WorldWideScience

Sample records for satellite dna family

  1. The major horse satellite DNA family is associated with centromere competence.

    Science.gov (United States)

    Cerutti, Federico; Gamba, Riccardo; Mazzagatti, Alice; Piras, Francesca M; Cappelletti, Eleonora; Belloni, Elisa; Nergadze, Solomon G; Raimondi, Elena; Giulotto, Elena

    2016-01-01

    The centromere is the specialized locus required for correct chromosome segregation during cell division. The DNA of most eukaryotic centromeres is composed of extended arrays of tandem repeats (satellite DNA). In the horse, we previously showed that, although the centromere of chromosome 11 is completely devoid of tandem repeat arrays, all other centromeres are characterized by the presence of satellite DNA. We isolated three horse satellite DNA sequences (37cen, 2P1 and EC137) and described their chromosomal localization in four species of the genus Equus. In the work presented here, using the ChIP-seq methodology, we showed that, in the horse, the 37cen satellite binds CENP-A, the centromere-specific histone-H3 variant. The 37cen sequence bound by CENP-A is GC-rich with 221 bp units organized in a head-to-tail fashion. The physical interaction of CENP-A with 37cen was confirmed through slot blot experiments. Immuno-FISH on stretched chromosomes and chromatin fibres demonstrated that the extension of satellite DNA stretches is variable and is not related to the organization of CENP-A binding domains. Finally, we proved that the centromeric satellite 37cen is transcriptionally active. Our data offer new insights into the organization of horse centromeres. Although three different satellite DNA families are cytogenetically located at centromeres, only the 37cen family is associated to the centromeric function. Moreover, similarly to other species, CENP-A binding domains are variable in size. The transcriptional competence of the 37cen satellite that we observed adds new evidence to the hypothesis that centromeric transcripts may be required for centromere function.

  2. Pericentric satellite DNA sequences in Pipistrellus pipistrellus (Vespertilionidae; Chiroptera).

    Science.gov (United States)

    Barragán, M J L; Martínez, S; Marchal, J A; Fernández, R; Bullejos, M; Díaz de la Guardia, R; Sánchez, A

    2003-09-01

    This paper reports the molecular and cytogenetic characterization of a HindIII family of satellite DNA in the bat species Pipistrellus pipistrellus. This satellite is organized in tandem repeats of 418 bp monomer units, and represents approximately 3% of the whole genome. The consensus sequence from five cloned monomer units has an A-T content of 62.20%. We have found differences in the ladder pattern of bands between two populations of the same species. These differences are probably because of the absence of the target sites for the HindIII enzyme in most monomer units of one population, but not in the other. Fluorescent in situ hybridization (FISH) localized the satellite DNA in the pericentromeric regions of all autosomes and the X chromosome, but it was absent from the Y chromosome. Digestion of genomic DNAs with HpaII and its isoschizomer MspI demonstrated that these repetitive DNA sequences are not methylated. Other bat species were tested for the presence of this repetitive DNA. It was absent in five Vespertilionidae and one Rhinolophidae species, indicating that it could be a species/genus specific, repetitive DNA family.

  3. Satellite DNA: An Evolving Topic.

    Science.gov (United States)

    Garrido-Ramos, Manuel A

    2017-09-18

    Satellite DNA represents one of the most fascinating parts of the repetitive fraction of the eukaryotic genome. Since the discovery of highly repetitive tandem DNA in the 1960s, a lot of literature has extensively covered various topics related to the structure, organization, function, and evolution of such sequences. Today, with the advent of genomic tools, the study of satellite DNA has regained a great interest. Thus, Next-Generation Sequencing (NGS), together with high-throughput in silico analysis of the information contained in NGS reads, has revolutionized the analysis of the repetitive fraction of the eukaryotic genomes. The whole of the historical and current approaches to the topic gives us a broad view of the function and evolution of satellite DNA and its role in chromosomal evolution. Currently, we have extensive information on the molecular, chromosomal, biological, and population factors that affect the evolutionary fate of satellite DNA, knowledge that gives rise to a series of hypotheses that get on well with each other about the origin, spreading, and evolution of satellite DNA. In this paper, I review these hypotheses from a methodological, conceptual, and historical perspective and frame them in the context of chromosomal organization and evolution.

  4. Human β satellite DNA: Genomic organization and sequence definition of a class of highly repetitive tandem DNA

    International Nuclear Information System (INIS)

    Waye, J.S.; Willard, H.F.

    1989-01-01

    The authors describe a class of human repetitive DNA, called β satellite, that, at a most fundamental level, exists as tandem arrays of diverged ∼68-base-pair monomer repeat units. The monomer units are organized as distinct subsets, each characterized by a multimeric higher-order repeat unit that is tandemly reiterated and represents a recent unit of amplification. They have cloned, characterized, and determined the sequence of two β satellite higher-order repeat units: one located on chromosome 9, the other on the acrocentric chromosomes (13, 14, 15, 21, and 22) and perhaps other sites in the genome. Analysis by pulsed-field gel electrophoresis reveals that these tandem arrays are localized in large domains that are marked by restriction fragment length polymorphisms. In total, β-satellite sequences comprise several million base pairs of DNA in the human genome. Analysis of this DNA family should permit insights into the nature of chromosome-specific and nonspecific modes of satellite DNA evolution and provide useful tools for probing the molecular organization and concerted evolution of the acrocentric chromosomes

  5. Function of Junk: Pericentromeric Satellite DNA in Chromosome Maintenance.

    Science.gov (United States)

    Jagannathan, Madhav; Yamashita, Yukiko M

    2018-04-02

    Satellite DNAs are simple tandem repeats that exist at centromeric and pericentromeric regions on eukaryotic chromosomes. Unlike the centromeric satellite DNA that comprises the vast majority of natural centromeres, function(s) for the much more abundant pericentromeric satellite repeats are poorly understood. In fact, the lack of coding potential allied with rapid divergence of repeat sequences across eukaryotes has led to their dismissal as "junk DNA" or "selfish parasites." Although implicated in various biological processes, a conserved function for pericentromeric satellite DNA remains unidentified. We have addressed the role of satellite DNA through studying chromocenters, a cytological aggregation of pericentromeric satellite DNA from multiple chromosomes into DNA-dense nuclear foci. We have shown that multivalent satellite DNA-binding proteins cross-link pericentromeric satellite DNA on chromosomes into chromocenters. Disruption of chromocenters results in the formation of micronuclei, which arise by budding off the nucleus during interphase. We propose a model that satellite DNAs are critical chromosome elements that are recognized by satellite DNA-binding proteins and incorporated into chromocenters. We suggest that chromocenters function to preserve the entire chromosomal complement in a single nucleus, a fundamental and unquestioned feature of eukaryotic genomes. We speculate that the rapid divergence of satellite DNA sequences between closely related species results in discordant chromocenter function and may underlie speciation and hybrid incompatibility. © 2017 Jagannathan and Yamashita; Published by Cold Spring Harbor Laboratory Press.

  6. Satellite DNA Sequences in Canidae and Their Chromosome Distribution in Dog and Red Fox.

    Science.gov (United States)

    Vozdova, Miluse; Kubickova, Svatava; Cernohorska, Halina; Fröhlich, Jan; Rubes, Jiri

    2016-01-01

    Satellite DNA is a characteristic component of mammalian centromeric heterochromatin, and a comparative analysis of its evolutionary dynamics can be used for phylogenetic studies. We analysed satellite and satellite-like DNA sequences available in NCBI for 4 species of the family Canidae (red fox, Vulpes vulpes, VVU; domestic dog, Canis familiaris, CFA; arctic fox, Vulpes lagopus, VLA; raccoon dog, Nyctereutes procyonoides procyonoides, NPR) by comparative sequence analysis, which revealed 86-90% intraspecies and 76-79% interspecies similarity. Comparative fluorescence in situ hybridisation in the red fox and dog showed signals of the red fox satellite probe in canine and vulpine autosomal centromeres, on VVUY, B chromosomes, and in the distal parts of VVU9q and VVU10p which were shown to contain nucleolus organiser regions. The CFA satellite probe stained autosomal centromeres only in the dog. The CFA satellite-like DNA did not show any significant sequence similarity with the satellite DNA of any species analysed and was localised to the centromeres of 9 canine chromosome pairs. No significant heterochromatin block was detected on the B chromosomes of the red fox. Our results show extensive heterogeneity of satellite sequences among Canidae and prove close evolutionary relationships between the red and arctic fox. © 2017 S. Karger AG, Basel.

  7. Diversity of DNA β, a satellite molecule associated with some monopartite begomoviruses

    International Nuclear Information System (INIS)

    Briddon, Rob W.; Bull, Simon E.; Amin, Imran; Idris, Ali M.; Mansoor, Shahid; Bedford, Ian D.; Dhawan, Poonam; Rishi, Narayan; Siwatch, Surender S.; Abdel-Salam, Aly M.; Brown, Judith K.; Zafar, Yusuf; Markham, Peter G.

    2003-01-01

    DNA β molecules are symptom-modulating, single-stranded DNA satellites associated with monopartite begomoviruses (family Geminiviridae). Such molecules have thus far been shown to be associated with Ageratum yellow vein virus from Singapore and Cotton leaf curl Multan virus from Pakistan. Here, 26 additional DNA β molecules, associated with diverse plant species obtained from different geographical locations, were cloned and sequenced. These molecules were shown to be widespread in the Old World, where monopartite begomoviruses are known to occur. Analysis of the sequences revealed a highly conserved organization for DNA β molecules consisting of a single conserved open reading frame, an adenine-rich region, and a region of high sequence conservation [the satellite conserved region (SCR)]. The SCR contains a potential hairpin structure with the loop sequence TAA/GTATTAC; similar to the origins of replication of geminiviruses and nanoviruses. Two major groups of DNA β satellites were resolved by phylogenetic analyses. One group originated from hosts within the Malvaceae and the second from a more diverse group of plants within the Solanaceae and Compositae. Within the two clusters, DNA β molecules showed relatedness based both on host and geographic origin. These findings strongly support coadaptation of DNA β molecules with their respective helper begomoviruses

  8. Characterization of non-coding DNA satellites associated with sweepoviruses (genus Begomovirus, Geminiviridae - definition of a distinct class of begomovirus-associated satellites

    Directory of Open Access Journals (Sweden)

    Gloria eLozano

    2016-02-01

    Full Text Available Begomoviruses (family Geminiviridae are whitefly-transmitted, plant-infecting single-stranded DNA viruses that cause crop losses throughout the warmer parts of the World. Sweepoviruses are a phylogenetically distinct group of begomoviruses that infect plants of the family Convolvulaceae, including sweet potato (Ipomoea batatas. Two classes of subviral molecules are often associated with begomoviruses, particularly in the Old World; the betasatellites and the alphasatellites. An analysis of sweet potato and Ipomoea indica samples from Spain and Merremia dissecta samples from Venezuela identified small non-coding subviral molecules in association with several distinct sweepoviruses. The sequences of 18 clones were obtained and found to be structurally similar to tomato leaf curl virus–satellite (ToLCV-sat, the first DNA satellite identified in association with a begomovirus, with a region with significant sequence identity to the conserved region of betasatellites, an A-rich sequence, a predicted stem-loop structure containing the nonanucleotide TAATATTAC, and a second predicted stem-loop. These sweepovirus-associated satellites join an increasing number of ToLCV-sat-like non-coding satellites identified recently. Although sharing some features with betasatellites, evidence is provided to suggest that the ToLCV-sat-like satellites are distinct from betasatellites and should be considered a separate class of satellites, for which the collective name deltasatellites is proposed.

  9. Action of radiation and serotin on DNA and satellite DNA of thermodynamic parameters

    International Nuclear Information System (INIS)

    Sanaya, T.V.

    1987-01-01

    A study was made on the effect of X-rays on thermal denaturation of DNA and satellite DNA of cattle spleen against the background of 10 -3 M serotonin influence. The minimal dose at which the damage of satellite DNA is observed, is equal to 38 Gy; similar damage of DNA requires the double dose. Serotonin with 10 -3 M concentration doesn't change thermodynamic DNA characteristics, but its presence in the moment of irradiation even at 152 Gy dose reveals the clearly pronounced protection effect on satellite DNA damage

  10. Phylogenetic footprinting of non-coding RNA: hammerhead ribozyme sequences in a satellite DNA family of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae

    Directory of Open Access Journals (Sweden)

    Venanzetti Federica

    2010-01-01

    Full Text Available Abstract Background The great variety in sequence, length, complexity, and abundance of satellite DNA has made it difficult to ascribe any function to this genome component. Recent studies have shown that satellite DNA can be transcribed and be involved in regulation of chromatin structure and gene expression. Some satellite DNAs, such as the pDo500 sequence family in Dolichopoda cave crickets, have a catalytic hammerhead (HH ribozyme structure and activity embedded within each repeat. Results We assessed the phylogenetic footprints of the HH ribozyme within the pDo500 sequences from 38 different populations representing 12 species of Dolichopoda. The HH region was significantly more conserved than the non-hammerhead (NHH region of the pDo500 repeat. In addition, stems were more conserved than loops. In stems, several compensatory mutations were detected that maintain base pairing. The core region of the HH ribozyme was affected by very few nucleotide substitutions and the cleavage position was altered only once among 198 sequences. RNA folding of the HH sequences revealed that a potentially active HH ribozyme can be found in most of the Dolichopoda populations and species. Conclusions The phylogenetic footprints suggest that the HH region of the pDo500 sequence family is selected for function in Dolichopoda cave crickets. However, the functional role of HH ribozymes in eukaryotic organisms is unclear. The possible functions have been related to trans cleavage of an RNA target by a ribonucleoprotein and regulation of gene expression. Whether the HH ribozyme in Dolichopoda is involved in similar functions remains to be investigated. Future studies need to demonstrate how the observed nucleotide changes and evolutionary constraint have affected the catalytic efficiency of the hammerhead.

  11. Reduced DNA repair in mouse satellite DNA after treatment with methylmethanesulfonate, and N-methyl-N-nitrosourea.

    Science.gov (United States)

    Bodell, W J; Banerjee, M R

    1976-01-01

    We have measured DNA repair in mouse satellite and main band DNA as resolved by Ag+-Cs2SO4 centrifugation in response to treatment with the alkylating agents, methyl methanesulfonate, and N-methyl-N-nitrosourea. We find that there is a statistically significant lower incorporation of 3H-Tdr into the satellite DNA as compared to the main band at varying periods after treatment with the alkylating agents. This suggests a reduced repair activity in the satellite DNA. We have measured the extent of binding of 14C-methyl methanesulfonate to the satellite, and main band DNA, and no difference in binding was observed, indicating that the reduced repair activity of satellite DNA is not due to a difference in binding of alkylating agents. We believe that the reduced incorporation of 3H-Tdr into satellite DNA may be due to its location in the condensed chromatin fraction. PMID:184436

  12. Uncoupling of satellite DNA and centromeric function in the genus Equus.

    Science.gov (United States)

    Piras, Francesca M; Nergadze, Solomon G; Magnani, Elisa; Bertoni, Livia; Attolini, Carmen; Khoriauli, Lela; Raimondi, Elena; Giulotto, Elena

    2010-02-12

    In a previous study, we showed that centromere repositioning, that is the shift along the chromosome of the centromeric function without DNA sequence rearrangement, has occurred frequently during the evolution of the genus Equus. In this work, the analysis of the chromosomal distribution of satellite tandem repeats in Equus caballus, E. asinus, E. grevyi, and E. burchelli highlighted two atypical features: 1) several centromeres, including the previously described evolutionary new centromeres (ENCs), seem to be devoid of satellite DNA, and 2) satellite repeats are often present at non-centromeric termini, probably corresponding to relics of ancestral now inactive centromeres. Immuno-FISH experiments using satellite DNA and antibodies against the kinetochore protein CENP-A demonstrated that satellite-less primary constrictions are actually endowed with centromeric function. The phylogenetic reconstruction of centromere repositioning events demonstrates that the acquisition of satellite DNA occurs after the formation of the centromere during evolution and that centromeres can function over millions of years and many generations without detectable satellite DNA. The rapidly evolving Equus species gave us the opportunity to identify different intermediate steps along the full maturation of ENCs.

  13. Uncoupling of satellite DNA and centromeric function in the genus Equus.

    Directory of Open Access Journals (Sweden)

    Francesca M Piras

    2010-02-01

    Full Text Available In a previous study, we showed that centromere repositioning, that is the shift along the chromosome of the centromeric function without DNA sequence rearrangement, has occurred frequently during the evolution of the genus Equus. In this work, the analysis of the chromosomal distribution of satellite tandem repeats in Equus caballus, E. asinus, E. grevyi, and E. burchelli highlighted two atypical features: 1 several centromeres, including the previously described evolutionary new centromeres (ENCs, seem to be devoid of satellite DNA, and 2 satellite repeats are often present at non-centromeric termini, probably corresponding to relics of ancestral now inactive centromeres. Immuno-FISH experiments using satellite DNA and antibodies against the kinetochore protein CENP-A demonstrated that satellite-less primary constrictions are actually endowed with centromeric function. The phylogenetic reconstruction of centromere repositioning events demonstrates that the acquisition of satellite DNA occurs after the formation of the centromere during evolution and that centromeres can function over millions of years and many generations without detectable satellite DNA. The rapidly evolving Equus species gave us the opportunity to identify different intermediate steps along the full maturation of ENCs.

  14. Epigenetic reprogramming of pericentromeric satellite DNA in premalignant and malignant lesions

    DEFF Research Database (Denmark)

    Brückmann, Nadine Heidi; Pedersen, Christina Bøg; Ditzel, Henrik Jørn

    2018-01-01

    on pericentromeric satellites in primary melanocytes. This suggests that polycomb bodies form in cancer cells with global DNA demethylation to control the stability of pericentromeric satellite DNA. These results reveal a novel epigenetic perturbation specific to premalignant and malignant cells thatmaybe used...... as an early diagnostic marker for detection of precancerous changes and a new therapeutic entry point. Implications: Pericentromeric satellite DNA is epigenetically reprogrammed into polycomb bodies as a premalignant event with implications for transcriptional activity and genomic stability. Mol Cancer Res...

  15. Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.).

    Science.gov (United States)

    Čížková, Jana; Hřibová, Eva; Humplíková, Lenka; Christelová, Pavla; Suchánková, Pavla; Doležel, Jaroslav

    2013-01-01

    Satellite DNA sequences consist of tandemly arranged repetitive units up to thousands nucleotides long in head-to-tail orientation. The evolutionary processes by which satellites arise and evolve include unequal crossing over, gene conversion, transposition and extra chromosomal circular DNA formation. Large blocks of satellite DNA are often observed in heterochromatic regions of chromosomes and are a typical component of centromeric and telomeric regions. Satellite-rich loci may show specific banding patterns and facilitate chromosome identification and analysis of structural chromosome changes. Unlike many other genomes, nuclear genomes of banana (Musa spp.) are poor in satellite DNA and the information on this class of DNA remains limited. The banana cultivars are seed sterile clones originating mostly from natural intra-specific crosses within M. acuminata (A genome) and inter-specific crosses between M. acuminata and M. balbisiana (B genome). Previous studies revealed the closely related nature of the A and B genomes, including similarities in repetitive DNA. In this study we focused on two main banana DNA satellites, which were previously identified in silico. Their genomic organization and molecular diversity was analyzed in a set of nineteen Musa accessions, including representatives of A, B and S (M. schizocarpa) genomes and their inter-specific hybrids. The two DNA satellites showed a high level of sequence conservation within, and a high homology between Musa species. FISH with probes for the satellite DNA sequences, rRNA genes and a single-copy BAC clone 2G17 resulted in characteristic chromosome banding patterns in M. acuminata and M. balbisiana which may aid in determining genomic constitution in interspecific hybrids. In addition to improving the knowledge on Musa satellite DNA, our study increases the number of cytogenetic markers and the number of individual chromosomes, which can be identified in Musa.

  16. Is radon emission in caves causing deletions in satellite DNA sequences of cave-dwelling crickets?

    Directory of Open Access Journals (Sweden)

    Giuliana Allegrucci

    Full Text Available The most stable isotope of radon, 222Rn, represents the major source of natural radioactivity in confined environments such as mines, caves and houses. In this study, we explored the possible radon-related effects on the genome of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae sampled in caves with different concentrations of radon. We analyzed specimens from ten populations belonging to two genetically closely related species, D. geniculata and D. laetitiae, and explored the possible association between the radioactivity dose and the level of genetic polymorphism in a specific family of satellite DNA (pDo500 satDNA. Radon concentration in the analyzed caves ranged from 221 to 26,000 Bq/m3. Specimens coming from caves with the highest radon concentration showed also the highest variability estimates in both species, and the increased sequence heterogeneity at pDo500 satDNA level can be explained as an effect of the mutation pressure induced by radon in cave. We discovered a specific category of nuclear DNA, the highly repetitive satellite DNA, where the effects of the exposure at high levels of radon-related ionizing radiation are detectable, suggesting that the satDNA sequences might be a valuable tool to disclose harmful effects also in other organisms exposed to high levels of radon concentration.

  17. Extrachromosomal circles of satellite repeats and 5S ribosomal DNA in human cells

    Directory of Open Access Journals (Sweden)

    Cohen Sarit

    2010-03-01

    Full Text Available Abstract Background Extrachomosomal circular DNA (eccDNA is ubiquitous in eukaryotic organisms and was detected in every organism tested, including in humans. A two-dimensional gel electrophoresis facilitates the detection of eccDNA in preparations of genomic DNA. Using this technique we have previously demonstrated that most of eccDNA consists of exact multiples of chromosomal tandemly repeated DNA, including both coding genes and satellite DNA. Results Here we report the occurrence of eccDNA in every tested human cell line. It has heterogeneous mass ranging from less than 2 kb to over 20 kb. We describe eccDNA homologous to human alpha satellite and the SstI mega satellite. Moreover, we show, for the first time, circular multimers of the human 5S ribosomal DNA (rDNA, similar to previous findings in Drosophila and plants. We further demonstrate structures that correspond to intermediates of rolling circle replication, which emerge from the circular multimers of 5S rDNA and SstI satellite. Conclusions These findings, and previous reports, support the general notion that every chromosomal tandem repeat is prone to generate eccDNA in eukryoric organisms including humans. They suggest the possible involvement of eccDNA in the length variability observed in arrays of tandem repeats. The implications of eccDNA on genome biology may include mechanisms of centromere evolution, concerted evolution and homogenization of tandem repeats and genomic plasticity.

  18. Molecular structure and chromosome distribution of three repetitive DNA families in Anemone hortensis L. (Ranunculaceae).

    Science.gov (United States)

    Mlinarec, Jelena; Chester, Mike; Siljak-Yakovlev, Sonja; Papes, Drazena; Leitch, Andrew R; Besendorfer, Visnja

    2009-01-01

    The structure, abundance and location of repetitive DNA sequences on chromosomes can characterize the nature of higher plant genomes. Here we report on three new repeat DNA families isolated from Anemone hortensis L.; (i) AhTR1, a family of satellite DNA (stDNA) composed of a 554-561 bp long EcoRV monomer; (ii) AhTR2, a stDNA family composed of a 743 bp long HindIII monomer and; (iii) AhDR, a repeat family composed of a 945 bp long HindIII fragment that exhibits some sequence similarity to Ty3/gypsy-like retroelements. Fluorescence in-situ hybridization (FISH) to metaphase chromosomes of A. hortensis (2n = 16) revealed that both AhTR1 and AhTR2 sequences co-localized with DAPI-positive AT-rich heterochromatic regions. AhTR1 sequences occur at intercalary DAPI bands while AhTR2 sequences occur at 8-10 terminally located heterochromatic blocks. In contrast AhDR sequences are dispersed over all chromosomes as expected of a Ty3/gypsy-like element. AhTR2 and AhTR1 repeat families include polyA- and polyT-tracks, AT/TA-motifs and a pentanucleotide sequence (CAAAA) that may have consequences for chromatin packing and sequence homogeneity. AhTR2 repeats also contain TTTAGGG motifs and degenerate variants. We suggest that they arose by interspersion of telomeric repeats with subtelomeric repeats, before hybrid unit(s) amplified through the heterochromatic domain. The three repetitive DNA families together occupy approximately 10% of the A. hortensis genome. Comparative analyses of eight Anemone species revealed that the divergence of the A. hortensis genome was accompanied by considerable modification and/or amplification of repeats.

  19. Comparative Analysis of Satellite DNA in the Drosophila melanogaster Species Complex

    Directory of Open Access Journals (Sweden)

    Madhav Jagannathan

    2017-02-01

    Full Text Available Satellite DNAs are highly repetitive sequences that account for the majority of constitutive heterochromatin in many eukaryotic genomes. It is widely recognized that sequences and locations of satellite DNAs are highly divergent even in closely related species, contributing to the hypothesis that satellite DNA differences may underlie speciation. However, due to its repetitive nature, the mapping of satellite DNAs has been mostly left out of recent genomics analyses, hampering the use of molecular genetics techniques to better understand their role in speciation and evolution. Satellite DNAs are most extensively and comprehensively mapped in Drosophila melanogaster, a species that is also an excellent model system with which to study speciation. Yet the lack of comprehensive knowledge regarding satellite DNA identity and location in its sibling species (D. simulans, D. mauritiana, and D. sechellia has prevented the full utilization of D. melanogaster in studying speciation. To overcome this problem, we initiated the mapping of satellite DNAs on the genomes of the D. melanogaster species complex (D. melanogaster, D. simulans, D. mauritiana, and D. sechellia using multi-color fluorescent in situ hybridization (FISH probes. Our study confirms a striking divergence of satellite DNAs in the D. melanogaster species complex, even among the closely related species of the D. simulans clade (D. simulans, D. mauritiana, and D. sechellia, and suggests the presence of unidentified satellite sequences in these species.

  20. Distribution of DTHS3 satellite DNA across 12 bivalve species Eva ...

    Indian Academy of Sciences (India)

    Windows User

    In this work, characterization of DTHS3 satellite DNA was further expanded within the Class. Bivalvia. Monomer variants of DTHS3 satDNA were compared in 12 bivalve species belonging to two different Subclasses, Heterodonta and Pteriomorphia. This satDNA, whose age is estimated to a minimum of 516 Ma, ...

  1. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads.

    Science.gov (United States)

    Novák, Petr; Ávila Robledillo, Laura; Koblížková, Andrea; Vrbová, Iva; Neumann, Pavel; Macas, Jirí

    2017-07-07

    Satellite DNA is one of the major classes of repetitive DNA, characterized by tandemly arranged repeat copies that form contiguous arrays up to megabases in length. This type of genomic organization makes satellite DNA difficult to assemble, which hampers characterization of satellite sequences by computational analysis of genomic contigs. Here, we present tandem repeat analyzer (TAREAN), a novel computational pipeline that circumvents this problem by detecting satellite repeats directly from unassembled short reads. The pipeline first employs graph-based sequence clustering to identify groups of reads that represent repetitive elements. Putative satellite repeats are subsequently detected by the presence of circular structures in their cluster graphs. Consensus sequences of repeat monomers are then reconstructed from the most frequent k-mers obtained by decomposing read sequences from corresponding clusters. The pipeline performance was successfully validated by analyzing low-pass genome sequencing data from five plant species where satellite DNA was previously experimentally characterized. Moreover, novel satellite repeats were predicted for the genome of Vicia faba and three of these repeats were verified by detecting their sequences on metaphase chromosomes using fluorescence in situ hybridization. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Integration of hepatitis B virus DNA in chromosome-specific satellite sequences

    International Nuclear Information System (INIS)

    Shaul, Y.; Garcia, P.D.; Schonberg, S.; Rutter, W.J.

    1986-01-01

    The authors previously reported the cloning and detailed analysis of the integrated hepatitis B virus sequences in a human hepatoma cell line. They report here the integration of at least one of hepatitis B virus at human satellite DNA sequences. The majority of the cellular sequences identified by this satellite were organized as a multimeric composition of a 0.6-kilobase EcoRI fragment. This clone hybridized in situ almost exclusively to the centromeric heterochromatin of chromosomes 1 and 16 and to a lower extent to chromosome 2 and to the heterochromatic region of the Y chromosome. The immediate flanking host sequence appeared as a hierarchy of repeating units which were almost identical to a previously reported human satellite III DNA sequence

  3. Evaluation of DNA bending models in their capacity to predict electrophoretic migration anomalies of satellite DNA sequences.

    Science.gov (United States)

    Matyášek, Roman; Fulneček, Jaroslav; Kovařík, Aleš

    2013-09-01

    DNA containing a sequence that generates a local curvature exhibits a pronounced retardation in electrophoretic mobility. Various theoretical models have been proposed to explain relationship between DNA structural features and migration anomaly. Here, we studied the capacity of 15 static wedge-bending models to predict electrophoretic behavior of 69 satellite monomers derived from four divergent families. All monomers exhibited retarded mobility in PAGE corresponding to retardation factors ranging 1.02-1.54. The curvature varied both within and across the groups and correlated with the number, position, and lengths of A-tracts. Two dinucleotide models provided strong correlation between gel mobility and curvature prediction; two trinucleotide models were satisfactory while remaining dinucleotide models provided intermediate results with reliable prediction for subsets of sequences only. In some cases, similarly shaped molecules exhibited relatively large differences in mobility and vice versa. Generally less accurate predictions were obtained in groups containing less homogeneous sequences possessing distinct structural features. In conclusion, relatively universal theoretical models were identified suitable for the analysis of natural sequences known to harbor relatively moderate curvature. These models could be potentially applied to genome wide studies. However, in silico predictions should be viewed in context of experimental measurement of intrinsic DNA curvature. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. RNA Pol II promotes transcription of centromeric satellite DNA in beetles.

    Directory of Open Access Journals (Sweden)

    Zeljka Pezer

    Full Text Available Transcripts of centromeric satellite DNAs are known to play a role in heterochromatin formation as well as in establishment of the kinetochore. However, little is known about basic mechanisms of satellite DNA expression within constitutive heterochromatin and its regulation. Here we present comprehensive analysis of transcription of abundant centromeric satellite DNA, PRAT from beetle Palorus ratzeburgii (Coleoptera. This satellite is characterized by preservation and extreme sequence conservation among evolutionarily distant insect species. PRAT is expressed in all three developmental stages: larvae, pupae and adults at similar level. Transcripts are abundant comprising 0.033% of total RNA and are heterogeneous in size ranging from 0.5 kb up to more than 5 kb. Transcription proceeds from both strands but with 10 fold different expression intensity and transcripts are not processed into siRNAs. Most of the transcripts (80% are not polyadenylated and remain in the nucleus while a small portion is exported to the cytoplasm. Multiple, irregularly distributed transcription initiation sites as well as termination sites have been mapped within the PRAT sequence using primer extension and RLM-RACE. The presence of cap structure as well as poly(A tails in a portion of the transcripts indicate RNA polymerase II-dependent transcription and a putative polymerase II promoter site overlaps the most conserved part of the PRAT sequence. The treatment of larvae with alpha-amanitin decreases the level of PRAT transcripts at concentrations that selectively inhibit pol II activity. In conclusion, stable, RNA polymerase II dependant transcripts of abundant centromeric satellite DNA, not regulated by RNAi, have been identified and characterized. This study offers a basic understanding of expression of highly abundant heterochromatic DNA which in beetle species constitutes up to 50% of the genome.

  5. 5-bp Classical Satellite DNA Loci from Chromosome-1 Instability in Cervical Neoplasia Detected by DNA Breakage Detection/Fluorescence in Situ Hybridization (DBD-FISH

    Directory of Open Access Journals (Sweden)

    Jaime Gosálvez

    2013-02-01

    Full Text Available We aimed to evaluate the association between the progressive stages of cervical neoplasia and DNA damage in 5-bp classical satellite DNA sequences from chromosome-1 in cervical epithelium and in peripheral blood lymphocytes using DNA breakage detection/fluorescence in situ hybridization (DBD-FISH. A hospital-based unmatched case-control study was conducted in 2011 with a sample of 30 women grouped according to disease stage and selected according to histological diagnosis; 10 with low-grade squamous intraepithelial lesions (LG-SIL, 10 with high-grade SIL (HG-SIL, and 10 with no cervical lesions, from the Unidad Medica de Alta Especialidad of The Mexican Social Security Institute, IMSS, Mexico. Specific chromosome damage levels in 5-bp classical satellite DNA sequences from chromosome-1 were evaluated in cervical epithelium and peripheral blood lymphocytes using the DBD-FISH technique. Whole-genome DNA hybridization was used as a reference for the level of damage. Results of Kruskal-Wallis test showed a significant increase according to neoplastic development in both tissues. The instability of 5-bp classical satellite DNA sequences from chromosome-1 was evidenced using chromosome-orientation FISH. In conclusion, we suggest that the progression to malignant transformation involves an increase in the instability of 5-bp classical satellite DNA sequences from chromosome-1.

  6. 5-bp Classical Satellite DNA Loci from Chromosome-1 Instability in Cervical Neoplasia Detected by DNA Breakage Detection/Fluorescence in Situ Hybridization (DBD-FISH).

    Science.gov (United States)

    Cortés-Gutiérrez, Elva I; Ortíz-Hernández, Brenda L; Dávila-Rodríguez, Martha I; Cerda-Flores, Ricardo M; Fernández, José Luis; López-Fernández, Carmen; Gosálvez, Jaime

    2013-02-19

    We aimed to evaluate the association between the progressive stages of cervical neoplasia and DNA damage in 5-bp classical satellite DNA sequences from chromosome-1 in cervical epithelium and in peripheral blood lymphocytes using DNA breakage detection/fluorescence in situ hybridization (DBD-FISH). A hospital-based unmatched case-control study was conducted in 2011 with a sample of 30 women grouped according to disease stage and selected according to histological diagnosis; 10 with low-grade squamous intraepithelial lesions (LG-SIL), 10 with high-grade SIL (HG-SIL), and 10 with no cervical lesions, from the Unidad Medica de Alta Especialidad of The Mexican Social Security Institute, IMSS, Mexico. Specific chromosome damage levels in 5-bp classical satellite DNA sequences from chromosome-1 were evaluated in cervical epithelium and peripheral blood lymphocytes using the DBD-FISH technique. Whole-genome DNA hybridization was used as a reference for the level of damage. Results of Kruskal-Wallis test showed a significant increase according to neoplastic development in both tissues. The instability of 5-bp classical satellite DNA sequences from chromosome-1 was evidenced using chromosome-orientation FISH. In conclusion, we suggest that the progression to malignant transformation involves an increase in the instability of 5-bp classical satellite DNA sequences from chromosome-1.

  7. Discovery of a Regulatory Motif for Human Satellite DNA Transcription in Response to BATF2 Overexpression.

    Science.gov (United States)

    Bai, Xuejia; Huang, Wenqiu; Zhang, Chenguang; Niu, Jing; Ding, Wei

    2016-03-01

    One of the basic leucine zipper transcription factors, BATF2, has been found to suppress cancer growth and migration. However, little is known about the genes downstream of BATF2. HeLa cells were stably transfected with BATF2, then chromatin immunoprecipitation-sequencing was employed to identify the DNA motifs responsive to BATF2. Comprehensive bioinformatics analyses indicated that the most significant motif discovered as TTCCATT[CT]GATTCCATTC[AG]AT was primarily distributed among the chromosome centromere regions and mostly within human type II satellite DNA. Such motifs were able to prime the transcription of type II satellite DNA in a directional and asymmetrical manner. Consistently, satellite II transcription was up-regulated in BATF2-overexpressing cells. The present study provides insight into understanding the role of BATF2 in tumours and the importance of satellite DNA in the maintenance of genomic stability. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Distribution and sequence homogeneity of an abundant satellite DNA in the beetle, Tenebrio molitor.

    Science.gov (United States)

    Davis, C A; Wyatt, G R

    1989-01-01

    The mealworm beetle, Tenebrio molitor, contains an unusually abundant and homogeneous satellite DNA which constitutes up to 60% of its genome. The satellite DNA is shown to be present in all of the chromosomes by in situ hybridization. 18 dimers of the repeat unit were cloned and sequenced. The consensus sequence is 142 nt long and lacks any internal repeat structure. Monomers of the sequence are very similar, showing on average a 2% divergence from the calculated consensus. Variant nucleotides are scattered randomly throughout the sequence although some variants are more common than others. Neighboring repeat units are no more alike than randomly chosen ones. The results suggest that some mechanism, perhaps gene conversion, is acting to maintain the homogeneity of the satellite DNA despite its abundance and distribution on all of the chromosomes. Images PMID:2762148

  9. Plantago lagopus B Chromosome Is Enriched in 5S rDNA-Derived Satellite DNA

    Czech Academy of Sciences Publication Activity Database

    Kumke, K.; Macas, Jiří; Fuchs, J.; Altschmied, L.; Kour, J.; Dhar, M.K.; Houben, A.

    2016-01-01

    Roč. 148, č. 1 (2016), s. 68-73 ISSN 1424-8581 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:60077344 Keywords : Polymorhpic A chromosome segment * Satellite repeat * Supernumerary chromosome * 5S rDNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.354, year: 2016

  10. Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases: Poxvirus Uracil-DNA Glycosylase

    Energy Technology Data Exchange (ETDEWEB)

    Schormann, Norbert [Department of Medicine, University of Alabama at Birmingham, Birmingham Alabama 35294; Zhukovskaya, Natalia [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Bedwell, Gregory [Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama 35294; Nuth, Manunya [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Gillilan, Richard [MacCHESS (Macromolecular Diffraction Facility at CHESS) Cornell University, Ithaca New York 14853; Prevelige, Peter E. [Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama 35294; Ricciardi, Robert P. [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Abramson Cancer Center, School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Banerjee, Surajit [Department of Chemistry and Chemical Biology, Cornell University, and NE-CAT Argonne Illinois 60439; Chattopadhyay, Debasish [Department of Medicine, University of Alabama at Birmingham, Birmingham Alabama 35294

    2016-11-02

    We report that uracil-DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil-DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis. Within this family the enzymes of poxviruses are unique and most remarkable in terms of amino acid sequences, characteristic motifs and more importantly for their novel non-enzymatic function in DNA replication. UNG of vaccinia virus, also known as D4, is the most extensively characterized UNG of the poxvirus family. D4 forms an unusual heterodimeric processivity factor by attaching to a poxvirus-specific protein A20, which also binds to the DNA polymerase E9 and recruits other proteins necessary for replication. D4 is thus integrated in the DNA polymerase complex, and its DNA-binding and DNA scanning abilities couple DNA processivity and DNA base excision repair at the replication fork. In conclusion, the adaptations necessary for taking on the new function are reflected in the amino acid sequence and the three-dimensional structure of D4. We provide an overview of the current state of the knowledge on the structure-function relationship of D4.

  11. S1 satellite DNA repetitive units display identical structure and overall variability in all Anatolian brown frog taxa.

    Science.gov (United States)

    Picariello, Orfeo; Feliciello, Isidoro; Chinali, Gianni

    2016-02-01

    S1 satellite DNA from Palearctic brown frogs has a species-specific structure in all European species. We characterized S1 satellite DNA from the Anatolian brown frogs Rana macrocnemis, R. camerani, and R. holtzi in order to define their taxonomic rank and the structure of this satellite in this frog lineage. Southern blots of genomic DNA digested with KpnI, EcoRV, NdeI, NheI, or StuI produced the same pattern of satellite DNA bands. Moreover, quantitative dot blots showed that this satellite DNA accounts for 0.1 % of the genome in all taxa. Analysis of the overall genomic variability of the S1a repeat sequence in specimens from various populations demonstrated that this repetitive unit also has the same size (476 bp), the same most common sequence (MCS) and the same overall variability in all three taxa, and also in R. macrocnemis tavasensis. The S1a repetitive unit presents three deletions of 9, 8 and 1 bp compared to the 494-bp S1a repeat from European frogs. The S1a MCS has three variable positions (sequence WWTK in positions 183-186), due to the presence of two repeat subpopulations with motifs AATG and WWTT in all taxa. Unlike previously analyzed mitochondrial and nuclear sequences that show considerable variations among these taxa, no difference could be detected in the structure and variability of the S1 satellite repetitive units. This suggests that these taxa should belong to a single species. Our results indicate that this satellite DNA variety probably formed when the Anatolian lineage radiated from common ancestor about 4 mya, and since then has maintained its structure in all four taxa examined.

  12. Satellite DNA-based artificial chromosomes for use in gene therapy.

    Science.gov (United States)

    Hadlaczky, G

    2001-04-01

    Satellite DNA-based artificial chromosomes (SATACs) can be made by induced de novo chromosome formation in cells of different mammalian species. These artificially generated accessory chromosomes are composed of predictable DNA sequences and they contain defined genetic information. Prototype human SATACs have been successfully constructed in different cell types from 'neutral' endogenous DNA sequences from the short arm of the human chromosome 15. SATACs have already passed a number of hurdles crucial to their further development as gene therapy vectors, including: large-scale purification; transfer of purified artificial chromosomes into different cells and embryos; generation of transgenic animals and germline transmission with purified SATACs; and the tissue-specific expression of a therapeutic gene from an artificial chromosome in the milk of transgenic animals.

  13. Familial searching on DNA mixtures with dropout

    NARCIS (Netherlands)

    Slooten, K.

    2016-01-01

    Familial searching, the act of searching a database for a relative of an unknown individual whose DNA profile has been obtained, is usually restricted to cases where the DNA profile of that person has been unambiguously determined. Therefore, it is normally applied only with a good quality single

  14. On DNA codes from a family of chain rings

    Directory of Open Access Journals (Sweden)

    Elif Segah Oztas

    2017-01-01

    Full Text Available In this work, we focus on reversible cyclic codes which correspond to reversible DNA codes or reversible-complement DNA codes over a family of finite chain rings, in an effort to extend what was done by Yildiz and Siap in [20]. The ring family that we have considered are of size $2^{2^k}$, $k=1,2, \\cdots$ and we match each ring element with a DNA $2^{k-1}$-mer. We use the so-called $u^2$-adic digit system to solve the reversibility problem and we characterize cyclic codes that correspond to reversible-complement DNA-codes. We then conclude our study with some examples.

  15. Molecular Cytogenetic Mapping of Satellite DNA Sequences in Aegilops geniculata and Wheat

    Czech Academy of Sciences Publication Activity Database

    Koo, D.H.; Tiwari, V.K.; Hřibová, Eva; Doležel, Jaroslav; Friebe, B.; Gill, B.S.

    2016-01-01

    Roč. 148, č. 4 (2016), s. 314-321 ISSN 1424-8581 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : in-situ hybridization * chromosome addition lines * resistance genes lr57 * repetitive dna * triticum-ovatum * powdery mildew * plant genome * bread wheat * leaf rust * identification * Aegilops geniculata * Chromosome identification * Fluorescence in situ hybridization * Satellite DNA * Wheat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.354, year: 2016

  16. Forensic utilization of familial searches in DNA databases.

    Science.gov (United States)

    Gershaw, Cassandra J; Schweighardt, Andrew J; Rourke, Linda C; Wallace, Margaret M

    2011-01-01

    DNA evidence is widely recognized as an invaluable tool in the process of investigation and identification, as well as one of the most sought after types of evidence for presentation to a jury. In the United States, the development of state and federal DNA databases has greatly impacted the forensic community by creating an efficient, searchable system that can be used to eliminate or include suspects in an investigation based on matching DNA profiles - the profile already in the database to the profile of the unknown sample in evidence. Recent changes in legislation have begun to allow for the possibility to expand the parameters of DNA database searches, taking into account the possibility of familial searches. This article discusses prospective positive outcomes of utilizing familial DNA searches and acknowledges potential negative outcomes, thereby presenting both sides of this very complicated, rapidly evolving situation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Quantitative Analysis of the Mutagenic Potential of 1-Aminopyrene-DNA Adduct Bypass Catalyzed by Y-Family DNA Polymerases

    Science.gov (United States)

    Sherrer, Shanen M.; Taggart, David J.; Pack, Lindsey R.; Malik, Chanchal K.; Basu, Ashis K.; Suo, Zucai

    2012-01-01

    N- (deoxyguanosin-8-yl)-1-aminopyrene (dGAP) is the predominant nitro polyaromatic hydrocarbon product generated from the air pollutant 1-nitropyrene reacting with DNA. Previous studies have shown that dGAP induces genetic mutations in bacterial and mammalian cells. One potential source of these mutations is the error-prone bypass of dGAP lesions catalyzed by the low-fidelity Y-family DNA polymerases. To provide a comparative analysis of the mutagenic potential of the translesion DNA synthesis (TLS) of dGAP, we employed short oligonucleotide sequencing assays (SOSAs) with the model Y-family DNA polymerase from Sulfolobus solfataricus, DNA Polymerase IV (Dpo4), and the human Y-family DNA polymerases eta (hPolη), kappa (hPolκ), and iota (hPolι). Relative to undamaged DNA, all four enzymes generated far more mutations (base deletions, insertions, and substitutions) with a DNA template containing a site-specifically placed dGAP. Opposite dGAP and at an immediate downstream template position, the most frequent mutations made by the three human enzymes were base deletions and the most frequent base substitutions were dAs for all enzymes. Based on the SOSA data, Dpo4 was the least error-prone Y-family DNA polymerase among the four enzymes during the TLS of dGAP. Among the three human Y-family enzymes, hPolκ made the fewest mutations at all template positions except opposite the lesion site. hPolκ was significantly less error-prone than hPolι and hPolη during the extension of dGAP bypass products. Interestingly, the most frequent mutations created by hPolι at all template positions were base deletions. Although hRev1, the fourth human Y-family enzyme, could not extend dGAP bypass products in our standing start assays, it preferentially incorporated dCTP opposite the bulky lesion. Collectively, these mutagenic profiles suggest that hPolkk and hRev1 are the most suitable human Y-family DNA polymerases to perform TLS of dGAP in humans. PMID:22917544

  18. Recent Insight into the Kinetic Mechanisms and Conformational Dynamics of Y-Family DNA Polymerases

    OpenAIRE

    Maxwell, Brian A.; Suo, Zucai

    2014-01-01

    The kinetic mechanisms by which DNA polymerases catalyze DNA replication and repair have long been areas of active research. Recently discovered Y-family DNA polymerases catalyze the bypass of damaged DNA bases that would otherwise block replicative DNA polymerases and stall replication forks. Unlike DNA polymerases from the five other families, the Y-family DNA polymerases have flexible, solvent-accessible active sites that are able to tolerate various types of damaged template bases and all...

  19. An unconventional family 1 uracil DNA glycosylase in Nitratifractor salsuginis.

    Science.gov (United States)

    Li, Jing; Chen, Ran; Yang, Ye; Zhang, Zhemin; Fang, Guang-Chen; Xie, Wei; Cao, Weiguo

    2017-12-01

    The uracil DNA glycosylase superfamily consists of at least six families with a diverse specificity toward DNA base damage. Family 1 uracil N-glycosylase (UNG) exhibits exclusive specificity on uracil-containing DNA. Here, we report a family 1 UNG homolog from Nitratifractor salsuginis with distinct biochemical features that differentiate it from conventional family 1 UNGs. Globally, the crystal structure of N. salsuginisUNG shows a few additional secondary structural elements. Biochemical and enzyme kinetic analysis, coupled with structural determination, molecular modeling, and molecular dynamics simulations, shows that N. salsuginisUNG contains a salt bridge network that plays an important role in DNA backbone interactions. Disruption of the amino acid residues involved in the salt bridges greatly impedes the enzymatic activity. A tyrosine residue in motif 1 (GQDPY) is one of the distinct sequence features setting family 1 UNG apart from other families. The crystal structure of Y81G mutant indicates that several subtle changes may account for its inactivity. Unlike the conventional family 1 UNG enzymes, N. salsuginisUNG is not inhibited by Ugi, a potent inhibitor specific for family 1 UNG. This study underscores the diversity of paths that a uracil DNA glycosylase may take to acquire its unique structural and biochemical properties during evolution. Structure data are available in the PDB under accession numbers 5X3G and 5X3H. © 2017 Federation of European Biochemical Societies.

  20. Similarity of satellite DNA properties in the order Rodentia

    Energy Technology Data Exchange (ETDEWEB)

    Mazrimas, J A; Hatch, F T

    1977-09-01

    We have characterized satellite DNAs from 9 species of kangaroo rat (Dipodomys) and have shown that the HS-..cap alpha.. and HS-..beta.. satellites, where present, are nearly identical in all species as to melting transition midpoint (Tm), and density in neutral CsCl, alkaline CsCl, and Cs/sub 2/SO/sub 4/-Ag/sup +/ gradients. However, the MS satellites exist in two internally similar classes. The satellite DNAs from three other rodents were characterized (densities listed are in neutral CsCl). The pocket gopher, Thomomys bottae, contains Th-..cap alpha.. (1.713 g/ml) and Th-..beta.. (1.703 g/ml). The guinea pig (Cavia porcellus) contains Ca-..cap alpha.., Ca-..beta.., and Ca-..gamma.. at densities of 1.706 g/ml, 1.704 g/ml, and 1.704 g/ml, respectively. The antelope ground squirrel (Ammospermophilus harrisi) contains Am-..cap alpha.., 1.708 g/ml, Am-..beta.., 1.717 g/ml, and Am-..gamma.., 1.707 g/ml. The physical and chemical properties of the alpha-satellites from the above four rodents representing four different families in two suborders of Rodentia were compared. They show nearly identical Tm, nucleoside composition of single strands, and single strand densities in alkaline CsCl. Similar comparisons on the second or third satellite DNAs from these rodents also indicate a close relationship to each other. Thus the high degree of similarity of satellite sequences found in such a diverse group of rodents suggests a cellular function that is subject to natural selection, and implies that these sequences have been conserved over a considerable span of evolutionary time since the divergence of these rodents about 50 million years ago.

  1. Similarity of satellite DNA properties in the order Rodentia

    Energy Technology Data Exchange (ETDEWEB)

    Mazrimas, J A; Hatch, F T

    1977-09-01

    Satellite DNAs from 9 species of kangaroo rat (Dipodomys) have been characterized and have shown that the HS-..cap alpha.. and HS-..beta.. satellites, where present, are nearly identical in all species as to melting transition midpoint (Tm), and density in neutral CsCl, alkaline CsCl, and Cs/sub 2/SO/sub 4/-Ag/sup +/ gradients. However, the MS satellites exist in two internally similar classes. The satellite DNAs from three other rodents were characterized (densities listed are in neutral CsCl). The pocket gopher, Thomomys bottae, contains Th-..cap alpha.. (1.713 g/ml) and Th..beta.. (1.703 g/ml). The guinea pig (Cavia porcellus) contains Ca-..cap alpha.., Ca-..beta.. and Ca-..gamma.. at densities of 1.706 g/ml, 1.704 g/ml and 1.704 g/ml, respectively. The antelope ground squirrel (Ammospermophilus harrisi) contains Am-..cap alpha.., 1.708 g/ml, Am-..beta.., 1.717 g/ml, and Am-..gamma.., 1.707 g/ml. The physical and chemical properties of the alpha-satellites from the above four rodents representing four different families in two suborders of Rodentia were compared. They show nearly identical Tm, nucleoside composition of single strands, and single strand densities in alkaline CsCl. Similar comparisons on the second or third satellite DNAs from these rodents also indicate a close relationship to each other. Thus the high degree of similarity of satellite sequences found in such a diverse group of rodents suggests a cellular function that is subject to natural selection, and implies that these sequences have been conserved over a considerable span of evolutionary time since the divergence of these rodents about 50 million years ago.

  2. Global conformational dynamics of a Y-family DNA polymerase during catalysis.

    Directory of Open Access Journals (Sweden)

    Cuiling Xu

    2009-10-01

    Full Text Available Replicative DNA polymerases are stalled by damaged DNA while the newly discovered Y-family DNA polymerases are recruited to rescue these stalled replication forks, thereby enhancing cell survival. The Y-family DNA polymerases, characterized by low fidelity and processivity, are able to bypass different classes of DNA lesions. A variety of kinetic and structural studies have established a minimal reaction pathway common to all DNA polymerases, although the conformational intermediates are not well defined. Furthermore, the identification of the rate-limiting step of nucleotide incorporation catalyzed by any DNA polymerase has been a matter of long debate. By monitoring time-dependent fluorescence resonance energy transfer (FRET signal changes at multiple sites in each domain and DNA during catalysis, we present here a real-time picture of the global conformational transitions of a model Y-family enzyme: DNA polymerase IV (Dpo4 from Sulfolobus solfataricus. Our results provide evidence for a hypothetical DNA translocation event followed by a rapid protein conformational change prior to catalysis and a subsequent slow, post-chemistry protein conformational change. Surprisingly, the DNA translocation step was induced by the binding of a correct nucleotide. Moreover, we have determined the directions, rates, and activation energy barriers of the protein conformational transitions, which indicated that the four domains of Dpo4 moved in a synchronized manner. These results showed conclusively that a pre-chemistry conformational change associated with domain movements was too fast to be the rate-limiting step. Rather, the rearrangement of active site residues limited the rate of correct nucleotide incorporation. Collectively, the conformational dynamics of Dpo4 offer insights into how the inter-domain movements are related to enzymatic function and their concerted interactions with other proteins at the replication fork.

  3. Maternal inheritance and mitochondrial DNA variants in familial Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Pfeiffer Ronald F

    2010-04-01

    Full Text Available Abstract Background Mitochondrial function is impaired in Parkinson's disease (PD and may contribute to the pathogenesis of PD, but the causes of mitochondrial impairment in PD are unknown. Mitochondrial dysfunction is recapitulated in cell lines expressing mitochondrial DNA (mtDNA from PD patients, implicating mtDNA variants or mutations, though the role of mtDNA variants or mutations in PD risk remains unclear. We investigated the potential contribution of mtDNA variants or mutations to the risk of PD. Methods We examined the possibility of a maternal inheritance bias as well as the association between mitochondrial haplogroups and maternal inheritance and disease risk in a case-control study of 168 multiplex PD families in which the proband and one parent were diagnosed with PD. 2-tailed Fisher Exact Tests and McNemar's tests were used to compare allele frequencies, and a t-test to compare ages of onset. Results The frequency of affected mothers of the proband with PD (83/167, 49.4% was not significantly different from the frequency of affected females of the proband generation (115/259, 44.4% (Odds Ratio 1.22; 95%CI 0.83 - 1.81. After correcting for multiple tests, there were no significant differences in the frequencies of mitochondrial haplogroups or of the 10398G complex I gene polymorphism in PD patients compared to controls, and no significant associations with age of onset of PD. Mitochondrial haplogroup and 10398G polymorphism frequencies were similar in probands having an affected father as compared to probands having an affected mother. Conclusions These data fail to demonstrate a bias towards maternal inheritance in familial PD. Consistent with this, we find no association of common haplogroup-defining mtDNA variants or for the 10398G variant with the risk of PD. However, these data do not exclude a role for mtDNA variants in other populations, and it remains possible that other inherited mitochondrial DNA variants, or somatic mDNA

  4. The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive.

    Science.gov (United States)

    Larracuente, Amanda M

    2014-11-25

    Satellite DNA can make up a substantial fraction of eukaryotic genomes and has roles in genome structure and chromosome segregation. The rapid evolution of satellite DNA can contribute to genomic instability and genetic incompatibilities between species. Despite its ubiquity and its contribution to genome evolution, we currently know little about the dynamics of satellite DNA evolution. The Responder (Rsp) satellite DNA family is found in the pericentric heterochromatin of chromosome 2 of Drosophila melanogaster. Rsp is well-known for being the target of Segregation Distorter (SD)- an autosomal meiotic drive system in D. melanogaster. I present an evolutionary genetic analysis of the Rsp family of repeats in D. melanogaster and its closely-related species in the melanogaster group (D. simulans, D. sechellia, D. mauritiana, D. erecta, and D. yakuba) using a combination of available BAC sequences, whole genome shotgun Sanger reads, Illumina short read deep sequencing, and fluorescence in situ hybridization. I show that Rsp repeats have euchromatic locations throughout the D. melanogaster genome, that Rsp arrays show evidence for concerted evolution, and that Rsp repeats exist outside of D. melanogaster, in the melanogaster group. The repeats in these species are considerably diverged at the sequence level compared to D. melanogaster, and have a strikingly different genomic distribution, even between closely-related sister taxa. The genomic organization of the Rsp repeat in the D. melanogaster genome is complex-it exists of large blocks of tandem repeats in the heterochromatin and small blocks of tandem repeats in the euchromatin. My discovery of heterochromatic Rsp-like sequences outside of D. melanogaster suggests that SD evolved after its target satellite and that the evolution of the Rsp satellite family is highly dynamic over a short evolutionary time scale (<240,000 years).

  5. Kinetic Analysis of the Bypass of a Bulky DNA Lesion Catalyzed by Human Y-family DNA Polymerases

    Science.gov (United States)

    Sherrer, Shanen M.; Sanman, Laura E.; Xia, Cynthia X.; Bolin, Eric R.; Malik, Chanchal K.; Efthimiopoulos, Georgia; Basu, Ashis K.; Suo, Zucai

    2012-01-01

    1-Nitropyrene (1-NP), a mutagen and potential carcinogen, is the most abundant nitro polyaromatic hydrocarbon in diesel exhaust, which reacts with DNA to form predominantly N-(deoxyguanosin-8-yl)-1-aminopyrene (dGAP). If not repaired, this DNA lesion is presumably bypassed in vivo by any of human Y-family DNA polymerases kappa (hPolκ), iota (hPolτ), eta (hPolη), and Rev1 (hRev1). Our running start assays demonstrated that each of these enzymes was indeed capable of traversing a site-specifically placed dGAP on a synthetic DNA template but hRev1 was stopped after lesion bypass. The time required to bypass 50% of the dGAP sites (t50bypass ) encountered by hPolη, hPolκ and hPolτ was determined to be 2.5 s, 4.1 s, and 106.5 s, respectively. The efficiency order of catalyzing translesion synthesis of dGAP (hPolη > hPolκ > hPolτ >> hRev1) is the same as the order for these human Y-family enzymes to elongate undamaged DNA. Although hPolη bypassed dGAP efficiently, replication by both hPolκ and hPolτ was strongly stalled at the lesion site and at a site immediately downstream from dGAP. By employing pre-steady state kinetic methods, a kinetic basis was established for polymerase pausing at these DNA template sites. Besides efficiency of bypass, the fidelity of those low-fidelity polymerases at these pause sites was also significantly decreased. Thus, if the translesion DNA synthesis of dGAP in vivo is catalyzed by a human Y-family DNA polymerase, e.g. hPolη, the process is certainly mutagenic. PMID:22324639

  6. Comparative Analysis of Repetitive DNA between the Main Vectors of Chagas Disease: Triatoma infestans and Rhodnius prolixus.

    Science.gov (United States)

    Pita, Sebastián; Mora, Pablo; Vela, Jesús; Palomeque, Teresa; Sánchez, Antonio; Panzera, Francisco; Lorite, Pedro

    2018-04-24

    Chagas disease or American trypanosomiasis affects six to seven million people worldwide, mostly in Latin America. This disease is transmitted by hematophagous insects known as "kissing bugs" (Hemiptera, Triatominae), with Triatoma infestans and Rhodnius prolixus being the two most important vector species. Despite the fact that both species present the same diploid chromosome number (2 n = 22), they have remarkable differences in their total DNA content, chromosome structure and genome organization. Variations in the DNA genome size are expected to be due to differences in the amount of repetitive DNA sequences. The T. infestans genome-wide analysis revealed the existence of 42 satellite DNA families. BLAST searches of these sequences against the R. prolixus genome assembly revealed that only four of these satellite DNA families are shared between both species, suggesting a great differentiation between the Triatoma and Rhodnius genomes. Fluorescence in situ hybridization (FISH) location of these repetitive DNAs in both species showed that they are dispersed on the euchromatic regions of all autosomes and the X chromosome. Regarding the Y chromosome, these common satellite DNAs are absent in T. infestans but they are present in the R. prolixus Y chromosome. These results support a different origin and/or evolution in the Y chromosome of both species.

  7. Dynamic conformational change regulates the protein-DNA recognition: an investigation on binding of a Y-family polymerase to its target DNA.

    Directory of Open Access Journals (Sweden)

    Xiakun Chu

    2014-09-01

    Full Text Available Protein-DNA recognition is a central biological process that governs the life of cells. A protein will often undergo a conformational transition to form the functional complex with its target DNA. The protein conformational dynamics are expected to contribute to the stability and specificity of DNA recognition and therefore may control the functional activity of the protein-DNA complex. Understanding how the conformational dynamics influences the protein-DNA recognition is still challenging. Here, we developed a two-basin structure-based model to explore functional dynamics in Sulfolobus solfataricus DNA Y-family polymerase IV (DPO4 during its binding to DNA. With explicit consideration of non-specific and specific interactions between DPO4 and DNA, we found that DPO4-DNA recognition is comprised of first 3D diffusion, then a short-range adjustment sliding on DNA and finally specific binding. Interestingly, we found that DPO4 is under a conformational equilibrium between multiple states during the binding process and the distributions of the conformations vary at different binding stages. By modulating the strength of the electrostatic interactions, the flexibility of the linker, and the conformational dynamics in DPO4, we drew a clear picture on how DPO4 dynamically regulates the DNA recognition. We argue that the unique features of flexibility and conformational dynamics in DPO4-DNA recognition have direct implications for low-fidelity translesion DNA synthesis, most of which is found to be accomplished by the Y-family DNA polymerases. Our results help complete the description of the DNA synthesis process for the Y-family polymerases. Furthermore, the methods developed here can be widely applied for future investigations on how various proteins recognize and bind specific DNA substrates.

  8. Different AT-rich satellite DNAs in Cucurbita pepo and Cucurbita maxima.

    Science.gov (United States)

    Ganal, M; Hemleben, V

    1986-11-01

    The AT-rich highly repeated satellite DNA of Cucurbita pepo (zucchini) and Cucurbita maxima (pumpkin) were cloned and their DNA structure was investigated. DNA sequencing revealed that the repeat length of satellite DNA in Cucurbita pepo is 349-352 base pairs. The percentage of AT-base pairs is about 61%. This satellite is highly conserved in restriction enzyme pattern and DNA sequence; sequence heterogeneity is about 10%. In contrast, the satellite DNA of Cucurbita maxima has a repeat length of 168-169 base pairs. This satellite is also rich in AT-base pairs (64%), existing in at least three different variants as revealed by restriction enzyme analysis and DNA sequencing. The sequence heterogeneity between these variants is about 15%. The two satellite DNAs showed no cross-hybridization to each other and sequence homology is only limited. Nevertheless, we found in the C. pepo genome a high amount of sequences resembling the satellite of C. maxima. In contrast, the satellite repeat of C. pepo is found in the C. maxima DNA only in a few copies. These observations were discussed with respect to satellite DNA evolution and compared to the data received from monocotyledonous species.

  9. Characterization of a chromosome-specific chimpanzee alpha satellite subset: Evolutionary relationship to subsets on human chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, P.E.; Gosden, J.; Lawson, D. [Western General Hospital, Edinburgh (United Kingdom)] [and others

    1996-04-15

    Alpha satellite DNA is a tandemly repeated DNA family found at the centromeres of all primate chromosomes examined. The fundamental repeat units of alpha satellite DNA are diverged 169- to 172-bp monomers, often found to be organized in chromosome-specific higher-order repeat units. The chromosomes of human (Homo sapiens (HSA)), chimpanzee (Pan troglodytes (PTR) and Pan paniscus), and gorilla (Gorilla gorilla) share a remarkable similarity and synteny. It is of interest to ask if alpha satellite arrays at centromeres of homologous chromosomes between these species are closely related (evolving in an orthologous manner) or if the evolutionary processes that homogenize and spread these arrays within and between chromosomes result in nonorthologous evolution of arrays. By using PCR primers specific for human chromosome 17-specific alpha satellite DNA, we have amplified, cloned, and characterized a chromosome-specific subset from the PTR chimpanzee genome. Hybridization both on Southern blots and in situ as well as sequence analysis show that this subset is most closely related, as expected, to sequences on HSA 17. However, in situ hybridization reveals that this subset is not found on the homologous chromosome in chimpanzee (PTR 19), but instead on PTR 12, which is homologous to HSA 2p. 40 refs., 3 figs.

  10. Two Family B DNA Polymerases From Aeropyrum pernix, Based on Revised Translational Frames

    Directory of Open Access Journals (Sweden)

    Katsuya Daimon

    2018-04-01

    Full Text Available Living organisms are divided into three domains, Bacteria, Eukarya, and Archaea. Comparative studies in the three domains have provided useful information to understand the evolution of the DNA replication machinery. DNA polymerase is the central enzyme of DNA replication. The presence of multiple family B DNA polymerases is unique in Crenarchaeota, as compared with other archaeal phyla, which have a single enzyme each for family B (PolB and family D (PolD. We analyzed PolB1 and PolB3 in the hyperthermophilic crenarchaeon, Aeropyrum pernix, and found that they are larger proteins than those predicted from the coding regions in our previous study and from public database annotations. The recombinant larger PolBs exhibited the same DNA polymerase activities as previously reported. However, the larger PolB3 showed remarkably higher thermostability, which made this enzyme applicable to PCR. In addition, the high tolerance to salt and heparin suggests that PolB3 will be useful for amplification from the samples with contaminants, and therefore it has a great potential for diagnostic use in the medical and environmental field.

  11. Association of pKi-67 with satellite DNA of the human genome in early G1 cells.

    Science.gov (United States)

    Bridger, J M; Kill, I R; Lichter, P

    1998-01-01

    pKi-67 is a nucleolar antigen that provides a specific marker for proliferating cells. It has been shown previously that pKi-67's distribution varies in a cell cycle-dependent manner: it coats all chromosomes during mitosis, accumulates in nuclear foci during G1 phase (type I distribution) and localizes within nucleoli in late G1 S and G2 phase (type II distribution). Although no function has as yet been ascribed to pKi-67, it has been found associated with centromeres in G1. In the present study the distribution pattern of pKi-67 during G1 in human dermal fibroblasts (HDFs) was analysed in more detail. Synchronization experiments show that in very early G1 cells pKi-67 coincides with virtually all satellite regions analysed, i.e. with centromeric (alpha-satellite), telomeric (minisatellite) and heterochromatic blocks (satellite III) on chromosomes 1 and Y (type Ia distribution). In contrast, later in the G1 phase, a smaller fraction of satellite DNA regions are found collocalized with pKi-67 foci (type Ib distribution). When all pKi-67 becomes localized within nucleoli, even fewer satellite regions remain associated with the pKi-67 staining. However, all centromeric and short arm regions of the acrocentric chromosomes, which are in very close proximity to or even contain the rRNA genes, are collocalized with anti-pKi-67 staining throughout the remaining interphase of the cell cycle. Thus, our data demonstrate that during post-mitotic reformation and nucleogenesis there is a progressive decline in the fraction of specific satellite regions of DNA that remain associated with pKi-67. This may be relevant to nucleolar reformation following mitosis.

  12. Functional studies of ssDNA binding ability of MarR family protein TcaR from Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Yu-Ming Chang

    Full Text Available The negative transcription regulator of the ica locus, TcaR, regulates proteins involved in the biosynthesis of poly-N-acetylglucosamine (PNAG. Absence of TcaR increases PNAG production and promotes biofilm formation in Staphylococci. Previously, the 3D structure of TcaR in its apo form and its complex structure with several antibiotics have been analyzed. However, the detailed mechanism of multiple antibiotic resistance regulator (MarR family proteins such as TcaR is unclear and only restricted on the binding ability of double-strand DNA (dsDNA. Here we show by electrophoretic mobility shift assay (EMSA, electron microscopy (EM, circular dichroism (CD, and Biacore analysis that TcaR can interact strongly with single-stranded DNA (ssDNA, thereby identifying a new role in MarR family proteins. Moreover, we show that TcaR preferentially binds 33-mer ssDNA over double-stranded DNA and inhibits viral ssDNA replication. In contrast, such ssDNA binding properties were not observed for other MarR family protein and TetR family protein, suggesting that the results from our studies are not an artifact due to simple charge interactions between TcaR and ssDNA. Overall, these results suggest a novel role for TcaR in regulation of DNA replication. We anticipate that the results of this work will extend our understanding of MarR family protein and broaden the development of new therapeutic strategies for Staphylococci.

  13. Primer-Independent DNA Synthesis by a Family B DNA Polymerase from Self-Replicating Mobile Genetic Elements

    Directory of Open Access Journals (Sweden)

    Modesto Redrejo-Rodríguez

    2017-11-01

    Full Text Available Family B DNA polymerases (PolBs play a central role during replication of viral and cellular chromosomes. Here, we report the discovery of a third major group of PolBs, which we denote primer-independent PolB (piPolB, that might be a link between the previously known protein-primed and RNA/DNA-primed PolBs. PiPolBs are encoded by highly diverse mobile genetic elements, pipolins, integrated in the genomes of diverse bacteria and also present as circular plasmids in mitochondria. Biochemical characterization showed that piPolB displays efficient DNA polymerization activity that can use undamaged and damaged templates and is endowed with proofreading and strand displacement capacities. Remarkably, the protein is also capable of template-dependent de novo DNA synthesis, i.e., DNA-priming activity, thereby breaking the long-standing dogma that replicative DNA polymerases require a pre-existing primer for DNA synthesis. We suggest that piPolBs are involved in self-replication of pipolins and may also contribute to bacterial DNA damage tolerance.

  14. Characterization of Satellite DNA Sequences from the Commercially Important Marine Rotifers Brachionus rotundiformis and Brachionus plicatilis.

