WorldWideScience

Sample records for satellite derived fire

  1. Identifying individual fires from satellite-derived burned area data

    CSIR Research Space (South Africa)

    Archibald, S

    2009-07-01

    Full Text Available An algorithm for identifying individual fires from the Modis burned area data product is introduced for southern Africa. This algorithm gives the date of burning, size of fire, and location of the centroid for all fires identified over 8 years...

  2. Atmospheric CH4 and CO2 enhancements and biomass burning emission ratios derived from satellite observations of the 2015 Indonesian fire plumes

    Directory of Open Access Journals (Sweden)

    R. J. Parker

    2016-08-01

    subsequent large increases in regional greenhouse gas concentrations. CH4 is particularly enhanced, due to the dominance of smouldering combustion in peatland fires, with CH4 total column values typically exceeding 35 ppb above those of background “clean air” soundings. By examining the CH4 and CO2 excess concentrations in the fire-affected GOSAT observations, we determine the CH4 to CO2 (CH4 ∕ CO2 fire emission ratio for the entire 2-month period of the most extreme burning (September–October 2015, and also for individual shorter periods where the fire activity temporarily peaks. We demonstrate that the overall CH4 to CO2 emission ratio (ER for fires occurring in Indonesia over this time is 6.2 ppb ppm−1. This is higher than that found over both the Amazon (5.1 ppb ppm−1 and southern Africa (4.4 ppb ppm−1, consistent with the Indonesian fires being characterised by an increased amount of smouldering combustion due to the large amount of organic soil (peat burning involved. We find the range of our satellite-derived Indonesian ERs (6.18–13.6 ppb ppm−1 to be relatively closely matched to that of a series of close-to-source, ground-based sampling measurements made on Kalimantan at the height of the fire event (7.53–19.67 ppb ppm−1, although typically the satellite-derived quantities are slightly lower on average. This seems likely because our field sampling mostly intersected smaller-scale peat-burning plumes, whereas the large-scale plumes intersected by the GOSAT Thermal And Near infrared Sensor for carbon Observation – Fourier Transform Spectrometer (TANSO-FTS footprints would very likely come from burning that was occurring in a mixture of fuels that included peat, tropical forest and already-cleared areas of forest characterised by more fire-prone vegetation types than the natural rainforest biome (e.g. post-fire areas of ferns and scrubland, along with agricultural vegetation.The ability to determine large-scale ERs from

  3. Mitigating Satellite-Based Fire Sampling Limitations in Deriving Biomass Burning Emission Rates: Application to WRF-Chem Model Over the Northern sub-Saharan African Region

    Science.gov (United States)

    Wang, Jun; Yue, Yun; Wang, Yi; Ichoku, Charles; Ellison, Luke; Zeng, Jing

    2018-01-01

    Largely used in several independent estimates of fire emissions, fire products based on MODIS sensors aboard the Terra and Aqua polar-orbiting satellites have a number of inherent limitations, including (a) inability to detect fires below clouds, (b) significant decrease of detection sensitivity at the edge of scan where pixel sizes are much larger than at nadir, and (c) gaps between adjacent swaths in tropical regions. To remedy these limitations, an empirical method is developed here and applied to correct fire emission estimates based on MODIS pixel level fire radiative power measurements and emission coefficients from the Fire Energetics and Emissions Research (FEER) biomass burning emission inventory. The analysis was performed for January 2010 over the northern sub-Saharan African region. Simulations from WRF-Chem model using original and adjusted emissions are compared with the aerosol optical depth (AOD) products from MODIS and AERONET as well as aerosol vertical profile from CALIOP data. The comparison confirmed an 30-50% improvement in the model simulation performance (in terms of correlation, bias, and spatial pattern of AOD with respect to observations) by the adjusted emissions that not only increases the original emission amount by a factor of two but also results in the spatially continuous estimates of instantaneous fire emissions at daily time scales. Such improvement cannot be achieved by simply scaling the original emission across the study domain. Even with this improvement, a factor of two underestimations still exists in the modeled AOD, which is within the current global fire emissions uncertainty envelope.

  4. The 27-28 October 1986 FIRE IFO cirrus case study: Comparison of satellite and aircraft derived particle size

    Science.gov (United States)

    Wielicki, Bruce A.; Suttles, J. T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Wu, Man-Li C.; Starr, David; Parker, Lindsay; Arduini, Robert F.

