising above the Earth limb. The standard, thermodynamical, products are extracted from the excess delay induced by the atmosphere at different layers. This presentation will not focus on this well-established application, but a novel concept using polarimetry to also retrieve rain information. The precipitation-measurement principle is

  12. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  13. Commercialization and Standardization Progress Towards an Optical Communications Earth Relay

    Science.gov (United States)

    Edwards, Bernard L.; Israel, David J.

    2015-01-01

    NASA is planning to launch the next generation of a space based Earth relay in 2025 to join the current Space Network, consisting of Tracking and Data Relay Satellites in space and the corresponding infrastructure on Earth. While the requirements and architecture for that relay satellite are unknown at this time, NASA is investing in communications technologies that could be deployed to provide new communications services. One of those new technologies is optical communications. The Laser Communications Relay Demonstration (LCRD) project, scheduled for launch in 2018 as a hosted payload on a commercial communications satellite, is a critical pathfinder towards NASA providing optical communications services on the next generation space based relay. This paper will describe NASA efforts in the on-going commercialization of optical communications and the development of inter-operability standards. Both are seen as critical to making optical communications a reality on future NASA science and exploration missions. Commercialization is important because NASA would like to eventually be able to simply purchase an entire optical communications terminal from a commercial provider. Inter-operability standards are needed to ensure that optical communications terminals developed by one vendor are compatible with the terminals of another. International standards in optical communications would also allow the space missions of one nation to use the infrastructure of another.

  14. A comment on ''A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model'', by I. Ciufolini et al

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, Lorenzo [Ministero dell' Istruzione Univ. della Ricerca (M.I.U.R.), Bari (Italy)

    2017-02-15

    Recently, Ciufolini et al. reported on a test of the general relativistic gravitomagnetic Lense-Thirring effect by analyzing about 3.5 years of laser ranging data to the LAGEOS, LAGEOS II, LARES geodetic satellites orbiting the Earth. By using the GRACE-based GGM05S Earth's global gravity model and a linear combination of the nodes Ω of the three satellites designed to remove the impact of errors in the first two even zonal harmonic coefficients J{sub 2}, J{sub 4} of the multipolar expansion of the Newtonian part of the Earth's gravitational potential, they claimed an overall accuracy of 5% for the Lense-Thirring caused node motion. We show that the scatter in the nominal values of the uncancelled even zonals of degree l = 6, 8, 10 from some of the most recent global gravity models does not yet allow to reach unambiguously and univocally the expected ∼1% level, being large up to

  15. Satellite to measure equatorial ozone layer

    Science.gov (United States)

    1975-01-01

    The Atmosphere Explorer E (Explorer 55) Satellite is described. The satellite will gather information on the earth's upper atmosphere, particularly regarding the condition of the protective ozone layer. The satellite will also provide information concerning the earth's heat balance, and heat flow characteristics, and energy conversion mechanisms.

  16. Laser Communication Experiments with Artemis Satellite

    Science.gov (United States)

    Kuzkov, Sergii; Sodnik, Zoran; Kuzkov, Volodymyr

    2013-10-01

    In November 2001, the European Space Agency (ESA) established the world-first inter-satellite laser communication link between the geostationary ARTEMIS satellite and the low Earth orbiting (LEO) SPOT-4 Earth observation satellite, demonstrating data rates of 50 Mbps. In 2006, the Japanese Space Agency launched the KIRARI (OICETS) LEO satellite with a compatible laser communication terminal and bidirectional laser communication links (50 Mbps and 2 Mbps) were successfully realized between KIRARI and ARTEMIS. ESA is now developing the European Data Relay Satellite (EDRS) system, which will use laser communication technology to transmit data between the Sentinel 1 and 2 satellites in LEO to two geostationary satellites (EDRS-A and EDRS-C) at data rates of 1.8 Gbps. As the data handling capabilities of state-of-the-art telecommunication satellites in GEO increase so is the demand for the feeder-link bandwidth to be transmitted from ground. This is why there is an increasing interest in developing high bandwidth ground-to-space laser communication systems working through atmosphere. In 2002, the Main Astronomical Observatory (MAO) started the development of its own laser communication system for its 0.7m AZT-2 telescope, located in Kyiv, Ukraine. The work was supported by the National Space Agency of Ukraine and by ESA. MAO developed a highly accurate computerized tracking system for AZT-2 telescope and a compact laser communication package called LACES (Laser Atmosphere and Communication Experiments with Satellites). The LACES instrument includes a camera of the pointing and tracking subsystems, a receiver module, a laser transmitter module, a tip/tilt atmospheric turbulence compensation subsystem, a bit error rate tester module and other optical and electronic components. The principal subsystems are mounted on a platform, which is located at the Cassegrain focus of the AZT-2 telescope. All systems were tested with the laser communication payload on-board ARTEMIS and

  17. Fault-tolerant onboard digital information switching and routing for communications satellites

    Science.gov (United States)

    Shalkhauser, Mary JO; Quintana, Jorge A.; Soni, Nitin J.; Kim, Heechul

    1993-01-01

    The NASA Lewis Research Center is developing an information-switching processor for future meshed very-small-aperture terminal (VSAT) communications satellites. The information-switching processor will switch and route baseband user data onboard the VSAT satellite to connect thousands of Earth terminals. Fault tolerance is a critical issue in developing information-switching processor circuitry that will provide and maintain reliable communications services. In parallel with the conceptual development of the meshed VSAT satellite network architecture, NASA designed and built a simple test bed for developing and demonstrating baseband switch architectures and fault-tolerance techniques. The meshed VSAT architecture and the switching demonstration test bed are described, and the initial switching architecture and the fault-tolerance techniques that were developed and tested are discussed.

  18. An improved land biosphere module for use in the DCESS Earth system model (version 1.1 with application to the last glacial termination

    Directory of Open Access Journals (Sweden)

    R. Eichinger

    2017-09-01

    Full Text Available Interactions between the land biosphere and the atmosphere play an important role for the Earth's carbon cycle and thus should be considered in studies of global carbon cycling and climate. Simple approaches are a useful first step in this direction but may not be applicable for certain climatic conditions. To improve the ability of the reduced-complexity Danish Center for Earth System Science (DCESS Earth system model DCESS to address cold climate conditions, we reformulated the model's land biosphere module by extending it to include three dynamically varying vegetation zones as well as a permafrost component. The vegetation zones are formulated by emulating the behaviour of a complex land biosphere model. We show that with the new module, the size and timing of carbon exchanges between atmosphere and land are represented more realistically in cooling and warming experiments. In particular, we use the new module to address carbon cycling and climate change across the last glacial transition. Within the constraints provided by various proxy data records, we tune the DCESS model to a Last Glacial Maximum state and then conduct transient sensitivity experiments across the transition under the application of explicit transition functions for high-latitude ocean exchange, atmospheric dust, and the land ice sheet extent. We compare simulated time evolutions of global mean temperature, pCO2, atmospheric and oceanic carbon isotopes as well as ocean dissolved oxygen concentrations with proxy data records. In this way we estimate the importance of different processes across the transition with emphasis on the role of land biosphere variations and show that carbon outgassing from permafrost and uptake of carbon by the land biosphere broadly compensate for each other during the temperature rise of the early last deglaciation.

  19. Satellite Attitude from a Raven Class Telescope

    Science.gov (United States)

    2010-09-01

    Cache MATLAB was used as an interface to the jSim libraries, including orbit propagation, Earth Track determination, and satellite orientation methods...collection opportunities of the satellite. The combined software tool calculates the satellite orientation required to image the asset location... satellite orientation estimations, with only the photometric signatures with strong features being correctly estimated. The strong features that

  20. The Earth's Magnetic Field

    OpenAIRE

    Edda Lína Gunnarsdóttir 1988

    2012-01-01

    The Earth's magnetic field is essential for life on Earth, as we know it, to exist. It forms a magnetic shield around the planet, protecting it from high energy particles and radiation from the Sun, which can cause damage to life, power systems, orbiting satellites, astronauts and spacecrafts. This report contains a general overview of the Earth's magnetic field. The different sources that contribute to the total magnetic field are presented and the diverse variations in the field are describ...

  1. Termination Documentation

    Science.gov (United States)

    Duncan, Mike; Hill, Jillian

    2014-01-01

    In this study, we examined 11 workplaces to determine how they handle termination documentation, an empirically unexplored area in technical communication and rhetoric. We found that the use of termination documentation is context dependent while following a basic pattern of infraction, investigation, intervention, and termination. Furthermore,…

  2. Theory of satellite geodesy applications of satellites to geodesy

    CERN Document Server

    Kaula, William M

    2000-01-01

    The main purpose of this classic text is to demonstrate how Newtonian gravitational theory and Euclidean geometry can be used and developed in the earth's environment. The second is to collect and explain some of the mathematical techniques developed for measuring the earth by satellite.Book chapters include discussions of the earth's gravitational field, with special emphasis on spherical harmonies and the potential of the ellipsoid; matrices and orbital geometry; elliptic motion, linear perturbations, resonance, and other aspects of satellite orbit dynamics; the geometry of satellite obser

  3. Terminal Design of Forest-fire Monitoring Based on Beidou Satellite%基于北斗卫星的森林火灾监控终端设计

    Institute of Scientific and Technical Information of China (English)

    于泓博; 石磊

    2012-01-01

    Traditional {ire monitoring system of forest is limited by the terrain, which results in untimely succor and inaccurate location. Aiming at this defect, a new forest-fire monitoring system based on the Beidou Satellite is designed, which can intelligently identify the fire and make early- warning. Coupled with the quick location and information delivery. Terminal acquisition and processing module including smoke, the image acquisition module. DSP processing module. ARM Compass satellite control module and communication module in five parts. This terminal conducts the real-time monitoring on the forest from smoke and flamei moreover, the algorithm which has combined ionic smog sensor and DSP flame detection is applied . The difference between flame images and extracts the boundary parameters of the flame image, to improve the accuracy of the Identification. Tests proved, this design owns the features of simple structure, convenient operation and intelligent identification.%针对传统森林火灾监控方式存在的受地形限制,导致火灾发现不及时和定位难的缺陷,设计了基于北斗卫星的森林火灾监控系统,实现了火灾智能识别和预警,并且可以对火源、火场进行快速定位和信息通报;终端包括烟采集处理模块、图像采集模块、DSP处理模块、ARM主控模块和北斗卫星通信模块五部分,从烟和火焰两个方面对森林实时进行监控,分别采用离子烟雾传感器和DSP火焰识别混合算法,提取火焰图像差值和火焰图像边界参数的方法,提高了识别的准确率;试验证明,系统具有结构简单、使用方便和识别智能化的特点.