    Science.gov (United States)

    Boehm; Gibson; Lubzens

    2000-01-01

    This study was initiated to search for species-specific and strain-specific satellite DNA sequences for which oligonucleotide primers could be designed to differentiate between various commercially important strains of the marine monogonont rotifers Brachionus rotundiformis and Brachionus plicatilis. Two unrelated, highly reiterated satellite sequences were cloned and characterized. The eight sequenced monomers from B. rotundiformis and six from B. plicatilis had low intrarepeat variability and were similar in their overall lengths, A + T compositions, and high degrees of repeated motif substructure. However, hybridizations to 19 representative strains, sequence characterizations, and GenBank searches indicated that these two satellites are morphotype-specific and population-specific, respectively, and share little homology to each other or to other characterized sequences in the database. Primer pairs designed for the B. rotundiformis satellite confirmed hybridization specificities on polymerase chain reaction and could serve as a useful molecular diagnostic tool to identify strains belonging to the SS morphotype, which are gaining widespread usage as first feeds for marine fish in commercial production.

  15. Reproductive outcome in 3 families with a satellited chromosome 4 with review of the literature.

    Science.gov (United States)

    Arn, P H; Younie, L; Russo, S; Zackowski, J L; Mankinen, C; Estabrooks, L

    1995-07-03

    We describe 3 families segregating for a translocation of the nucleolus organizer region (NOR) onto chromosome 4. Review of previously reported cases of translocations involving NOR and chromosome 4 shows that these translocations may be associated with variable reproductive outcomes. We provide evidence that imprinting is not the mechanism responsible for the variable reproductive outcomes in the case of satellited 4p chromosomes; this may offer indirect support for a ribosomal gene position effect. Translocated ribosomal genes may influence the expression of neighboring genes and could explain the variable phenotypes in individuals with satellited nonacrocentric chromosomes. We recommend that prenatal counseling of individuals with satellited nonacrocentric chromosomes should be cautious.

  16. Reproductive outcome in 3 families with a satellited chromosome 4 with review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Arn, P.H.; Younie, L.; Russo, S. [Nemours Children`s Clinic, Jacksonville, FL (United States)] [and others

    1995-07-03

    We describe 3 families segregating for a translocation of the nucleolus organizer region (NOR) onto chromosome 4. Review of previously reported cases of translocations involving NOR and chromosome 4 shows that these translocations may be associated with variable reproductive outcomes. We provide evidence that imprinting is not the mechanism responsible for the variable reproductive outcomes in the case of satellited 4p chromosomes; this may offer indirect support for a ribosomal gene position effect. Translocated ribosomal genes may influence the expression of neighboring genes and could explain the variable phenotypes in individuals with satellited nonacrocentric chromosomes. We recommend that prenatal counseling of individuals with satellited nonacrocentric chromosomes should be cautious. 23 refs., 2 figs., 1 tab.

  17. The Himalia Satellite Group: A Case Study on the Dynamical Self-spreading of Families of Irregular Satellites and Asteroids

    Science.gov (United States)

    Li, Daohai; Christou, Apostolos A.

    2015-11-01

    Many of the outer planets' irregular satellites are grouped into families, thought to originate from collisional fragmentation (Nesvorný et al 2004, AJ). Interestingly, families associated with the largest irregulars are either more dispersed than expected (e.g. J6 Himalia; Nesvorný et al 2003, AJ), or do not exist at all (e.g. S9 Phoebe; Ćuk et al 2003, DDA meeting #34). Christou (2005, Icarus) found that gravitational scattering by Himalia of its own group could explain the large velocity dispersion found by Nesvorný et al (2003, AJ). At the same time, Christou identified a new type of dynamical mechanism that intermittently locks the node of the satellite J10 Lysithea to that of Himalia. The same mechanism, but due to Ceres, was recently found to operate within the Hoffmeister family, dispersing its members and allowing an estimate of its age (Novaković et al 2015, ApJ).Here we revisit the issue of family self-dispersion, aiming to better understand it by studying its effects on the Himalia group. For this we utilise (a) intensive test particle simulations on a larger scale than those by Christou (2005, Icarus) (b) a semi-analytical treatment of the new resonance based on the secular theory of coorbital motion by Namouni (1999, Icarus). This has allowed us to obtain firmer constraints on the rate of dispersion over time and on how the resonance affects the long-term evolution of the orbital elements. A principal result of this work is that particles near the resonance evolve differently than those away from it. During the meeting, we will present a new estimate of the family’s age as well as an analysis of the resonant structure and how it affects Himalia family members. We will also discuss the broader implications for the long-term evolution of orbital concentrations of small bodies in the solar system.Astronomical research at the Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL).

  18. Mechanistic Basis for the Bypass of a Bulky DNA Adduct Catalyzed by a Y-Family DNA Polymerase

    Science.gov (United States)

    Vyas, Rajan; Efthimiopoulos, Georgia; Tokarsky, E. John; Malik, Chanchal K.; Basu, Ashis K.; Suo, Zucai

    2015-01-01

    1-Nitropyrene (1-NP), an environmental pollutant, induces DNA damage in vivo and is considered to be carcinogenic. The DNA adducts formed by the 1-NP metabolites stall replicative DNA polymerases but are presumably bypassed by error-prone Y-family DNA polymerases at the expense of replication fidelity and efficiency in vivo. Our running start assays confirmed that a site-specifically placed 8-(deoxyguanosin-N2-yl)-1-aminopyrene (dG1,8), one of the DNA adducts derived from 1-NP, can be bypassed by Sulfolobus solfataricus DNA polymerase IV (Dpo4), although this representative Y-family enzyme was paused strongly by the lesion. Pre-steady-state kinetic assays were employed to determine the low nucleotide incorporation fidelity and establish a minimal kinetic mechanism for the dG1,8 bypass by Dpo4. To reveal a structural basis for dCTP incorporation opposite dG1,8, we solved the crystal structures of the complexes of Dpo4 and DNA containing a templating dG1,8 lesion in the absence or presence of dCTP. The Dpo4·DNA-dG1,8 binary structure shows that the aminopyrene moiety of the lesion stacks against the primer/template junction pair, while its dG moiety projected into the cleft between the Finger and Little Finger domains of Dpo4. In the Dpo4·DNA-dG1,8·dCTP ternary structure, the aminopyrene moiety of the dG1,8 lesion, is sandwiched between the nascent and junction base pairs, while its base is present in the major groove. Moreover, dCTP forms a Watson–Crick base pair with dG, two nucleotides upstream from the dG1,8 site, creating a complex for “-2” frameshift mutation. Mechanistically, these crystal structures provide additional insight into the aforementioned minimal kinetic mechanism. PMID:26327169

  19. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family.

    Science.gov (United States)

    Gao, Ting; Yao, Hui; Song, Jingyuan; Zhu, Yingjie; Liu, Chang; Chen, Shilin

    2010-10-26

    Five DNA regions, namely, rbcL, matK, ITS, ITS2, and psbA-trnH, have been recommended as primary DNA barcodes for plants. Studies evaluating these regions for species identification in the large plant taxon, which includes a large number of closely related species, have rarely been reported. The feasibility of using the five proposed DNA regions was tested for discriminating plant species within Asteraceae, the largest family of flowering plants. Among these markers, ITS2 was the most useful in terms of universality, sequence variation, and identification capability in the Asteraceae family. The species discriminating power of ITS2 was also explored in a large pool of 3,490 Asteraceae sequences that represent 2,315 species belonging to 494 different genera. The result shows that ITS2 correctly identified 76.4% and 97.4% of plant samples at the species and genus levels, respectively. In addition, ITS2 displayed a variable ability to discriminate related species within different genera. ITS2 is the best DNA barcode for the Asteraceae family. This approach significantly broadens the application of DNA barcoding to resolve classification problems in the family Asteraceae at the genera and species levels.

  20. New Opportunitie s for Small Satellite Programs Provided by the Falcon Family of Launch Vehicles

    Science.gov (United States)

    Dinardi, A.; Bjelde, B.; Insprucker, J.

    2008-08-01

    The Falcon family of launch vehicles, developed by Space Exploration Technologies Corporation (SpaceX), are designed to provide the world's lowest cost access to orbit. Highly reliable, low cost launch services offer considerable opportunities for risk reduction throughout the life cycle of satellite programs. The significantly lower costs of Falcon 1 and Falcon 9 as compared with other similar-class launch vehicles results in a number of new business case opportunities; which in turn presents the possibility for a paradigm shift in how the satellite industry thinks about launch services.

  1. DNA barcoding of the Lemnaceae, a family of aquatic monocots

    Directory of Open Access Journals (Sweden)

    Wang Wenqin

    2010-09-01

    Full Text Available Abstract Background Members of the aquatic monocot family Lemnaceae (commonly called duckweeds represent the smallest and fastest growing flowering plants. Their highly reduced morphology and infrequent flowering result in a dearth of characters for distinguishing between the nearly 38 species that exhibit these tiny, closely-related and often morphologically similar features within the same family of plants. Results We developed a simple and rapid DNA-based molecular identification system for the Lemnaceae based on sequence polymorphisms. We compared the barcoding potential of the seven plastid-markers proposed by the CBOL (Consortium for the Barcode of Life plant-working group to discriminate species within the land plants in 97 accessions representing 31 species from the family of Lemnaceae. A Lemnaceae-specific set of PCR and sequencing primers were designed for four plastid coding genes (rpoB, rpoC1, rbcL and matK and three noncoding spacers (atpF-atpH, psbK-psbI and trnH-psbA based on the Lemna minor chloroplast genome sequence. We assessed the ease of amplification and sequencing for these markers, examined the extent of the barcoding gap between intra- and inter-specific variation by pairwise distances, evaluated successful identifications based on direct sequence comparison of the "best close match" and the construction of a phylogenetic tree. Conclusions Based on its reliable amplification, straightforward sequence alignment, and rates of DNA variation between species and within species, we propose that the atpF-atpH noncoding spacer could serve as a universal DNA barcoding marker for species-level identification of duckweeds.

  2. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2010-10-01

    Full Text Available Abstract Background Five DNA regions, namely, rbcL, matK, ITS, ITS2, and psbA-trnH, have been recommended as primary DNA barcodes for plants. Studies evaluating these regions for species identification in the large plant taxon, which includes a large number of closely related species, have rarely been reported. Results The feasibility of using the five proposed DNA regions was tested for discriminating plant species within Asteraceae, the largest family of flowering plants. Among these markers, ITS2 was the most useful in terms of universality, sequence variation, and identification capability in the Asteraceae family. The species discriminating power of ITS2 was also explored in a large pool of 3,490 Asteraceae sequences that represent 2,315 species belonging to 494 different genera. The result shows that ITS2 correctly identified 76.4% and 97.4% of plant samples at the species and genus levels, respectively. In addition, ITS2 displayed a variable ability to discriminate related species within different genera. Conclusions ITS2 is the best DNA barcode for the Asteraceae family. This approach significantly broadens the application of DNA barcoding to resolve classification problems in the family Asteraceae at the genera and species levels.

  3. Repair of DNA damage in the human metallothionein gene family

    International Nuclear Information System (INIS)

    Leadon, S.A.; Snowden, M.M.

    1987-01-01

    In order to distinguish enhanced repair of a sequence due to its transcriptional activity from enhanced repair due to chromatin alterations brought about by integration of a sequence into the genome, we have investigated the repair of damage both in endogenous genes and in cell lines that contain an integrated gene with an inducible promoter. The endogenous genes we are studying are the metallothioneins (MTs), a multigene family in man consisting of about 10-12 members. Cultured cells were exposed to 10-J/m 2 uv light and allowed to repair in the presence of bromodeoxyuridine. The DNA was then isolated, digested with Eco RI, and fully hybrid density DNA made by semiconservative synthesis was separated from unreplicated DNA by centrifugation in CsCl density gradients. Unreplicated, parental-density DNA was then reacted with a monoclonal antibody against bromouracil. 1 ref., 1 fig., 1 tab

  4. Novel structural features drive DNA binding properties of Cmr, a CRP family protein in TB complex mycobacteria.

    Science.gov (United States)

    Ranganathan, Sridevi; Cheung, Jonah; Cassidy, Michael; Ginter, Christopher; Pata, Janice D; McDonough, Kathleen A

    2018-01-09

    Mycobacterium tuberculosis (Mtb) encodes two CRP/FNR family transcription factors (TF) that contribute to virulence, Cmr (Rv1675c) and CRPMt (Rv3676). Prior studies identified distinct chromosomal binding profiles for each TF despite their recognizing overlapping DNA motifs. The present study shows that Cmr binding specificity is determined by discriminator nucleotides at motif positions 4 and 13. X-ray crystallography and targeted mutational analyses identified an arginine-rich loop that expands Cmr's DNA interactions beyond the classical helix-turn-helix contacts common to all CRP/FNR family members and facilitates binding to imperfect DNA sequences. Cmr binding to DNA results in a pronounced asymmetric bending of the DNA and its high level of cooperativity is consistent with DNA-facilitated dimerization. A unique N-terminal extension inserts between the DNA binding and dimerization domains, partially occluding the site where the canonical cAMP binding pocket is found. However, an unstructured region of this N-terminus may help modulate Cmr activity in response to cellular signals. Cmr's multiple levels of DNA interaction likely enhance its ability to integrate diverse gene regulatory signals, while its novel structural features establish Cmr as an atypical CRP/FNR family member. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. DNA Damage Observed in Unaffected Individuals with Family History of T2DM

    Science.gov (United States)

    Ramesh, Nikhila; Abilash, V. G.

    2017-11-01

    Diabetes has been documented to cause high levels of DNA fragmentation in some cases. As diabetes is inheritable and influenced by both genetic and environmental factors, an investigation into the genomic stability of individuals who are strongly at risk of inheriting diabetes was conducted by inducing oxidative stress, as DNA damage in unaffected individuals could be a sign of onset of the disease or the presence of genetic alterations that reduce cellular defences against reactive oxygen species. In this study, alkaline comet assay was performed on isolated human leukocytes to determine whether individuals with a family history of Type 2 Diabetes Mellitus (T2DM) are more prone to DNA damage under oxidative stress. Visual scoring of comets showed that these individuals have higher degree of DNA damage compared to a control individual with no family history of Type 2 Diabetes Mellitus. Further studies with large sample could determine the presence of disabled cellular defences against oxidative stress in unaffected individuals and intervention with antioxidants could prevent or manage Type 2 Diabetes Mellitus and its complications.

  6. NMR studies of a new family of DNA binding proteins: the THAP proteins

    International Nuclear Information System (INIS)

    Gervais, Virginie; Campagne, Sébastien; Durand, Jade; Muller, Isabelle; Milon, Alain

    2013-01-01

    The THAP (THanatos-Associated Protein) domain is an evolutionary conserved C2CH zinc-coordinating domain shared with a large family of cellular factors (THAP proteins). Many members of the THAP family act as transcription factors that control cell proliferation, cell cycle progression, angiogenesis, apoptosis and epigenetic gene silencing. They recognize specific DNA sequences in the promoters of target genes and subsequently recruit effector proteins. Recent structural and functional studies have allowed getting better insight into the nuclear and cellular functions of some THAP members and the molecular mechanisms by which they recognize DNA. The present article reviews recent advances in the knowledge of the THAP domains structures and their interaction with DNA, with a particular focus on NMR. It provides the solution structure of the THAP domain of THAP11, a recently characterized human THAP protein with important functions in transcription and cell growth in colon cancer.

  7. NMR studies of a new family of DNA binding proteins: the THAP proteins

    Energy Technology Data Exchange (ETDEWEB)

    Gervais, Virginie, E-mail: virginie.gervais@ipbs.fr [IPBS (Institut de Pharmacologie et de Biologie Structurale), CNRS (France); Campagne, Sebastien [ETH Zurich (Switzerland); Durand, Jade; Muller, Isabelle; Milon, Alain, E-mail: alain.milon@ipbs.fr [IPBS (Institut de Pharmacologie et de Biologie Structurale), CNRS (France)

    2013-05-15

    The THAP (THanatos-Associated Protein) domain is an evolutionary conserved C2CH zinc-coordinating domain shared with a large family of cellular factors (THAP proteins). Many members of the THAP family act as transcription factors that control cell proliferation, cell cycle progression, angiogenesis, apoptosis and epigenetic gene silencing. They recognize specific DNA sequences in the promoters of target genes and subsequently recruit effector proteins. Recent structural and functional studies have allowed getting better insight into the nuclear and cellular functions of some THAP members and the molecular mechanisms by which they recognize DNA. The present article reviews recent advances in the knowledge of the THAP domains structures and their interaction with DNA, with a particular focus on NMR. It provides the solution structure of the THAP domain of THAP11, a recently characterized human THAP protein with important functions in transcription and cell growth in colon cancer.

  8. Family-specific vs. universal PCR primers for the study of mitochondrial DNA in plants

    Directory of Open Access Journals (Sweden)

    Aleksić Jelena M.

    2016-01-01

    Full Text Available Mitochondrial genomes (mtDNAs or mitogenomes of seed plants are characterized by a notoriously unstable organization on account of which available so-called universal or consensus primers may fail to fulfil their foreseen function - amplification of various mtDNA regions in a broad range of plant taxa. Thus, the primers developed for groups assumed to have similar organization of their mitogenomes, such as families, may facilitate a broader usage of more variable non-coding portions of these genomes in group members. Using in silico PCR method and six available complete mitogenomes of Fabaceae, it has been demonstrated that only three out of 36 published universal primer and three Medicago sativa-specific primer pairs that amplify various mtDNA regions are suitable for six representatives of the Fabaceae family upon minor modifications, and develop 21 Fabaceae-specific primer pairs for amplification of all 14 cis-splicing introns in genes of NADH subunits (nad genes which represent the most commonly used non-coding mtDNA regions in various studies in plants. Using the same method and six available complete mitogenomes of representatives of related families Cucurbitaceae, Euphorbiaceae and Rosaceae and a model plant, Arabidopsis thaliana, it has further been demonstrated that applicability of newly developed primer pairs for amplification of nad introns in more or less related taxa was dependent not only on species evolutionary distances but also on their genome sizes. A reported set of 24 primer pairs is a valuable resource which may facilitate a broader usage of mtDNA variability in future studies at both intra- and inter-specific levels in Fabaceae, which is the third largest family of flowering plants rarely studied at the mtDNA level, and in other more or less related taxa. [Projekat Ministarstva nauke Republike Srbije, br. 173005

  9. Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (Protobothrops flavoviridis, Viperidae) and the Burmese python (Python bivittatus, Pythonidae).

    Science.gov (United States)

    Matsubara, Kazumi; Uno, Yoshinobu; Srikulnath, Kornsorn; Seki, Risako; Nishida, Chizuko; Matsuda, Yoichi

    2015-12-01

    Highly repetitive DNA sequences of the centromeric heterochromatin provide valuable molecular cytogenetic markers for the investigation of genomic compartmentalization in the macrochromosomes and microchromosomes of sauropsids. Here, the relationship between centromeric heterochromatin and karyotype evolution was examined using cloned repetitive DNA sequences from two snake species, the habu snake (Protobothrops flavoviridis, Crotalinae, Viperidae) and Burmese python (Python bivittatus, Pythonidae). Three satellite DNA (stDNA) families were isolated from the heterochromatin of these snakes: 168-bp PFL-MspI from P. flavoviridis and 196-bp PBI-DdeI and 174-bp PBI-MspI from P. bivittatus. The PFL-MspI and PBI-DdeI sequences were localized to the centromeric regions of most chromosomes in the respective species, suggesting that the two sequences were the major components of the centromeric heterochromatin in these organisms. The PBI-MspI sequence was localized to the pericentromeric region of four chromosome pairs. The PFL-MspI and the PBI-DdeI sequences were conserved only in the genome of closely related species, Gloydius blomhoffii (Crotalinae) and Python molurus, respectively, although their locations on the chromosomes were slightly different. In contrast, the PBI-MspI sequence was also in the genomes of P. molurus and Boa constrictor (Boidae), and additionally localized to the centromeric regions of eight chromosome pairs in B. constrictor, suggesting that this sequence originated in the genome of a common ancestor of Pythonidae and Boidae, approximately 86 million years ago. The three stDNA sequences showed no genomic compartmentalization between the macrochromosomes and microchromosomes, suggesting that homogenization of the centromeric and/or pericentromeric stDNA sequences occurred in the macrochromosomes and microchromosomes of these snakes.

  10. RUNX Family Participates in the Regulation of p53-Dependent DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Toshinori Ozaki

    2013-01-01

    Full Text Available A proper DNA damage response (DDR, which monitors and maintains the genomic integrity, has been considered to be a critical barrier against genetic alterations to prevent tumor initiation and progression. The representative tumor suppressor p53 plays an important role in the regulation of DNA damage response. When cells receive DNA damage, p53 is quickly activated and induces cell cycle arrest and/or apoptotic cell death through transactivating its target genes implicated in the promotion of cell cycle arrest and/or apoptotic cell death such as p21WAF1, BAX, and PUMA. Accumulating evidence strongly suggests that DNA damage-mediated activation as well as induction of p53 is regulated by posttranslational modifications and also by protein-protein interaction. Loss of p53 activity confers growth advantage and ensures survival in cancer cells by inhibiting apoptotic response required for tumor suppression. RUNX family, which is composed of RUNX1, RUNX2, and RUNX3, is a sequence-specific transcription factor and is closely involved in a variety of cellular processes including development, differentiation, and/or tumorigenesis. In this review, we describe a background of p53 and a functional collaboration between p53 and RUNX family in response to DNA damage.

  11. Human circulating ribosomal DNA content significantly increases while circulating satellite III (1q12) content decreases under chronic occupational exposure to low-dose gamma- neutron and tritium beta-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Korzeneva, Inna B., E-mail: inna.korzeneva@molgen.vniief.ru [Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190 Sarov, 37 Mira ave., Nizhniy Novgorod Region (Russian Federation); Kostuyk, Svetlana V. [Research Centre for Medical Genetics, 115478 Moscow, 1 Moskvorechye str. (Russian Federation); Ershova, Elizaveta S. [Research Centre for Medical Genetics, 115478 Moscow, 1 Moskvorechye str. (Russian Federation); V. A. Negovsky Research Institute of General Reanimatology, Moscow, 107031 (Russian Federation); Skorodumova, Elena N.; Zhuravleva, Veronika F.; Pankratova, Galina V.; Volkova, Irina V.; Stepanova, Elena V. [Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190 Sarov, 37 Mira ave., Nizhniy Novgorod Region (Russian Federation); Porokhovnik, Lev N. [Research Centre for Medical Genetics, 115478 Moscow, 1 Moskvorechye str. (Russian Federation); Veiko, Natalia N. [Research Centre for Medical Genetics, 115478 Moscow, 1 Moskvorechye str. (Russian Federation); V. A. Negovsky Research Institute of General Reanimatology, Moscow, 107031 (Russian Federation)

    2016-09-15

    Highlights: • A transcribed region of human ribosomal repeat is resistant to double-strand breaks in the environment of a raised endonuclease activity. • Hybridization-based techniques are preferable for the analysis of damaged and/or oxidized genomic fragments, rather than the qRT-PCR method. • A chronic exposure to the low-dose IR induces an elevation of the rDNA content in the human circulating cfDNA as compared to cellular DNA. • An exposure to IR entails a decrease of the level of the human circulating satellite III (1q12) as compared to cellular DNA (RsatIII index). • The RrDNA/RsatIII ratio is a potential marker of a chronic IR individual exposure. - Abstract: A single exposure to ionizing radiation (IR) results in an elevated cell-free DNA (cfDNA) content in the blood plasma. In this case, the cfDNA concentration can be a marker of the cell death in the organism. However, a chronic exposure to a low-dose IR enhances both the endonuclease activity and titer of antibodies to DNA in blood plasma, resulting in a decrease of the total concentration of circulating cfDNA in exposed people. In this case, the total cfDNA concentration should not be considered as a marker of the cell death in an exposed body. We assumed that a pool of the cfDNA circulating in the exposed people contains DNA fragments, which are resistant to a double-strand break formation in the environment of the elevated plasma endonuclease activity, and can be accumulated in the blood plasma. In order to test this hypothesis, we studied the content of GC-rich sequences (69%GC) of the transcribed region of human ribosomal repeat (rDNA), as well as the content of AT-rich repeat (63%AT) of satellite III (1q12) in the cfDNA samples obtained from 285 individuals. We have found that a chronic exposure to gamma-neutron radiation (N = 88) and tritium β-radiation (N = 88) evokes an increase of the rDNA content (RrDNA index) and a decrease of the satellite III content (RsatIII index) in the

  12. Human circulating ribosomal DNA content significantly increases while circulating satellite III (1q12) content decreases under chronic occupational exposure to low-dose gamma- neutron and tritium beta-radiation

    International Nuclear Information System (INIS)

    Korzeneva, Inna B.; Kostuyk, Svetlana V.; Ershova, Elizaveta S.; Skorodumova, Elena N.; Zhuravleva, Veronika F.; Pankratova, Galina V.; Volkova, Irina V.; Stepanova, Elena V.; Porokhovnik, Lev N.; Veiko, Natalia N.

    2016-01-01

    Highlights: • A transcribed region of human ribosomal repeat is resistant to double-strand breaks in the environment of a raised endonuclease activity. • Hybridization-based techniques are preferable for the analysis of damaged and/or oxidized genomic fragments, rather than the qRT-PCR method. • A chronic exposure to the low-dose IR induces an elevation of the rDNA content in the human circulating cfDNA as compared to cellular DNA. • An exposure to IR entails a decrease of the level of the human circulating satellite III (1q12) as compared to cellular DNA (RsatIII index). • The RrDNA/RsatIII ratio is a potential marker of a chronic IR individual exposure. - Abstract: A single exposure to ionizing radiation (IR) results in an elevated cell-free DNA (cfDNA) content in the blood plasma. In this case, the cfDNA concentration can be a marker of the cell death in the organism. However, a chronic exposure to a low-dose IR enhances both the endonuclease activity and titer of antibodies to DNA in blood plasma, resulting in a decrease of the total concentration of circulating cfDNA in exposed people. In this case, the total cfDNA concentration should not be considered as a marker of the cell death in an exposed body. We assumed that a pool of the cfDNA circulating in the exposed people contains DNA fragments, which are resistant to a double-strand break formation in the environment of the elevated plasma endonuclease activity, and can be accumulated in the blood plasma. In order to test this hypothesis, we studied the content of GC-rich sequences (69%GC) of the transcribed region of human ribosomal repeat (rDNA), as well as the content of AT-rich repeat (63%AT) of satellite III (1q12) in the cfDNA samples obtained from 285 individuals. We have found that a chronic exposure to gamma-neutron radiation (N = 88) and tritium β-radiation (N = 88) evokes an increase of the rDNA content (RrDNA index) and a decrease of the satellite III content (RsatIII index) in the

  13. Detection of minor and major satellite DNA in cytokinesis-blocked mouse splenocytes by a PRINS tandem labelling approach.

    Science.gov (United States)

    Russo, A; Tommasi, A M; Renzi, L

    1996-11-01

    A protocol for the simultaneous visualization of minor and major satellite DNA by primed in situ DNA synthesis (PRINS) was developed in cytokinesis-blocked murine splenocytes. After individuation of optimal experimental conditions, a micronucleus (MN) test was carried out by treating splenocytes in vitro with the clastogenic agent mitomycin C and the aneugenic compound Colcemid. It was found that PRINS gives highly reproducible results, also comparable with the literature on MN results obtained by fluorescent in situ hybridization (FISH). Therefore the PRINS methodology may be proposed as a fast alternative to FISH for the characterization of induced MN.

  14. Characterization of family IV UDG from Aeropyrum pernix and its application in hot-start PCR by family B DNA polymerase.

    Directory of Open Access Journals (Sweden)

    Xi-Peng Liu

    Full Text Available Recombinant uracil-DNA glycosylase (UDG from Aeropyrum pernix (A. pernix was expressed in E. coli. The biochemical characteristics of A. pernix UDG (ApeUDG were studied using oligonucleotides carrying a deoxyuracil (dU base. The optimal temperature range and pH value for dU removal by ApeUDG were 55-65°C and pH 9.0, respectively. The removal of dU was inhibited by the divalent ions of Zn, Cu, Co, Ni, and Mn, as well as a high concentration of NaCl. The opposite base in the complementary strand affected the dU removal by ApeUDG as follows: U/C≈U/G>U/T≈U/AP≈U/->U/U≈U/I>U/A. The phosphorothioate around dU strongly inhibited dU removal by ApeUDG. Based on the above biochemical characteristics and the conservation of amino acid residues, ApeUDG was determined to belong to the IV UDG family. ApeUDG increased the yield of PCR by Pfu DNA polymerase via the removal of dU in amplified DNA. Using the dU-carrying oligonucleotide as an inhibitor and ApeUDG as an activator of Pfu DNA polymerase, the yield of undesired DNA fragments, such as primer-dimer, was significantly decreased, and the yield of the PCR target fragment was increased. This strategy, which aims to amplify the target gene with high specificity and yield, can be applied to all family B DNA polymerases.

  15. Genetic diagnosis of familial hypercholesterolemia using a DNA-array based platform

    NARCIS (Netherlands)

    Alonso, Rodrigo; Defesche, Joep C.; Tejedor, Diego; Castillo, Sergio; Stef, Marianne; Mata, Nelva; Gomez-Enterria, Pilar; Martinez-Faedo, Ceferino; Forga, Lluis; Mata, Pedro

    2009-01-01

    The aim of this study was to validate the Lipochip genetic diagnostic platform by assessing effectiveness, sensitivity, specificity and costs for the identification of patients with familial hypercholesterolemia (FH) in Spain. This platform includes the use of a DNA micro array, the detection of

  16. Obesity-induced sperm DNA methylation changes at satellite repeats are reprogrammed in rat offspring

    Directory of Open Access Journals (Sweden)

    Neil A Youngson

    2016-01-01

    Full Text Available There is now strong evidence that the paternal contribution to offspring phenotype at fertilisation is more than just DNA. However, the identity and mechanisms of this nongenetic inheritance are poorly understood. One of the more important questions in this research area is: do changes in sperm DNA methylation have phenotypic consequences for offspring? We have previously reported that offspring of obese male rats have altered glucose metabolism compared with controls and that this effect was inherited through nongenetic means. Here, we describe investigations into sperm DNA methylation in a new cohort using the same protocol. Male rats on a high-fat diet were 30% heavier than control-fed males at the time of mating (16-19 weeks old, n = 14/14. A small (0.25% increase in total 5-methyl-2Ͳ-deoxycytidine was detected in obese rat spermatozoa by liquid chromatography tandem mass spectrometry. Examination of the repetitive fraction of the genome with methyl-CpG binding domain protein-enriched genome sequencing (MBD-Seq and pyrosequencing revealed that retrotransposon DNA methylation states in spermatozoa were not affected by obesity, but methylation at satellite repeats throughout the genome was increased. However, examination of muscle, liver, and spermatozoa from male 27-week-old offspring from obese and control fathers (both groups from n = 8 fathers revealed that normal DNA methylation levels were restored during offspring development. Furthermore, no changes were found in three genomic imprints in obese rat spermatozoa. Our findings have implications for transgenerational epigenetic reprogramming. They suggest that postfertilization mechanisms exist for normalising some environmentally-induced DNA methylation changes in sperm cells.

  17. Clinical evaluation and mitochondrial DNA sequence analysis in three Chinese families with Leber's hereditary optic neuropathy

    International Nuclear Information System (INIS)

    Qian Yaping; Zhou Xiangtian; Hu Yongwu; Tong Yi; Li Ronghua; Lu Fan; Yang Huanming; Mo Junqin; Qu Jia; Guan Minxin

    2005-01-01

    We report here the clinical, genetic, and molecular characterization of three Chinese families (WZ4, WZ5, and WZ6) with Leber's hereditary optic neuropathy (LHON). Clinical and genetic evaluations revealed the variable severity and age-of-onset in visual impairment in these families. Penetrances of visual impairment in these Chinese families were 33.3%, 35.7%, and 35.5%, respectively, with an average 34.8%. Furthermore, the average age-at-onset in those Chinese families was 17, 20, and 18 years. In addition, the ratios between affected male and female matrilineal relatives in these Chinese families were 3:0, 1:1, and 1.2:1, respectively. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical G11778A mutation associated with LHON in many families. The fact that mtDNA of those pedigrees belonged to different haplogroups F1, D4, and M10 suggested that the G11778A mutation occurred sporadically and multiplied through evolution of the mtDNA in China. However, there was the absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in these Chinese families. The I187T mutation in the ND1, the S99A mutation in the A6, the V254I in CO3, and I58V in ND6 mutation, showing high evolutional conservation, may contribute to the phenotypic expression of the G11778A mutation in the WZ6 pedigree. By contrast, none of mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence in WZ4 and WZ5 pedigrees. Apparently, these variants do not have a potential modifying role in the development of visual impairment associated with G11778A mutation in those two families. Thus, nuclear modifier gene(s) or environmental factor(s) seem to account for the penetrance and expressivity of LHON in these three Chinese families carrying the G11778A mutation

  18. Familial colorectal cancer, can it be identified by microsatellite instability and chromosomal instability? - A case-control study

    DEFF Research Database (Denmark)

    Sunde, Lone; Bisgaard, Marie Luise; Soll-Johanning, Helle

    2009-01-01

    (Chromosome INstability=LOH (loss of heterozygosity) and/or DNA-aneuploidy (abnormal nuclear DNA contents)) could be used as predictors of familial CRC. Formalin-fixed tissue from 97 patients with CRC (29 patients with 2 or more affected first-degree relatives (="cases"), 29 matched CRC controls without......Colonoscopy is recommended for persons with a familial risk of colorectal cancer (CRC). A familial risk is identified by a family history with CRC and/or predisposing mutation(s). However, such information may not be available. We analysed whether MSI (MicroSatellite Instability) and/or CIN...... a family history, and 39 relatives to cases) were analysed for MSI and CIN. In this small case-control study, no significant differences in the frequencies of MSI and CIN were observed between cases with a family history and their controls without a family history. MSI+;CIN- was observed in 6/29 cases...

  19. Human circulating ribosomal DNA content significantly increases while circulating satellite III (1q12) content decreases under chronic occupational exposure to low-dose gamma- neutron and tritium beta-radiation.

    Science.gov (United States)

    Korzeneva, Inna B; Kostuyk, Svetlana V; Ershova, Elizaveta S; Skorodumova, Elena N; Zhuravleva, Veronika F; Pankratova, Galina V; Volkova, Irina V; Stepanova, Elena V; Porokhovnik, Lev N; Veiko, Natalia N

    A single exposure to ionizing radiation (IR) results in an elevated cell-free DNA (cfDNA) content in the blood plasma. In this case, the cfDNA concentration can be a marker of the cell death in the organism. However, a chronic exposure to a low-dose IR enhances both the endonuclease activity and titer of antibodies to DNA in blood plasma, resulting in a decrease of the total concentration of circulating cfDNA in exposed people. In this case, the total cfDNA concentration should not be considered as a marker of the cell death in an exposed body. We assumed that a pool of the cfDNA circulating in the exposed people contains DNA fragments, which are resistant to a double-strand break formation in the environment of the elevated plasma endonuclease activity, and can be accumulated in the blood plasma. In order to test this hypothesis, we studied the content of GC-rich sequences (69%GC) of the transcribed region of human ribosomal repeat (rDNA), as well as the content of AT-rich repeat (63%AT) of satellite III (1q12) in the cfDNA samples obtained from 285 individuals. We have found that a chronic exposure to gamma-neutron radiation (N=88) and tritium β-radiation (N=88) evokes an increase of the rDNA content (RrDNA index) and a decrease of the satellite III content (RsatIII index) in the circulating cfDNA as compared with the cfDNA of non-exposed people (N=109). Such index that simultaneously displays both the increase of rDNA content and decrease of satellite III content in the cfDNA (RrDNA/RsatIII) can be recommended as a marker of chronic processes in the body that involve the elevated cell death rate and/or increased blood plasma endonuclease activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Functions and regulation of the multitasking FANCM family of DNA motor proteins.

    Science.gov (United States)

    Xue, Xiaoyu; Sung, Patrick; Zhao, Xiaolan

    2015-09-01

    Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. FANCM supports genome duplication and repair under different circumstances and also functions in the ATR-mediated DNA damage checkpoint. Some of these roles are shared among lower eukaryotic family members. Human FANCM has been linked to Fanconi anemia, a syndrome characterized by cancer predisposition, developmental disorder, and bone marrow failure. Recent studies on human FANCM and its orthologs from other organisms have provided insights into their biological functions, regulation, and collaboration with other genome maintenance factors. This review summarizes the progress made, with the goal of providing an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes. © 2015 Xue et al.; Published by Cold Spring Harbor Laboratory Press.

  1. DNA methylation in a Scottish family multiply affected by bipolar disorder and major depressive disorder.

    Science.gov (United States)

    Walker, Rosie May; Christoforou, Andrea Nikie; McCartney, Daniel L; Morris, Stewart W; Kennedy, Nicholas A; Morten, Peter; Anderson, Susan Maguire; Torrance, Helen Scott; Macdonald, Alix; Sussmann, Jessika Elizabeth; Whalley, Heather Clare; Blackwood, Douglas H R; McIntosh, Andrew Mark; Porteous, David John; Evans, Kathryn Louise

    2016-01-01

    Bipolar disorder (BD) is a severe, familial psychiatric condition. Progress in understanding the aetiology of BD has been hampered by substantial phenotypic and genetic heterogeneity. We sought to mitigate these confounders by studying a multi-generational family multiply affected by BD and major depressive disorder (MDD), who carry an illness-linked haplotype on chromosome 4p. Within a family, aetiological heterogeneity is likely to be reduced, thus conferring greater power to detect illness-related changes. As accumulating evidence suggests that altered DNA methylation confers risk for BD and MDD, we compared genome-wide methylation between (i) affected carriers of the linked haplotype (ALH) and married-in controls (MIs), (ii) well unaffected haplotype carriers (ULH) and MI, (iii) ALH and ULH and (iv) all haplotype carriers (LH) and MI. Nominally significant differences in DNA methylation were observed in all comparisons, with differences withstanding correction for multiple testing when the ALH or LH group was compared to the MIs. In both comparisons, we observed increased methylation at a locus in FANCI, which was accompanied by increased FANCI expression in the ALH group. FANCI is part of the Fanconi anaemia complementation (FANC) gene family, which are mutated in Fanconi anaemia and participate in DNA repair. Interestingly, several FANC genes have been implicated in psychiatric disorders. Regional analyses of methylation differences identified loci implicated in psychiatric illness by genome-wide association studies, including CACNB2 and the major histocompatibility complex. Gene ontology analysis revealed enrichment for methylation differences in neurologically relevant genes. Our results highlight altered DNA methylation as a potential mechanism by which the linked haplotype might confer risk for mood disorders. Differences in the phenotypic outcome of haplotype carriers might, in part, arise from additional changes in DNA methylation that converge on

  2. Following DNA chain extension and protein conformational changes in crystals of a Y-family DNA polymerase via Raman crystallography.

    Science.gov (United States)

    Espinoza-Herrera, Shirly J; Gaur, Vineet; Suo, Zucai; Carey, Paul R

    2013-07-23

    Y-Family DNA polymerases are known to bypass DNA lesions in vitro and in vivo. Sulfolobus solfataricus DNA polymerase (Dpo4) was chosen as a model Y-family enzyme for investigating the mechanism of DNA synthesis in single crystals. Crystals of Dpo4 in complexes with DNA (the binary complex) in the presence or absence of an incoming nucleotide were analyzed by Raman microscopy. (13)C- and (15)N-labeled d*CTP, or unlabeled dCTP, were soaked into the binary crystals with G as the templating base. In the presence of the catalytic metal ions, Mg(2+) and Mn(2+), nucleotide incorporation was detected by the disappearance of the triphosphate band of dCTP and the retention of *C modes in the crystal following soaking out of noncovalently bound C(or *C)TP. The addition of the second coded base, thymine, was observed by adding cognate dTTP to the crystal following a single d*CTP addition. Adding these two bases caused visible damage to the crystal that was possibly caused by protein and/or DNA conformational change within the crystal. When d*CTP is soaked into the Dpo4 crystal in the absence of Mn(2+) or Mg(2+), the primer extension reaction did not occur; instead, a ternary protein·template·d*CTP complex was formed. In the Raman difference spectra of both binary and ternary complexes, in addition to the modes of d(*C)CTP, features caused by ring modes from the template/primer bases being perturbed and from the DNA backbone appear, as well as features from perturbed peptide and amino acid side chain modes. These effects are more pronounced in the ternary complex than in the binary complex. Using standardized Raman intensities followed as a function of time, the C(*C)TP population in the crystal was maximal at ∼20 min. These remained unchanged in the ternary complex but declined in the binary complexes as chain incorporation occurred.

  3. Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome.

    Science.gov (United States)

    Waye, J S; Willard, H F

    1986-09-01

    The centromeric regions of all human chromosomes are characterized by distinct subsets of a diverse tandemly repeated DNA family, alpha satellite. On human chromosome 17, the predominant form of alpha satellite is a 2.7-kilobase-pair higher-order repeat unit consisting of 16 alphoid monomers. We present the complete nucleotide sequence of the 16-monomer repeat, which is present in 500 to 1,000 copies per chromosome 17, as well as that of a less abundant 15-monomer repeat, also from chromosome 17. These repeat units were approximately 98% identical in sequence, differing by the exclusion of precisely 1 monomer from the 15-monomer repeat. Homologous unequal crossing-over is suggested as a probable mechanism by which the different repeat lengths on chromosome 17 were generated, and the putative site of such a recombination event is identified. The monomer organization of the chromosome 17 higher-order repeat unit is based, in part, on tandemly repeated pentamers. A similar pentameric suborganization has been previously demonstrated for alpha satellite of the human X chromosome. Despite the organizational similarities, substantial sequence divergence distinguishes these subsets. Hybridization experiments indicate that the chromosome 17 and X subsets are more similar to each other than to the subsets found on several other human chromosomes. We suggest that the chromosome 17 and X alpha satellite subsets may be related components of a larger alphoid subfamily which have evolved from a common ancestral repeat into the contemporary chromosome-specific subsets.

  4. DNA analyses of the remains of the Prince Branciforte Barresi family.

    Science.gov (United States)

    Rickards, O; Martínez-Labarga, C; Favaro, M; Frezza, D; Mallegni, F

    2001-01-01

    The five skeletons found buried in the church of Militello di Catania, Sicily, were tentatively identified by morphological analysis and historical reports as the remains of Prince Branciforte Barresi, two of his children, his brother and another juvenile member of the family (sixteenth and seventeenth centuries). In order to attempt to clarify the degree of relationships of the five skeletons, sex testing and mitochondrial DNA (mtDNA) sequence analysis of the hypervariable segments I and II (HV1 and HV2) of control region were performed. Moreover, the 9 bp-deletion marker of region V (COII/tRNAlys) was examined. Molecular genetic analyses were consistent with historical expectations, although they did not directly demonstrate that these are in fact the remains of the Prince and his relatives, due to the impossibility of obtaining DNA from living maternal relatives of the Prince.

  5. Cladistical Analysis of the Jovian and Saturnian Satellite Systems

    Science.gov (United States)

    Holt, Timothy. R.; Brown, Adrian. J.; Nesvorný, David; Horner, Jonathan; Carter, Brad

    2018-06-01

    Jupiter and Saturn each have complex systems of satellites and rings. These satellites can be classified into dynamical groups, implying similar formation scenarios. Recently, a larger number of additional irregular satellites have been discovered around both gas giants that have yet to be classified. The aim of this paper is to examine the relationships between the satellites and rings of the gas giants, using an analytical technique called cladistics. Cladistics is traditionally used to examine relationships between living organisms, the “tree of life.” In this work, we perform the first cladistical study of objects in a planetary science context. Our method uses the orbital, physical, and compositional characteristics of satellites to classify the objects in the Jovian and Saturnian systems. We find that the major relationships between the satellites in the two systems, such as families, as presented in previous studies, are broadly preserved. In addition, based on our analysis of the Jovian system, we identify a new retrograde irregular family, the Iocaste family, and suggest that the Phoebe family of the Saturnian system can be further divided into two subfamilies. We also propose that the Saturnian irregular families be renamed, to be consistent with the convention used in Jovian families. Using cladistics, we are also able to assign the new unclassified irregular satellites into families. Taken together, the results of this study demonstrate the potential use of the cladistical technique in the investigation of relationships between orbital bodies.

  6. Lay perceptions of predictive testing for diabetes based on DNA test results versus family history assessment: a focus group study.

    Science.gov (United States)

    Wijdenes-Pijl, Miranda; Dondorp, Wybo J; Timmermans, Danielle Rm; Cornel, Martina C; Henneman, Lidewij

    2011-07-05

    This study assessed lay perceptions of issues related to predictive genetic testing for multifactorial diseases. These perceived issues may differ from the "classic" issues, e.g. autonomy, discrimination, and psychological harm that are considered important in predictive testing for monogenic disorders. In this study, type 2 diabetes was used as an example, and perceptions with regard to predictive testing based on DNA test results and family history assessment were compared. Eight focus group interviews were held with 45 individuals aged 35-70 years with (n = 3) and without (n = 1) a family history of diabetes, mixed groups of these two (n = 2), and diabetes patients (n = 2). All interviews were transcribed and analysed using Atlas-ti. Most participants believed in the ability of a predictive test to identify people at risk for diabetes and to motivate preventive behaviour. Different reasons underlying motivation were considered when comparing DNA test results and a family history risk assessment. A perceived drawback of DNA testing was that diabetes was considered not severe enough for this type of risk assessment. In addition, diabetes family history assessment was not considered useful by some participants, since there are also other risk factors involved, not everyone has a diabetes family history or knows their family history, and it might have a negative influence on family relations. Respect for autonomy of individuals was emphasized more with regard to DNA testing than family history assessment. Other issues such as psychological harm, discrimination, and privacy were only briefly mentioned for both tests. The results suggest that most participants believe a predictive genetic test could be used in the prevention of multifactorial disorders, such as diabetes, but indicate points to consider before both these tests are applied. These considerations differ with regard to the method of assessment (DNA test or obtaining family history) and also differ from

  7. Backbone assignment of the little finger domain of a Y-family DNA polymerase.

    Science.gov (United States)

    Ma, Dejian; Fowler, Jason D; Suo, Zucai

    2011-10-01

    Sulfolobus solfataricus DNA polymerase IV (Dpo4), a prototype Y-family DNA polymerase, contains a unique little finger domain besides a catalytic core. Here, we report the chemical shift assignments for the backbone nitrogens, α and β carbons, and amide protons of the little finger domain of Dpo4. This work and our published backbone assignment for the catalytic core provide the basis for investigating the conformational dynamics of Dpo4 during catalysis using solution NMR spectroscopy.

  8. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families.

    Science.gov (United States)

    Lehti-Shiu, Melissa D; Panchy, Nicholas; Wang, Peipei; Uygun, Sahra; Shiu, Shin-Han

    2017-01-01

    Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Using DNA fingerprints to infer familial relationships within NHANES III households.

    Science.gov (United States)

    Katki, Hormuzd A; Sanders, Christopher L; Graubard, Barry I; Bergen, Andrew W

    2010-06-01

    Developing, targeting, and evaluating genomic strategies for population-based disease prevention require population-based data. In response to this urgent need, genotyping has been conducted within the Third National Health and Nutrition Examination (NHANES III), the nationally-representative household-interview health survey in the U.S. However, before these genetic analyses can occur, family relationships within households must be accurately ascertained. Unfortunately, reported family relationships within NHANES III households based on questionnaire data are incomplete and inconclusive with regards to actual biological relatedness of family members. We inferred family relationships within households using DNA fingerprints (Identifiler(R)) that contain the DNA loci used by law enforcement agencies for forensic identification of individuals. However, performance of these loci for relationship inference is not well understood. We evaluated two competing statistical methods for relationship inference on pairs of household members: an exact likelihood ratio relying on allele frequencies to an Identical By State (IBS) likelihood ratio that only requires matching alleles. We modified these methods to account for genotyping errors and population substructure. The two methods usually agree on the rankings of the most likely relationships. However, the IBS method underestimates the likelihood ratio by not accounting for the informativeness of matching rare alleles. The likelihood ratio is sensitive to estimates of population substructure, and parent-child relationships are sensitive to the specified genotyping error rate. These loci were unable to distinguish second-degree relationships and cousins from being unrelated. The genetic data is also useful for verifying reported relationships and identifying data quality issues. An important by-product is the first explicitly nationally-representative estimates of allele frequencies at these ubiquitous forensic loci.

  10. Uncovering the evolutionary history of neo-XY sex chromosomes in the grasshopper Ronderosia bergii (Orthoptera, Melanoplinae) through satellite DNA analysis.

    Science.gov (United States)

    Palacios-Gimenez, Octavio M; Milani, Diogo; Lemos, Bernardo; Castillo, Elio R; Martí, Dardo A; Ramos, Erica; Martins, Cesar; Cabral-de-Mello, Diogo C

    2018-01-08

    Neo-sex chromosome systems arose independently multiple times in evolution, presenting the remarkable characteristic of repetitive DNAs accumulation. Among grasshoppers, occurrence of neo-XY was repeatedly noticed in Melanoplinae. Here we analyzed the most abundant tandem repeats of R. bergii (2n = 22, neo-XY♂) using deep Illumina sequencing and graph-based clustering in order to address the neo-sex chromosomes evolution. The analyses revealed ten families of satDNAs comprising about ~1% of the male genome, which occupied mainly C-positive regions of autosomes. Regarding the sex chromosomes, satDNAs were recorded within centromeric or interstitial regions of the neo-X chromosome and four satDNAs occurred in the neo-Y, two of them being exclusive (Rber248 and Rber299). Using a combination of probes we uncovered five well-defined cytological variants for neo-Y, originated by multiple paracentric inversions and satDNA amplification, besides fragmented neo-Y. These neo-Y variants were distinct in frequency between embryos and adult males. The genomic data together with cytogenetic mapping enabled us to better understand the neo-sex chromosome dynamics in grasshoppers, reinforcing differentiation of neo-X and neo-Y and revealing the occurrence of multiple additional rearrangements involved in the neo-Y evolution of R. bergii. We discussed the possible causes that led to differences in frequency for the neo-Y variants between embryos and adults. Finally we hypothesize about the role of DNA satellites in R. bergii as well as putative historical events involved in the evolution of the R. bergii neo-XY.

  11. The Trypanosoma cruzi satellite DNA OligoC-TesT and Trypanosoma cruzi kinetoplast DNA OligoC-TesT for diagnosis of Chagas disease: a multi-cohort comparative evaluation study.

    Directory of Open Access Journals (Sweden)

    Koen De Winne

    Full Text Available BACKGROUND: The Trypanosoma cruzi satellite DNA (satDNA OligoC-TesT is a standardised PCR format for diagnosis of Chagas disease. The sensitivity of the test is lower for discrete typing unit (DTU TcI than for TcII-VI and the test has not been evaluated in chronic Chagas disease patients. METHODOLOGY/PRINCIPAL FINDINGS: We developed a new prototype of the OligoC-TesT based on kinetoplast DNA (kDNA detection. We evaluated the satDNA and kDNA OligoC-TesTs in a multi-cohort study with 187 chronic Chagas patients and 88 healthy endemic controls recruited in Argentina, Chile and Spain and 26 diseased non-endemic controls from D.R. Congo and Sudan. All specimens were tested in duplicate. The overall specificity in the controls was 99.1% (95% CI 95.2%-99.8% for the satDNA OligoC-TesT and 97.4% (95% CI 92.6%-99.1% for the kDNA OligoC-TesT. The overall sensitivity in the patients was 67.9% (95% CI 60.9%-74.2% for the satDNA OligoC-TesT and 79.1% (95% CI 72.8%-84.4% for the kDNA OligoC-Test. CONCLUSIONS/SIGNIFICANCE: Specificities of the two T. cruzi OligoC-TesT prototypes are high on non-endemic and endemic controls. Sensitivities are moderate but significantly (p = 0.0004 higher for the kDNA OligoC-TesT compared to the satDNA OligoC-TesT.

  12. The Trypanosoma cruzi Satellite DNA OligoC-TesT and Trypanosoma cruzi Kinetoplast DNA OligoC-TesT for Diagnosis of Chagas Disease: A Multi-cohort Comparative Evaluation Study

    Science.gov (United States)

    De Winne, Koen; Büscher, Philippe; Luquetti, Alejandro O.; Tavares, Suelene B. N.; Oliveira, Rodrigo A.; Solari, Aldo; Zulantay, Ines; Apt, Werner; Diosque, Patricio; Monje Rumi, Mercedes; Gironès, Nuria; Fresno, Manuel; Lopez-Velez, Rogelio; Perez-Molina, José A.; Monge-Maillo, Begoña; Garcia, Lineth; Deborggraeve, Stijn

    2014-01-01

    Background The Trypanosoma cruzi satellite DNA (satDNA) OligoC-TesT is a standardised PCR format for diagnosis of Chagas disease. The sensitivity of the test is lower for discrete typing unit (DTU) TcI than for TcII-VI and the test has not been evaluated in chronic Chagas disease patients. Methodology/Principal Findings We developed a new prototype of the OligoC-TesT based on kinetoplast DNA (kDNA) detection. We evaluated the satDNA and kDNA OligoC-TesTs in a multi-cohort study with 187 chronic Chagas patients and 88 healthy endemic controls recruited in Argentina, Chile and Spain and 26 diseased non-endemic controls from D.R. Congo and Sudan. All specimens were tested in duplicate. The overall specificity in the controls was 99.1% (95% CI 95.2%–99.8%) for the satDNA OligoC-TesT and 97.4% (95% CI 92.6%–99.1%) for the kDNA OligoC-TesT. The overall sensitivity in the patients was 67.9% (95% CI 60.9%–74.2%) for the satDNA OligoC-TesT and 79.1% (95% CI 72.8%–84.4%) for the kDNA OligoC-Test. Conclusions/Significance Specificities of the two T. cruzi OligoC-TesT prototypes are high on non-endemic and endemic controls. Sensitivities are moderate but significantly (p = 0.0004) higher for the kDNA OligoC-TesT compared to the satDNA OligoC-TesT. PMID:24392177

  13. Lay perceptions of predictive testing for diabetes based on DNA test results versus family history assessment: a focus group study

    Directory of Open Access Journals (Sweden)

    Cornel Martina C

    2011-07-01

    Full Text Available Abstract Background This study assessed lay perceptions of issues related to predictive genetic testing for multifactorial diseases. These perceived issues may differ from the "classic" issues, e.g. autonomy, discrimination, and psychological harm that are considered important in predictive testing for monogenic disorders. In this study, type 2 diabetes was used as an example, and perceptions with regard to predictive testing based on DNA test results and family history assessment were compared. Methods Eight focus group interviews were held with 45 individuals aged 35-70 years with (n = 3 and without (n = 1 a family history of diabetes, mixed groups of these two (n = 2, and diabetes patients (n = 2. All interviews were transcribed and analysed using Atlas-ti. Results Most participants believed in the ability of a predictive test to identify people at risk for diabetes and to motivate preventive behaviour. Different reasons underlying motivation were considered when comparing DNA test results and a family history risk assessment. A perceived drawback of DNA testing was that diabetes was considered not severe enough for this type of risk assessment. In addition, diabetes family history assessment was not considered useful by some participants, since there are also other risk factors involved, not everyone has a diabetes family history or knows their family history, and it might have a negative influence on family relations. Respect for autonomy of individuals was emphasized more with regard to DNA testing than family history assessment. Other issues such as psychological harm, discrimination, and privacy were only briefly mentioned for both tests. Conclusion The results suggest that most participants believe a predictive genetic test could be used in the prevention of multifactorial disorders, such as diabetes, but indicate points to consider before both these tests are applied. These considerations differ with regard to the method of assessment

  14. Satellite outreach in Asia and the Pacific.

    Science.gov (United States)

    1977-01-01

    Communication by satellite is rapidly changing information exchange in Asia, especially for rural areas. The integrated education planned for satellite networks includes family planning as part of general development. A series of conferences has already been held successfully via satellite for family planning associations who are members of the East and Southeast Asia and Oceania Region of the International Planned Parenthood Federation. These included a conference on nursing training. In India the Satellite Instructional Television Experiment (SITE) made history during its 1-year trial. By 1981 the entire nation is to be linked by satellite. The question is whether the television education will truly change rural life or whether it will become merely a diversion. In Indonesia, satellites were chosen as the fastest way to obtain interisland communication. The Domsat system links the entire 13,000-island archipelago and is already being used for emergency communications. The system, which was developed in 1 1/2 years by the Hughes Aircraft Corporation will be used for teaching basic health, hygiene, and family planning. It will be several years before Domsat is fully operational, but it bears watching.

  15. De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications.

    Science.gov (United States)

    Katona, Robert L

    2015-02-01

    Mammalian artificial chromosomes (MACs) are non-integrating, autonomously replicating natural chromosome-based vectors that may carry a vast amount of genetic material, which in turn enable potentially prolonged, safe, and regulated therapeutic transgene expression and render MACs as attractive genetic vectors for "gene replacement" or for controlling differentiation pathways in target cells. Satellite-DNA-based artificial chromosomes (SATACs) can be made by induced de novo chromosome formation in cells of different mammalian and plant species. These artificially generated accessory chromosomes are composed of predictable DNA sequences, and they contain defined genetic information. SATACs have already passed a number of obstacles crucial to their further development as gene therapy vectors, including large-scale purification, transfer of purified artificial chromosomes into different cells and embryos, generation of transgenic animals and germline transmission with purified SATACs, and the tissue-specific expression of a therapeutic gene from an artificial chromosome in the milk of transgenic animals. SATACs could be used in cell therapy protocols. For these methods, the most versatile target cell would be one that was pluripotent and self-renewing to address multiple disease target cell types, thus making multilineage stem cells, such as adult derived early progenitor cells and embryonic stem cells, as attractive universal host cells.

  16. Structural insight into dynamic bypass of the major cisplatin-DNA adduct by Y-family polymerase Dpo4

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jimson H.Y.; Brown, Jessica A.; Suo, Zucai; Blum, Paul; Nohmi, Takehiko; Ling, Hong (OSU); (NINA-Japan); (UNL); (UWO)

    2010-08-23

    Y-family DNA polymerases bypass Pt-GG, the cisplatin-DNA double-base lesion, contributing to the cisplatin resistance in tumour cells. To reveal the mechanism, we determined three structures of the Y-family DNA polymerase, Dpo4, in complex with Pt-GG DNA. The crystallographic snapshots show three stages of lesion bypass: the nucleotide insertions opposite the 3{prime}G (first insertion) and 5{prime}G (second insertion) of Pt-GG, and the primer extension beyond the lesion site. We observed a dynamic process, in which the lesion was converted from an open and angular conformation at the first insertion to a depressed and nearly parallel conformation at the subsequent reaction stages to fit into the active site of Dpo4. The DNA translocation-coupled conformational change may account for additional inhibition on the second insertion reaction. The structures illustrate that Pt-GG disturbs the replicating base pair in the active site, which reduces the catalytic efficiency and fidelity. The in vivo relevance of Dpo4-mediated Pt-GG bypass was addressed by a dpo-4 knockout strain of Sulfolobus solfataricus, which exhibits enhanced sensitivity to cisplatin and proteomic alterations consistent with genomic stress.

  17. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype.

    Science.gov (United States)

    Estabrooks, L L; Lamb, A N; Kirkman, H N; Callanan, N P; Rao, K W

    1992-11-01

    We report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. Our families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in affected individuals, although dissimilar, were sufficient to encourage a search for a deletion of chromosome 4p. By Southern blot analysis and fluorescence in situ hybridization, a deletion of material mapping approximately 150 kb from chromosome 4pter was discovered. This deletion is notable because it does not result in the Wolf-Hirschhorn syndrome and can result in an apparently normal phenotype. We speculate that homology between subterminal repeat sequences on 4p and sequences on the acrocentric short arms may explain the origin of the rearrangement and that position effect may play a role in the expression of the abnormal phenotype.

  18. Mitochondrial DNA mutation load in a family with the m.8344A>G point mutation and lipomas

    DEFF Research Database (Denmark)

    Jeppesen, Tina Dysgaard; Al-Hashimi, Noor; Duno, Morten

    2017-01-01

    Studies have shown that difference in mtDNA mutation load among tissues is a result of postnatal modification. We present five family members with the m.8344A>G with variable phenotypes but uniform intrapersonal distribution of mutation load, indicating that there is no postnatal modification of mt......DNA mutation load in this genotype....

  19. Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, K.; Mandáková, T.; Bureš, P.; Neumann, Pavel; Leitch, I. J.; Koblížková, Andrea; Macas, Jiří; Lysák, M.

    2011-01-01

    Roč. 107, č. 2 (2011), s. 255-268 ISSN 0305-7364 R&D Projects: GA ČR GA521/07/0284; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50510513 Keywords : Fritillaria * Liliaceae * repetitive DNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.030, year: 2011

  20. Methylation patterns of repetitive DNA sequences in germ cells of Mus musculus.

    Science.gov (United States)

    Sanford, J; Forrester, L; Chapman, V; Chandley, A; Hastie, N

    1984-03-26

    The major and the minor satellite sequences of Mus musculus were undermethylated in both sperm and oocyte DNAs relative to the amount of undermethylation observed in adult somatic tissue DNA. This hypomethylation was specific for satellite sequences in sperm DNA. Dispersed repetitive and low copy sequences show a high degree of methylation in sperm DNA; however, a dispersed repetitive sequence was undermethylated in oocyte DNA. This finding suggests a difference in the amount of total genomic DNA methylation between sperm and oocyte DNA. The methylation levels of the minor satellite sequences did not change during spermiogenesis, and were not associated with the onset of meiosis or a specific stage in sperm development.

  1. Targeting and tracing of specific DNA sequences with dTALEs in living cells

    Science.gov (United States)

    Thanisch, Katharina; Schneider, Katrin; Morbitzer, Robert; Solovei, Irina; Lahaye, Thomas; Bultmann, Sebastian; Leonhardt, Heinrich

    2014-01-01

    Epigenetic regulation of gene expression involves, besides DNA and histone modifications, the relative positioning of DNA sequences within the nucleus. To trace specific DNA sequences in living cells, we used programmable sequence-specific DNA binding of designer transcription activator-like effectors (dTALEs). We designed a recombinant dTALE (msTALE) with variable repeat domains to specifically bind a 19-bp target sequence of major satellite DNA. The msTALE was fused with green fluorescent protein (GFP) and stably expressed in mouse embryonic stem cells. Hybridization with a major satellite probe (3D-fluorescent in situ hybridization) and co-staining for known cellular structures confirmed in vivo binding of the GFP-msTALE to major satellite DNA present at nuclear chromocenters. Dual tracing of major satellite DNA and the replication machinery throughout S-phase showed co-localization during mid to late S-phase, directly demonstrating the late replication timing of major satellite DNA. Fluorescence bleaching experiments indicated a relatively stable but still dynamic binding, with mean residence times in the range of minutes. Fluorescently labeled dTALEs open new perspectives to target and trace DNA sequences and to monitor dynamic changes in subnuclear positioning as well as interactions with functional nuclear structures during cell cycle progression and cellular differentiation. PMID:24371265

  2. Targeting and tracing of specific DNA sequences with dTALEs in living cells.

    Science.gov (United States)

    Thanisch, Katharina; Schneider, Katrin; Morbitzer, Robert; Solovei, Irina; Lahaye, Thomas; Bultmann, Sebastian; Leonhardt, Heinrich

    2014-04-01

    Epigenetic regulation of gene expression involves, besides DNA and histone modifications, the relative positioning of DNA sequences within the nucleus. To trace specific DNA sequences in living cells, we used programmable sequence-specific DNA binding of designer transcription activator-like effectors (dTALEs). We designed a recombinant dTALE (msTALE) with variable repeat domains to specifically bind a 19-bp target sequence of major satellite DNA. The msTALE was fused with green fluorescent protein (GFP) and stably expressed in mouse embryonic stem cells. Hybridization with a major satellite probe (3D-fluorescent in situ hybridization) and co-staining for known cellular structures confirmed in vivo binding of the GFP-msTALE to major satellite DNA present at nuclear chromocenters. Dual tracing of major satellite DNA and the replication machinery throughout S-phase showed co-localization during mid to late S-phase, directly demonstrating the late replication timing of major satellite DNA. Fluorescence bleaching experiments indicated a relatively stable but still dynamic binding, with mean residence times in the range of minutes. Fluorescently labeled dTALEs open new perspectives to target and trace DNA sequences and to monitor dynamic changes in subnuclear positioning as well as interactions with functional nuclear structures during cell cycle progression and cellular differentiation.

  3. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    International Nuclear Information System (INIS)

    Tee, Thiam-Tsui; Cheah, Yew-Hoong; Meenakshii, Nallappan; Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie

    2012-01-01

    Highlights: ► We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. ► Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. ► Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. ► DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. ► DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X L expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  4. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tee, Thiam-Tsui, E-mail: thiamtsu@yahoo.com [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Cheah, Yew-Hoong [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur (Malaysia); Meenakshii, Nallappan [Biology Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  5. The Toll-like receptor gene family is integrated into human DNA damage and p53 networks.

    Directory of Open Access Journals (Sweden)

    Daniel Menendez

    2011-03-01

    Full Text Available In recent years the functions that the p53 tumor suppressor plays in human biology have been greatly extended beyond "guardian of the genome." Our studies of promoter response element sequences targeted by the p53 master regulatory transcription factor suggest a general role for this DNA damage and stress-responsive regulator in the control of human Toll-like receptor (TLR gene expression. The TLR gene family mediates innate immunity to a wide variety of pathogenic threats through recognition of conserved pathogen-associated molecular motifs. Using primary human immune cells, we have examined expression of the entire TLR gene family following exposure to anti-cancer agents that induce the p53 network. Expression of all TLR genes, TLR1 to TLR10, in blood lymphocytes and alveolar macrophages from healthy volunteers can be induced by DNA metabolic stressors. However, there is considerable inter-individual variability. Most of the TLR genes respond to p53 via canonical as well as noncanonical promoter binding sites. Importantly, the integration of the TLR gene family into the p53 network is unique to primates, a recurrent theme raised for other gene families in our previous studies. Furthermore, a polymorphism in a TLR8 response element provides the first human example of a p53 target sequence specifically responsible for endogenous gene induction. These findings-demonstrating that the human innate immune system, including downstream induction of cytokines, can be modulated by DNA metabolic stress-have many implications for health and disease, as well as for understanding the evolution of damage and p53 responsive networks.

  6. New insights into Trypanosoma cruzi evolution, genotyping and molecular diagnostics from satellite DNA sequence analysis.

    Directory of Open Access Journals (Sweden)

    Juan C Ramírez

    2017-12-01

    Full Text Available Trypanosoma cruzi has been subdivided into seven Discrete Typing Units (DTUs, TcI-TcVI and Tcbat. Two major evolutionary models have been proposed to explain the origin of hybrid lineages, but while it is widely accepted that TcV and TcVI are the result of genetic exchange between TcII and TcIII strains, the origin of TcIII and TcIV is still a matter of debate. T. cruzi satellite DNA (SatDNA, comprised of 195 bp units organized in tandem repeats, from both TcV and TcVI stocks were found to have SatDNA copies type TcI and TcII; whereas contradictory results were observed for TcIII stocks and no TcIV sequence has been analyzed yet. Herein, we have gone deeper into this matter analyzing 335 distinct SatDNA sequences from 19 T. cruzi stocks representative of DTUs TcI-TcVI for phylogenetic inference. Bayesian phylogenetic tree showed that all sequences were grouped in three major clusters, which corresponded to sequences from DTUs TcI/III, TcII and TcIV; whereas TcV and TcVI stocks had two sets of sequences distributed into TcI/III and TcII clusters. As expected, the lowest genetic distances were found between TcI and TcIII, and between TcV and TcVI sequences; whereas the highest ones were observed between TcII and TcI/III, and among TcIV sequences and those from the remaining DTUs. In addition, signature patterns associated to specific T. cruzi lineages were identified and new primers that improved SatDNA-based qPCR sensitivity were designed. Our findings support the theory that TcIII is not the result of a hybridization event between TcI and TcII, and that TcIV had an independent origin from the other DTUs, contributing to clarifying the evolutionary history of T. cruzi lineages. Moreover, this work opens the possibility of typing samples from Chagas disease patients with low parasitic loads and improving molecular diagnostic methods of T. cruzi infection based on SatDNA sequence amplification.

  7. New insights into Trypanosoma cruzi evolution, genotyping and molecular diagnostics from satellite DNA sequence analysis.

    Science.gov (United States)

    Ramírez, Juan C; Torres, Carolina; Curto, María de Los A; Schijman, Alejandro G

    2017-12-01

    Trypanosoma cruzi has been subdivided into seven Discrete Typing Units (DTUs), TcI-TcVI and Tcbat. Two major evolutionary models have been proposed to explain the origin of hybrid lineages, but while it is widely accepted that TcV and TcVI are the result of genetic exchange between TcII and TcIII strains, the origin of TcIII and TcIV is still a matter of debate. T. cruzi satellite DNA (SatDNA), comprised of 195 bp units organized in tandem repeats, from both TcV and TcVI stocks were found to have SatDNA copies type TcI and TcII; whereas contradictory results were observed for TcIII stocks and no TcIV sequence has been analyzed yet. Herein, we have gone deeper into this matter analyzing 335 distinct SatDNA sequences from 19 T. cruzi stocks representative of DTUs TcI-TcVI for phylogenetic inference. Bayesian phylogenetic tree showed that all sequences were grouped in three major clusters, which corresponded to sequences from DTUs TcI/III, TcII and TcIV; whereas TcV and TcVI stocks had two sets of sequences distributed into TcI/III and TcII clusters. As expected, the lowest genetic distances were found between TcI and TcIII, and between TcV and TcVI sequences; whereas the highest ones were observed between TcII and TcI/III, and among TcIV sequences and those from the remaining DTUs. In addition, signature patterns associated to specific T. cruzi lineages were identified and new primers that improved SatDNA-based qPCR sensitivity were designed. Our findings support the theory that TcIII is not the result of a hybridization event between TcI and TcII, and that TcIV had an independent origin from the other DTUs, contributing to clarifying the evolutionary history of T. cruzi lineages. Moreover, this work opens the possibility of typing samples from Chagas disease patients with low parasitic loads and improving molecular diagnostic methods of T. cruzi infection based on SatDNA sequence amplification.