    1990-01-01

    Theoretical calculations predict that cloud reflectance in near infrared windows such as those at 1.6 and 2.2 microns should give lower reflectances than at visible wavelengths. The reason for this difference is that ice and liquid water show significant absorption at those wavelengths, in contrast to the nearly conservative scattering at wavelengths shorter than 1 micron. In addition, because the amount of absorption scales with the path length of radiation through the particle, increasing cloud particle size should lead to decreasing reflectances at 1.6 and 2.2 microns. Measurements at these wavelengths to date, however, have often given unpredicted results. Twomey and Cocks found unexpectedly high absorption (factors of 3 to 5) in optically thick liquid water clouds. Curran and Wu found expectedly low absorption in optically thick high clouds, and postulated the existence of supercooled small water droplets in place of the expected large ice particles. The implications of the FIRE data for optically thin cirrus are examined.

  5. Using satellite fire detection to calibrate components of the fire weather index system in Malaysia and Indonesia.

    Science.gov (United States)

    Dymond, Caren C; Field, Robert D; Roswintiarti, Orbita; Guswanto

    2005-04-01

    Vegetation fires have become an increasing problem in tropical environments as a consequence of socioeconomic pressures and subsequent land-use change. In response, fire management systems are being developed. This study set out to determine the relationships between two aspects of the fire problems in western Indonesia and Malaysia, and two components of the Canadian Forest Fire Weather Index System. The study resulted in a new method for calibrating components of fire danger rating systems based on satellite fire detection (hotspot) data. Once the climate was accounted for, a problematic number of fires were related to high levels of the Fine Fuel Moisture Code. The relationship between climate, Fine Fuel Moisture Code, and hotspot occurrence was used to calibrate Fire Occurrence Potential classes where low accounted for 3% of the fires from 1994 to 2000, moderate accounted for 25%, high 26%, and extreme 38%. Further problems arise when there are large clusters of fires burning that may consume valuable land or produce local smoke pollution. Once the climate was taken into account, the hotspot load (number and size of clusters of hotspots) was related to the Fire Weather Index. The relationship between climate, Fire Weather Index, and hotspot load was used to calibrate Fire Load Potential classes. Low Fire Load Potential conditions (75% of an average year) corresponded with 24% of the hotspot clusters, which had an average size of 30% of the largest cluster. In contrast, extreme Fire Load Potential conditions (1% of an average year) corresponded with 30% of the hotspot clusters, which had an average size of 58% of the maximum. Both Fire Occurrence Potential and Fire Load Potential calibrations were successfully validated with data from 2001. This study showed that when ground measurements are not available, fire statistics derived from satellite fire detection archives can be reliably used for calibration. More importantly, as a result of this work, Malaysia and

  6. FireBird - a small satellite fire monitoring mission: Status and first results

    Science.gov (United States)

    Lorenz, Eckehard; Rücker, Gernot; Terzibaschian, Thomas; Klein, Doris; Tiemann, Joachim

    2014-05-01

    The scientific mission FireBird is operated by the German Aerospace Center (DLR) and consists of two small satellites. The first satellite - TET-1 - was successfully launched from Baikonur, Russia in July 2012. Its first year in orbit was dedicated to a number of experiments within the framework of the DLR On Orbit Verification (OOV) program which is dedicated to technology testing in space. After successful completion of its OOV phase, TET-1 was handed over to the DLR FireBird mission and is now a dedicated Earth Observation mission. Its primary goal is sensing of hot phenomena such as wildfires, volcanoes, gas flares and industrial hotspots. The second satellite, BiROS is scheduled for launch in the second or third quarter of 2015. The satellite builds on the heritage of the DLR BIRD (BIspectral Infrared Detection) mission and delivers quantitative information (such as Fire Radiative Power, FRP) at a spatial resolution of 350 m, superior to any current fire enabled satellite system such as NPP VIIRS, MODIS or Meteosat SEVIRI. The satellite is undergoing a four month validation phase during which satellite operations are adapted to the new mission goals of FireBIRD and processing capacities are established to guarantee swift processing and delivery of high quality data. The validation phase started with an informal Operational Readiness Review and will be completed with a formal review, covering all aspects of the space and ground segments. The satellite is equipped with a camera with a 42 m ground pixel size in the red, green and near infrared spectral range, and a 370 m ground pixel size camera in the mid and thermal infrared with a swath of 185 km. The satellite can be pointed towards a target in order to enhance observation frequency. First results of the FireBird mission include a ground validation experiment and acquisitions over fires across the world. Once the validation phase is finished the data will be made available to a wide scientific community.