  4. Communications satellites - The experimental years

    Science.gov (United States)

    Edelson, B. I.

    1983-10-01

    Only eight years after the launc of Sputnik-1 by the Soviet Union, the first commercial satellite, 'Early Bird', entered service. In just twelve years commercial satellite service extended around the earth and became profitable. The reasons for the successful development of the communications satellite services in a comparatively short time are considered. These reasons are related to the presence of three ingredients, taking into account technology to create the system, communications requirements to form a market, and a management structure to implement the system. The formation of the concept of using earth orbiting satellites for telecommunications is discussed. It is pointed out that the years from 1958 to 1964 were the true 'experimental years' for satellite communications. The rapid development of technology during this crucial period is described, giving attention to passive satellites, active systems, and development satellites.

  5. Satellite orbit determination and gravity field recovery from satellite-to-satellite tracking

    Science.gov (United States)

    Wakker, K. F.; Ambrosius, B. A. C.; Leenman, H.

    1989-07-01

    Studies on satellite-to-satellite tracking (SST) with POPSAT (a geodetic satellite concept) and a ERS-class (Earth observation) satellite, a Satellite-to-Satellite Tracking (SST) gravity mission, and precise gravity field determination methods and mission requirements are reported. The first two studies primarily address the application of SST between the high altitude POPSAT and an ERS-class or GRM (Geopotential Research Mission) satellite to the orbit determination of the latter two satellites. Activities focussed on the determination of the tracking coverage of the lower altitude satellite by ground based tracking systems and by POPSAT, orbit determination error analysis and the determination of the surface forces acting on GRM. The third study surveys principles of SST, uncertainties of existing drag models, effects of direct luni-solar attraction and tides on orbit and the gravity gradient observable. Detailed ARISTOTELES (which replaced POPSAT) orbit determination error analyses were performed for various ground based tracking networks.

  6. Determination of attitude motion of the Foton M-3 satellite according to the data of onboard measurements of the Earth's magnetic field

    Science.gov (United States)

    Beuselinck, T.; van Bavinchove, C.; Abrashkin, V. I.; Kazakova, A. E.; Sazonov, V. V.

    2010-06-01

    The results of reconstruction of rotational motion of the Foton M-3 satellite during its uncontrolled flight in September 2007 are presented. The reconstruction was performed by processing the data of onboard measurements of the Earth’s magnetic field obtained by the DIMAC instruments. The measurements were carried out continuously throughout the flight, but the processing technique dealt with the data portions covering time intervals of a few orbital revolutions. The data obtained on each such interval were processed jointly by the least squares method with using integration of the equations of satellite motion relative to its center of mass. When processing, the initial conditions of motion and the used mathematical model’s parameters were estimated. The results of processing 16 data sets gave us complete information about the satellite motion. This motion, which began at a low angular velocity, had gradually accelerated and in five days became close to the regular Euler precession of an axisymmetric solid body. At the end of uncontrolled flight the angular velocity of the satellite relative to its lengthwise axis was 0.5 deg/s; the angular velocity projection onto the plane perpendicular to this axis had a magnitude of about 0.18 deg/s.

  7. Interim Service ISDN Satellite (ISIS) hardware experiment development for advanced ISDN satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Service Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Development for Advanced Satellite Designs describes the development of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into Time Division Multiple Access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the RS-499 interface for satellite uplink. The same ISTA converts in the opposite direction the RS-499 to U-interface data with a simple switch setting.

  8. Interim Service ISDN Satellite (ISIS) hardware experiment design for advanced ISDN satellite design and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Design for Advanced Satellite Designs describes the design of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into time division multiple access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the V.35 interface for satellite uplink. The same ISTA converts in the opposite direction the V.35 to U-interface data with a simple switch setting.

  9. Solid Earth: Introduction

    Science.gov (United States)

    Rummel, R.

    1991-10-01

    The principles of the solid Earth program are introduced. When considering the study of solid Earth from space, satellites are used as beacons, inertial references, free fall probes and carrying platforms. The phenomenon measured by these satellites and the processes which can be studied as a result of these measurements are tabulated. The NASA solid Earth program focusses on research into surface kinematics, Earth rotation, land, ice, and ocean monitoring. The ESA solid Earth program identifies as its priority the Aristoteles mission for determining the gravity and magnetic field globally, with high spatial resolution and high accuracy. The Aristoteles mission characteristics and goals are listed. The benefits of the improved gravity information that will be provided by this mission are highlighted. This information will help in the following research: geodesy, orbit mechanics, geodynamics, oceanography, climate sea level, and the atmosphere.

  10. Laser experiments in light cloudiness with the geostationary satellite ARTEMIS

    Science.gov (United States)

    Kuzkov, V.; Kuzkov, S.; Sodnik, Z.

    2016-08-01

    The geostationary satellite ARTEMIS was launched in July 2001. The satellite is equipped with a laser communication terminal, which was used for the world's first inter-satellite laser communication link between ARTEMIS and the low earth orbit satellite SPOT-4. Ground-to-space laser communication experiments were also conducted under various atmospheric conditions involving ESA's optical ground station. With a rapidly increasing volume of information transferred by geostationary satellites, there is a rising demand for high-speed data links between ground stations and satellites. For ground-to-space laser communications there are a number of important design parameters that need to be addressed, among them, the influence of atmospheric turbulence in different atmospheric conditions and link geometries. The Main Astronomical Observatory of NAS of Ukraine developed a precise computer tracking system for its 0.7 m AZT-2 telescope and a compact laser communication package LACES (Laser Atmosphere and Communication experiments with Satellites) for laser communication experiments with geostationary satellites. The specially developed software allows computerized tracking of the satellites using their orbital data. A number of laser experiments between MAO and ARTEMIS were conducted in partial cloudiness with some amount of laser light observed through clouds. Such conditions caused high break-up (splitting) of images from the laser beacon of ARTEMIS. One possible explanation is Raman scattering of photons on molecules of a water vapor in the atmosphere. Raman scattering causes a shift in a wavelength of the photons.In addition, a different value for the refraction index appears in the direction of the meridian for the wavelength-shifted photons. This is similar to the anomalous atmospheric refraction that appears at low angular altitudes above the horizon. We have also estimated the atmospheric attenuation and the influence of atmospheric turbulence on observed results

  11. A simplified technique for determining the rotational motion of a satellite based on the onboard measurements of the angular velocity and magnetic field of the Earth

    Science.gov (United States)

    Abrashkin, V. I.; Voronov, K. E.; Piyakov, I. V.; Puzin, Yu. Ya.; Sazonov, V. V.; Syomkin, N. D.; Chebukov, S. Yu.

    2016-09-01

    The mathematical model, which allowed us to reconstruct the rotational motion of the Bion M-1 and Foton M-4 satellites by processing the measurements of onboard magnetometers and the angular velocity sensor, is sufficiently detailed and accurate. If we slightly lower the requirements for accuracy and transfer to a rougher model, i.e., we will not update the biases in measurements of the angular velocity component, then the measurement processing technique can be significantly simplified. The volume of calculations in minimizing the functional of the least-square technique is reduced; the most complicated part of calculations is performed using the standard procedure of computational linear algebra. This simplified technique is described below, and the examples of its application for reconstructing the rotational motion of the Foton M-4 satellite are presented. A noticeable distinction in the reconstructions of motion, constructed by simplified and more exact techniques, is revealed in processing the measurements over time intervals longer than 4 hours.

  12. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (IBM PC VERSION)

    Science.gov (United States)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  13. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (MACINTOSH VERSION)

    Science.gov (United States)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  14. Satellite Communication.

    Science.gov (United States)

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  15. Earth as art three

    Science.gov (United States)

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  16. Why Earth aurorae shine?

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ By using the data obtained from three satellites of the Cluster mission launched by the European Space Agency (ESA), CAO Jinbin from the CAS Center for Space Science and Applied Research (CSSAR) and his US and European co-workers have clarified why Earth's aurorae shine.Their work entitled Joint Observations by Cluster Satellites of Bursty Bulk Flows in the Magnetotail was published in a recent issue of Journal of Geophysical Research.

  17. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Wilson, Gregory S.; Backlund, Peter W.

    1991-01-01

    The NASA program described is an international study to predict changes in the earth's environment by means of multidisciplinary remote sensing from satellites. An international consortium dedicates satellites with advanced sensors to data collection, and a data processing system is described to collect and analyze a large amount of terrestrial data. The program requires international multidisciplinary involvement to collect and interpret the data and thereby manage and preserve the global environment.

  18. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  19. Simultaneous Laser Ranging and Communication from an Earth-Based Satellite Laser Ranging Station to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Science.gov (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Neumann, Gregory A.; McIntire, Leva; Zellar, Ronald S.; Davidson, Frederic M.; Fong, Wai H.; Krainak, Michael A.; Zuber, Maria T.; Smith, David E.

    2013-01-01

    We report a free space laser communication experiment from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit through the on board one-way Laser Ranging (LR) receiver. Pseudo random data and sample image files were transmitted to LRO using a 4096-ary pulse position modulation (PPM) signal format. Reed-Solomon forward error correction codes were used to achieve error free data transmission at a moderate coding overhead rate. The signal fading due to the atmosphere effect was measured and the coding gain could be estimated.

  20. Broad search for trajectories from Earth to Callisto-Ganymede-JOI double-satellite-aided capture at Jupiter from 2020 to 2060

    Science.gov (United States)

    Lynam, Alfred E.

    2016-01-01

    Employing multiple gravity-assist flybys of Jupiter's Galilean moons can save a substantial amount of \\varDelta V when capturing into orbit about Jupiter. Using Callisto and Ganymede, the most massive and distant of the Galilean moons, as gravity-assist bodies reduces the Jupiter orbit insertion \\varDelta V cost, while allowing the spacecraft to remain above the worst of Jupiter's radiation belts. A phase-angle approach is used to find initial guesses for a Lambert targeter to find patched-conic Callisto-Ganymede transfers. A B-plane targeter using grid search methodology is used to backward target Earth to find launch conditions. Twenty-nine distinct patched-conic trajectories were found from Earth to Callisto-Ganymede-JOI capture throughout the search space from 2020-2060. Five promising trajectories were found that launch from Earth between July 11, 2023 and July 20, 2023, and arrive at Jupiter between February and September 2026. These trajectories were numerically integrated using GMAT and, in the author's opinion, are excellent candidates for use on NASA's planned Europa Clipper mission.

  1. Perception via satellite

    Science.gov (United States)

    Robinove, Charles J.