  8. Mechanistic Investigation of the Bypass of a Bulky Aromatic DNA Adduct Catalyzed by a Y-family DNA Polymerase

    Science.gov (United States)

    Gadkari, Varun V.; Tokarsky, E. John; Malik, Chanchal K.; Basu, Ashis K.; Suo, Zucai

    2014-01-01

    3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2’-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dGC8-N-ABA is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dGC8-N-ABA on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dGC8-N-ABA lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dGC8-N-ABA lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dGC8-N-ABA bypass catalyzed by Dpo4. PMID:25048879

  9. Transcription of tandemly repetitive DNA: functional roles.

    Science.gov (United States)

    Biscotti, Maria Assunta; Canapa, Adriana; Forconi, Mariko; Olmo, Ettore; Barucca, Marco

    2015-09-01

    A considerable fraction of the eukaryotic genome is made up of satellite DNA constituted of tandemly repeated sequences. These elements are mainly located at centromeres, pericentromeres, and telomeres and are major components of constitutive heterochromatin. Although originally satellite DNA was thought silent and inert, an increasing number of studies are providing evidence on its transcriptional activity supporting, on the contrary, an unexpected dynamicity. This review summarizes the multiple structural roles of satellite noncoding RNAs at chromosome level. Indeed, satellite noncoding RNAs play a role in the establishment of a heterochromatic state at centromere and telomere. These highly condensed structures are indispensable to preserve chromosome integrity and genome stability, preventing recombination events, and ensuring the correct chromosome pairing and segregation. Moreover, these RNA molecules seem to be involved also in maintaining centromere identity and in elongation, capping, and replication of telomere. Finally, the abnormal variation of centromeric and pericentromeric DNA transcription across major eukaryotic lineages in stress condition and disease has evidenced the critical role that these transcripts may play and the potentially dire consequences for the organism.

  10. Genome-wide identification and comparative analysis of cytosine-5 DNA methyltransferases and demethylase families in wild and cultivated peanut

    Directory of Open Access Journals (Sweden)

    Pengfei eWang

    2016-02-01

    Full Text Available AbstractDNA methylation plays important roles in genome protection, regulation of gene expression and was associated with plants development. Plant DNA methylation pattern was mediated by cytosine-5 DNA methyltransferases and demethylase. Although the genomes of AA and BB wild peanuts have been fully sequence, these two gene families have not been studied. In this study we report the identification and analysis of putative cytosine-5 DNA methyltransferases (C5-MTases and demethylase in AA and BB wild peanuts. Cytosine-5 DNA methyltransferases in AA and BB wild peanuts could be classified in known MET, CMT and DRM2 groups based on their domain organization. This result was supported by the gene and protein structural characteristics and phylogenetic analysis. We found that some wild peanut DRM2 numbers didn’t contain UBA domain which was different from other plants such as Arabidopsis, maize, soybean. Five DNA demethylase were found in AA genome and five in BB genome. The selective pressure analysis showed that wild peanut C5-MTases gene mainly underwent purifying selection but many positive selection sites can be detected. Conversely, DNA demethylase genes mainly underwent positive selection during evolution. Additionally, the expression dynamic of cytosine-5 DNA methyltransferases and demethylase genes in different cultivated peanut tissues were analyzed. Expression result showed that cold, heat or drought stress could influence the expression level of C5-MTases and DNA demethylase genes in cultivated peanut. These results are useful for better understanding the complexity of these two gene families, and will facilitate epigenetic studies in peanut.

  11. CSF studies facilitate DNA diagnosis in familial Alzheimer's disease due to a presenilin-1 mutation

    NARCIS (Netherlands)

    de Bot, Susanne T; Kremer, H P H; Dooijes, Dennis; Verbeek, Marcel M

    2009-01-01

    In sporadic Alzheimer's disease (AD), cerebrospinal fluid (CSF) analysis is becoming increasingly relevant to establish an early diagnosis. We present a case of familial AD due to a presenilin-1 mutation in which CSF studies suggested appropriate DNA diagnostics. A 38 year old Dutch man presented

  12. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae).

    Science.gov (United States)

    Mahelka, Václav; Kopecky, David; Baum, Bernard R

    2013-09-01

    We employed sequencing of clones and in situ hybridization (genomic and fluorescent in situ hybridization [GISH and rDNA-FISH]) to characterize both the sequence variation and genomic organization of 45S (herein ITS1-5.8S-ITS2 region) and 5S (5S gene + nontranscribed spacer) ribosomal DNA (rDNA) families in the allohexaploid grass Thinopyrum intermedium. Both rDNA families are organized within several rDNA loci within all three subgenomes of the allohexaploid species. Both families have undergone different patterns of evolution. The 45S rDNA family has evolved in a concerted manner: internal transcribed spacer (ITS) sequences residing within the arrays of two subgenomes out of three got homogenized toward one major ribotype, whereas the third subgenome contained a minor proportion of distinct unhomogenized copies. Homogenization mechanisms such as unequal crossover and/or gene conversion were coupled with the loss of certain 45S rDNA loci. Unlike in the 45S family, the data suggest that neither interlocus homogenization among homeologous chromosomes nor locus loss occurred in 5S rDNA. Consistently with other Triticeae, the 5S rDNA family in intermediate wheatgrass comprised two distinct array types-the long- and short-spacer unit classes. Within the long and short units, we distinguished five and three different types, respectively, likely representing homeologous unit classes donated by putative parental species. Although the major ITS ribotype corresponds in our phylogenetic analysis to the E-genome species, the minor ribotype corresponds to Dasypyrum. 5S sequences suggested the contributions from Pseudoroegneria, Dasypyrum, and Aegilops. The contribution from Aegilops to the intermediate wheatgrass' genome is a new finding with implications in wheat improvement. We discuss rDNA evolution and potential origin of intermediate wheatgrass.

  13. Family Portrait of the Small Inner Satellites of Jupiter

    Science.gov (United States)

    1997-01-01

    These images, taken by Galileo's solid state imaging system between November 1996 and June 1997, provide the first ever 'family portrait' of the four small, irregularly shaped moons that orbit Jupiter in the zone between the planet's ring and the larger Galilean satellites. The moons are shown in their correct relative sizes, with north approximately up in all cases. From left to right, arranged in order of increasing distance from Jupiter, are Metis (longest dimension is approximately 60 kilometers or 37 miles across), Adrastea (20 kilometers or 12 miles across), Amalthea (247 kilometers or 154 miles across), and Thebe (116 kilometers or 72 miles across). While Amalthea, the largest of these four tiny moons, was imaged by NASA's two Voyager spacecraft in 1979 with a resolution comparable to what is shown here, the new Galileo observations represent the first time that Metis, Adrastea, and Thebe have been seen as more than points of light.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  14. A review of the PERSIANN family global satellite precipitation data products

    Science.gov (United States)

    Nguyen, P.; Ombadi, M.; Ashouri, H.; Thorstensen, A.; Hsu, K. L.; Braithwaite, D.; Sorooshian, S.; William, L.

    2017-12-01

    Precipitation is an integral part of the hydrologic cycle and plays an important role in the water and energy balance of the Earth. Careful and consistent observation of precipitation is important for several reasons. Over the last two decades, the PERSIANN system of precipitation products have been developed at the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine in collaboration with NASA, NOAA and the UNESCO G-WADI program. The PERSIANN family includes three main satellite-based precipitation estimation products namely PERSIANN, PERSIANN-CCS, and PERSIANN-CDR. They are accessible through several web-based interfaces maintained by CHRS to serve the needs of researchers, professionals and general public. These interfaces are CHRS iRain, Data Portal and RainSphere, which can be accessed at http://irain.eng.uci.edu, http://chrsdata.eng.uci.edu, and http://rainsphere.eng.uci.edu respectively and can be used for visualization, analysis or download of the data. The main objective of this presentation is to provide a concise and clear summary of the similarities and differences between the three products in terms of attributes and algorithm structure. Moreover, the presentation aims to provide an evaluation of the performance of the products over the Contiguous United States (CONUS) using Climate Prediction Center (CPC) precipitation dataset as a baseline of comparison. Also, an assessment of the behavior of PERSIANN family products over the globe (60°S - 60°N) is performed.

  15. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.

    Science.gov (United States)

    Hatazawa, Yukino; Ono, Yusuke; Hirose, Yuma; Kanai, Sayaka; Fujii, Nobuharu L; Machida, Shuichi; Nishino, Ichizo; Shimizu, Takahiko; Okano, Masaki; Kamei, Yasutomi; Ogawa, Yoshihiro

    2018-03-01

    DNA methylation is an epigenetic mechanism regulating gene expression. In this study, we observed that DNA methyltransferase 3a (Dnmt3a) expression is decreased after muscle atrophy. We made skeletal muscle-specific Dnmt3a-knockout (Dnmt3a-KO) mice. The regeneration capacity after muscle injury was markedly decreased in Dnmt3a-KO mice. Diminished mRNA and protein expression of Dnmt3a were observed in skeletal muscles as well as in satellite cells, which are important for muscle regeneration, in Dnmt3a-KO mice. Dnmt3a-KO satellite cell showed smaller in size (length/area), suggesting suppressed myotube differentiation. Microarray analysis of satellite cells showed that expression of growth differentiation factor 5 (Gdf5) mRNA was markedly increased in Dnmt3a-KO mice. The DNA methylation level of the Gdf5 promoter was markedly decreased in Dnmt3a-KO satellite cells. In addition, DNA methylation inhibitor azacytidine treatment increased Gdf5 expression in wild-type satellite cells, suggesting Gdf5 expression is regulated by DNA methylation. Also, we observed increased inhibitor of differentiation (a target of Gdf5) mRNA expression in Dnmt3a-KO satellite cells. Thus, Dnmt3a appears to regulate satellite cell differentiation via DNA methylation. This mechanism may play a role in the decreased regeneration capacity during atrophy such as in aged sarcopenia.-Hatazawa, Y., Ono, Y., Hirose, Y., Kanai, S., Fujii, N. L., Machida, S., Nishino, I., Shimizu, T., Okano, M., Kamei, Y., Ogawa, Y. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.

  16. DNA Methylation at a Bovine Alpha Satellite I Repeat CpG Site during Development following Fertilization and Somatic Cell Nuclear Transfer

    OpenAIRE

    Couldrey, Christine; Wells, David N.

    2013-01-01

    Incomplete epigenetic reprogramming is postulated to contribute to the low developmental success following somatic cell nuclear transfer (SCNT). Here, we describe the epigenetic reprogramming of DNA methylation at an alpha satellite I CpG site (αsatI-5) during development of cattle generated either by artificial insemination (AI) or in vitro fertilization (IVF) and SCNT. Quantitative methylation analysis identified that SCNT donor cells were highly methylated at αsatI-5 and resulting SCNT bla...

  17. Intra-familial comparison of supragingival dental plaque microflora using the checkerboard DNA-DNA hybridisation technique.

    Science.gov (United States)

    Mannaa, Alaa; Carlén, Anette; Dahlén, Gunnar; Lingström, Peter

    2012-12-01

    The aims of the present study were to correlate the quantified supragingival plaque bacteria between mothers and their children and identify possible microbial associations. A total of 86 mothers and their 4- to 6-year-old and 12- to 16-year-old children participated. Pooled supragingival plaque samples were obtained from interproximal sites between teeth 16/15, 25/26, 35/36 and 46/45 in mothers and older children and teeth 55/54, 64/65, 74/75 and 85/84 in younger children. All the samples were individually analysed for their content of 18 bacterial strains using checkerboard DNA-DNA hybridisation (whole genomic probes). Microbial associations were sought using cluster analysis (dendrogram) for all three age groups together, while community ordination techniques were used for each of the three groups separately. Three complexes were formed from the dendrogram in addition to associations between these complexes and remaining bacterial strains. Principal component analysis results were similar in all three groups. The correlation analyses of bacterial counts between mothers and their children showed a significant association for most of the bacterial strains (pplaque microbiota are correlated between mothers and their children. In addition, similar supragingival plaque microbial associations are present in family members.. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Evidence for 5S rDNA horizontal transfer in the toadfish Halobatrachus didactylus (Schneider, 1801) based on the analysis of three multigene families.

    Science.gov (United States)

    Merlo, Manuel A; Cross, Ismael; Palazón, José L; Ubeda-Manzanaro, María; Sarasquete, Carmen; Rebordinos, Laureana

    2012-10-07

    The Batrachoididae family is a group of marine teleosts that includes several species with more complicated physiological characteristics, such as their excretory, reproductive, cardiovascular and respiratory systems. Previous studies of the 5S rDNA gene family carried out in four species from the Western Atlantic showed two types of this gene in two species but only one in the other two, under processes of concerted evolution and birth-and-death evolution with purifying selection. Here we present results of the 5S rDNA and another two gene families in Halobatrachus didactylus, an Eastern Atlantic species, and draw evolutionary inferences regarding the gene families. In addition we have also mapped the genes on the chromosomes by two-colour fluorescence in situ hybridization (FISH). Two types of 5S rDNA were observed, named type α and type β. Molecular analysis of the 5S rDNA indicates that H. didactylus does not share the non-transcribed spacer (NTS) sequences with four other species of the family; therefore, it must have evolved in isolation. Amplification with the type β specific primers amplified a specific band in 9 specimens of H. didactylus and two of Sparus aurata. Both types showed regulatory regions and a secondary structure which mark them as functional genes. However, the U2 snRNA gene and the ITS-1 sequence showed one electrophoretic band and with one type of sequence. The U2 snRNA sequence was the most variable of the three multigene families studied. Results from two-colour FISH showed no co-localization of the gene coding from three multigene families and provided the first map of the chromosomes of the species. A highly significant finding was observed in the analysis of the 5S rDNA, since two such distant species as H. didactylus and Sparus aurata share a 5S rDNA type. This 5S rDNA type has been detected in other species belonging to the Batrachoidiformes and Perciformes orders, but not in the Pleuronectiformes and Clupeiformes orders. Two

  19. Evidence for 5S rDNA Horizontal Transfer in the toadfish Halobatrachus didactylus (Schneider, 1801 based on the analysis of three multigene families

    Directory of Open Access Journals (Sweden)

    Merlo Manuel A

    2012-10-01

    Full Text Available Abstract Background The Batrachoididae family is a group of marine teleosts that includes several species with more complicated physiological characteristics, such as their excretory, reproductive, cardiovascular and respiratory systems. Previous studies of the 5S rDNA gene family carried out in four species from the Western Atlantic showed two types of this gene in two species but only one in the other two, under processes of concerted evolution and birth-and-death evolution with purifying selection. Here we present results of the 5S rDNA and another two gene families in Halobatrachus didactylus, an Eastern Atlantic species, and draw evolutionary inferences regarding the gene families. In addition we have also mapped the genes on the chromosomes by two-colour fluorescence in situ hybridization (FISH. Results Two types of 5S rDNA were observed, named type α and type β. Molecular analysis of the 5S rDNA indicates that H. didactylus does not share the non-transcribed spacer (NTS sequences with four other species of the family; therefore, it must have evolved in isolation. Amplification with the type β specific primers amplified a specific band in 9 specimens of H. didactylus and two of Sparus aurata. Both types showed regulatory regions and a secondary structure which mark them as functional genes. However, the U2 snRNA gene and the ITS-1 sequence showed one electrophoretic band and with one type of sequence. The U2 snRNA sequence was the most variable of the three multigene families studied. Results from two-colour FISH showed no co-localization of the gene coding from three multigene families and provided the first map of the chromosomes of the species. Conclusions A highly significant finding was observed in the analysis of the 5S rDNA, since two such distant species as H. didactylus and Sparus aurata share a 5S rDNA type. This 5S rDNA type has been detected in other species belonging to the Batrachoidiformes and Perciformes orders, but not

  20. DNA barcoding of authentic and substitute samples of herb of the family Asparagaceae and Asclepiadaceae based on the ITS2 region

    Directory of Open Access Journals (Sweden)

    Padmalatha S Rai

    2012-01-01

    Full Text Available Background : Herbal drugs used to treat illness according to Ayurveda are often misidentified or adulterated with similar plant materials. Objective: To aid taxonomical identification, we used DNA barcoding to evaluate authentic and substitute samples of herb and phylogenetic relationship of four medicinal plants of family Asparagaceace and Asclepiadaceae. Materials and Methods : DNA extracted from dry root samples of two authentic and two substitutes of four specimens belonging to four species were subjected to polymerase chain reaction (PCR and DNA sequencing. Primers for nuclear DNA (nu ITS2 and plastid DNA (matK and rpoC1 were used for PCR and sequence analysis was performed by Clustal W. The intraspecific variation and interspecific divergence were calculated using MEGA V 4.0. Statistical Analysis : Kimura′s two parameter model, neighbor joining and bootstrapping methods were used in this work. Results: The result indicates the efficiency of amplification for ITS2 candidate DNA barcodes was 100% for four species tested. The average interspecific divergence is 0.12 and intraspecific variation was 0.232 in the case of two Asparagaceae species. In two Asclepiadaceae species, average interspecific divergence and intraspecific variation were 0.178 and 0.004 respectively. Conclusions: Our findings show that the ITS2 region can effectively discriminate Asparagus racemosus and Hemidesmus indicus from its substitute samples and hence can resolve species admixtures in raw samples. The ITS2 region may be used as one of the standard DNA barcodes to identify closely related species of family Asclepiadaceae but was noninformative for Asparagaceae species suggesting a need for the development of new markers for each family. More detailed studies involving more species and substitutes are warranted.

  1. Methylation patterns of repetitive DNA sequences in germ cells of Mus musculus.

    OpenAIRE

    Sanford, J; Forrester, L; Chapman, V; Chandley, A; Hastie, N

    1984-01-01

    The major and the minor satellite sequences of Mus musculus were undermethylated in both sperm and oocyte DNAs relative to the amount of undermethylation observed in adult somatic tissue DNA. This hypomethylation was specific for satellite sequences in sperm DNA. Dispersed repetitive and low copy sequences show a high degree of methylation in sperm DNA; however, a dispersed repetitive sequence was undermethylated in oocyte DNA. This finding suggests a difference in the amount of total genomic...

  2. Transcription of highly repetitive tandemly organized DNA in amphibians and birds: A historical overview and modern concepts.

    Science.gov (United States)

    Trofimova, Irina; Krasikova, Alla

    2016-12-01

    Tandemly organized highly repetitive DNA sequences are crucial structural and functional elements of eukaryotic genomes. Despite extensive evidence, satellite DNA remains an enigmatic part of the eukaryotic genome, with biological role and significance of tandem repeat transcripts remaining rather obscure. Data on tandem repeats transcription in amphibian and avian model organisms is fragmentary despite their genomes being thoroughly characterized. Review systematically covers historical and modern data on transcription of amphibian and avian satellite DNA in somatic cells and during meiosis when chromosomes acquire special lampbrush form. We highlight how transcription of tandemly repetitive DNA sequences is organized in interphase nucleus and on lampbrush chromosomes. We offer LTR-activation hypotheses of widespread satellite DNA transcription initiation during oogenesis. Recent explanations are provided for the significance of high-yield production of non-coding RNA derived from tandemly organized highly repetitive DNA. In many cases the data on the transcription of satellite DNA can be extrapolated from lampbrush chromosomes to interphase chromosomes. Lampbrush chromosomes with applied novel technical approaches such as superresolution imaging, chromosome microdissection followed by high-throughput sequencing, dynamic observation in life-like conditions provide amazing opportunities for investigation mechanisms of the satellite DNA transcription.

  3. Interactions within the mammalian DNA methyltransferase family

    Directory of Open Access Journals (Sweden)

    Ehrenhofer-Murray Ann E

    2003-05-01

    Full Text Available Abstract Background In mammals, epigenetic information is established and maintained via the postreplicative methylation of cytosine residues by the DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Dnmt1 is required for maintenance methylation whereas Dnmt3a and Dnmt3b are responsible for de novo methylation. Contrary to Dnmt3a or Dnmt3b, the isolated C-terminal region of Dnmt1 is catalytically inactive, despite the presence of the sequence motifs typical of active DNA methyltransferases. Deletion analysis has revealed that a large part of the N-terminal domain is required for enzymatic activity. Results The role played by the N-terminal domain in this regulation has been investigated using the yeast two-hybrid system. We show here the presence of an intra-molecular interaction in Dnmt1 but not in Dnmt3a or Dnmt3b. This interaction was confirmed by immunoprecipitation and was localized by deletion mapping. Furthermore, a systematic analysis of interactions among the Dnmt family members has revealed that DNMT3L interacts with the C-terminal domain of Dnmt3a and Dnmt3b. Conclusions The lack of methylating ability of the isolated C-terminal domain of Dnmt1 could be explained in part by a physical interaction between N- and C-terminal domains that apparently is required for activation of the catalytic domain. Our deletion analysis suggests that the tertiary structure of Dnmt1 is important in this process rather than a particular sequence motif. Furthermore, the interaction between DNMT3L and the C-terminal domains of Dnmt3a and Dnmt3b suggests a mechanism whereby the enzymatically inactive DNMT3L brings about the methylation of its substrate by recruiting an active methylase.

  4. Interactions within the mammalian DNA methyltransferase family

    Science.gov (United States)

    Margot, Jean B; Ehrenhofer-Murray, Ann E; Leonhardt, Heinrich

    2003-01-01

    Background In mammals, epigenetic information is established and maintained via the postreplicative methylation of cytosine residues by the DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Dnmt1 is required for maintenance methylation whereas Dnmt3a and Dnmt3b are responsible for de novo methylation. Contrary to Dnmt3a or Dnmt3b, the isolated C-terminal region of Dnmt1 is catalytically inactive, despite the presence of the sequence motifs typical of active DNA methyltransferases. Deletion analysis has revealed that a large part of the N-terminal domain is required for enzymatic activity. Results The role played by the N-terminal domain in this regulation has been investigated using the yeast two-hybrid system. We show here the presence of an intra-molecular interaction in Dnmt1 but not in Dnmt3a or Dnmt3b. This interaction was confirmed by immunoprecipitation and was localized by deletion mapping. Furthermore, a systematic analysis of interactions among the Dnmt family members has revealed that DNMT3L interacts with the C-terminal domain of Dnmt3a and Dnmt3b. Conclusions The lack of methylating ability of the isolated C-terminal domain of Dnmt1 could be explained in part by a physical interaction between N- and C-terminal domains that apparently is required for activation of the catalytic domain. Our deletion analysis suggests that the tertiary structure of Dnmt1 is important in this process rather than a particular sequence motif. Furthermore, the interaction between DNMT3L and the C-terminal domains of Dnmt3a and Dnmt3b suggests a mechanism whereby the enzymatically inactive DNMT3L brings about the methylation of its substrate by recruiting an active methylase. PMID:12777184

  5. Regenerative capacity of old muscle stem cells declines without significant accumulation of DNA damage.

    Directory of Open Access Journals (Sweden)

    Wendy Cousin

    Full Text Available The performance of adult stem cells is crucial for tissue homeostasis but their regenerative capacity declines with age, leading to failure of multiple organs. In skeletal muscle this failure is manifested by the loss of functional tissue, the accumulation of fibrosis, and reduced satellite cell-mediated myogenesis in response to injury. While recent studies have shown that changes in the composition of the satellite cell niche are at least in part responsible for the impaired function observed with aging, little is known about the effects of aging on the intrinsic properties of satellite cells. For instance, their ability to repair DNA damage and the effects of a potential accumulation of DNA double strand breaks (DSBs on their regenerative performance remain unclear. This work demonstrates that old muscle stem cells display no significant accumulation of DNA DSBs when compared to those of young, as assayed after cell isolation and in tissue sections, either in uninjured muscle or at multiple time points after injury. Additionally, there is no significant difference in the expression of DNA DSB repair proteins or globally assayed DNA damage response genes, suggesting that not only DNA DSBs, but also other types of DNA damage, do not significantly mark aged muscle stem cells. Satellite cells from DNA DSB-repair-deficient SCID mice do have an unsurprisingly higher level of innate DNA DSBs and a weakened recovery from gamma-radiation-induced DNA damage. Interestingly, they are as myogenic in vitro and in vivo as satellite cells from young wild type mice, suggesting that the inefficiency in DNA DSB repair does not directly correlate with the ability to regenerate muscle after injury. Overall, our findings suggest that a DNA DSB-repair deficiency is unlikely to be a key factor in the decline in muscle regeneration observed upon aging.

  6. Structures of an Apo and a Binary Complex of an Evolved Archeal B Family DNA Polymerase Capable of Synthesising Highly Cy-Dye Labelled DNA

    Science.gov (United States)

    Wynne, Samantha A.; Pinheiro, Vitor B.; Holliger, Philipp; Leslie, Andrew G. W.

    2013-01-01

    Thermophilic DNA polymerases of the polB family are of great importance in biotechnological applications including high-fidelity PCR. Of particular interest is the relative promiscuity of engineered versions of the exo- form of polymerases from the Thermo- and Pyrococcales families towards non-canonical substrates, which enables key advances in Next-generation sequencing. Despite this there is a paucity of structural information to guide further engineering of this group of polymerases. Here we report two structures, of the apo form and of a binary complex of a previously described variant (E10) of Pyrococcus furiosus (Pfu) polymerase with an ability to fully replace dCTP with Cyanine dye-labeled dCTP (Cy3-dCTP or Cy5-dCTP) in PCR and synthesise highly fluorescent “CyDNA” densely decorated with cyanine dye heterocycles. The apo form of Pfu-E10 closely matches reported apo form structures of wild-type Pfu. In contrast, the binary complex (in the replicative state with a duplex DNA oligonucleotide) reveals a closing movement of the thumb domain, increasing the contact surface with the nascent DNA duplex strand. Modelling based on the binary complex suggests how bulky fluorophores may be accommodated during processive synthesis and has aided the identification of residues important for the synthesis of unnatural nucleic acid polymers. PMID:23940661

  7. The DnaJ Gene Family in Pepper (Capsicum annuum L.: Comprehensive Identification, Characterization and Expression Profiles

    Directory of Open Access Journals (Sweden)

    Yunyan Kang

    2017-05-01

    Full Text Available The DnaJ proteins which function as molecular chaperone played critical roles in plant growth and development and response to heat stress (HS and also called heat shock protein 40 based on molecular weight. However, little was reported on this gene family in pepper. Recently, the release of the whole pepper genome provided an opportunity for identifying putative DnaJ homologous. In this study, a total of 76 putative pepper DnaJ genes (CaDnaJ01 to CaDnaJ76 were identified using bioinformatics methods and classified into five groups by the presence of the complete three domains (J-domain, zinc finger domain, and C-terminal domain. Chromosome mapping suggested that segmental duplication and tandem duplication were occurred in evolution. The multiple stress-related cis-elements were found in the promoter region of these CaDnaJ genes, which indicated that the CaDnaJs might be involved in the process of responding to complex stress conditions. In addition, expression profiles based on RNA-seq showed that the 47 CaDnaJs were expressed in at least one tissue tested. The result implied that they could be involved in the process of pepper growth and development. qRT-PCR analysis found that 80.60% (54/67 CaDnaJs were induced by HS, indicated that they could participated in pepper response to high temperature treatments. In conclusion, all these results would provide a comprehensive basis for further analyzing the function of CaDnaJ members and be also significant for elucidating the evolutionary relationship in pepper.

  8. Genetic variations in the DNA replication origins of human papillomavirus family correlate with their oncogenic potential.

    Science.gov (United States)

    Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B

    2018-04-01

    Human papillomaviruses (HPVs) encompass a large family of viruses that range from benign to highly carcinogenic. The crucial differences between benign and carcinogenic types of HPV remain unknown, except that the two HPV types differ in the frequency of DNA replication. We have systematically analyzed the mechanism of HPV DNA replication initiation in low-risk and high-risk HPVs. Our results demonstrate that HPV-encoded E2 initiator protein and its four binding sites in the replication origin play pivotal roles in determining the destiny of the HPV-infected cell. We have identified strain-specific single nucleotide variations in E2 binding sites found only in the high-risk HPVs. We have demonstrated that these variations result in attenuated formation of the E2-DNA complex. E2 binding to these sites is linked to the activation of the DNA replication origin as well as initiation of DNA replication. Both electrophoretic mobility shift assay and atomic force microscopy studies demonstrated that binding of E2 from either low- or high-risk HPVs with variant binding sequences lacked multimeric E2-DNA complex formation in vitro. These results provided a molecular basis of differential DNA replication in the two types of HPVs and pointed to a correlation with the development of cancer. Copyright © 2017. Published by Elsevier B.V.

  9. The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination

    KAUST Repository

    Blomme, Jonas

    2017-04-19

    In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana. Gainand loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.

  10. Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression.

    Science.gov (United States)

    Aze, Antoine; Sannino, Vincenzo; Soffientini, Paolo; Bachi, Angela; Costanzo, Vincenzo

    2016-06-01

    Half of the human genome is made up of repetitive DNA. However, mechanisms underlying replication of chromosome regions containing repetitive DNA are poorly understood. We reconstituted replication of defined human chromosome segments using bacterial artificial chromosomes in Xenopus laevis egg extract. Using this approach we characterized the chromatin assembly and replication dynamics of centromeric alpha-satellite DNA. Proteomic analysis of centromeric chromatin revealed replication-dependent enrichment of a network of DNA repair factors including the MSH2-6 complex, which was required for efficient centromeric DNA replication. However, contrary to expectations, the ATR-dependent checkpoint monitoring DNA replication fork arrest could not be activated on highly repetitive DNA due to the inability of the single-stranded DNA binding protein RPA to accumulate on chromatin. Electron microscopy of centromeric DNA and supercoil mapping revealed the presence of topoisomerase I-dependent DNA loops embedded in a protein matrix enriched for SMC2-4 proteins. This arrangement suppressed ATR signalling by preventing RPA hyper-loading, facilitating replication of centromeric DNA. These findings have important implications for our understanding of repetitive DNA metabolism and centromere organization under normal and stressful conditions.

  11. Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family

    Directory of Open Access Journals (Sweden)

    Eriona Hysolli

    2016-07-01

    Full Text Available Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4, and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in induced pluripotent stem cells (iPSCs have been shown to be highly similar to embryonic stem cells (ESCs. However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern when using iPSCs in a clinical setting. Thus, it is critical to find factors that regulate DNA methylation states in reprogramming. Here, we found that the miR-29 family is an important epigenetic regulator during human somatic cell reprogramming. Our global DNA methylation and hydroxymethylation analysis shows that DNA demethylation is a major event mediated by miR-29a depletion during early reprogramming, and that iPSCs derived from miR-29a depletion are epigenetically closer to ESCs. Our findings uncover an important miRNA-based approach to generate clinically robust iPSCs.

  12. A Tandemly Arranged Pattern of Two 5S rDNA Arrays in Amolops mantzorum (Anura, Ranidae).

    Science.gov (United States)

    Liu, Ting; Song, Menghuan; Xia, Yun; Zeng, Xiaomao

    2017-01-01

    In an attempt to extend the knowledge of the 5S rDNA organization in anurans, the 5S rDNA sequences of Amolops mantzorum were isolated, characterized, and mapped by FISH. Two forms of 5S rDNA, type I (209 bp) and type II (about 870 bp), were found in specimens investigated from various populations. Both of them contained a 118-bp coding sequence, readily differentiated by their non-transcribed spacer (NTS) sizes and compositions. Four probes (the 5S rDNA coding sequences, the type I NTS, the type II NTS, and the entire type II 5S rDNA sequences) were respectively labeled with TAMRA or digoxigenin to hybridize with mitotic chromosomes for samples of all localities. It turned out that all probes showed the same signals that appeared in every centromeric region and in the telomeric regions of chromosome 5, without differences within or between populations. Obviously, both type I and type II of the 5S rDNA arrays arranged in tandem, which was contrasting with other frogs or fishes recorded to date. More interestingly, all the probes detected centromeric regions in all karyotypes, suggesting the presence of a satellite DNA family derived from 5S rDNA. © 2017 S. Karger AG, Basel.

  13. Structure of human DNA polymerase iota and the mechanism of DNA synthesis.

    Science.gov (United States)

    Makarova, A V; Kulbachinskiy, A V

    2012-06-01

    Cellular DNA polymerases belong to several families and carry out different functions. Highly accurate replicative DNA polymerases play the major role in cell genome replication. A number of new specialized DNA polymerases were discovered at the turn of XX-XXI centuries and have been intensively studied during the last decade. Due to the special structure of the active site, these enzymes efficiently perform synthesis on damaged DNA but are characterized by low fidelity. Human DNA polymerase iota (Pol ι) belongs to the Y-family of specialized DNA polymerases and is one of the most error-prone enzymes involved in DNA synthesis. In contrast to other DNA polymerases, Pol ι is able to use noncanonical Hoogsteen interactions for nucleotide base pairing. This allows it to incorporate nucleotides opposite various lesions in the DNA template that impair Watson-Crick interactions. Based on the data of X-ray structural analysis of Pol ι in complexes with various DNA templates and dNTP substrates, we consider the structural peculiarities of the Pol ι active site and discuss possible mechanisms that ensure the unique behavior of the enzyme on damaged and undamaged DNA.

  14. Polymorphic DNA microsatellite markers for forensic individual identification and parentage analyses of seven threatened species of parrots (family Psittacidae).

    OpenAIRE

    Jan, C.; Fumagalli, L.

    2016-01-01

    The parrot family represents one of the bird group with the largest number of endangered species, as a result of habitat destruction and illegal trade. This illicit traffic involves the smuggling of eggs and animals, and the laundering through captive breeding facilities of wild-caught animals. Despite the huge potential of wildlife DNA forensics to determine with conclusive evidence illegal trade, current usage of DNA profiling approaches in parrots has been limited by the lack of suitable m...

  15. When molecules support morphology: Phylogenetic reconstruction of the family Onuphidae (Eunicida, Annelida) based on 16S rDNA and 18S rDNA.

    Science.gov (United States)

    Budaeva, Nataliya; Schepetov, Dmitry; Zanol, Joana; Neretina, Tatiana; Willassen, Endre

    2016-01-01

    Onuphid polychaetes are tubicolous marine worms commonly reported worldwide from intertidal areas to hadal depths. They often dominate in benthic communities and have economic importance in aquaculture and recreational fishing. Here we report the phylogeny of the family Onuphidae based on the combined analyses of nuclear (18S rDNA) and mitochondrial (16S rDNA) genes. Results of Bayesian and Maximum Likelihood analyses supported the monophyly of Onuphidae and its traditional subdivision into two monophyletic subfamilies: Onuphinae and Hyalinoeciinae. Ten of 22 recognized genera were monophyletic with strong node support; four more genera included in this study were either monotypic or represented by a single species. None of the genera appeared para- or polyphyletic and this indicates a strong congruence between the traditional morphology-based systematics of the family and the newly obtained molecular-based phylogenetic reconstructions. Intergeneric relationships within Hyalinoeciinae were not resolved. Two strongly supported monophyletic groups of genera were recovered within Onuphinae: ((Onuphis, Aponuphis), Diopatra, Paradiopatra) and (Hirsutonuphis, (Paxtonia, (Kinbergonuphis, Mooreonuphis))). A previously accepted hypothesis on the subdivision of Onuphinae into the Onuphis group of genera and the Diopatra group of genera was largely rejected. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Characterization of cDNA encoding human placental anticoagulant protein (PP4): Homology with the lipocortin family

    International Nuclear Information System (INIS)

    Grundmann, U.; Abel, K.J.; Bohn, H.; Loebermann, H.; Lottspeich, F.; Kuepper, H.

    1988-01-01

    A cDNA library prepared from human placenta was screened for sequences encoding the placental protein 4 (PP4). PP4 is an anticoagulant protein that acts as an indirect inhibitor of the thromboplastin-specific complex, which is involved in the blood coagulation cascade. Partial amino acid sequence information from PP4-derived cyanogen bromide fragments was used to design three oligonucleotide probes for screening the library. From 10 6 independent recombinants, 18 clones were identified that hybridized to all three probes. These 18 recombinants contained cDNA inserts encoding a protein of 320 amino acid residues. In addition to the PP4 cDNA the authors identified 9 other recombinants encoding a protein with considerable similarity (74%) to PP4, which was termed PP4-X. PP4 and PP4-X belong to the lipocortin family, as judged by their homology to lipocortin I and calpactin I

  17. DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA

    DEFF Research Database (Denmark)

    Christensen, H.; Angen, Øystein; Mutters, R.

    2000-01-01

    The present study was aimed at reducing the time and labour used to perform DNA-DNA hybridizations for classification of bacteria at the species level. A micro-well-format DNA hybridization method was developed and validated. DNA extractions were performed by a small-scale method and DNA...... was sheared mechanically into fragments of between 400 and 700 bases. The hybridization conditions were calibrated according to DNA similarities obtained by the spectrophotometric method using strains within the family Pasteurellaceae, Optimal conditions were obtained with 300 ng DNA added per well and bound...... by covalent attachment to NucleoLink. Hybridization was performed with 500 ng DNA, 5% (w/w) of which was labelled with photo-activatable biotin (competitive hybridization) for 2.5 h at 65 degrees C in 2 x SSC followed by stringent washing with 2 x SSC at the same temperature. The criteria for acceptance...

  18. Molecular biology of fuselloviruses and their satellites

    DEFF Research Database (Denmark)

    Contursi, Patrizia; Fusco, Salvatore; Cannio, Raffaele

    2014-01-01

    Fuselloviruses, also known as Sulfolobus Spindle-shaped viruses (SSVs), are "lemon"- or "spindle"-shaped double-stranded DNA viruses. Among them, SSV1, SSV2 and the satellite viruses pSSVx and pSSVi have been investigated at the structural, genetic, transcriptomic, proteomic and biochemical levels...

  19. Strikingly different penetrance of LHON in two Chinese families with primary mutation G11778A is independent of mtDNA haplogroup background and secondary mutation G13708A

    International Nuclear Information System (INIS)

    Wang Huawei; Jia Xiaoyun; Ji Yanli; Kong Qingpeng; Zhang Qingjiong; Yao Yonggang; Zhang Yaping

    2008-01-01

    The penetrance of Leber's hereditary optic neuropathy (LHON) in families with primary mitochondrial DNA (mtDNA) mutations is very complex. Matrilineal and nuclear genetic background, as well as environmental factors, have been reported to be involved in different affected pedigrees. Here we describe two large Chinese families that show a striking difference in the penetrance of LHON, in which 53.3% and 15.0% of members were affected (P < 0.02), respectively. Analysis of the complete mtDNA genome of the two families revealed the presence of the primary mutation G11778A and several other variants suggesting the same haplogroup status G2a. The family with higher penetrance contained a previously described secondary mutation G13708A, which presents a polymorphism in normal Chinese samples and does not affect in vivo mitochondrial oxidative metabolism as described in a previous study. Evolutionary analysis failed to indicate any putatively pathogenic mutation that cosegregated with G11778A in these two pedigrees. Our results suggest that the variable penetrance of LHON in the two Chinese families is independent of both their mtDNA haplotype background and a secondary mutation G13708A. As a result, it is likely that unknown nuclear gene involvement and/or other factors contribute to the strikingly different penetrance of LHON

  20. Heterozygous SSBP1 start loss mutation co-segregates with hearing loss and the m.1555A>G mtDNA variant in a large multigenerational family.

    Science.gov (United States)

    Kullar, Peter J; Gomez-Duran, Aurora; Gammage, Payam A; Garone, Caterina; Minczuk, Michal; Golder, Zoe; Wilson, Janet; Montoya, Julio; Häkli, Sanna; Kärppä, Mikko; Horvath, Rita; Majamaa, Kari; Chinnery, Patrick F

    2018-01-01

    The m.1555A>G mtDNA variant causes maternally inherited deafness, but the reasons for the highly variable clinical penetrance are not known. Exome sequencing identified a heterozygous start loss mutation in SSBP1, encoding the single stranded binding protein 1 (SSBP1), segregating with hearing loss in a multi-generational family transmitting m.1555A>G, associated with mtDNA depletion and multiple deletions in skeletal muscle. The SSBP1 mutation reduced steady state SSBP1 levels leading to a perturbation of mtDNA metabolism, likely compounding the intra-mitochondrial translation defect due to m.1555A>G in a tissue-specific manner. This family demonstrates the importance of rare trans-acting genetic nuclear modifiers in the clinical expression of mtDNA disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  1. A novel RUNX2 missense mutation predicted to disrupt DNA binding causes cleidocranial dysplasia in a large Chinese family with hyperplastic nails

    Directory of Open Access Journals (Sweden)

    Wang Xiaoqin

    2007-12-01

    Full Text Available Abstract Background Cleidocranial dysplasia (CCD is a dominantly inherited disease characterized by hypoplastic or absent clavicles, large fontanels, dental dysplasia, and delayed skeletal development. The purpose of this study is to investigate the genetic basis of Chinese family with CCD. Methods Here, a large Chinese family with CCD and hyperplastic nails was recruited. The clinical features displayed a significant intrafamilial variation. We sequenced the coding region of the RUNX2 gene for the mutation and phenotype analysis. Results The family carries a c.T407C (p.L136P mutation in the DNA- and CBFβ-binding Runt domain of RUNX2. Based on the crystal structure, we predict this novel missense mutation is likely to disrupt DNA binding by RUNX2, and at least locally affect the Runt domain structure. Conclusion A novel missense mutation was identified in a large Chinese family with CCD with hyperplastic nails. This report further extends the mutation spectrum and clinical features of CCD. The identification of this mutation will facilitate prenatal diagnosis and preimplantation genetic diagnosis.

  2. The electrostatic role of the Zn-Cys2His2 complex in binding of operator DNA with transcription factors: mouse EGR-1 from the Cys2His2 family.

    Science.gov (United States)

    Chirgadze, Y N; Boshkova, E A; Polozov, R V; Sivozhelezov, V S; Dzyabchenko, A V; Kuzminsky, M B; Stepanenko, V A; Ivanov, V V

    2018-01-07

    The mouse factor Zif268, known also as early growth response protein EGR-1, is a classical representative for the Cys2His2 transcription factor family. It is required for binding the RNA polymerase with operator dsDNA to initialize the transcription process. We have shown that only in this family of total six Zn-finger protein families the Zn complex plays a significant role in the protein-DNA binding. Electrostatic feature of this complex in the binding of factor Zif268 from Mus musculus with operator DNA has been considered. The factor consists of three similar Zn-finger units which bind with triplets of coding DNA. Essential contacts of the factor with the DNA phosphates are formed by three conservative His residues, one in each finger. We describe here the results of calculations of the electrostatic potentials for the Zn-Cys2His2 complex, Zn-finger unit 1, and the whole transcription factor. The potential of Zif268 has a positive area on the factor surface, and it corresponds exactly to the binding sites of each of Zn-finger units. The main part of these areas is determined by conservative His residues, which form contacts with the DNA phosphate groups. Our result shows that the electrostatic positive potential of this histidine residue is enhanced due to the Zn complex. The other contacts of the Zn-finger with DNA are related to nucleotide bases, and they are responsible for the sequence-specific binding with DNA. This result may be extended to all other members of the Cys2His2 transcription factor family.

  3. DNA Barcode Identification of Freshwater Snails in the Family Bithyniidae from Thailand

    Science.gov (United States)

    Kulsantiwong, Jutharat; Prasopdee, Sattrachai; Ruangsittichai, Jiraporn; Ruangjirachuporn, Wipaporn; Boonmars, Thidarut; Viyanant, Vithoon; Pierossi, Paola; Hebert, Paul D. N.; Tesana, Smarn

    2013-01-01

    Freshwater snails in the family Bithyniidae are the first intermediate host for Southeast Asian liver fluke (Opisthorchis viverrini), the causative agent of opisthorchiasis. Unfortunately, the subtle morphological characters that differentiate species in this group are not easily discerned by non-specialists. This is a serious matter because the identification of bithyniid species is a fundamental prerequisite for better understanding of the epidemiology of this disease. Because DNA barcoding, the analysis of sequence diversity in the 5’ region of the mitochondrial COI gene, has shown strong performance in other taxonomic groups, we decided to test its capacity to resolve 10 species/ subspecies of bithyniids from Thailand. Our analysis of 217 specimens indicated that COI sequences delivered species-level identification for 9 of 10 currently recognized species. The mean intraspecific divergence of COI was 2.3% (range 0-9.2 %), whereas sequence divergences between congeneric species averaged 8.7% (range 0-22.2 %). Although our results indicate that DNA barcoding can differentiate species of these medically-important snails, we also detected evidence for the presence of one overlooked species and one possible case of synonymy. PMID:24223896

  4. Strikingly different penetrance of LHON in two Chinese families with primary mutation G11778A is independent of mtDNA haplogroup background and secondary mutation G13708A

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huawei [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China)]|[Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091 (China); Jia Xiaoyun; Ji Yanli [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060 (China); Kong Qingpeng [State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Zhang Qingjiong [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060 (China)], E-mail: qingjiongzhang@yahoo.com; Yao Yonggang [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China)]|[State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China)], E-mail: ygyaozh@yahoo.com; Zhang Yaping [Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091 (China)]|[State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China)

    2008-08-25

    The penetrance of Leber's hereditary optic neuropathy (LHON) in families with primary mitochondrial DNA (mtDNA) mutations is very complex. Matrilineal and nuclear genetic background, as well as environmental factors, have been reported to be involved in different affected pedigrees. Here we describe two large Chinese families that show a striking difference in the penetrance of LHON, in which 53.3% and 15.0% of members were affected (P < 0.02), respectively. Analysis of the complete mtDNA genome of the two families revealed the presence of the primary mutation G11778A and several other variants suggesting the same haplogroup status G2a. The family with higher penetrance contained a previously described secondary mutation G13708A, which presents a polymorphism in normal Chinese samples and does not affect in vivo mitochondrial oxidative metabolism as described in a previous study. Evolutionary analysis failed to indicate any putatively pathogenic mutation that cosegregated with G11778A in these two pedigrees. Our results suggest that the variable penetrance of LHON in the two Chinese families is independent of both their mtDNA haplotype background and a secondary mutation G13708A. As a result, it is likely that unknown nuclear gene involvement and/or other factors contribute to the strikingly different penetrance of LHON.

  5. Power analysis of QTL detection in half-sib families using selective DNA pooling

    Directory of Open Access Journals (Sweden)

    López Teresa

    2001-05-01

    Full Text Available Abstract Individual loci of economic importance (QTL can be detected by comparing the inheritance of a trait and the inheritance of loci with alleles readily identifiable by laboratory methods (genetic markers. Data on allele segregation at the individual level are costly and alternatives have been proposed that make use of allele frequencies among progeny, rather than individual genotypes. Among the factors that may affect the power of the set up, the most important are those intrinsic to the QTL: the additive effect of the QTL, and its dominance, and distance between markers and QTL. Other factors are relative to the choice of animals and markers, such as the frequency of the QTL and marker alleles among dams and sires. Data collection may affect the detection power through the size of half-sib families, selection rate within families, and the technical error incurred when estimating genetic frequencies. We present results for a sensitivity analysis for QTL detection using pools of DNA from selected half-sibs. Simulations showed that conclusive detection may be achieved with families of at least 500 half-sibs if sires are chosen on the criteria that most of their marker alleles are either both missing, or one is fixed, among dams.

  6. Interspersion of highly repetitive DNA with single copy DNA in the genome of the red crab, Geryon quinquedens

    Energy Technology Data Exchange (ETDEWEB)

    Christie, N.T. (Univ. of Tennessee, Oak Ridge); Skinner, D.M.

    1979-02-01

    Kinetic analysis of the reassociation of 420 nucleotide (NT) long fragments has shown that essentially all of the repetitive sequences of the DNA of the red crab Geryon quinquedens are highly repetitive. There are negligible amounts of low and intermediate repetitive DNAs. Though atypical of most eukaryotes, this pattern has been observed in al other brachyurans (true crabs) studied. The major repetitive component is subdivided into short runs of 300 NT and longer runs of greater than 1200 NT while the minor component has an average sequence length of 400 NT. Both components reassociate at rates commonly observed for satellite DNAs. Unique among eukaryotes the organization of the genome includes single copy DNA contiguous to short runs (300 NT) of both repetitive components. Although patent satellites are not present, subsets of the repetitive DNA have been isolated by either restriction endonuclease digestion or by centrifugation in Ag/sup +/ or Hg/sup 2 +//Cs/sub 2/SO/sub 4/ density gradients.

  7. Direct Involvement of Retinoblastoma Family Proteins in DNA Repair by Non-homologous End-Joining

    Directory of Open Access Journals (Sweden)

    Rebecca Cook

    2015-03-01

    Full Text Available Deficiencies in DNA double-strand break (DSB repair lead to genetic instability, a recognized cause of cancer initiation and evolution. We report that the retinoblastoma tumor suppressor protein (RB1 is required for DNA DSB repair by canonical non-homologous end-joining (cNHEJ. Support of cNHEJ involves a mechanism independent of RB1’s cell-cycle function and depends on its amino terminal domain with which it binds to NHEJ components XRCC5 and XRCC6. Cells with engineered loss of RB family function as well as cancer-derived cells with mutational RB1 loss show substantially reduced levels of cNHEJ. RB1 variants disabled for the interaction with XRCC5 and XRCC6, including a cancer-associated variant, are unable to support cNHEJ despite being able to confer cell-cycle control. Our data identify RB1 loss as a candidate driver of structural genomic instability and a causative factor for cancer somatic heterogeneity and evolution.

  8. How a Small Family of Yeast IDPs Control Complicated Processes Related to DNA Replication

    DEFF Research Database (Denmark)

    Marabini, Riccardo

    Ribonucleotide reductase (RNR) and proliferating cell nuclear antigen (PCNA) are two essential proteins involved in DNA replication. RNR catalyzes the last and rate limiting step of the deoxyribonucleotide biosynthetic pathway. The dysregulation of RNR has been related to higher mutation rate...... characterized in budding and fission yeast. Within this protein family Dif1 (from S. cerevisiae) and Spd1 (from S. pombe) were analyzed in this study. These proteins were previously found to interact with and regulate the activity of RNR and Spd1 was also linked to PCNA dependent signaling for degradation...

  9. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny

    Directory of Open Access Journals (Sweden)

    Leyla Vahidi Ferdousi

    2014-11-01

    Full Text Available The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs.

  10. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny.

    Science.gov (United States)

    Vahidi Ferdousi, Leyla; Rocheteau, Pierre; Chayot, Romain; Montagne, Benjamin; Chaker, Zayna; Flamant, Patricia; Tajbakhsh, Shahragim; Ricchetti, Miria

    2014-11-01

    The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite) cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs) via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs. Copyright © 2014. Published by Elsevier B.V.

  11. The Roles of Family B and D DNA Polymerases in Thermococcus Species 9°N Okazaki Fragment Maturation*

    Science.gov (United States)

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F.

    2015-01-01

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. PMID:25814667

  12. Human Artificial Chromosomes with Alpha Satellite-Based De Novo Centromeres Show Increased Frequency of Nondisjunction and Anaphase Lag

    OpenAIRE

    Rudd, M. Katharine; Mays, Robert W.; Schwartz, Stuart; Willard, Huntington F.

    2003-01-01

    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fu...

  13. Tetrahelical structural family adopted by AGCGA-rich regulatory DNA regions

    Science.gov (United States)

    Kocman, Vojč; Plavec, Janez

    2017-05-01

    Here we describe AGCGA-quadruplexes, an unexpected addition to the well-known tetrahelical families, G-quadruplexes and i-motifs, that have been a focus of intense research due to their potential biological impact in G- and C-rich DNA regions, respectively. High-resolution structures determined by solution-state nuclear magnetic resonance (NMR) spectroscopy demonstrate that AGCGA-quadruplexes comprise four 5'-AGCGA-3' tracts and are stabilized by G-A and G-C base pairs forming GAGA- and GCGC-quartets, respectively. Residues in the core of the structure are connected with edge-type loops. Sequences of alternating 5'-AGCGA-3' and 5'-GGG-3' repeats could be expected to form G-quadruplexes, but are shown herein to form AGCGA-quadruplexes instead. Unique structural features of AGCGA-quadruplexes together with lower sensitivity to cation and pH variation imply their potential biological relevance in regulatory regions of genes responsible for basic cellular processes that are related to neurological disorders, cancer and abnormalities in bone and cartilage development.

  14. Evaluation of DNA bending models in their capacity to predict electrophoretic migration anomalies of satellite DNA sequences

    Czech Academy of Sciences Publication Activity Database

    Matyášek, Roman; Fulneček, Jaroslav; Kovařík, Aleš

    2013-01-01

    Roč. 34, č. 17 (2013), s. 2511-2521 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA206/09/1751; GA ČR(CZ) GAP501/10/0208; GA ČR(CZ) GA13-10057S Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : HIGHLY REPETITIVE DNA * DOUBLE-HELICAL DNA * CURVED DNA Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 3.161, year: 2013

  15. Conserved amino acid motifs from the novel Piv/MooV family of transposases and site-specific recombinases are required for catalysis of DNA inversion by Piv.

    Science.gov (United States)

    Tobiason, D M; Buchner, J M; Thiel, W H; Gernert, K M; Karls, A C

    2001-02-01

    Piv, a site-specific invertase from Moraxella lacunata, exhibits amino acid homology with the transposases of the IS110/IS492 family of insertion elements. The functions of conserved amino acid motifs that define this novel family of both transposases and site-specific recombinases (Piv/MooV family) were examined by mutagenesis of fully conserved amino acids within each motif in Piv. All Piv mutants altered in conserved residues were defective for in vivo inversion of the M. lacunata invertible DNA segment, but competent for in vivo binding to Piv DNA recognition sequences. Although the primary amino acid sequences of the Piv/MooV recombinases do not contain a conserved DDE motif, which defines the retroviral integrase/transposase (IN/Tnps) family, the predicted secondary structural elements of Piv align well with those of the IN/Tnps for which crystal structures have been determined. Molecular modelling of Piv based on these alignments predicts that E59, conserved as either E or D in the Piv/MooV family, forms a catalytic pocket with the conserved D9 and D101 residues. Analysis of Piv E59G confirms a role for E59 in catalysis of inversion. These results suggest that Piv and the related IS110/IS492 transposases mediate DNA recombination by a common mechanism involving a catalytic DED or DDD motif.

  16. The linked units of 5S rDNA and U1 snDNA of razor shells (Mollusca: Bivalvia: Pharidae).

    Science.gov (United States)

    Vierna, J; Jensen, K T; Martínez-Lage, A; González-Tizón, A M

    2011-08-01

    The linkage between 5S ribosomal DNA and other multigene families has been detected in many eukaryote lineages, but whether it provides any selective advantage remains unclear. In this work, we report the occurrence of linked units of 5S ribosomal DNA (5S rDNA) and U1 small nuclear DNA (U1 snDNA) in 10 razor shell species (Mollusca: Bivalvia: Pharidae) from four different genera. We obtained several clones containing partial or complete repeats of both multigene families in which both types of genes displayed the same orientation. We provide a comprehensive collection of razor shell 5S rDNA clones, both with linked and nonlinked organisation, and the first bivalve U1 snDNA sequences. We predicted the secondary structures and characterised the upstream and downstream conserved elements, including a region at -25 nucleotides from both 5S rDNA and U1 snDNA transcription start sites. The analysis of 5S rDNA showed that some nontranscribed spacers (NTSs) are more closely related to NTSs from other species (and genera) than to NTSs from the species they were retrieved from, suggesting birth-and-death evolution and ancestral polymorphism. Nucleotide conservation within the functional regions suggests the involvement of purifying selection, unequal crossing-overs and gene conversions. Taking into account this and other studies, we discuss the possible mechanisms by which both multigene families could have become linked in the Pharidae lineage. The reason why 5S rDNA is often found linked to other multigene families seems to be the result of stochastic processes within genomes in which its high copy number is determinant.

  17. Purification, crystallization and preliminary X-ray analysis of OsAREB8 from rice, a member of the AREB/ABF family of bZIP transcription factors, in complex with its cognate DNA

    International Nuclear Information System (INIS)

    Miyazono, Ken-ichi; Koura, Tsubasa; Kubota, Keiko; Yoshida, Takuya; Fujita, Yasunari; Yamaguchi-Shinozaki, Kazuko; Tanokura, Masaru

    2012-01-01

    OsAREB8 from rice (O. sativa), a member of the AREB/ABF family of bZIP transcription factors, was expressed, purified and crystallized using the sitting-drop vapour-diffusion method. A crystal of OsAREB8 in complex with its cognate DNA diffracted X-rays to 3.65 Å resolution. The AREB/ABF family of bZIP transcription factors play a key role in drought stress response and tolerance during the vegetative stage in plants. To reveal the DNA-recognition mechanism of the AREB/ABF family of proteins, the bZIP domain of OsAREB8, an AREB/ABF-family protein from Oryza sativa, was expressed in Escherichia coli, purified and crystallized with its cognate DNA. Crystals of the OsAREB8–DNA complex were obtained by the sitting-drop vapour-diffusion method at 277 K with a reservoir solution consisting of 50 mM MES pH 6.4, 29% MPD, 2 mM spermidine, 20 mM magnesium acetate and 100 mM sodium chloride. A crystal diffracted X-rays to 3.65 Å resolution and belonged to space group C222, with unit-cell parameters a = 155.1, b = 206.7, c = 38.5 Å. The crystal contained one OsAREB8–DNA complex in the asymmetric unit

  18. Infrared Methods for Daylight Acquisition of LEO Satellites

    National Research Council Canada - National Science Library

    Nelson, Joel

    2004-01-01

    ..., and very capable space surveillance systems. The first product of the Raven program was a family of telescopes capable of generating world-class optical observation data of deep-space satellites...

  19. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization.

    Science.gov (United States)

    Veeranki, Sudhakar; Choubey, Divaker

    2012-01-01

    The interferon (IFN)-inducible p200-protein family includes structurally related murine (for example, p202a, p202b, p204, and Aim2) and human (for example, AIM2 and IFI16) proteins. All proteins in the family share a partially conserved repeat of 200-amino acid residues (also called HIN-200 domain) in the C-terminus. Additionally, most proteins (except the p202a and p202b proteins) also share a protein-protein interaction pyrin domain (PYD) in the N-terminus. The HIN-200 domain contains two consecutive oligosaccharide/oligonucleotide binding folds (OB-folds) to bind double stranded DNA (dsDNA). The PYD domain in proteins allows interactions with the family members and an adaptor protein ASC. Upon sensing cytosolic dsDNA, Aim2, p204, and AIM2 proteins recruit ASC protein to form an inflammasome, resulting in increased production of proinflammatory cytokines. However, IFI16 protein can sense cytosolic as well as nuclear dsDNA. Interestingly, the IFI16 protein contains a nuclear localization signal (NLS). Accordingly, the initial studies had indicated that the endogenous IFI16 protein is detected in the nucleus and within the nucleus in the nucleolus. However, several recent reports suggest that subcellular localization of IFI16 protein in nuclear versus cytoplasmic (or both) compartment depends on cell type. Given that the IFI16 protein can sense cytosolic as well as nuclear dsDNA and can initiate different innate immune responses (production of IFN-β versus proinflammatory cytokines), here we evaluate the experimental evidence for the regulation of subcellular localization of IFI16 protein in various cell types. We conclude that further studies are needed to understand the molecular mechanisms that regulate the subcellular localization of IFI16 protein. Published by Elsevier Ltd.

  20. Cellular response to DNA damage. Link between p53 and DNA-PK

    International Nuclear Information System (INIS)

    Salles-Passador, I.; Fotedar, R.; Fotedar, A.

    1999-01-01

    Cells which lack DNA-activated protein kinase (DNA-PK) are very susceptible to ionizing radiation and display an inability to repair double-strand DNA breaks. DNA-PK is a member of a protein kinase family that includes ATR and ATM which have strong homology in their carboxy-terminal kinase domain with Pl-3 kinase. ATM has been proposed to act upstream of p53 in cellular response to ionizing radiation. DNA-PK may similarly interact with p53 in cellular growth control and in mediation of the response to ionizing radiation. (author)

  1. Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag.

    Science.gov (United States)

    Rudd, M Katharine; Mays, Robert W; Schwartz, Stuart; Willard, Huntington F

    2003-11-01

    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes.

  2. The roles of family B and D DNA polymerases in Thermococcus species 9°N Okazaki fragment maturation.

    Science.gov (United States)

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F

    2015-05-15

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny

    OpenAIRE

    Leyla Vahidi Ferdousi; Pierre Rocheteau; Romain Chayot; Benjamin Montagne; Zayna Chaker; Patricia Flamant; Shahragim Tajbakhsh; Miria Ricchetti

    2014-01-01

    International audience; The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite) cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs) via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their...

  4. Transmission of the PabI family of restriction DNA glycosylase genes: mobility and long-term inheritance.

    Science.gov (United States)

    Kojima, Kenji K; Kobayashi, Ichizo

    2015-10-19

    R.PabI is an exceptional restriction enzyme that functions as a DNA glycosylase. The enzyme excises an unmethylated base from its recognition sequence to generate apurinic/apyrimidinic (AP) sites, and also displays AP lyase activity, cleaving the DNA backbone at the AP site to generate the 3'-phospho alpha, beta-unsaturated aldehyde end in addition to the 5'-phosphate end. The resulting ends are difficult to religate with DNA ligase. The enzyme was originally isolated in Pyrococcus, a hyperthermophilic archaeon, and additional homologs subsequently identified in the epsilon class of the Gram-negative bacterial phylum Proteobacteria, such as Helicobacter pylori. Systematic analysis of R.PabI homologs and their neighboring genes in sequenced genomes revealed co-occurrence of R.PabI with M.PabI homolog methyltransferase genes. R.PabI and M.PabI homolog genes are occasionally found at corresponding (orthologous) loci in different species, such as Helicobacter pylori, Helicobacter acinonychis and Helicobacter cetorum, indicating long-term maintenance of the gene pair. One R.PabI and M.PabI homolog gene pair is observed immediately after the GMP synthase gene in both Campylobacter and Helicobacter, representing orthologs beyond genera. The mobility of the PabI family of restriction-modification (RM) system between genomes is evident upon comparison of genomes of sibling strains/species. Analysis of R.PabI and M.PabI homologs in H. pylori revealed an insertion of integrative and conjugative elements (ICE), and replacement with a gene of unknown function that may specify a membrane-associated toxin (hrgC). In view of the similarity of HrgC with toxins in type I toxin-antitoxin systems, we addressed the biological significance of this substitution. Our data indicate that replacement with hrgC occurred in the common ancestor of hspAmerind and hspEAsia. Subsequently, H. pylori with and without hrgC were intermixed at this locus, leading to complex distribution of hrgC in East

  5. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    DEFF Research Database (Denmark)

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas Salhøj

    2014-01-01

    falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome...... of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens....

  6. Pleolipoviridae, a newly proposed family comprising archaeal pleomorphic viruses with single-stranded or double-stranded DNA genomes.

    Science.gov (United States)

    Pietilä, Maija K; Roine, Elina; Sencilo, Ana; Bamford, Dennis H; Oksanen, Hanna M

    2016-01-01

    Viruses infecting archaea show a variety of virion morphotypes, and they are currently classified into more than ten viral families or corresponding groups. A pleomorphic virus morphotype is very common among haloarchaeal viruses, and to date, several such viruses have been isolated. Here, we propose the classification of eight such viruses and formation of a new family, Pleolipoviridae (from the Greek pleo for more or many and lipos for lipid), containing three genera, Alpha-, Beta-, and Gammapleolipovirus. The proposal is currently under review by the International Committee on Taxonomy of Viruses (ICTV). The members of the proposed family Pleolipoviridae infect halophilic archaea and are nonlytic. They share structural and genomic features and differ from any other classified virus. The virion of pleolipoviruses is composed of a pleomorphic membrane vesicle enclosing the genome. All pleolipoviruses have two major structural protein species, internal membrane and spike proteins. Although the genomes of the pleolipoviruses are single- or double-stranded, linear or circular DNA molecules, they share the same genome organization and gene synteny and show significant similarity at the amino acid level. The canonical features common to all members of the proposed family Pleolipoviridae show that they are closely related and thus form a new viral family.

  7. Boom-Bust Turnovers of Megabase-Sized Centromeric DNA in Solanum Species: Rapid Evolution of DNA Sequences Associated with Centromeres

    Czech Academy of Sciences Publication Activity Database

    Zhang, H.Q.; Koblížková, Andrea; Wang, K.; Gong, Z.Y.; Oliveira, L.; Torres, G.A.; Wu, Y.; Zhang, W.; Novák, Petr; Buell, C.R.; Macas, Jiří; Jiang, J.

    2014-01-01

    Roč. 26, č. 4 (2014), s. 1436-1447 ISSN 1040-4651 Institutional support: RVO:60077344 Keywords : Alpha-satellite DNA * repetitive sequences * rice centromeres Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.338, year: 2014

  8. Diversity of Dicotyledenous-Infecting Geminiviruses and Their Associated DNA Molecules in Southern Africa, Including the South-West Indian Ocean Islands

    Directory of Open Access Journals (Sweden)

    Lindy L. Esterhuizen

    2012-09-01

    Full Text Available The family Geminiviridae comprises a group of plant-infecting circular ssDNA viruses that severely constrain agricultural production throughout the temperate regions of the world, and are a particularly serious threat to food security in sub-Saharan Africa. While geminiviruses exhibit considerable diversity in terms of their nucleotide sequences, genome structures, host ranges and insect vectors, the best characterised and economically most important of these viruses are those in the genus Begomovirus. Whereas begomoviruses are generally considered to be either monopartite (one ssDNA component or bipartite (two circular ssDNA components called DNA-A and DNA-B, many apparently monopartite begomoviruses are associated with additional subviral ssDNA satellite components, called alpha- (DNA-as or betasatellites (DNA-βs. Additionally, subgenomic molecules, also known as defective interfering (DIs DNAs that are usually derived from the parent helper virus through deletions of parts of its genome, are also associated with bipartite and monopartite begomoviruses. The past three decades have witnessed the emergence and diversification of various new begomoviral species and associated DI DNAs, in southern Africa, East Africa, and proximal Indian Ocean islands, which today threaten important vegetable and commercial crops such as, tobacco, cassava, tomato, sweet potato, and beans. This review aims to describe what is known about these viruses and their impacts on sustainable production in this sensitive region of the world.

  9. (1)H, (13)C, and (15)N backbone resonance assignments of the full-length 40 kDa S. acidocaldarius Y-family DNA polymerase, dinB homolog.

    Science.gov (United States)

    Moro, Sean L; Cocco, Melanie J

    2015-10-01

    The dinB homolog (Dbh) is a member of the Y-family of translesion DNA polymerases, which are specialized to accurately replicate DNA across from a wide variety of lesions in living cells. Lesioned bases block the progression of high-fidelity polymerases and cause detrimental replication fork stalling; Y-family polymerases can bypass these lesions. The active site of the translesion synthesis polymerase is more open than that of a replicative polymerase; consequently Dbh polymerizes with low fidelity. Bypass polymerases also have low processivity. Short extension past the lesion allows the high-fidelity polymerase to switch back onto the site of replication. Dbh and the other Y-family polymerases have been used as structural models to investigate the mechanisms of DNA polymerization and lesion bypass. Many high-resolution crystal structures of Y-family polymerases have been reported. NMR dynamics studies can complement these structures by providing a measure of protein motions. Here we report the (15)N, (1)H, and (13)C backbone resonance assignments at two temperatures (35 and 50 °C) for Sulfolobus acidocaldarius Dbh polymerase. Backbone resonance assignments have been obtained for 86 % of the residues. The polymerase active site is assigned as well as the majority of residues in each of the four domains.

  10. COLLISIONALLY BORN FAMILY ABOUT 87 SYLVIA

    International Nuclear Information System (INIS)

    Vokrouhlicky, David; Nesvorny, David; Bottke, William F.; Morbidelli, Alessandro

    2010-01-01

    There are currently more than 1000 multi-opposition objects known in the Cybele population, adjacent and exterior to the asteroid main belt, allowing a more detailed analysis than was previously possible. Searching for collisionally born clusters in this population, we find only one statistically robust case: a family of objects about (87) Sylvia. We use a numerical model to simulate the Sylvia family long-term evolution due to gravitational attraction from planets and thermal (Yarkovsky) effects and to explain its perturbed structure in the orbital element space. This allows us to conclude that the Sylvia family must be at least several hundreds of million years old, in agreement with evolutionary timescales of Sylvia's satellite system. We find it interesting that other large Cybele-zone asteroids with known satellites-(107) Camilla and (121) Hermione-do not have detectable families of collisional fragments about them (this is because we assume that binaries with large primary and small secondary components are necessarily impact generated). Our numerical simulations of synthetic clusters about these asteroids show they would suffer a substantial dynamical depletion by a combined effect of diffusion in numerous weak mean-motion resonances and Yarkovsky forces provided their age is close to ∼4 billion years. However, we also believe that a complete effacement of these two families requires an additional component, very likely due to resonance sweeping or other perturbing effects associated with the late Jupiter's inward migration. We thus propose that both Camilla and Hermione originally had their collisional families, as in the Sylvia case, but they lost them in an evolution that lasted a billion years. Their satellites are the only witnesses of these effaced families.

  11. Amplification of an ancestral mammalian L1 family of long interspersed repeated DNA occurred just before the murine radiation

    International Nuclear Information System (INIS)

    Pascale, E.; Valle, E.; Furano, A.V.