  7. Recent coal-fire and land-use status of Jharia Coalfield, India from satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Martha, T.R.; Guha, A.; Kumar, K.V.; Kamaraju, M.V.V.; Raju, E.V.R. [NRSC, Hyderabad (India). Geoscience Division

    2010-07-01

    The Jharia Coalfield (JCF) in India is known for its high grade coal and associated coal fires. Before it can be exploited, valuable coal reserves are destroyed in the sub-surface due to fire. The combined act of fire and subsidence has endangered the environmental safety of the JCF, although several methods have been adopted to control the coal fires. Coal fire is a dynamic phenomenon, hence, its location and extent changes with time. To control the coal fires effectively, the status of the fires and the landscape must be assessed periodically. In this study, the thermal band in Landsat-7 Enhanced Thematic Mapper Plus (ETM+) data (daytime) of 29 March 2003 and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data (night-time) of 9 October 2006 are used to delineate the coal-fire areas. The kinetic temperature of the coal fire-affected areas is calculated from Landsat-7 ETM+ data using a Normalized Difference Vegetation Index (NDVI)-derived emissivity model, and from band 13 of ASTER data with a fixed emissivity value. The study showed that the eastern part of the JCF is more affected by coal fires than the western part. The affected collieries in the eastern part are Kusunda, Lodna, Bararee, Gonudih and Ena. Among all collieries, Kusunda is the most affected by coal fires (29% of the area) and showed a 0.56 km2 increase in fire area from the year 2003 to 2006. During this period, a total increase in coal-fire area of 0.51 km{sup 2} occurs in the JCF. The land-use map prepared from Indian Remote Sensing (IRS) Satellite-P6 Linear Imaging Self-scanning Sensor (LISS)-III data showed that 6.9% of the area in the JCF is occupied by mining-related activities, which indicates its vulnerability to environmental degradation.

  8. Satellite, climatological, and theoretical inputs for modeling of the diurnal cycle of fire emissions

    Science.gov (United States)

    Hyer, E. J.; Reid, J. S.; Schmidt, C. C.; Giglio, L.; Prins, E.

    2009-12-01

    The diurnal cycle of fire activity is crucial for accurate simulation of atmospheric effects of fire emissions, especially at finer spatial and temporal scales. Estimating diurnal variability in emissions is also a critical problem for construction of emissions estimates from multiple sensors with variable coverage patterns. An optimal diurnal emissions estimate will use as much information as possible from satellite fire observations, compensate known biases in those observations, and use detailed theoretical models of the diurnal cycle to fill in missing information. As part of ongoing improvements to the Fire Location and Monitoring of Burning Emissions (FLAMBE) fire monitoring system, we evaluated several different methods of integrating observations with different temporal sampling. We used geostationary fire detections from WF_ABBA, fire detection data from MODIS, empirical diurnal cycles from TRMM, and simple theoretical diurnal curves based on surface heating. Our experiments integrated these data in different combinations to estimate the diurnal cycles of emissions for each location and time. Hourly emissions estimates derived using these methods were tested using an aerosol transport model. We present results of this comparison, and discuss the implications of our results for the broader problem of multi-sensor data fusion in fire emissions modeling.

  9. Supporting FIRE-suppression strategies combining fire spread MODelling and SATellite data in an operational context in Portugal: the FIRE-MODSAT project

    Science.gov (United States)

    Sá, Ana C. L.; Benali, Akli; Pinto, Renata M. S.; Pereira, José M. C.; Trigo, Ricardo M.; DaCamara, Carlos C.