    1970-01-01

    The earth resources observation satellite (EROS) program in the Department of the Interior is intended to gather and use data from satellites and aircraft on natural and man-made features of the earth's surface. Earth resources technology satellite will provide the EROS program with data for use in dealing with natural resource problems and understanding the interaction between man and the environment. Applications will include studies of tectonic features, hydrologic problems, location of fish schools, determination of the conditions of range land, mapping land use for urban planning, studies of erosion and change along coastlines and major streams, and inventories of land use and land forms. In addition, the ERTS data may be used for detecting forest and crop diseases and inventorying crops. The ERTS satellite will be in a polar, sun-synchronous orbit so that each point on the earth's surface will be sensed every 17 to 20 days, at the same time of day. Multispectral photography is being investigated for its usefulness in hydrology. Side-looking airborne radar has not yet been widely used in hydrologic studies, although it is an excellent tool for all-weather, day or night, coverage of large areas. Other techniques being investigated include passive microwave radiometry, ultraviolet and visible stimulated luminescence, and absorption spectroscopy.

  2. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth

    Science.gov (United States)

    Sato, H.P.; Harp, E.L.

    2009-01-01

    The 12 May 2008 M7.9 Wenchuan earthquake in the People's Republic of China represented a unique opportunity for the international community to use commonly available GIS (Geographic Information System) tools, like Google Earth (GE), to rapidly evaluate and assess landslide hazards triggered by the destructive earthquake and its aftershocks. In order to map earthquake-triggered landslides, we provide details on the applicability and limitations of publicly available 3-day-post- and pre-earthquake imagery provided by GE from the FORMOSAT-2 (formerly ROCSAT-2; Republic of China Satellite 2). We interpreted landslides on the 8-m-resolution FORMOSAT-2 image by GE; as a result, 257 large landslides were mapped with the highest concentration along the Beichuan fault. An estimated density of 0.3 landslides/km2 represents a minimum bound on density given the resolution of available imagery; higher resolution data would have identified more landslides. This is a preliminary study, and further study is needed to understand the landslide characteristics in detail. Although it is best to obtain landslide locations and measurements from satellite imagery having high resolution, it was found that GE is an effective and rapid reconnaissance tool. ?? 2009 Springer-Verlag.

  3. New Regional Satellite Positioning Constellation Scheme Discussion

    Institute of Scientific and Technical Information of China (English)

    CHU Hai-bin; ZHANG Nai-tong; GU Xue-mai

    2005-01-01

    The characteristics of present "Beidou" satellite positioning system are analyzed. In order to perfect our country regional satellite positioning system, the idea of "Beidou" geosychronous earth orbit (GEO) satellites combined with some middle earth orbit (MEO) satellites constellation is put forward. The details of general satellite constellation optimized method are described, using this method the multiple positioning constellation design results are gained. And those results belong to two type of schems, one is 2 GEO plus some MEO satellites and the other is 3 GEO plus some MEO satellites. Through simulation and comparison, among those multiple design results, final optimized regional positioning constellation is given. In order to check the chosen constellation cover performance, the position dilution of precision(PDOP) is calculated, and with satellite constellation simulation software Satlab many coverage performances of the chosen constellation substellar point track, elevation, azimuth and visible satellites number changing situation are also simulated.

  4. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M

    2012-01-01

    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  5. Simulating cosmic radiation absorption and secondary particle production of solar panel layers of Low Earth Orbit (LEO) satellite with GEANT4

    Science.gov (United States)

    Yiǧitoǧlu, Merve; Veske, Doǧa; Nilüfer Öztürk, Zeynep; Bilge Demirköz, Melahat

    2016-07-01

    All devices which operate in space are exposed to cosmic rays during their operation. The resulting radiation may cause fatal damages in the solid structure of devices and the amount of absorbed radiation dose and secondary particle production for each component should be calculated carefully before the production. Solar panels are semiconductor solid state devices and are very sensitive to radiation. Even a short term power cut-off may yield a total failure of the satellite. Even little doses of radiation can change the characteristics of solar cells. This deviation can be caused by rarer high energetic particles as well as the total ionizing dose from the abundant low energy particles. In this study, solar panels planned for a specific LEO satellite, IMECE, are analyzed layer by layer. The Space Environment Information System (SPENVIS) database and GEANT4 simulation software are used to simulate the layers of the panels. The results obtained from the simulation will be taken in account to determine the amount of radiation protection and resistance needed for the panels or to revise the design of the panels.

  6. A digitally implemented communications experiment utilizing the Hermes (CTS) satellite

    Science.gov (United States)

    Jackson, H. D.; Fiala, J. L.

    1977-01-01

    The Hermes (CTS) experiment program made possible a significant effort directed toward new developments which will reduce the costs associated with the distribution of satellite services. Advanced satellite transponder technology and small inexpensive earth terminals were demonstrated as part of the Hermes program. Another system element that holds promise for reduced transmission cost is associated with the communication link implementation. An experiment is described which uses CTS to demonstrate digital link implementation and its advantages over conventional analog systems. A Digitally Implemented Communications experiment which demonstrates the flexibility and efficiency of digital transmission of television video and audio, telephone voice and high-bit-rate data is also described. Presentation of the experiment concept which concentrates on the evaluation of full-duplex digital television in the teleconferencing environment is followed by a description of unique equipment that was developed.

  7. Satellite formation. II

    Science.gov (United States)

    Harris, A. W.

    1978-01-01

    A satellite formation model is extended to include evolution of planetary ring material and elliptic orbital motion. In this model the formation of the moon begins at a later time in the growth of the earth, and a significant fraction of the lunar material is processed through a circumterrestrial debris cloud where volatiles might have been lost. Thus, the chemical differences between the earth and moon are more plausibly accounted for. Satellites of the outer planets probably formed in large numbers throughout the growth of those planets. Because of rapid inward evolution of the orbits of small satellites, the present satellite systems represent only satellites formed in the last few percent of the growths of their primaries. The rings of Saturn and Uranus are most plausibly explained as the debris of satellites disrupted within the Roche limit. Because such a ring would collapse onto the planet in the course of any significant further accretion by the planet, the rings must have formed very near or even after the conclusion of accretion.

  8. An introduction to optimal satellite range scheduling

    CERN Document Server

    Vázquez Álvarez, Antonio José

    2015-01-01

    The satellite range scheduling (SRS) problem, an important operations research problem in the aerospace industry consisting of allocating tasks among satellites and Earth-bound objects, is examined in this book. SRS principles and solutions are applicable to many areas, including: Satellite communications, where tasks are communication intervals between sets of satellites and ground stations Earth observation, where tasks are observations of spots on the Earth by satellites Sensor scheduling, where tasks are observations of satellites by sensors on the Earth. This self-contained monograph begins with a structured compendium of the problem and moves on to explain the optimal approach to the solution, which includes aspects from graph theory, set theory, game theory and belief networks. This book is accessible to students, professionals and researchers in a variety of fields, including: operations research, optimization, scheduling theory, dynamic programming and game theory. Taking account of the distributed, ...

  9. Observation of the Earth system from space

    CERN Document Server

    Flury, Jakob; Reigber, Christoph; Rothacher, Markus; Boedecker, Gerd

    2006-01-01

    In the recent years, space-based observation methods have led to a subst- tially improved understanding of Earth system. Geodesy and geophysics are contributing to this development by measuring the temporal and spatial va- ations of the Earth's shape, gravity ?eld, and magnetic ?eld, as well as at- sphere density. In the frame of the GermanR&D programmeGEOTECHNO- LOGIEN,researchprojectshavebeen launchedin2002relatedto the satellite missions CHAMP, GRACE and ESA's planned mission GOCE, to comp- mentary terrestrial and airborne sensor systems and to consistent and stable high-precision global reference systems for satellite and other techniques. In the initial 3-year phase of the research programme (2002-2004), new gravity ?eld models have been computed from CHAMP and GRACE data which outperform previous models in accuracy by up to two orders of m- nitude for the long and medium wavelengths. A special highlight is the - termination of seasonal gravity variations caused by changes in continental water masses...

  10. Earth Resources Technology Satellite-1 (ERTS-1) data and anthropology: Use of these data in carrying capacity estimates for sites in Upper Volta and Niger

    Science.gov (United States)

    Reining, P. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Repetitively derived multispectral band imagery from ERTS-1 is now available for many parts of the earth's land surface and represents major new data sources for anthropological work in habitat, land use, and settlement patterns. A completed first step test of ERTS-1 data is available in carrying capacity estimates for Mossi, Hausa, and Sonrai sites derived from: (1) field work; (2) aerial photography; and (3) ERTS-1. Data can test more than one carrying capacity formula.

  11. TC-1 Satellite of DSP Delivered

    Institute of Scientific and Technical Information of China (English)

    SunQing

    2004-01-01

    TC-1 satellite of Double Star Program (DSP), a near-earth equatorial satellite, was delivered to the representative of the end user, the Research Center for Space Science and Application under the Chinese Academy of Sciences (CAS) on April 12, 2004, which symbolized that TC-1 satellite was put into operation formally.

  12. Satellite communications network design and analysis

    CERN Document Server

    Jo, Kenneth Y

    2011-01-01

    This authoritative book provides a thorough understanding of the fundamental concepts of satellite communications (SATCOM) network design and performance assessments. You find discussions on a wide class of SATCOM networks using satellites as core components, as well as coverage key applications in the field. This in-depth resource presents a broad range of critical topics, from geosynchronous Earth orbiting (GEO) satellites and direct broadcast satellite systems, to low Earth orbiting (LEO) satellites, radio standards and protocols.This invaluable reference explains the many specific uses of

  13. Integration of Earth Observation Satellite Data and Real Time 137Cs Measurements in the Greek Marine Environment to GIS for Advances in Radiological Remote Control

    Science.gov (United States)

    Mavrokefalou, Georgia; Florou, Heleny; Sykioti, Olga; Parcharidis, Issaak

    2016-08-01

    In the present study an innovative tool is explored in terms of the radiological remote control. The levels of radionuclides in the marine environment, especially the soluble ones, are associated with other physical parameters. For this purpose, sea parameters such as sea surface temperature and ocean colour issued from satellite and field measurements have been utilized, in order to investigate potential relations with 137Cs activity concentrations. Such potential relations are expected to lead to an innovative tool based on remote sensing data and in situ 137Cs measurements for the remote radioactivity detection of the Greek marine ecosystem both for routine control and emergency recordings. Here, the first findings on the spatial correlations of 137Cs measurements with MODIS L3 ocean data in the Aegean Sea are presented, whereas temporal correlations of 137Cs measurements with MODIS L2 ocean and POSEIDON buoy data in Souda Bay area (Crete island) are also shown.