    1990-01-01

    Each mammalian genus examined so far contains 50,000-100,000 members of an L1 (LINE 1) family of long interspersed repeated DNA elements. Current knowledge on the evolution of L1 families presents a paradox because, although L1 families have been in mammalian genomes since before the mammalian radiation ∼80 million years ago, most members of the L1 families are only a few million years old. Accordingly it has been suggested either that the extensive amplification that characterizes present-day L1 families did not occur in the past or that old members were removed as new one were generated. However, the authors show here that an ancestral rodent L1 family was extensively amplified ∼10 million years ago and that the relics of this amplification have persisted in modern murine genomes. This amplification occurred just before the divergence of modern murine genera from their common ancestor and identifies the murine node in the lineage of modern muroid rodents The results suggest that repeated amplification of L1 elements is a feature of the evaluation of mammalian genomes and that ancestral amplification events could provide a useful tool for determining mammalian lineages

  12. Development of identification process for insect group using radiation marker DNA

    International Nuclear Information System (INIS)

    Muraji, M.; Tamura, T.

    2004-01-01

    Detection of a band pattern for insect groups was tried by using radiation marked DNA clone. A rapid segregation process for poly-type DNA segment was investigated. A band pattern of silkworm was detected by analysis using DNA type transposon, K1.4. The exon regions on genes of hemiptera insect were segregated by in vitro cloning. Band patterns of the silkworm and the other insects were detected by identification process of DNA clone and radiation marker. Family singularity mutation existed in the inserted position of transposon. The family of insect was identified easily by the difference of the detection band patterns. Effective band pattern for family discrimination were obtained by analysis for a part of mitochondria DNA and ribosomal DNA. DNA segregation process was investigated by using the enriched library, also. (M. Suetake)

  13. The proofreading 3'→5' exonuclease activity of DNA polymerases: a kinetic barrier to translesion DNA synthesis

    International Nuclear Information System (INIS)

    Khare, Vineeta; Eckert, Kristin A.

    2002-01-01

    The 3'→5' exonuclease activity intrinsic to several DNA polymerases plays a primary role in genetic stability; it acts as a first line of defense in correcting DNA polymerase errors. A mismatched basepair at the primer terminus is the preferred substrate for the exonuclease activity over a correct basepair. The efficiency of the exonuclease as a proofreading activity for mispairs containing a DNA lesion varies, however, being dependent upon both the DNA polymerase/exonuclease and the type of DNA lesion. The exonuclease activities intrinsic to the T4 polymerase (family B) and DNA polymerase γ (family A) proofread DNA mispairs opposite endogenous DNA lesions, including alkylation, oxidation, and abasic adducts. However, the exonuclease of the Klenow polymerase cannot discriminate between correct and incorrect bases opposite alkylation and oxidative lesions. DNA damage alters the dynamics of the intramolecular partitioning of DNA substrates between the 3'→5' exonuclease and polymerase activities. Enzymatic idling at lesions occurs when an exonuclease activity efficiently removes the same base that is preferentially incorporated by the DNA polymerase activity. Thus, the exonuclease activity can also act as a kinetic barrier to translesion synthesis (TLS) by preventing the stable incorporation of bases opposite DNA lesions. Understanding the downstream consequences of exonuclease activity at DNA lesions is necessary for elucidating the mechanisms of translesion synthesis and damage-induced cytotoxicity

  14. Role of oxidative DNA damage in genome instability and cancer

    International Nuclear Information System (INIS)

    Bignami, M.; Kunkel, T.

    2009-01-01

    Inactivation of mismatch repair (MMR) is associated with a dramatic genomic instability that is observed experimentally as a mutator phenotype and micro satellite instability (MSI). It has been implicit that the massive genetic instability in MMR defective cells simply reflects the accumulation of spontaneous DNA polymerase errors during DNA replication. We recently identified oxidation damage, a common threat to DNA integrity to which purines are very susceptible, as an important cofactor in this genetic instability

  15. Policy implications for familial searching

    OpenAIRE

    Kim, Joyce; Mammo, Danny; Siegel, Marni B; Katsanis, Sara H

    2011-01-01

    Abstract In the United States, several states have made policy decisions regarding whether and how to use familial searching of the Combined DNA Index System (CODIS) database in criminal investigations. Familial searching pushes DNA typing beyond merely identifying individuals to detecting genetic relatedness, an application previously reserved for missing persons identifications and custody battles. The intentional search of CODIS for partial matches to an item of evidence offers law enforce...

  16. PCR-identification of a Nicotiana plumbaginifolia cDNA homologous to the high-affinity nitrate transporters of the crnA family.

    Science.gov (United States)

    Quesada, A; Krapp, A; Trueman, L J; Daniel-Vedele, F; Fernández, E; Forde, B G; Caboche, M

    1997-05-01

    A family of high-affinity nitrate transporters has been identified in Aspergillus nidulans and Chlamydomonas reinhardtii, and recently homologues of this family have been cloned from a higher plant (barley). Based on six of the peptide sequences most strongly conserved between the barley and C. reinhardtii polypeptides, a set of degenerate primers was designed to permit amplification of the corresponding genes from other plant species. The utility of these primers was demonstrated by RT-PCR with cDNA made from poly(A)+ RNA from barley, C. reinhardtii and Nicotiana plumbaginifolia. A PCR fragment amplified from N. plumbaginifolia was used as probe to isolate a full-length cDNA clone which encodes a protein, NRT2;1Np, that is closely related to the previously isolated crnA homologue from barley. Genomic Southern blots indicated that there are only 1 or 2 members of the Nrt2 gene family in N. plumbaginifolia. Northern blotting showed that the Nrt2 transcripts are most strongly expressed in roots. The effects of external treatments with different N sources showed that the regulation of the Nrt2 gene(s) is very similar to that reported for nitrate reductase and nitrite reductase genes: their expression was strongly induced by nitrate but was repressed when reduced forms of N were supplied to the roots.

  17. Sea cucumber species identification of family Caudinidae from Surabaya based on morphological and mitochondrial DNA evidence

    Science.gov (United States)

    Amin, Muhammad Hilman Fu'adil; Pidada, Ida Bagus Rai; Sugiharto, Widyatmoko, Johan Nuari; Irawan, Bambang

    2016-03-01

    Species identification and taxonomy of sea cucumber remains a challenge problem in some taxa. Caudinidae family of sea cucumber was comerciallized in Surabaya, and it was used as sea cucumber chips. Members of Caudinid sea cucumber have similiar morphology, so it is hard to identify this sea cucumber only from morphological appearance. DNA barcoding is useful method to overcome this problem. The aim of this study was to determine Caudinid specimen of sea cucumber in East Java by morphological and molecular approach. Sample was collected from east coast of Surabaya, then preserved in absolute ethanol. After DNA isolation, Cytochrome Oxydase I (COI) gene amplification was performed using Echinoderm universal primer and PCR product was sequenced. Sequencing result was analyzed and identified in NCBI database using BLAST. Results showed that Caudinid specimen in have closely related to Acaudina molpadioides sequence in GenBank with 86% identity. Morphological data, especially based on ossicle, also showed that the specimen is Acaudina molpadioides.

  18. γ-ray hypersensitivity and faulty DNA repair in cultured cells from humans exhibiting familial cancer proneness

    International Nuclear Information System (INIS)

    Paterson, M.C.; Smith, P.J.; Bech-Hansen, N.T.; Smith, B.P.; Sell, B.M.

    1979-01-01

    The most significant danger to irradiated individuals is the induction of cancer. Ataxia telangiectasia (AT) is known as a disorder linking radiosensitivity with cancer proneness, and AT is a rare inherited disorder. This is the degenerative multisystem affliction that is transmitted as a simple autosomal recessive trait. Cell culture studies disclosed the relationship between the cellular hypersensitivity to γ-ray inactivation in vitro and the propensity to develop cancer in vivo. The molecular evidence for the defects in the repair of radiogenic DNA damage has as yet been obtained only for AT, and it seems likely that anomalous DNA repair may not be the key causal factor in the development of some of the clinical abnormalities associated with the disease, including the tendency to develop lymphoproliferative cancer. Nevertheless, AT, Rothmund-Thomson syndrome (RTS), and acute myelogenous leukemia (AML) family show promise as the models for elucidating the importance of cellular radiosensitivity and imperfect DNA repair in the induction of cancer by radiation and radiomimetic carcinogens in the biosphere. Expanded efforts are required to identify heterozygosity for the AT genes in general population and to assess the role of the interaction between this genetic make-up and environmental carcinogens in the occurrence of common cancers. (Yamashita, S.)

  19. Nuclear and cpDNA sequences combined provide strong inference of higher phylogenetic relationships in the phlox family (Polemoniaceae).

    Science.gov (United States)

    Johnson, Leigh A; Chan, Lauren M; Weese, Terri L; Busby, Lisa D; McMurry, Samuel

    2008-09-01

    Members of the phlox family (Polemoniaceae) serve as useful models for studying various evolutionary and biological processes. Despite its biological importance, no family-wide phylogenetic estimate based on multiple DNA regions with complete generic sampling is available. Here, we analyze one nuclear and five chloroplast DNA sequence regions (nuclear ITS, chloroplast matK, trnL intron plus trnL-trnF intergeneric spacer, and the trnS-trnG, trnD-trnT, and psbM-trnD intergenic spacers) using parsimony and Bayesian methods, as well as assessments of congruence and long branch attraction, to explore phylogenetic relationships among 84 ingroup species representing all currently recognized Polemoniaceae genera. Relationships inferred from the ITS and concatenated chloroplast regions are similar overall. A combined analysis provides strong support for the monophyly of Polemoniaceae and subfamilies Acanthogilioideae, Cobaeoideae, and Polemonioideae. Relationships among subfamilies, and thus for the precise root of Polemoniaceae, remain poorly supported. Within the largest subfamily, Polemonioideae, four clades corresponding to tribes Polemonieae, Phlocideae, Gilieae, and Loeselieae receive strong support. The monogeneric Polemonieae appears sister to Phlocideae. Relationships within Polemonieae, Phlocideae, and Gilieae are mostly consistent between analyses and data permutations. Many relationships within Loeselieae remain uncertain. Overall, inferred phylogenetic relationships support a higher-level classification for Polemoniaceae proposed in 2000.

  20. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  1. DNA methylation dynamics in muscle development and disease

    Directory of Open Access Journals (Sweden)

    Elvira eCarrio

    2015-03-01

    Full Text Available DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts revealing a more dynamic regulation than originally thought, since active DNA methylation and demethylation occur during cellular differentiation and tissue specification. Satellite cells are the primary stem cells in adult skeletal muscle and are responsible for postnatal muscle growth, hypertrophy, and muscle regeneration. This review outlines the published data regarding DNA methylation changes along the skeletal muscle program, in both physiological and pathological conditions, to better understand the epigenetic mechanisms that control myogenesis

  2. Proper Elements and Secular Resonances for Irregular Satellites

    Science.gov (United States)

    Beaugé, C.; Nesvorný, D.

    2007-06-01

    We present results of an analytical study of proper elements and secular resonances for the irregular satellites of the outer planets. In the case of the Jovian system we identify three satellite families, two of them previously known (Carme and Ananke), plus a new agglomeration of four bodies that includes Pasiphae as its largest member. While the distribution of proper elements for Saturn's moons seems to be more random, a small cluster was found for the direct moons formed by Albiorix, Erriapo, and 2004 S1, slightly different from the so-called Gaulish cluster. No significant families are detected in the present study for the Uranian or Neptunian satellite systems. For each satellite system we determine the location of several secular resonances in the proper element space. Apart from the well-known resonance locks of Pasiphae, Sinope, and Siarnaq, a comparison between the resonance locations and proper elements shows that Saturn's satellite Narvi also exhibits temporary librations in the ϖ-ϖsolar resonance. However, unlike the resonant Jovian moons that are located in the same configuration, Narvi's critical argument librates alternately around values near 90° and 270°. Neither the Uranian nor Neptunian systems seem to have resonant moons. The resonant dynamics of the real satellites in the vicinity of ϖ˙-ϖ˙solar=0 is studied with a simple model for secular resonances based on the restricted three-body problem. Depending on the initial conditions, we show the existence of one or two modes of libration that can occur at different values of the critical angle, showing a good correspondence with the observed behavior of all the resonant moons. Finally, we discuss the global distribution of the real satellites with respect to the secular resonances, as compared with synthetic populations of bodies drawn solely from stability conditions. For Saturn, we find that the present satellite population appears compatible with simple random distributions. Although

  3. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  4. A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily.

    Science.gov (United States)

    Sang, Pau Biak; Srinath, Thiruneelakantan; Patil, Aravind Goud; Woo, Eui-Jeon; Varshney, Umesh

    2015-09-30

    Uracil DNA glycosylases (UDGs) are an important group of DNA repair enzymes, which pioneer the base excision repair pathway by recognizing and excising uracil from DNA. Based on two short conserved sequences (motifs A and B), UDGs have been classified into six families. Here we report a novel UDG, UdgX, from Mycobacterium smegmatis and other organisms. UdgX specifically recognizes uracil in DNA, forms a tight complex stable to sodium dodecyl sulphate, 2-mercaptoethanol, urea and heat treatment, and shows no detectable uracil excision. UdgX shares highest homology to family 4 UDGs possessing Fe-S cluster. UdgX possesses a conserved sequence, KRRIH, which forms a flexible loop playing an important role in its activity. Mutations of H in the KRRIH sequence to S, G, A or Q lead to gain of uracil excision activity in MsmUdgX, establishing it as a novel member of the UDG superfamily. Our observations suggest that UdgX marks the uracil-DNA for its repair by a RecA dependent process. Finally, we observed that the tight binding activity of UdgX is useful in detecting uracils in the genomes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Policy implications for familial searching.

    Science.gov (United States)

    Kim, Joyce; Mammo, Danny; Siegel, Marni B; Katsanis, Sara H

    2011-11-01

    In the United States, several states have made policy decisions regarding whether and how to use familial searching of the Combined DNA Index System (CODIS) database in criminal investigations. Familial searching pushes DNA typing beyond merely identifying individuals to detecting genetic relatedness, an application previously reserved for missing persons identifications and custody battles. The intentional search of CODIS for partial matches to an item of evidence offers law enforcement agencies a powerful tool for developing investigative leads, apprehending criminals, revitalizing cold cases and exonerating wrongfully convicted individuals. As familial searching involves a range of logistical, social, ethical and legal considerations, states are now grappling with policy options for implementing familial searching to balance crime fighting with its potential impact on society. When developing policies for familial searching, legislators should take into account the impact of familial searching on select populations and the need to minimize personal intrusion on relatives of individuals in the DNA database. This review describes the approaches used to narrow a suspect pool from a partial match search of CODIS and summarizes the economic, ethical, logistical and political challenges of implementing familial searching. We examine particular US state policies and the policy options adopted to address these issues. The aim of this review is to provide objective background information on the controversial approach of familial searching to inform policy decisions in this area. Herein we highlight key policy options and recommendations regarding effective utilization of familial searching that minimize harm to and afford maximum protection of US citizens.

  6. HLA-DR Genotyping and Mitochondrial DNA Analysis Reveal the Presence of Family Burials in a Fourth Century Romano-British Christian Cemetery

    Directory of Open Access Journals (Sweden)

    Canh P. Voong

    2017-12-01

    Full Text Available In Colchester, Britain's oldest recorded town, during the Roman period there were areas which were clearly used solely as cemeteries. One of the most significant is at Butt Road, which includes a late Roman probable Christian cemetery with an associated building, apparently a church, that overlies and developed from a pagan inhumation cemetery. DNA was extracted from the long bones (femurs of 29 individuals, mostly from a large complex of burials centered on two timber vaults. These were thought to comprise a number of family groupings, deduced from osteological analysis, stratigraphical and other considerations. The use of a modified version of the silica-based purification method recovered nanogram quantities of DNA/gram of bone. Two-stage amplification, incorporating primer-extension preamplification-polymerase chain reaction, permitted simultaneous amplification of both mitochondrial and nuclear DNA. Sequence-specific oligonucleotide probes yielded human leukocyte antigen (HLA-DR typing of seven samples, with four revealing the infrequent HLA-DR10 genotype. Examination of the control region of mitochondrial DNA (mtDNA by direct sequencing revealed polymorphisms yet to be reported in the modern population. HLA-DRB typing and mtDNA analysis affirmatively supported kinship among some, if not all, individuals in the “vault complex” and demonstrate a continental European origin of the individuals investigated.

  7. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1.

    Science.gov (United States)

    Li, Aike; Tang, Lijuan; Song, Dan; Song, Shanshan; Ma, Wei; Xu, Liguang; Kuang, Hua; Wu, Xiaoling; Liu, Liqiang; Chen, Xin; Xu, Chuanlai

    2016-01-28

    A surface-enhanced Raman scattering (SERS) sensor based on gold nanostar (Au NS) core-silver nanoparticle (Ag NP) satellites was fabricated for the first time to detect aflatoxinB1 (AFB1). We constructed the SERS sensor using AFB1 aptamer (DNA1)-modified Ag satellites and a complementary sequence (DNA2)-modified Au NS core. The Raman label (ATP) was modified on the surface of Ag satellites. The SERS signal was enhanced when the satellite NP was attached to the Au core NS. The AFB1 aptamer on the surface of Ag satellites would bind to the targets when AFB1 was present in the system, Ag satellites were then removed and the SERS signal decreased. This SERS sensor showed superior specificity for AFB1 and the linear detection range was from 1 to 1000 pg mL(-1) with the limit of detection (LOD) of 0.48 pg mL(-1). The excellent recovery experiment using peanut milk demonstrated that the sensor could be applied in food and environmental detection.

  8. Updating the maize karyotype by chromosome DNA sizing

    Science.gov (United States)

    2018-01-01

    The karyotype is a basic concept regarding the genome, fundamentally described by the number and morphological features of all chromosomes. Chromosome class, centromeric index, intra- and interchromosomal asymmetry index, and constriction localization are important in clinical, systematic and evolutionary approaches. In spite of the advances in karyotype characterization made over the last years, new data about the chromosomes can be generated from quantitative methods, such as image cytometry. Therefore, using Zea mays L., this study aimed to update the species’ karyotype by supplementing information on chromosome DNA sizing. After adjustment of the procedures, chromosome morphometry and class as well as knob localization enabled describing the Z. mays karyotype. In addition, applying image cytometry, DNA sizing was unprecedentedly measured for the arms and satellite of all chromosomes. This way, unambiguous identification of the chromosome pairs, and hence the assembly of 51 karyograms, were only possible after the DNA sizing of each chromosome, their arms and satellite portions. These accurate, quantitative and reproducible data also enabled determining the distribution and variation of DNA content in each chromosome. From this, a correlation between DNA amount and total chromosome length evidenced that the mean DNA content of chromosome 9 was higher than that of chromosome 8. The chromosomal DNA sizing updated the Z. mays karyotype, providing insights into its dynamic genome with regards to the organization of the ten chromosomes and their respective portions. Considering the results and the relevance of cytogenetics in the current scenario of comparative sequencing and genomics, chromosomal DNA sizing should be incorporated as an additional parameter for karyotype definition. Based on this study, it can be affirmed that cytogenetic approaches go beyond the simple morphological description of chromosomes. PMID:29293613

  9. cDNA cloning and characterization of mouse DTEF-1 and ETF, members of the TEA/ATTS family of transcription factors.

    Science.gov (United States)

    Yockey, C E; Shimizu, N

    1998-02-01

    Members of the TEA/ATTS family of transcription factors have been found in most representative eukaryotic organisms. In vertebrates, the TEA family contains at least four members, which share overlapping DNA-binding specificity and have similar transcriptional activation properties. In this article, we describe the cDNA cloning and characterization of the murine TEA proteins DTEF-1 (mDTEF-1) and ETF. Using in situ hybridization analysis of mouse embryos, we found that mDTEF-1 and ETF transcript distributions substantially overlap. ETF is expressed throughout the embryo except in the myocardium early in development, whereas late in development, it is enriched in lung and neuroectoderm. Mouse DTEF-1 is expressed at a much lower level throughout development and is substantially enriched in ectoderm and skin, as well as in the developing pituitary at midgestation. Northern blot analysis of adult mouse tissue total RNA showed that both ETF and mDTEF-1 are abundant in uterus and lung relative to other tissues. Using gel mobility shift assays and GAL4-fusion protein analysis, we demonstrated that the full coding sequences of ETF and mDTEF-1 encode M-CAT/GT-IIC-binding proteins containing activation domains.

  10. A simple and rapid micromethod for genomic DNA extraction from jugal epithelial cells. Application to human lymphocyte antigen typing in one large family of atopic/asthmatic probands.

    Science.gov (United States)

    Aron, Y; Swierczewski, E; Lockhart, A

    1994-10-01

    We describe a rapid and reliable micromethod for DNA isolation from buccal epithelial cells from the interior mouth mucosa. This convenient, noninvasive method could be applied to genetic typing in a small number of cells (about 2000 cells per cheek). We have shown that DNA released by this method is suitable for further amplification by polymerase chain reaction (PCR). Using this protocol, coupled with the PCR-RFLP (restriction fragment length polymorphism) method, we analyzed the allelic sequence diversity of the human lymphocyte antigen (HLA) class II genes in an extended family of 33 persons containing 14 asthmatic or atopic members. Six of eight DQA1 alleles, and 11 DQB1, 20 DPB1, and 10 DR haplotypes could be identified in a single DNA sample. Our results suggest that the DR53 group haplotype is frequently associated with allergic asthma and atopy. The micromethod described here may be useful in genetic epidemiology, especially in family studies involving small children.

  11. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration

    Science.gov (United States)

    Mokalled, Mayssa H.; Johnson, Aaron N.; Creemers, Esther E.; Olson, Eric N.

    2012-01-01

    In response to skeletal muscle injury, satellite cells, which function as a myogenic stem cell population, become activated, expand through proliferation, and ultimately fuse with each other and with damaged myofibers to promote muscle regeneration. Here, we show that members of the Myocardin family of transcriptional coactivators, MASTR and MRTF-A, are up-regulated in satellite cells in response to skeletal muscle injury and muscular dystrophy. Global and satellite cell-specific deletion of MASTR in mice impairs skeletal muscle regeneration. This impairment is substantially greater when MRTF-A is also deleted and is due to aberrant differentiation and excessive proliferation of satellite cells. These abnormalities mimic those associated with genetic deletion of MyoD, a master regulator of myogenesis, which is down-regulated in the absence of MASTR and MRTF-A. Consistent with an essential role of MASTR in transcriptional regulation of MyoD expression, MASTR activates a muscle-specific postnatal MyoD enhancer through associations with MEF2 and members of the Myocardin family. Our results provide new insights into the genetic circuitry of muscle regeneration and identify MASTR as a central regulator of this process. PMID:22279050

  12. Screening of the DNA mismatch repair genes MLH1, MSH2 and MSH6 in a Greek cohort of Lynch syndrome suspected families

    International Nuclear Information System (INIS)

    Thodi, Georgia; Fountzilas, George; Yannoukakos, Drakoulis; Fostira, Florentia; Sandaltzopoulos, Raphael; Nasioulas, George; Grivas, Anastasios; Boukovinas, Ioannis; Mylonaki, Maria; Panopoulos, Christos; Magic, Mirjana Brankovic

    2010-01-01

    Germline mutations in the DNA mismatch repair genes predispose to Lynch syndrome, thus conferring a high relative risk of colorectal and endometrial cancer. The MLH1, MSH2 and MSH6 mutational spectrum reported so far involves minor alterations scattered throughout their coding regions as well as large genomic rearrangements. Therefore, a combination of complete sequencing and a specialized technique for the detection of genomic rearrangements should be conducted during a proper DNA-testing procedure. Our main goal was to successfully identify Lynch syndrome families and determine the spectrum of MLH1, MSH2 and MSH6 mutations in Greek Lynch families in order to develop an efficient screening protocol for the Greek colorectal cancer patients' cohort. Forty-two samples from twenty-four families, out of which twenty two of Greek, one of Cypriot and one of Serbian origin, were screened for the presence of germline mutations in the major mismatch repair genes through direct sequencing and MLPA. Families were selected upon Amsterdam criteria or revised Bethesda guidelines. Ten deleterious alterations were detected in twelve out of the twenty-four families subjected to genetic testing, thus our detection rate is 50%. Four of the pathogenic point mutations, namely two nonsense, one missense and one splice site change, are novel, whereas the detected genomic deletion encompassing exon 6 of the MLH1 gene has been described repeatedly in the LOVD database. The average age of onset for the development of both colorectal and endometrial cancer among mutation positive families is 43.2 years. The mutational spectrum of the MMR genes investigated as it has been shaped by our analysis is quite heterogeneous without any strong indication for the presence of a founder effect

  13. Comparison of mutans streptococcal strains of father, mother, and child in indian families using chromosomal DNA fingerprinting.

    Science.gov (United States)

    Katre, Amar N; Damle, Sg

    2013-09-01

    It is now understood and accepted that there is a direct transmission of mutans streptococci (MS) from the mother to the child. There is also a direct correlation between the levels of MS in the mother and the caries status of the child. Advanced technologies in molecular biology like chromosomal DNA fngerprinting have established beyond doubt that the mother and the child bear similar strains of MS. A study was designed with the aim of comparing the MS strains between the father, mother and the child in Indian families. A group of 20 Indian families comprising of the father, mother and child were selected and divided into caries free and caries active groups. Mixed salivary samples were collected from the individuals and were cultured for the growth of Mutans streptococci. The colonies were counted on a colony counter and a comparison was made between the mutans streptococcal counts of the mother and the caries status of the child. Further, the genotypes of the father, mother and the child were isolated and compared using the technique of chromosomal DNA fngerprinting. Following electrophoresis, the band pattern obtained was compared for similarities or differences. The results of the same were tabulated and evaluated statistically. When the colony counts of the mother (in CFU/ml) were compared with the 'dft' status of the child, a positive correlation was seen in group II. Intergroup comparison using the unpaired T test was statistically signifcant. Electrophoretic analysis of the chromosomal DNA on the agarose gels revealed identical band patterns in 13 mother-child pairs, which was statistically signifcant. Three of the father-child pairs showed identical band patterns, which was statistically signifcant. Intergroup comparison using Chi-square test was not statistically signifcant. One may conclude that irrespective of the caries status of the child, majority of the mother child pairs share identical strains of MS and hence the mother is the primary source of

  14. Environmental DNA from seawater samples correlate with trawl catches of Subarctic, deepwater fishes

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis; Møller, Peter Rask; Sigsgaard, Eva Egelyng

    2016-01-01

    such as bottom trawling, and on official reporting of global catches, which can be unreliable. Thus, there is need for alternative and non-invasive techniques for qualitative and quantitative oceanic fish surveys. Here we report environmental DNA (eDNA) metabarcoding of seawater samples from continental slope...... depths in Southwest Greenland. We collected seawater samples at depths of 188-918 m and compared seawater eDNA to catch data from trawling. We used Illumina sequencing of PCR products to demonstrate that eDNA reads show equivalence to fishing catch data obtained from trawling. Twenty-six families were...... found with both trawling and eDNA, while three families were found only with eDNA and two families were found only with trawling. Key commercial fish species for Greenland were the most abundant species in both eDNA reads and biomass catch, and interpolation of eDNA abundances between sampling sites...

  15. DNA Polymerases Drive DNA Sequencing-by-Synthesis Technologies: Both Past and Present

    Directory of Open Access Journals (Sweden)

    Cheng-Yao eChen

    2014-06-01

    Full Text Available Next-generation sequencing (NGS technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. E. coli DNA polymerase I proteolytic (Klenow fragment was originally utilized in Sanger's dideoxy chain terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today's standard capillary electrophoresis (CE and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ⱷ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ⱷ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.

  16. Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart

    Energy Technology Data Exchange (ETDEWEB)

    Koturbash, Igor, E-mail: ikoturbash@uams.edu [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Miousse, Isabelle R. [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Sridharan, Vijayalakshmi [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Nzabarushimana, Etienne; Skinner, Charles M. [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Melnyk, Stepan B.; Pavliv, Oleksandra [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Hauer-Jensen, Martin [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205 (United States); Nelson, Gregory A. [Departments of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA 92354 (United States); Boerma, Marjan [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2016-05-15

    Highlights: • Radiation-induced dynamic changes in cardiac DNA methylation were detected. • Early LINE-1 hypomethylation was followed by hypermethylation at a later time-point. • Radiation affected one-carbon metabolism in the heart tissue. • Irradiation resulted in accumulation of satellite DNA mRNA transcripts. - Abstract: DNA methylation is a key epigenetic mechanism, needed for proper control over the expression of genetic information and silencing of repetitive elements. Exposure to ionizing radiation, aside from its strong genotoxic potential, may also affect the methylation of DNA, within the repetitive elements, in particular. In this study, we exposed C57BL/6J male mice to low absorbed mean doses of two types of space radiation—proton (0.1 Gy, 150 MeV, dose rate 0.53 ± 0.08 Gy/min), and heavy iron ions ({sup 56}Fe) (0.5 Gy, 600 MeV/n, dose rate 0.38 ± 0.06 Gy/min). Radiation-induced changes in cardiac DNA methylation associated with repetitive elements were detected. Specifically, modest hypomethylation of retrotransposon LINE-1 was observed at day 7 after irradiation with either protons or {sup 56}Fe. This was followed by LINE-1, and other retrotransposons, ERV2 and SINE B1, as well as major satellite DNA hypermethylation at day 90 after irradiation with {sup 56}Fe. These changes in DNA methylation were accompanied by alterations in the expression of DNA methylation machinery and affected the one-carbon metabolism pathway. Furthermore, loss of transposable elements expression was detected in the cardiac tissue at the 90-day time-point, paralleled by substantial accumulation of mRNA transcripts, associated with major satellites. Given that the one-carbon metabolism pathway can be modulated by dietary modifications, these findings suggest a potential strategy for the mitigation and, possibly, prevention of the negative effects exerted by ionizing radiation on the cardiovascular system. Additionally, we show that the methylation status and

  17. Evolutionary dynamics and sites of illegitimate recombination revealed in the interspersion and sequence junctions of two nonhomologous satellite DNAs in cactophilic Drosophila species.

    Science.gov (United States)

    Kuhn, G C S; Teo, C H; Schwarzacher, T; Heslop-Harrison, J S

    2009-05-01

    Satellite DNA (satDNA) is a major component of genomes but relatively little is known about the fine-scale organization of unrelated satDNAs residing at the same chromosome location, and the sequence structure and dynamics of satDNA junctions. We studied the organization and sequence junctions of two nonhomologous satDNAs, pBuM and DBC-150, in three species from the neotropical Drosophila buzzatii cluster (repleta group). In situ hybridization to microchromosomes, interphase nuclei and extended DNA fibers showed frequent interspersion of the two satellites in D. gouveai, D. antonietae and, to a lesser extent, D. seriema. We isolated by PCR six pBuM x DBC-150 junctions: four are exclusive to D. gouveai and two are exclusive to D. antonietae. The six junction breakpoints occur at different positions within monomers, suggesting independent origin. Four junctions showed abrupt transitions between the two satellites, whereas two junctions showed a distinct 10 bp tandem duplication before the junction. Unlike pBuM, DBC-150 junction repeats are more variable than randomly cloned monomers and showed diagnostic features in common to a 3-monomer higher-order repeat seen in the sister species D. serido. The high levels of interspersion between pBuM and DBC-150 repeats suggest extensive rearrangements between the two satellites, maybe favored by specific features of the microchromosomes. Our interpretation is that the junctions evolved by multiples events of illegitimate recombination between nonhomologous satDNA repeats, with subsequent rounds of unequal crossing-over expanding the copy number of some of the junctions.

  18. The X-linked 1.688 Satellite in Drosophila melanogaster Promotes Specific Targeting by Painting of Fourth.

    Science.gov (United States)

    Kim, Maria; Ekhteraei-Tousi, Samaneh; Lewerentz, Jacob; Larsson, Jan

    2018-02-01

    Repetitive DNA, represented by transposons and satellite DNA, constitutes a large portion of eukaryotic genomes, being the major component of constitutive heterochromatin. There is a growing body of evidence that it regulates several nuclear functions including chromatin state and the proper functioning of centromeres and telomeres. The 1.688 satellite is one of the most abundant repetitive sequences in Drosophila melanogaster , with the longest array being located in the pericentromeric region of the X-chromosome. Short arrays of 1.688 repeats are widespread within the euchromatic part of the X-chromosome, and these arrays were recently suggested to assist in recognition of the X-chromosome by the dosage compensation male-specific lethal complex. We discovered that a short array of 1.688 satellite repeats is essential for recruitment of the protein POF to a previously described site on the X-chromosome ( PoX2 ) and to various transgenic constructs. On an isolated target, i.e. , an autosomic transgene consisting of a gene upstream of 1.688 satellite repeats, POF is recruited to the transgene in both males and females. The sequence of the satellite, as well as its length and position within the recruitment element, are the major determinants of targeting. Moreover, the 1.688 array promotes POF targeting to the roX1 -proximal PoX1 site in trans Finally, binding of POF to the 1.688-related satellite-enriched sequences is conserved in evolution. We hypothesize that the 1.688 satellite functioned in an ancient dosage compensation system involving POF targeting to the X-chromosome. Copyright © 2018 by the Genetics Society of America.

  19. DNA sequences from the quagga, an extinct member of the horse family.

    Science.gov (United States)

    Higuchi, R; Bowman, B; Freiberger, M; Ryder, O A; Wilson, A C

    To determine whether DNA survives and can be recovered from the remains of extinct creatures, we have examined dried muscle from a museum specimen of the quagga, a zebra-like species (Equus quagga) that became extinct in 1883 (ref. 1). We report that DNA was extracted from this tissue in amounts approaching 1% of that expected from fresh muscle, and that the DNA was of relatively low molecular weight. Among the many clones obtained from the quagga DNA, two containing pieces of mitochondrial DNA (mtDNA) were sequenced. These sequences, comprising 229 nucleotide pairs, differ by 12 base substitutions from the corresponding sequences of mtDNA from a mountain zebra, an extant member of the genus Equus. The number, nature and locations of the substitutions imply that there has been little or no postmortem modification of the quagga DNA sequences, and that the two species had a common ancestor 3-4 Myr ago, consistent with fossil evidence concerning the age of the genus Equus.

  20. Polymorphic DNA microsatellite markers for forensic individual identification and parentage analyses of seven threatened species of parrots (family Psittacidae).

    Science.gov (United States)

    Jan, Catherine; Fumagalli, Luca

    2016-01-01

    The parrot family represents one of the bird group with the largest number of endangered species, as a result of habitat destruction and illegal trade. This illicit traffic involves the smuggling of eggs and animals, and the laundering through captive breeding facilities of wild-caught animals. Despite the huge potential of wildlife DNA forensics to determine with conclusive evidence illegal trade, current usage of DNA profiling approaches in parrots has been limited by the lack of suitable molecular markers specifically developed for the focal species and by low cross-species polymorphism. In this study, we isolated DNA microsatellite markers in seven parrot species threatened with extinction (Amazona brasiliensis, A. oratrix, A. pretrei, A. rhodocorytha, Anodorhynchus leari, Ara rubrogenys and Primolius couloni). From an enriched genomic library followed by 454 pyrosequencing, we characterized a total of 106 polymorphic microsatellite markers (mostly tetranucleotides) in the seven species and tested them across an average number of 19 individuals per species. The mean number of alleles per species and across loci varied from 6.4 to 8.3, with the mean observed heterozygosities ranging from 0.65 to 0.84. Identity and parentage exclusion probabilities were highly discriminatory. The high variability displayed by these microsatellite loci demonstrates their potential utility to perform individual genotyping and parentage analyses, in order to develop a DNA testing framework to determine illegal traffic in these threatened species.

  1. First description of a novel mitochondrial mutation in the MT-TI gene associated with multiple mitochondrial DNA deletion and depletion in family with severe dilated mitochondrial cardiomyopathy.

    Science.gov (United States)

    Alila-Fersi, Olfa; Tabebi, Mouna; Maalej, Marwa; Belguith, Neila; Keskes, Leila; Mkaouar-Rebai, Emna; Fakhfakh, Faiza

    2018-03-18

    Mitochondria are essential for early cardiac development and impaired mitochondrial function was described associated with heart diseases such as hypertrophic or dilated mitochondrial cardiomyopathy. In this study, we report a family including two individuals with severe dilated mitochondrial cardiomyopathy. The whole mitochondrial genome screening showed the presence of several variations and a novel homoplasmic mutation m.4318-4322delC in the MT-TI gene shared by the two patients and their mother and leading to a disruption of the tRNA Ile secondary structure. In addition, a mitochondrial depletion was present in blood leucocyte of the two affected brother whereas a de novo heteroplasmic multiple deletion in the major arc of mtDNA was present in blood leucocyte and mucosa of only one of them. These deletions in the major arc of the mtDNA resulted to the loss of several protein-encoding genes and also some tRNA genes. The mtDNA deletion and depletion could result to an impairment of the oxidative phosphorylation and energy metabolism in the respiratory chain in the studied patients. Our report is the first description of a family with severe lethal dilated mitochondrial cardiomyopathy and presenting several mtDNA abnormalities including punctual mutation, deletion and depletion. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Identification of BC005512 as a DNA damage responsive murine endogenous retrovirus of GLN family involved in cell growth regulation.

    Directory of Open Access Journals (Sweden)

    Yuanfeng Wu

    Full Text Available Genotoxicity assessment is of great significance in drug safety evaluation, and microarray is a useful tool widely used to identify genotoxic stress responsive genes. In the present work, by using oligonucleotide microarray in an in vivo model, we identified an unknown gene BC005512 (abbreviated as BC, official full name: cDNA sequence BC005512, whose expression in mouse liver was specifically induced by seven well-known genotoxins (GTXs, but not by non-genotoxins (NGTXs. Bioinformatics revealed that BC was a member of the GLN family of murine endogenous retrovirus (ERV. However, the relationship to genotoxicity and the cellular function of GLN are largely unknown. Using NIH/3T3 cells as an in vitro model system and quantitative real-time PCR, BC expression was specifically induced by another seven GTXs, covering diverse genotoxicity mechanisms. Additionally, dose-response and linear regression analysis showed that expression level of BC in NIH/3T3 cells strongly correlated with DNA damage, measured using the alkaline comet assay,. While in p53 deficient L5178Y cells, GTXs could not induce BC expression. Further functional studies using RNA interference revealed that down-regulation of BC expression induced G1/S phase arrest, inhibited cell proliferation and thus suppressed cell growth in NIH/3T3 cells. Together, our results provide the first evidence that BC005512, a member from GLN family of murine ERV, was responsive to DNA damage and involved in cell growth regulation. These findings could be of great value in genotoxicity predictions and contribute to a deeper understanding of GLN biological functions.

  3. Chromosome-specific DNA Repeat Probes

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, Adolf; Weier, Jingly Fung; Weier, Heinz-Ulrich G.

    2006-03-16

    In research as well as in clinical applications, fluorescence in situ hybridization (FISH) has gained increasing popularity as a highly sensitive technique to study cytogenetic changes. Today, hundreds of commercially available DNA probes serve the basic needs of the biomedical research community. Widespread applications, however, are often limited by the lack of appropriately labeled, specific nucleic acid probes. We describe two approaches for an expeditious preparation of chromosome-specific DNAs and the subsequent probe labeling with reporter molecules of choice. The described techniques allow the preparation of highly specific DNA repeat probes suitable for enumeration of chromosomes in interphase cell nuclei or tissue sections. In addition, there is no need for chromosome enrichment by flow cytometry and sorting or molecular cloning. Our PCR-based method uses either bacterial artificial chromosomes or human genomic DNA as templates with {alpha}-satellite-specific primers. Here we demonstrate the production of fluorochrome-labeled DNA repeat probes specific for human chromosomes 17 and 18 in just a few days without the need for highly specialized equipment and without the limitation to only a few fluorochrome labels.

  4. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration

    OpenAIRE

    Mokalled, Mayssa H.; Johnson, Aaron N.; Creemers, Esther E.; Olson, Eric N.

    2012-01-01

    Muscle repair is regulated by satellite cells, adult skeletal muscle stem cells that control muscle regeneration by proliferating and fusing with injured myofibers. MyoD is required for muscle regeneration; however, the mechanisms regulating MyoD expression in satellite cells are unclear. In this study, Olson and colleagues have demonstrated that deletion of MASTR and MRTF-A, two members of the Myocardin family of transcription factors, leads to skeletal muscle regeneration defects and down-r...

  5. Investigating the relationship between watching satellite channels and intimacy and marital satisfaction of couples in Isfahan, Iran, in 2014

    OpenAIRE

    Babaie, Zohre; Keshvari, Mahrokh; Zamani, Ahmadreza

    2016-01-01

    Background: In the age of communication and media that families are rapidly driven towards using satellite channels and other media, considering family health in this regard is essential. A determinant of health is marital satisfaction. The aim of this study was to investigate the relationship between watching satellite channels and intimacy and marital satisfaction in Isfahan, Iran. Materials and Methods: This cross-sectional and correlational study was conducted on one group of 480 couples ...

  6. Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data.

    Directory of Open Access Journals (Sweden)

    Can Alkan

    2007-09-01

    Full Text Available The major DNA constituent of primate centromeres is alpha satellite DNA. As much as 2%-5% of sequence generated as part of primate genome sequencing projects consists of this material, which is fragmented or not assembled as part of published genome sequences due to its highly repetitive nature. Here, we develop computational methods to rapidly recover and categorize alpha-satellite sequences from previously uncharacterized whole-genome shotgun sequence data. We present an algorithm to computationally predict potential higher-order array structure based on paired-end sequence data and then experimentally validate its organization and distribution by experimental analyses. Using whole-genome shotgun data from the human, chimpanzee, and macaque genomes, we examine the phylogenetic relationship of these sequences and provide further support for a model for their evolution and mutation over the last 25 million years. Our results confirm fundamental differences in the dispersal and evolution of centromeric satellites in the Old World monkey and ape lineages of evolution.

  7. Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data.

    Science.gov (United States)

    Alkan, Can; Ventura, Mario; Archidiacono, Nicoletta; Rocchi, Mariano; Sahinalp, S Cenk; Eichler, Evan E

    2007-09-01

    The major DNA constituent of primate centromeres is alpha satellite DNA. As much as 2%-5% of sequence generated as part of primate genome sequencing projects consists of this material, which is fragmented or not assembled as part of published genome sequences due to its highly repetitive nature. Here, we develop computational methods to rapidly recover and categorize alpha-satellite sequences from previously uncharacterized whole-genome shotgun sequence data. We present an algorithm to computationally predict potential higher-order array structure based on paired-end sequence data and then experimentally validate its organization and distribution by experimental analyses. Using whole-genome shotgun data from the human, chimpanzee, and macaque genomes, we examine the phylogenetic relationship of these sequences and provide further support for a model for their evolution and mutation over the last 25 million years. Our results confirm fundamental differences in the dispersal and evolution of centromeric satellites in the Old World monkey and ape lineages of evolution.

  8. Real-Time PCR Quantification of Chloroplast DNA Supports DNA Barcoding of Plant Species.

    Science.gov (United States)

    Kikkawa, Hitomi S; Tsuge, Kouichiro; Sugita, Ritsuko

    2016-03-01

    Species identification from extracted DNA is sometimes needed for botanical samples. DNA quantification is required for an accurate and effective examination. If a quantitative assay provides unreliable estimates, a higher quantity of DNA than the estimated amount may be used in additional analyses to avoid failure to analyze samples from which extracting DNA is difficult. Compared with conventional methods, real-time quantitative PCR (qPCR) requires a low amount of DNA and enables quantification of dilute DNA solutions accurately. The aim of this study was to develop a qPCR assay for quantification of chloroplast DNA from taxonomically diverse plant species. An absolute quantification method was developed using primers targeting the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene using SYBR Green I-based qPCR. The calibration curve was generated using the PCR amplicon as the template. DNA extracts from representatives of 13 plant families common in Japan. This demonstrates that qPCR analysis is an effective method for quantification of DNA from plant samples. The results of qPCR assist in the decision-making will determine the success or failure of DNA analysis, indicating the possibility of optimization of the procedure for downstream reactions.

  9. Comparative Genomics of Chrysochromulina Ericina Virus and Other Microalga-Infecting Large DNA Viruses Highlights Their Intricate Evolutionary Relationship with the Established Mimiviridae Family.

    Science.gov (United States)

    Gallot-Lavallée, Lucie; Blanc, Guillaume; Claverie, Jean-Michel

    2017-07-15

    Chrysochromulina ericina virus CeV-01B (CeV) was isolated from Norwegian coastal waters in 1998. Its icosahedral particle is 160 nm in diameter and encloses a 474-kb double-stranded DNA (dsDNA) genome. This virus, although infecting a microalga (the haptophyceae Haptolina ericina , formerly Chrysochromulina ericina ), is phylogenetically related to members of the Mimiviridae family, initially established with the acanthamoeba-infecting mimivirus and megavirus as prototypes. This family was later split into two genera ( Mimivirus and Cafeteriavirus ) following the characterization of a virus infecting the heterotrophic stramenopile Cafeteria roenbergensis (CroV). CeV, as well as two of its close relatives, which infect the unicellular photosynthetic eukaryotes Phaeocystis globosa (Phaeocystis globosa virus [PgV]) and Aureococcus anophagefferens (Aureococcus anophagefferens virus [AaV]), are currently unclassified by the International Committee on Viral Taxonomy (ICTV). The detailed comparative analysis of the CeV genome presented here confirms the phylogenetic affinity of this emerging group of microalga-infecting viruses with the Mimiviridae but argues in favor of their classification inside a distinct clade within the family. Although CeV, PgV, and AaV share more common features among them than with the larger Mimiviridae , they also exhibit a large complement of unique genes, attesting to their complex evolutionary history. We identified several gene fusion events and cases of convergent evolution involving independent lateral gene acquisitions. Finally, CeV possesses an unusual number of inteins, some of which are closely related despite being inserted in nonhomologous genes. This appears to contradict the paradigm of allele-specific inteins and suggests that the Mimiviridae are especially efficient in spreading inteins while enlarging their repertoire of homing genes. IMPORTANCE Although it infects the microalga Chrysochromulina ericina , CeV is more closely

  10. Efficient replication of the in vitro transcripts from cloned cDNA of tomato black ring virus satellite RNA requires the 48K satellite RNA-encoded protein.

    Science.gov (United States)

    Hemmer, O; Oncino, C; Fritsch, C

    1993-06-01

    Tomato black ring virus isolate L supports the multiplication of a large satellite RNA of 1376 nt which has no common features with the two genomic RNAs except for the terminal motif 5' VPg UUGAAAA and a 3' poly(A) tail. The TBRV sat-RNA contains an ORF for a protein of 48K which is translated both in vitro and in vivo. To determine the function of the 48K protein we have studied the effect of different mutations introduced in the ORF of the cDNA clone on the capacity of transcripts to multiply in Chenopodium quinoa plants or protoplasts when inoculated along with the genomic RNAs. Transcripts in which nucleotides have been substituted within the 5' proximal region of the ORF multiplied poorly even when the modification conserved the 48K protein sequence, suggesting that this portion of the ORF contains cis-acting RNA sequences. Transcripts with alterations in the internal region of the ORF retained their multiplication capacity provided the mutation did not destroy the ORF or modify the length of the protein expressed. The absence of multiplication in plants of transcripts unable to express the 48K protein and their inability to replicate in protoplasts suggest strongly that the sat-RNA translation product itself is implicated in the replication of sat-RNA.

  11. Editing of misaligned 3'-termini by an intrinsic 3'-5' exonuclease activity residing in the PHP domain of a family X DNA polymerase.

    Science.gov (United States)

    Baños, Benito; Lázaro, José M; Villar, Laurentino; Salas, Margarita; de Vega, Miguel

    2008-10-01

    Bacillus subtilis gene yshC encodes a family X DNA polymerase (PolX(Bs)), whose biochemical features suggest that it plays a role during DNA repair processes. Here, we show that, in addition to the polymerization activity, PolX(Bs) possesses an intrinsic 3'-5' exonuclease activity specialized in resecting unannealed 3'-termini in a gapped DNA substrate. Biochemical analysis of a PolX(Bs) deletion mutant lacking the C-terminal polymerase histidinol phosphatase (PHP) domain, present in most of the bacterial/archaeal PolXs, as well as of this separately expressed protein region, allow us to state that the 3'-5' exonuclease activity of PolX(Bs) resides in its PHP domain. Furthermore, site-directed mutagenesis of PolX(Bs) His339 and His341 residues, evolutionary conserved in the PHP superfamily members, demonstrated that the predicted metal binding site is directly involved in catalysis of the exonucleolytic reaction. The implications of the unannealed 3'-termini resection by the 3'-5' exonuclease activity of PolX(Bs) in the DNA repair context are discussed.

  12. Determination of cDNA and genomic DNA sequences of hevamine, a chitinase from the rubber tree Hevea brasiliensis

    NARCIS (Netherlands)

    Bokma, E; Spiering, M; Chow, KS; Mulder, PPMFA; Subroto, T; Beintema, JJ

    Hevamine is a chitinase from the rubber tree Hevea brasiliensis and belongs to the family 18 glycosyl hydrolases. This paper describes the cloning of hevamine DNA and cDNA sequences. Hevamine contains a signal peptide at the N-terminus and a putative vacuolar targeting sequence at the C-terminus

  13. Analysis of twelve polymorphous bookmarks in the DNA of a population sample of the Costa Rican Central Valley

    International Nuclear Information System (INIS)

    Rojas, E.; Lobo, J.; Leon, P.

    1999-01-01

    To establish databases of allele frequencies in a Costa Rican Central Valley population sample. Peripheral blood samples from more than 40 individual were used to isolate DNA and analyze each sample with 10 dinucleotide repeat genetic markers and with 2 mini satellite repeats, using the polymerase chain reaction. Alleles were identified by comparison with DNA from CEPH family members. Genotypes were determined by labelling one of the two Pcr primers with 32P before amplification, electrophoresis in sequencing gels and autoradiography. Analysis of this data set indicates that these samples is in Hardy-Weinberg equilibrium and shows no evidence of linkage disequilibrium between markers. These data are compared with results from other human populations analyzed with the same markers, finding similarities in allele frequencies among them. Notably, the Costa Rican sample presents the lowest heterozygosity value, with 4 of the 10 dinucleotide markers tested, followed by a Cerdenian sample. In contrast, the two African samples presented the highest heterozygosity indexes with a larger number of alleles. (L. Jimenez) [es

  14. Polymorphic DNA microsatellite markers for forensic individual identification and parentage analyses of seven threatened species of parrots (family Psittacidae

    Directory of Open Access Journals (Sweden)

    Catherine Jan

    2016-09-01

    Full Text Available The parrot family represents one of the bird group with the largest number of endangered species, as a result of habitat destruction and illegal trade. This illicit traffic involves the smuggling of eggs and animals, and the laundering through captive breeding facilities of wild-caught animals. Despite the huge potential of wildlife DNA forensics to determine with conclusive evidence illegal trade, current usage of DNA profiling approaches in parrots has been limited by the lack of suitable molecular markers specifically developed for the focal species and by low cross-species polymorphism. In this study, we isolated DNA microsatellite markers in seven parrot species threatened with extinction (Amazona brasiliensis, A. oratrix, A. pretrei, A. rhodocorytha, Anodorhynchus leari, Ara rubrogenys and Primolius couloni. From an enriched genomic library followed by 454 pyrosequencing, we characterized a total of 106 polymorphic microsatellite markers (mostly tetranucleotides in the seven species and tested them across an average number of 19 individuals per species. The mean number of alleles per species and across loci varied from 6.4 to 8.3, with the mean observed heterozygosities ranging from 0.65 to 0.84. Identity and parentage exclusion probabilities were highly discriminatory. The high variability displayed by these microsatellite loci demonstrates their potential utility to perform individual genotyping and parentage analyses, in order to develop a DNA testing framework to determine illegal traffic in these threatened species.

  15. WRN Exonuclease Structure, Molecular Mechanism, and DNA EndProcessing Role

    Energy Technology Data Exchange (ETDEWEB)

    Perry, J. Jefferson P.; Yannone, Steven M.; Holden, Lauren G.; Hitomi, Chiharu; Asaithamby, Aroumougame; Han, Seungil; Cooper, PriscillaK.; Chen, David J.; Tainer, John A.

    2006-02-15

    WRN is unique among the five human RecQ DNA helicases by having a functional exonuclease domain (WRN-exo) and being defective in the premature aging and cancer-related disorder Werner syndrome. Here, we characterize WRN-exo crystal structures, biochemical activity and participation in DNA end-joining. Metal ion complex structures, active site mutations and activity assays reveal a two-metal-ion mediated nuclease mechanism. The DNA end-binding Ku70/80 complex specifically stimulates WRN-exo activity, and structure-based mutational inactivation of WRN-exo alters DNA end-joining in human cells. We furthermore establish structural and biochemical similarities of WRN-exo to DnaQ family replicative proofreading exonucleases, with WRN-specific adaptations consistent with dsDNA specificity and functionally important conformational changes. These results indicate WRN-exo is a human DnaQ family member and support analogous proof-reading activities that are stimulated by Ku70/80 with implications for WRN functions in age related pathologies and maintenance of genomic integrity.

  16. Mechanistic Studies with DNA Polymerases Reveal Complex Outcomes following Bypass of DNA Damage

    Directory of Open Access Journals (Sweden)

    Robert L. Eoff

    2010-01-01

    Full Text Available DNA is a chemically reactive molecule that is subject to many different covalent modifications from sources that are both endogenous and exogenous in origin. The inherent instability of DNA is a major obstacle to genomic maintenance and contributes in varying degrees to cellular dysfunction and disease in multi-cellular organisms. Investigations into the chemical and biological aspects of DNA damage have identified multi-tiered and overlapping cellular systems that have evolved as a means of stabilizing the genome. One of these pathways supports DNA replication events by in a sense adopting the mantra that one must “make the best of a bad situation” and tolerating covalent modification to DNA through less accurate copying of the damaged region. Part of this so-called DNA damage tolerance pathway involves the recruitment of specialized DNA polymerases to sites of stalled or collapsed replication forks. These enzymes have unique structural and functional attributes that often allow bypass of adducted template DNA and successful completion of genomic replication. What follows is a selective description of the salient structural features and bypass properties of specialized DNA polymerases with an emphasis on Y-family members.

  17. Nicotiana small RNA sequences support a host genome origin of cucumber mosaic virus satellite RNA.

    Directory of Open Access Journals (Sweden)

    Kiran Zahid

    2015-01-01

    Full Text Available Satellite RNAs (satRNAs are small noncoding subviral RNA pathogens in plants that depend on helper viruses for replication and spread. Despite many decades of research, the origin of satRNAs remains unknown. In this study we show that a β-glucuronidase (GUS transgene fused with a Cucumber mosaic virus (CMV Y satellite RNA (Y-Sat sequence (35S-GUS:Sat was transcriptionally repressed in N. tabacum in comparison to a 35S-GUS transgene that did not contain the Y-Sat sequence. This repression was not due to DNA methylation at the 35S promoter, but was associated with specific DNA methylation at the Y-Sat sequence. Both northern blot hybridization and small RNA deep sequencing detected 24-nt siRNAs in wild-type Nicotiana plants with sequence homology to Y-Sat, suggesting that the N. tabacum genome contains Y-Sat-like sequences that give rise to 24-nt sRNAs capable of guiding RNA-directed DNA methylation (RdDM to the Y-Sat sequence in the 35S-GUS:Sat transgene. Consistent with this, Southern blot hybridization detected multiple DNA bands in Nicotiana plants that had sequence homology to Y-Sat, suggesting that Y-Sat-like sequences exist in the Nicotiana genome as repetitive DNA, a DNA feature associated with 24-nt sRNAs. Our results point to a host genome origin for CMV satRNAs, and suggest novel approach of using small RNA sequences for finding the origin of other satRNAs.

  18. Mutation-Induced Population Shift in the MexR Conformational Ensemble Disengages DNA Binding: A Novel Mechanism for MarR Family Derepression.

    Science.gov (United States)

    Anandapadamanaban, Madhanagopal; Pilstål, Robert; Andresen, Cecilia; Trewhella, Jill; Moche, Martin; Wallner, Björn; Sunnerhagen, Maria

    2016-08-02

    MexR is a repressor of the MexAB-OprM multidrug efflux pump operon of Pseudomonas aeruginosa, where DNA-binding impairing mutations lead to multidrug resistance (MDR). Surprisingly, the crystal structure of an MDR-conferring MexR mutant R21W (2.19 Å) presented here is closely similar to wild-type MexR. However, our extended analysis, by molecular dynamics and small-angle X-ray scattering, reveals that the mutation stabilizes a ground state that is deficient of DNA binding and is shared by both mutant and wild-type MexR, whereas the DNA-binding state is only transiently reached by the more flexible wild-type MexR. This population shift in the conformational ensemble is effected by mutation-induced allosteric coupling of contact networks that are independent in the wild-type protein. We propose that the MexR-R21W mutant mimics derepression by small-molecule binding to MarR proteins, and that the described allosteric model based on population shifts may also apply to other MarR family members. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Only male matrilineal relatives with Leber's hereditary optic neuropathy in a large Chinese family carrying the mitochondrial DNA G11778A mutation

    International Nuclear Information System (INIS)

    Qu Jia; Li Ronghua; Tong Yi; Hu Yongwu; Zhou Xiangtian; Qian Yaping; Lu Fan; Guan Minxin

    2005-01-01

    We report here the characterization of a five-generation large Chinese family with Leber's hereditary optic neuropathy (LHON). Very strikingly, six affected individuals of 38 matrilineal relatives (17 females/21 males) are exclusively males in this Chinese family. These matrilineal relatives in this family exhibited late-onset/progressive visual impairment with a wide range of severity, ranging from blindness to normal vision. The age of onset in visual impairment varies from 17 to 30 years. Sequence analysis of the complete mitochondrial genome in this pedigree revealed the presence of the G11778A mutation in ND4 gene and 29 other variants. This mitochondrial genome belongs to the Southern Chinese haplogroup B5b. We showed that the G11778A mutation is present at near homoplasmy in matrilineal relatives of this Chinese family but not in 164 Chinese controls. Incomplete penetrance of LHON in this family indicates the involvement of modulatory factors in the phenotypic expression of visual dysfunction associated with the G11778A mutation. However, none of other mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence. Thus, nuclear modifier gene(s) or environmental factor(s) seem to account for the penetrance and phenotypic variability of LHON in this Chinese family carrying the G11778A mutation

  20. Direct-to-consumer DNA testing: the fallout for individuals and their families unexpectedly learning of their donor conception origins.

    Science.gov (United States)

    Crawshaw, Marilyn

    2017-07-11

    Increasing numbers of donor-conceived individuals (and/or parents) are seeking individuals genetically related through donor conception. One route is through 'direct-to-consumer' (DTC) DNA testing, prompting calls for fertility services to alert donors and prospective parents to the increasing unsustainability of anonymity and secrecy. The complexity of interpreting DNA results in this context has also been discussed, including their lack of absolute certainty, as has the need for professional and peer support. This commentary highlights a different 'threat', from individuals learning of their donor-conception origins through the use of such tests by themselves or relatives for such purposes as genealogy or health checks. It illustrates the personal complexities faced by three older women and their families on learning not only of their genetic relationship to each other but also to 15 more donor-related siblings. DTC DNA services are a growing feature of modern life. This commentary raises ethical questions about their responsibilities towards those inadvertently learning of donor conception origins and the responsibilities of fertility services to inform prospective parents and donors of this new phenomenon. Considerations of how and when parents should tell their children of their donor-conception origins here instead become how and when children should inform their parents.

  1. W-enriched satellite sequence in the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae).

    Science.gov (United States)

    Dalíková, Martina; Zrzavá, Magda; Kubíčková, Svatava; Marec, František

    2017-10-01

    The W chromosome of most lepidopteran species represents the largest heterochromatin entity in the female genome. Although satellite DNA is a typical component of constitutive heterochromatin, there are only a few known satellite DNAs (satDNAs) located on the W chromosome in moths and butterflies. In this study, we isolated and characterized new satDNA (PiSAT1) from microdissected W chromosomes of the Indian meal moth, Plodia interpunctella. Even though the PiSAT1 is mainly localized near the female-specific segment of the W chromosome, short arrays of this satDNA also occur on autosomes and/or the Z chromosome. Probably due to the predominant location in the non-recombining part of the genome, PiSAT1 exhibits a relatively large nucleotide variability in its monomers. However, at least a part of all predicted functional motifs is located in conserved regions. Moreover, we detected polyadenylated transcripts of PiSAT1 in all developmental stages and in both sexes (female and male larvae, pupae and adults). Our results suggest a potential structural and functional role of PiSAT1 in the P. interpunctella genome, which is consistent with accumulating evidence for the important role of satDNAs in eukaryotic genomes.

  2. Investigating the relationship between watching satellite channels and intimacy and marital satisfaction of couples in Isfahan, Iran, in 2014.

    Science.gov (United States)

    Babaie, Zohre; Keshvari, Mahrokh; Zamani, Ahmadreza

    2016-01-01

    In the age of communication and media that families are rapidly driven towards using satellite channels and other media, considering family health in this regard is essential. A determinant of health is marital satisfaction. The aim of this study was to investigate the relationship between watching satellite channels and intimacy and marital satisfaction in Isfahan, Iran. This cross-sectional and correlational study was conducted on one group of 480 couples ( n = 960) participating from 8 health-treatment centers in Isfahan. Multi-stage cluster sampling was used in this study. Inclusion criteria included at least 2 years of marriage. After completion of Bagarozzi's Marital Intimacy Questionnaire and ENRICH Marital Inventory, the couples were divided into two groups based on watching satellite networks. Data were analyzed using SPSS 18. There was a significant relationship between intimacy and marital satisfaction in both viewers and non-viewers of satellite channels ( P satellite viewing group was 22.4 minutes and in non-viewers group was 47.95 min. In addition, the duration of interaction had a significant relationship with marital satisfaction and intimacy ( P satellite channels reduced the intimacy and marital satisfaction of the couples, and duration of interaction among the couples.

  3. Gadd45a promotes DNA demethylation through TDG

    OpenAIRE

    Li, Zheng; Gu, Tian-Peng; Weber, Alain R.; Shen, Jia-Zhen; Li, Bin-Zhong; Xie, Zhi-Guo; Yin, Ruichuan; Guo, Fan; Liu, Xiaomeng; Tang, Fuchou; Wang, Hailin; Sch?r, Primo; Xu, Guo-Liang

    2015-01-01

    Growth arrest and DNA-damage-inducible protein 45 (Gadd45) family members have been implicated in DNA demethylation in vertebrates. However, it remained unclear how they contribute to the demethylation process. Here, we demonstrate that Gadd45a promotes active DNA demethylation through thymine DNA glycosylase (TDG) which has recently been shown to excise 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) generated in Ten-eleven-translocation (Tet)?initiated oxidative demethylation. The conn...

  4. A combined approach of DNA probe and RFLP for family and species identification of larval stages of commercially important aquatic species: A study on the surfclam Spisula solidissima

    Digital Repository Service at National Institute of Oceanography (India)

    Achuthankutty, C.T.

    fragment length polymorphism (RFLP) analysis. An oilgonucleotide sequence designed from the 18S ribosomal RNA gene (nucleotide position 259-276) provided a sensitive probe for the Family Mactridae, to which S. solidissima belongs. DNA of unknown larvae...

  5. Recent advances in DNA repair and recombination.

    Science.gov (United States)

    Iwanejko, L A; Jones, N J

    1998-09-11

    The subjects of the talks at this 1-day DNA Repair Network meeting, held at City University, London on December 15, 1997, encompassed a range of topics and reflected some of the current areas of research in the United Kingdom. Topics included DNA double-strand break repair, V(D)J recombination, DNA ligases, the RecQ family of helicases and Bloom's syndrome, UVB and immunosuppression, the repair of oxidative damage and mismatch repair mechanisms.

  6. DNA: The Strand that Connects Us All

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Matt [Univ. of Arizona, Tucson, AZ (United States). Genetics Core Facility

    2011-03-29

    Learn how the methods and discoveries of human population genetics are applied for personal genealogical reconstruction and anthropological testing. Dr. Kaplan starts with a short general review of human genetics and the biology behind this form of DNA testing. He looks at how DNA testing is performed and how samples are processed in the University of Arizona laboratory. He also examines examples of personal genealogical results from Family Tree DNA and personal anthropological results from the Genographic Project. Finally, he describes the newest project in the UA laboratory, the DNA Shoah Project.

  7. Analysis of the DNA-Binding Activities of the Arabidopsis R2R3-MYB Transcription Factor Family by One-Hybrid Experiments in Yeast.

    Directory of Open Access Journals (Sweden)

    Zsolt Kelemen

    Full Text Available The control of growth and development of all living organisms is a complex and dynamic process that requires the harmonious expression of numerous genes. Gene expression is mainly controlled by the activity of sequence-specific DNA binding proteins called transcription factors (TFs. Amongst the various classes of eukaryotic TFs, the MYB superfamily is one of the largest and most diverse, and it has considerably expanded in the plant kingdom. R2R3-MYBs have been extensively studied over the last 15 years. However, DNA-binding specificity has been characterized for only a small subset of these proteins. Therefore, one of the remaining challenges is the exhaustive characterization of the DNA-binding specificity of all R2R3-MYB proteins. In this study, we have developed a library of Arabidopsis thaliana R2R3-MYB open reading frames, whose DNA-binding activities were assayed in vivo (yeast one-hybrid experiments with a pool of selected cis-regulatory elements. Altogether 1904 interactions were assayed leading to the discovery of specific patterns of interactions between the various R2R3-MYB subgroups and their DNA target sequences and to the identification of key features that govern these interactions. The present work provides a comprehensive in vivo analysis of R2R3-MYB binding activities that should help in predicting new DNA motifs and identifying new putative target genes for each member of this very large family of TFs. In a broader perspective, the generated data will help to better understand how TF interact with their target DNA sequences.

  8. DNA moves sequentially towards the nuclear matrix during DNA replication in vivo

    Directory of Open Access Journals (Sweden)

    Aranda-Anzaldo Armando

    2011-01-01

    Full Text Available Abstract Background In the interphase nucleus of metazoan cells DNA is organized in supercoiled loops anchored to a nuclear matrix (NM. There is varied evidence indicating that DNA replication occurs in replication factories organized upon the NM and that DNA loops may correspond to the actual replicons in vivo. In normal rat liver the hepatocytes are arrested in G0 but they synchronously re-enter the cell cycle after partial-hepatectomy leading to liver regeneration in vivo. We have previously determined in quiescent rat hepatocytes that a 162 kbp genomic region containing members of the albumin gene family is organized into five structural DNA loops. Results In the present work we tracked down the movement relative to the NM of DNA sequences located at different points within such five structural DNA loops during the S phase and after the return to cellular quiescence during liver regeneration. Our results indicate that looped DNA moves sequentially towards the NM during replication and then returns to its original position in newly quiescent cells, once the liver regeneration has been achieved. Conclusions Looped DNA moves in a sequential fashion, as if reeled in, towards the NM during DNA replication in vivo thus supporting the notion that the DNA template is pulled progressively towards the replication factories on the NM so as to be replicated. These results provide further evidence that the structural DNA loops correspond to the actual replicons in vivo.

  9. Evolutionary Dynamics of 5S rDNA and Recurrent Association of Transposable Elements in Electric Fish of the Family Gymnotidae (Gymnotiformes): The Case of Gymnotus mamiraua.

    Science.gov (United States)

    da Silva, Maelin; Barbosa, Patricia; Artoni, Roberto F; Feldberg, Eliana

    2016-01-01

    Gymnotidae is a family of electric fish endemic to the Neotropics consisting of 2 genera: Electrophorus and Gymnotus. The genus Gymnotus is widely distributed and is found in all of the major Brazilian river systems. Physical and molecular mapping data for the ribosomal DNA (rDNA) in this genus are still scarce, with its chromosomal location known in only 11 species. As other species of Gymnotus with 2n = 54 chromosomes from the Paraná-Paraguay basin, G. mamiraua was found to have a large number of 5S rDNA sites. Isolation and cloning of the 5S rDNA sequences from G. mamiraua identified a fragment of a transposable element similar to the Tc1/mariner transposon associated with a non-transcribed spacer. Double fluorescence in situ hybridization analysis of this element and the 5S rDNA showed that they were colocalized on several chromosomes, in addition to acting as nonsyntenic markers on others. Our data show the association between these sequences and suggest that the Tc1 retrotransposon may be the agent that drives the spread of these 5S rDNA-like sequences in the G. mamiraua genome. © 2016 S. Karger AG, Basel.

  10. Saturn satellites

    International Nuclear Information System (INIS)

    Ruskol, E.L.