    2014-05-01

    Large wildfires are infrequent but account for the most severe environmental, ecological and socio-economic impacts. In recent years Portugal has suffered the impact of major heat waves that fuelled records of burnt area exceeding 400.000ha and 300.000ha in 2003 and 2005, respectively. According to the latest IPCC reports, the frequency and amplitude of summer heat waves over Iberia will very likely increase in the future. Therefore, most climate change studies point to an increase in the number and extent of wildfires. Thus, an increase in both wildfire impacts and fire suppression difficulties is expected. The spread of large wildfires results from a complex interaction between topography, meteorology and fuel properties. Wildfire spread models (e.g. FARSITE) are commonly used to simulate fire growth and behaviour and are an essential tool to understand their main drivers. Additionally, satellite active-fire data have been used to monitor the occurrence, extent, and spread of wildfires. Both satellite data and fire spread models provide different types of information about the spatial and temporal distribution of large wildfires and can potentially be used to support strategic decisions regarding fire suppression resource allocation. However, they have not been combined in a manner that fully exploits their potential and minimizes their limitations. A knowledge gap still exists in understanding how to minimize the impacts of large wildfires, leading to the following research question: What can we learn from past large wildfires in order to mitigate future fire impacts? FIRE-MODSAT is a one-year funded project by the Portuguese Foundation for the Science and Technology (FCT) that is founded on this research question, with the main goal of improving our understanding on the interactions between fire spread and its environmental drivers, to support fire management decisions in an operational context and generate valuable information to improve the efficiency of the

  10. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, A [Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, 1040 Vienna (Austria); Balzter, H [Department of Geography, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); George, C, E-mail: ab@ipf.tuwien.ac.a [Earth Observation, Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford OX10 8BB (United Kingdom)

    2009-10-15

    Forest fires are frequent in the Siberian taiga and are predicted to increase in frequency as a result of increased fire risk under drought conditions, and prolonged fire seasons caused by climate change. There is, however, some uncertainty as to the extent to which drought influences forest fire frequency at a regional scale. Here, we present an analysis of satellite derived soil moisture anomaly data from ERS-1/2 (ERS: Earth Resources Satellite) scatterometer data and burned area maps from MODIS/AVHRR/ATSR (Moderate Resolution Imaging Spectroradiometer/Advanced Very High Resolution Radiometer/Along-Track Scanning Radiometer) over Central Siberia for the years 1992-2000. The purpose of this study is to investigate the relationship of remotely sensed soil moisture deviations from the long-term mean and fire within the boreal biome on a sub-continental scale. Results show that wet surface soil moisture conditions limit the extent of burned area. They can prevent the outbreak of fires but the magnitude of a negative (dry) deviation does not determine the maximum size of fire affected areas. It is known from the literature, however, that an ignition is more likely to occur under low surface wetness conditions, such as those that we observed during July and August in both permafrost and non-permafrost regions. Although the burned area under drier conditions in July is lowest over non-permafrost, the actual number of fires is as high as over continuous permafrost. Approximately 80% of all events occurred under such conditions during that month. The fire size was below 50 km{sup 2} under moist conditions. Larger burned areas have in general not been detected when the surface wetness deviation exceeded +5%.

  11. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites

    International Nuclear Information System (INIS)

    Bartsch, A; Balzter, H; George, C

    2009-01-01

    Forest fires are frequent in the Siberian taiga and are predicted to increase in frequency as a result of increased fire risk under drought conditions, and prolonged fire seasons caused by climate change. There is, however, some uncertainty as to the extent to which drought influences forest fire frequency at a regional scale. Here, we present an analysis of satellite derived soil moisture anomaly data from ERS-1/2 (ERS: Earth Resources Satellite) scatterometer data and burned area maps from MODIS/AVHRR/ATSR (Moderate Resolution Imaging Spectroradiometer/Advanced Very High Resolution Radiometer/Along-Track Scanning Radiometer) over Central Siberia for the years 1992-2000. The purpose of this study is to investigate the relationship of remotely sensed soil moisture deviations from the long-term mean and fire within the boreal biome on a sub-continental scale. Results show that wet surface soil moisture conditions limit the extent of burned area. They can prevent the outbreak of fires but the magnitude of a negative (dry) deviation does not determine the maximum size of fire affected areas. It is known from the literature, however, that an ignition is more likely to occur under low surface wetness conditions, such as those that we observed during July and August in both permafrost and non-permafrost regions. Although the burned area under drier conditions in July is lowest over non-permafrost, the actual number of fires is as high as over continuous permafrost. Approximately 80% of all events occurred under such conditions during that month. The fire size was below 50 km 2 under moist conditions. Larger burned areas have in general not been detected when the surface wetness deviation exceeded +5%.