  14. Hardware-in-the-loop simulation of the dynamic characteristics of rain fading channel for satellite-to-Earth links at Ka-band

    Science.gov (United States)

    Yao, Hongchao; Wang, Huali

    2007-11-01

    Modeling of rain fading channel dynamics is essential to the real-time prediction of link availability for Ka-band satellite communication system under rain attenuation impairment, and can validate fade mitigation techniques (FMT) such as adaptive transmission and diversity. The mechanism of dynamic rain attenuation model based on time-series generator is firstly concerned in this paper. We further provide a scheme and implementation of real-time simulator for dynamic rain fading channels based on Hardware-in-the-loop (HIL) simulation method and general Field Programmable Logic Array (FPGA) device. Finally, the impact of adaptive modulation fade countermeasures (AMFC) in the different state of rain attenuation is evaluated with simulation results.

  15. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2013-01-01

    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  16. A low cost data logging system with satellite transmission capabilities

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; DeSa, E.J.; Desai, R.G.P.

    satellite navigator, deep sea echosounder, and a magnetometer on board a chartered research vessel. A novel data logger design was implemented with the extra option of transmitting logged data through the ships INMARSAT approved satellite terminal...

  17. Design of a Ka-Band Propagation Terminal for Atmospheric Measurements in Polar Regions

    Science.gov (United States)

    Houts, Jacquelynne R.; Nessel, James A.; Zemba, Michael J.

    2016-01-01

    This paper describes the design and performance of a Ka-Band beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed alongside an existing Ka-Band Radiometer [2] located at the east end of the Svalbard Near Earth Network (NEN) complex. The goal of this experiment is to characterize rain fade attenuation to improve the performance of existing statistical rain attenuation models. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation [3] receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation by directly measuring the propagated signal from the satellite Thor 7.

  18. Proposal for a Joint NASA/KSAT Ka-band RF Propagation Terminal at Svalbard, Norway

    Science.gov (United States)

    Volosin, Jeffrey; Acosta, Roberto; Nessel, James; McCarthy, Kevin; Caroglanian, Armen

    2010-01-01

    This slide presentation discusses the placement of a Ka-band RF Propagation Terminal at Svalbard, Norway. The Near Earth Network (NEN) station would be managed by Kongsberg Satellite Services (KSAT) and would benefit NASA and KSAT. There are details of the proposed NASA/KSAT campaign, and the responsibilities each would agree to. There are several reasons for the placement, a primary reason is comparison with the Alaska site, Based on climatological similarities/differences with Alaska, Svalbard site expected to have good radiometer/beacon agreement approximately 99% of time.

  19. Design of a Ka-band Propagation Terminal for Atmospheric Measurements in Polar Regions

    Science.gov (United States)

    Houts, Jacquelynne R.; Nessel, James A.; Zemba, Michael J.

    2016-01-01

    This paper describes the design and performance of a Ka-Band beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed alongside an existing Ka-Band Radiometer located at the east end of the Svalbard Near Earth Network (NEN) complex. The goal of this experiment is to characterize rain fade attenuation to improve the performance of existing statistical rain attenuation models. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation by directly measuring the propagated signal from the satellite Thor 7.

  20. Beginnings of Satellite Navigation

    Directory of Open Access Journals (Sweden)

    Miljenko Solarić

    2008-05-01

    Full Text Available The first satellite navigation system called the Navy Navigation Satellite System (NNSS or TRANSIT was planned in the USA in 1958. It consisted of 5-6 artificial Earth satellites, was set in motion for the USA military in 1964, and in 1967 for civilian purposes. The frequency shift of received radio waves emitted from the satellite and caused by the Doppler effect was measured. The TRANSIT satellite speed of approaching or moving away was derived from that; the TRANSIT satellites emmited also their own coordinates. Then the ship's position was determined by an intersection of three hyperboloids, which were determined from differences of distances in three time intervals. Maintenance of this navigation system was stopped in 1996, but it is still being used in the USA Navy for exploring the ionosphere. Furthermore, results of Doppler measurements in international projects at the Hvar Observatory from 1982 and 1983. This was the first time in Croatia and the former country that the coordinates of the Hvar Observatory were determined in the unique world coordinate system WGS'72. The paper ends with a brief representation of the Tsiklon Doppler navigation system produced in the former Soviet Union, and there is a list of some of numerous produced and designed satellite navigation systems.Ključne riječi

  1. Business earth stations for telecommunications

    Science.gov (United States)

    Morgan, Walter L.; Rouffet, Denis

    The current status of technology for small commercial satellite-communication earth stations is reviewed on the basis of an application study undertaken in the U.S. and Europe. Chapters are devoted to an overview of satellite communication networks, microterminal design and hardware implementation, microterminal applications, the advantages of microterminals, typical users, services provided, the U.S. market for small earth stations, network operators, and the economics of satellite and terrestrial communication services. Consideration is given to the operation of a microterminal network, standards and regulations, technological factors, space-segment requirements, and insurance aspects. Diagrams, graphs, tables of numerical data, and a glossary of terms are provided.

  2. Lunar-based Earth observation geometrical characteristics research

    Science.gov (United States)

    Ren, Yuanzhen; Liu, Guang; Ye, Hanlin; Guo, Huadong; Ding, Yixing; Chen, Zhaoning

    2016-07-01

    As is known to all, there are various platforms for carrying sensors to observe Earth, such as automobiles, aircrafts and satellites. Nowadays, we focus on a new platform, Moon, because of its longevity, stability and vast space. These advantages make it to be the next potential platform for observing Earth, enabling us to get the consistent and global measurements. In order to get a better understanding of lunar-based Earth observation, we discuss its geometrical characteristics. At present, there are no sensors on the Moon for observing Earth and we are not able to obtain a series of real experiment data. As a result, theoretical modeling and numerical calculation are used in this paper. At first, we construct an approximate geometrical model of lunar-based Earth observation, which assumes that Earth and Moon are spheres. Next, we calculate the position of Sun, Earth and Moon based on the JPL ephemeris. With the help of positions data and geometrical model, it is possible for us to decide the location of terminator and substellar points. However, in order to determine their precise position in the conventional terrestrial coordinate system, reference frames transformations are introduced as well. Besides, taking advantages of the relative positions of Sun, Earth and Moon, we get the total coverage of lunar-based Earth optical observation. Furthermore, we calculate a more precise coverage, considering placing sensors on different positions of Moon, which is influenced by its attitude parameters. In addition, different ephemeris data are compared in our research and little difference is found.

  3. ESPA Satellite Dispenser for ORBCOMM Generation 2

    OpenAIRE

    2013-01-01

    ORBCOMM’s machine-to-machine (M2M) solutions offer global asset monitoring and messaging services through a powerful Low Earth Orbit (LEO) satellite constellation. The original constellation deployment consisted of thirtyfive satellites launched in the late 1990s. ORBCOMM is launching the new ORBCOMM Generation 2 (OG2) satellites to upgrade and expand the constellation network. The OG2 satellites being manufactured by Sierra Nevada Corporation will have more data capacity with the potential f...

  4. Comparison of Low Earth Orbit and Geosynchronous Earth Orbits

    Science.gov (United States)

    Drummond, J. E.

    1980-01-01

    The technological, environmental, social, and political ramifications of low Earth orbits as compared to geosynchronous Earth orbits for the solar power satellite (SPS) are assessed. The capital cost of the transmitting facilities is dependent on the areas of the antenna and rectenna relative to the requirement of high efficiency power transmission. The salient features of a low orbit Earth orbits are discussed in terms of cost reduction efforts.

  5. Trends in mobile satellite communication

    Science.gov (United States)

    Johannsen, Klaus G.; Bowles, Mike W.; Milliken, Samuel; Cherrette, Alan R.; Busche, Gregory C.

    1993-01-01

    Ever since the U.S. Federal Communication Commission opened the discussion on spectrum usage for personal handheld communication, the community of satellite manufacturers has been searching for an economically viable and technically feasible satellite mobile communication system. Hughes Aircraft Company and others have joined in providing proposals for such systems, ranging from low to medium to geosynchronous orbits. These proposals make it clear that the trend in mobile satellite communication is toward more sophisticated satellites with a large number of spot beams and onboard processing, providing worldwide interconnectivity. Recent Hughes studies indicate that from a cost standpoint the geosynchronous satellite (GEOS) is most economical, followed by the medium earth orbit satellite (MEOS) and then by the low earth orbit satellite (LEOS). From a system performance standpoint, this evaluation may be in reverse order, depending on how the public will react to speech delay and collision. This paper discusses the trends and various mobile satellite constellations in satellite communication under investigation. It considers the effect of orbital altitude and modulation/multiple access on the link and spacecraft design.

  6. ESA's Earth Observation in Support of Geoscience

    Science.gov (United States)

    Liebig, Volker

    2016-04-01

    The intervention will present ESA's Earth Observation Programme and its contribution to Geoscience. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and strategies. A special focus will be put on the Earth Explorers, who form the science and research element of ESA's Living Planet Programme and focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. In addition the operational Sentinel satellites have a huge potential for Geoscience. Earth Explorers' emphasis is also on learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The process of Earth Explorer mission selection has given the Earth science community an efficient tool for advancing the understanding of Earth as a system.

  7. High-Resolution NDVI from Planet’s Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture

    Directory of Open Access Journals (Sweden)

    Rasmus Houborg

    2016-09-01

    Full Text Available Planet Labs (“Planet” operate the largest fleet of active nano-satellites in orbit, offering an unprecedented monitoring capacity of daily and global RGB image capture at 3–5 m resolution. However, limitations in spectral resolution and lack of accurate radiometric sensor calibration impact the utility of this rich information source. In this study, Planet’s RGB imagery was translated into a Normalized Difference Vegetation Index (NDVI: a common metric for vegetation growth and condition. Our framework employs a data mining approach to build a set of rule-based regression models that relate RGB data to atmospherically corrected Landsat-8 NDVI. The approach was evaluated over a desert agricultural landscape in Saudi Arabia where the use of near-coincident (within five days Planet and Landsat-8 acquisitions in the training of the regression models resulted in NDVI predictabilities with an r2 of approximately 0.97 and a Mean Absolute Deviation (MAD on the order of 0.014 (~9%. The MAD increased to 0.021 (~14% when the Landsat NDVI training image was further away (i.e., 11–16 days from the corrected Planet image. In these cases, the use of MODIS observations to inform on the change in NDVI occurring between overpasses was shown to significantly improve prediction accuracies. MAD levels ranged from 0.002 to 0.011 (3.9% to 9.1% for the best performing 80% of the data. The technique is generic and extendable to any region of interest, increasing the utility of Planet’s dense time-series of RGB imagery.

  8. Using NASA Earth Observing Satellites and Statistical Model Analysis to Monitor Vegetation and Habitat Rehabilitation in Southwest Virginia's Reclaimed Mine Lands

    Science.gov (United States)

    Tate, Z.; Dusenge, D.; Elliot, T. S.; Hafashimana, P.; Medley, S.; Porter, R. P.; Rajappan, R.; Rodriguez, P.; Spangler, J.; Swaminathan, R. S.; VanGundy, R. D.