    1981-01-01

    The characteristics of the Saturn satellites are discussed. The satellites close to Saturn - Janus, Mimas, Enceladus, Tethys, Dione and Rhea - rotate along the circular orbits. High reflectivity is attributed to them, and the density of the satellites is 1 g/cm 3 . Titan is one of the biggest Saturn satellites. Titan has atmosphere many times more powerful than that of Mars. The Titan atmosphere is a peculiar medium with a unique methane and hydrogen distribution in the whole Solar system. The external satellites - Hyperion, Japetus and Phoebe - are poorly investigated. Neither satellite substance density, nor their composition are known. The experimental data on the Saturn rings obtained on the ''Pioneer-11'' and ''Voyager-1'' satellites are presented [ru

  11. Molecular organization and chromosomal localization of 5S rDNA in Amazonian Engystomops (Anura, Leiuperidae).

    Science.gov (United States)

    Rodrigues, Débora Silva; Rivera, Miryan; Lourenço, Luciana Bolsoni

    2012-03-20

    For anurans, knowledge of 5S rDNA is scarce. For Engystomops species, chromosomal homeologies are difficult to recognize due to the high level of inter- and intraspecific cytogenetic variation. In an attempt to better compare the karyotypes of the Amazonian species Engystomops freibergi and Engystomops petersi, and to extend the knowledge of 5S rDNA organization in anurans, the 5S rDNA sequences of Amazonian Engystomops species were isolated, characterized, and mapped. Two types of 5S rDNA, which were readily differentiated by their NTS (non-transcribed spacer) sizes and compositions, were isolated from specimens of E. freibergi from Brazil and E. petersi from two Ecuadorian localities (Puyo and Yasuní). In the E. freibergi karyotypes, the entire type I 5S rDNA repeating unit hybridized to the pericentromeric region of 3p, whereas the entire type II 5S rDNA repeating unit mapped to the distal region of 6q, suggesting a differential localization of these sequences. The type I NTS probe clearly detected the 3p pericentromeric region in the karyotypes of E. freibergi and E. petersi from Puyo and the 5p pericentromeric region in the karyotype of E. petersi from Yasuní, but no distal or interstitial signals were observed. Interestingly, this probe also detected many centromeric regions in the three karyotypes, suggesting the presence of a satellite DNA family derived from 5S rDNA. The type II NTS probe detected only distal 6q regions in the three karyotypes, corroborating the differential distribution of the two types of 5S rDNA. Because the 5S rDNA types found in Engystomops are related to those of Physalaemus with respect to their nucleotide sequences and chromosomal locations, their origin likely preceded the evolutionary divergence of these genera. In addition, our data indicated homeology between Chromosome 5 in E. petersi from Yasuní and Chromosomes 3 in E. freibergi and E. petersi from Puyo. In addition, the chromosomal location of the type II 5S rDNA

  12. Homoplasmy of the G7444A mtDNA and heterozygosity of the GJB2 c.35delG mutations in a family with hearing loss

    DEFF Research Database (Denmark)

    Kokotas, Haris; Grigoriadou, Maria; Yang, Li

    2011-01-01

    Mitochondrial mutations have been shown to be responsible for syndromic as well as non-syndromic hearing loss. The G7444A mitochondrial DNA mutation affects COI/the precursor of tRNA(Ser(UCN)), encoding the first subunit of cytochrome oxidase. Here we report on the first Greek family with the G74...

  13. A Novel AT-Rich DNA Recognition Mechanism for Bacterial Xenogeneic Silencer MvaT.

    Directory of Open Access Journals (Sweden)

    Pengfei Ding

    2015-06-01

    Full Text Available Bacterial xenogeneic silencing proteins selectively bind to and silence expression from many AT rich regions of the chromosome. They serve as master regulators of horizontally acquired DNA, including a large number of virulence genes. To date, three distinct families of xenogeneic silencers have been identified: H-NS of Proteobacteria, Lsr2 of the Actinomycetes, and MvaT of Pseudomonas sp. Although H-NS and Lsr2 family proteins are structurally different, they all recognize the AT-rich DNA minor groove through a common AT-hook-like motif, which is absent in the MvaT family. Thus, the DNA binding mechanism of MvaT has not been determined. Here, we report the characteristics of DNA sequences targeted by MvaT with protein binding microarrays, which indicates that MvaT prefers binding flexible DNA sequences with multiple TpA steps. We demonstrate that there are clear differences in sequence preferences between MvaT and the other two xenogeneic silencer families. We also determined the structure of the DNA-binding domain of MvaT in complex with a high affinity DNA dodecamer using solution NMR. This is the first experimental structure of a xenogeneic silencer in complex with DNA, which reveals that MvaT recognizes the AT-rich DNA both through base readout by an "AT-pincer" motif inserted into the minor groove and through shape readout by multiple lysine side chains interacting with the DNA sugar-phosphate backbone. Mutations of key MvaT residues for DNA binding confirm their importance with both in vitro and in vivo assays. This novel DNA binding mode enables MvaT to better tolerate GC-base pair interruptions in the binding site and less prefer A tract DNA when compared to H-NS and Lsr2. Comparison of MvaT with other bacterial xenogeneic silencers provides a clear picture that nature has evolved unique solutions for different bacterial genera to distinguish foreign from self DNA.

  14. Collage of Saturn's smaller satellites

    Science.gov (United States)

    1981-01-01

    This family portrait shows the smaller satellites of Saturn as viewed by Voyager 2 during its swing through the Saturnian system. The following chart corresponds to this composite photograph (distance from the planet increases from left to right) and lists names, standard numerical designations and approximate dimensions (radii where indicated) in kilometers: 1980S26Outer F-ringshepherd120 X 100 1980S1Leadingco-orbital220 X 160 1980S25TrailingTethys trojanradii: 25 1980S28Outer Ashepherdradii: 20 1980S27Inner F-ringco-orbital145 X 70 1980S3TrailingTethys trojan140 X 100 1980S13LeadingTethys trojanradii: 30 1980S6LeadingDione trojanradii: 30 These images have been scaled to show the satellites in true relative sizes. This set of small objects ranges in size from small asteroidal scales to nearly the size of Saturn's moon Mimas. They are probably fragments of somewhat larger bodies broken up during the bombardment period that followed accretion of the Saturnian system. Scientists believe they may be mostly icy bodies with a mixture of meteorite rock. They are somewhat less reflective than the larger satellites, suggesting that thermal evolution of the larger moons 'cleaned up' their icy surfaces. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  15. Myostatin signals through Pax7 to regulate satellite cell self-renewal

    International Nuclear Information System (INIS)

    McFarlane, Craig; Hennebry, Alex; Thomas, Mark; Plummer, Erin; Ling, Nicholas; Sharma, Mridula; Kambadur, Ravi

    2008-01-01

    Myostatin, a Transforming Growth Factor-beta (TGF-β) super-family member, has previously been shown to negatively regulate satellite cell activation and self-renewal. However, to date the mechanism behind Myostatin function in satellite cell biology is not known. Here we show that Myostatin signals via a Pax7-dependent mechanism to regulate satellite cell self-renewal. While excess Myostatin inhibited Pax7 expression via ERK1/2 signaling, an increase in Pax7 expression was observed following both genetic inactivation and functional antagonism of Myostatin. As a result, we show that either blocking or inactivating Myostatin enhances the partitioning of the fusion-incompetent self-renewed satellite cell lineage (high Pax7 expression, low MyoD expression) from the pool of actively proliferating myogenic precursor cells. Consistent with this result, over-expression of Pax7 in C2C12 myogenic cells resulted in increased self-renewal through a mechanism which slowed both myogenic proliferation and differentiation. Taken together, these results suggest that increased expression of Pax7 promotes satellite cell self-renewal, and furthermore Myostatin may control the process of satellite cell self-renewal through regulation of Pax7. Thus we speculate that, in addition to the intrinsic factors (such as Pax7), extrinsic factors both positive and negative in nature, will play a major role in determining the stemness of skeletal muscle satellite cells

  16. THE CREATION OF HAUMEA'S COLLISIONAL FAMILY

    International Nuclear Information System (INIS)

    Schlichting, Hilke E.; Sari, Re'em

    2009-01-01

    Recently, the first collisional family was discovered in the Kuiper Belt. The parent body of this family, Haumea, is one of the largest objects in the Kuiper Belt and is orbited by two satellites. It has been proposed that the Haumea family was created from dispersed fragments that resulted from a giant impact. This proposed origin of the Haumea family is however in conflict with the observed velocity dispersion between the family members (∼ 140 m s -1 ) which is significantly less than the escape velocity from Haumea's surface (∼ 900 m s -1 ). In this paper we propose a different formation scenario for Haumea's collisional family. In our scenario the family members are ejected while in orbit around Haumea. This scenario, therefore, naturally gives rise to a lower velocity dispersion among the family members than expected from direct ejection from Haumea's surface. In our scenario Haumea's giant impact forms a single moon that tidally evolves outward until it suffers a destructive collision from which the family is created. We show that this formation scenario yields a velocity dispersion of ∼ 190 m s -1 among the family members which is in good agreement with the observations. We discuss an alternative scenario that consists of the formation and tidal evolution of several satellites that are ejected by collisions with unbound Kuiper Belt objects. However, the formation of the Haumea family in this latter way is difficult to reconcile with the large abundance of Kuiper Belt binaries. We, therefore, favor forming the family by a destructive collision of a single moon of Haumea. The probability for Haumea's initial giant impact in today's Kuiper Belt is less than 10 -3 . In our scenario, however, Haumea's giant impact can occur before the excitation of the Kuiper Belt and the ejection of the family members afterward. This has the advantage that one can preserve the dynamical coherence of the family and explain Haumea's original giant impact, which is several

  17. The nucleotide sequence of satellite RNA in grapevine fanleaf virus, strain F13.

    Science.gov (United States)

    Fuchs, M; Pinck, M; Serghini, M A; Ravelonandro, M; Walter, B; Pinck, L

    1989-04-01

    The nucleotide sequence of cDNA copies of grapevine fanleaf virus (strain F13) satellite RNA has been determined. The primary structure obtained was 1114 nucleotides in length, excluding the poly(A) tail, and contained only one long open reading frame encoding a 341 residue, highly hydrophilic polypeptide of Mr37275. The coding sequence was bordered by a leader of 14 nucleotides and a 3'-terminal non-coding region of 74 nucleotides. No homology has been found with small satellite RNAs associated with other nepoviruses. Two limited homologies of eight nucleotides have been detected between the satellite RNA in grapevine fanleaf virus and those in tomato black ring virus, and a consensus sequence U.G/UGAAAAU/AU/AU/A at the 5' end of nepovirus RNAs is reported. A less extended consensus exists in this region in comovirus and picornavirus RNA.

  18. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Andruszkiewicz

    Full Text Available Molecular analysis of environmental DNA (eDNA can be used to assess vertebrate biodiversity in aquatic systems, but limited work has applied eDNA technologies to marine waters. Further, there is limited understanding of the spatial distribution of vertebrate eDNA in marine waters. Here, we use an eDNA metabarcoding approach to target and amplify a hypervariable region of the mitochondrial 12S rRNA gene to characterize vertebrate communities at 10 oceanographic stations spanning 45 km within the Monterey Bay National Marine Sanctuary (MBNMS. In this study, we collected three biological replicates of small volume water samples (1 L at 2 depths at each of the 10 stations. We amplified fish mitochondrial DNA using a universal primer set. We obtained 5,644,299 high quality Illumina sequence reads from the environmental samples. The sequence reads were annotated to the lowest taxonomic assignment using a bioinformatics pipeline. The eDNA survey identified, to the lowest taxonomic rank, 7 families, 3 subfamilies, 10 genera, and 72 species of vertebrates at the study sites. These 92 distinct taxa come from 33 unique marine vertebrate families. We observed significantly different vertebrate community composition between sampling depths (0 m and 20/40 m deep across all stations and significantly different communities at stations located on the continental shelf (200 m bottom depth. All but 1 family identified using eDNA metabarcoding is known to occur in MBNMS. The study informs the implementation of eDNA metabarcoding for vertebrate biomonitoring.

  19. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks

    International Nuclear Information System (INIS)

    Fukumoto, Yasunori; Kuki, Kazumasa; Morii, Mariko; Miura, Takahito; Honda, Takuya; Ishibashi, Kenichi; Hasegawa, Hitomi; Kubota, Sho; Ide, Yudai; Yamaguchi, Noritaka; Nakayama, Yuji; Yamaguchi, Naoto

    2014-01-01

    Highlights: • Inhibition of Src family kinases decreased γ-H2AX signal. • Inhibition of Src family increased ATM-dependent phosphorylation of Chk2 and Kap1. • shRNA-mediated knockdown of Lyn increased phosphorylation of Kap1 by ATM. • Ectopic expression of Src family kinase suppressed ATM-mediated Kap1 phosphorylation. • Src is involved in upstream signaling for inactivation of ATM signaling. - Abstract: DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint

  20. Genome-wide characterization of centromeric satellites from multiple mammalian genomes.

    Science.gov (United States)

    Alkan, Can; Cardone, Maria Francesca; Catacchio, Claudia Rita; Antonacci, Francesca; O'Brien, Stephen J; Ryder, Oliver A; Purgato, Stefania; Zoli, Monica; Della Valle, Giuliano; Eichler, Evan E; Ventura, Mario

    2011-01-01

    Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present a computational method (RepeatNet) to systematically identify higher-order repeat structures from unassembled whole-genome shotgun sequence and test whether these sequence elements correspond to functional centromeric sequences. We analyzed genome datasets from six species of mammals representing the diversity of the mammalian lineage, namely, horse, dog, elephant, armadillo, opossum, and platypus. We define candidate monomer satellite repeats and demonstrate centromeric localization for five of the six genomes. Our analysis revealed the greatest diversity of centromeric sequences in horse and dog in contrast to elephant and armadillo, which showed high-centromeric sequence homogeneity. We could not isolate centromeric sequences within the platypus genome, suggesting that centromeres in platypus are not enriched in satellite DNA. Our method can be applied to the characterization of thousands of other vertebrate genomes anticipated for sequencing in the near future, providing an important tool for annotation of centromeres.

  1. Homologous alpha satellite sequences on human acrocentric chromosomes with selectivity for chromosomes 13, 14, and 21: implications for recombination between nonhomologues and Robertsonian translocations

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K H; Vissel, B; Brown, R; Filby, R G; Earle, E

    1988-02-25

    The authors report a new subfamily of alpha satellite DNA (pTRA-2) which is found on all the human acrocentric chromosomes. The alphoid nature of the cloned DNA was established by partial sequencing. Southern analysis of restriction enzyme-digested DNA fragments from mouse/human hybrid cells containing only human chromosome 21 showed that the predominant higher-order repeating unit for pTRA-2 is a 3.9 kb structure. Analysis of a consensus in situ hybridization profile derived from 13 normal individuals revealed the localization of 73% of all centromeric autoradiographic grains over the five acrocentric chromosomes, with the following distribution: 20.4%, 21.5%, 17.1%, 7.3% and 6.5% on chromosomes 13, 14, 21, 15 and 22 respectively. An average of 1.4% of grains was found on the centromere of each of the remaining 19 nonacrocentric chromosomes. These results indicate the presence of a common subfamily of alpha satellite DNA on the five acrocentric chromosomes and suggest an evolutionary process consistent with recombination exchange of sequences between the nonhomologues. The results further suggests that such exchanges are more selective for chromosomes 13, 14 and 21 than for chromosomes 15 and 22. The possible role of centromeric alpha satellite DNA in the aetiology of 13q14q and 14q21q Robertsonian translocation involving the common and nonrandom association of chromosomes 13 and 14, and 14 and 21 is discussed.

  2. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

    OpenAIRE

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D

    2015-01-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1-2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand brea...

  3. DNA polymerase preference determines PCR priming efficiency.

    Science.gov (United States)

    Pan, Wenjing; Byrne-Steele, Miranda; Wang, Chunlin; Lu, Stanley; Clemmons, Scott; Zahorchak, Robert J; Han, Jian

    2014-01-30

    Polymerase chain reaction (PCR) is one of the most important developments in modern biotechnology. However, PCR is known to introduce biases, especially during multiplex reactions. Recent studies have implicated the DNA polymerase as the primary source of bias, particularly initiation of polymerization on the template strand. In our study, amplification from a synthetic library containing a 12 nucleotide random portion was used to provide an in-depth characterization of DNA polymerase priming bias. The synthetic library was amplified with three commercially available DNA polymerases using an anchored primer with a random 3' hexamer end. After normalization, the next generation sequencing (NGS) results of the amplified libraries were directly compared to the unamplified synthetic library. Here, high throughput sequencing was used to systematically demonstrate and characterize DNA polymerase priming bias. We demonstrate that certain sequence motifs are preferred over others as primers where the six nucleotide sequences at the 3' end of the primer, as well as the sequences four base pairs downstream of the priming site, may influence priming efficiencies. DNA polymerases in the same family from two different commercial vendors prefer similar motifs, while another commercially available enzyme from a different DNA polymerase family prefers different motifs. Furthermore, the preferred priming motifs are GC-rich. The DNA polymerase preference for certain sequence motifs was verified by amplification from single-primer templates. We incorporated the observed DNA polymerase preference into a primer-design program that guides the placement of the primer to an optimal location on the template. DNA polymerase priming bias was characterized using a synthetic library amplification system and NGS. The characterization of DNA polymerase priming bias was then utilized to guide the primer-design process and demonstrate varying amplification efficiencies among three commercially

  4. DNA barcode identification of Podocarpaceae--the second largest conifer family.

    Science.gov (United States)

    Little, Damon P; Knopf, Patrick; Schulz, Christian

    2013-01-01

    We have generated matK, rbcL, and nrITS2 DNA barcodes for 320 specimens representing all 18 extant genera of the conifer family Podocarpaceae. The sample includes 145 of the 198 recognized species. Comparative analyses of sequence quality and species discrimination were conducted on the 159 individuals from which all three markers were recovered (representing 15 genera and 97 species). The vast majority of sequences were of high quality (B 30 = 0.596-0.989). Even the lowest quality sequences exceeded the minimum requirements of the BARCODE data standard. In the few instances that low quality sequences were generated, the responsible mechanism could not be discerned. There were no statistically significant differences in the discriminatory power of markers or marker combinations (p = 0.05). The discriminatory power of the barcode markers individually and in combination is low (56.7% of species at maximum). In some instances, species discrimination failed in spite of ostensibly useful variation being present (genotypes were shared among species), but in many cases there was simply an absence of sequence variation. Barcode gaps (maximum intraspecific p-distance > minimum interspecific p-distance) were observed in 50.5% of species when all three markers were considered simultaneously. The presence of a barcode gap was not predictive of discrimination success (p = 0.02) and there was no statistically significant difference in the frequency of barcode gaps among markers (p = 0.05). In addition, there was no correlation between number of individuals sampled per species and the presence of a barcode gap (p = 0.27).

  5. Duplication in DNA Sequences

    Science.gov (United States)

    Ito, Masami; Kari, Lila; Kincaid, Zachary; Seki, Shinnosuke

    The duplication and repeat-deletion operations are the basis of a formal language theoretic model of errors that can occur during DNA replication. During DNA replication, subsequences of a strand of DNA may be copied several times (resulting in duplications) or skipped (resulting in repeat-deletions). As formal language operations, iterated duplication and repeat-deletion of words and languages have been well studied in the literature. However, little is known about single-step duplications and repeat-deletions. In this paper, we investigate several properties of these operations, including closure properties of language families in the Chomsky hierarchy and equations involving these operations. We also make progress toward a characterization of regular languages that are generated by duplicating a regular language.

  6. CpSAT-1, a transcribed satellite sequence from the codling moth, Cydia pomonella

    Czech Academy of Sciences Publication Activity Database

    Věchtová, Pavlína; Dalíková, Martina; Sýkorová, Miroslava; Žurovcová, Martina; Füssy, Zoltán; Zrzavá, Magda

    2016-01-01

    Roč. 144, č. 4 (2016), s. 385-395 ISSN 0016-6707 R&D Projects: GA ČR GA523/09/2106; GA ČR(CZ) GA14-22765S Institutional support: RVO:60077344 Keywords : Cydia pomonella * satellite DNA * holokinetic chromosomes * sex chromosomes * Lepidoptera Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.207, year: 2016

  7. The future of forensic DNA analysis

    Science.gov (United States)

    Butler, John M.

    2015-01-01

    The author's thoughts and opinions on where the field of forensic DNA testing is headed for the next decade are provided in the context of where the field has come over the past 30 years. Similar to the Olympic motto of ‘faster, higher, stronger’, forensic DNA protocols can be expected to become more rapid and sensitive and provide stronger investigative potential. New short tandem repeat (STR) loci have expanded the core set of genetic markers used for human identification in Europe and the USA. Rapid DNA testing is on the verge of enabling new applications. Next-generation sequencing has the potential to provide greater depth of coverage for information on STR alleles. Familial DNA searching has expanded capabilities of DNA databases in parts of the world where it is allowed. Challenges and opportunities that will impact the future of forensic DNA are explored including the need for education and training to improve interpretation of complex DNA profiles. PMID:26101278

  8. Variations in brain DNA

    Directory of Open Access Journals (Sweden)

    Jesus eAvila

    2014-11-01

    Full Text Available It is assumed that DNA sequences are conserved in the diverse cell types present in a multicellular organism like the human being. Thus, in order to compare the sequences in the genome of DNA from different individuals, nucleic acid is commonly isolated from a single tissue. In this regard, blood cells are widely used for this purpose because of their availability. Thus blood DNA has been used to study genetic familiar diseases that affect other tissues and organs, such as the liver, heart, and brain. While this approach is valid for the identification of familial diseases in which mutations are present in parental germinal cells and, therefore, in all the cells of a given organism, it is not suitable to identify sporadic diseases in which mutations might occur in specific somatic cells. This review addresses somatic DNA variations in different tissues or cells (mainly in the brain of single individuals and discusses whether the dogma of DNA invariance between cell types is indeed correct. We will also discuss how single nucleotide somatic variations arise, focusing on the presence of specific DNA mutations in the brain.

  9. Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family.

    Science.gov (United States)

    Dai, Qi; Ren, Aiming; Westholm, Jakub O; Duan, Hong; Patel, Dinshaw J; Lai, Eric C

    2015-01-01

    Recently, the BEN (BANP, E5R, and NAC1) domain was recognized as a new class of conserved DNA-binding domain. The fly genome encodes three proteins that bear only a single BEN domain ("BEN-solo" factors); namely, Insensitive (Insv), Bsg25A (Elba1), and CG9883 (Elba2). Insv homodimers preferentially bind CCAATTGG palindromes throughout the genome to mediate transcriptional repression, whereas Bsg25A and Elba2 heterotrimerize with their obligate adaptor, Elba3 (i.e., the ELBA complex), to recognize a CCAATAAG motif in the Fab-7 insulator. While these data suggest distinct DNA-binding properties of BEN-solo proteins, we performed reporter assays that indicate that both Bsg25A and Elba2 can individually recognize Insv consensus sites efficiently. We confirmed this by solving the structure of Bsg25A complexed to the Insv site, which showed that key aspects of the BEN:DNA recognition strategy are similar between these proteins. We next show that both Insv and ELBA proteins are competent to mediate transcriptional repression via Insv consensus sequences but that the ELBA complex appears to be selective for the ELBA site. Reciprocally, genome-wide analysis reveals that Insv exhibits significant cobinding to class I insulator elements, indicating that it may also contribute to insulator function. Indeed, we observed abundant Insv binding within the Hox complexes with substantial overlaps with class I insulators, many of which bear Insv consensus sites. Moreover, Insv coimmunoprecipitates with the class I insulator factor CP190. Finally, we observed that Insv harbors exclusive activity among fly BEN-solo factors with respect to regulation of Notch-mediated cell fate choices in the peripheral nervous system. This in vivo activity is recapitulated by BEND6, a mammalian BEN-solo factor that conserves the Notch corepressor function of Insv but not its capacity to bind Insv consensus sites. Altogether, our data define an array of common and distinct biochemical and functional

  10. Genetic Diversity and Population Structure of a Threatened African Tree Species, Milicia excelsa, Using Nuclear Micro satellites DNA Markers

    International Nuclear Information System (INIS)

    Ouinsavi, Ch.; Sokpon, N.; Ouinsavi, Ch.; Khasa, D.P.

    2009-01-01

    To accurately estimate the genetic diversity and population structure for improved conservation planning of Milicia excelsa tree, 212 individuals from twelve population samples covering the species' range in Benin were surveyed at seven specific micro satellite DNA loci. All loci were variable, with the mean number of alleles per locus ranging from 5.86 to 7.69. Considerable genetic variability was detected for all populations at the seven loci (AR=4.60; HE=0.811). Moderate but statistically significant genetic differentiation was found among populations considering both FST (0.112) and RST (0.342). All of the populations showed heterozygosity deficits in test of Hardy-Weinberg Equilibrium and significantly positive FIS values due to inbreeding occurring in the species. Pairwise FST values were positively and significantly correlated with geographical distances (r=0.432; P=.007, Mantel's test) indicating that populations are differentiated by isolation by distance. Bayesian analysis of population structure showed division of the genetic variation into four clusters revealing the existence of heterogeneity in population genetic structure. Altogether, these results indicate that genetic variation in Milicia excelsa is geographically structured. Information gained from this study also emphasized the need for in situ conservation of the relict populations and establishment of gene flow corridors through agroforestry systems for interconnecting these remnant populations.

  11. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration

    NARCIS (Netherlands)

    Mokalled, Mayssa H.; Johnson, Aaron N.; Creemers, Esther E.; Olson, Eric N.

    2012-01-01

    In response to skeletal muscle injury, satellite cells, which function as a myogenic stem cell population, become activated, expand through proliferation, and ultimately fuse with each other and with damaged myofibers to promote muscle regeneration. Here, we show that members of the Myocardin family

  12. DNA-binding specificity and molecular functions of NAC transcription factors

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi Asschenfeldt; Lo Leggio, Leila

    2005-01-01

    The family of NAC (NAM/ATAF1,2/CUC2) transcription factors has been implicated in a wide range of plant processes, but knowledge on the DNA-binding properties of the family is limited. Using a reiterative selection procedure on random oligonucleotides, we have identified consensus binding sites....... Furthermore, NAC protein binding to the CaMV 35S promoter was shown to depend on sequences similar to the consensus of the selected oligonucleotides. Electrophoretic mobility shift assays demonstrated that NAC proteins bind DNA as homo- or heterodimers and that dimerization is necessary for stable DNA binding....... The ability of NAC proteins to dimerize and to bind DNAwas analysed by structure-based mutagenesis. This identified two salt bridge-forming residues essential for NAC protein dimerization. Alteration of basic residues in a loop region containing several highly conserved residues abolished DNA binding. Thus...

  13. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage.

    Science.gov (United States)

    Hill, Sarah J; Mordes, Daniel A; Cameron, Lisa A; Neuberg, Donna S; Landini, Serena; Eggan, Kevin; Livingston, David M

    2016-11-29

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.

  14. Analysis of unstable DNA sequence in FRM1 gene in Polish families with fragile X syndrome

    International Nuclear Information System (INIS)

    Milewski, Michal; Bal, Jerzy; Obersztyn, Ewa; Bocian, Ewa; Mazurczak, Tadeusz; Zygulska, Marta; Horst, Juergen; Deelen, Wout H.; Halley, Dicky J.J.

    1996-01-01

    The unstable DNA sequence in the FMR1 gene was analyzed in 85 individuals from Polish families with fragile X syndrome in order to characterize mutations responsible for the disease in Poland. In all affected individuals classified on the basis of clinical features and expression of the fragile site at X(q27.3) a large expansion of the unstable sequence (full mutation) was detected. About 5% (2 of 43) of individuals with full mutation did not express the fragile site. Among normal alleles, ranging in size from 20 to 41 CGC repeats, allele with 29 repeats was the most frequent (37%). Transmission of premutated and fully mutated alleles to the offspring was always associated with size increase. No change in repeat number was found when normal alleles were transmitted. (author). 19 refs., 4 figs, 1 tab

  15. A TetR family transcriptional factor directly regulates the expression of a 3-methyladenine DNA glycosylase and physically interacts with the enzyme to stimulate its base excision activity in Mycobacterium bovis BCG.

    Science.gov (United States)

    Liu, Lei; Huang, Cheng; He, Zheng-Guo

    2014-03-28

    3-Methyladenine DNA glycosylase recognizes and excises a wide range of damaged bases and thus plays a critical role in base excision repair. However, knowledge on the regulation of DNA glycosylase in prokaryotes and eukaryotes is limited. In this study, we successfully characterized a TetR family transcriptional factor from Mycobacterium bovis bacillus Calmette-Guerin (BCG), namely BCG0878c, which directly regulates the expression of 3-methyladenine DNA glycosylase (designated as MbAAG) and influences the base excision activity of this glycosylase at the post-translational level. Using electrophoretic mobility shift assay and DNase I footprinting experiments, we identified two conserved motifs within the upstream region of mbaag specifically recognized by BCG0878c. Significant down-regulation of mbaag was observed in BCG0878c-overexpressed M. bovis BCG strains. By contrast, about 12-fold up-regulation of mbaag expression was found in bcg0878c-deleted mutant M. bovis BCG strains. β-Galactosidase activity assays also confirmed these results. Thus, BCG0878c can function as a negative regulator of mbaag expression. In addition, the regulator was shown to physically interact with MbAAG to enhance the ability of the glycosylase to bind damaged DNA. Interaction between the two proteins was further found to facilitate AAG-catalyzed removal of hypoxanthine from DNA. These results indicate that a TetR family protein can dually regulate the function of 3-methyladenine DNA glycosylase in M. bovis BCG both at the transcriptional and post-translational levels. These findings enhance our understanding of the expression and regulation of AAG in mycobacteria.

  16. Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases?

    Science.gov (United States)

    Lee, Andrea J; Wallace, Susan S

    2017-06-01

    The first step of the base excision repair (BER) pathway responsible for removing oxidative DNA damage utilizes DNA glycosylases to find and remove the damaged DNA base. How glycosylases find the damaged base amidst a sea of undamaged bases has long been a question in the BER field. Single molecule total internal reflection fluorescence microscopy (SM TIRFM) experiments have allowed for an exciting look into this search mechanism and have found that DNA glycosylases scan along the DNA backbone in a bidirectional and random fashion. By comparing the search behavior of bacterial glycosylases from different structural families and with varying substrate specificities, it was found that glycosylases search for damage by periodically inserting a wedge residue into the DNA stack as they redundantly search tracks of DNA that are 450-600bp in length. These studies open up a wealth of possibilities for further study in real time of the interactions of DNA glycosylases and other BER enzymes with various DNA substrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Structure and function of DNA polymerase μ

    International Nuclear Information System (INIS)

    Matsumoto, Takuro; Maezawa, So

    2013-01-01

    DNA polymerases are enzymes playing the central role in DNA metabolism, including DNA replication, DNA repair and recombination. DNA polymerase μ (pol μ DNA polymerase λ (pol λ) and terminal deoxynucleotidyltransferase (TdT) in X family DNA polymerases function in non-homologous end-joining (NHEJ), which is the predonmiant repair pathway for DNA double-strand breaks (DSBs). NHEJ involves enzymes that capture both ends of the broken DNA strand, bring them together in a synaptic DNA-protein complex, and repair the DSB. Pol μ and pol λ fill in the gaps at the junction to maintain the genomic integrity. TdT synthesizes N region at the junction during V(D)J recombination and promotes diversity of immunoglobulin or T-cell receptor gene. Among these three polymerases, the regulatory mechanisms of pol μ remain rather unclear. We have approached the mechanism of pol μ from both sides of structure and cellular dynamics. Here, we propose some new insights into pol μ and the probable NHEJ model including our findings. (author)

  18. Variants of sequence family B Thermococcus kodakaraensis DNA polymerase with increased mismatch extension selectivity.

    Directory of Open Access Journals (Sweden)

    Claudia Huber

    Full Text Available Fidelity and selectivity of DNA polymerases are critical determinants for the biology of life, as well as important tools for biotechnological applications. DNA polymerases catalyze the formation of DNA strands by adding deoxynucleotides to a primer, which is complementarily bound to a template. To ensure the integrity of the genome, DNA polymerases select the correct nucleotide and further extend the nascent DNA strand. Thus, DNA polymerase fidelity is pivotal for ensuring that cells can replicate their genome with minimal error. DNA polymerases are, however, further optimized for more specific biotechnological or diagnostic applications. Here we report on the semi-rational design of mutant libraries derived by saturation mutagenesis at single sites of a 3'-5'-exonuclease deficient variant of Thermococcus kodakaraensis DNA polymerase (KOD pol and the discovery for variants with enhanced mismatch extension selectivity by screening. Sites of potential interest for saturation mutagenesis were selected by their proximity to primer or template strands. The resulting libraries were screened via quantitative real-time PCR. We identified three variants with single amino acid exchanges-R501C, R606Q, and R606W-which exhibited increased mismatch extension selectivity. These variants were further characterized towards their potential in mismatch discrimination. Additionally, the identified enzymes were also able to differentiate between cytosine and 5-methylcytosine. Our results demonstrate the potential in characterizing and developing DNA polymerases for specific PCR based applications in DNA biotechnology and diagnostics.

  19. Signatures of DNA target selectivity by ETS transcription factors.

    Science.gov (United States)

    Poon, Gregory M K; Kim, Hye Mi

    2017-05-27

    The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation.

  20. Use of a D17Z1 oligonucleotide probe for human DNA quantitation prior to PCR analysis of polymorphic DNA markers

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, S.; Alavaren, M.; Varlaro, J. [Roche Molecular Systems, Alameda, CA (United States)] [and others

    1994-09-01

    The alpha-satellite DNA locus D17Z1 contains primate-specific sequences which are repeated several hundred times per chromosome 17. A probe that was designed to hybridize to a subset of the D17Z1 sequence can be used for very sensitive and specific quantitation of human DNA. Sample human genomic DNA is immobilized on nylon membrane using a slot blot apparatus, and then hybridized with a biotinylated D17Z1 oligonucleotide probe. The subsequent binding of streptavidin-horseradish peroxidase to the bound probe allows for either calorimetric (TMB) or chemiluminescent (ECL) detection. Signals obtained for sample DNAs are then compared to the signals obtained for a series of human DNA standards. For either detection method, forty samples can be quantitated in less than two hours, with a sensitivity of 150 pg. As little as 20 pg of DNA can be quantitated when using chemiluminescent detection with longer film exposures. PCR analysis of several VNTR and STR markers has indicated that optimal typing results are generally obtained within a relatively narrow range of input DNA quantities. Too much input DNA can lead to PCR artifacts such as preferential amplification of smaller alleles, non-specific amplification products, and exaggeration of the DNA synthesis slippage products that are seen with STR markers. Careful quantitation of human genomic DNA prior to PCR can avoid or minimize these problems and ultimately give cleaner, more unambiguous PCR results.

  1. Familial identification: population structure and relationship distinguishability.

    Science.gov (United States)

    Rohlfs, Rori V; Fullerton, Stephanie Malia; Weir, Bruce S

    2012-02-01

    With the expansion of offender/arrestee DNA profile databases, genetic forensic identification has become commonplace in the United States criminal justice system. Implementation of familial searching has been proposed to extend forensic identification to family members of individuals with profiles in offender/arrestee DNA databases. In familial searching, a partial genetic profile match between a database entrant and a crime scene sample is used to implicate genetic relatives of the database entrant as potential sources of the crime scene sample. In addition to concerns regarding civil liberties, familial searching poses unanswered statistical questions. In this study, we define confidence intervals on estimated likelihood ratios for familial identification. Using these confidence intervals, we consider familial searching in a structured population. We show that relatives and unrelated individuals from population samples with lower gene diversity over the loci considered are less distinguishable. We also consider cases where the most appropriate population sample for individuals considered is unknown. We find that as a less appropriate population sample, and thus allele frequency distribution, is assumed, relatives and unrelated individuals become more difficult to distinguish. In addition, we show that relationship distinguishability increases with the number of markers considered, but decreases for more distant genetic familial relationships. All of these results indicate that caution is warranted in the application of familial searching in structured populations, such as in the United States.

  2. Familial identification: population structure and relationship distinguishability.

    Directory of Open Access Journals (Sweden)

    Rori V Rohlfs

    2012-02-01

    Full Text Available With the expansion of offender/arrestee DNA profile databases, genetic forensic identification has become commonplace in the United States criminal justice system. Implementation of familial searching has been proposed to extend forensic identification to family members of individuals with profiles in offender/arrestee DNA databases. In familial searching, a partial genetic profile match between a database entrant and a crime scene sample is used to implicate genetic relatives of the database entrant as potential sources of the crime scene sample. In addition to concerns regarding civil liberties, familial searching poses unanswered statistical questions. In this study, we define confidence intervals on estimated likelihood ratios for familial identification. Using these confidence intervals, we consider familial searching in a structured population. We show that relatives and unrelated individuals from population samples with lower gene diversity over the loci considered are less distinguishable. We also consider cases where the most appropriate population sample for individuals considered is unknown. We find that as a less appropriate population sample, and thus allele frequency distribution, is assumed, relatives and unrelated individuals become more difficult to distinguish. In addition, we show that relationship distinguishability increases with the number of markers considered, but decreases for more distant genetic familial relationships. All of these results indicate that caution is warranted in the application of familial searching in structured populations, such as in the United States.

  3. Implications of the Galilean satellites ice envelope explosions. 3

    International Nuclear Information System (INIS)

    Agafonova, I.I.; Drobyshevski, E.M.

    1985-01-01

    Secondary explosions of the primary ice fragments ejected in the explosion of the electrolyzed massive ice envelopes of the Galilean satellites are capable of imparting velocities of up to 5 km s -1 to the secondary fragments. As a result, the secondary fragments can enter the orbits of the irregular satellites and the Trojan libration orbits. Since the icy mix of the fragments contains hydrocarbons and particulate material (silicates and the like), after ice sublimation from the surface layers the Trojans should reveal type C and RD spectra typical for Jupiter's irregular satellites, comet nuclei and other distant ice bodies of similar origin. Among the Trojans there cannot be rocky or metallic objects which are known to exist in the main asteroid belt. It is shown that a velocity perturbation of 150-200 m s -1 resulting from a purely mechanical impact of two bodies may be sufficient to move collision fragments from the orbits of the Trojans to horseshoe-shaped trajectories with a subsequent transfer to the cometary orbits of Jupiter's family. (Auth.)

  4. Repetitive DNA in the pea (Pisum sativum L. genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Navrátilová Alice

    2007-11-01

    Full Text Available Abstract Background Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum. Results Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. Conclusion We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35–48% of the genome. These data

  5. Genomewide analysis of TCP transcription factor gene family in ...

    Indian Academy of Sciences (India)

    2014-12-09

    Dec 9, 2014 ... study of a genomewide analysis of apple TCP gene family. These results provide .... synthesize the first-strand cDNA using the PrimeScript First. Strand cDNA ..... only detected in the stem, leaf and fruit (figure 8). When.

  6. Dialects of the DNA Uptake Sequence in Neisseriaceae

    Science.gov (United States)

    Frye, Stephan A.; Nilsen, Mariann; Tønjum, Tone; Ambur, Ole Herman

    2013-01-01

    In all sexual organisms, adaptations exist that secure the safe reassortment of homologous alleles and prevent the intrusion of potentially hazardous alien DNA. Some bacteria engage in a simple form of sex known as transformation. In the human pathogen Neisseria meningitidis and in related bacterial species, transformation by exogenous DNA is regulated by the presence of a specific DNA Uptake Sequence (DUS), which is present in thousands of copies in the respective genomes. DUS affects transformation by limiting DNA uptake and recombination in favour of homologous DNA. The specific mechanisms of DUS–dependent genetic transformation have remained elusive. Bioinformatic analyses of family Neisseriaceae genomes reveal eight distinct variants of DUS. These variants are here termed DUS dialects, and their effect on interspecies commutation is demonstrated. Each of the DUS dialects is remarkably conserved within each species and is distributed consistent with a robust Neisseriaceae phylogeny based on core genome sequences. The impact of individual single nucleotide transversions in DUS on meningococcal transformation and on DNA binding and uptake is analysed. The results show that a DUS core 5′-CTG-3′ is required for transformation and that transversions in this core reduce DNA uptake more than two orders of magnitude although the level of DNA binding remains less affected. Distinct DUS dialects are efficient barriers to interspecies recombination in N. meningitidis, N. elongata, Kingella denitrificans, and Eikenella corrodens, despite the presence of the core sequence. The degree of similarity between the DUS dialect of the recipient species and the donor DNA directly correlates with the level of transformation and DNA binding and uptake. Finally, DUS–dependent transformation is documented in the genera Eikenella and Kingella for the first time. The results presented here advance our understanding of the function and evolution of DUS and genetic transformation

  7. Dialects of the DNA uptake sequence in Neisseriaceae.

    Directory of Open Access Journals (Sweden)

    Stephan A Frye

    2013-04-01

    Full Text Available In all sexual organisms, adaptations exist that secure the safe reassortment of homologous alleles and prevent the intrusion of potentially hazardous alien DNA. Some bacteria engage in a simple form of sex known as transformation. In the human pathogen Neisseria meningitidis and in related bacterial species, transformation by exogenous DNA is regulated by the presence of a specific DNA Uptake Sequence (DUS, which is present in thousands of copies in the respective genomes. DUS affects transformation by limiting DNA uptake and recombination in favour of homologous DNA. The specific mechanisms of DUS-dependent genetic transformation have remained elusive. Bioinformatic analyses of family Neisseriaceae genomes reveal eight distinct variants of DUS. These variants are here termed DUS dialects, and their effect on interspecies commutation is demonstrated. Each of the DUS dialects is remarkably conserved within each species and is distributed consistent with a robust Neisseriaceae phylogeny based on core genome sequences. The impact of individual single nucleotide transversions in DUS on meningococcal transformation and on DNA binding and uptake is analysed. The results show that a DUS core 5'-CTG-3' is required for transformation and that transversions in this core reduce DNA uptake more than two orders of magnitude although the level of DNA binding remains less affected. Distinct DUS dialects are efficient barriers to interspecies recombination in N. meningitidis, N. elongata, Kingella denitrificans, and Eikenella corrodens, despite the presence of the core sequence. The degree of similarity between the DUS dialect of the recipient species and the donor DNA directly correlates with the level of transformation and DNA binding and uptake. Finally, DUS-dependent transformation is documented in the genera Eikenella and Kingella for the first time. The results presented here advance our understanding of the function and evolution of DUS and genetic

  8. Infectious Maize rayado fino virus from cloned cDNA

    Science.gov (United States)

    Maize rayado fino virus (MRFV) is the type member of the marafiviruses within the family Tymoviridae. A cDNA clone from which infectious RNA can be transcribed was produced from a US isolate of MRFV (MRFV-US). Infectivity of transcripts derived from cDNA clones was demonstrated by infection of mai...

  9. Differentiation of species of the family Acetobacteraceae by AFLP DNA fingerprinting: Gluconacetobacter kombuchae is a later heterotypic synonym of Gluconacetobacter hansenii.

    Science.gov (United States)

    Cleenwerck, Ilse; De Wachter, Marjan; González, Angel; De Vuyst, Luc; De Vos, Paul

    2009-07-01

    Amplified fragment length polymorphism (AFLP) DNA fingerprinting was investigated as a tool for fast and accurate identification of acetic acid bacteria (AAB) to the species level. One hundred and thirty five reference strains and 15 additional strains, representing 50 recognized species of the family Acetobacteraceae, were subjected to AFLP analysis using the restriction enzyme combination ApaI/TaqI and the primer combination A03/T03. The reference strains had been previously subjected to either DNA-DNA hybridization or 16S-23S rRNA spacer region gene sequence analysis and were regarded as being accurately classified at the species level. The present study revealed that six of these strains should be reclassified, namely Gluconacetobacter europaeus LMG 1518 and Gluconacetobacter xylinus LMG 1510 as Gluconacetobacter xylinus and Gluconacetobacter europaeus, respectively; Gluconacetobacter kombuchae LMG 23726(T) as Gluconacetobacter hansenii; and Acetobacter orleanensis strains LMG 1545, LMG 1592 and LMG 1608 as Acetobacter cerevisiae. Cluster analysis of the AFLP DNA fingerprints of the reference strains revealed one cluster for each species, showing a linkage level below 50 % with other clusters, except for Acetobacter pasteurianus, Acetobacter indonesiensis and Acetobacter cerevisiae. These three species were separated into two, two, and three clusters, respectively. At present, confusion exists regarding the taxonomic status of Gluconacetobacter oboediens and Gluconacetobacter intermedius; the AFLP data from this study supported their classification as separate taxa. The 15 additional strains could all be identified at the species level. AFLP analysis further revealed that some species harboured genetically diverse strains, whereas other species consisted of strains showing similar banding patterns, indicating a more limited genetic diversity. It can be concluded that AFLP DNA fingerprinting is suitable for accurate identification and classification of a broad

  10. Application of synthetic DNA probes to the analysis of DNA sequence variants in man

    International Nuclear Information System (INIS)

    Wallace, R.B.; Petz, L.D.; Yam, P.Y.

    1986-01-01

    Oligonucleotide probes provide a tool to discriminate between any two alleles on the basis of hybridization. Random sampling of the genome with different oligonucleotide probes should reveal polymorphism in a certain percentage of the cases. In the hope of identifying polymorphic regions more efficiently, we chose to take advantage of the proposed hypermutability of repeated DNA sequences and the specificity of oligonucleotide hybridization. Since, under appropriate conditions, oligonucleotide probes require complete base pairing for hybridization to occur, they will only hybridize to a subset of the members of a repeat family when all members of the family are not identical. The results presented here suggest that oligonucleotide hybridization can be used to extend the genomic sequences that can be tested for the presence of RFLPs. This expands the tools available to human genetics. In addition, the results suggest that repeated DNA sequences are indeed more polymorphic than single-copy sequences. 28 references, 2 figures

  11. The Danish HD Registrya nationwide family registry of HD families in Denmark

    DEFF Research Database (Denmark)

    Gilling, M.; Budtz-Jorgensen, E.; Boonen, S. E.

    2017-01-01

    -8:100 000. 1451 individuals in the DHR had the size of the HTT CAG repeat determined of which 975 had 36 CAG repeats or more (mean ± SD: 43,5 ± 4,8). Two unrelated individuals were compound heterozygous for alleles ≥36 CAGs, and 60 individuals from 34 independent families carried an intermediate allele.......The Danish Huntington's Disease Registry (DHR) is a nationwide family registry comprising 14 245 individuals from 445 Huntington's disease (HD) families of which the largest family includes 845 individuals in 8 generations. 1136 DNA and/or blood samples and 18 fibroblast cultures are stored...... in a local biobank. The birthplace of the oldest HD carrier in each of the 261 families of Danish origin was unevenly distributed across Denmark with a high number of families in the middle part of the peninsula Jutland and in Copenhagen, the capital. The prevalence of HD in Denmark was calculated to be 5...

  12. Annealing helicase HARP closes RPA-stabilized DNA bubbles non-processively

    NARCIS (Netherlands)

    Burnham, D.R.; Nijholt, B.; de Vlaminck, I.; Quan, Jinhua; Yusufzai, Timur; Dekker, C.

    2017-01-01

    We investigate the mechanistic nature of the Snf2 family protein HARP, mutations of which are responsible for Schimke immuno-osseous dysplasia. Using a single-molecule magnetic tweezers assay, we construct RPA-stabilized DNA bubbles within torsionally constrained DNA to investigate the annealing

  13. Dispersion of the Himalia family of jovian irregular satellites by planetesimal encounters

    Science.gov (United States)

    Li, Daohai; Christou, Apostolos

    2017-06-01

    Giant planets are believed to have migrated significant radial distances due to interaction with a primordial planetesimal disk (Tsiganis et al. 2005). This process profoundly sculpted the solar system, shaping the distribution of the different types of heliocentric objects: the giant planets, the Trojans, the Main Asteroid Belt and the KBOs. Meanwhile, the same migration may have influenced the distribution of objects in the local planetocentric system as well. Since migration is achieved mainly by planet-planetesimal encounters, we focus on irregular satellites far from the host, thus susceptible to planetesimal perturbations. Specifically, we aim to reproduce a puzzling feature of the jovian Himalia group of prograde satellites: a wide spread in $a$ and $e$, with all group members being $>200$ m/s from Himalia and apparently too high to be consistent with a purely collisional origin. Here we investigate the evolution of a pre-existing Himalia group during planetary migration.We do this in a two-step procedure. Firstly, we perform migration simulations and record the states of planetesimals approaching Jupiter. Secondly, a nascent, closely-packed Himalia group with velocity dispersion of a few 10 m/s is integrated under the gravitational disturbance of the planetesimal fly-bys. We find that these planetesimal encounters disperse the group dramatically, bumping $\\sim 60\\%$ of the members to $>200$ m/s with respect to Himalia. Particularly, $a$ and $e$ suffer the most variation while the change in $i$ is often limited, matching the actual values for the observed group fairly well.Current models posit extensive collisional processing of the irregular satellite population following the planet migration phase (Bottke et al. 2010). In evaluating the collisional probability between a group member and Himalia, we find that the closer they are, the more likely that collisions occur. This suggests that members adjacent to Himalia are more likely to be collisionally

  14. Leveraging the NPS Femto Satellite for Alternative Satellite Communication Networks

    Science.gov (United States)

    2017-09-01

    programmed for eventual integration with the Iridium Network , which is then tested. C. THESIS ORGANIZATION The thesis addresses these questions...NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS by Faisal S. Alshaya September 2017 Co-Advisors: Steven J. Iatrou...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE LEVERAGING THE NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS 5

  15. Identification and characterization of a DnaJ gene from red alga Pyropia yezoensis (Bangiales, Rhodophyta)

    Science.gov (United States)

    Liu, Jiao; Li, Xianchao; Tang, Xuexi; Zhou, Bin

    2016-03-01

    Members of the DnaJ family are proteins that play a pivotal role in various cellular processes, such as protein folding, protein transport and cellular responses to stress. In the present study, we identified and characterized the full-length DnaJ cDNA sequence from expressed sequence tags of Pyropia yezoensis ( PyDnaJ) via rapid identification of cDNA ends. This cDNA encoded a protein of 429 amino acids, which shared high sequence similarity with other identified DnaJ proteins, such as a heat shock protein 40/DnaJ from Pyropia haitanensis. The relative mRNA expression level of PyDnaJ was investigated using real-time PCR to determine its specific expression during the algal life cycle and during desiccation. The relative mRNA expression level in sporophytes was higher than that in gametophytes and significantly increased during the whole desiccation process. These results indicate that PyDnaJ is an authentic member of the DnaJ family in plants and red algae and might play a pivotal role in mitigating damage to P. yezoensis during desiccation.

  16. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes.

    Science.gov (United States)

    Kazlauskas, Darius; Krupovic, Mart; Venclovas, Česlovas

    2016-06-02

    Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Progranulin mutation causes frontotemporal dementia in the Swedish Karolinska family.

    Science.gov (United States)

    Chiang, Huei-Hsin; Rosvall, Lina; Brohede, Jesper; Axelman, Karin; Björk, Behnosh F; Nennesmo, Inger; Robins, Tiina; Graff, Caroline

    2008-11-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease characterized by cognitive impairment, language dysfunction, and/or changes in personality. Recently it has been shown that progranulin (GRN) mutations can cause FTD as well as other neurodegenerative phenotypes. DNA from 30 family members, of whom seven were diagnosed with FTD, in the Karolinska family was available for GRN sequencing. Fibroblast cell mRNA from one affected family member and six control individuals was available for relative quantitative real-time polymerase chain reaction to investigate the effect of the mutation. Furthermore, the cDNA of an affected individual was sequenced. Clinical and neuropathologic findings of a previously undescribed family branch are presented. A frameshift mutation in GRN (g.102delC) was detected in all affected family members and absent in four unaffected family members older than 70 years. Real-time polymerase chain reaction data showed an approximately 50% reduction of GRN fibroblast mRNA in an affected individual. The mutated mRNA transcripts were undetectable by cDNA sequencing. Segregation and RNA analyses showed that the g.102delC mutation, previously reported, causes FTD in the Karolinska family. Our findings add further support to the significance of GRN in FTD etiology and the presence of modifying genes, which emphasize the need for further studies into the mechanisms of clinical heterogeneity. However, the results already call for attention to the complexity of predictive genetic testing of GRN mutations.

  18. Editing of misaligned 3′-termini by an intrinsic 3′–5′ exonuclease activity residing in the PHP domain of a family X DNA polymerase

    Science.gov (United States)

    Baños, Benito; Lázaro, José M.; Villar, Laurentino; de Vega, Miguel

    2008-01-01

    Bacillus subtilis gene yshC encodes a family X DNA polymerase (PolXBs), whose biochemical features suggest that it plays a role during DNA repair processes. Here, we show that, in addition to the polymerization activity, PolXBs possesses an intrinsic 3′–5′ exonuclease activity specialized in resecting unannealed 3′-termini in a gapped DNA substrate. Biochemical analysis of a PolXBs deletion mutant lacking the C-terminal polymerase histidinol phosphatase (PHP) domain, present in most of the bacterial/archaeal PolXs, as well as of this separately expressed protein region, allow us to state that the 3′–5′ exonuclease activity of PolXBs resides in its PHP domain. Furthermore, site-directed mutagenesis of PolXBs His339 and His341 residues, evolutionary conserved in the PHP superfamily members, demonstrated that the predicted metal binding site is directly involved in catalysis of the exonucleolytic reaction. The implications of the unannealed 3′-termini resection by the 3′–5′ exonuclease activity of PolXBs in the DNA repair context are discussed. PMID:18776221

  19. Abnormal sensitivity of skin fibroblasts from familial polyposis patients to DNA alkylating agents

    International Nuclear Information System (INIS)

    Barfknecht, T.R.; Little, J.B.

    1982-01-01

    Fibroblast cell strains derived from different patients all afflicted with genetic predisposing to the development of intestinal polyposis and cancer were tested for their sensitivity to the lethal effects of the DNA alkylating agents methylmethanesulfonate (MMS), ethyl methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine, and 4-nitroquinoline 1-oxide. The genetic syndromes studied were: (a) adenomatosis of the colon and rectum only, an autosomal dominant trait; (b) Turcot's syndrome, a rare autosomal recessive polyposis syndrome also characterized by central nervous system tumors; and (c) Gardner's syndrome, an autosomal dominant syndrome which, in addition to intestinal polyposis, is also clinically characterized by osteomas and soft tissue tumors. Fibroblasts from a patient with Turcot's syndrome were hypersensitive to MMS, having a D0 value of 0.24 mM (p less than 0.01) versus the normal average D0 of 0.36 mM and a D10 value of 0.95 mM (p less than 0.01) compared with the normal average value of 1.3 mM. Fibroblasts from the Gardner's syndrome proband were moderately sensitive to MMS, ethyl methanesulfonate, and N-methyl-N'-nitro-N-nitrosoguanidine due to significant differences of D10 values of 0.60 mM (p less than 0.01), 15 mM (p less than 0.01), and 4.8 microM (p less than 0.025), respectively, versus the normal average values of 1.3 mM, 28 mM, and 9.4 microM. Fibroblasts from the clinically affected Gardner's syndrome daughter of the proband were significantly more sensitive to MMS treatment, D0 of 0.22 mM (p less than 0.01) versus the normal average D0 of 0.36 mM and a D10 of 0.97 mM (p less than 0.01) versus the normal average. This differential sensitivity to the several DNA alkylating agents suggests that different mechanisms of hypersensitivity to these chemicals may be associated with fibroblasts from the various forms of familial polyposis

  20. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  1. Conectando famílias de construções genéticas: testes de DNA na reunificação da família somali na Finlândia Connecting genes-building families: DNA testing in somali family reunification in Finland

    Directory of Open Access Journals (Sweden)

    Petri Hautaniemi

    2007-12-01

    Full Text Available Os temas centrais desse artigo, reunificação familiar em geral e teste de DNA em particular, surgiram a partir de uma pesquisa em andamento acerca de jovens da Somália na Finlândia. Desde 1996, realizo uma pesquisa etnográfica - em escolas, clubes de jovens, ruas e cafés - com jovens da Somália que chegaram à Finlândia por volta de 1994 e que freqüentam escolas finlandesas nos subúrbios de Helsinki. Meu interesse geral nesta pesquisa longitudinal era conhecer as experiências de passagem para a vida adulta em contextos altamente diferenciados, não apenas do ponto de vista do país anfitrião, mas também cultural e transnacionalmente. O tema, testes de DNA, toca na questão central desta pesquisa de modo profundo. Aqui, crescer não é visto como uma simples questão biológica. É um processo social no qual as relações, como laços de parentesco, são constituídas, vivenciadas e contestadas. Essas relações são poderosas para a identificação individual e social. A testagem-DNA pode violar simbólica e fisicamente o processo social de identificações íntimas e de integridade pessoal.The central themes of this article, family reunification in general, and DNA testing in particular, came to the fore during a research project about young Somalians in Finland. Since 1996, I have been conducting ethnographic research - in schools, youth clubs, streets and cafés - with youngsters from Somalia who arrived in Finland around 1994, and who attend Finnish schools in the suburbs of Helsinki. My general interest in this longitudinal study was to learn about the experiences of coming of age in highly dispersed settings, not only in the vein of a local host country, but also culturally and transnationally. Here, growing up is seen not as a simple biological question. It is a social process in which relationships such as kinship ties are constituted, experienced, and contested. These are powerful relations for individual and social

  2. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  3. Structural similarities in DNA packaging and delivery apparatuses in Herpesvirus and dsDNA bacteriophages.

    Science.gov (United States)

    Rixon, Frazer J; Schmid, Michael F

    2014-04-01

    Structural information can inform our understanding of virus origins and evolution. The herpesviruses and tailed bacteriophages constitute two large families of dsDNA viruses which infect vertebrates and prokaryotes respectively. A relationship between these disparate groups was initially suggested by similarities in their capsid assembly and DNA packaging strategies. This relationship has now been confirmed by a range of studies that have revealed common structural features in their capsid proteins, and similar organizations and sequence conservation in their DNA packaging machinery and maturational proteases. This concentration of conserved traits in proteins involved in essential and primordial capsid/packaging functions is evidence that these structures are derived from an ancient, common ancestor and is in sharp contrast to the lack of such evidence for other virus functions. Copyright © 2014. Published by Elsevier B.V.

  4. Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae)

    Czech Academy of Sciences Publication Activity Database

    Emadzade, K.; Jang, T.S.; Macas, Jiří; Kovařík, Aleš; Novák, Petr; Parker, J.; Weiß-Schneeweiss, H.

    2014-01-01

    Roč. 114, č. 8 (2014), s. 1597-1608 ISSN 0305-7364 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:60077344 ; RVO:68081707 Keywords : Hyacinthaceae * PaB6 * pericentric satellite DNA * next-generation sequencing * Prospero autumnale Subject RIV: EB - Genetics ; Molecular Biology; EB - Genetics ; Molecular Biology (BFU-R) Impact factor: 3.654, year: 2014

  5. Structural and electrostatic regularities in interactions of homeodomains with operator DNA

    International Nuclear Information System (INIS)

    Chirgadze, Yu.N.; Ivanov, V.V.; Polozov, R.V.; Zheltukhin, E.I.; Sivozhelezov, V.S.

    2008-01-01

    Interfaces of five DNA-homeodomain complexes, selected by similarity of structures and patterns of contacting residues, were compared. The long-range stage of the recognition process was characterized by electrostatic potentials about 5 Angstroem away from molecular surfaces of both protein and DNA. For proteins, clear positive potential is displayed only at the side contacting DNA, while grooves of DNA display a strong negative potential. Thus, one functional role of electrostatics is guiding the protein into the DNA major groove. At the close-range stage, neutralization of the phosphate charges by positively charged residues is necessary for decreasing the strong electrostatic potential of DNA, allowing nucleotide bases to participate in formation of protein-DNA atomic contacts in the interface. The protein's recognizing α-helix was shown to form both invariant and variable contacts with DNA by means of the certain specific side groups, with water molecules participating in some of the contacts. The invariant contacts included the highly specific Asn-Ade hydrogen bonds, nonpolar contacts of hydrophobic amino acids serving as barriers for fixing the protein on DNA, and interface water molecule cluster providing local mobility necessary for the dissociation of the protein-DNA complex. One of the water molecules is invariant and located at the center of the interface. Invariant contacts of the proteins are mostly formed with the TAAT motive of promoter DNA's forward strand. They distinguish the homeodomain family from other DNA-binding proteins. Variable contacts are formed with the reverse strand and are responsible for the binding specificity within the homeodomain family

  6. ITS1: a DNA barcode better than ITS2 in eukaryotes?

    Science.gov (United States)

    Wang, Xin-Cun; Liu, Chang; Huang, Liang; Bengtsson-Palme, Johan; Chen, Haimei; Zhang, Jian-Hui; Cai, Dayong; Li, Jian-Qin

    2015-05-01

    A DNA barcode is a short piece of DNA sequence used for species determination and discovery. The internal transcribed spacer (ITS/ITS2) region has been proposed as the standard DNA barcode for fungi and seed plants and has been widely used in DNA barcoding analyses for other biological groups, for example algae, protists and animals. The ITS region consists of both ITS1 and ITS2 regions. Here, a large-scale meta-analysis was carried out to compare ITS1 and ITS2 from three aspects: PCR amplification, DNA sequencing and species discrimination, in terms of the presence of DNA barcoding gaps, species discrimination efficiency, sequence length distribution, GC content distribution and primer universality. In total, 85 345 sequence pairs in 10 major groups of eukaryotes, including ascomycetes, basidiomycetes, liverworts, mosses, ferns, gymnosperms, monocotyledons, eudicotyledons, insects and fishes, covering 611 families, 3694 genera, and 19 060 species, were analysed. Using similarity-based methods, we calculated species discrimination efficiencies for ITS1 and ITS2 in all major groups, families and genera. Using Fisher's exact test, we found that ITS1 has significantly higher efficiencies than ITS2 in 17 of the 47 families and 20 of the 49 genera, which are sample-rich. By in silico PCR amplification evaluation, primer universality of the extensively applied ITS1 primers was found superior to that of ITS2 primers. Additionally, shorter length of amplification product and lower GC content was discovered to be two other advantages of ITS1 for sequencing. In summary, ITS1 represents a better DNA barcode than ITS2 for eukaryotic species. © 2014 John Wiley & Sons Ltd.

  7. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    Science.gov (United States)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  8. DNA barcode for the identification of the sand fly Lutzomyia longipalpis plant feeding preferences in a tropical urban environment.

    Science.gov (United States)

    Lima, Leonardo H G de M; Mesquita, Marcelo R; Skrip, Laura; de Souza Freitas, Moisés T; Silva, Vladimir C; Kirstein, Oscar D; Abassi, Ibrahim; Warburg, Alon; Balbino, Valdir de Q; Costa, Carlos H N

    2016-07-20

    Little is known about the feeding behavior of hematophagous insects that require plant sugar to complete their life cycles. We studied plant feeding of Lutzomyia longipalpis sand flies, known vectors of Leishmania infantum/chagasi parasites, in a Brazilian city endemic with visceral leishmaniasis. The DNA barcode technique was applied to identify plant food source of wild-caught L. longipalpis using specific primers for a locus from the chloroplast genome, ribulose diphosphate carboxylase. DNA from all trees or shrubs within a 100-meter radius from the trap were collected to build a barcode reference library. While plants from the Anacardiaceae and Meliaceae families were the most abundant at the sampling site (25.4% and 12.7% of the local plant population, respectively), DNA from these plant families was found in few flies; in contrast, despite its low abundance (2.9%), DNA from the Fabaceae family was detected in 94.7% of the sand flies. The proportion of sand flies testing positive for DNA from a given plant family was not significantly associated with abundance, distance from the trap, or average crown expansion of plants from that family. The data suggest that there may indeed be a feeding preference of L. longipalpis for plants in the Fabaceae family.

  9. Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae.

    Science.gov (United States)

    Lim, K Yoong; Kovarik, Ales; Matyasek, Roman; Chase, Mark W; Knapp, Sandra; McCarthy, Elizabeth; Clarkson, James J; Leitch, Andrew R

    2006-12-01

    Combining phylogenetic reconstructions of species relationships with comparative genomic approaches is a powerful way to decipher evolutionary events associated with genome divergence. Here, we reconstruct the history of karyotype and tandem repeat evolution in species of diploid Nicotiana section Alatae. By analysis of plastid DNA, we resolved two clades with high bootstrap support, one containing N. alata, N. langsdorffii, N. forgetiana and N. bonariensis (called the n = 9 group) and another containing N. plumbaginifolia and N. longiflora (called the n = 10 group). Despite little plastid DNA sequence divergence, we observed, via fluorescent in situ hybridization, substantial chromosomal repatterning, including altered chromosome numbers, structure and distribution of repeats. Effort was focussed on 35S and 5S nuclear ribosomal DNA (rDNA) and the HRS60 satellite family of tandem repeats comprising the elements HRS60, NP3R and NP4R. We compared divergence of these repeats in diploids and polyploids of Nicotiana. There are dramatic shifts in the distribution of the satellite repeats and complete replacement of intergenic spacers (IGSs) of 35S rDNA associated with divergence of the species in section Alatae. We suggest that sequence homogenization has replaced HRS60 family repeats at sub-telomeric regions, but that this process may not occur, or occurs more slowly, when the repeats are found at intercalary locations. Sequence homogenization acts more rapidly (at least two orders of magnitude) on 35S rDNA than 5S rDNA and sub-telomeric satellite sequences. This rapid rate of divergence is analogous to that found in polyploid species, and is therefore, in plants, not only associated with polyploidy.

  10. Altered DNA methylation associated with a translocation linked to major mental illness

    OpenAIRE

    McCartney, Daniel L; Walker, Rosie M; Morris, Stewart W; Anderson, Susan M; Duff, Barbara J; Marioni, Riccardo E; Millar, J Kirsty; McCarthy, Shane E; Ryan, Niamh M; Lawrie, Stephen M; Watson, Andrew R; Blackwood, Douglas H R; Thomson, Pippa A; McIntosh, Andrew M; McCombie, W Richard

    2018-01-01

    Recent work has highlighted a possible role for altered epigenetic modifications, including differential DNA methylation, in susceptibility to psychiatric illness. Here, we investigate blood-based DNA methylation in a large family where a balanced translocation between chromosomes 1 and 11 shows genome-wide significant linkage to psychiatric illness. Genome-wide DNA methylation was profiled in whole-blood-derived DNA from 41 individuals using the Infinium HumanMethylation450 BeadChip (Illumin...

  11. Strumenti d’osservazione per il telerilevamento da satellite

    Directory of Open Access Journals (Sweden)

    Giorgio Perrotta

    2009-03-01

    Full Text Available Earth observation instruments for satellite remote sensingThis article features a brief description of the instrumentation  families commonly used during Earth Observation activities. The optical exploration of our planet, already anticipated more than 50 years ago at the beginning of the exploration era with the first analogic photographic instrumentation, is now complemented by sophisticated instruments that work under the domain of radio  waves in order to produce informations useful fo a wide variety of applications.

  12. eDNA-based bioassessment of coastal sediments impacted by an oil spill.

    Science.gov (United States)

    Xie, Yuwei; Zhang, Xiaowei; Yang, Jianghua; Kim, Seonjin; Hong, Seongjin; Giesy, John P; Yim, Un Hyuk; Shim, Won Joon; Yu, Hongxia; Khim, Jong Seong

    2018-07-01

    Oil spills offshore can cause long-term ecological effects on coastal marine ecosystems. Despite their important ecological roles in the cycling of energy and nutrients in food webs, effects on bacteria, protists or arthropods are often neglected. Environmental DNA (eDNA) metabarcoding was applied to characterize changes in the structure of micro- and macro-biota communities of surface sediments over a 7-year period since the occurrence of Hebei Spirit oil spill on December 7, 2007. Alterations in diversities and structures of micro- and macro-biota were observed in the contaminated area where concentrations of polycyclic aromatic hydrocarbons were greater. Successions of bacterial, protists and metazoan communities revealed long-term ecological effects of residual oil. Residual oil dominated the largest cluster of the community-environment association network. Presence of bacterial families (Aerococcaceae and Carnobacteriaceae) and the protozoan family (Platyophryidae) might have conferred sensitivity of communities to oil pollution. Hydrocarbon-degrading bacterial families (Anaerolinaceae, Desulfobacteraceae, Helicobacteraceae and Piscirickettsiaceae) and algal family (Araphid pennate) were resistant to adverse effects of spilt oil. The protistan family (Subulatomonas) and arthropod families (Folsomia, Sarcophagidae Opomyzoidea, and Anomura) appeared to be positively associated with residual oil pollution. eDNA metabarcoding can provide a powerful tool for assessing effects of anthropogenic pollution, such as oil spills on sediment communities and its long-term trends in coastal marine environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Absence of ribosomal DNA amplification in the meroistic (telotrophic) ovary of the large milkweed bug Oncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae)

    Science.gov (United States)

    1975-01-01

    In the typical meroistic insect ovary, the oocyte nucleus synthesizes little if any RNA. Nurse cells or trophocytes actively synthesize ribosomes which are transported to and accumulated by the oocyte. In the telotrophic ovary a morphological separation exists, the nurse cells being localized at the apical end of each ovariole and communicating with the ooocytes via nutritive cords. In order to determine whether the genes coding for ribosomal RNA (rRNA) are amplified in the telotrophic ovary of the milkweed bug Oncopeltus fasciatus, the percentages of the genome coding for ribosomal RNA in somatic cells, spermatogenic cells, ovarian follicles, and nurse cells were compared. The oocytes and most of the nurse cells of O. fasciatus are uninucleolate. DNA hybridizing with ribosomal RNA is localized in a satellite DNA, the density of which is 1.712 g/cm(-3). The density of main-band DNA is 1.694 g/cm(-3). The ribosomal DNA satellite accounts for approximately 0.2% of the DNA in somatic and gametogenic tissues of both males and females. RNA-DNA hybridization analysis demonstrates that approximately 0.03% of the DNA in somatic tissues, testis, ovarian follicles, and isolated nurse cells hybridizes with ribosomal RNA. The fact that the percentage of DNA hybridizing with rRNA is the same in somatic and in male and female gametogenic tissues indicates that amplification of ribosomal DNA does not occur in nurse cells and that if it occurs in oocytes, it represents less than a 50- fold increase in ribosomal DNA. An increase in total genome DNA accounted by polyploidization appears to provide for increasing the amount of ribosomal DNA in the nurse cells. PMID:1158969

  14. Environmental DNA from Seawater Samples Correlate with Trawl Catches of Subarctic, Deepwater Fishes.

    Directory of Open Access Journals (Sweden)

    Philip Francis Thomsen

    Full Text Available Remote polar and deepwater fish faunas are under pressure from ongoing climate change and increasing fishing effort. However, these fish communities are difficult to monitor for logistic and financial reasons. Currently, monitoring of marine fishes largely relies on invasive techniques such as bottom trawling, and on official reporting of global catches, which can be unreliable. Thus, there is need for alternative and non-invasive techniques for qualitative and quantitative oceanic fish surveys. Here we report environmental DNA (eDNA metabarcoding of seawater samples from continental slope depths in Southwest Greenland. We collected seawater samples at depths of 188-918 m and compared seawater eDNA to catch data from trawling. We used Illumina sequencing of PCR products to demonstrate that eDNA reads show equivalence to fishing catch data obtained from trawling. Twenty-six families were found with both trawling and eDNA, while three families were found only with eDNA and two families were found only with trawling. Key commercial fish species for Greenland were the most abundant species in both eDNA reads and biomass catch, and interpolation of eDNA abundances between sampling sites showed good correspondence with catch sizes. Environmental DNA sequence reads from the fish assemblages correlated with biomass and abundance data obtained from trawling. Interestingly, the Greenland shark (Somniosus microcephalus showed high abundance of eDNA reads despite only a single specimen being caught, demonstrating the relevance of the eDNA approach for large species that can probably avoid bottom trawls in most cases. Quantitative detection of marine fish using eDNA remains to be tested further to ascertain whether this technique is able to yield credible results for routine application in fisheries. Nevertheless, our study demonstrates that eDNA reads can be used as a qualitative and quantitative proxy for marine fish assemblages in deepwater oceanic

  15. DNA-dependent protein kinase (DAN-PK), a key enzyme in the re-ligation of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Hennequin, C.; Averbeck, D.