  12. Combined use of weather forecasting and satellite remote sensing information for fire risk, fire and fire impact monitoring

    Directory of Open Access Journals (Sweden)

    Wolfgang Knorr

    2011-06-01

    Full Text Available The restoration of fire-affected forest areas needs to be combined with their future protection from renewed catastrophic fires, such as those that occurred in Greece during the 2007 summer season. The present work demonstrates that the use of various sources of satellite data in conjunction with weather forecast information is capable of providing valuable information for the characterization of fire danger with the purpose of protecting the Greek national forest areas. This study shows that favourable meteorological conditions have contributed to the fire outbreak during the days of the unusually damaging fires in Peloponnese as well as Euboia (modern Greek: Evia at the end of August 2007. During those days, Greece was located between an extended high pressure system in Central Europe and a low pressure system in the Middle East. Their combination resulted in strong north-northeasterly winds in the Aegean Sea. As a consequence, strong winds were also observed in the regions of Evia and Peloponnese, especially in mountainous areas. The analysis of satellite images showing smoke emitted from the fires corroborates the results from the weather forecasts. A further analysis using the Fraction of Absorbed Photosyntetically Active Radiation (FAPAR as an indicator of active vegetation shows the extent of the destruction caused by the fire. The position of the burned areas coincides with that of the active fires detected in the earlier satellite image. Using the annual maximum FAPAR as an indicator of regional vegetation density, it was found that only regions with relatively high FAPAR were burned.

  13. The relationship of field burn severity measures to satellite-derived Burned Area Reflectance Classification (BARC) maps

    Science.gov (United States)

    Andrew Hudak; Penelope Morgan; Carter Stone; Pete Robichaud; Terrie Jain; Jess Clark

    2004-01-01

    Preliminary results are presented from ongoing research on spatial variability of fire effects on soils and vegetation from the Black Mountain Two and Cooney Ridge wildfires, which burned in western Montana during the 2003 fire season. Extensive field fractional cover data were sampled to assess the efficacy of quantitative satellite image-derived indicators of burn...

  14. Assessment of satellite derived diffuse attenuation coefficients ...

    Science.gov (United States)

    Optical data collected in coastal waters off South Florida and in the Caribbean Sea between January 2009 and December 2010 were used to evaluate products derived with three bio-optical inversion algorithms applied to MOIDS/Aqua, MODIS/Terra, and SeaWiFS satellite observations. The products included the diffuse attenuation coefficient at 490 nm (Kd_490) and for the visible range (Kd_PAR), and euphotic depth (Zeu, corresponding to 1% of the surface incident photosynthetically available radiation or PAR). Above-water hyperspectral reflectance data collected over optically shallow waters of the Florida Keys between June 1997 and August 2011 were used to help understand algorithm performance over optically shallow waters. The in situ data covered a variety of water types in South Florida and the Caribbean Sea, ranging from deep clear waters, turbid coastal waters, and optically shallow waters (Kd_490 range of ~0.03 – 1.29m-1). An algorithm based on Inherent Optical Properties (IOPs) showed the best performance (RMSD turbidity or shallow bottom contamination. Similar results were obtained when only in situ data were used to evaluate algorithm performance. The excellent agreement between satellite-derived remote sensing reflectance (Rrs) and in situ Rrs suggested that

  15. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird)

    Science.gov (United States)

    Atwood, Elizabeth C.; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2–3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future. PMID:27486664

  16. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird).

    Science.gov (United States)

    Atwood, Elizabeth C; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2-3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future.

  17. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    Science.gov (United States)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  18. Satellite derived bathymetry: mapping the Irish coastline

    Science.gov (United States)

    Monteys, X.; Cahalane, C.; Harris, P.; Hanafin, J.

    2017-12-01

    Ireland has a varied coastline in excess of 3000 km in length largely characterized by extended shallow environments. The coastal shallow water zone can be a challenging and costly environment in which to acquire bathymetry and other oceanographic data using traditional survey methods or airborne LiDAR techniques as demonstrated in the Irish INFOMAR program. Thus, large coastal areas in Ireland, and much of the coastal zone worldwide remain unmapped using modern techniques and is poorly understood. Earth Observations (EO) missions are currently being used to derive timely, cost effective, and quality controlled information for mapping and monitoring coastal environments. Different wavelengths of the solar light penetrate the water column to different depths and are routinely sensed by EO satellites. A large selection of multispectral imagery (MS) from many platforms were examined, as well as from small aircrafts and drones. A number of bays representing very different coastal environments were explored in turn. The project's workflow is created by building a catalogue of satellite and field bathymetric data to assess the suitability of imagery captured at a range of spatial, spectral and temporal resolutions. Turbidity indices are derived from the multispectral information. Finally, a number of spatial regression models using water-leaving radiance parameters and field calibration data are examined. Our assessment reveals that spatial regression algorithms have the potential to significantly improve the accuracy of the predictions up to 10m WD and offer a better handle on the error and uncertainty budget. The four spatial models investigated show better adjustments than the basic non-spatial model. Accuracy of the predictions is better than 10% WD at 95% confidence. Future work will focus on improving the accuracy of the predictions incorporating an analytical model in conjunction with improved empirical methods. The recently launched ESA Sentinel 2 will become the

  19. The use of satellite data for monitoring temporal and spatial patterns of fire: a comprehensive review

    Science.gov (United States)

    Lasaponara, R.