    2014-12-01

    The majority of the population in southwest Virginia depends economically on coal mining. In 2011, coal mining generated $2,000,000 in tax revenue to Wise County alone. However, surface mining completely removes land cover and leaves the land exposed to erosion. The destruction of the forest cover directly impacts local species, as some are displaced and others perish in the mining process. Even though surface mining has a negative impact on the environment, land reclamation efforts are in place to either restore mined areas to their natural vegetated state or to transform these areas for economic purposes. This project aimed to monitor the progress of land reclamation and the effect on the return of local species. By incorporating NASA Earth observations, such as Landsat 8 Operational Land Imager (OLI) and Landsat 5 Thematic Mapper (TM), re-vegetation process in reclamation sites was estimated through a Time series analysis using the Normalized Difference Vegetation Index (NDVI). A continuous source of cloud free images was accomplished by utilizing the Spatial and Temporal Adaptive Reflectance Fusion Model (STAR-FM). This model developed synthetic Landsat imagery by integrating the high-frequency temporal information from Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and high-resolution spatial information from Landsat sensors In addition, the Maximum Entropy Modeling (MaxENT), an eco-niche model was used to estimate the adaptation of animal species to the newly formed habitats. By combining factors such as land type, precipitation from Tropical Rainfall Measuring Mission (TRMM), and slope from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the MaxENT model produced a statistical analysis on the probability of species habitat. Altogether, the project compiled the ecological information which can be used to identify suitable habitats for local species in reclaimed mined areas.

  9. Terminal structure

    Science.gov (United States)

    Schmidt, Frank; Allais, Arnaud; Mirebeau, Pierre; Ganhungu, Francois; Lallouet, Nicolas

    2009-10-20

    A terminal structure (2) for a superconducting cable (1) is described. It consists of a conductor (2a) and an insulator (2b) that surrounds the conductor (2a), wherein the superconducting cable (1) has a core with a superconducting conductor (5) and a layer of insulation that surrounds the conductor (5), and wherein the core is arranged in such a way that it can move longitudinally in a cryostat. The conductor (2a) of the terminal structure (2) is electrically connected with the superconducting conductor (5) or with a normal conductor (6) that is connected with the superconducting conductor (5) by means of a tubular part (7) made of an electrically conductive material, wherein the superconducting conductor (5) or the normal conductor (6) can slide in the part (7) in the direction of the superconductor.

  10. Termination unit

    Energy Technology Data Exchange (ETDEWEB)

    Traeholt, Chresten; Willen, Dag; Roden, Mark; Tolbert, Jerry C.; Lindsay, David; Fisher, Paul W.; Nielsen, Carsten Thidemann

    2016-05-03

    Cable end section comprises end-parts of N electrical phases/neutral, and a thermally-insulation envelope comprising cooling fluid. The end-parts each comprises a conductor and are arranged with phase 1 innermost, N outermost surrounded by the neutral, electrical insulation being between phases and N and neutral. The end-parts comprise contacting surfaces located sequentially along the longitudinal extension of the end-section. A termination unit has an insulating envelope connected to a cryostat, special parts at both ends comprising an adapter piece at the cable interface and a closing end-piece terminating the envelope in the end-section. The special parts houses an inlet and/or outlet for cooling fluid. The space between an inner wall of the envelope and a central opening of the cable is filled with cooling fluid. The special part at the end connecting to the cryostat houses an inlet or outlet, splitting cooling flow into cable annular flow and termination annular flow.

  11. Coccolithophore surface distributions in the North Atlantic and their modulation of the air-sea flux of CO2 from 10 years of satellite Earth observation data

    Directory of Open Access Journals (Sweden)

    J. D. Shutler

    2013-04-01

    Full Text Available Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3. These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean carbonate pump (~50% and their calcification can affect the atmosphere-to-ocean (air-sea uptake of carbon dioxide (CO2 through increasing the seawater partial pressure of CO2 (pCO2. Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998–2007, using Earth observation data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS. We calculate the annual mean sea surface areal coverage of E. huxleyi in the North Atlantic to be 474 000 ± 104 000 km2, which results in a net CaCO3 carbon (CaCO3-C production of 0.14–1.71 Tg CaCO3-C per year. However, this surface coverage (and, thus, net production can fluctuate inter-annually by −54/+8% about the mean value and is strongly correlated with the El Niño/Southern Oscillation (ENSO climate oscillation index (r=0.75, pE. huxleyi blooms in the North Atlantic can increase the pCO2 and, thus, decrease the localised air-sea flux of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly air-sea CO2 flux can reach 55%. The maximum reduction of the monthly air-sea CO2 flux in the time series is 155%. This work suggests that the high variability, frequency and distribution of these calcifying plankton and their impact on pCO2 should be considered if we are to fully understand the variability of the North Atlantic air-to-sea flux of CO2. We estimate that these blooms can reduce the annual N. Atlantic net sink atmospheric CO2 by between 3–28%.

  12. The Organism/Organic Exposure to Orbital Stresses (O/OREOS) satellite: radiation exposure in low-earth orbit and supporting laboratory studies of iron tetraphenylporphyrin chloride.

    Science.gov (United States)

    Cook, Amanda M; Mattioda, Andrew L; Ricco, Antonio J; Quinn, Richard C; Elsaesser, Andreas; Ehrenfreund, Pascale; Ricca, Alessandra; Jones, Nykola C; Hoffmann, Søren V

    2014-02-01

    We report results from the exposure of the metalloporphyrin iron tetraphenylporphyrin chloride (FeTPPCl) to the outer space environment, measured in situ aboard the Organism/Organic Exposure to Orbital Stresses nanosatellite. FeTPPCl was exposed for a period of 17 months (3700 h of direct solar exposure), which included broad-spectrum solar radiation (∼122 nm to the near infrared). Motivated by the potential role of metalloporphyrins as molecular biomarkers, the exposure of thin-film samples of FeTPPCl to the space environment in low-Earth orbit was monitored in situ via ultraviolet/visible spectroscopy and reported telemetrically. The space data were complemented by laboratory exposure experiments that used a high-fidelity solar simulator covering the spectral range of the spaceflight measurements. We found that thin-film samples of FeTPPCl that were in contact with a humid headspace gas (0.8-2.3% relative humidity) were particularly susceptible to destruction upon irradiation, degrading up to 10 times faster than identical thin films in contact with dry headspace gases; this degradation may also be related to the presence of oxides of nitrogen in those cells. In the companion terrestrial experiments, simulated solar exposure of FeTPPCl films in contact with either Ar or CO2:O2:Ar (10:0.01:1000) headspace gas resulted in growth of a band in the films' infrared spectra at 1961 cm(-1). We concluded that the most likely carriers of this band are allene (C3H4) and chloropropadiene (C3H3Cl), putative molecular fragments of the destruction of the porphyrin ring. The thin films studied in space and in solar simulator-based experiments show qualitatively similar spectral evolution as a function of contacting gaseous species but display significant differences in the time dependence of those changes. The relevance of our findings to planetary science, biomarker research, and the photostability of organic materials in astrobiologically relevant environments is

  13. Cycle life evaluation of 3 Ah Li xMn 2O 4-based lithium-ion secondary cells for low-earth-orbit satellites . I. Full cell results

    Science.gov (United States)

    Brown, Shelley; Ogawa, Keita; Kumeuchi, Youichi; Enomoto, Shinsuke; Uno, Masatoshi; Saito, Hirobumi; Sone, Yoshitsugu; Abraham, Daniel; Lindbergh, Göran

    Lithium-ion batteries are a candidate for the energy storage system onboard low-earth-orbit satellites. Cycle life performance under both orbital and terrestrial conditions must be investigated in order to evaluate any inadvertent effects due to the former and the validity of the latter, with a successful comparison allowing for the extension of terrestrial experimental matrices in order to identify the effects of ageing. The orbital performance of Li xMn 2O 4-based pouch cells onboard the microsatellite REIMEI was monitored and compared with terrestrial experiments, with the cells found to be unaffected by orbital conditions. A lifetime matrix of different cycling depths-of-discharge (DODs: 0, 20, 40%) and temperatures (25, 45 ° C) was undertaken with periodic reference performance tests. A decrease in both the cell end-of-discharge cycling voltage and capacity was accelerated by both higher temperatures and larger DODs. Impedance spectra measured for all ageing conditions indicated that the increase was small, manifested in a state-of-charge dependent increase of the high-frequency semi-circle and a noticeable increase in the high-frequency real axis intercept. An evaluation of the change of both the resistance and capacity of 3 Ah cells led to the development of a potential prognostic state-of-health indicator. The use of elevated temperatures to accelerate cell ageing was validated.

  14. Cycle life evaluation of 3 Ah Li{sub x}Mn{sub 2}O{sub 4}-based lithium-ion secondary cells for low-earth-orbit satellites. I. Full cell results

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Shelley; Lindbergh, Goeran [School of Chemical Science and Engineering, Department of Chemical Engineering and Technology, Teknikringen 42, Royal Institute of Technology, Stockholm SE-100 44 (Sweden); Ogawa, Keita [Advanced Engineering Services Co., Ltd., 1-6-1 Takezono, Tsukuba, Ibaraki 305-0032 (Japan); Kumeuchi, Youichi; Enomoto, Shinsuke [NEC-Tokin Corporation, 1120 Shimokuzawa, Sagamihara, Kanagawa 229-1198 (Japan); Uno, Masatoshi; Saito, Hirobumi; Sone, Yoshitsugu [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Abraham, Daniel [Chemical Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2008-12-01

    Lithium-ion batteries are a candidate for the energy storage system onboard low-earth-orbit satellites. Cycle life performance under both orbital and terrestrial conditions must be investigated in order to evaluate any inadvertent effects due to the former and the validity of the latter, with a successful comparison allowing for the extension of terrestrial experimental matrices in order to identify the effects of ageing. The orbital performance of Li{sub x}Mn{sub 2}O{sub 4}-based pouch cells onboard the microsatellite REIMEI was monitored and compared with terrestrial experiments, with the cells found to be unaffected by orbital conditions. A lifetime matrix of different cycling depths-of-discharge (DODs: 0, 20, 40%) and temperatures (25, 45 C) was undertaken with periodic reference performance tests. A decrease in both the cell end-of-discharge cycling voltage and capacity was accelerated by both higher temperatures and larger DODs. Impedance spectra measured for all ageing conditions indicated that the increase was small, manifested in a state-of-charge dependent increase of the high-frequency semi-circle and a noticeable increase in the high-frequency real axis intercept. An evaluation of the change of both the resistance and capacity of 3 Ah cells led to the development of a potential prognostic state-of-health indicator. The use of elevated temperatures to accelerate cell ageing was validated. (author)

  15. `Galileo Galilei' (GG) small-satellite project: an alternative to the torsion balance for testing the equivalence principle on Earth and in space

    Science.gov (United States)

    Nobili, A. M.; Bramanti, D.; Polacco, E.; Roxburgh, I. W.; Comandi, G.; Catastini, G.