    1999-01-01

    Repair pathways of DNA are now defined and some important findings have been discovered in the last few years. DNA non-homologous end-joining (NEH) is a crucial process in the repair of radiation-induced double-strand breaks (DSBs). NHEj implies at least three steps: the DNA free-ends must get closer, preparation of the free-ends by exonucleases and then a transient hybridization in a region of DNA with weak homology. DNA-dependent protein kinase (DNA-PK) is the key enzyme in this process. DNA-PK is a nuclear serine/threonine kinase that comprises three components: a catalytic subunit (DNA-PK cs ) and two regulatory subunits, DNA-binding proteins, Ku80 and Ku70. The severe combined immuno-deficient (scid) mice are deficient in DNA-PK cs : this protein is involved both in DNA repair and in the V(D)J recombination of immunoglobulin and T-cell receptor genes. It is a protein-kinase of the P13-kinase family and which can phosphorylate Ku proteins, p53 and probably some other proteins still unknown. DNA-PK is an important actor of DSBs repair (induced by ionising radiations or by drugs like etoposide), but obviously it is not the only mechanism existing in the cell for this function. Some others, like homologous recombination, seem also to have a great importance for cell survival. (authors)

  16. The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays

    Science.gov (United States)

    2011-01-01

    Background Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates. Results We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution. Conclusions We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution. PMID:21627815

  17. [Prenatal genetic counseling and instruction for deaf families by genetic test].

    Science.gov (United States)

    Han, Ming-yu; Huang, Sha-sha; Wang, Guo-jian; Yuan, Yong-yi; Kang, Dong-yang; Zhang, Xin; Dai, Pu

    2011-11-01

    Analyzed the molecular pathogenesis of probands by means of genetic test and assisted the local Family Planning Institute by providing prenatal genetic counseling and instruction for deaf families who eager to have more baby. Total of forty-three deaf families were recruited by two institutes for family planning from Guangzhou and Weifang. Forty-two families had one deaf child with normal hearing parents. One family was that parents and their child were all deaf. Genetic testing of GJB2, SLC26A4 and mitochondrial DNA (mtDNA) 12SrRNA were firstly performed in probands and their parents, following medical history, physical examination, auditory test and CT scan of temporal bone were completed. And then the genetic information and instruction were provided to each deaf family. Fifteen of these 43 families had positive results of genetic test. In fifteen families, one family was confirmed that the parents and their child all carried homozygous GJB2 mutations and the recurrence risk was 100%. Twelve families were confirmed that the probands carried homozygous/compound GJB2 or SLC26A4 mutations while their parents were GJB2 or SLC26A4 carriers, and the recurrence risk was 25%. One family was confirmed that the proband, diagnosed with enlarged vestibular aqueduct syndrome (EVAS) by CT scan, carried heterozygous SLC26A4 mutation from the mother, and the recurrence risk was still 25% based on the hereditary pattern of EVAS although another SLC26A4 mutation from the father was not found. One family was confirmed that the proband carried a heterozygous GJB2 mutation from the mother and the possibility to be GJB2 carrier for offsprings was 50%. The rest 28 families were that all probands and their parents did not carry GJB2, SLC26A4 and mtDNA 12SrRNA pathological mutation. Genetic testing can provide more accurate and useful prenatal genetic counseling and instruction to deaf families. Meanwhile, it is an ideal way to develop a cooperative relationship with the institute for

  18. Analysis of factor VIII gene inversions in 164 unrelated hemophilia A families

    Energy Technology Data Exchange (ETDEWEB)

    Vnencak-Jones, L.; Phillips, J.A. III; Janco, R.L. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States)] [and others

    1994-09-01

    Hemophilia A is an X-linked recessive disease with variable phenotype and both heterogeneous and wide spread mutations in the factor VIII (F8) gene. As a result, diagnostic carrier or prenatal testing often relies upon laborious DNA linkage analysis. Recently, inversion mutations resulting from an intrachromosomal recombination between DNA sequences in one of two A genes {approximately}500 kb upstream from the F8 gene and a homologous A gene in intron 22 of the F8 gene were identified and found in 45% of severe hemophiliacs. We have analyzed banked DNA collected since 1986 from affected males or obligate carrier females representing 164 unrelated hemophilia A families. The disease was sporadic in 37%, familial in 54% and in 10% of families incomplete information was given. A unique deletion was identified in 1/164, a normal pattern was observed in 110/164 (67%), and 53/164 (32%) families had inversion mutations with 43/53 (81%) involving the distal A gene (R3 pattern) and 10/53 (19%) involving the proximal A gene (R2 pattern). While 19% of all rearrangements were R2, in 35 families with severe disease (< 1% VIII:C activity) all 16 rearrangements seen were R3. In 18 families with the R3 pattern and known activities, 16 (89%) had levels < 1%, with the remaining 2 families having {le} 2.4% activity. Further, 18 referrals specifically noted the production of inhibitors and 8/18 (45%) had the R3 pattern. Our findings demonstrate that the R3 inversion mutation patterns is (1) only seen with VIII:C activity levels of {le} 2.4%, (2) seen in 46% of families with severe hemophilia, (3) seen in 45% of hemophiliacs known to have inhibitors, (4) not correlated with sporadic or familial disease and (5) not in disequilibrium with the Bcl I or Taq I intron 18 or ST14 polymorphisms. Finally, in families positive for an inversion mutation, direct testing offers a highly accurate and less expensive alternative to DNA linkage analysis.

  19. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  20. HALF-BROTHERS IN THE SCHULHOF FAMILY?

    International Nuclear Information System (INIS)

    Vokrouhlicky, David; Nesvorny, David

    2011-01-01

    Disruptive collisions in the asteroid belt produced groups of fragments known as the asteroid families. The studies of identified asteroid families help us to better understand issues related to impact physics, space weathering, asteroid interior, and collisional evolution of the main belt. Here, we analyze a family near the central main belt asteroid (2384) Schulhof. We show that the previously found group of objects around (81337) 2000 GP36 is actually a sub-cluster in the larger Schulhof family. Using backward integrations we demonstrate that the orbits of sub-cluster asteroids converge to that of (2384) Schulhof at 780 ± 100 kyr ago, suggesting that the breakup event happened very recently. Interestingly, a similar analysis of the two newly discovered members of the Schulhof family may indicate a second event ∼< 100 kyr ago (e.g., secondary collision, fission, satellite instability). If confirmed, the formation history of the Schulhof family would suggest that small asteroids may have very colorful lifetimes. Additional astrometric observations of the two new member asteroids will be needed to improve their present orbit and better constrain their past histories.

  1. A novel missense mutation of NDP in a Chinese family with X-linked familial exudative vitreoretinopathy.

    Science.gov (United States)

    Liu, Hong Yan; Huang, Jia; Wang, Rui Li; Wang, Yue; Guo, Liang Jie; Li, Tao; Wu, Dong; Wang, Hong Dan; Guo, Qian Nan; Dong, Dao Quan

    2016-11-01

    Familial exudative vitreoretinopathy (FEVR) is a hereditary ocular disorder characterized by a failure of peripheral retinal vascularization. In this report, we describe a novel missense mutation of the Norrie disease gene (NDP) in a Chinese family with X-linked FEVR. Ophthalmologic evaluation was performed on four male patients and seven unaffected individuals after informed consent was obtained. Venous blood was collected from the 11 members of this family, and genomic DNA was extracted using standard methods. The coding exons 2 and 3 and their corresponding exon-intron junctions of NDP were amplified by polymerase chain reaction and then subjected to direct DNA sequencing. A novel missense mutation (c.310A>C) in exon 3, leading to a lysine-to-glutamine substitution at position 104 (p.Lys104Gln), was identified in all four patients with X-linked FEVR. Three unaffected female individuals (III2, IV3, and IV11) were found to be carriers of the mutation. This mutation was not detected in other unaffected individuals. The mutation c.310A>C (p.Lys104Gln) in exon 3 of NDP is associated with FEVR in the studied family. This result further enriches the mutation spectrum of FEVR. Copyright © 2016. Published by Elsevier Taiwan LLC.

  2. A novel missense mutation of NDP in a Chinese family with X-linked familial exudative vitreoretinopathy

    Directory of Open Access Journals (Sweden)

    Hong Yan Liu

    2016-11-01

    Full Text Available Familial exudative vitreoretinopathy (FEVR is a hereditary ocular disorder characterized by a failure of peripheral retinal vascularization. In this report, we describe a novel missense mutation of the Norrie disease gene (NDP in a Chinese family with X-linked FEVR. Ophthalmologic evaluation was performed on four male patients and seven unaffected individuals after informed consent was obtained. Venous blood was collected from the 11 members of this family, and genomic DNA was extracted using standard methods. The coding exons 2 and 3 and their corresponding exon–intron junctions of NDP were amplified by polymerase chain reaction and then subjected to direct DNA sequencing. A novel missense mutation (c.310A>C in exon 3, leading to a lysine-to-glutamine substitution at position 104 (p.Lys104Gln, was identified in all four patients with X-linked FEVR. Three unaffected female individuals (III2, IV3, and IV11 were found to be carriers of the mutation. This mutation was not detected in other unaffected individuals. The mutation c.310A>C (p.Lys104Gln in exon 3 of NDP is associated with FEVR in the studied family. This result further enriches the mutation spectrum of FEVR.

  3. Identification and characterization of a novel Cut family cDNA that encodes human copper transporter protein CutC

    International Nuclear Information System (INIS)

    Li Jixi; Ji Chaoneng; Chen Jinzhong; Yang Zhenxing; Wang Yijing; Fei, Xiangwei; Zheng Mei; Gu Xing; Wen Ge; Xie Yi; Mao Yumin

    2005-01-01

    Copper is an essential heavy metal trace element that plays important roles in cell physiology. The Cut family was associated with the copper homeostasis and involved in several important metabolisms, such as uptake, storage, delivery, and efflux of copper. In this study, a novel Cut family cDNA was isolated from the human fetal brain library, which encodes a 273 amino acid protein with a molecular mass of about 29.3 kDa and a calculated pI of 8.17. It was named hCutC (human copper transporter protein CutC). The ORF of hCutC gene was cloned into pQE30 vector and expressed in Escherichia coli M15. The secreted hCutC protein was purified to a homogenicity of 95% by using the Ni-NTA affinity chromatography. RT-PCR analysis showed that the hCutC gene expressed extensively in human tissues. Subcellular location analysis of hCutC-EGFP fusion protein revealed that hCutC was distributed to cytoplasm of COS-7 cells, and both cytoplasm and nucleus of AD293 cells. The results suggest that hCutC may be one shuttle protein and play important roles in intracellular copper trafficking

  4. Molecular data and phylogeny of family

    International Nuclear Information System (INIS)

    Shinwari, Z.K.; Shinwari, S.

    2010-01-01

    Family Smilacaceae's higher order taxonomy remained disputed for many years. It was treated as an order 'Smilacales' and was also placed under Liliales by several taxonomists. Even some considered as part of family Liliacaeae. In present paper, we investigated the family's higher order phylogeny and also compared its rbcL gene sequence data with related taxa to elucidate its phylogeny. The data suggests that its family stature is beyond dispute because of its advanced karyotype, woody climbing habit and DNA sequence data. The data suggest that Smilacaceae may be a sister group of order Liliales and it forms a clear clade with the order. (author)

  5. Molecular phylogeny and systematics of the banana family (Musaceae) inferred from multiple nuclear and chloroplast DNA fragments, with a special reference to the genus Musa.

    Science.gov (United States)

    Li, Lin-Feng; Häkkinen, Markku; Yuan, Yong-Ming; Hao, Gang; Ge, Xue-Jun

    2010-10-01

    Musaceae is a small paleotropical family. Three genera have been recognised within this family although the generic delimitations remain controversial. Most species of the family (around 65 species) have been placed under the genus Musa and its infrageneric classification has long been disputed. In this study, we obtained nuclear ribosomal ITS and chloroplast (atpB-rbcL, rps16, and trnL-F) DNA sequences of 36 species (42 accessions of ingroups representing three genera) together with 10 accessions of ingroups retrieved from GenBank database and 4 accessions of outgroups, to construct the phylogeny of the family, with a special reference to the infrageneric classification of the genus Musa. Our phylogenetic analyses elaborated previous results in supporting the monophyly of the family and suggested that Musella and Ensete may be congeneric or at least closely related, but refuted the previous infrageneric classification of Musa. None of the five sections of Musa previously defined based on morphology was recovered as monophyletic group in the molecular phylogeny. Two infrageneric clades were identified, which corresponded well to the basic chromosome numbers of x=11 and 10/9/7, respectively: the former clade comprises species from the sections Musa and Rhodochlamys while the latter contains sections of Callimusa, Australimusa, and Ingentimusa. Copyright 2010 Elsevier Inc. All rights reserved.

  6. DNA cloning: a practical approach. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Glover, D M [ed.

    1985-01-01

    This book is written for the advanced molecular biologist who needs a detailed discussion of cloning technology. Topics of discussion include: genomic library cloning (size of a genomic library, screening methods, chromosome walking, host cell genetics, and general features of bacteriophage Iambda); use of gt10 and gt11 cDNA lambda vectors and general cDNA cloning; RNase H-Pol I cDNA synthesis; method of detecting fusion proteins produced in bacteria; pEMBL family of double-stranded plasmid vectors that can be used to generate single strands; Escherichia coli transformation; production of mutations in cloned sequences; and cloning in gram negative bacteria.

  7. Grandpaternal mosaicism in a family with isolated haemophilia A.

    Science.gov (United States)

    Casey, G J; Rodgers, S E; Hall, J R; Rudzki, Z; Lloyd, J V

    1999-12-01

    About one third of cases of haemophilia A have no family history of the disorder, and 20% are thought to be due to a new mutation. In the family reported here, a 3 bp deletion was detected in DNA from the proband at the 3' end of exon 15. Direct sequencing of genomic DNA prepared from blood and buccal cells of the grandfather revealed both normal and mutant sequences, suggesting that he is a mosaic for this mutation. This highlights the usefulness of mutation detection, both for accurate genetic counselling and to determine the origin of new mutations of haemophilia.

  8. Establishing the UK DNA Bank for motor neuron disease (MND).

    Science.gov (United States)

    Smith, Lucy; Cupid, B C; Dickie, B G M; Al-Chalabi, A; Morrison, K E; Shaw, C E; Shaw, P J

    2015-07-14

    In 2003 the Motor Neurone Disease (MND) Association, together with The Wellcome Trust, funded the creation of a national DNA Bank specific for MND. It was anticipated that the DNA Bank would constitute an important resource to researchers worldwide and significantly increase activity in MND genetic research. The DNA Bank houses over 3000 high quality DNA samples, all of which were donated by people living with MND, family members and non-related controls, accompanied by clinical phenotype data about the patients. Today the primary focus of the UK MND DNA Bank still remains to identify causative and disease modifying factors for this devastating disease.

  9. Novel folliculin (FLCN) mutation and familial spontaneous pneumothorax.

    Science.gov (United States)

    Zhu, J-F; Shen, X-Q; Zhu, F; Tian, L

    2017-01-01

    Familial spontaneous pneumothorax is one of the characteristics of Birt-Hogg-Dubé syndrome (BHDS), which is an autosomal dominant disease caused by the mutation of folliculin (FLCN). To investigate the mutation of FLCN gene in a familial spontaneous pneumothorax. Prospective case study. Clinical and genetic data of a Chinese family with four patients who presented spontaneous pneumothorax in the absence of skin lesions or renal tumors were collected. CT scan of patient's lung was applied for observation of pneumothorax. DNA sequencing of the coding exons (4-14 exons) of FLCN was performed for all 11 members of the family and 100 unrelated healthy controls. CT scan of patient's lung showed spontaneous pneumothorax. A mutation (c. 510C > G) that leads to a premature stop codon (p. Y170X) was found in the proband using DNA sequencing of coding exons (4-14 exons) of FLCN. This mutation was also observed in the other affected members of the family. A nonsense mutation of FLCN was found in a spontaneous pneumothorax family. Our results expand the mutational spectrum of FLCN in patients with BHDS. © The Author 2016. Published by Oxford University Press on behalf of the Association of Physicians. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. pH Modulates the Binding of EGR1 Transcription Factor to DNA

    Science.gov (United States)

    Mikles, David C.; Bhat, Vikas; Schuchardt, Brett J.; Deegan, Brian J.; Seldeen, Kenneth L.; McDonald, Caleb B.; Farooq, Amjad

    2013-01-01

    EGR1 transcription factor orchestrates a plethora of signaling cascades involved in cellular homeostasis and its down-regulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with increasing pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as H382 by virtue of the fact that its substitution to non-ionizable residues abolishes pH-dependence of the binding of EGR1 to DNA. Notably, H382 inserts into the major groove of DNA and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, H382 is predominantly conserved across other members of EGR1 family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating protein-DNA interactions central to this family of transcription factors. Collectively, our findings uncover an unexpected but a key step in the molecular recognition of EGR1 family of transcription factors and suggest that they may act as sensors of pH within the intracellular environment. PMID:23718776

  11. Impact of cadmium, cobalt and nickel on sequence-specific DNA binding of p63 and p73 in vitro and in cells

    International Nuclear Information System (INIS)

    Adámik, Matej; Bažantová, Pavla; Navrátilová, Lucie; Polášková, Alena; Pečinka, Petr; Holaňová, Lucie; Tichý, Vlastimil; Brázdová, Marie

    2015-01-01

    Highlights: • DNA binding of p53 family core domains is inhibited by cadmium, cobalt and nickel. • Binding to DNA protects p53 family core domains from metal induced inhibition. • Cadmium, cobalt and nickel induced inhibition was reverted by EDTA in vitro. - Abstract: Site-specific DNA recognition and binding activity belong to common attributes of all three members of tumor suppressor p53 family proteins: p53, p63 and p73. It was previously shown that heavy metals can affect p53 conformation, sequence-specific binding and suppress p53 response to DNA damage. Here we report for the first time that cadmium, nickel and cobalt, which have already been shown to disturb various DNA repair mechanisms, can also influence p63 and p73 sequence-specific DNA binding activity and transactivation of p53 family target genes. Based on results of electrophoretic mobility shift assay and luciferase reporter assay, we conclude that cadmium inhibits sequence-specific binding of all three core domains to p53 consensus sequences and abolishes transactivation of several promoters (e.g. BAX and MDM2) by 50 μM concentrations. In the presence of specific DNA, all p53 family core domains were partially protected against loss of DNA binding activity due to cadmium treatment. Effective cadmium concentration to abolish DNA–protein interactions was about two times higher for p63 and p73 proteins than for p53. Furthermore, we detected partial reversibility of cadmium inhibition for all p53 family members by EDTA. DTT was able to reverse cadmium inhibition only for p53 and p73. Nickel and cobalt abolished DNA–p53 interaction at sub-millimolar concentrations while inhibition of p63 and p73 DNA binding was observed at millimolar concentrations. In summary, cadmium strongly inhibits p53, p63 and p73 DNA binding in vitro and in cells in comparison to nickel and cobalt. The role of cadmium inhibition of p53 tumor suppressor family in carcinogenesis is discussed

  12. Impact of cadmium, cobalt and nickel on sequence-specific DNA binding of p63 and p73 in vitro and in cells

    Energy Technology Data Exchange (ETDEWEB)

    Adámik, Matej [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Bažantová, Pavla [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 701 03 Ostrava (Czech Republic); Navrátilová, Lucie; Polášková, Alena [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Pečinka, Petr [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 701 03 Ostrava (Czech Republic); Holaňová, Lucie [Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého 1/3, 61242 Brno (Czech Republic); Tichý, Vlastimil [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Brázdová, Marie, E-mail: maruska@ibp.cz [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého 1/3, 61242 Brno (Czech Republic)

    2015-01-02

    Highlights: • DNA binding of p53 family core domains is inhibited by cadmium, cobalt and nickel. • Binding to DNA protects p53 family core domains from metal induced inhibition. • Cadmium, cobalt and nickel induced inhibition was reverted by EDTA in vitro. - Abstract: Site-specific DNA recognition and binding activity belong to common attributes of all three members of tumor suppressor p53 family proteins: p53, p63 and p73. It was previously shown that heavy metals can affect p53 conformation, sequence-specific binding and suppress p53 response to DNA damage. Here we report for the first time that cadmium, nickel and cobalt, which have already been shown to disturb various DNA repair mechanisms, can also influence p63 and p73 sequence-specific DNA binding activity and transactivation of p53 family target genes. Based on results of electrophoretic mobility shift assay and luciferase reporter assay, we conclude that cadmium inhibits sequence-specific binding of all three core domains to p53 consensus sequences and abolishes transactivation of several promoters (e.g. BAX and MDM2) by 50 μM concentrations. In the presence of specific DNA, all p53 family core domains were partially protected against loss of DNA binding activity due to cadmium treatment. Effective cadmium concentration to abolish DNA–protein interactions was about two times higher for p63 and p73 proteins than for p53. Furthermore, we detected partial reversibility of cadmium inhibition for all p53 family members by EDTA. DTT was able to reverse cadmium inhibition only for p53 and p73. Nickel and cobalt abolished DNA–p53 interaction at sub-millimolar concentrations while inhibition of p63 and p73 DNA binding was observed at millimolar concentrations. In summary, cadmium strongly inhibits p53, p63 and p73 DNA binding in vitro and in cells in comparison to nickel and cobalt. The role of cadmium inhibition of p53 tumor suppressor family in carcinogenesis is discussed.

  13. An Analysis of Marine Corps Beyond Line of Sight Wideband Satellite Communications Requirements

    Science.gov (United States)

    2010-09-01

    Tactical SHF Satellite Terminal UFO ... what made it bearable. Stephen Musick: Thanks are due to my family and friends for their support and encouragement. I want to especially thank... what beyond LOS WB SATCOM capabilities the USMC requires in order to prepare for the future. A clear understanding of desired capabilities allows for

  14. Eukaryotic DNA Replicases

    KAUST Repository

    Zaher, Manal S.; Oke, Muse; Hamdan, Samir

    2014-01-01

    The current model of the eukaryotic DNA replication fork includes three replicative DNA polymerases, polymerase α/primase complex (Pol α), polymerase δ (Pol δ), and polymerase ε (Pol ε). The primase synthesizes 8–12 nucleotide RNA primers that are extended by the DNA polymerization activity of Pol α into 30–35 nucleotide RNA-DNA primers. Replication factor C (RFC) opens the polymerase clamp-like processivity factor, proliferating cell nuclear antigen (PCNA), and loads it onto the primer-template. Pol δ utilizes PCNA to mediate highly processive DNA synthesis, while Pol ε has intrinsic high processivity that is modestly stimulated by PCNA. Pol ε replicates the leading strand and Pol δ replicates the lagging strand in a division of labor that is not strict. The three polymerases are comprised of multiple subunits and share unifying features in their large catalytic and B subunits. The remaining subunits are evolutionarily not related and perform diverse functions. The catalytic subunits are members of family B, which are distinguished by their larger sizes due to inserts in their N- and C-terminal regions. The sizes of these inserts vary among the three polymerases, and their functions remain largely unknown. Strikingly, the quaternary structures of Pol α, Pol δ, and Pol ε are arranged similarly. The catalytic subunits adopt a globular structure that is linked via its conserved C-terminal region to the B subunit. The remaining subunits are linked to the catalytic and B subunits in a highly flexible manner.

  15. Eukaryotic DNA Replicases

    KAUST Repository

    Zaher, Manal S.

    2014-11-21

    The current model of the eukaryotic DNA replication fork includes three replicative DNA polymerases, polymerase α/primase complex (Pol α), polymerase δ (Pol δ), and polymerase ε (Pol ε). The primase synthesizes 8–12 nucleotide RNA primers that are extended by the DNA polymerization activity of Pol α into 30–35 nucleotide RNA-DNA primers. Replication factor C (RFC) opens the polymerase clamp-like processivity factor, proliferating cell nuclear antigen (PCNA), and loads it onto the primer-template. Pol δ utilizes PCNA to mediate highly processive DNA synthesis, while Pol ε has intrinsic high processivity that is modestly stimulated by PCNA. Pol ε replicates the leading strand and Pol δ replicates the lagging strand in a division of labor that is not strict. The three polymerases are comprised of multiple subunits and share unifying features in their large catalytic and B subunits. The remaining subunits are evolutionarily not related and perform diverse functions. The catalytic subunits are members of family B, which are distinguished by their larger sizes due to inserts in their N- and C-terminal regions. The sizes of these inserts vary among the three polymerases, and their functions remain largely unknown. Strikingly, the quaternary structures of Pol α, Pol δ, and Pol ε are arranged similarly. The catalytic subunits adopt a globular structure that is linked via its conserved C-terminal region to the B subunit. The remaining subunits are linked to the catalytic and B subunits in a highly flexible manner.

  16. Differential protein expression, DNA binding and interaction with SV40 large tumour antigen implicate the p63-family of proteins in replicative senescence.

    Science.gov (United States)

    Djelloul, Siham; Tarunina, Marina; Barnouin, Karin; Mackay, Alan; Jat, Parmjit S

    2002-02-07

    P53 activity plays a key role in mammalian cells when they undergo replicative senescence at their Hayflick limit. To determine whether p63 proteins, members of the family of p53-related genes, are also involved in this process, we examined their expression in serially passaged rat embryo fibroblasts. Upon senescence, two truncated DeltaNp63 proteins decreased in abundance whereas two TAp63 isoforms accumulated. 2-D gel analysis showed that the DeltaNp63 proteins underwent post-translational modifications in both proliferating and senescent cells. Direct binding of DeltaNp63 proteins to a p53 consensus motif was greater in proliferating cells than senescent cells. In contrast p63alpha isoforms bound to DNA in a p53 dependent manner and this was higher in senescent cells than proliferating cells. An interaction of p63alpha proteins with SV40 large tumour antigen was also detected and ectopic expression of DeltaNp63alpha can extend the lifespan of rat embryo fibroblasts. Taken together the results indicate that p63 proteins may play a role in replicative senescence either by competition for p53 DNA binding sites or by direct interaction with p53 protein bound to DNA.

  17. APOBEC3 cytidine deaminases in double-strand DNA break repair and cancer promotion.

    Science.gov (United States)

    Nowarski, Roni; Kotler, Moshe

    2013-06-15

    High frequency of cytidine to thymidine conversions was identified in the genome of several types of cancer cells. In breast cancer cells, these mutations are clustered in long DNA regions associated with single-strand DNA (ssDNA), double-strand DNA breaks (DSB), and genomic rearrangements. The observed mutational pattern resembles the deamination signature of cytidine to uridine carried out by members of the APOBEC3 family of cellular deaminases. Consistently, APOBEC3B (A3B) was recently identified as the mutational source in breast cancer cells. A3G is another member of the cytidine deaminases family predominantly expressed in lymphoma cells, where it is involved in mutational DSB repair following ionizing radiation treatments. This activity provides us with a new paradigm for cancer cell survival and tumor promotion and a mechanistic link between ssDNA, DSBs, and clustered mutations. Cancer Res; 73(12); 3494-8. ©2013 AACR. ©2013 AACR.

  18. Orbital and Collisional Evolution of the Irregular Satellites

    Science.gov (United States)

    Nesvorný, David; Alvarellos, Jose L. A.; Dones, Luke; Levison, Harold F.

    2003-07-01

    instabilities operating on longer time spans. The average orbits calculated from this experiment were then used to probe the collisional evolution of the irregular satellite systems. We found that (1) the large irregular moons must have collisionally eliminated many small irregular moons, thus shaping their population to the currently observed structures; (2) some dynamical families of satellites could have been formed by catastrophic collisions among the irregular moons; and (3) Phoebe's surface must have been heavily cratered by impacts from an extinct population of Saturnian irregular moons, much larger than the present one. We therefore suggest that the Cassini imaging of Phoebe in 2004 can be used to determine the primordial population of small irregular moons of Saturn. In such a case, we will also better understand the overall efficiency of the formation process of the irregular satellites and the physical conditions that existed during planetary formation. We discovered two dynamical families of tightly clustered orbits within the Jovian retrograde group. We believe that these two clusters may be the remnants of two collisionally disrupted bodies. We found that the entire Jovian retrograde group and the Saturnian inclination groups were not produced by single breakups, because the ejection velocities derived from the orbital structures of these groups greatly exceed values calculated by modern numerical models of collisional breakups. Taken together, the evidence presented here suggests that many properties of the irregular moons previously assigned to their formation process may have resulted from their later dynamical and collisional evolution. Finally, we have found that several irregular moons, namely, Pasiphae, Sinope, S/2001 J10, S/2000 S5, S/2000 S6, and S/2000 S3, have orbits characterized by secular resonances. The orbits of some of these moons apparently evolved by some slow dissipative process in the past and became captured in tiny resonant volumes.

  19. Satellite myths

    Science.gov (United States)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  20. The application of strand invasion phenomenon, directed by peptide nucleic acid (PNA) and single-stranded DNA binding protein (SSB) for the recognition of specific sequences of human endogenous retroviral HERV-W family.

    Science.gov (United States)

    Machnik, Grzegorz; Bułdak, Łukasz; Ruczyński, Jarosław; Gąsior, Tomasz; Huzarska, Małgorzata; Belowski, Dariusz; Alenowicz, Magdalena; Mucha, Piotr; Rekowski, Piotr; Okopień, Bogusław

    2017-05-01

    The HERV-W family of human endogenous retroviruses represents a group of numerous sequences that show close similarity in genetic composition. It has been documented that some members of HERV-W-derived expression products are supposed to play significant role in humans' pathology, such as multiple sclerosis or schizophrenia. Other members of the family are necessary to orchestrate physiological processes (eg, ERVWE1 coding syncytin-1 that is engaged in syncytiotrophoblast formation). Therefore, an assay that would allow the recognition of particular form of HERV-W members is highly desirable. A peptide nucleic acid (PNA)-mediated technique for the discrimination between multiple sclerosis-associated retrovirus and ERVWE1 sequence has been developed. The assay uses a PNA probe that, being fully complementary to the ERVWE1 but not to multiple sclerosis-associated retrovirus (MSRV) template, shows high selective potential. Single-stranded DNA binding protein facilitates the PNA-mediated, sequence-specific formation of strand invasion complex and, consequently, local DNA unwinding. The target DNA may be then excluded from further analysis in any downstream process such as single-stranded DNA-specific exonuclease action. Finally, the reaction conditions have been optimized, and several PNA probes that are targeted toward distinct loci along whole HERV-W env sequences have been evaluated. We believe that PNA/single-stranded DNA binding protein-based application has the potential to selectively discriminate particular HERV-W molecules as they are at least suspected to play pathogenic role in a broad range of medical conditions, from psycho-neurologic disorders (multiple sclerosis and schizophrenia) and cancers (breast cancer) to that of an auto-immunologic background (psoriasis and lupus erythematosus). Copyright © 2016 John Wiley & Sons, Ltd.

  1. Communication satellite applications

    Science.gov (United States)

    Pelton, Joseph N.

    The status and future of the technologies, numbers and services provided by communications satellites worldwide are explored. The evolution of Intelsat satellites and the associated earth terminals toward high-rate all-digital telephony, data, facsimile, videophone, videoconferencing and DBS capabilities are described. The capabilities, services and usage of the Intersputnik, Eutelsat, Arabsat and Palapa systems are also outlined. Domestic satellite communications by means of the Molniya, ANIK, Olympus, Intelsat and Palapa spacecraft are outlined, noting the fast growth of the market and the growing number of different satellite manufacturers. The technical, economic and service definition issues surrounding DBS systems are discussed, along with presently operating and planned maritime and aeronautical communications and positioning systems. Features of search and rescue and tracking, data, and relay satellite systems are summarized, and services offered or which will be offered by every existing or planned communication satellite worldwide are tabulated.

  2. Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids

    Directory of Open Access Journals (Sweden)

    Davidson William S

    2007-11-01

    Full Text Available Abstract Background Several genome duplications have occurred in the evolutionary history of teleost fish. In returning to a stable diploid state, the polyploid genome reorganized, and large portions are lost, while the fish lines evolved to numerous species. Large scale transposon movement has been postulated to play an important role in the genome reorganization process. We analyzed the DNA sequence of several large loci in Salmo salar and other species for the presence of DNA transposon families. Results We have identified bursts of activity of 14 families of DNA transposons (12 Tc1-like and 2 piggyBac-like families, including 11 novel ones in genome sequences of Salmo salar. Several of these families have similar sequences in a number of closely and distantly related fish, lamprey, and frog species as well as in the parasite Schistosoma japonicum. Analysis of sequence similarities between copies within the families of these bursts demonstrates several waves of transposition activities coinciding with salmonid species divergence. Tc1-like families show a master gene-like copying process, illustrated by extensive but short burst of copying activity, while the piggyBac-like families show a more random copying pattern. Recent families may include copies with an open reading frame for an active transposase enzyme. Conclusion We have identified defined bursts of transposon activity that make use of master-slave and random mechanisms. The bursts occur well after hypothesized polyploidy events and coincide with speciation events. Parasite-mediated lateral transfer of transposons are implicated.

  3. Genetic factors affecting radiosensitivity and cancer predisposition: application of a continuous low dose-rate irradiation colony formation assay to select radiosensitive retinoblastoma family members for correction with a cDNA library

    International Nuclear Information System (INIS)

    Wilson, P.F.; Nagasawa, H.; Bedford, J.S.; Little, J.B.

    2003-01-01

    Full text: The aim of this study is to identify new or undescribed functions of radiosensitivity and genomic instability genes using a continuous low dose-rate colony formation assay. This assay expands on the standard colony formation assay, whereby colony formation ability (retention of proliferative capacity) is measured during continuous low dose-rate irradiation rather than 10-14 days following the completion of such exposures. This approach has previously employed by the Bedford laboratory to identify a Prkdc (DNA-PKcs) mutant of CHO cells, irs-20. In this study we examine the growth response of fibroblasts derived from recently identified radiosensitive retinoblastoma family members, both affected probands and their unaffected parents, and various apparently normal fibroblast lines obtained from the NIGMS Human Genetic Cell Repository (Coriell Medical Institute, Camden, NJ). Colony formation was assayed by plating single cells, exposing them at 37 deg C to continuous Cs-137 gamma irradiation at dose rates of 0.5-8.5 cGy/h, and scoring survivors as colonies with >100 viable cells. The retinoblastoma family members display severely limited growth (survival less than 10E-3) at dose rates greater than 2-2.5 cGy/h, while the apparently normal cell lines do not display such inhibited growth until 6-7 cGy/h. Two of the retinoblastoma family cell lines, MF-6F and MF-15F (both unaffected but radiosensitive parents), were selected as targets of transfection with a viral cDNA library (ViraPort human cDNA library, Stratagene Cloning Systems, La Jolla, CA) and subjected to a ∼3 cGy/h selection dose rate, where uncorrected survival relative to normal cells is lower by a factor of 50-150. Colonies recovered will provide valuable information regarding the genetic nature of their radiosensitivity (possibly involving chromosome stability, DNA repair, and/or cell cycle regulatory pathways), that may influence risks for cancer and heritable effects for a previously

  4. Multilocus DNA fingerprints in gallinaceous birds: general approach and problems.

    Science.gov (United States)

    Hanotte, O; Bruford, M W; Burke, T

    1992-06-01

    Multilocus profiles were investigated in five different species of Galliformes (ring-necked pheasant Phasianus colchicus, Indian peafowl Pavo cristatus, Japanese quail Coturnix coturnix japonica, domestic chicken Gallus gallus, and red grouse Lagopus lagopus scoticus) using two human multilocus probes (33.6 and 33.15) in combination with each of four restriction enzymes (AluI, DdeI, HaeIII or HinfI). All the species show a DNA fingerprint-like pattern using at least one restriction enzyme in combination with each multilocus probe. The number of bands detected and the value of the index of similarity for each species differ significantly between the profiles obtained with each multilocus probe. Some enzyme/probe combinations reveal strong cross-hybridization of the multilocus probes with satellite or satellite-like DNA sequences in pheasant, peacock, quail and chicken, which partially or completely prevented scoring of the profile. The choice of restriction enzyme was found to influence the number of bands, the value of the index of similarity and the probability of obtaining an identical fingerprint between unrelated individuals. The Mendelian inheritance and independent segregation of the fragments detected using AluI was investigated in three species (ring-necked pheasant, Indian peafowl and red grouse). Some bands were shown to be tightly linked. An extreme case was encountered in the red grouse, where 12 of the 15 bands scored in one parent represented only two, apparently allelic, haplotypes and so derived from a single locus. However, fingerprint patterns will often be adequate for use in paternity analyses, such as in behavioural studies, despite the occurrence of haplotypic sets of bands. Identical DNA multilocus profiles were sometimes observed between captive-bred siblings in one species. These results emphasize the desirability of determining, in each new species, the optimal experimental conditions as a preliminary to any behavioural or population

  5. Human SIRT6 promotes DNA end resection through CtIP deacetylation

    DEFF Research Database (Denmark)

    Kaidi, Abderrahmane; Weinert, Brian T; Choudhary, Chunaram

    2010-01-01

    SIRT6 belongs to the sirtuin family of protein lysine deacetylases, which regulate aging and genome stability. We found that human SIRT6 has a role in promoting DNA end resection, a crucial step in DNA double-strand break (DSB) repair by homologous recombination. SIRT6 depletion impaired the accu...

  6. History of Satellite TV Broadcasting and Satellite Broadcasting Market in Turkey

    Directory of Open Access Journals (Sweden)

    Mihalis KUYUCU

    2015-09-01

    Full Text Available The present study analyses the satellite broadcasting that is the first important development that emerged as a result of digitalization in communication technologies and its reflections in Turkey. As the first milestone in the globalization of television broadcasting, satellite broadcasting provided substantial contribution towards the development of the media. Satellite bro adcasting both increased the broadcasting quality and geographical coverage of the television media. A conceptual study was carried out in the first part of the study in connection with the history of satellite broadcasting in Turkey and across the world. In the research part of the study, an analysis was performed on 160 television channels that broadcast in Turkey via Turksat Satellite. Economic structure of the television channels broadcasting in Turkey via satellite was studied and an analysis was perfo rmed on the operational structure of the channels. As a result of the study, it was emphasized that the television channels broadcasting via satellite platform also use other platforms for the purpose of spreading their broadcasts and television channel ow ners make investments in different branches of the media, too. Capital owners invest in different business areas other than the media although television channels broadcasting via Turksat mostly focus on thematic broadcasting and make effort to generate ec onomic income from advertisements. Delays are encountered in the course of the convergence between the new media and television channels that broadcast only from the satellite platform and such television channels experience more economic problems than the other channels. New media and many TV broadcasting platforms emerged as a result of the developments in the communication technologies. In television broadcasting, satellite platform is not an effective platform on its own. Channels make effort to reach t o more people by using other platforms in addition to

  7. DNA damage markers in dermal fibroblasts in vitro reflect chronological donor age

    DEFF Research Database (Denmark)

    Waaijer, Mariëtte E C; Croco, Eleonora; Westendorp, Rudi G J

    2016-01-01

    The aging process is accompanied by an accumulation of cellular damage, which compromises the viability and function of cells and tissues. We aim to further explore the association between in vitro DNA damage markers and the chronological age of the donor, as well as long-lived family membership...... markers and long-lived family membership or cardiovascular disease. Results were comparable when fibroblasts were stressed in vitro with rotenone. In conclusion, we found that DNA damage foci of cultured fibroblasts are significantly associated with the chronological age, but not biological age...

  8. Relative tracking control of constellation satellites considering inter-satellite link

    Science.gov (United States)

    Fakoor, M.; Amozegary, F.; Bakhtiari, M.; Daneshjou, K.

    2017-11-01

    In this article, two main issues related to the large-scale relative motion of satellites in the constellation are investigated to establish the Inter Satellite Link (ISL) which means the dynamic and control problems. In the section related to dynamic problems, a detailed and effective analytical solution is initially provided for the problem of satellite relative motion considering perturbations. The direct geometric method utilizing spherical coordinates is employed to achieve this solution. The evaluation of simulation shows that the solution obtained from the geometric method calculates the relative motion of the satellite with high accuracy. Thus, the proposed analytical solution will be applicable and effective. In the section related to control problems, the relative tracking control system between two satellites will be designed in order to establish a communication link between the satellites utilizing analytical solution for relative motion of satellites with respect to the reference trajectory. Sliding mode control approach is employed to develop the relative tracking control system for body to body and payload to payload tracking control. Efficiency of sliding mode control approach is compared with PID and LQR controllers. Two types of payload to payload tracking control considering with and without payload degree of freedom are designed and suitable one for practical ISL applications is introduced. Also, Fuzzy controller is utilized to eliminate the control input in the sliding mode controller.

  9. Mobile satellite service communications tests using a NASA satellite

    Science.gov (United States)

    Chambers, Katherine H.; Koschmeder, Louis A.; Hollansworth, James E.; ONeill, Jack; Jones, Robert E.; Gibbons, Richard C.

    1995-01-01

    Emerging applications of commercial mobile satellite communications include satellite delivery of compact disc (CD) quality radio to car drivers who can select their favorite programming as they drive any distance; transmission of current air traffic data to aircraft; and handheld communication of data and images from any remote corner of the world. Experiments with the enabling technologies and tests and demonstrations of these concepts are being conducted before the first satellite is launched by utilizing an existing NASA spacecraft.

  10. Interaction of sulforaphane with DNA and RNA.

    Directory of Open Access Journals (Sweden)

    Farzaneh Abassi Joozdani

    Full Text Available Sulforaphane (SFN is an isothiocyanate found in cruciferous vegetables with anti-inflammatory, anti-oxidant and anti-cancer activities. However, the antioxidant and anticancer mechanism of sulforaphane is not well understood. In the present research, we reported binding modes, binding constants and stability of SFN-DNA and -RNA complexes by Fourier transform infrared (FTIR and UV-Visible spectroscopic methods. Spectroscopic evidence showed DNA intercalation with some degree of groove binding. SFN binds minor and major grooves of DNA and backbone phosphate (PO2, while RNA binding is through G, U, A bases with some degree of SFN-phosphate (PO2 interaction. Overall binding constants were estimated to be K(SFN-DNA=3.01 (± 0.035×10(4 M(-1 and K(SFN-RNA= 6.63 (±0.042×10(3 M(-1. At high SFN concentration (SFN/RNA = 1/1, DNA conformation changed from B to A occurred, while RNA remained in A-family structure.

  11. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  12. Heritability of Radiation Response in Lung Cancer Families

    Directory of Open Access Journals (Sweden)

    H.-Erich Wichmann

    2012-03-01

    Full Text Available Radiation sensitivity is assumed to be a cancer susceptibility factor due to impaired DNA damage signalling and repair. Relevant genetic factors may also determine the observed familial aggregation of early onset lung cancer. We investigated the heritability of radiation sensitivity in families of 177 Caucasian cases of early onset lung cancer. In total 798 individuals were characterized for their radiation-induced DNA damage response. DNA damage analysis was performed by alkaline comet assay before and after in vitro irradiation of isolated lymphocytes. The cells were exposed to a dose of 4 Gy and allowed to repair induced DNA-damage up to 60 minutes. The primary outcome parameter Olive Tail Moment was the basis for heritability estimates. Heritability was highest for basal damage (without irradiation 70% (95%-CI: 51%–88% and initial damage (directly after irradiation 65% (95%-CI: 47%–83% and decreased to 20%–48% for the residual damage after different repair times. Hence our study supports the hypothesis that genomic instability represented by the basal DNA damage as well as radiation induced and repaired damage is highly heritable. Genes influencing genome instability and DNA repair are therefore of major interest for the etiology of lung cancer in the young. The comet assay represents a proper tool to investigate heritability of the radiation sensitive phenotype. Our results are in good agreement with other mutagen sensitivity assays.

  13. J6 Himalia: New Compositional Evidence and Interpretations for the Origin of Jupiter's Small Satellites

    Science.gov (United States)

    Vilas, Faith; Jarvis, K.; Larson, S.; Gaffey, M.

    1999-01-01

    New narrowband spectrophotometric data of J6 Himalia, some of which are spatially resolved, support its C-type classification. The new spectra confirm the presence of a weak absorption feature centered near 0.7 micron attributed to oxidized iron in phyllosilicates, products of aqueous alteration, which varies in depth on opposite sides of the satellite. Evaluation of older UBV photometry of J6 and J7 Elara compared to UBV photometry of C-class (and subclass) asteroids showing spectral evidence of the 0.7-microns absorption feature suggests that J6 Himalia is an F-class asteroid. We propose that the parent body of the prograde Jovian satellites originated as part of the Nysa asteroid family. Evolutionary models of the Jovian system are used to address the capture and dispersal of the irregular satellites.

  14. Hepatitis B virus DNA integration and transactivation of cellular genes

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2007-02-01

    Full Text Available

    family: QuorumITCbyBT-Book">Chronic hepatitis B virus (HBV infection is etiologically related to human hepatocellular carcinoma (HCC. Most HCCs contain integrated HBV DNA in hepatocyte, suggesting that the integration may be involved in carcinogenesis. Available data on the integrants from human hepatocellular carcinomas seem to represent primary integrants as well as the products of secondary rearrangements. By means of structural analyses of the possible primary integrants, it has been observed that the replication intermediates of the viral genome are the preferred substrates for integration. The integrated HBV DNA and the target cellular DNA are invariably associated with deletions, possibly reflecting the substrate for, and the mechanism of, the integration reaction. The host DNA sequences as well as the target site of integration in chromosomes are selected randomly suggesting that HBV DNA integration should bring about random mutagenic effects. Analysis of the samples recovered from hepatocellular carcinomas show that the integrated HBV DNA can mediate secondary rearrangements of chromosomes, such as translocations, inversions, deletions and (possibly amplifications. The integration of HBV DNA into the host genome occurs at early steps of clonal tumor expansion. The integration has been shown in a number of cases to affect a variety of cancer-related genes and to exert insertional mutagenesis. However, in contrast to the woodchuck model, in which specific HBV-DNA integration is detectable in most cases, insertional activation or inactivation of cellular genes appears to be a rare event in man. The discovery of transactivating functions exerted by HBx and truncated HBs(urface proteins supports the notion that these could be relevant to hepatocarcinogenesis as these transactivator sequences have been found in a large number of HCC tumors or hepatoma-derived cell lines. The HBx

  15. The maternal nucleolus plays a key role in centromere satellite maintenance during the oocyte to embryo transition.

    Science.gov (United States)

    Fulka, Helena; Langerova, Alena

    2014-04-01

    The oocyte (maternal) nucleolus is essential for early embryonic development and embryos originating from enucleolated oocytes arrest at the 2-cell stage. The reason for this is unclear. Surprisingly, RNA polymerase I activity in nucleolus-less mouse embryos, as manifested by pre-rRNA synthesis, and pre-rRNA processing are not affected, indicating an unusual role of the nucleolus. We report here that the maternal nucleolus is indispensable for the regulation of major and minor satellite repeats soon after fertilisation. During the first embryonic cell cycle, absence of the nucleolus causes a significant reduction in major and minor satellite DNA by 12% and 18%, respectively. The expression of satellite transcripts is also affected, being reduced by more than half. Moreover, extensive chromosome bridging of the major and minor satellite sequences was observed during the first mitosis. Finally, we show that the absence of the maternal nucleolus alters S-phase dynamics and causes abnormal deposition of the H3.3 histone chaperone DAXX in pronuclei of nucleolus-less zygotes.

  16. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  17. The phytochemical 3,3'-diindolylmethane decreases expression of AR-controlled DNA damage repair genes through repressive chromatin modifications and is associated with DNA damage in prostate cancer cells.

    Science.gov (United States)

    Palomera-Sanchez, Zoraya; Watson, Gregory W; Wong, Carmen P; Beaver, Laura M; Williams, David E; Dashwood, Roderick H; Ho, Emily

    2017-09-01

    Androgen receptor (AR) is a transcription factor involved in normal prostate physiology and prostate cancer (PCa) development. 3,3'-Diindolylmethane (DIM) is a promising phytochemical agent against PCa that affects AR activity and epigenetic regulators in PCa cells. However, whether DIM suppresses PCa via epigenetic regulation of AR target genes is unknown. We assessed epigenetic regulation of AR target genes in LNCaP PCa cells and showed that DIM treatment led to epigenetic suppression of AR target genes involved in DNA repair (PARP1, MRE11, DNA-PK). Decreased expression of these genes was accompanied by an increase in repressive chromatin marks, loss of AR occupancy and EZH2 recruitment to their regulatory regions. Decreased DNA repair gene expression was associated with an increase in DNA damage (γH2Ax) and up-regulation of genomic repeat elements LINE1 and α-satellite. Our results suggest that DIM suppresses AR-dependent gene transcription through epigenetic modulation, leading to DNA damage and genome instability in PCa cells. Published by Elsevier Inc.

  18. Preventing the transmission of mitochondrial DNA disorders using prenatal or preimplantation genetic diagnosis.

    Science.gov (United States)

    Smeets, Hubert J M; Sallevelt, Suzanne C E H; Dreesen, Jos C F M; de Die-Smulders, Christine E M; de Coo, Irenaeus F M

    2015-09-01

    Mitochondrial disorders are among the most common inborn errors of metabolism; at least 15% are caused by mitochondrial DNA (mtDNA) mutations, which occur de novo or are maternally inherited. For familial heteroplasmic mtDNA mutations, the mitochondrial bottleneck defines the mtDNA mutation load in offspring, with an often high or unpredictable recurrence risk. Oocyte donation is a safe option to prevent the transmission of mtDNA disease, but the offspring resulting from oocyte donation are genetically related only to the father. Prenatal diagnosis (PND) is technically possible but usually not applicable because of limitations in predicting the phenotype. For de novo mtDNA point mutations, recurrence risks are low and PND can be offered to provide reassurance regarding fetal health. PND is also the best option for female carriers with low-level mutations demonstrating skewing to 0% or 100%. A fairly new option for preventing the transmission of mtDNA diseases is preimplantation genetic diagnosis (PGD), in which embryos with a mutant load below a mutation-specific or general expression threshold of 18% can be transferred. PGD is currently the best reproductive option for familial heteroplasmic mtDNA point mutations. Nuclear genome transfer and genome editing techniques are currently being investigated and might offer additional reproductive options for specific mtDNA disease cases. © 2015 New York Academy of Sciences.

  19. DNA methylation at a bovine alpha satellite I repeat CpG site during development following fertilization and somatic cell nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Christine Couldrey

    Full Text Available Incomplete epigenetic reprogramming is postulated to contribute to the low developmental success following somatic cell nuclear transfer (SCNT. Here, we describe the epigenetic reprogramming of DNA methylation at an alpha satellite I CpG site (αsatI-5 during development of cattle generated either by artificial insemination (AI or in vitro fertilization (IVF and SCNT. Quantitative methylation analysis identified that SCNT donor cells were highly methylated at αsatI-5 and resulting SCNT blastocysts showed significantly more methylation than IVF blastocysts. At implantation, no difference in methylation was observed between SCNT and AI in trophoblast tissue at αsatI-5, however, SCNT embryos were significantly hyper-methylated compared to AI controls at this time point. Following implantation, DNA methylation at αsatI-5 decreased in AI but not SCNT placental tissues. In contrast to placenta, the proportion of methylation at αsatI-5 remained high in adrenal, kidney and muscle tissues during development. Differences in the average proportion of methylation were smaller in somatic tissues than placental tissues but, on average, SCNT somatic tissues were hyper-methylated at αsatI-5. Although sperm from all bulls was less methylated than somatic tissues at αsatI-5, on average this site remained hyper-methylated in sperm from cloned bulls compared with control bulls. This developmental time course confirms that epigenetic reprogramming does occur, at least to some extent, following SCNT. However, the elevated methylation levels observed in SCNT blastocysts and cellular derivatives implies that there is either insufficient time or abundance of appropriate reprogramming factors in oocytes to ensure complete reprogramming. Incomplete reprogramming at this CpG site may be a contributing factor to low SCNT success rates, but more likely represents the tip of the iceberg in terms of incompletely reprogramming. Until protocols ensure the epigenetic

  20. The use of DNA markers in the pre-clinical diagnosis of familial ...

    African Journals Online (AJOL)

    informative or partially informative in all the families studied. Five haplotypes were found to segregate with the disease locus. The predominant association of two of these haplotypes with FAP in the South African families suggests that two mutations may cause the disease in about 70% of families in this population. Meiotic.

  1. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  2. Satellite image collection optimization

    Science.gov (United States)

    Martin, William

    2002-09-01

    Imaging satellite systems represent a high capital cost. Optimizing the collection of images is critical for both satisfying customer orders and building a sustainable satellite operations business. We describe the functions of an operational, multivariable, time dynamic optimization system that maximizes the daily collection of satellite images. A graphical user interface allows the operator to quickly see the results of what if adjustments to an image collection plan. Used for both long range planning and daily collection scheduling of Space Imaging's IKONOS satellite, the satellite control and tasking (SCT) software allows collection commands to be altered up to 10 min before upload to the satellite.

  3. Using DNA-barcoding to make the necrobiont beetle family Cholevidae accessible for forensic entomology.

    Science.gov (United States)

    Schilthuizen, Menno; Scholte, Cindy; van Wijk, Renske E J; Dommershuijzen, Jessy; van der Horst, Devi; Zu Schlochtern, Melanie Meijer; Lievers, Rik; Groenenberg, Dick S J

    2011-07-15

    The beetle family Cholevidae (Coleoptera: Staphylinoidea), sometimes viewed as the subfamily Cholevinae of the Leiodidae, consists of some 1700 species worldwide. With the exception of specialized cave-dwelling species and species living in bird and mammal nests and burrows, the species are generalized soil-dwellers that, at least in temperate regions, are mostly found on vertebrate cadavers. Although they have been regularly reported from human corpses, and offer potential because of many species' peak activity in the cold season, they have not been a focus of forensic entomologists so far. This is probably due to their small size and the difficulty in identifying the adults and their larvae. In this paper, we show that DNA-barcoding can help make this group of necrobiont beetles available as a tool for forensic research. We collected 86 specimens of 20 species of the genera Catops, Fissocatops, Apocatops, Choleva, Nargus, Ptomaphagus, and Sciodrepoides from the Netherlands and France and show that a broad "barcoding gap" allows almost all species to be easily and unambiguously identified by the sequence of the "barcoding gene" cytochrome c oxidase I (COI). This opens up the possibility of adding Cholevidae to the set of insect taxa routinely used in forensic entomology. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. A Novel Mechanism of Sugar Selection Utilized by a Human X-family DNA Polymerase†

    OpenAIRE

    Brown, Jessica A.; Fiala, Kevin A.; Fowler, Jason D.; Sherrer, Shanen M.; Newmister, Sean A.; Dyum, Wade W.; Suo, Zucai

    2009-01-01

    During DNA synthesis, most DNA polymerases and reverse transcriptases select against ribonucleotides via a steric clash between the ribose 2′-hydroxyl group and the bulky side chain of an active site residue. Here, we demonstrated that human DNA polymerase λ used a novel sugar selection mechanism to discriminate against ribonucleotides, whereby the ribose 2′-hydroxyl group was excluded mostly by a backbone segment and slightly by the side chain of Y505. Such a steric clash was further demonst...

  5. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  6. Theory of satellite geodesy applications of satellites to geodesy

    CERN Document Server

    Kaula, William M

    2000-01-01

    The main purpose of this classic text is to demonstrate how Newtonian gravitational theory and Euclidean geometry can be used and developed in the earth's environment. The second is to collect and explain some of the mathematical techniques developed for measuring the earth by satellite.Book chapters include discussions of the earth's gravitational field, with special emphasis on spherical harmonies and the potential of the ellipsoid; matrices and orbital geometry; elliptic motion, linear perturbations, resonance, and other aspects of satellite orbit dynamics; the geometry of satellite obser

  7. Lesion Orientation of O4-Alkylthymidine Influences Replication by Human DNA Polymerase η

    OpenAIRE

    O’Flaherty, D. K.; Patra, A.; Su, Y.; Guengerich, F. P.; Egli, M.; Wilds, C. J.

    2016-01-01

    DNA lesions that elude repair may undergo translesion synthesis catalyzed by Y-family DNA polymerases. O4-Alkylthymidines, persistent adducts that can result from carcinogenic agents, may be encountered by DNA polymerases. The influence of lesion orientation around the C4-O4 bond on processing by human DNA polymerase η (hPol η) was studied for oligonucleotides containing O4-methylthymidine, O4-ethylthymidine, and analogs restricting the O4-methylene group in an anti-orientation. Primer extens...

  8. DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk

    DEFF Research Database (Denmark)

    Dayeh, Tasnim; Tuomi, Tiinamaija; Almgren, Peter

    2016-01-01

    Identification of subjects with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention of the disease. Consequently, it is essential to search for new biomarkers that can improve the prediction of T2D. The aim of this study was to examine whether 5 DNA methylation loci...... muscle from diabetic vs. non-diabetic subjects. DNA methylation at the ABCG1 locus cg06500161 in blood DNA was associated with an increased risk for future T2D (OR = 1.09, 95% CI = 1.02-1.16, P-value = 0.007, Q-value = 0.018), while DNA methylation at the PHOSPHO1 locus cg02650017 in blood DNA...... was associated with a decreased risk for future T2D (OR = 0.85, 95% CI = 0.75-0.95, P-value = 0.006, Q-value = 0.018) after adjustment for age, gender, fasting glucose, and family relation. Furthermore, the level of DNA methylation at the ABCG1 locus cg06500161 in blood DNA correlated positively with BMI, HbA1c...

  9. DNA barcoding of commercially important catfishes in the Philippines.

    Science.gov (United States)

    Quilang, Jonas P; Yu, Shiny Cathlynne S

    2015-06-01

    Many species of catfish are important resources for human consumption, for sport fishing and for use in aquarium industry. In the Philippines, some species are cultivated and some are caught in the wild for food and a few introduced species have become invasive. In this study, DNA barcoding using the mitochondrial cytochrome c oxidase I (COI) gene was done on commercially and economically important Philippine catfishes. A total of 75 specimens belonging to 11 species and 5 families were DNA barcoded. The genetic distances were computed and Neighbor-Joining (NJ) trees were constructed based on the Kimura 2-Parameter (K2P) method. The average K2P distances within species, genus, family and order were 0.2, 8.2, 12.7 and 21.9%, respectively. COI sequences clustered according to their species designation for 7 of the 11 catfishes. DNA barcoding was not able to discriminate between Arius dispar and A. manillensis and between Pterygoplichthys disjunctivus and P. pardalis. The morphological characters that are used to distinguish between these species do not complement molecular identification through DNA barcoding. DNA barcoding also showed that Clarias batrachus from the Philippines is different from the species found in India and Thailand, which supports earlier suggestions based on morphology that those found in India should be designated as C. magur and those in mainland Southeast Asia as C. aff. batrachus "Indochina". This study has shown that DNA barcoding can be used for species delineation and for tagging some species for further taxonomic investigation, which has implications on proper management and conservation strategies.

  10. Non-random alkylation of DNA sequences induced in vivo by chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Durante, M.; Geri, C.; Bonatti, S.; Parenti, R. (Universita di Pisa (Italy))

    1989-08-01

    Previous studies of the interaction of alkylating agents on the eukaryotic genome support the idea that induction of DNA adducts is at specific genomic sites. Here we show molecular and cytological evidence that alkylation is rather specific. Mammalian cell cultures were exposed to different doses of mutagens and the DNA was analyzed by density gradient ultracentrifugation, hydroxylapatite fractionation, and by restriction enzyme analysis. Studies with the labelled mutagens N-ethyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine show that there is a non-random distribution of the adducts. The adducts are found more frequently in A-T, G-C rich satellite DNA and highly repetitive sequences. Analysis with restriction enzymes shows that both methyl and ethyl groups influence the restriction patterns of the enzymes HpaII and MspI that recognize specific endogenous DNA methylation. These data suggest, as a subsequent mechanism, a modification in the pattern of the normal endogenous methylation of 5-methylcytosine.

  11. Molecular phylogenetics of the family Cyprinidae (Actinopterygii: Cypriniformes) as evidenced by sequence variation in the first intron of S7 ribosomal protein-coding gene: further evidence from a nuclear gene of the systematic chaos in the family.

    Science.gov (United States)

    He, Shunping; Mayden, Richard L; Wang, Xuzheng; Wang, Wei; Tang, Kevin L; Chen, Wei-Jen; Chen, Yiyu

    2008-03-01

    The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichowensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis

  12. Conflict RNA modification, host-parasite co-evolution, and the origins of DNA and DNA-binding proteins1.

    Science.gov (United States)

    McLaughlin, Paul J; Keegan, Liam P

    2014-08-01

    Nearly 150 different enzymatically modified forms of the four canonical residues in RNA have been identified. For instance, enzymes of the ADAR (adenosine deaminase acting on RNA) family convert adenosine residues into inosine in cellular dsRNAs. Recent findings show that DNA endonuclease V enzymes have undergone an evolutionary transition from cleaving 3' to deoxyinosine in DNA and ssDNA to cleaving 3' to inosine in dsRNA and ssRNA in humans. Recent work on dsRNA-binding domains of ADARs and other proteins also shows that a degree of sequence specificity is achieved by direct readout in the minor groove. However, the level of sequence specificity observed is much less than that of DNA major groove-binding helix-turn-helix proteins. We suggest that the evolution of DNA-binding proteins following the RNA to DNA genome transition represents the major advantage that DNA genomes have over RNA genomes. We propose that a hypothetical RNA modification, a RRAR (ribose reductase acting on genomic dsRNA) produced the first stretches of DNA in RNA genomes. We discuss why this is the most satisfactory explanation for the origin of DNA. The evolution of this RNA modification and later steps to DNA genomes are likely to have been driven by cellular genome co-evolution with viruses and intragenomic parasites. RNA modifications continue to be involved in host-virus conflicts; in vertebrates, edited cellular dsRNAs with inosine-uracil base pairs appear to be recognized as self RNA and to suppress activation of innate immune sensors that detect viral dsRNA.

  13. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases.

    Directory of Open Access Journals (Sweden)

    Julia Arand

    2012-06-01

    Full Text Available The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites. The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position-, cell type-, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM to calculate the relative contribution of DNA methyltransferases (Dnmts for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs.

  14. Satellite Communications

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Satellite Communications. Arthur C Clarke wrote a seminal paper in 1945 in wireless world. Use three satellites in geo-synchronous orbit to enable intercontinental communications. System could be realised in '50 to 100 years'

  15. Rapid DNA analysis for automated processing and interpretation of low DNA content samples.

    Science.gov (United States)

    Turingan, Rosemary S; Vasantgadkar, Sameer; Palombo, Luke; Hogan, Catherine; Jiang, Hua; Tan, Eugene; Selden, Richard F

    2016-01-01

    Short tandem repeat (STR) analysis of casework samples with low DNA content include those resulting from the transfer of epithelial cells from the skin to an object (e.g., cells on a water bottle, or brim of a cap), blood spatter stains, and small bone and tissue fragments. Low DNA content (LDC) samples are important in a wide range of settings, including disaster response teams to assist in victim identification and family reunification, military operations to identify friend or foe, criminal forensics to identify suspects and exonerate the innocent, and medical examiner and coroner offices to identify missing persons. Processing LDC samples requires experienced laboratory personnel, isolated workstations, and sophisticated equipment, requires transport time, and involves complex procedures. We present a rapid DNA analysis system designed specifically to generate STR profiles from LDC samples in field-forward settings by non-technical operators. By performing STR in the field, close to the site of collection, rapid DNA analysis has the potential to increase throughput and to provide actionable information in real time. A Low DNA Content BioChipSet (LDC BCS) was developed and manufactured by injection molding. It was designed to function in the fully integrated Accelerated Nuclear DNA Equipment (ANDE) instrument previously designed for analysis of buccal swab and other high DNA content samples (Investigative Genet. 4(1):1-15, 2013). The LDC BCS performs efficient DNA purification followed by microfluidic ultrafiltration of the purified DNA, maximizing the quantity of DNA available for subsequent amplification and electrophoretic separation and detection of amplified fragments. The system demonstrates accuracy, precision, resolution, signal strength, and peak height ratios appropriate for casework analysis. The LDC rapid DNA analysis system is effective for the generation of STR profiles from a wide range of sample types. The technology broadens the range of sample

  16. Attitudes toward genetic testing in childhood and reproductive decision-making for familial adenomatous polyposis.

    Science.gov (United States)

    Douma, Kirsten F L; Aaronson, Neil K; Vasen, Hans F A; Verhoef, Senno; Gundy, Chad M; Bleiker, Eveline M A

    2010-02-01

    Childhood DNA testing, prenatal diagnosis (PND) and preimplantation genetic diagnosis (PGD) are available for familial adenomatous polyposis (FAP). However, the use of PND and PGD is controversial. The purpose of this study was to investigate attitudes toward, and experiences with, childhood DNA testing, PND and PGD among members of families at high risk for FAP. In this nationwide, cross-sectional study, questionnaires were sent to individuals from families at high risk for FAP assessing attitudes toward and experiences with childhood testing, PND and PGD, as well as several sociodemographic, clinical and psychosocial variables. Of the individuals from FAP families invited to participate in the study, 525 members participated (response rate=64%). Most parents who had children who were minors (n=93) (82%) were satisfied with the DNA testing procedure. One-third of all individuals wanted DNA testing for their children before age 12. Forty percent of FAP patients indicated that the disease influenced their desire to have children. Only 15% considered termination of pregnancy for FAP acceptable. Approximately 30% of individuals with a FAP diagnosis and their partners considered PND and PGD as acceptable for themselves. A positive attitude was associated with higher levels of guilt and a positive attitude toward termination of pregnancy. Importantly, of those with FAP at childbearing age, 84% had had no previous information at all about either PND or PGD. Future efforts should be aimed at educating FAP family members about reproductive options, allowing them to make an informed choice about family planning. Routine discussion of all reproductive options with a medical specialist should be encouraged.

  17. Sampling the genomic pool of protein tyrosine kinase genes using the polymerase chain reaction with genomic DNA.

    Science.gov (United States)

    Oates, A C; Wollberg, P; Achen, M G; Wilks, A F

    1998-08-28

    The polymerase chain reaction (PCR), with cDNA as template, has been widely used to identify members of protein families from many species. A major limitation of using cDNA in PCR is that detection of a family member is dependent on temporal and spatial patterns of gene expression. To circumvent this restriction, and in order to develop a technique that is broadly applicable we have tested the use of genomic DNA as PCR template to identify members of protein families in an expression-independent manner. This test involved amplification of DNA encoding protein tyrosine kinase (PTK) genes from the genomes of three animal species that are well known development models; namely, the mouse Mus musculus, the fruit fly Drosophila melanogaster, and the nematode worm Caenorhabditis elegans. Ten PTK genes were identified from the mouse, 13 from the fruit fly, and 13 from the nematode worm. Among these kinases were 13 members of the PTK family that had not been reported previously. Selected PTKs from this screen were shown to be expressed during development, demonstrating that the amplified fragments did not arise from pseudogenes. This approach will be useful for the identification of many novel members of gene families in organisms of agricultural, medical, developmental and evolutionary significance and for analysis of gene families from any species, or biological sample whose habitat precludes the isolation of mRNA. Furthermore, as a tool to hasten the discovery of members of gene families that are of particular interest, this method offers an opportunity to sample the genome for new members irrespective of their expression pattern.

  18. Genetic anticipation in Swedish Lynch syndrome families

    DEFF Research Database (Denmark)

    von Salomé, Jenny; Boonstra, Philip S; Karimi, Masoud

    2017-01-01

    Among hereditary colorectal cancer predisposing syndromes, Lynch syndrome (LS) caused by mutations in DNA mismatch repair genes MLH1, MSH2, MSH6 or PMS2 is the most common. Patients with LS have an increased risk of early onset colon and endometrial cancer, but also other tumors that generally have......-2013. We analyzed a homogenous group of mutation carriers, utilizing information from both affected and non-affected family members. In total, 239 families with a mismatch repair gene mutation (96 MLH1 families, 90 MSH2 families including one family with an EPCAM-MSH2 deletion, 39 MSH6 families, 12 PMS2...... families, and 2 MLH1+PMS2 families) comprising 1028 at-risk carriers were identified among the Swedish LS families, of which 1003 mutation carriers had available follow-up information and could be included in the study. Using a normal random effects model (NREM) we estimate a 2.1 year decrease in age...