    2009-04-01

    Remotely sensed (RS) data can fruitfully support both research activities and operative monitoring of fire at different temporal and spatial scales with a synoptic view and cost effective technologies. "The contribution of remote sensing (RS) to forest fires may be grouped in three categories, according to the three phases of fire management: (i) risk estimation (before fire), (ii) detection (during fire) and (iii) assessment (after fire)" Chuvieco (2006). Relating each phase, wide research activities have been conducted over the years. (i) Risk estimation (before fire) has been mainly based on the use of RS data for (i) monitoring vegetation stress and assessing variations in vegetation moisture content, (ii) fuel type mapping, at different temporal and spatial scales from global, regional down to a local scale (using AVHRR, MODIS, TM, ASTER, Quickbird images and airborne hyperspectral and LIDAR data). Danger estimation has been mainly based on the use of AVHRR (onborad NOAA), MODIS (onboard TERRA and AQUA), VEGETATION (onboard SPOT) due to the technical characteristics (i.e. spectral, spatial and temporal resolution). Nevertheless microwave data have been also used for vegetation monitoring. (ii) Detection: identification of active fires, estimation of fire radiative energy and fire emission. AVHRR was one of the first satellite sensors used for setting up fire detection algorithms. The availbility of MODIS allowed us to obtain global fire products free downloaded from NASA web site. Sensors onboard geostationary satellite platforms, such as GOES, SEVIRI, have been used for fire detection, to obtain a high temporal resolution (at around 15 minutes) monitoring of active fires. (iii) Post fire damage assessment includes: burnt area mapping, fire emission, fire severity, vegetation recovery, fire resilience estimation, and, more recently, fire regime characterization. Chuvieco E. L. Giglio, C. Justice, 2008 Global charactrerization of fire activity: toward defining

  20. Fire Scars Area Estimation Using CHRIS PROBA Satellite Data

    Science.gov (United States)

    Filchev, Lachezar; Dimitrov, Petar

    2013-12-01

    The dawn of 21st century is marked by severe and unpredictable natural and man - made hazards and disasters linked as to climate change as to human impact on environment. To study their effects on natural landscapes and protected areas it is important to perform, in some restrict regime protected areas, a continuous monitoring. Earth observation by satellites is one of the most promising instruments for this as it has the necessary time, spatial, and spectral resolution for this as well as it provides for non-contact estimation of the overall condition of the environment. This study presents preliminary results of fire scars area estimation on the territory of Bistrishko Branishte UNESCO Man and Biosphere (MAB) reserve in Vitosha Mountain, Bulgaria using CHRIS/PROBA satellite data. During the summer and early autumn of 2012 CHRIS/PROBA instrument was tasked to perform a series of acquisitions with a view to study the vegetation structure. The study uses two CHRIS/PROBA scenes acquired subsequently on 22 June 2012 and on 28 September 2012. The wildfire, which effects are studied, took place during the first two weeks of July 2012. After it was settled the second acquisition of CHRIS/PROBA instrument made possible the analysis of the post fire situation. The methods used for the study are the standard methods for image change detection based on spectral data employed in ENVI software (Academic license). In order to perform the change detection, the CHRIS/PROBA source data was geometrically and atmospherically corrected as well as co-registered. The multi angle product of CHRIS/PROBA Mode 1, consisting of 5 images, was used to check to what extent the five viewing angles affect the area estimation of the fire scars in the mountainous area following same procedures. The results from the analysis shown that almost 60 hectares from the coniferous vegetation (dead and healthy tree stands) were devastated by the wildfire.

  1. Evaluation of satellite derived spectral diffuse attenuation coefficients

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Desa, E.; Mascarenhas, A.A.M.Q.; Matondkar, S.G.P.

    , 443, 490, 510, 555 and 670 nm derived from the ocean color satellite sensor, SeaWiFS with the in-situ measured values from the Arabian Sea is compared. The satellite derived values are found to be comparable to the measured values in the lower...