    2000-06-01

    `Galileo Galilei' (GG) is a proposal for a small, low-orbit satellite devoted to testing the equivalence principle (EP) of Galileo, Newton and Einstein. The GG report on the phase A study recently carried out with funding from ASI (Agenzia Spaziale Italiana) concluded that GG can test the equivalence principle to 1 part in 1017 at room temperature. The main novelty is to modulate the expected differential signal of an EP violation at the spin rate of the spacecraft (2 Hz). Compared with other experiments, the modulation frequency is increased by more than a factor of 104, thus reducing 1/f (low-frequency) electronic and mechanical noise. The challenge for an EP test in space is to improve over the sensitivity of ground-based experiments (about 1 part in 1012) by many orders of magnitude, so as to deeply probe a so far totally unexplored field; doing that with more than one pair of bodies is an unnecessary complication. For this reason GG is now proposed with a single pair of test masses. At present the best and most reliable laboratory-controlled tests of the equivalence principle have been achieved by the `Eöt-Wash' group with small test cylinders arranged on a torsion balance placed on a turntable which provides the modulation of the signal (a 1-2 h rotation period). The torsion balance is not a suitable instrument in space. We have designed and built the GGG (`GG on the Ground') prototype. It is made of coaxial test cylinders weakly coupled (via mechanical suspensions) and quickly rotating (6 Hz achieved so far); in addition, it is well suited to be flown in space - where the driving signal is about three orders of magnitude stronger and the absence of weight is very helpful - inside the coaxial, co-rotating GG cylindrical spacecraft. The GGG apparatus is now operational. Preliminary measurement data indicate that weakly coupled, fast-spinning macroscopic rotors can be a suitable instrument to detect small differential effects. Rotation (up to 6 Hz so far) is

  16. Declassified Intelligence Satellite Photographs

    Science.gov (United States)

    ,

    2008-01-01

    Declassified photographs from U.S. intelligence satellites provide an important worldwide addition to the public record of the Earth's land surface. This imagery was released to the National Archives and Records Administration (NARA) and the U.S. Geological Survey (USGS) in accordance with Executive Order 12951 on February 23, 1995. The NARA has the original declassified film and a viewing copy. The USGS has another copy of the film to complement the Landsat archive. The declassified collection involves more than 990,000 photographs taken from 1959 through 1980 and was released on two separate occasions: February 1995 (Declass 1) and September 2002 (Declass 2). The USGS copy is maintained by the Earth Resources Observation and Science (EROS) Center, near Sioux Falls, South Dakota. Both the NARA and EROS provide public access to this unique collection that extends the record of land-surface change back another decade from the advent of the Landsat program that began satellite operations in 1972.

  17. The Advanced Communication Technology Satellite and ISDN

    Science.gov (United States)

    Lowry, Peter A.

    1996-01-01

    This paper depicts the Advanced Communication Technology Satellite (ACTS) system as a global central office switch. The ground portion of the system is the collection of earth stations or T1-VSAT's (T1 very small aperture terminals). The control software for the T1-VSAT's resides in a single CPU. The software consists of two modules, the modem manager and the call manager. The modem manager (MM) controls the RF modem portion of the T1-VSAT. It processes the orderwires from the satellite or from signaling generated by the call manager (CM). The CM controls the Recom Laboratories MSPs by receiving signaling messages from the stacked MSP shelves ro units and sending appropriate setup commands to them. There are two methods used to setup and process calls in the CM; first by dialing up a circuit using a standard telephone handset or, secondly by using an external processor connected to the CPU's second COM port, by sending and receiving signaling orderwires. It is the use of the external processor which permits the ISDN (Integrated Services Digital Network) Signaling Processor to implement ISDN calls. In August 1993, the initial testing of the ISDN Signaling Processor was carried out at ACTS System Test at Lockheed Marietta, Princeton, NJ using the spacecraft in its test configuration on the ground.

  18. Using Satellite-Based Earth Science Data in a Public Health Decision-Support System to Track and Forecast Pollen Events

    Science.gov (United States)

    Hudspeth, W. B.; Budge, A.

    2013-12-01

    There is widespread recognition within the public health community that ongoing changes in climate are expected to increasingly pose threats to human health. Environmentally induced health risks to populations with respiratory illnesses are a growing concern globally. Of particular concern are dust and smoke events carrying PM2.5 and PM10 particle sizes, ozone, and pollen. There is considerable interest in documenting the precise linkages between changing patterns in the climate and how these shifts impact the prevalence of respiratory illnesses. The establishment of these linkages can drive the development of early warning and forecasting systems to alert health care professionals of impending air-quality events. As a component of a larger NASA-funded project on Integration of Airborne Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems, the Earth Data Analysis Center (EDAC) at the University of New Mexico, is developing web-based visualization and analysis services for forecasting pollen concentration data. This decision-support system, New Mexico's Environmental Public Health Tracking System (NMEPHTS), funded by the Centers for Disease Control (CDC) Environmental Public Health Tracking Network (EPHTN), aims to improve health awareness and services by linking health effects data with levels and frequency of environmental exposure. The forecast of atmospheric events with high pollen concentrations has employed a modified version of the DREAM (Dust Regional Atmospheric Model, a verified model for atmospheric dust transport modeling. In this application, PREAM (Pollen Regional Atmospheric Model) models pollen emission using a MODIS-derived phenology of Juniperus spp. communities. Model outputs are verified and validated with ground-based records of pollen release timing and quantities. Outputs of the PREAM model are post-processed and archived in EDAC's Geographic Storage, Transformation, and

  19. ERTS-A satellite imagery

    Science.gov (United States)

    Colvocoresses, Alden P.

    1970-01-01

    The first satellite designed to survey the Earth's resources is scheduled to be launched in 1972. This satellite, known as ERTS-A, will telemeter frames of imagery each covering 100-nautical-mile squares of the Earth. Except for the internal anomalies in the sensor system, the imagery, after being properly scaled, rectified, and controlled, may be considered an orthographic view of the Earth and used as a planimetric photomap. The accuracy of this photomap will be limited, principally by the geometric fidelity of the sensor system rather than by external effects, such as relief displacement, which restrict the direct cartographic use of the conventional aerial photograph. ERST-A is not designed as a topographic mapping satellite but does have real potential' for thematic mapping particularly in areas now covered by topographic maps.

  20. Advanced Communications Technology Satellite (ACTS)

    Science.gov (United States)

    Gedney, Richard T.; Schertler, Ronald J.

    1989-01-01

    The NASA Advanced Communications Technology Satellite (ACTS) was conceived to help maintain U.S. leadership in the world's communications-satellite market. This experimental satellite is expected to be launched by NASA in 1992 and to furnish the technology necessary for establishing very small aperture terminal digital networks which provide on-demand full-mesh connectivity, and 1.544-MBPS services with only a single hop. Utilizing on-board switching and processing, each individual voice or data circuit can be separately routed to any location in the network. This paper provides an overview of the ACTS and discusses the value of the technology for future communications systems.

  1. Study of LEO-SAT microwave link for broad-band mobile satellite communication system

    Science.gov (United States)

    Fujise, Masayuki; Chujo, Wataru; Chiba, Isamu; Furuhama, Yoji; Kawabata, Kazuaki; Konishi, Yoshihiko

    1993-01-01

    In the field of mobile satellite communications, a system based on low-earth-orbit satellites (LEO-SAT's) such as the Iridium system has been proposed. The LEO-SAT system is able to offer mobile telecommunication services in high-latitude areas. Rain degradation, fading and shadowing are also expected to be decreased when the system is operated at a high elevation angle. Furthermore, the propagation delay generated in the LEO-SAT system is less pronounced than that in the geostationary orbit satellite (GEO-SAT) system and, in voice services, the effect of the delay is almost negligible. We proposed a concept of a broad-band mobile satellite communication system with LEO-SAT's and Optical ISL. In that system, a fixed L-band (1.6/1.5 GHz) multibeam is used to offer narrow band service to the mobile terminals in the entire area covered by a LEO-SAT and steerable Ka-band (30/20 GHz) spot beams are used for the wide band service. In this paper, we present results of a study of LEO-SAT microwave link between a satellite and a mobile terminal for a broad-band mobile satellite communication system. First, the results of link budget calculations are presented and the antennas mounted on satellites are shown. For a future mobile antenna technology, we also show digital beamforming (DBF) techniques. DBF, together with modulation and/or demodulation, is becoming a key technique for mobile antennas with advanced functions such as antenna pattern calibration, correction, and radio interference suppression. In this paper, efficient DBF techniques for transmitting and receiving are presented. Furthermore, an adaptive array antenna system suitable for this LEO-SAT is presented.

  2. Chameleon gravity and satellite geodesy

    CERN Document Server

    Morris, J R

    2014-01-01

    We consider the possibility of the detection of a chameleon effect by an earth orbiting satellite such as LAGEOS, and possible constraints that might be placed on chameleon model parameters. Approximate constraints presented here result from using a simple monopole approximation for the gravitational field of the earth, along with results from the Khoury-Weltman chameleon model, solar system constraints obtained from the Cassini mission, and parameter bounds obtained from the LAGEOS satellite. It is furthermore suggested that a comparison of ground-based and space-based multipole moments of the geopotential could reveal a possible chameleon effect.

  3. Satellite RNAs and Satellite Viruses.

    Science.gov (United States)

    Palukaitis, Peter

    2016-03-01

    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.

  4. Internal waves and vortices in satellite images

    CERN Document Server

    Sparavigna, Amelia Carolina

    2012-01-01

    Some recent papers proposed the use of the satellite images of Google Earth in teaching physics, in particular to see some behaviours of waves. Reflection, refraction, diffraction and interference are easy to be found in these satellite maps. Besides Google Earth, other sites exist, such as Earth Observatory or Earth Snapshot, suitable for illustrating the large-scale phenomena in atmosphere and oceans In this paper, we will see some examples for teaching surface and internal sea waves, and internal waves and the K\\'arm\\'an vortices in the atmosphere. Aim of this proposal is attracting the interest of students of engineering schools to the physics of waves.