  19. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  20. Essential and non-essential DNA replication genes in the model halophilic Archaeon, Halobacterium sp. NRC-1

    Directory of Open Access Journals (Sweden)

    DasSarma Shiladitya

    2007-06-01

    Full Text Available Abstract Background Information transfer systems in Archaea, including many components of the DNA replication machinery, are similar to those found in eukaryotes. Functional assignments of archaeal DNA replication genes have been primarily based upon sequence homology and biochemical studies of replisome components, but few genetic studies have been conducted thus far. We have developed a tractable genetic system for knockout analysis of genes in the model halophilic archaeon, Halobacterium sp. NRC-1, and used it to determine which DNA replication genes are essential. Results Using a directed in-frame gene knockout method in Halobacterium sp. NRC-1, we examined nineteen genes predicted to be involved in DNA replication. Preliminary bioinformatic analysis of the large haloarchaeal Orc/Cdc6 family, related to eukaryotic Orc1 and Cdc6, showed five distinct clades of Orc/Cdc6 proteins conserved in all sequenced haloarchaea. Of ten orc/cdc6 genes in Halobacterium sp. NRC-1, only two were found to be essential, orc10, on the large chromosome, and orc2, on the minichromosome, pNRC200. Of the three replicative-type DNA polymerase genes, two were essential: the chromosomally encoded B family, polB1, and the chromosomally encoded euryarchaeal-specific D family, polD1/D2 (formerly called polA1/polA2 in the Halobacterium sp. NRC-1 genome sequence. The pNRC200-encoded B family polymerase, polB2, was non-essential. Accessory genes for DNA replication initiation and elongation factors, including the putative replicative helicase, mcm, the eukaryotic-type DNA primase, pri1/pri2, the DNA polymerase sliding clamp, pcn, and the flap endonuclease, rad2, were all essential. Targeted genes were classified as non-essential if knockouts were obtained and essential based on statistical analysis and/or by demonstrating the inability to isolate chromosomal knockouts except in the presence of a complementing plasmid copy of the gene. Conclusion The results showed that ten

  1. Previously unknown and highly divergent ssDNA viruses populate the oceans.

    Science.gov (United States)

    Labonté, Jessica M; Suttle, Curtis A

    2013-11-01

    Single-stranded DNA (ssDNA) viruses are economically important pathogens of plants and animals, and are widespread in oceans; yet, the diversity and evolutionary relationships among marine ssDNA viruses remain largely unknown. Here we present the results from a metagenomic study of composite samples from temperate (Saanich Inlet, 11 samples; Strait of Georgia, 85 samples) and subtropical (46 samples, Gulf of Mexico) seawater. Most sequences (84%) had no evident similarity to sequenced viruses. In total, 608 putative complete genomes of ssDNA viruses were assembled, almost doubling the number of ssDNA viral genomes in databases. These comprised 129 genetically distinct groups, each represented by at least one complete genome that had no recognizable similarity to each other or to other virus sequences. Given that the seven recognized families of ssDNA viruses have considerable sequence homology within them, this suggests that many of these genetic groups may represent new viral families. Moreover, nearly 70% of the sequences were similar to one of these genomes, indicating that most of the sequences could be assigned to a genetically distinct group. Most sequences fell within 11 well-defined gene groups, each sharing a common gene. Some of these encoded putative replication and coat proteins that had similarity to sequences from viruses infecting eukaryotes, suggesting that these were likely from viruses infecting eukaryotic phytoplankton and zooplankton.

  2. Chromosomal location of the human gene for DNA polymerase β

    International Nuclear Information System (INIS)

    McBride, O.W.; Zmudzka, B.Z.; Wilson, S.H.

    1987-01-01

    Inhibition studies indicate that DNA polymerase β has a synthetic role in DNA repair after exposure of mammalian cells to some types of DNA-damaging agents. The primary structure of the enzyme is highly conserved in vertebrates, and nearly full-length cDNAs for the enzyme were recently cloned from mammalian cDNA libraries. Southern blot analysis of DNA from a panel of human-rodent somatic cell hybrids, using portions of the cDNA as probe, indicates that the gene for human DNA polymerase β is single copy and located on the short arm or proximal long arm of chromosome 8 (8pter-8q22). A restriction fragment length polymorphism (RFLP) was detected in normal individuals by using a probe from the 5' end of the cDNA, and this RFLP probably is due to an insertion or duplication of DNA in 20-25% of the population. This restriction site can be used as one marker for chromosome 8 genetic linkage studies and for family studies of traits potentially involving this DNA repair gene

  3. DNA-activated protein kinase (DNA-PK) and significance in its responses to radiation. The end is the beginning of the story

    International Nuclear Information System (INIS)

    Matsumoto, Yoshihisa

    1996-01-01

    This review described findings hitherto and future perspective on the DNA-PK. The enzyme was activated by double-strand DNA, required the end of the DNA and was the major component of p350 protein. Ku-antigen (an autoimmune antigen) was found a subunit. It phosphorylated p53, c-Myc, RPAp34, DNA ligase I, DNA topoisomerase I and II. Therefore DNA-PK can be a trigger factor which recognizes DNA break induced by radiation, and phosphorylates proteins participating in the DNA repair, cell cycle regulation and cell death. Recently p350 was found to be a responsible gene product to SCID syndrome of mice hypersensitive to ionizing radiation. The review included; On the DNA-PK: Discovery, relation to Ku antigen and molecular properties. On the DNA-PK and radiation sensitivity, and V(D)J recombination: Ku80 was the product of X-ray repair cross-complementing (XRCC). p350 was found the gene product whose lack causing SCID syndrome of radiosensitive mice. On the significance of phosphorylation of DNA-PK and the substrate: p53. RPA (replication protein A, alias RF-A or SSB). P1/MCM3, a possible substrate. On the other properties of DNA-PK: DNA-helicase activity. Suppression of transcription by RNA polymerase. DNA-PKp350 and ATM (ataxia-telangiectasia). Family molecules of p53 and ATM (MEI-41, Tel1p and Mec1p, and Rad3). (H.O). 70 refs

  4. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  5. Phylogenetic Information Content of Copepoda Ribosomal DNA Repeat Units: ITS1 and ITS2 Impact

    Science.gov (United States)

    Zagoskin, Maxim V.; Lazareva, Valentina I.; Grishanin, Andrey K.; Mukha, Dmitry V.

    2014-01-01

    The utility of various regions of the ribosomal repeat unit for phylogenetic analysis was examined in 16 species representing four families, nine genera, and two orders of the subclass Copepoda (Crustacea). Fragments approximately 2000 bp in length containing the ribosomal DNA (rDNA) 18S and 28S gene fragments, the 5.8S gene, and the internal transcribed spacer regions I and II (ITS1 and ITS2) were amplified and analyzed. The DAMBE (Data Analysis in Molecular Biology and Evolution) software was used to analyze the saturation of nucleotide substitutions; this test revealed the suitability of both the 28S gene fragment and the ITS1/ITS2 rDNA regions for the reconstruction of phylogenetic trees. Distance (minimum evolution) and probabilistic (maximum likelihood, Bayesian) analyses of the data revealed that the 28S rDNA and the ITS1 and ITS2 regions are informative markers for inferring phylogenetic relationships among families of copepods and within the Cyclopidae family and associated genera. Split-graph analysis of concatenated ITS1/ITS2 rDNA regions of cyclopoid copepods suggested that the Mesocyclops, Thermocyclops, and Macrocyclops genera share complex evolutionary relationships. This study revealed that the ITS1 and ITS2 regions potentially represent different phylogenetic signals. PMID:25215300

  6. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    Science.gov (United States)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  7. Genomic organization and developmental fate of adjacent repeated sequences in a foldback DNA clone of Tetrahymena thermophila

    International Nuclear Information System (INIS)

    Tschunko, A.H.; Loechel, R.H.; McLaren, N.C.; Allen, S.L.

    1987-01-01

    DNA sequence elimination and rearrangement occurs during the development of somatic cell lineages of eukaryotes and was first discovered over a century ago. However, the significance and mechanism of chromatin elimination are not understood. DNA elimination also occurs during the development of the somatic macronucleus from the germinal micronucleus in unicellular ciliated protozoa such as Tetrahymena thermophila. In this study foldback DNA from the micronucleus was used as a probe to isolate ten clones. All of those tested (4/4) contained sequences that were repetitive in the micronucleus and rearranged in the macronucleus. Inverted repeated sequences were present in one clone. This clone, pTtFBl, was subjected to a detailed analysis of its developmental fate. Subregions were subcloned and used as probes against Southern blots of micronuclear and macronuclear DNA. DNA was labeled with [ 33 P]-labeled dATP. The authors found that all subregions defined repeated sequence families in the micronuclear genome. A minimum of four different families was defined, two of which are retained in the macronucleus and two of which are completely eliminated. The inverted repeat family is retained with little rearrangement. Two of the families, defined by subregions that do not contain parts of the inverted repeat are totally eliminated during macronuclear development-and contain open reading frames. The significance of retained inverted repeats to the process of elimination is discussed

  8. Efficient DNA Fingerprinting Based on the Targeted Sequencing of Active Retrotransposon Insertion Sites Using a Bench-Top High-Throughput Sequencing Platform

    OpenAIRE

    Monden, Yuki; Yamamoto, Ayaka; Shindo, Akiko; Tahara, Makoto

    2014-01-01

    In many crop species, DNA fingerprinting is required for the precise identification of cultivars to protect the rights of breeders. Many families of retrotransposons have multiple copies throughout the eukaryotic genome and their integrated copies are inherited genetically. Thus, their insertion polymorphisms among cultivars are useful for DNA fingerprinting. In this study, we conducted a DNA fingerprinting based on the insertion polymorphisms of active retrotransposon families (Rtsp-1 and LI...

  9. SatelliteDL: a Toolkit for Analysis of Heterogeneous Satellite Datasets

    Science.gov (United States)

    Galloy, M. D.; Fillmore, D.

    2014-12-01

    SatelliteDL is an IDL toolkit for the analysis of satellite Earth observations from a diverse set of platforms and sensors. The core function of the toolkit is the spatial and temporal alignment of satellite swath and geostationary data. The design features an abstraction layer that allows for easy inclusion of new datasets in a modular way. Our overarching objective is to create utilities that automate the mundane aspects of satellite data analysis, are extensible and maintainable, and do not place limitations on the analysis itself. IDL has a powerful suite of statistical and visualization tools that can be used in conjunction with SatelliteDL. Toward this end we have constructed SatelliteDL to include (1) HTML and LaTeX API document generation,(2) a unit test framework,(3) automatic message and error logs,(4) HTML and LaTeX plot and table generation, and(5) several real world examples with bundled datasets available for download. For ease of use, datasets, variables and optional workflows may be specified in a flexible format configuration file. Configuration statements may specify, for example, a region and date range, and the creation of images, plots and statistical summary tables for a long list of variables. SatelliteDL enforces data provenance; all data should be traceable and reproducible. The output NetCDF file metadata holds a complete history of the original datasets and their transformations, and a method exists to reconstruct a configuration file from this information. Release 0.1.0 distributes with ingest methods for GOES, MODIS, VIIRS and CERES radiance data (L1) as well as select 2D atmosphere products (L2) such as aerosol and cloud (MODIS and VIIRS) and radiant flux (CERES). Future releases will provide ingest methods for ocean and land surface products, gridded and time averaged datasets (L3 Daily, Monthly and Yearly), and support for 3D products such as temperature and water vapor profiles. Emphasis will be on NPP Sensor, Environmental and

  10. Genetic counseling in Usher syndrome: linkage and mutational analysis of 10 Colombian families.

    Science.gov (United States)

    Tamayo, M L; Lopez, G; Gelvez, N; Medina, D; Kimberling, W J; Rodríguez, V; Tamayo, G E; Bernal, J E

    2008-01-01

    Usher Syndrome (US), an autosomal recessive disease, is characterized by retinitis pigmentosa (RP), vestibular dysfunction, and congenital sensorineural deafness. There are three recognized clinical types of the disorder. In order to improve genetic counseling for affected families, we conducted linkage analysis and DNA sequencing in 10 Colombian families with confirmed diagnosis of US (4 type I and 6 type II). Seventy-five percent of the US1 families showed linkage to locus USH1B, while the remaining 25% showed linkage to loci USH1B and USH1C. Among families showing linkage to USH1B we found two different mutations in the MYO7A gene: IVS42-26insTTGAG in exon 43 (heterozygous state) and R634X (CGA-TGA) in exon 16 (homozygous state). All six US2 families showed linkage to locus USH2A. Of them, 4 had c.2299delG mutation (1 homozygote state and 3 heterozygous); in the remaining 2 we did not identify any pathologic DNA variant. USH2A individuals with a 2299delG mutation presented a typical and homogeneous retinal phenotype with bilateral severe hearing loss, except for one individual with a heterozygous 2299delG mutation, whose hearing loss was asymmetric, but more profound than in the other cases. The study of these families adds to the genotype-phenotype characterization of the different types and subtypes of US and facilitates genetic counseling in these families. We would like to emphasize the need to perform DNA studies as a prerequisite for genetic counseling in affected families.

  11. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  12. Prenatal exclusion of Norrie disease with flanking DNA markers.

    Science.gov (United States)

    Gal, A; Uhlhaas, S; Glaser, D; Grimm, T

    1988-10-01

    Three polymorphic DNA markers linked to the locus of Norrie disease were used for indirect genotype analysis in a ten-wk-old fetus at risk for the disease. When haplotypes of the family members and the estimated recombination frequency between Norrie gene and each of the DNA marker loci DXS7, DXS84, and DXS146 were taken into account, the risk that the fetus had inherited the mutation was about 1%.

  13. A Novel Mechanism of Sugar Selection Utilized by a Human X-family DNA Polymerase†

    Science.gov (United States)

    Brown, Jessica A.; Fiala, Kevin A.; Fowler, Jason D.; Sherrer, Shanen M.; Newmister, Sean A.; Dyum, Wade W.; Suo, Zucai

    2009-01-01

    During DNA synthesis, most DNA polymerases and reverse transcriptases select against ribonucleotides via a steric clash between the ribose 2′-hydroxyl group and the bulky side chain of an active site residue. Here, we demonstrated that human DNA polymerase λ used a novel sugar selection mechanism to discriminate against ribonucleotides, whereby the ribose 2′-hydroxyl group was excluded mostly by a backbone segment and slightly by the side chain of Y505. Such a steric clash was further demonstrated to be dependent on the size and orientation of the substituent covalently attached at the ribonucleotide C2′ position. PMID:19900463

  14. Random amplified polymorphic DNA based genetic characterization ...

    African Journals Online (AJOL)

    Random amplified polymorphic DNA based genetic characterization of four important species of Bamboo, found in Raigad district, Maharashtra State, India. ... Bambusoideae are differentiated from other members of the family by the presence of petiolate blades with parallel venation and stamens are three, four, six or more, ...

  15. DNA damage response in nephrotoxic and ischemic kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Mingjuan; Tang, Chengyuan [Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 (China); Ma, Zhengwei [Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA 30912 (United States); Huang, Shuang [Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (United States); Dong, Zheng, E-mail: zdong@augusta.edu [Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 (China); Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA 30912 (United States)

    2016-12-15

    DNA damage activates specific cell signaling cascades for DNA repair, cell cycle arrest, senescence, and/or cell death. Recent studies have demonstrated DNA damage response (DDR) in experimental models of acute kidney injury (AKI). In cisplatin-induced AKI or nephrotoxicity, the DDR pathway of ATR/Chk2/p53 is activated and contributes to renal tubular cell apoptosis. In ischemic AKI, DDR seems more complex and involves at least the ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, and p53; however, while ATM may promote DNA repair, p53 may trigger cell death. Targeting DDR for kidney protection in AKI therefore relies on a thorough elucidation of the DDR pathways in various forms of AKI.

  16. Nuclear DNA content in 20 species of Siluriformes (Teleostei: Ostariophysi from the Neotropical region

    Directory of Open Access Journals (Sweden)

    Paulo César Fenerich

    2004-01-01

    Full Text Available In the present study, 20 species of Siluriformes fish were analyzed in order to determine their nuclear DNA content and compare these data with their diploid number. In addition, the extension and importance of the changes that occurred during the process of diversification in the group of Neotropical freshwater catfish were investigated. The only species studied of the family Doradidae, Rhinodoras d'orbignyi (2n = 58, presented 3.46 ± 0.13 pg of DNA. Among the species of the family Heptapteridae, the values of nuclear DNA content and the diploid numbers ranged from 1.13 ± 0.09 pg of DNA in Pimelodella sp. (2n = 46 to 2.38 ± 0.07 pg of DNA in Imparfinis mirini (2n = 58. The family Loricariidae showed the widest variation in diploid number and nuclear DNA content values, ranging from 2n = 52 and 3.96 ± 0.22 pg of DNA in Liposarcus anisitsi to 2n = 76 and 4.90 ± 0.12 pg of DNA in Hypostomus sp. 4. In this group, two local samples of Pimelodus maculatus (Pimelodidae were analyzed, and both exhibited 2n = 56, but different nuclear DNA content values (2.68 ± 0.22 pg and 2.82 ± 0.20 pg, respectively. Among the Pseudopimelodidae species analyzed, Pseudopimelodus mangurus (2n = 54 showed 2.23 ± 0.15 pg and Microglanis cottoides (2n = 54 exhibited 2.50 ± 0.18 pg of DNA. Two species of Trichomycterus (Trichomycteridae also presented the same diploid number, 2n = 54 chromosomes, but, while the species from the Quinta stream presented a DNA content of 2.62 ± 0.19 pg, in the sample from the Capivara river this value was 2.30 ± 0.23 pg. In the analyzed species, the results showed that the changes in DNA content were frequently not followed by changes in the diploid number. This fact permits to suggest that, in addition to structural chromosome rearrangements, other mechanisms, including deletions, duplications and polyploidy, could be involved in the process of species differentiation in the representatives of the fish order Siluriformes.

  17. Binding of Substrate Locks the Electrochemistry of CRY-DASH into DNA Repair.

    Science.gov (United States)

    Gindt, Yvonne M; Messyasz, Adriana; Jumbo, Pamela I

    2015-05-12

    VcCry1, a member of the CRY-DASH family, may serve two diverse roles in vivo, including blue-light signaling and repair of UV-damaged DNA. We have discovered that the electrochemistry of the flavin adenine dinucleotide cofactor of VcCry1 is locked to cycle only between the hydroquinone and neutral semiquinone states when UV-damaged DNA is present. Other potential substrates, including undamaged DNA and ATP, have no discernible effect on the electrochemistry, and the kinetics of the reduction is unaffected by damaged DNA. Binding of the damaged DNA substrate determines the role of the protein and prevents the presumed photochemistry required for blue-light signaling.

  18. Template DNA-strand co-segregation and asymmetric cell division in skeletal muscle stem cells.

    Science.gov (United States)

    Shinin, Vasily; Gayraud-Morel, Barbara; Tajbakhsh, Shahragim

    2009-01-01

    Stem cells are present in all tissues and organs, and are crucial for normal regulated growth. How the pool size of stem cells and their progeny is regulated to establish the tissue prenatally, then maintain it throughout life, is a key question in biology and medicine. The ability to precisely locate stem and progenitors requires defining lineage progression from stem to differentiated cells, assessing the mode of cell expansion and self-renewal and identifying markers to assess the different cell states within the lineage. We have shown that during lineage progression from a quiescent adult muscle satellite cell to a differentiated myofibre, both symmetric and asymmetric divisions take place. Furthermore, we provide evidence that a sub-population of label retaining satellite cells co-segregate template DNA strands to one daughter cell. These findings provide a means of identifying presumed stem and progenitor cells within the lineage. In addition, asymmetric segregation of template DNA and the cytoplasmic protein Numb provides a landmark to define cell behaviour as self-renewal and differentiation decisions are being executed.

  19. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  20. Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes

    Science.gov (United States)

    Ma, Enbo; Harrington, Lucas B.; O’Connell, Mitchell R.; Zhou, Kaihong; Doudna, Jennifer A.

    2015-01-01

    Summary Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9–guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide-RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA, and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family. PMID:26545076

  1. Interactions and Localization of Escherichia coli Error-Prone DNA Polymerase IV after DNA Damage.

    Science.gov (United States)

    Mallik, Sarita; Popodi, Ellen M; Hanson, Andrew J; Foster, Patricia L

    2015-09-01

    Escherichia coli's DNA polymerase IV (Pol IV/DinB), a member of the Y family of error-prone polymerases, is induced during the SOS response to DNA damage and is responsible for translesion bypass and adaptive (stress-induced) mutation. In this study, the localization of Pol IV after DNA damage was followed using fluorescent fusions. After exposure of E. coli to DNA-damaging agents, fluorescently tagged Pol IV localized to the nucleoid as foci. Stepwise photobleaching indicated ∼60% of the foci consisted of three Pol IV molecules, while ∼40% consisted of six Pol IV molecules. Fluorescently tagged Rep, a replication accessory DNA helicase, was recruited to the Pol IV foci after DNA damage, suggesting that the in vitro interaction between Rep and Pol IV reported previously also occurs in vivo. Fluorescently tagged RecA also formed foci after DNA damage, and Pol IV localized to them. To investigate if Pol IV localizes to double-strand breaks (DSBs), an I-SceI endonuclease-mediated DSB was introduced close to a fluorescently labeled LacO array on the chromosome. After DSB induction, Pol IV localized to the DSB site in ∼70% of SOS-induced cells. RecA also formed foci at the DSB sites, and Pol IV localized to the RecA foci. These results suggest that Pol IV interacts with RecA in vivo and is recruited to sites of DSBs to aid in the restoration of DNA replication. DNA polymerase IV (Pol IV/DinB) is an error-prone DNA polymerase capable of bypassing DNA lesions and aiding in the restart of stalled replication forks. In this work, we demonstrate in vivo localization of fluorescently tagged Pol IV to the nucleoid after DNA damage and to DNA double-strand breaks. We show colocalization of Pol IV with two proteins: Rep DNA helicase, which participates in replication, and RecA, which catalyzes recombinational repair of stalled replication forks. Time course experiments suggest that Pol IV recruits Rep and that RecA recruits Pol IV. These findings provide in vivo evidence

  2. Spectral analysis of naturally occurring methylxanthines (theophylline, theobromine and caffeine) binding with DNA.

    Science.gov (United States)

    Johnson, Irudayam Maria; Prakash, Halan; Prathiba, Jeyaguru; Raghunathan, Raghavachary; Malathi, Raghunathan

    2012-01-01

    Nucleic acids exist in a dynamic equilibrium with a number of molecules that constantly interact with them and regulate the cellular activities. The inherent nature of the structure and conformational integrity of these macromolecules can lead to altered biological activity through proper targeting of nucleic acids binding ligands or drug molecules. We studied the interaction of naturally occurring methylxanthines such as theophylline, theobromine and caffeine with DNA, using UV absorption and Fourier transform infrared (FTIR) spectroscopic methods, and especially monitored their binding affinity in the presence of Mg(2+) and during helix-coil transitions of DNA by temperature (T(m)) or pH melting profiles. The study indicates that all these molecules effectively bind to DNA in a dose dependent manner. The overall binding constants of DNA-theophylline = 3.5×10(3) M(-1), DNA-theobromine = 1.1×10(3) M(-1), and DNA-Caffeine = 3.8×10(3) M(-1). On the other hand T(m)/pH melting profiles showed 24-35% of enhanced binding activity of methylxanthines during helix-coil transitions of DNA rather than to its native double helical structure. The FTIR analysis divulged that theophylline, theobromine and caffeine interact with all the base pairs of DNA (A-T; G-C) and phosphate group through hydrogen bond (H-bond) interaction. In the presence of Mg(2+), methylxanthines altered the structure of DNA from B to A-family. However, the B-family structure of DNA remained unaltered in DNA-methylxanthines complexes or in the absence of Mg(2+). The spectral analyses indicated the order of binding affinity as "caffeine≥theophylline>theobromine" to the native double helical DNA, and "theophylline≥theobromine>caffeine to the denatured form of DNA and in the presence of divalent metal ions.

  3. Spectral analysis of naturally occurring methylxanthines (theophylline, theobromine and caffeine binding with DNA.

    Directory of Open Access Journals (Sweden)

    Irudayam Maria Johnson

    Full Text Available Nucleic acids exist in a dynamic equilibrium with a number of molecules that constantly interact with them and regulate the cellular activities. The inherent nature of the structure and conformational integrity of these macromolecules can lead to altered biological activity through proper targeting of nucleic acids binding ligands or drug molecules. We studied the interaction of naturally occurring methylxanthines such as theophylline, theobromine and caffeine with DNA, using UV absorption and Fourier transform infrared (FTIR spectroscopic methods, and especially monitored their binding affinity in the presence of Mg(2+ and during helix-coil transitions of DNA by temperature (T(m or pH melting profiles. The study indicates that all these molecules effectively bind to DNA in a dose dependent manner. The overall binding constants of DNA-theophylline = 3.5×10(3 M(-1, DNA-theobromine = 1.1×10(3 M(-1, and DNA-Caffeine = 3.8×10(3 M(-1. On the other hand T(m/pH melting profiles showed 24-35% of enhanced binding activity of methylxanthines during helix-coil transitions of DNA rather than to its native double helical structure. The FTIR analysis divulged that theophylline, theobromine and caffeine interact with all the base pairs of DNA (A-T; G-C and phosphate group through hydrogen bond (H-bond interaction. In the presence of Mg(2+, methylxanthines altered the structure of DNA from B to A-family. However, the B-family structure of DNA remained unaltered in DNA-methylxanthines complexes or in the absence of Mg(2+. The spectral analyses indicated the order of binding affinity as "caffeine≥theophylline>theobromine" to the native double helical DNA, and "theophylline≥theobromine>caffeine to the denatured form of DNA and in the presence of divalent metal ions.

  4. The American Satellite Company (ASC) satellite deployed from payload bay

    Science.gov (United States)

    1985-01-01

    The American Satellite Company (ASC) communications satellite is deployed from the payload bay of the Shuttle Discovery. A portion of the cloudy surface of the earth can be seen to the left of the frame.

  5. Control of GABARAP-mediated autophagy by the Golgi complex, centrosome and centriolar satellites.

    Science.gov (United States)

    Joachim, Justin; Tooze, Sharon A

    2018-01-01

    Within minutes of induction of autophagy by amino-acid starvation in mammalian cells, multiple autophagosomes form throughout the cell cytoplasm. During their formation, the autophagosomes sequester cytoplasmic material and deliver it to lysosomes for degradation. How these organelles can be so rapidly formed and how their formation is acutely regulated are major questions in the autophagy field. Protein and lipid trafficking from diverse cell compartments contribute membrane to, or regulate the formation of the autophagosome. In addition, recruitment of Atg8 (in yeast), and the ATG8-family members (in mammalian cells) to autophagosomes is required for efficient autophagy. Recently, it was discovered that the centrosome and centriolar satellites regulate autophagosome formation by delivery of an ATG8-family member, GABARAP, to the forming autophagosome membrane, the phagophore. We propose that GABARAP regulates phagophore expansion by activating the ULK complex, the amino-acid controlled initiator complex. This finding reveals a previously unknown link between the centrosome, centriolar satellites and autophagy. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  6. Congenital vertical talus in four generations of the same family

    International Nuclear Information System (INIS)

    Levinsohn, E. Mark; Shrimpton, Antony E.; Cady, Robert B.; Packard, David S.; Hootnick, David R.

    2004-01-01

    This paper presents four generations of a family with radiographically demonstrated congenital vertical talus (CVT) in whom a HOXD10 gene mutation was identified. Some members of the family with this mutation exhibited cavo-varus foot deformity consistent with a Charcot-Marie-Tooth (CMT)-like disorder. Physical examination was performed on nearly all of the affected and unaffected family members. DNA was extracted from blood obtained from 14 subjects who showed radiographic and clinical features of CVT (two of whom also had CMT), from two subjects with features of CMT but not CVT, and from 20 related family members who were clinically normal. Radiographs show the appearance of uncorrected CVT in infancy, in childhood, and in adulthood. DNA analysis revealed a mutation in a HOXD10gene located on chromosome 2 in all of the affected but none of the unaffected family members. There is an autosomal-dominant-inherited mutation with complete penetrance which is found in all members of a pedigree with CVT, some of whom exhibit a CMT-like foot disorder. Radiologic findings vary depending on the severity of involvement, treatment provided and age of the patient. (orig.)

  7. Congenital vertical talus in four generations of the same family

    Energy Technology Data Exchange (ETDEWEB)

    Levinsohn, E. Mark [Crouse Hospital, Department of Medical Imaging, Syracuse (United States); Shrimpton, Antony E. [SUNY Upstate Medical University, Department of Clinical Pathology, Syracuse (United States); Cady, Robert B. [SUNY Upstate Medical University, Department of Pediatrics, Syracuse (United States); Packard, David S. [SUNY Upstate Medical University, Department of Cell and Developmental Biology, Syracuse (United States); Hootnick, David R. [SUNY Upstate Medical University, Department of Pediatrics, Syracuse (United States); SUNY Upstate Medical University, Department of Cell and Developmental Biology, Syracuse (United States); SUNY Upstate Medical University, Department of Orthopedic Surgery, Syracuse (United States)

    2004-11-01

    This paper presents four generations of a family with radiographically demonstrated congenital vertical talus (CVT) in whom a HOXD10 gene mutation was identified. Some members of the family with this mutation exhibited cavo-varus foot deformity consistent with a Charcot-Marie-Tooth (CMT)-like disorder. Physical examination was performed on nearly all of the affected and unaffected family members. DNA was extracted from blood obtained from 14 subjects who showed radiographic and clinical features of CVT (two of whom also had CMT), from two subjects with features of CMT but not CVT, and from 20 related family members who were clinically normal. Radiographs show the appearance of uncorrected CVT in infancy, in childhood, and in adulthood. DNA analysis revealed a mutation in a HOXD10gene located on chromosome 2 in all of the affected but none of the unaffected family members. There is an autosomal-dominant-inherited mutation with complete penetrance which is found in all members of a pedigree with CVT, some of whom exhibit a CMT-like foot disorder. Radiologic findings vary depending on the severity of involvement, treatment provided and age of the patient. (orig.)

  8. How Satellites Have Contributed to Building a Weather Ready Nation

    Science.gov (United States)

    Lapenta, W.

    2017-12-01

    NOAA's primary mission since its inception has been to reduce the loss of life and property, as well as disruptions from, high impact weather and water-related events. In recent years, significant societal losses resulting even from well forecast extreme events have shifted attention from the forecast alone toward ensuring societal response is equal to the risks that exist for communities, businesses and the public. The responses relate to decisions ranging from coastal communities planning years in advance to mitigate impacts from rising sea level, to immediate lifesaving decisions such as a family seeking adequate shelter during a tornado warning. NOAA is committed to building a "Weather-Ready Nation" where communities are prepared for and respond appropriately to these events. The Weather-Ready Nation (WRN) strategic priority is building community resilience in the face of increasing vulnerability to extreme weather, water, climate and environmental threats. To build a Weather-Ready Nation, NOAA is enhancing Impact-Based Decision Support Services (IDSS), transitioning science and technology advances into forecast operations, applying social science research to improve the communication and usefulness of information, and expanding its dissemination efforts to achieve far-reaching readiness, responsiveness and resilience. These four components of Weather-Ready Nation are helping ensure NOAA data, products and services are fully utilized to minimize societal impacts from extreme events. Satellite data and satellite products have been important elements of the national Weather Service (NWS) operations for more than 40 years. When one examines the uses of satellite data specific to the internal forecast and warning operations of NWS, two main applications are evident. The first is the use of satellite data in numerical weather prediction models; the second is the use of satellite imagery and derived products for mesoscale and short-range weather warning and

  9. DNA Polymerase κ Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus.

    Directory of Open Access Journals (Sweden)

    Yonghe Qi

    2016-10-01

    Full Text Available Hepatitis B virus (HBV infection of hepatocytes begins by binding to its cellular receptor sodium taurocholate cotransporting polypeptide (NTCP, followed by the internalization of viral nucleocapsid into the cytoplasm. The viral relaxed circular (rc DNA genome in nucleocapsid is transported into the nucleus and converted into covalently closed circular (ccc DNA to serve as a viral persistence reservoir that is refractory to current antiviral therapies. Host DNA repair enzymes have been speculated to catalyze the conversion of rcDNA to cccDNA, however, the DNA polymerase(s that fills the gap in the plus strand of rcDNA remains to be determined. Here we conducted targeted genetic screening in combination with chemical inhibition to identify the cellular DNA polymerase(s responsible for cccDNA formation, and exploited recombinant HBV with capsid coding deficiency which infects HepG2-NTCP cells with similar efficiency of wild-type HBV to assure cccDNA synthesis is exclusively from de novo HBV infection. We found that DNA polymerase κ (POLK, a Y-family DNA polymerase with maximum activity in non-dividing cells, substantially contributes to cccDNA formation during de novo HBV infection. Depleting gene expression of POLK in HepG2-NTCP cells by either siRNA knockdown or CRISPR/Cas9 knockout inhibited the conversion of rcDNA into cccDNA, while the diminished cccDNA formation in, and hence the viral infection of, the knockout cells could be effectively rescued by ectopic expression of POLK. These studies revealed that POLK is a crucial host factor required for cccDNA formation during a de novo HBV infection and suggest that POLK may be a potential target for developing antivirals against HBV.

  10. Systematic analysis and evolution of 5S ribosomal DNA in metazoans.

    Science.gov (United States)

    Vierna, J; Wehner, S; Höner zu Siederdissen, C; Martínez-Lage, A; Marz, M

    2013-11-01

    Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12,766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades.

  11. Structure of the hDmc1-ssDNA filament reveals the principles of its architecture.

    Directory of Open Access Journals (Sweden)

    Andrei L Okorokov

    Full Text Available In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1, a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active and compressed (inactive. However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds DNA nucleoprotein filaments, the extended (active state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers

  12. Trends in mobile satellite communication

    Science.gov (United States)

    Johannsen, Klaus G.; Bowles, Mike W.; Milliken, Samuel; Cherrette, Alan R.; Busche, Gregory C.

    1993-01-01

    Ever since the U.S. Federal Communication Commission opened the discussion on spectrum usage for personal handheld communication, the community of satellite manufacturers has been searching for an economically viable and technically feasible satellite mobile communication system. Hughes Aircraft Company and others have joined in providing proposals for such systems, ranging from low to medium to geosynchronous orbits. These proposals make it clear that the trend in mobile satellite communication is toward more sophisticated satellites with a large number of spot beams and onboard processing, providing worldwide interconnectivity. Recent Hughes studies indicate that from a cost standpoint the geosynchronous satellite (GEOS) is most economical, followed by the medium earth orbit satellite (MEOS) and then by the low earth orbit satellite (LEOS). From a system performance standpoint, this evaluation may be in reverse order, depending on how the public will react to speech delay and collision. This paper discusses the trends and various mobile satellite constellations in satellite communication under investigation. It considers the effect of orbital altitude and modulation/multiple access on the link and spacecraft design.

  13. Metamotifs - a generative model for building families of nucleotide position weight matrices

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2010-06-01

    Full Text Available Abstract Background Development of high-throughput methods for measuring DNA interactions of transcription factors together with computational advances in short motif inference algorithms is expanding our understanding of transcription factor binding site motifs. The consequential growth of sequence motif data sets makes it important to systematically group and categorise regulatory motifs. It has been shown that there are familial tendencies in DNA sequence motifs that are predictive of the family of factors that binds them. Further development of methods that detect and describe familial motif trends has the potential to help in measuring the similarity of novel computational motif predictions to previously known data and sensitively detecting regulatory motifs similar to previously known ones from novel sequence. Results We propose a probabilistic model for position weight matrix (PWM sequence motif families. The model, which we call the 'metamotif' describes recurring familial patterns in a set of motifs. The metamotif framework models variation within a family of sequence motifs. It allows for simultaneous estimation of a series of independent metamotifs from input position weight matrix (PWM motif data and does not assume that all input motif columns contribute to a familial pattern. We describe an algorithm for inferring metamotifs from weight matrix data. We then demonstrate the use of the model in two practical tasks: in the Bayesian NestedMICA model inference algorithm as a PWM prior to enhance motif inference sensitivity, and in a motif classification task where motifs are labelled according to their interacting DNA binding domain. Conclusions We show that metamotifs can be used as PWM priors in the NestedMICA motif inference algorithm to dramatically increase the sensitivity to infer motifs. Metamotifs were also successfully applied to a motif classification problem where sequence motif features were used to predict the family of

  14. JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis

    Science.gov (United States)

    Folmer, Michael J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J.; Nelson, J.; Goldberg, M.; Sjoberg, W.

    2016-01-01

    The ocean prediction center at the national hurricane center's tropical analysis and forecast Branch, the Weather Prediction center and the Satellite analysis branch of NESDIS make up the Satellite Proving Ground for Marine, Precipitation and Satellite Analysis. These centers had early exposure to JPSS products using the S-NPP Satellite that was launched in 2011. Forecasters continue to evaluate new products in anticipation for the launch of JPSS-1 sometime in 2017.

  15. The Fanconi anemia DNA damage repair pathway in the spotlight for germline predisposition to colorectal cancer.

    Science.gov (United States)

    Esteban-Jurado, Clara; Franch-Expósito, Sebastià; Muñoz, Jenifer; Ocaña, Teresa; Carballal, Sabela; López-Cerón, Maria; Cuatrecasas, Miriam; Vila-Casadesús, Maria; Lozano, Juan José; Serra, Enric; Beltran, Sergi; Brea-Fernández, Alejandro; Ruiz-Ponte, Clara; Castells, Antoni; Bujanda, Luis; Garre, Pilar; Caldés, Trinidad; Cubiella, Joaquín; Balaguer, Francesc; Castellví-Bel, Sergi

    2016-10-01

    Colorectal cancer (CRC) is one of the most common neoplasms in the world. Fanconi anemia (FA) is a very rare genetic disease causing bone marrow failure, congenital growth abnormalities and cancer predisposition. The comprehensive FA DNA damage repair pathway requires the collaboration of 53 proteins and it is necessary to restore genome integrity by efficiently repairing damaged DNA. A link between FA genes in breast and ovarian cancer germline predisposition has been previously suggested. We selected 74 CRC patients from 40 unrelated Spanish families with strong CRC aggregation compatible with an autosomal dominant pattern of inheritance and without mutations in known hereditary CRC genes and performed germline DNA whole-exome sequencing with the aim of finding new candidate germline predisposition variants. After sequencing and data analysis, variant prioritization selected only those very rare alterations, producing a putative loss of function and located in genes with a role compatible with cancer. We detected an enrichment for variants in FA DNA damage repair pathway genes in our familial CRC cohort as 6 families carried heterozygous, rare, potentially pathogenic variants located in BRCA2/FANCD1, BRIP1/FANCJ, FANCC, FANCE and REV3L/POLZ. In conclusion, the FA DNA damage repair pathway may play an important role in the inherited predisposition to CRC.

  16. Epigenetics in Alzheimer's Disease: Perspective of DNA Methylation.

    Science.gov (United States)

    Qazi, Talal Jamil; Quan, Zhenzhen; Mir, Asif; Qing, Hong

    2018-02-01

    Research over the years has shown that causes of Alzheimer's disease are not well understood, but over the past years, the involvement of epigenetic mechanisms in the developing memory formation either under pathological or physiological conditions has become clear. The term epigenetics represents the heredity of changes in phenotype that are independent of altered DNA sequences. Different studies validated that cytosine methylation of genomic DNA decreases with age in different tissues of mammals, and therefore, the role of epigenetic factors in developing neurological disorders in aging has been under focus. In this review, we summarized and reviewed the involvement of different epigenetic mechanisms especially the DNA methylation in Alzheimer's disease (AD), late-onset Alzheimer's disease (LOAD), familial Alzheimer's disease (FAD), and autosomal dominant Alzheimer's disease (ADAD). Down to the minutest of details, we tried to discuss the methylation patterns like mitochondrial DNA methylation and ribosomal DNA (rDNA) methylation. Additionally, we mentioned some therapeutic approaches related to epigenetics, which could provide a potential cure for AD. Moreover, we reviewed some recent studies that validate DNA methylation as a potential biomarker and its role in AD. We hope that this review will provide new insights into the understanding of AD pathogenesis from the epigenetic perspective especially from the perspective of DNA methylation.

  17. The satellite situation center

    International Nuclear Information System (INIS)

    Teague, M.J.; Sawyer, D.M.; Vette, J.I.

    1982-01-01

    Considerations related to the early planning for the International Magnetospheric Study (IMS) took into account the desirability of an establishment of specific entities for generating and disseminating coordination information for both retrospective and predictive periods. The organizations established include the IMS/Satellite Situation Center (IMS/SSC) operated by NASA. The activities of the SSC are related to the preparation of reports on predicted and actually achieved satellite positions, the response to inquiries, the compilation of information on satellite experiments, and the issue of periodic status summaries. Attention is given to high-altitude satellite services, other correlative satellite services, non-IMS activities of the SSC, a summary of the SSC request activity, and post-IMS and future activities

  18. Regulation and function of DNA methylation in plants and animals

    KAUST Repository

    He, Xinjian

    2011-02-15

    DNA methylation is an important epigenetic mark involved in diverse biological processes. In plants, DNA methylation can be established through the RNA-directed DNA methylation pathway, an RNA interference pathway for transcriptional gene silencing (TGS), which requires 24-nt small interfering RNAs. In mammals, de novo DNA methylation occurs primarily at two developmental stages: during early embryogenesis and during gametogenesis. While it is not clear whether establishment of DNA methylation patterns in mammals involves RNA interference in general, de novo DNA methylation and suppression of transposons in germ cells require 24-32-nt piwi-interacting small RNAs. DNA methylation status is dynamically regulated by DNA methylation and demethylation reactions. In plants, active DNA demethylation relies on the repressor of silencing 1 family of bifunctional DNA glycosylases, which remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, initiating a base excision repair (BER) pathway. In animals, multiple mechanisms of active DNA demethylation have been proposed, including a deaminase- and DNA glycosylase-initiated BER pathway. New information concerning the effects of various histone modifications on the establishment and maintenance of DNA methylation has broadened our understanding of the regulation of DNA methylation. The function of DNA methylation in plants and animals is also discussed in this review. © 2011 IBCB, SIBS, CAS All rights reserved.

  19. Plan of Time Management of Satellite Positioning System using Quasi-zenith Satellite

    Science.gov (United States)

    Takahashi, Yasuhiro; Fujieda, Miho; Amagai, Jun; Yokota, Shoichiro; Kimura, Kazuhiro; Ito, Hiroyuki; Hama, Shin'ichi; Morikawa, Takao; Kawano, Isao; Kogure, Satoshi

    The Quasi-Zenith satellites System (QZSS) is developed as an integrated satellite service system of communication, broadcasting and positioning for mobile users in specified regions of Japan from high elevation angle. Purposes of the satellite positioning system using Quasi-Zenith satellite (QZS) are to complement and augment the GPS. The national institutes concerned have been developing the positioning system using QZS since 2003 and will carry out experiments and researches in three years after the launch. In this system, National Institute of Information and Communications Technology (NICT) is mainly in charge of timing system for the satellite positioning system using QZS, such as onboard hydrogen maser atomic clock and precise time management system of the QZSS. We started to develop the engineering model of the time management system for the QZSS. The time management system for the QZSS will be used to compare time differences between QZS and earth station as well as to compare between three onboard atomic clocks. This paper introduces time management of satellite positioning system using the QZSS.

  20. Site-specific DNA Inversion by Serine Recombinases

    Science.gov (United States)

    2015-01-01

    Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized. PMID:25844275

  1. W-enriched satellite sequence in the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae)

    Czech Academy of Sciences Publication Activity Database

    Dalíková, Martina; Zrzavá, Magda; Kubíčková, S.; Marec, František

    2017-01-01

    Roč. 25, 3-4 (2017), s. 241-252 ISSN 0967-3849 R&D Projects: GA ČR(CZ) GA14-22765S; GA ČR(CZ) GA17-13713S Grant - others:GA ČR(CZ) GA17-17211S Institutional support: RVO:60077344 Keywords : satellite DNA * sex chromosomes * transcription Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 2.385, year: 2016 https://link.springer.com/article/10.1007%2Fs10577-017-9558-8

  2. A novel mutation in homeobox DNA binding domain of HOXC13 gene underlies pure hair and nail ectodermal dysplasia (ECTD9) in a Pakistani family.

    Science.gov (United States)

    Khan, Anwar Kamal; Muhammad, Noor; Aziz, Abdul; Khan, Sher Alam; Shah, Khadim; Nasir, Abdul; Khan, Muzammil Ahmad; Khan, Saadullah

    2017-04-12

    Pure hair and nail ectodermal dysplasia (PHNED) is a congenital disorder of hair abnormalities and nail dysplasia. Both autosomal recessive and dominant inheritance fashion of PHNED occurs. In literature, to date, five different forms of PHNED have been reported at molecular level, having three genes known and two loci with no gene yet. In this study, a four generations consanguineous family of Pakistani origin with autosomal recessive PHNED was investigated. Affected members exhibited PHNED phenotypes with involvement of complete hair loss and nail dysplasia. To screen for mutation in the genes (HOXC13, KRT74, KRT85), its coding exons and exons-intron boundaries were sequenced. The 3D models of normal and mutated HOXC13 were predicted by using homology modeling. Through investigating the family to known loci, the family was mapped to ectodermal dysplasia 9 (ECTD9) loci with genetic address of 12q13.13. Mutation screening revealed a novel missense mutation (c.929A > C; p.Asn310Thr) in homeobox DNA binding domain of HOXC13 gene in affected members of the family. Due to mutation, loss of hydrogen bonding and difference in potential energy occurs, which may resulting in alteration of protein function. This is the first mutation reported in homeodomain, while 5 th mutation reported in HOXC13 gene causing PHNED.

  3. Genetic insights into family group co-occurrence in Cryptocercus punctulatus, a sub-social woodroach from the southern Appalachian Mountains

    Directory of Open Access Journals (Sweden)

    Ryan C. Garrick

    2017-03-01

    Full Text Available The wood-feeding cockroach Cryptocercus punctulatus Scudder (Blattodea: Cryptocercidae is an important member of the dead wood (saproxylic community in montane forests of the southeastern United States. However, its population biology remains poorly understood. Here, aspects of family group co-occurrence were characterized to provide basic information that can be extended by studies on the evolution and maintenance of sub-sociality. Broad sampling across the species’ range was coupled with molecular data (mitochondrial DNA (mtDNA sequences. The primary questions were: (1 what proportion of rotting logs contain two or more different mtDNA haplotypes and how often can this be attributed to multiple families inhabiting the same log, (2 are multi-family logs spatially clustered, and (3 what levels of genetic differentiation among haplotypes exist within a log, and how genetically similar are matrilines of co-occurring family groups? Multi-family logs were identified on the premise that three different mtDNA haplotypes, or two different haplotypes among adult females, is inconsistent with a single family group founded by one male–female pair. Results showed that of the 88 rotting logs from which multiple adult C. punctulatus were sampled, 41 logs (47% contained two or more mtDNA haplotypes, and at least 19 of these logs (22% overall were inferred to be inhabited by multiple families. There was no strong evidence for spatial clustering of the latter class of logs. The frequency distribution of nucleotide differences between co-occurring haplotypes was strongly right-skewed, such that most haplotypes were only one or two mutations apart, but more substantial divergences (up to 18 mutations, or 1.6% uncorrected sequence divergence do occasionally occur within logs. This work represents the first explicit investigation of family group co-occurrence in C. punctulatus, providing a valuable baseline for follow-up studies.

  4. Overexpression of the DNA mismatch repair factor, PMS2, confers hypermutability and DNA damage tolerance.

    Science.gov (United States)

    Gibson, Shannon L; Narayanan, Latha; Hegan, Denise Campisi; Buermeyer, Andrew B; Liskay, R Michael; Glazer, Peter M

    2006-12-08

    Inherited defects in genes associated with DNA mismatch repair (MMR) have been linked to familial colorectal cancer. Cells deficient in MMR are genetically unstable and demonstrate a tolerance phenotype in response to certain classes of DNA damage. Some sporadic human cancers also show abnormalities in MMR gene function, typically due to diminished expression of one of the MutL homologs, MLH1. Here, we report that overexpression of the MutL homolog, human PMS2, can also cause a disruption of the MMR pathway in mammalian cells, resulting in hypermutability and DNA damage tolerance. A mouse fibroblast cell line carrying a recoverable lambda phage shuttle vector for mutation detection was transfected with either a vector designed to express hPMS2 or with an empty vector control. Cells overexpressing hPMS2 were found to have elevated spontaneous mutation frequencies at the cII reporter gene locus. They also showed an increase in the level of mutations induced by the alkylating agent, methynitrosourea (MNU). Clonogenic survival assays demonstrated increased survival of the PMS2-overexpressing cells following exposure to MNU, consistent with the induction of a damage tolerance phenotype. Similar results were seen in cells expressing a mutant PMS2 gene, containing a premature stop codon at position 134 and representing a variant found in an individual with familial colon cancer. These results show that dysregulation of PMS2 gene expression can disrupt MMR function in mammalian cells and establish an additional carcinogenic mechanism by which cells can develop genetic instability and acquire resistance to cytotoxic cancer therapies.

  5. pH modulates the binding of early growth response protein 1 transcription factor to DNA.

    Science.gov (United States)

    Mikles, David C; Bhat, Vikas; Schuchardt, Brett J; Deegan, Brian J; Seldeen, Kenneth L; McDonald, Caleb B; Farooq, Amjad

    2013-08-01

    The transcription factor early growth response protein (EGR)1 orchestrates a plethora of signaling cascades involved in cellular homeostasis, and its downregulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with an increase in pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as His382 by virtue of the fact that its replacement by nonionizable residues abolishes the pH dependence of the binding of EGR1 to DNA. Notably, His382 inserts into the major groove of DNA, and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, His382 is mainly conserved across other members of the EGR family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating the protein-DNA interactions that are central to this family of transcription factors. Collectively, our findings reveal an unexpected but a key step in the molecular recognition of the EGR family of transcription factors, and suggest that they may act as sensors of pH within the intracellular environment. © 2013 FEBS.

  6. Genomic characterization of large heterochromatic gaps in the human genome assembly.

    Directory of Open Access Journals (Sweden)

    Nicolas Altemose

    2014-05-01

    Full Text Available The largest gaps in the human genome assembly correspond to multi-megabase heterochromatic regions composed primarily of two related families of tandem repeats, Human Satellites 2 and 3 (HSat2,3. The abundance of repetitive DNA in these regions challenges standard mapping and assembly algorithms, and as a result, the sequence composition and potential biological functions of these regions remain largely unexplored. Furthermore, existing genomic tools designed to predict consensus-based descriptions of repeat families cannot be readily applied to complex satellite repeats such as HSat2,3, which lack a consistent repeat unit reference sequence. Here we present an alignment-free method to characterize complex satellites using whole-genome shotgun read datasets. Utilizing this approach, we classify HSat2,3 sequences into fourteen subfamilies and predict their chromosomal distributions, resulting in a comprehensive satellite reference database to further enable genomic studies of heterochromatic regions. We also identify 1.3 Mb of non-repetitive sequence interspersed with HSat2,3 across 17 unmapped assembly scaffolds, including eight annotated gene predictions. Finally, we apply our satellite reference database to high-throughput sequence data from 396 males to estimate array size variation of the predominant HSat3 array on the Y chromosome, confirming that satellite array sizes can vary between individuals over an order of magnitude (7 to 98 Mb and further demonstrating that array sizes are distributed differently within distinct Y haplogroups. In summary, we present a novel framework for generating initial reference databases for unassembled genomic regions enriched with complex satellite DNA, and we further demonstrate the utility of these reference databases for studying patterns of sequence variation within human populations.

  7. Genetic heterogeneity in Pakistani microcephaly families

    DEFF Research Database (Denmark)

    Sajid Hussain, M; Bakhtiar, Syeda Marriam; Farooq, Muhammad

    2013-01-01

    Autosomal recessive primary microcephaly (MCPH) is caused by mutations in at least eight different genes involved either in cell division or DNA repair. Most mutations are identified in consanguine families from Pakistan, Iran and India. To further assess their genetic heterogeneity and mutational...... mutation. One third of the families were linked to ASPM followed by WDR62 confirming previous data. We identified three novel ASPM mutations, four novel WDR62 mutations, one novel MCPH1 mutation and two novel CEP152 mutations. CEP152 mutations have not been described before in the Pakistani population....

  8. Active Site Sharing and Subterminal Hairpin Recognition in a New Class of DNA Transposases

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Donald R.; Guynet, Catherine; Ton-Hoang, Bao; Perez, Zhanita N.; Ghirlando, Rodolfo; Chandler, Michael; Dyda, Fred (Centre Nat); (NIH)

    2010-07-20

    Many bacteria harbor simple transposable elements termed insertion sequences (IS). In Helicobacter pylori, the chimeric IS605 family elements are particularly interesting due to their proximity to genes encoding gastric epithelial invasion factors. Protein sequences of IS605 transposases do not bear the hallmarks of other well-characterized transposases. We have solved the crystal structure of full-length transposase (TnpA) of a representative member, ISHp608. Structurally, TnpA does not resemble any characterized transposase; rather, it is related to rolling circle replication (RCR) proteins. Consistent with RCR, Mg{sup 2+} and a conserved tyrosine, Tyr127, are essential for DNA nicking and the formation of a covalent intermediate between TnpA and DNA. TnpA is dimeric, contains two shared active sites, and binds two DNA stem loops representing the conserved inverted repeats near each end of ISHp608. The cocrystal structure with stem-loop DNA illustrates how this family of transposases specifically recognizes and pairs ends, necessary steps during transposition.

  9. Archetypal and new families with Alexander disease and novel mutations in GFAP

    NARCIS (Netherlands)

    Messing, Albee; Li, Rong; Naidu, Sakkubai; Taylor, J. Paul; Silverman, Lital; Flint, Daniel; van der Knaap, Marjo S.; Brenner, Michael

    2012-01-01

    To describe genetic analyses of the 2 most thoroughly studied, historically seminal multigenerational families with Alexander disease described prior to the identification of GFAP as the related gene, as well as 1 newly discovered family. Clinical histories were obtained and DNA was analyzed from

  10. Deficiency of CCAAT/enhancer binding protein family DNA binding prevents malignant conversion of adenoma to carcinoma in NNK-induced lung carcinogenesis in the mouse

    Directory of Open Access Journals (Sweden)

    Kimura Shioko

    2012-12-01

    Full Text Available Abstract Background The CCAAT/enhancer binding proteins (C/EBPs play important roles in carcinogenesis of many tumors including the lung. Since multiple C/EBPs are expressed in lung, the combinatorial expression of these C/EBPs on lung carcinogenesis is not known. Methods A transgenic mouse line expressing a dominant negative A-C/EBP under the promoter of lung epithelial Clara cell secretory protein (CCSP gene in doxycycline dependent fashion was subjected to 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-induced lung carcinogenesis bioassay in the presence and absence of doxycycline, and the effect of abolition of DNA binding activities of C/EBPs on lung carcinogenesis was examined. Results A-C/EBP expression was found not to interfere with tumor development; however, it suppressed the malignant conversion of adenoma to carcinoma during NNK-induced lung carcinogenesis. The results suggested that Ki67 may be used as a marker for lung carcinomas in mouse. Conclusions The DNA binding of C/EBP family members can be used as a potential molecular target for lung cancer therapy.

  11. Metagenomic and satellite analyses of red snow in the Russian Arctic

    Directory of Open Access Journals (Sweden)

    Nao Hisakawa

    2015-12-01

    Full Text Available Cryophilic algae thrive in liquid water within snow and ice in alpine and polar regions worldwide. Blooms of these algae lower albedo (reflection of sunlight, thereby altering melting patterns (Kohshima, Seko & Yoshimura, 1993; Lutz et al., 2014; Thomas & Duval, 1995. Here metagenomic DNA analysis and satellite imaging were used to investigate red snow in Franz Josef Land in the Russian Arctic. Franz Josef Land red snow metagenomes confirmed that the communities are composed of the autotroph Chlamydomonas nivalis that is supporting a complex viral and heterotrophic bacterial community. Comparisons with white snow communities from other sites suggest that white snow and ice are initially colonized by fungal-dominated communities and then succeeded by the more complex C. nivalis-heterotroph red snow. Satellite image analysis showed that red snow covers up to 80% of the surface of snow and ice fields in Franz Josef Land and globally. Together these results show that C. nivalis supports a local food web that is on the rise as temperatures warm, with potential widespread impacts on alpine and polar environments worldwide.

  12. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    International Nuclear Information System (INIS)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong

    2012-01-01

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  13. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  14. The Future of Satellite Communications Technology.

    Science.gov (United States)

    Nowland, Wayne

    1985-01-01

    Discusses technical advances in satellite technology since the 1960s, and the International Telecommunications Satellite Organization's role in these developments; describes how AUSSAT, Australia's domestic satellite system, exemplifies the latest developments in satellite technology; and reviews satellite system features, possible future…

  15. DNA methylation levels associated with race and childhood asthma severity.

    Science.gov (United States)

    Chan, Marcia A; Ciaccio, Christina E; Gigliotti, Nicole M; Rezaiekhaligh, Mo; Siedlik, Jacob A; Kennedy, Kevin; Barnes, Charles S

    2017-10-01

    Asthma is a common chronic childhood disease worldwide. Socioeconomic status, genetic predisposition and environmental factors contribute to its incidence and severity. A disproportionate number of children with asthma are economically disadvantaged and live in substandard housing with potential indoor environmental exposures such as cockroaches, dust mites, rodents and molds. These exposures may manifest through epigenetic mechanisms that can lead to changes in relevant gene expression. We examined the association of global DNA methylation levels with socioeconomic status, asthma severity and race/ethnicity. We measured global DNA methylation in peripheral blood of children with asthma enrolled in the Kansas City Safe and Healthy Homes Program. Inclusion criteria included residing in the same home for a minimum of 4 days per week and total family income of less than 80% of the Kansas City median family income. DNA methylation levels were quantified by an immunoassay that assessed the percentage of 5-methylcytosine. Our results indicate that overall, African American children had higher levels of global DNA methylation than children of other races/ethnicities (p = 0.029). This difference was more pronounced when socioeconomic status and asthma severity were coupled with race/ethnicity (p = 0.042) where low-income, African American children with persistent asthma had significantly elevated methylation levels relative to other races/ethnicities in the same context (p = 0.006, Hedges g = 1.14). Our study demonstrates a significant interaction effect among global DNA methylation levels, asthma severity, race/ethnicity, and socioeconomic status.

  16. Cooperative and cognitive satellite systems

    CERN Document Server

    Chatzinotas, Symeon; De Gaudenzi, Riccardo

    2015-01-01

    Cooperative and Cognitive Satellite Systems provides a solid overview of the current research in the field of cooperative and cognitive satellite systems, helping users understand how to incorporate state-of-the-art communication techniques in innovative satellite network architectures to enable the next generation of satellite systems. The book is edited and written by top researchers and practitioners in the field, providing a comprehensive explanation of current research that allows users to discover future technologies and their applications, integrate satellite and terrestrial systems

  17. Familiær adenomatøs polypose

    DEFF Research Database (Denmark)

    Bülow, Steffen

    2013-01-01

    Familial adenomatous polyposis (FAP) is an autosomally dominant disease characterized by early development of up to thousands of colorectal adenomas and colorectal carcinoma in untreated patients. Extra-colonic manifestations include duodenal adenomatosis and desmoid development. Due...... to identification of gene carriers by DNA analysis or endoscopy the prognosis is good after early colectomy, but life-long surveillance of the rectum and the duodenum is necessary. The Danish Polyposis Register coordinates prophylactic examination and treatment in the families, and serves as basis for research....

  18. Diverse replication-associated protein encoding circular DNA viruses in guano samples of Central-Eastern European bats.

    Science.gov (United States)

    Kemenesi, Gábor; Kurucz, Kornélia; Zana, Brigitta; Földes, Fanni; Urbán, Péter; Vlaschenko, Anton; Kravchenko, Kseniia; Budinski, Ivana; Szodoray-Parádi, Farkas; Bücs, Szilárd; Jére, Csaba; Csősz, István; Szodoray-Parádi, Abigél; Estók, Péter; Görföl, Tamás; Boldogh, Sándor; Jakab, Ferenc

    2018-03-01

    Circular replication-associated protein encoding single-stranded DNA (CRESS DNA) viruses are increasingly recognized worldwide in a variety of samples. Representative members include well-described veterinary pathogens with worldwide distribution, such as porcine circoviruses or beak and feather disease virus. In addition, numerous novel viruses belonging to the family Circoviridae with unverified pathogenic roles have been discovered in different human samples. Viruses of the family Genomoviridae have also been described as being highly abundant in different faecal and environmental samples, with case reports showing them to be suspected pathogens in human infections. In order to investigate the genetic diversity of these viruses in European bat populations, we tested guano samples from Georgia, Hungary, Romania, Serbia and Ukraine. This resulted in the detection of six novel members of the family Circoviridae and two novel members of the family Genomoviridae. Interestingly, a gemini-like virus, namely niminivirus, which was originally found in raw sewage samples in Nigeria, was also detected in our samples. We analyzed the nucleotide composition of members of the family Circoviridae to determine the possible host origins of these viruses. This study provides the first dataset on CRESS DNA viruses of European bats, and members of several novel viral species were discovered.

  19. Satellite Communications for ATM

    Science.gov (United States)

    Shamma, Mohammed A.

    2003-01-01

    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  20. Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis.

    Science.gov (United States)

    Kannengiesser, Caroline; Borie, Raphael; Ménard, Christelle; Réocreux, Marion; Nitschké, Patrick; Gazal, Steven; Mal, Hervé; Taillé, Camille; Cadranel, Jacques; Nunes, Hilario; Valeyre, Dominique; Cordier, Jean François; Callebaut, Isabelle; Boileau, Catherine; Cottin, Vincent; Grandchamp, Bernard; Revy, Patrick; Crestani, Bruno

    2015-08-01

    Pulmonary fibrosis is a fatal disease with progressive loss of respiratory function. Defective telomere maintenance leading to telomere shortening is a cause of pulmonary fibrosis, as mutations in the telomerase component genes TERT (reverse transcriptase) and TERC (RNA component) are found in 15% of familial pulmonary fibrosis (FPF) cases. However, so far, about 85% of FPF remain genetically uncharacterised.Here, in order to identify new genetic causes of FPF, we performed whole-exome sequencing, with a candidate-gene approach, of 47 affected subjects from 35 families with FPF without TERT and TERC mutations.We identified heterozygous mutations in regulator of telomere elongation helicase 1 (RTEL1) in four families. RTEL1 is a DNA helicase with roles in DNA replication, genome stability, DNA repair and telomere maintenance. The heterozygous RTEL1 mutations segregated as an autosomal dominant trait in FPF, and were predicted by structural analyses to severely affect the function and/or stability of RTEL1. In agreement with this, RTEL1-mutated patients exhibited short telomeres in comparison with age-matched controls.Our results provide evidence that heterozygous RTEL1 mutations are responsible for FPF and, thereby, extend the clinical spectrum of RTEL1 deficiency. Thus, RTEL1 enlarges the number of telomere-associated genes implicated in FPF. Copyright ©ERS 2015.

  1. The histone H3K9 methylation and RNAi pathways regulate normalnucleolar and repeated DNA organization by inhibiting formation ofextrachromosomal DNAs

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C.; Karpen, Gary H.

    2006-06-15

    In order to identify regulators of nuclear organization, Drosophila mutants in the Su(var)3-9 histone H3K9 methyltransferase, RNAi pathway components, and other regulators of heterochromatin-mediated gene silencing were examined for altered nucleoli and positioning of repeated DNAs. Animals lacking components of the H3K9 methylation and RNAi pathways contained disorganized nucleoli, ribosomal DNA (rDNA) and satellite DNAs. The levels of H3K9 dimethylation (H3K9me2) in chromatin associated with repeated DNAs decreased dramatically in Su(var)3-9 and dcr-2 (dicer-2) mutant tissues compared to wild type. We also observed a substantial increase in extrachromosomal repeated DNAs in mutant tissues. The disorganized nucleolus phenotype depends on the presence of Ligase 4 (Lig4), and ecc DNA formation is not induced by removal of cohesin. We conclude that H3K9 methylation of rDNA and satellites, maintained by Su(var)3-9, HP1, and the RNAi pathway, is necessary for the structural stability of repeated DNAs, which is mediated through suppression of non-homologous end joining (NHEJ). These results suggest a mechanism for how local chromatin structure can regulate genome stability, and the organization of chromosomal elements and nuclear organelles.

  2. Discovering significant evolution patterns from satellite image time series.

    Science.gov (United States)

    Petitjean, François; Masseglia, Florent; Gançarski, Pierre; Forestier, Germain

    2011-12-01

    Satellite Image Time Series (SITS) provide us with precious information on land cover evolution. By studying these series of images we can both understand the changes of specific areas and discover global phenomena that spread over larger areas. Changes that can occur throughout the sensing time can spread over very long periods and may have different start time and end time depending on the location, which complicates the mining and the analysis of series of images. This work focuses on frequent sequential pattern mining (FSPM) methods, since this family of methods fits the above-mentioned issues. This family of methods consists of finding the most frequent evolution behaviors, and is actually able to extract long-term changes as well as short term ones, whenever the change may start and end. However, applying FSPM methods to SITS implies confronting two main challenges, related to the characteristics of SITS and the domain's constraints. First, satellite images associate multiple measures with a single pixel (the radiometric levels of different wavelengths corresponding to infra-red, red, etc.), which makes the search space multi-dimensional and thus requires specific mining algorithms. Furthermore, the non evolving regions, which are the vast majority and overwhelm the evolving ones, challenge the discovery of these patterns. We propose a SITS mining framework that enables discovery of these patterns despite these constraints and characteristics. Our proposal is inspired from FSPM and provides a relevant visualization principle. Experiments carried out on 35 images sensed over 20 years show the proposed approach makes it possible to extract relevant evolution behaviors.

  3. DNA barcoding reveals cryptic diversity within commercially exploited Indo-Malay Carangidae (Teleosteii: Perciformes.

    Directory of Open Access Journals (Sweden)

    Tun Nurul Aimi Mat Jaafar

    Full Text Available BACKGROUND: DNA barcodes, typically focusing on the cytochrome oxidase I gene (COI in many animals, have been used widely as a species-identification tool. The ability of DNA barcoding to distinguish species from a range of taxa and to reveal cryptic species has been well documented. Despite the wealth of DNA barcode data for fish from many temperate regions, there are relatively few available from the Southeast Asian region. Here, we target the marine fish Family Carangidae, one of the most commercially-important families from the Indo-Malay Archipelago (IMA, to produce an initial reference DNA barcode library. METHODOLOGY/PRINCIPAL FINDINGS: Here, a 652 bp region of COI was sequenced for 723 individuals from 36 putative species of Family Carangidae distributed within IMA waters. Within the newly-generated dataset, three described species exhibited conspecific divergences up to ten times greater (4.32-4.82% than mean estimates (0.24-0.39%, indicating a discrepancy with assigned morphological taxonomic identification, and the existence of cryptic species. Variability of the mitochondrial DNA COI region was compared within and among species to evaluate the COI region's suitability for species identification. The trend in range of mean K2P distances observed was generally in accordance with expectations based on taxonomic hierarchy: 0% to 4.82% between individuals within species, 0% to 16.4% between species within genera, and 8.64% to 25.39% between genera within families. The average Kimura 2-parameter (K2P distance between individuals, between species within genera, and between genera within family were 0.37%, 10.53% and 16.56%, respectively. All described species formed monophyletic clusters in the Neighbour-joining phylogenetic tree, although three species representing complexes of six potential cryptic species were detected in Indo-Malay Carangidae; Atule mate, Selar crumenophthalmus and Seriolina nigrofasciata. CONCLUSION/SIGNIFICANCE: This

  4. Thematic mapping from satellite imagery

    CERN Document Server

    Denègre, J

    2013-01-01

    Thematic Mapping from Satellite Imagery: A Guidebook discusses methods in producing maps using satellite images. The book is comprised of five chapters; each chapter covers one stage of the process. Chapter 1 tackles the satellite remote sensing imaging and its cartographic significance. Chapter 2 discusses the production processes for extracting information from satellite data. The next chapter covers the methods for combining satellite-derived information with that obtained from conventional sources. Chapter 4 deals with design and semiology for cartographic representation, and Chapter 5 pre

  5. Full Service ISDN Satellite (FSIS) network model for advanced ISDN satellite design and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The Full Service Integrated Services Digital Network (FSIS) network model for advanced satellite designs describes a model suitable for discrete event simulations. A top down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ACTS and the Interim Service ISDN Satellite (ISIS) perform ISDN protocol analyses and switching decisions in the terrestrial domain, whereas FSIS makes all its analyses and decisions on-board the ISDN satellite.

  6. Genome organization and DNA methylation patterns of B chromosomes in the red fox and Chinese raccoon dogs.

    Science.gov (United States)

    Bugno-Poniewierska, Monika; Solek, Przemysław; Wronski, Mariusz; Potocki, Leszek; Jezewska-Witkowska, Grażyna; Wnuk, Maciej

    2014-12-01

    The molecular structure of B chromosomes (Bs) is relatively well studied. Previous research demonstrates that Bs of various species usually contain two types of repetitive DNA sequences, satellite DNA and ribosomal DNA, but Bs also contain genes encoding histone proteins and many others. However, many questions remain regarding the origin and function of these chromosomes. Here, we focused on the comparative cytogenetic characteristics of the red fox and Chinese raccoon dog B chromosomes with particular attention to the distribution of repetitive DNA sequences and their methylation status. We confirmed that the small Bs of the red fox show a typical fluorescent telomeric distal signal, whereas medium-sized Bs of the Chinese raccoon dog were characterized by clusters of telomeric sequences along their length. We also found different DNA methylation patterns for the B chromosomes of both species. Therefore, we concluded that DNA methylation may maintain the transcriptional inactivation of DNA sequences localized to B chromosomes and may prevent genetic unbalancing and several negative phenotypic effects. © 2014 The Authors.