  2. Providing satellite-based early warnings of fires to reduce fire flashovers on South Africa’s transmission lines

    CSIR Research Space (South Africa)

    Frost, PE

    2007-07-01

    Full Text Available The Advanced Fire Information System (AFIS) is the first near real time operational satellite-based fire monitoring system of its kind in Africa. The main aim of AFIS is to provide information regarding the prediction, detection and assessment...

  3. Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat

    Science.gov (United States)

    Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.; Feridun Turkman, K.

    2018-02-01

    We present a procedure that allows the operational generation of daily forecasts of fire danger over Mediterranean Europe. The procedure combines historical information about radiative energy released by fire events with daily meteorological forecasts, as provided by the Satellite Application Facility for Land Surface Analysis (LSA SAF) and the European Centre for Medium-Range Weather Forecasts (ECMWF). Fire danger is estimated based on daily probabilities of exceedance of daily energy released by fires occurring at the pixel level. Daily probability considers meteorological factors by means of the Canadian Fire Weather Index (FWI) and is estimated using a daily model based on a generalized Pareto distribution. Five classes of fire danger are then associated with daily probability estimated by the daily model. The model is calibrated using 13 years of data (2004-2016) and validated against the period of January-September 2017. Results obtained show that about 72 % of events releasing daily energy above 10 000 GJ belong to the extreme class of fire danger, a considerably high fraction that is more than 1.5 times the values obtained when using the currently operational Fire Danger Forecast module of the European Forest Fire Information System (EFFIS) or the Fire Risk Map (FRM) product disseminated by the LSA SAF. Besides assisting in wildfire management, the procedure is expected to help in decision making on prescribed burning within the framework of agricultural and forest management practices.

  4. Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat

    Directory of Open Access Journals (Sweden)

    M. M. Pinto

    2018-02-01

    Full Text Available We present a procedure that allows the operational generation of daily forecasts of fire danger over Mediterranean Europe. The procedure combines historical information about radiative energy released by fire events with daily meteorological forecasts, as provided by the Satellite Application Facility for Land Surface Analysis (LSA SAF and the European Centre for Medium-Range Weather Forecasts (ECMWF. Fire danger is estimated based on daily probabilities of exceedance of daily energy released by fires occurring at the pixel level. Daily probability considers meteorological factors by means of the Canadian Fire Weather Index (FWI and is estimated using a daily model based on a generalized Pareto distribution. Five classes of fire danger are then associated with daily probability estimated by the daily model. The model is calibrated using 13 years of data (2004–2016 and validated against the period of January–September 2017. Results obtained show that about 72 % of events releasing daily energy above 10 000 GJ belong to the extreme class of fire danger, a considerably high fraction that is more than 1.5 times the values obtained when using the currently operational Fire Danger Forecast module of the European Forest Fire Information System (EFFIS or the Fire Risk Map (FRM product disseminated by the LSA SAF. Besides assisting in wildfire management, the procedure is expected to help in decision making on prescribed burning within the framework of agricultural and forest management practices.

  5. Measuring Radiant Emissions from Entire Prescribed Fires with Ground, Airborne and Satellite Sensors RxCADRE 2012

    Science.gov (United States)

    Dickinson, Matthew B.; Hudak, Andrew T.; Zajkowski, Thomas; Loudermilk, E. Louise; Schroeder, Wilfrid; Ellison, Luke; Kremens, Robert L.; Holley, William; Martinez, Otto; Paxton, Alexander; hide

    2015-01-01

    Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE) field campaign, we used ground, airborne and spaceborne sensors to measure fire radiative power (FRP) from whole fires, applying different methods to small (2 ha) and large (.100 ha) burn blocks. For small blocks (n1/46), FRP estimated from an obliquely oriented long-wave infrared (LWIR) camera mounted on a boom lift were compared with FRP derived from combined data from tower-mounted radiometers and remotely piloted aircraft systems (RPAS). For large burn blocks (n1/43), satellite FRP measurements from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors were compared with near-coincident FRP measurements derived from a LWIR imaging system aboard a piloted aircraft. We describe measurements and consider their strengths and weaknesses. Until quantitative sensors exist for small RPAS, their use in fire research will remain limited. For oblique, airborne and satellite sensors, further FRP measurement development is needed along with greater replication of coincident measurements, which we show to be feasible.