  5. Terminal ballistics

    CERN Document Server

    Rosenberg, Zvi

    2016-01-01

    This book comprehensively discusses essential aspects of terminal ballistics, combining experimental data, numerical simulations and analytical modeling. Employing a unique approach to numerical simulations as a measure of sensitivity for the major physical parameters, the new edition also includes the following features: new figures to better illustrate the problems discussed; improved explanations for the equation of state of a solid and for the cavity expansion process; new data concerning the Kolsky bar test; and a discussion of analytical modeling for the hole diameter in a thin metallic plate impacted by a shaped charge jet. The section on thick concrete targets penetrated by rigid projectiles has now been expanded to include the latest findings, and two new sections have been added: one on a novel approach to the perforation of thin concrete slabs, and one on testing the failure of thin metallic plates using a hydrodynamic ram.

  6. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  7. Induction studies with satellite data

    DEFF Research Database (Denmark)

    Olsen, Nils

    1999-01-01

    analysis of the geomagnetic field is performed, and the Q-response, which is the transfer function between the internal (induced) and the external (inducing) expansion coefficients is determined for a specific frequency. In the second approach, known as the geomagnetic depth sounding method, the C....... This paper reviews and discusses the possibilities for induction studies using high-precision magnetic measurements from low-altitude satellites. The different methods and various transfer functions are presented, with special emphasis on the differences in analysing data from ground stations and from...... satellites. The results of several induction studies with scalar satellite data (from the POGO satellites) and with vector data (from the Magsat mission) demonstrate the ability to probe the Earth's conductivity from space. However, compared to the results obtained with ground data the satellite results...

  8. Astrophysics: Rare data from a lost satellite

    Science.gov (United States)

    Blanton, Elizabeth

    2016-07-01

    The Hitomi astronomical satellite observed gas motions in the Perseus galaxy cluster shortly before losing contact with Earth. Its findings are invaluable to studies of cluster physics and cosmology. See Letter p.117

  9. Satellite theory

    Science.gov (United States)

    Kozai, Y.

    1981-04-01

    The dynamical characteristics of the natural satellite of Mars, Jupiter, Saturn, Uranus and Neptune are analyzed on the basis of the solar tidal perturbation factor and the oblateness factor of the primary planet for each satellite. For the inner satellites, for which the value of the solar tidal factor is much smaller than the planetary oblateness factor, it is shown that the eccentricity and inclination of satellite orbits are generally very small and almost constant; several pairs of inner satellites are also found to exhibit commensurable mean motions, or secular accelerations in mean longitude. In the case of the outer satellites, for which solar perturbations are dominant, secular perturbations and long-period perturbations may be derived by the solution of equations of motion reduced to one degree of freedom. The existence of a few satellites, termed intermediary satellites, for which the solar tidal perturbation is on the order of the planetary oblateness factor, is also observed, and the pole of the orbital plane of the satellite is noted to execute a complex motion around the pole of the planet or the orbital plane of the planet.

  10. BeiDou inter-satellite-type bias evaluation and calibration for mixed receiver attitude determination

    NARCIS (Netherlands)

    Nadarajah, N.; Teunissen, P.J.G.; Raziq, N.

    2013-01-01

    The Chinese BeiDou system (BDS), having different types of satellites, is an important addition to the ever growing system of Global Navigation Satellite Systems (GNSS). It consists of Geostationary Earth Orbit (GEO) satellites, Inclined Geosynchronous Satellite Orbit (IGSO) satellites and Medium

  11. BeiDou inter-satellite-type bias evaluation and calibration for mixed receiver attitude determination

    NARCIS (Netherlands)

    Nadarajah, N.; Teunissen, P.J.G.; Raziq, N.

    2013-01-01

    The Chinese BeiDou system (BDS), having different types of satellites, is an important addition to the ever growing system of Global Navigation Satellite Systems (GNSS). It consists of Geostationary Earth Orbit (GEO) satellites, Inclined Geosynchronous Satellite Orbit (IGSO) satellites and Medium Ea

  12. International Sun-Earth Explorer (ISEE)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Series of three US satellites designed to study the solar wind and its interaction with the Earth's magnetosphere. ISEE-1 and 2 were placed into highly elliptical Earth orbits. ISEE-3 was placed in a halo orbit at the L1 Lagrangian point between the Sun and Earth. It gave advance warning of solar storms heading towards Earth. (See also INTERNATIONAL COMETARY EXPLORER and EXPLORER.)...

  13. Stereoscopic observations from meteorological satellites

    Science.gov (United States)

    Hasler, A. F.; Mack, R.; Negri, A.

    The capability of making stereoscopic observations of clouds from meteorological satellites is a new basic analysis tool with a broad spectrum of applications. Stereoscopic observations from satellites were first made using the early vidicon tube weather satellites (e.g., Ondrejka and Conover [1]). However, the only high quality meteorological stereoscopy from low orbit has been done from Apollo and Skylab, (e.g., Shenk et al. [2] and Black [3], [4]). Stereoscopy from geosynchronous satellites was proposed by Shenk [5] and Bristor and Pichel [6] in 1974 which allowed Minzner et al. [7] to demonstrate the first quantitative cloud height analysis. In 1978 Bryson [8] and desJardins [9] independently developed digital processing techniques to remap stereo images which made possible precision height measurement and spectacular display of stereograms (Hasler et al. [10], and Hasler [11]). In 1980 the Japanese Geosynchronous Satellite (GMS) and the U.S. GOES-West satellite were synchronized to obtain stereo over the central Pacific as described by Fujita and Dodge [12] and in this paper. Recently the authors have remapped images from a Low Earth Orbiter (LEO) to the coordinate system of a Geosynchronous Earth Orbiter (GEO) and obtained stereoscopic cloud height measurements which promise to have quality comparable to previous all GEO stereo. It has also been determined that the north-south imaging scan rate of some GEOs can be slowed or reversed. Therefore the feasibility of obtaining stereoscopic observations world wide from combinations of operational GEO and LEO satellites has been demonstrated. Stereoscopy from satellites has many advantages over infrared techniques for the observation of cloud structure because it depends only on basic geometric relationships. Digital remapping of GEO and LEO satellite images is imperative for precision stereo height measurement and high quality displays because of the curvature of the earth and the large angular separation of the

  14. Beyond ATS-6: Social Uses of Communications Satellites.

    Science.gov (United States)

    Cater, Douglass

    A panel discussion was held to examine the efficacy of the Applications Technology Satellites, powerful communication satellites designed to send quality signals to low-cost ground terminals. The satellites have been used on an experimental basis in rural America, Canada, and India. While the panel generally agreed on the great potential of the…

  15. Interface control procedures for university satellite programmes

    NARCIS (Netherlands)

    Perez Lebbink, L.; Hamann, R.J.; Bouwmeester, J.; Brouwer, G.F.

    2009-01-01

    Now that more and more universities have joined the CubeSat community and have their own satellite in Earth orbit, it is expected that the planned successors will be of higher complexity. These successors within a university satellite programme will often house more technically ad-vanced subsystems

  16. Interface control procedures for university satellite programmes

    NARCIS (Netherlands)

    Perez Lebbink, L.; Hamann, R.J.; Bouwmeester, J.; Brouwer, G.F.

    2009-01-01

    Now that more and more universities have joined the CubeSat community and have their own satellite in Earth orbit, it is expected that the planned successors will be of higher complexity. These successors within a university satellite programme will often house more technically ad-vanced subsystems

  17. Three ZY-2 Satellites Forming A Constellation

    Institute of Scientific and Technical Information of China (English)

    SunQing

    2005-01-01

    China successfully put its earth resource satellite, the third of ZY-2, into the orbit aboard a LM-4B launch vehicle that blasted off at 11:10 am on Nov. 6, 2004 from Taiyuan Satellite Launch Center in Shanxi Province.

  18. Numerical orbit generators of artificial earth satellites

    Science.gov (United States)

    Kugar, H. K.; Dasilva, W. C. C.

    1984-04-01

    A numerical orbit integrator containing updatings and improvements relative to the previous ones that are being utilized by the Departmento de Mecanica Espacial e Controle (DMC), of INPE, besides incorporating newer modellings resulting from the skill acquired along the time is presented. Flexibility and modularity were taken into account in order to allow future extensions and modifications. Characteristics of numerical accuracy, processing quickness, memory saving as well as utilization aspects were also considered. User's handbook, whole program listing and qualitative analysis of accuracy, processing time and orbit perturbation effects were included as well.

  19. Satellite imager calibration and validation

    CSIR Research Space (South Africa)

    Vhengani, L

    2010-10-01

    Full Text Available The success or failure of any earth observation mission depends on the quality of its data. Data quality is assessed by determining the radiometric, spatial, spectral and geometric fidelity of the satellite sensor. The process is termed calval...

  20. Earth Observing-1 Hyperion: 2001-Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Earth Observing-1(EO-1) satellite was launched on November 21, 2000 by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration...

  1. Earth Observing One - Hyperion (2001 - present) Privileged

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Earth Observing-1(EO-1) satellite was launched on November 21, 2000 by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration...

  2. Plutino 15810 (1994 JR1), an accidental quasi-satellite of Pluto

    CERN Document Server

    Marcos, C de la Fuente

    2012-01-01

    In the solar system, quasi-satellites move in a 1:1 mean motion resonance going around their host body like a retrograde satellite but their mutual separation is well beyond the Hill radius and the trajectory is not closed as they orbit the Sun not the host body. So far, minor bodies temporarily trapped in the quasi-satellite dynamical state have been identified around Venus, Earth, the dwarf planet (1) Ceres, the large asteroid (4) Vesta, Jupiter, Saturn and Neptune. Using computer simulations, Tiscareno and Malhotra have predicted the existence of a small but significant population of minor bodies moving in a 1:1 mean motion resonance with Pluto. Here we show using N-body calculations that the Plutino 15810 (1994 JR1) is currently an accidental quasi-satellite of Pluto and it will remain as such for nearly 350,000 yr. By accidental we mean that the quasi-satellite phase is triggered (or terminated) not by a direct gravitational influence in the form of a discrete close encounter but as a result of a resonan...

  3. Earth as art 4

    Science.gov (United States)

    ,

    2016-03-29

    Landsat 8 is the latest addition to the long-running series of Earth-observing satellites in the Landsat program that began in 1972. The images featured in this fourth installment of the Earth As Art collection were all acquired by Landsat 8. They show our planet’s diverse landscapes with remarkable clarity.Landsat satellites see the Earth as no human can. Not only do they acquire images from the vantage point of space, but their sensors record infrared as well as visible wavelengths of light. The resulting images often reveal “hidden” details of the Earth’s land surface, making them invaluable for scientific research.As with previous Earth As Art exhibits, these Landsat images were selected solely for their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation—only for your viewing pleasure. What do you see in these unique glimpses of the Earth’s continents, islands, and coastlines?