  7. Identification of three novel NHS mutations in families with Nance-Horan syndrome.

    Science.gov (United States)

    Huang, Kristen M; Wu, Junhua; Brooks, Simon P; Hardcastle, Alison J; Lewis, Richard Alan; Stambolian, Dwight

    2007-03-27

    Nance-Horan Syndrome (NHS) is an infrequent and often overlooked X-linked disorder characterized by dense congenital cataracts, microphthalmia, and dental abnormalities. The syndrome is caused by mutations in the NHS gene, whose function is not known. The purpose of this study was to identify the frequency and distribution of NHS gene mutations and compare genotype with Nance-Horan phenotype in five North American NHS families. Genomic DNA was isolated from white blood cells from NHS patients and family members. The NHS gene coding region and its splice site donor and acceptor regions were amplified from genomic DNA by PCR, and the amplicons were sequenced directly. We identified three unique NHS coding region mutations in these NHS families. This report extends the number of unique identified NHS mutations to 14.

  8. Attitudes toward genetic testing in childhood and reproductive decision-making for familial adenomatous polyposis

    NARCIS (Netherlands)

    Douma, K.F.L.; Aaronson, N.K.; Vasen, H.F.A.; Verhoef, S.; Gundy, C.M.; Bleiker, E.M.A.

    2010-01-01

    Childhood DNA testing, prenatal diagnosis (PND) and preimplantation genetic diagnosis (PGD) are available for familial adenomatous polyposis (FAP). However, the use of PND and PGD is controversial. The purpose of this study was to investigate attitudes toward, and experiences with, childhood DNA

  9. Polar-Orbiting Satellite (POES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from camera systems or radiometer instruments on satellites in orbit around the poles. Satellite campaigns include...

  10. Association of in vitro radiosensitivity and cancer in a family with acute myelogenous leukemia

    International Nuclear Information System (INIS)

    Bech-Hansen, N.T.; Sell, B.M.; Mulvihill, J.J.; Paterson, M.C.

    1981-01-01

    The gamma-ray sensitivity of skin fibroblasts from six members of a cancer family was investigated using a colony-forming assay. Fibroblasts from the three members with cancer (two sisters with acute myelogenous leukemia and the mother with cervical carcinoma) showed a significant (p less than 0.05) increase in radiosensitivity, while three members without cancer (the father and two sons) showed a normal radioresponse. The possibility that the increased gamma-ray sensitivity was due to defective DNA repair was investigated using assays for DNA repair replication, single-strand break rejoining, and removal of enzyme-sensitive sites in gamma-irradiated DNA. Results of these assays indicate that the kinetics of enzymatic repair of radiogenic DNA damage in general, and the rejoining of single-strand scissions and excision repair of base and sugar radioproducts in particular, were the same in the cell lines from the sensitive and clinically normal family members

  11. Association of in vitro radiosensitivity and cancer in a family with acute myelogenous leukemia

    International Nuclear Information System (INIS)

    Bech-Hansen, N.T.; Sell, B.M.; Mulvihill, J.J.; Paterson, M.C.

    1981-01-01

    The γ-ray sensitivity of skin fibroblasts from six members of a cancer family was investigated using a colony-forming assay. Fibroblasts from the three members with cancer (two sisters with acute myelogenous leukemia and the mother with cervical carcinoma) showed a significant ( p > 0.05) increase in radiosensitivity, while three members without cancer (the father and two sons) showed a normal radioresponse. The possiblity that the increased γ-ray sensitivity was due to defective DNA repair was investigated using assays for DNA repair replication, single-strand break rejoining, and removal of enzyme-sensitive sites in γ-irradiated DNA. Results of these assays indicate that the kinetics of enzymatic repair of radiogenic DNA damage in general, and the rejoining of single-strand scissions and excision repair of base and sugar radioproducts in partigular, were the same in the cell lines from the sensitive and clinically normal family members

  12. The Eccentric Satellites Problem: Comparing Milky Way Satellite Orbital Properties to Simulation Results

    Science.gov (United States)

    Haji, Umran; Pryor, Carlton; Applebaum, Elaad; Brooks, Alyson

    2018-01-01

    We compare the orbital properties of the satellite galaxies of the Milky Way to those of satellites found in simulated Milky Way-like systems as a means of testing cosmological simulations of galaxy formation. The particular problem that we are investigating is a discrepancy in the distribution of orbital eccentricities. Previous studies of Milky Way-mass systems analyzed in a semi-analytic ΛCDM cosmological model have found that the satellites tend to have significantly larger fractions of their kinetic energy invested in radial motion with respect to their central galaxy than do the real-world Milky Way satellites. We analyze several high-resolution ("zoom-in") hydrodynamical simulations of Milky Way-mass galaxies and their associated satellite systems to investigate why previous works found Milky Way-like systems to be rare. We find a possible relationship between a quiescent galactic assembly history and a distribution of satellite kinematics resembling that of the Milky Way. This project has been supported by funding from National Science Foundation grant PHY-1560077.

  13. Mitochondrial DNA Mutation Associated with Leber's Hereditary Optic Neuropathy

    Science.gov (United States)

    Wallace, Douglas C.; Singh, Gurparkash; Lott, Marie T.; Hodge, Judy A.; Schurr, Theodore G.; Lezza, Angela M. S.; Elsas, Louis J.; Nikoskelainen, Eeva K.

    1988-12-01

    Leber's hereditary optic neuropathy is a maternally inherited disease resulting in optic nerve degeneration and cardiac dysrhythmia. A mitochondrial DNA replacement mutation was identified that correlated with this disease in multiple families. This mutation converted a highly conserved arginine to a histidine at codon 340 in the NADH dehydrogenase subunit 4 gene and eliminated an Sfa NI site, thus providing a simple diagnostic test. This finding demonstrated that a nucleotide change in a mitochondrial DNA energy production gene can result in a neurological disease.

  14. Diagnosing CADASIL using MRI: evidence from families with known mutations of Notch 3 gene

    International Nuclear Information System (INIS)

    Chawda, S.J.; Lange, R.P.J. de; St-Clair, D.; Hourihan, M.D.; Halpin, S.F.S.

    2000-01-01

    Clinical data and MRI findings are presented on 18 subjects from two families with neuropathologically confirmed CADASIL. DNA analysis revealed mutations in exon 4 of Notch 3 gene in both families. All family members with mutations in Notch 3 gene had extensive abnormalities on MRI, principally lesions in the white matter of the frontal lobes and in the external capsules. Of several family members in whom a diagnosis of CADASIL was suspected on the basis of minor symptoms, one had MRI changes consistent with CADASIL; none of these cases carried a mutation in the Notch 3 gene. MRI and clinical features that may alert the radiologist to the diagnosis of CADASIL are reviewed. However, a wide differential diagnosis exists for the MRI appearances of CADASIL, including multiple sclerosis and small-vessel disease secondary to hypertension. The definitive diagnosis cannot be made on MRI alone and requires additional evidence, where available, from a positive family history and by screening DNA for mutations of Notch 3 gene. (orig.)

  15. Novel types of DNA-sugar damage in neocarzinostatin cytotoxicity and mutagenesis

    International Nuclear Information System (INIS)

    Goldberg, I.H.

    1986-01-01

    Although a number of antitumor antibiotics interact with DNA to form covalent adducts with the bases, relatively few damage DNA by interacting with the deoxyribose moiety. Neocarzinostatin (NCS), a member of a family of macromolecular antibiotics obtained from filtrates of Streptomyces, is such an agent. Many of the biochemical and cellular effects of NCS resemble those of ionizing radiation. Most, possibly all, of the DNA lesions caused by NCS appear to result from the direct attack of an activated form of the drug on the deoxyribose of DNA. This is to be contrasted with ionizing radiation or the antibiotic bleomycin, that damage DNA deoxyribose through the intervention of a reduced form of oxygen. This paper describes the nature of the interaction between the active component of NCS and DNA, on the mechanism of the ensuing deoxyribose damage, and on some of the biological consequences of these actions. 24 refs., 7 figs

  16. Does DNA Methylation of PPARGC1A Influence Insulin Action in First Degree Relatives of Patients with Type 2 Diabetes?

    DEFF Research Database (Denmark)

    Gillberg, Linn; Jacobsen, Stine; Ribel-Madsen, Rasmus

    2013-01-01

    and in muscle from individuals at risk of T2D. This study aimed to investigate DNA promoter methylation and gene expression of PPARGC1A in skeletal muscle from first degree relatives (FDR) of T2D patients, and to determine the association with insulin action as well as the influence of family relation. We...... genetic regulation to play a role. No significant effect of familiality on DNA methylation was found. Taken together, increased DNA methylation of the PPARGC1A promoter is unlikely to play a major causal role for the development of insulin resistance in FDR of patients with T2D....... included 124 Danish FDR of T2D patients from 46 different families. Skeletal muscle biopsies were excised from vastus lateralis and insulin action was assessed by oral glucose tolerance tests. DNA methylation and mRNA expression levels were measured using bisulfite sequencing and quantitative real-time PCR...

  17. Contrasting Patterns of rDNA Homogenization within the Zygosaccharomyces rouxii Species Complex

    Science.gov (United States)

    Chand Dakal, Tikam; Giudici, Paolo; Solieri, Lisa

    2016-01-01

    Arrays of repetitive ribosomal DNA (rDNA) sequences are generally expected to evolve as a coherent family, where repeats within such a family are more similar to each other than to orthologs in related species. The continuous homogenization of repeats within individual genomes is a recombination process termed concerted evolution. Here, we investigated the extent and the direction of concerted evolution in 43 yeast strains of the Zygosaccharomyces rouxii species complex (Z. rouxii, Z. sapae, Z. mellis), by analyzing two portions of the 35S rDNA cistron, namely the D1/D2 domains at the 5’ end of the 26S rRNA gene and the segment including the internal transcribed spacers (ITS) 1 and 2 (ITS regions). We demonstrate that intra-genomic rDNA sequence variation is unusually frequent in this clade and that rDNA arrays in single genomes consist of an intermixing of Z. rouxii, Z. sapae and Z. mellis-like sequences, putatively evolved by reticulate evolutionary events that involved repeated hybridization between lineages. The levels and distribution of sequence polymorphisms vary across rDNA repeats in different individuals, reflecting four patterns of rDNA evolution: I) rDNA repeats that are homogeneous within a genome but are chimeras derived from two parental lineages via recombination: Z. rouxii in the ITS region and Z. sapae in the D1/D2 region; II) intra-genomic rDNA repeats that retain polymorphisms only in ITS regions; III) rDNA repeats that vary only in their D1/D2 domains; IV) heterogeneous rDNA arrays that have both polymorphic ITS and D1/D2 regions. We argue that an ongoing process of homogenization following allodiplodization or incomplete lineage sorting gave rise to divergent evolutionary trajectories in different strains, depending upon temporal, structural and functional constraints. We discuss the consequences of these findings for Zygosaccharomyces species delineation and, more in general, for yeast barcoding. PMID:27501051

  18. Satellite switched FDMA advanced communication technology satellite program

    Science.gov (United States)

    Atwood, S.; Higton, G. H.; Wood, K.; Kline, A.; Furiga, A.; Rausch, M.; Jan, Y.

    1982-01-01

    The satellite switched frequency division multiple access system provided a detailed system architecture that supports a point to point communication system for long haul voice, video and data traffic between small Earth terminals at Ka band frequencies at 30/20 GHz. A detailed system design is presented for the space segment, small terminal/trunking segment at network control segment for domestic traffic model A or B, each totaling 3.8 Gb/s of small terminal traffic and 6.2 Gb/s trunk traffic. The small terminal traffic (3.8 Gb/s) is emphasized, for the satellite router portion of the system design, which is a composite of thousands of Earth stations with digital traffic ranging from a single 32 Kb/s CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as 33 Mb/s. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both traffic models A and B with minimum reorganization of the satellite payload transponder subsystem hardware design. The unique zoning concept allows multiple beam antennas while maximizing multiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicate a weight and dc power budget of 353 lbs, 195 watts for traffic model A and 498 lbs, 244 watts for traffic model B.

  19. Partnership via Satellite.

    Science.gov (United States)

    Powell, Marie Clare

    1980-01-01

    Segments of the 1980 National Catholic Educational Association (NCEA) conference were to be telecast nationally by satellite. The author briefly explains the satellite transmission process and advises Catholic educators on how to pick up the broadcast through their local cable television system. (SJL)

  20. Identification and characterization of the cytosine-5 DNA methyltransferase gene family in Salvia miltiorrhiza

    OpenAIRE

    Jiang Li; Caili Li; Shanfa Lu

    2018-01-01

    Cytosine DNA methylation is highly conserved epigenetic modification involved in a wide range of biological processes in eukaryotes. It was established and maintained by cytosine-5 DNA methyltransferases (C5-MTases) in plants. Through genome-wide identification, eight putative SmC5-MTase genes were identified from the genome of Salvia miltiorrhiza, a well-known traditional Chinese medicine material and an emerging model medicinal plant. Based on conserved domains and phylogenetic analysis, ei...

  1. Spectrum and power allocation in cognitive multi-beam satellite communications with flexible satellite payloads

    Science.gov (United States)

    Liu, Zhihui; Wang, Haitao; Dong, Tao; Yin, Jie; Zhang, Tingting; Guo, Hui; Li, Dequan

    2018-02-01

    In this paper, the cognitive multi-beam satellite system, i.e., two satellite networks coexist through underlay spectrum sharing, is studied, and the power and spectrum allocation method is employed for interference control and throughput maximization. Specifically, the multi-beam satellite with flexible payload reuses the authorized spectrum of the primary satellite, adjusting its transmission band as well as power for each beam to limit its interference on the primary satellite below the prescribed threshold and maximize its own achievable rate. This power and spectrum allocation problem is formulated as a mixed nonconvex programming. For effective solving, we first introduce the concept of signal to leakage plus noise ratio (SLNR) to decouple multiple transmit power variables in the both objective and constraint, and then propose a heuristic algorithm to assign spectrum sub-bands. After that, a stepwise plus slice-wise algorithm is proposed to implement the discrete power allocation. Finally, simulation results show that adopting cognitive technology can improve spectrum efficiency of the satellite communication.

  2. Environmental DNA (eDNA metabarcoding assays to detect invasive invertebrate species in the Great Lakes.

    Directory of Open Access Journals (Sweden)

    Katy E Klymus

    Full Text Available Describing and monitoring biodiversity comprise integral parts of ecosystem management. Recent research coupling metabarcoding and environmental DNA (eDNA demonstrate that these methods can serve as important tools for surveying biodiversity, while significantly decreasing the time, expense and resources spent on traditional survey methods. The literature emphasizes the importance of genetic marker development, as the markers dictate the applicability, sensitivity and resolution ability of an eDNA assay. The present study developed two metabarcoding eDNA assays using the mtDNA 16S RNA gene with Illumina MiSeq platform to detect invertebrate fauna in the Laurentian Great Lakes and surrounding waterways, with a focus for use on invasive bivalve and gastropod species monitoring. We employed careful primer design and in vitro testing with mock communities to assess ability of the markers to amplify and sequence targeted species DNA, while retaining rank abundance information. In our mock communities, read abundances reflected the initial input abundance, with regressions having significant slopes (p<0.05 and high coefficients of determination (R2 for all comparisons. Tests on field environmental samples revealed similar ability of our markers to measure relative abundance. Due to the limited reference sequence data available for these invertebrate species, care must be taken when analyzing results and identifying sequence reads to species level. These markers extend eDNA metabarcoding research for molluscs and appear relevant to other invertebrate taxa, such as rotifers and bryozoans. Furthermore, the sphaeriid mussel assay is group-specific, exclusively amplifying bivalves in the Sphaeridae family and providing species-level identification. Our assays provide useful tools for managers and conservation scientists, facilitating early detection of invasive species as well as improving resolution of mollusc diversity.

  3. Interim Service ISDN Satellite (ISIS) hardware experiment development for advanced ISDN satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Service Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Development for Advanced Satellite Designs describes the development of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into Time Division Multiple Access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the RS-499 interface for satellite uplink. The same ISTA converts in the opposite direction the RS-499 to U-interface data with a simple switch setting.

  4. Interim Service ISDN Satellite (ISIS) hardware experiment design for advanced ISDN satellite design and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Design for Advanced Satellite Designs describes the design of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into time division multiple access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the V.35 interface for satellite uplink. The same ISTA converts in the opposite direction the V.35 to U-interface data with a simple switch setting.

  5. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond.

    Science.gov (United States)

    Fedeles, Bogdan I; Singh, Vipender; Delaney, James C; Li, Deyu; Essigmann, John M

    2015-08-21

    The AlkB family of Fe(II)- and α-ketoglutarate-dependent dioxygenases is a class of ubiquitous direct reversal DNA repair enzymes that remove alkyl adducts from nucleobases by oxidative dealkylation. The prototypical and homonymous family member is an Escherichia coli "adaptive response" protein that protects the bacterial genome against alkylation damage. AlkB has a wide variety of substrates, including monoalkyl and exocyclic bridged adducts. Nine mammalian AlkB homologs exist (ALKBH1-8, FTO), but only a subset functions as DNA/RNA repair enzymes. This minireview presents an overview of the AlkB proteins including recent data on homologs, structural features, substrate specificities, and experimental strategies for studying DNA repair by AlkB family proteins. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. E2F family members are differentially regulated by reversible acetylation

    DEFF Research Database (Denmark)

    Marzio, G; Wagener, C; Gutierrez, M I

    2000-01-01

    of the other E2F family members. Here we report that E2F-1, -2, and -3, but not E2F-4, -5, and -6, associate with and are acetylated by p300 and cAMP-response element-binding protein acetyltransferases. Acetylation occurs at three conserved lysine residues located at the N-terminal boundary of their DNA......The six members of the E2F family of transcription factors play a key role in the control of cell cycle progression by regulating the expression of genes involved in DNA replication and cell proliferation. E2F-1, -2, and -3 belong to a structural and functional subfamily distinct from those...

  7. The Skeletal Muscle Satellite Cell

    Science.gov (United States)

    2011-01-01

    The skeletal muscle satellite cell was first described and named based on its anatomic location between the myofiber plasma and basement membranes. In 1961, two independent studies by Alexander Mauro and Bernard Katz provided the first electron microscopic descriptions of satellite cells in frog and rat muscles. These cells were soon detected in other vertebrates and acquired candidacy as the source of myogenic cells needed for myofiber growth and repair throughout life. Cultures of isolated myofibers and, subsequently, transplantation of single myofibers demonstrated that satellite cells were myogenic progenitors. More recently, satellite cells were redefined as myogenic stem cells given their ability to self-renew in addition to producing differentiated progeny. Identification of distinctively expressed molecular markers, in particular Pax7, has facilitated detection of satellite cells using light microscopy. Notwithstanding the remarkable progress made since the discovery of satellite cells, researchers have looked for alternative cells with myogenic capacity that can potentially be used for whole body cell-based therapy of skeletal muscle. Yet, new studies show that inducible ablation of satellite cells in adult muscle impairs myofiber regeneration. Thus, on the 50th anniversary since its discovery, the satellite cell’s indispensable role in muscle repair has been reaffirmed. PMID:22147605

  8. Evolution in the block: common elements of 5S rDNA organization and evolutionary patterns in distant fish genera.

    Science.gov (United States)

    Campo, Daniel; García-Vázquez, Eva

    2012-01-01

    The 5S rDNA is organized in the genome as tandemly repeated copies of a structural unit composed of a coding sequence plus a nontranscribed spacer (NTS). The coding region is highly conserved in the evolution, whereas the NTS vary in both length and sequence. It has been proposed that 5S rRNA genes are members of a gene family that have arisen through concerted evolution. In this study, we describe the molecular organization and evolution of the 5S rDNA in the genera Lepidorhombus and Scophthalmus (Scophthalmidae) and compared it with already known 5S rDNA of the very different genera Merluccius (Merluccidae) and Salmo (Salmoninae), to identify common structural elements or patterns for understanding 5S rDNA evolution in fish. High intra- and interspecific diversity within the 5S rDNA family in all the genera can be explained by a combination of duplications, deletions, and transposition events. Sequence blocks with high similarity in all the 5S rDNA members across species were identified for the four studied genera, with evidences of intense gene conversion within noncoding regions. We propose a model to explain the evolution of the 5S rDNA, in which the evolutionary units are blocks of nucleotides rather than the entire sequences or single nucleotides. This model implies a "two-speed" evolution: slow within blocks (homogenized by recombination) and fast within the gene family (diversified by duplications and deletions).

  9. The prevalence of human cytomegalovirus DNA in gliomas of Brazilian patients

    Directory of Open Access Journals (Sweden)

    Renata Fragelli Fonseca

    2012-11-01

    Full Text Available Members of the Herpesviridae family have been implicated in a number of tumours in humans. At least 75% of the human population has had contact with cytomegalovirus (HCMV. In this work, we screened 75 Brazilian glioma biopsies for the presence of HCMV DNA sequences. HCMV DNA was detected in 36% (27/75 of the biopsies. It is possible that HCMV could be a co-factor in the evolution of brain tumours.

  10. Analysis of DNA restriction fragments greater than 5.7 Mb in size from the centromeric region of human chromosomes.

    Science.gov (United States)

    Arn, P H; Li, X; Smith, C; Hsu, M; Schwartz, D C; Jabs, E W

    1991-01-01

    Pulsed electrophoresis was used to study the organization of the human centromeric region. Genomic DNA was digested with rare-cutting enzymes. DNA fragments from 0.2 to greater than 5.7 Mb were separated by electrophoresis and hybridized with alphoid and simple DNA repeats. Rare-cutting enzymes (Mlu I, Nar I, Not I, Nru I, Sal I, Sfi I, Sst II) demonstrated fewer restriction sites at centromeric regions than elsewhere in the genome. The enzyme Not I had the fewest restriction sites at centromeric regions. As much as 70% of these sequences from the centromeric region are present in Not I DNA fragments greater than 5.7 and estimated to be as large as 10 Mb in size. Other repetitive sequences such as short interspersed repeated segments (SINEs), long interspersed repeated segments (LINEs), ribosomal DNA, and mini-satellite DNA that are not enriched at the centromeric region, are not enriched in Not I fragments of greater than 5.7 Mb in size.

  11. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    Directory of Open Access Journals (Sweden)

    Toub Omid

    2010-10-01

    Full Text Available Abstract Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS were predicted by in silico analysis of the grapevine (Vitis vinifera genome assembly 1. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information

  12. Multilocus Sequence Analysis of Cercospora spp. from Different Host Plant Families

    Directory of Open Access Journals (Sweden)

    Floreta Fiska Yuliarni

    2014-06-01

    Full Text Available Identification of the genus Cercospora is still complicated due to the host preferences often being used as the main criteria to propose a new name. We determined the relationship between host plants and multilocus sequence variations (ITS rDNA including 5.8S rDNA, elongation factor 1-α, and calmodulin in Cercospora spp. to investigate the host specificity. We used 53 strains of Cercospora spp. infecting 12 plant families for phylogenetic analysis. The sequences of 23 strains of Cercospora spp. infecting the plant families of Asteraceae, Cucurbitaceae, and Solanaceae were determined in this study. The sequences of 30 strains of Cercospora spp. infecting the plant families of Fabaceae, Amaranthaceae, Apiaceae, Plumbaginaceae, Malvaceae, Cistaceae, Plantaginaceae, Lamiaceae, and Poaceae were obtained from GenBank. The molecular phylogenetic analysis revealed that the majority of Cercospora species lack host specificity, and only C. zinniicola, C. zeina, C. zeae-maydis, C. cocciniae, and C. mikaniicola were found to be host-specific. Closely related species of Cercospora could not be distinguished using molecular analyses of ITS, EF, and CAL gene regions. The topology of the phylogenetic tree based on the CAL gene showed a better topology and Cercospora species separation than the trees developed based on the ITS rDNA region or the EF gene.

  13. Telelibrary: Library Services via Satellite.

    Science.gov (United States)

    Liu, Rosa

    1979-01-01

    Investigates the provision of library services via satellite, explains briefly the operation and advantages of communication satellites, and discusses the various telecommunications equipment and services which, when coupled with satellite transmission, will enhance library activities. Demand trend projections for telecommunications services…

  14. Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function

    Directory of Open Access Journals (Sweden)

    Abou-Rached Charbel

    2008-04-01

    Full Text Available Abstract Background StWhy1, a member of the plant-specific Whirly single-stranded DNA-binding protein family, was first characterized as a transcription factor involved in the activation of the nuclear PR-10a gene following defense-related stress in potato. In Arabidopsis thaliana, Whirlies have recently been shown to be primarily localized in organelles. Two representatives of the family, AtWhy1 and AtWhy3 are imported into plastids while AtWhy2 localizes to mitochondria. Their function in organelles is currently unknown. Results To understand the role of mitochondrial Whirlies in higher plants, we produced A. thaliana lines with altered expression of the atwhy2 gene. Organellar DNA immunoprecipitation experiments demonstrated that AtWhy2 binds to mitochondrial DNA. Overexpression of atwhy2 in plants perturbs mitochondrial function by causing a diminution in transcript levels and mtDNA content which translates into a low activity level of respiratory chain complexes containing mtDNA-encoded subunits. This lowered activity of mitochondria yielded plants that were reduced in size and had distorted leaves that exhibited accelerated senescence. Overexpression of atwhy2 also led to early accumulation of senescence marker transcripts in mature leaves. Inactivation of the atwhy2 gene did not affect plant development and had no detectable effect on mitochondrial morphology, activity of respiratory chain complexes, transcription or the amount of mtDNA present. This lack of phenotype upon abrogation of atwhy2 expression suggests the presence of functional homologues of the Whirlies or the activation of compensating mechanisms in mitochondria. Conclusion AtWhy2 is associated with mtDNA and its overexpression results in the production of dysfunctional mitochondria. This report constitutes the first evidence of a function for the Whirlies in organelles. We propose that they could play a role in the regulation of the gene expression machinery of organelles.

  15. The replicative DNA polymerase of herpes simplex virus 1 exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities

    OpenAIRE

    Bogani, Federica; Boehmer, Paul E.

    2008-01-01

    Base excision repair (BER) is essential for maintaining genome stability both to counter the accumulation of unusual bases and to protect from base loss in the DNA. Herpes simplex virus 1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery, including enzymes involved in nucleotide metabolism. We report on a replicative family B and a herpesvirus-encoded DNA Pol that possesses DNA lyase activity. We have discovered that the catalytic subunit of the HSV-1 DNA polymeras...

  16. Molecular Subtyping of Tumors from Patients with Familial Glioma.

    Science.gov (United States)

    Ruiz, Vanessa Y; Praska, Corinne E; Armstrong, Georgina; Kollmeyer, Thomas M; Yamada, Seiji; Decker, Paul A; Kosel, Matthew L; Eckel-Passow, Jeanette E; Consortium, The Gliogene; Lachance, Daniel H; Bainbridge, Matthew N; Melin, Beatrice S; Bondy, Melissa L; Jenkins, Robert B

    2017-10-10

    Single-gene mutation syndromes account for some familial glioma (FG); however, they make up only a small fraction of glioma families. Gliomas can be classified into 3 major molecular subtypes based on IDH mutation and 1p/19q co-deletion. We hypothesized that the prevalence of molecular subtypes might differ in familial versus sporadic gliomas, and that tumors in the same family should have the same molecular subtype. Participants in the FG study (Gliogene) provided samples for germline DNA analysis. Formalin-fixed, paraffin-embedded (FFPE) tumor was obtained for a subset of FG cases, and DNA was extracted. We analyzed tissue from 75 families, including 10 families containing a second affected family member. Copy number variation (CNV) data was obtained using a first-generation Affymetrix molecular inversion probe (MIP) array. Samples from 62 of 75 (83%) FG cases could be classified into the 3 subtypes. The prevalence of the molecular subtypes was: 30 (48%) IDH-wild type, 21 (34%) IDH-mutant non-codeleted, and 11 (19%) IDH-mutant and 1p/19q-codeleted. This distribution of molecular subtypes was not statistically different from that of sporadic gliomas (p=0.54). Of 10 paired FG samples, molecular subtypes were concordant for 7 (κ=0.59): 3 IDH-mutant non-codeleted, 2 IDH-wild type, and 2 IDH-mutant and 1p/19q-codeleted gliomas. Our data suggest that within individual families, patients develop gliomas of the same molecular subtype. However, we did not observe differences in the prevalence of the molecular subtypes in FG compared with sporadic gliomas. These observations provide further insight about the distribution of molecular subtypes in FG. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  17. Development of a recombinant DNA assay system for the detection of genetic change in astronauts' cells

    International Nuclear Information System (INIS)

    Atchley, S.V.; Chen, D.J.C.; Strniste, G.F.; Walters, R.A.; Moyzis, R.K.

    1984-01-01

    We are developing a new recombinant DNA system for the detection and measurement of genetic change in humans caused by exposure to low level ionizing radiation. A unique feature of the method is the use of cloned repetitive DNA probes to assay human DNA for structural changes during or after irradiation. Repetitive sequences exist in different families. Collectively they constitute over 25% of the DNA in a human cell. Repeat families have between 10 and 500,000 members. We have constructed repetitive DNA sequence libraries using recombinant DNA techniques. From these libraries we have isolated and characterized individual repeats comprising 75 to 90% of the mass of human repetitive DNA. Repeats used in our assay system exist in tandem arrays in the genome. Perturbation of these sequences in a cell, followed by detection with a repeat probe, produces a new, multimeric ''ladder'' pattern on an autoradiogram. The repeat probe used in our initial study is complementary to 1% of human DNA. Therefore, the sensitivity of this method is several orders of magnitude better than existing assays. Preliminary evidence from human skin cells exposed to acute, low-dose x-ray treatments indicates that DNA is affected at a dose as low as 5R. The radiation doses used in this system are well within the range of doses received by astronauts during spaceflight missions. Due to its small material requirements, this technique could easily be adapted for use in space. 16 refs., 1 fig

  18. Activities of Canadian Satellite Communications, Inc.

    Science.gov (United States)

    1992-12-01

    Canadian Satellite Communications (Cancom) has as its core business the provision of television and radio signals to cable systems in Canada, with the objective of making affordable broadcast signals available to remote and/or small communities. Cancom also provides direct-to-home services to backyard receiving dishes, as well as satellite digital data business communications services, satellite business television, and satellite network services. Its business communication services range from satellite links for big-city businesses with small branch operations located far from major centers, to a mobile messaging and tracking system for the trucking industry. Revenues in 1992 totalled $48,212,000 and net income was just over $7 million. Cancom bought 10 percent interest in Leosat Corp. of Washington, DC, who are seeking approval to operate a position locator network from low-orbit satellites. Cancom has also become a partner in SovCan Star Satellite Communications Inc., which will build an international satellite system in partnership with Russia. The first satellite in this east-west business network will be placed in a Russian orbital slot over the Atlantic by 1996, and a second satellite will follow for the Pacific region. This annual report of Cancom's activities for 1992 includes financial statements and a six year financial review.

  19. Security Concepts for Satellite Links

    Science.gov (United States)

    Tobehn, C.; Penné, B.; Rathje, R.; Weigl, A.; Gorecki, Ch.; Michalik, H.

    2008-08-01

    The high costs to develop, launch and maintain a satellite network makes protecting the assets imperative. Attacks may be passive such as eavesdropping on the payload data. More serious threat are active attacks that try to gain control of the satellite, which may lead to the total lost of the satellite asset. To counter these threats, new satellite and ground systems are using cryptographic technologies to provide a range of services: confidentiality, entity & message authentication, and data integrity. Additionally, key management cryptographic services are required to support these services. This paper describes the key points of current satellite control and operations, that are authentication of the access to the satellite TMTC link and encryption of security relevant TM/TC data. For payload data management the key points are multi-user ground station access and high data rates both requiring frequent updates and uploads of keys with the corresponding key management methods. For secure satellite management authentication & key negotiation algorithms as HMAC-RIPEMD160, EC- DSA and EC-DH are used. Encryption of data uses algorithms as IDEA, AES, Triple-DES, or other. A channel coding and encryption unit for payload data provides download data rates up to Nx250 Mbps. The presented concepts are based on our experience and heritage of the security systems for all German MOD satellite projects (SATCOMBw2, SAR-Lupe multi- satellite system and German-French SAR-Lupe-Helios- II systems inter-operability) as well as for further international (KOMPSAT-II Payload data link system) and ESA activities (TMTC security and GMES).

  20. Adult mitochondrial DNA depletion syndrome with mild manifestations

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2013-06-01

    Full Text Available Mitochondrial DNA depletion syndrome (MDS is usually a severe disorder of infancy or childhood, due to a reduced copy number of mtDNA molecules. MDS with only mild, non-specific clinical manifestations and onset in adulthood has not been reported. A 47-year-old Caucasian female with short stature and a history of migraine, endometriosis, Crohn’s disease, C-cell carcinoma of the thyroid gland, and a family history positive for mitochondrial disorder (2 sisters, aunt, niece, developed day-time sleepiness, exercise intolerance, and myalgias in the lower-limb muscles since age 46y. She slept 9-10 hours during the night and 2 hours after lunch daily. Clinical exam revealed sore neck muscles, bilateral ptosis, and reduced Achilles tendon reflexes exclusively. Blood tests revealed hyperlipidemia exclusively. Nerve conduction studies, needle electromyography, and cerebral and spinal magnetic resonance imaging were non-informative. Muscle biopsy revealed detached lobulated fibers with subsarcolemmal accentuation of the NADH and SDH staining. Real-time polymerase chain reaction revealed depletion of the mtDNA down to 9% of normal. MDS may be associated with a mild phenotype in adults and may not significantly progress during the first year after onset. In an adult with hypersomnia, severe tiredness, exercise intolerance, and a family history positive for mitochondrial disorder, a MDS should be considered.

  1. Use of mitochondrial COI gene for the identification of family Salticidae and Lycosidae of spiders.

    Science.gov (United States)

    Naseem, Sajida; Tahir, Hafiz Muhammad

    2018-01-01

    In recent years, DNA barcoding has become quite popular for molecular identification of species because it is simple, quick and an affordable method. Present study was conducted to identify spiders of most abundant families, i.e. Salticidae and Lycosidae from citrus orchards in Sargodha district using DNA barcoding. A total of 160 specimens were subjected to DNA barcoding but, sequences up to 600 bp were recovered for 156 specimens. This molecular approach proved helpful to assign the exact taxon to those specimens which were misidentified through morphological characters in the study. We were succeeded to discriminate six species of Lycosidae and nine species of Salticidae through DNA barcoding. Results revealed the presence of clear barcode gap (discontinuity in intra- and inter-specific divergences) for members of both families. Furthermore, the maximum intra-specific divergence was less than NN (nearest neighbour) distance for all species. This suggested the reliability of DNA barcoding for spider's identification up to species level. We got 98% success in our study. It is concluded from present study that DNA barcoding is more reliable tool especially for immature spiders, when morphological characters are ambiguous.

  2. Repeat-associated plasticity in the Helicobacter pylori RD gene family.

    Science.gov (United States)

    Shak, Joshua R; Dick, Jonathan J; Meinersmann, Richard J; Perez-Perez, Guillermo I; Blaser, Martin J

    2009-11-01

    The bacterium Helicobacter pylori is remarkable for its ability to persist in the human stomach for decades without provoking sterilizing immunity. Since repetitive DNA can facilitate adaptive genomic flexibility via increased recombination, insertion, and deletion, we searched the genomes of two H. pylori strains for nucleotide repeats. We discovered a family of genes with extensive repetitive DNA that we have termed the H. pylori RD gene family. Each gene of this family is composed of a conserved 3' region, a variable mid-region encoding 7 and 11 amino acid repeats, and a 5' region containing one of two possible alleles. Analysis of five complete genome sequences and PCR genotyping of 42 H. pylori strains revealed extensive variation between strains in the number, location, and arrangement of RD genes. Furthermore, examination of multiple strains isolated from a single subject's stomach revealed intrahost variation in repeat number and composition. Despite prior evidence that the protein products of this gene family are expressed at the bacterial cell surface, enzyme-linked immunosorbent assay and immunoblot studies revealed no consistent seroreactivity to a recombinant RD protein by H. pylori-positive hosts. The pattern of repeats uncovered in the RD gene family appears to reflect slipped-strand mispairing or domain duplication, allowing for redundancy and subsequent diversity in genotype and phenotype. This novel family of hypervariable genes with conserved, repetitive, and allelic domains may represent an important locus for understanding H. pylori persistence in its natural host.

  3. JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis

    Science.gov (United States)

    Folmer, M. J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J. M.; Nelson, J. A., Jr.; Goldberg, M.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Satellite Proving Ground (PG) for Marine, Precipitation, and Satellite Analysis (MPS) has been demonstrating and evaluating Suomi National Polar-orbiting Partnership (S-NPP) products along with other polar-orbiting satellite platforms in preparation for the Joint Polar Satellite System - 1 (JPSS-1) launch in March 2017. The first S-NPP imagery was made available to the MPS PG during the evolution of Hurricane Sandy in October 2012 and has since been popular in operations. Since this event the MPS PG Satellite Liaison has been working with forecasters on ways to integrate single-channel and multispectral imagery from the Visible Infrared Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Advanced Very High Resolution Radiometer (AVHRR)into operations to complement numerical weather prediction and geostationary satellite savvy National Weather Service (NWS) National Centers. Additional unique products have been introduced to operations to address specific forecast challenges, including the Cooperative Institute for Research in the Atmosphere (CIRA) Layered Precipitable Water, the National Environmental Satellite, Data, and Information Service (NESDIS) Snowfall Rate product, NOAA Unique Combined Atmospheric Processing System (NUCAPS) Soundings, ozone products from the Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder/Advanced Technology Microwave Sounder (CrIS/ATMS), and Infrared Atmospheric Sounding Interferometer (IASI). In addition, new satellite domains have been created to provide forecasters at the NWS Ocean Prediction Center and Weather Prediction Center with better quality imagery at high latitudes. This has led to research projects that are addressing forecast challenges such as tropical to extratropical transition and explosive cyclogenesis. This presentation will provide examples of how the MPS PG has been introducing and integrating

  4. Satellite services system overview

    Science.gov (United States)

    Rysavy, G.

    1982-01-01

    The benefits of a satellite services system and the basic needs of the Space Transportation System to have improved satellite service capability are identified. Specific required servicing equipment are discussed in terms of their technology development status and their operative functions. Concepts include maneuverable television systems, extravehicular maneuvering unit, orbiter exterior lighting, satellite holding and positioning aid, fluid transfer equipment, end effectors for the remote manipulator system, teleoperator maneuvering system, and hand and power tools.

  5. Mobility management in satellite networks

    Science.gov (United States)

    Johanson, Gary A.

    1995-01-01

    This paper addresses the methods used or proposed for use in multi-beam and/or multi-satellite networks designed to provide Mobile Satellite Services (MSS). Specific topics include beam crossover in the North American Mobile Satellite (MSAT) system as well as registration and live call hand-off for a multi-regional geosynchronous (GEO) satellite based system and a global coverage Low Earth Orbiting (LEO) system. In the MSAT system, the individual satellite beams cover very large geographic areas so the need for live call hand-off was not anticipated. This paper discusses the methods used to keep track of the beam location of the users so that incoming call announcements or other messages may be directed to them. Proposed new GEO systems with large numbers of beams will provide much smaller geographic coverage in individual beams and thus the need arises to keep track of the user's location as well as to provide live call hand-off as the user traverses from beam to beam. This situation also occurs in proposed LEO systems where the problems are worsened by the need for satellite to satellite hand-off as well as beam to beam hand-off within a single satellite. The paper discusses methods to accomplish these handoffs and proposes system architectures to address the various hand-off scenarios.

  6. POLE mutations in families predisposed to cutaneous melanoma

    DEFF Research Database (Denmark)

    Aoude, Lauren G; Heitzer, Ellen; Johansson, Peter

    2015-01-01

    Germline mutations in the exonuclease domain of POLE have been shown to predispose to colorectal cancers and adenomas. POLE is an enzyme involved in DNA repair and chromosomal DNA replication. In order to assess whether such mutations might also predispose to cutaneous melanoma, we interrogated...... variants in the exonuclease domain of POLE. Although this frequency is not significantly higher than that in unselected Caucasian controls, we observed multiple cancer types in the melanoma families, suggesting that some germline POLE mutations may predispose to a broad spectrum of cancers, including...

  7. Preparation, crystallization and preliminary X-ray diffraction analysis of the DNA-binding domain of the Ets transcription factor in complex with target DNA

    Energy Technology Data Exchange (ETDEWEB)

    Suwa, Yoshiaki; Nakamura, Teruya; Toma, Sachiko; Ikemizu, Shinji; Kai, Hirofumi; Yamagata, Yuriko, E-mail: yamagata@gpo.kumamoto-u.ac.jp [Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973 (Japan)

    2008-03-01

    The complex between the Ets domain of Ets2 and its target DNA has been crystallized. The crystals diffracted to 3.0 Å resolution. The Ets2 transcription factor is a member of the Ets transcription-factor family. Ets2 plays a role in the malignancy of cancer and in Down’s syndrome by regulating the transcription of various genes. The DNA-binding domain of Ets2 (Ets domain; ETSD), which contains residues that are highly conserved among Ets transcription-factor family members, was expressed as a GST-fusion protein. The aggregation of ETSD produced after thrombin cleavage could be prevented by treatment with NDSB-195 (nondetergent sulfobetaine 195). ETSD was crystallized in complex with DNA containing the Ets2 target sequence (GGAA) by the hanging-drop vapour-diffusion method. The best crystals were grown using 25% PEG 3350, 80 mM magnesium acetate, 50 mM sodium cacodylate pH 5.0/5.5 as the reservoir at 293 K. The crystals belonged to space group C2, with unit-cell parameters a = 85.89, b = 95.52, c = 71.89 Å, β = 101.7° and a V{sub M} value of 3.56 Å{sup 3} Da{sup −1}. Diffraction data were collected to a resolution of 3.0 Å.

  8. Preparation, crystallization and preliminary X-ray diffraction analysis of the DNA-binding domain of the Ets transcription factor in complex with target DNA

    International Nuclear Information System (INIS)

    Suwa, Yoshiaki; Nakamura, Teruya; Toma, Sachiko; Ikemizu, Shinji; Kai, Hirofumi; Yamagata, Yuriko

    2008-01-01

    The complex between the Ets domain of Ets2 and its target DNA has been crystallized. The crystals diffracted to 3.0 Å resolution. The Ets2 transcription factor is a member of the Ets transcription-factor family. Ets2 plays a role in the malignancy of cancer and in Down’s syndrome by regulating the transcription of various genes. The DNA-binding domain of Ets2 (Ets domain; ETSD), which contains residues that are highly conserved among Ets transcription-factor family members, was expressed as a GST-fusion protein. The aggregation of ETSD produced after thrombin cleavage could be prevented by treatment with NDSB-195 (nondetergent sulfobetaine 195). ETSD was crystallized in complex with DNA containing the Ets2 target sequence (GGAA) by the hanging-drop vapour-diffusion method. The best crystals were grown using 25% PEG 3350, 80 mM magnesium acetate, 50 mM sodium cacodylate pH 5.0/5.5 as the reservoir at 293 K. The crystals belonged to space group C2, with unit-cell parameters a = 85.89, b = 95.52, c = 71.89 Å, β = 101.7° and a V M value of 3.56 Å 3 Da −1 . Diffraction data were collected to a resolution of 3.0 Å

  9. Discovery of cyanophage genomes which contain mitochondrial DNA polymerase.

    Science.gov (United States)

    Chan, Yi-Wah; Mohr, Remus; Millard, Andrew D; Holmes, Antony B; Larkum, Anthony W; Whitworth, Anna L; Mann, Nicholas H; Scanlan, David J; Hess, Wolfgang R; Clokie, Martha R J

    2011-08-01

    DNA polymerase γ is a family A DNA polymerase responsible for the replication of mitochondrial DNA in eukaryotes. The origins of DNA polymerase γ have remained elusive because it is not present in any known bacterium, though it has been hypothesized that mitochondria may have inherited the enzyme by phage-mediated nonorthologous displacement. Here, we present an analysis of two full-length homologues of this gene, which were found in the genomes of two bacteriophages, which infect the chlorophyll-d containing cyanobacterium Acaryochloris marina. Phylogenetic analyses of these phage DNA polymerase γ proteins show that they branch deeply within the DNA polymerase γ clade and therefore share a common origin with their eukaryotic homologues. We also found homologues of these phage polymerases in the environmental Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA) database, which fell in the same clade. An analysis of the CAMERA assemblies containing the environmental homologues together with the filter fraction metadata indicated some of these assemblies may be of bacterial origin. We also show that the phage-encoded DNA polymerase γ is highly transcribed as the phage genomes are replicated. These findings provide data that may assist in reconstructing the evolution of mitochondria.

  10. Purification, characterization and molecular cloning of TGP1, a novel G-DNA binding protein from Tetrahymena thermophila.

    OpenAIRE

    Lu, Q; Schierer, T; Kang, S G; Henderson, E

    1998-01-01

    G-DNA, a polymorphic family of four-stranded DNA structures, has been proposed to play roles in a variety of biological processes including telomere function, meiotic recombination and gene regulation. Here we report the purification and cloning of TGP1, a G-DNA specific binding protein from Tetrahymena thermophila. TGP1 was purified by three-column chromatographies, including a G-DNA affinity column. Two major proteins (approximately 80 and approximately 40 kDa) were present in the most high...

  11. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy.

    Science.gov (United States)

    Shi, Xiaolong; Lu, Wei; Wang, Zhiyu; Pan, Linqiang; Cui, Guangzhao; Xu, Jin; LaBean, Thomas H

    2014-02-21

    DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA 'sub-tile' strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs.

  12. The problem of sampling families rather than populations: Relatedness among individuals in samples of juvenile brown trout Salmo trutta L

    DEFF Research Database (Denmark)

    Hansen, Michael Møller; Eg Nielsen, Einar; Mensberg, Karen-Lise Dons

    1997-01-01

    In species exhibiting a nonrandom distribution of closely related individuals, sampling of a few families may lead to biased estimates of allele frequencies in populations. This problem was studied in two brown trout populations, based on analysis of mtDNA and microsatellites. In both samples mt......DNA haplotype frequencies differed significantly between age classes, and in one sample 17 out of 18 individuals less than 1 year of age shared one particular mtDNA haplotype. Estimates of relatedness showed that these individuals most likely represented only three full-sib families. Older trout exhibiting...

  13. Chimeric TALE recombinases with programmable DNA sequence specificity.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Fuller, Roberta P; Barbas, Carlos F

    2012-11-01

    Site-specific recombinases are powerful tools for genome engineering. Hyperactivated variants of the resolvase/invertase family of serine recombinases function without accessory factors, and thus can be re-targeted to sequences of interest by replacing native DNA-binding domains (DBDs) with engineered zinc-finger proteins (ZFPs). However, imperfect modularity with particular domains, lack of high-affinity binding to all DNA triplets, and difficulty in construction has hindered the widespread adoption of ZFPs in unspecialized laboratories. The discovery of a novel type of DBD in transcription activator-like effector (TALE) proteins from Xanthomonas provides an alternative to ZFPs. Here we describe chimeric TALE recombinases (TALERs): engineered fusions between a hyperactivated catalytic domain from the DNA invertase Gin and an optimized TALE architecture. We use a library of incrementally truncated TALE variants to identify TALER fusions that modify DNA with efficiency and specificity comparable to zinc-finger recombinases in bacterial cells. We also show that TALERs recombine DNA in mammalian cells. The TALER architecture described herein provides a platform for insertion of customized TALE domains, thus significantly expanding the targeting capacity of engineered recombinases and their potential applications in biotechnology and medicine.

  14. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  15. DS-CDMA satellite diversity reception for personal satellite communication: Downlink performance analysis

    Science.gov (United States)

    DeGaudenzi, Riccardo; Giannetti, Filippo

    1995-01-01

    The downlink of a satellite-mobile personal communication system employing power-controlled Direct Sequence Code Division Multiple Access (DS-CDMA) and exploiting satellite-diversity is analyzed and its performance compared with a more traditional communication system utilizing single satellite reception. The analytical model developed has been thoroughly validated by means of extensive Monte Carlo computer simulations. It is shown how the capacity gain provided by diversity reception shrinks considerably in the presence of increasing traffic or in the case of light shadowing conditions. Moreover, the quantitative results tend to indicate that to combat system capacity reduction due to intra-system interference, no more than two satellites shall be active over the same region. To achieve higher system capacity, differently from terrestrial cellular systems, Multi-User Detection (MUD) techniques are likely to be required in the mobile user terminal, thus considerably increasing its complexity.

  16. Isolation of anonymous DNA sequences from within a submicroscopic X chromosomal deletion in a patient with choroideremia, deafness, and mental retardation

    International Nuclear Information System (INIS)

    Nussbaum, R.L.; Lesko, J.G.; Lewis, R.A.; Ledbetter, S.A.; Ledbetter, D.H.

    1987-01-01

    Choroideremia, an X-chromosome linked retinal dystrophy of unknown pathogenesis, causes progressive nightblindness and eventual central blindness in affected males by the third to fourth decade of life. Choroideremia has been mapped to Xq13-21 by tight linkage to restriction fragment length polymorphism loci. The authors have recently identified two families in which choroideremia is inherited with mental retardation and deafness. In family XL-62, an interstitial deletion Xq21 is visible by cytogenetic analysis and two linked anonymous DNA markers, DXYS1 and DXS72, are deleted. In the second family, XL-45, an interstitial deletion was suspected on phenotypic grounds but could not be confirmed by high-resolution cytogenetic analysis. They used phenol-enhanced reassociation of 48,XXXX DNA in competition with excess XL-45 DNA to generate a library of cloned DNA enriched for sequences that might be deleted in XL-45. Two of the first 83 sequences characterized from the library were found to be deleted in probands from family XL-45 as well as from family XL-62. Isolation of these sequences proves that XL-45 does contain a submicroscopic deletion and provides a starting point for identifying overlapping genomic sequences that span the XL-45 deletion. Each overlapping sequence will be studied to identify exons from the choroideremia locus

  17. Chronic radiation exposure: possibility of studying mutation process in generations based on the established DNA bank of exposed individuals and their offspring

    International Nuclear Information System (INIS)

    Rusinova, Galina G.; Adamova, Galina V.; Dudchenko, Natalya N.; Azizova, Tamara V.; Kurbatov, Andrey V.

    2002-01-01

    Data were summarized on the DNA Bank establishment for workers of the Mayak nuclear facility in Southern Ural, who were exposed to different doses of chronic radiation from γ -rays during the first years of the enterprise operations (1948-1958) and their families. Some workers were exposed to combined radiation (external + internal radiation from incorporated 239 Pu). The DNA Bank was established to store the unique genetic material from these individuals and their offspring for future risk estimation of the late consequences of radiation exposure using modern molecular-genetic technologies. Today, DNA Bank contains genetic material from 1,500 individuals and 218 families. The computer database was generated for the DNA Bank. It included individual medical-demographic, occupational descriptions and doses, quantitative and qualitative DNA data. Literature data on radiation-induced genome instability (variability of hypervariable areas) were also analyzed. Prospects of the DNA Bank establishment are also presented. The work is carried out on extension of the DNA Bank of exposed individuals and their offspring

  18. Decreased DNA repair capacity in familial, but not in sporadic Alzheimer's disease

    NARCIS (Netherlands)

    M.E.T.I. Boerrigter; C.M. van Duijn (Cornelia); E. Mullaart; P. Eikelenboom (Piet); C.M.A. van der Togt; D.L. Knook; J. Vijg (Jan); A. Hofman (Albert)

    1991-01-01

    textabstractUsing the alkaline filter elution technique we determined the induction and disappearance of DNA single-strand breaks (SSB) in freshly isolated peripheral blood lymphocytes (PBL) from 43 Alzheimer's disease (AD) patients and 48 normal, healthy age- and sex-matched control subjects

  19. Satellite-Based Sunshine Duration for Europe

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-06-01

    Full Text Available In this study, two different methods were applied to derive daily and monthly sunshine duration based on high-resolution satellite products provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT Satellite Application Facility on Climate Monitoring using data from Meteosat Second Generation (MSG SEVIRI (Spinning Enhanced Visible and Infrared Imager. The satellite products were either hourly cloud type or hourly surface incoming direct radiation. The satellite sunshine duration estimates were not found to be significantly different using the native 15-minute temporal resolution of SEVIRI. The satellite-based sunshine duration products give additional spatial information over the European continent compared with equivalent in situ-based products. An evaluation of the satellite sunshine duration by product intercomparison and against station measurements was carried out to determine their accuracy. The satellite data were found to be within ±1 h/day compared to high-quality Baseline Surface Radiation Network or surface synoptic observations (SYNOP station measurements. The satellite-based products differ more over the oceans than over land, mainly because of the treatment of fractional clouds in the cloud type-based sunshine duration product. This paper presents the methods used to derive the satellite sunshine duration products and the performance of the different retrievals. The main benefits and disadvantages compared to station-based products are also discussed.

  20. DNA barcode data accurately assign higher spider taxa

    Directory of Open Access Journals (Sweden)

    Jonathan A. Coddington

    2016-07-01

    Full Text Available The use of unique DNA sequences as a method for taxonomic identification is no longer fundamentally controversial, even though debate continues on the best markers, methods, and technology to use. Although both existing databanks such as GenBank and BOLD, as well as reference taxonomies, are imperfect, in best case scenarios “barcodes” (whether single or multiple, organelle or nuclear, loci clearly are an increasingly fast and inexpensive method of identification, especially as compared to manual identification of unknowns by increasingly rare expert taxonomists. Because most species on Earth are undescribed, a complete reference database at the species level is impractical in the near term. The question therefore arises whether unidentified species can, using DNA barcodes, be accurately assigned to more inclusive groups such as genera and families—taxonomic ranks of putatively monophyletic groups for which the global inventory is more complete and stable. We used a carefully chosen test library of CO1 sequences from 49 families, 313 genera, and 816 species of spiders to assess the accuracy of genus and family-level assignment. We used BLAST queries of each sequence against the entire library and got the top ten hits. The percent sequence identity was reported from these hits (PIdent, range 75–100%. Accurate assignment of higher taxa (PIdent above which errors totaled less than 5% occurred for genera at PIdent values >95 and families at PIdent values ≥ 91, suggesting these as heuristic thresholds for accurate generic and familial identifications in spiders. Accuracy of identification increases with numbers of species/genus and genera/family in the library; above five genera per family and fifteen species per genus all higher taxon assignments were correct. We propose that using percent sequence identity between conventional barcode sequences may be a feasible and reasonably accurate method to identify animals to family/genus. However

  1. Encryption protection for communication satellites

    Science.gov (United States)

    Sood, D. R.; Hoernig, O. W., Jr.

    In connection with the growing importance of the commercial communication satellite systems and the introduction of new technological developments, users and operators of these systems become increasingly concerned with aspects of security. The user community is concerned with maintaining confidentiality and integrity of the information being transmitted over the satellite links, while the satellite operators are concerned about the safety of their assets in space. In response to these concerns, the commercial satellite operators are now taking steps to protect the communication information and the satellites. Thus, communication information is being protected by end-to-end encryption of the customer communication traffic. Attention is given to the selection of the NBS DES algorithm, the command protection systems, and the communication protection systems.

  2. Satellite Communications Industry

    Science.gov (United States)

    1993-04-01

    Ariane $loom SAJAC 1 Hughes Satellite Japan 06/94 $150m SAJAC 2 Hughes Satellite Japan -- (spare) $150m SatcomHl GE GE Americom /95 $50m SOLIDARIDAD ...1 Hughes SCT (Mexico) 11/93 Ariane $loom SOLIDARIDAD 2 Hughes SCT (Mexico) /94 $loom Superbird Al Loral Space Com Gp (Jap) 11/92 Ariane $175m

  3. Mitochondrial DNA D-loop sequence variation among 5 maternal lines of the Zemaitukai horse breed

    Directory of Open Access Journals (Sweden)

    E. Gus Cothran

    2005-12-01

    Full Text Available Genetic variation in Zemaitukai horses was investigated using mitochondrial DNA (mtDNA sequencing. The study was performed on 421 bp of the mitochondrial DNA control region, which is known to be more variable than other sections of the mitochondrial genome. Samples from each of the remaining maternal family lines of Zemaitukai horses and three random samples for other Lithuanian (Lithuanian Heavy Draught, Zemaitukai large type and ten European horse breeds were sequenced. Five distinct haplotypes were obtained for the five Zemaitukai maternal families supporting the pedigree data. The minimal difference between two different sequence haplotypes was 6 and the maximal 11 nucleotides in Zemaitukai horse breed. A total of 20 nucleotide differences compared to the reference sequence were found in Lithuanian horse breeds. Genetic cluster analysis did not shown any clear pattern of relationship among breeds of different type.

  4. [Mutation analysis of FGFR3 gene in a family featuring hereditary dwarfism].

    Science.gov (United States)

    Zhang, Qiong; Jiang, Hai-ou; Quan, Qing-li; Li, Jun; He, Ting; Huang, Xue-shuang

    2011-12-01

    To investigate the clinical symptoms and potential mutation in FGFR3 gene for a family featuring hereditary dwarfism in order to attain diagnosis and provide prenatal diagnosis. Five patients and two unaffected relatives from the family, in addition with 100 healthy controls, were recruited. Genome DNA was extracted. Exons 10 and 13 of the FGFR3 gene were amplified using polymerase chain reaction (PCR). PCR products were sequenced in both directions. All patients had similar features including short stature, short limbs, lumbar hyperlordosis but normal craniofacial features. A heterozygous mutation G1620T (N540K) was identified in the cDNA from all patients but not in the unaffected relatives and 100 control subjects. A heterozygous G380R mutation was excluded. The hereditary dwarfism featured by this family has been caused by hypochondroplasia (HCH) due to a N540K mutation in the FGFR3 gene.

  5. Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage

    International Nuclear Information System (INIS)

    Stapleton, A.E.; Walbot, V.

    1994-01-01

    Diverse flavonoid compounds are widely distributed in angiosperm families. Flavonoids absorb radiation in the ultraviolet (UV) region of the spectrum, and it has been proposed that these compounds function as UV filters. We demonstrate that the DNA in Zea mays plants that contain flavonoids (primarily anthocyanins) is protected from the induction of damage caused by UV radiation relative to the DNA in plants that are genetically deficient in these compounds. DNA damage was measured with a sensitive and simple assay using individual monoclonal antibodies, one specific for cyclobutane pyrimidine dimer damage and the other specific for pyrimidine(6,4)pyrimidone damage. (author)

  6. Recent progress with the DNA repair mutants of Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Thompson, L.H.; Salazar, E.P.; Brookman, K.W.; Collins, C.C.; Stewart, S.A.; Busch, D.B.; Weber, C.A.

    1986-01-01

    Repair deficient mutants of Chinese hamster ovary (CHO) cells are being used to identify human genes that correct the repair defects and to study mechanisms of DNA repair and mutagenesis. Five independent tertiary DNA transformants were obtained from the EM9 mutant. In these clones a human DNA sequence was identified that correlated with the resistance of the cells to CldUrd. After Eco RI digestion, Southern transfer, and hybridization of transformant DNAs with the BLUR-8 Alu family sequence, a common fragment of 25 to 30 kb was present. 37 refs., 4 figs., 3 tabs

  7. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M

    2012-01-01

    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  8. Geostationary satellites collocation

    CERN Document Server

    Li, Hengnian

    2014-01-01

    Geostationary Satellites Collocation aims to find solutions for deploying a safe and reliable collocation control. Focusing on the orbital perturbation analysis, the mathematical foundations for orbit and control of the geostationary satellite are summarized. The mathematical and physical principle of orbital maneuver and collocation strategies for multi geostationary satellites sharing with the same dead band is also stressed. Moreover, the book presents some applications using the above algorithms and mathematical models to help readers master the corrective method for planning station keeping maneuvers. Engineers and scientists in the fields of aerospace technology and space science can benefit from this book. Hengnian Li is the Deputy Director of State Key Laboratory of Astronautic Dynamics, China.

  9. DMD and BMD in the same family due to two distinct mutations

    Energy Technology Data Exchange (ETDEWEB)

    Morandi, L.; Mora, M.; Di Blasi, C.; Brugnoni, R. [National Inst. C. Besta, Milan (Italy)] [and others

    1995-12-04

    We report on a family with a boy affected by Duchenne muscular dystrophy (DMD) and an asymptomatic cousin with a Becker-type dystrophin abnormality, diagnosed by chance. Dystrophin gene analysis showed that these conditions were caused by two distinct deletions with breakpoints in different exons. In Xp21 families, DNA analysis and dystrophin testing of asymptomatic males with high CK plasma levels might detect different dystrophin mutations in separate haplotypes as in our family, although we stress there should be clear clinical or familial indications for such testing. 24 refs., 5 figs.

  10. Optimized Fast-FISH with a-satellite probes: acceleration by microwave activation

    Directory of Open Access Journals (Sweden)

    Durm M.

    1997-01-01

    Full Text Available It has been shown for several DNA probes that the recently introduced Fast-FISH (fluorescence in situ hybridization technique is well suited for quantitative microscopy. For highly repetitive DNA probes the hybridization (renaturation time and the number of subsequent washing steps were reduced considerably by omitting denaturing chemical agents (e.g., formamide. The appropriate hybridization temperature and time allow a clear discrimination between major and minor binding sites by quantitative fluorescence microscopy. The well-defined physical conditions for hybridization permit automatization of the procedure, e.g., by a programmable thermal cycler. Here, we present optimized conditions for a commercially available X-specific a-satellite probe. Highly fluorescent major binding sites were obtained for 74oC hybridization temperature and 60 min hybridization time. They were clearly discriminated from some low fluorescent minor binding sites on metaphase chromosomes as well as in interphase cell nuclei. On average, a total of 3.43 ± 1.59 binding sites were measured in metaphase spreads, and 2.69 ± 1.00 in interphase nuclei. Microwave activation for denaturation and hybridization was tested to accelerate the procedure. The slides with the target material and the hybridization buffer were placed in a standard microwave oven. After denaturation for 20 s at 900 W, hybridization was performed for 4 min at 90 W. The suitability of a microwave oven for Fast-FISH was confirmed by the application to a chromosome 1-specific a-satellite probe. In this case, denaturation was performed at 630 W for 60 s and hybridization at 90 W for 5 min. In all cases, the results were analyzed quantitatively and compared to the results obtained by Fast-FISH. The major binding sites were clearly discriminated by their brightness

  11. Muscle satellite cell heterogeneity and self-renewal

    Science.gov (United States)

    Motohashi, Norio; Asakura, Atsushi

    2014-01-01

    Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD) patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD. PMID:25364710

  12. Muscle Satellite Cell Heterogeneity and Self-Renewal

    Directory of Open Access Journals (Sweden)

    Norio eMotohashi

    2014-01-01

    Full Text Available Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD.

  13. Decreased DNA repair capacity in familial, but not in sporadic Alzheimer's disease

    NARCIS (Netherlands)

    Boerrigter, M. E.; van Duijn, C. M.; Mullaart, E.; Eikelenboom, P.; van der Togt, C. M.; Knook, D. L.; Hofman, A.; Vijg, J.

    1991-01-01

    Using the alkaline filter elution technique we determined the induction and disappearance of DNA single-strand breaks (SSB) in freshly isolated peripheral blood lymphocytes (PBL) from 43 Alzheimer's disease (AD) patients and 48 normal, healthy age- and sex-matched control subjects following in vitro

  14. Fragile X Syndrome in a Colombian Family

    Directory of Open Access Journals (Sweden)

    Saldarriaga Gil, Wilmar

    2018-01-01

    Full Text Available A study was performed on a family from Cali, Colombia in which nine patients were evaluated, three of which presented with intellectual disability with no previous etiological diagnosis. The proband was diagnosed with Fragile X syndrome by DNA molecular testing and, cascade testing, performed on all available family members, identifying two additional individuals with the full mutation and four carriers of a premutation allele. With this report we seek to contribute to Colombian epidemiology of the syndrome and emphasize the importance of diagnosis to provide a comprehensive and specific treatment to those affected. Further we seek to identify premutation carriers in their families or women with a full mutation without the classic phenotype for genetic counseling and education about potential associated pathologies.

  15. Satellite communications network design and analysis

    CERN Document Server

    Jo, Kenneth Y

    2011-01-01

    This authoritative book provides a thorough understanding of the fundamental concepts of satellite communications (SATCOM) network design and performance assessments. You find discussions on a wide class of SATCOM networks using satellites as core components, as well as coverage key applications in the field. This in-depth resource presents a broad range of critical topics, from geosynchronous Earth orbiting (GEO) satellites and direct broadcast satellite systems, to low Earth orbiting (LEO) satellites, radio standards and protocols.This invaluable reference explains the many specific uses of

  16. Structural and kinetic insights into binding and incorporation of L-nucleotide analogs by a Y-family DNA polymerase

    OpenAIRE

    Gaur, Vineet; Vyas, Rajan; Fowler, Jason D.; Efthimiopoulos, Georgia; Feng, Joy Y.; Suo, Zucai

    2014-01-01

    Considering that all natural nucleotides (D-dNTPs) and the building blocks (D-dNMPs) of DNA chains possess D-stereochemistry, DNA polymerases and reverse transcriptases (RTs) likely possess strongD-stereoselectivity by preferably binding and incorporating D-dNTPs over unnatural L-dNTPs during DNA synthesis. Surprisingly, a structural basis for the discrimination against L-dNTPs by DNA polymerases or RTs has not been established although L-deoxycytidine analogs (lamivudine and emtricitabine) a...

  17. Clinical and genetic investigation of families with type II Waardenburg syndrome.

    Science.gov (United States)

    Chen, Yong; Yang, Fuwei; Zheng, Hexin; Zhou, Jianda; Zhu, Ganghua; Hu, Peng; Wu, Weijing

    2016-03-01

    The present study aimed to investigate the molecular pathology of Waardenburg syndrome type II in three families, in order to provide genetic diagnosis and hereditary counseling for family members. Relevant clinical examinations were conducted on the probands of the three pedigrees. Peripheral blood samples of the probands and related family members were collected and genomic DNA was extracted. The coding sequences of paired box 3 (PAX3), microphthalmia‑associated transcription factor (MITF), sex‑determining region Y‑box 10 (SOX10) and snail family zinc finger 2 (SNAI2) were analyzed by polymerase chain reaction and DNA sequencing. The heterozygous mutation, c.649_651delAGA in exon 7 of the MITF gene was detected in the proband and all patients of pedigree 1; however, no pathological mutation of the relevant genes (MITF, SNAI2, SOX10 or PAX3) was detected in pedigrees 2 and 3. The heterozygous mutation c.649_651delAGA in exon 7 of the MITF gene is therefore considered the disease‑causing mutation in pedigree 1. However, there are novel disease‑causing genes in Waardenburg syndrome type II, which require further research.

  18. [Analysis of gene mutation in a Chinese family with Norrie disease].

    Science.gov (United States)

    Zhang, Tian-xiao; Zhao, Xiu-li; Hua, Rui; Zhang, Jin-song; Zhang, Xue

    2012-09-01

    To detect the pathogenic mutation in a Chinese family with Norrie disease. Clinical diagnosis was based on familial history, clinical sign and B ultrasonic examination. Peripheral blood samples were obtained from all available members in a Chinese family with Norrie disease. Genomic DNA was extracted from lymphocytes by the standard SDS-proteinase K-phenol/chloroform method. Two coding exons and all intron-exon boundaries of the NDP gene were PCR amplified using three pairs of primers and subjected to automatic DNA sequence. The causative mutation was confirmed by restriction enzyme analysis and genotyping analysis in all members. Sequence analysis of NDP gene revealed a missense mutation c.220C > T (p.Arg74Cys) in the proband and his mother. Further mutation identification by restriction enzyme analysis and genotyping analysis showed that the proband was homozygote of this mutation. His mother and other four unaffected members (III3, IV4, III5 and II2) were carriers of this mutation. The mutant amino acid located in the C-terminal cystine knot-like domain, which was critical motif for the structure and function of NDP. A NDP missense mutation was identified in a Chinese family with Norrie disease.

  19. Satellites You Can See for Homework

    Science.gov (United States)

    Broderick, Stephen

    2012-01-01

    Artificial satellites are easily observed most nights when the weather is fine. The website called "Heavens Above" at www.heavens-above.com will help locate these satellites flying over one's location. It also includes how bright they will appear. The direction of travel of each satellite in the night sky also indicates the type of satellite. For…

  20. University Satellite Consortium and Space Education in Japan Centered on Micro-Nano Satellites

    Science.gov (United States)

    Nakasuka, S.; Kawashima, R.

    2002-01-01

    in Japan especially centered on micro or nano class satellites. Hands-on training using micro-nano satellites provide unique opportunity of space education to university level students, by giving them a chance to experience the whole space project cycle from mission creation, satellite design, fabrication, test, launch, operation through analysis of the results. Project management and team working are other important skills that can be trained in these projects. include 1) low cost, which allows one laboratory in university to carry out a project, 2) short development period such as one or two year, which enables students to obtain the results of their projects before they graduate, and 3) small size and weight, which enables fabrication and test within usually very narrow university laboratory areas. In Japan, several projects such as CanSat, CubeSat or Whale Observation Satellite have been carried out, proving that micro-nano satellites provide very unique and valuable educational opportunity. with the objective to make a university student and staff community of these micro-nano satellite related activities in Japan. This consortium aims for many activities including facilitating information and skills exchange and collaborations between member universities, helping students to use ground test facilities of national laboratories, consulting them on political or law related matters, coordinating joint development of equipments or projects, and bridging between these university activities and the needs or interests of the people in general. This kind of outreach activity is essential because how to create missions of micro-nano satellites should be pursued in order for this field to grow larger than a merely educational enterprise. The final objectives of the consortium is to make a huge community of the users, mission creators, investors and manufactures(i.e., university students) of micro-nano satellites, and provide a unique contribution to the activation of