  4. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.

  5. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  6. Future communications satellite applications

    Science.gov (United States)

    Bagwell, James W.

    1992-01-01

    The point of view of the research is made through the use of viewgraphs. It is suggested that future communications satellite applications will be made through switched point to point narrowband communications. Some characteristics of which are as follows: small/low cost terminals; single hop communications; voice compatible; full mesh networking; ISDN compatible; and possible limited use of full motion video. Some target applications are as follows: voice/data networks between plants and offices in a corporation; data base networking for commercial and science users; and cellular radio internodal voice/data networking.

  7. Multi-mission Satellite Management

    Science.gov (United States)

    Jamilkowski, M. L.; Teter, M. A.; Grant, K. D.; Dougherty, B.; Cochran, S.

    2015-12-01

    NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. CGS's multi-mission capabilities allows management all of assets as a single enterprise, more efficiently using ground resources and personnel and consolidating multiple ground systems into one. Sophisticated scheduling algorithms compare mission priorities and constraints across all ground stations, creating an enterprise schedule optimized to mission needs, which CGS executes to acquire the satellite link, uplink commands, downlink and route data to the operations and data processing facilities, and generate the final products for delivery to downstream users. This paper will illustrate the CGS's ability to manage multiple, enterprise-wide polar orbiting missions by demonstrating resource modeling and tasking, production of enterprise contact schedules for NOAA's Fairbanks ground station (using both standing and ad hoc requests), deconflicting resources due to ground outages, and updating resource allocations through dynamic priority definitions.

  8. Expanding earth

    Energy Technology Data Exchange (ETDEWEB)

    Carey, S.W.

    1976-01-01

    Arguments in favor of an expanding earth are presented. The author believes that the theory of plate tectonics is a classic error in the history of geology. The case for the expanding earth is organized in the following way: introductory review - face of the earth, development of expanding earth concept, necessity for expansion, the subduction myth, and definitions; some principles - scale of tectonic phenomena, non-uniformitarianism, tectonic profile, paleomagnetism, asymmetry of the earth, rotation of the earth, and modes of crustal extension; regional studies - western North America, Central America, South-East Asia, and the rift oceans; tests and cause of expansion. 824 references, 197 figures, 11 tables. (RWR)

  9. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  10. A New Approach for Enhanced Communication to LEO Satellites

    NARCIS (Netherlands)

    Gill, E.K.A.; Verhoeven, C.; Gill, K.; De Milliano, M.

    2010-01-01

    Operations of satellites in Low-Earth Orbit (LEO) have been based on exploiting the maximum time of visibility of satellites over their ground stations. In this paper, it is shown that a key parameter for communication between a satellite and a ground station is not the time of visibility but the am

  11. The Advanced Stellar Compass onboard the Oersted satellite

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Eisenman, Allan R.; Liebe, Carl Christian;

    1997-01-01

    In 1997 the first Danish satellite will be launched. The primarily scientific objective of the satellite is to map the magnetic field of the Earth. The attitude of the satellite is determined by an advanced stellar compass (star tracker). An advanced stellar compass consists of a CCD camera conne...

  12. 对地观测卫星任务规划的启发式动态调整算法%Heuristic dynamic adjust of task scheduling for earth observing satellite

    Institute of Scientific and Technical Information of China (English)

    张利宁; 黄小军; 邱涤珊; 李皓平

    2011-01-01

    针对对地观测卫星任务规划,分析了单个资源失效与多个高优先级任务动态插入情况下已有任务规划方案的动态调整问题.以最大化规划方案任务权值总和为优化目标,提出了基于任务替换的启发式动态调整算法,包括选择替换任务的五种启发式策略:最大灵活度,最小冲突集,最小争议部分、区间剪枝以及任务剪枝策略.分析了影响动态调整算法运行效率的两个关键因素:冲突任务集与动态搜索深度.采用任务重规划率、规划权值变化率与算法运行时间三项指标考察算法效果,通过仿真实验验证了算法的可行性和有效性.%The dynamic adjust problem of task scheduling for multi-earth observing satellite is analyzed,in cases of single resource fail and multi-prior tasks' dynamic insertion.The optimizing objective is to maximize the sum of all scheduled tasks. The heuristic dynamic adjust algorithm has been proposed based on task swapping, including five heuristic strategies to choosing swapped task:maximum flexibility,minimum conflict set,minimum contention,interval prune and task prune.Two critical elements that impact efficiency of the algorithm have been analyzed also.Three indices, including re-scheduling ratio, change ratio of sum weight and total running time are deployed to check the result of this algorithm;the feasibility and effectiveness have been tested through simulation,and promised result is fulfilled.

  13. Satellite (Natural)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    In its most general sense, any celestial object in orbit around a similar larger object. Thus, for example, the Magellanic Clouds are satellite galaxies of our own Milky Way galaxy. Without qualification, the term is used to mean a body in orbit around a planet; an alternative term is moon. The term natural satellite distinguishes these bodies from artificial satellites—spacecraft placed in orbi...

  14. Aging, Terminal Decline, and Terminal Drop

    Science.gov (United States)

    Palmore, Erdman; Cleveland, William

    1976-01-01

    Data from a 20-year longitudinal study of persons over 60 were analyzed by step-wise multiple regression to test for declines in function with age, for terminal decline (linear relationship to time before death), and for terminal drop (curvilinear relationship to time before death). There were no substantial terminal drop effects. (Author)

  15. An Investigation on Advantages of Utilizing Adaptive Bit Rate for LEO Satellite Link Engineering

    Directory of Open Access Journals (Sweden)

    Mehdi Hosseini

    2012-09-01

    Full Text Available The paper aims to investigate the advantages of using adaptive bit rate in the communication link of a LEO satellite. While doing the study, it is assumed that there is a communication subsystem on-board responsible for gathering the information sent by a number of ground user terminals. The subsystem which operates based on Store-and-Forward (SAF Scenario, contains two communication links, one for receiving data from user terminals (store case, and the other for forwarding the stored data to an Earth station (forward case. In fact, the current work aims to improve the volume of the data forwarded to Earth station. To this end, the Forward case bit rate is varied adaptively, and then by analyzing the power budget in a practical condition, the improvement achieved is evaluated. The results specifically obtained for a sample LEO satellite shows that utilizing adaptive bit rate instead of fixed bit rate can increase the daily data exchange up to about 100%.

  16. The use of satellites in gravity field determination and model adjustment

    Science.gov (United States)

    Visser, Petrus Nicolaas Anna Maria

    1992-06-01

    Methods to improve gravity field models of the Earth with available data from satellite observations are proposed and discussed. In principle, all types of satellite observations mentioned give information of the satellite orbit perturbations and in conjunction the Earth's gravity field, because the satellite orbits are affected most by the Earth's gravity field. Therefore, two subjects are addressed: representation forms of the gravity field of the Earth and the theory of satellite orbit perturbations. An analytical orbit perturbation theory is presented and shown to be sufficiently accurate for describing satellite orbit perturbations if certain conditions are fulfilled. Gravity field adjustment experiments using the analytical orbit perturbation theory are discussed using real satellite observations. These observations consisted of Seasat laser range measurements and crossover differences, and of Geosat altimeter measurements and crossover differences. A look into the future, particularly relating to the ARISTOTELES (Applications and Research Involving Space Techniques for the Observation of the Earth's field from Low Earth Orbit Spacecraft) mission, is given.

  17. Geography with the environmental satellites

    Directory of Open Access Journals (Sweden)

    J.P. Gastellu Etchegorry

    2013-07-01

    Full Text Available Coarse spatial resolution, high temporal frequency data from the earth polar orbiting (NOAA. HACMM, Nimbus, etc. satellites and from the geostationary (GOES. Meteosat, and GMS satellites are presented to demonstrate their utility for monitoring terrestrial and atmospheric processes. The main characteristics of these ,satellites and of the instruments on board are reviewed. In order to be useful for environmental assessments. the remotely sensed data must be processed (atmospheric and geometric corrections, etc.. The NOAA Center provides a wide range of already processed data. such as meteorological. oceanic, hydrologic and vegetation products; o rough description of these preprocessed data is given in this article. Finally, some examples of applicotions in Southeast Asia and especially in Indonesia, are described, i.e.: agroecosystem, drought and oceanic monitoring. The paper concludes that coarse resolution, high temporal frequency ,satellite data are very valuable for environmental studies. the emphasis being laid on the improve. ment of the crop and drought assessment programmes.

  18. Advanced Communications Technology Satellite (ACTS)

    Science.gov (United States)

    Olmstead, Dean A.; Schertler, Ronald J.

    The benefits that will be offered by the NASA-sponsored communication spacecraft ACTS which is scheduled for launch in 1992 are described together with examples of demonstrations on proposed data, video, and voice applications supported by the advanced ACTS technologies. Compared to existing satellite service, the ACTS will provide lower cost, better service, greater convenience, and improved service reliability of telecommunications to customers around the world. In addition, the pioneering ACTS technology will provide many capabilities qualitatively different from those of current satellite systems, such as on-demand assignment, frequency reuse, and the flexible targeting of spot beams directly to the very-small-aperture terminals at customer premises.

  19. Latitude variability of acoustic-gravity waves in the upper atmosphere based on satellite data

    Science.gov (United States)

    Fedorenko, A. K.; Bespalova, A. V.; Zhuk, I. T.; Kryuchkov, E. I.

    2017-07-01

    Based on satellite measurements, we investigated the properties of acoustic-gravity waves in different geographical areas of the Earth's upper atmosphere. To study wave activity at high latitudes, we used the concentration of neutral particles measured by the low-altitude polar satellite Dynamic Explorer 2 and measurements from the equatorial satellite Atmosphere Explorer-E for analysis of waves at low latitudes. In the range of heights 250-400 km, there are observed latitudinal variations of amplitudes, together with variations in the morphological and spectral properties of acoustic-gravity waves. In the polar regions of thermosphere, the wave amplitudes amount to 3-10% in terms of relative variations of density and do not exceed 3% at low and middle latitudes. At low latitudes, regular fluctuations induced by the solar terminator are clearly seen with a predominant wave mode moving synchronously with terminator. Moreover, at low and middle latitudes, there are observed sporadic local wave packets of small amplitudes (1-2%) that can have origins of various natures. We also investigated the relation between some of the observed wave trains and the earthquakes.

  20. Polar Views of Planet Earth.

    Science.gov (United States)

    Brochu, Michel

    1983-01-01

    In August, 1981, National Aeronautics and Space Administration launched Dynamics Explorer 1 into polar orbit equipped with three cameras built to view the Northern Lights. The cameras can photograph aurora borealis' faint light without being blinded by the earth's bright dayside. Photographs taken by the satellite are provided. (JN)