  6. Deforestation fires versus understory fires in the Amazon Basin: What can we learn from satellite-based CO measurements?

    Science.gov (United States)

    Martinez-Alonso, S.; Deeter, M. N.; Worden, H. M.; Gille, J. C.; Clerbaux, C.; George, M.

    2014-12-01

    Deforestation fires in the Amazon Basin abound during the dry season (July to October) and are mostly associated with "slash and burn" agricultural practices. Understory fires occur when fires escape from deforested areas into neighboring standing forests; they spread slowly below the canopy, affecting areas that may be comparable or even larger than clear-cut areas. The interannual variabilities of understory fires and deforestation rates appear to be uncorrelated. Areas burned in understory fires are particularly extensive during droughts. Because they progress below a canopy of living trees, understory fires and their effects are not as easily identifiable from space as deforestation fires. Here we analyze satellite remote sensing products for CO and fire to investigate differences between deforestation fires and understory fires in the Amazon Basin under varying climatic conditions. The MOPITT (Measurements Of Pollution In The Troposphere) instrument on board NASA's Terra satellite has been measuring tropospheric CO since 2000, providing the longest global CO record to date. IASI (the Infrared Atmospheric Sounding Interferometer) A and B are two instruments on board METOP-A and -B, respectively, measuring, among others, CO since 2006 and 2012. MODIS (the Moderate Resolution Imaging Spectroradiometer) instruments on board NASA's Terra and Aqua satellites provide, among other products, a daily record of fires and their effects since 2000 and 2002, respectively. The temporal extent of all these datasets allows for the detailed analysis of drought versus non-drought years. Initial results indicate that MOPITT CO emissions during the dry season peaked in 2005, 2007, and 2010. Those were draught years and coincide with peaks in area affected by understory fires.

  7. Climate and the inter-annual variability of fire in southern Africa: a meta-analysis using long-term field data and satellite-derived burnt area data

    CSIR Research Space (South Africa)

    Archibald, S

    2010-11-01

    Full Text Available end of the rainfall range respectively. Fire occurs across a large part of southern Africa (34% of the region burned at least once in the last 8 years) but the extent and frequency of burning varies depends on tree cover, rainfall seasonality... of the total amount of rainfall that falls in a year (see Appendix S2 for details of the calculation). Number of high Fire Danger Index days (FDIdays): A number of di erent Fire Danger Indices have been tested and applied to southern African systems. The most...

  8. Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires.

    Science.gov (United States)

    Lin, Hsiao-Wen; Jin, Yufang; Giglio, Louis; Foley, Jonathan A; Randerson, James T

    2012-06-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CH4 and N2O from these fires annually. In this study, we evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries, and the consistency of emissions inventories among different countries. We also evaluated the success of individual countries in capturing interannual variability and long-term trends in agricultural fire activity. In our approach, we combined global high-resolution maps of crop harvest area and production, derived from satellite maps and ground-based census data, with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) measurements of active fires. At a global scale, we found that adding ground nuts (e.g., peanuts), cocoa, cotton and oil palm, and removing potato, oats, rye, and pulse other from the list of 14 crops targeted by the UNFCCC increased the percentage of active fires covered by the reporting system by 9%. Optimization led to a different recommended list for Annex 1 countries, requiring the addition of sunflower, cotton, rapeseed, and alfalfa and the removal of beans, sugarcane, pulse others, and tuber-root others. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 6% to 15%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico, and Nigeria) would capture over 55% of active fires in croplands worldwide. Analyses of interannual trends from the United States and Australia showed the importance of both intensity of fire use and crop production in controlling year

  9. Validation of Satellite Derived Cloud Properties Over the Southeastern Pacific

    Science.gov (United States)

    Ayers, J.; Minnis, P.; Zuidema, P.; Sun-Mack, S.; Palikonda, R.; Nguyen, L.; Fairall, C.

    2005-12-01

    Satellite measurements of cloud properties and the radiation budget are essential for understanding meso- and large-scale processes that determine the variability in climate over the southeastern Pacific. Of particular interest in this region is the prevalent stratocumulus cloud deck. The stratocumulus albedos are directly related to cloud microphysical properties that need to be accurately characterized in Global Climate Models (GCMs) to properly estimate the Earth's radiation budget. Meteorological observations in this region are sparse causing large uncertainties in initialized model fields. Remote sensing from satellites can provide a wealth of information about the clouds in this region, but it is vital to validate the remotely sensed parameters and to understand their relationship to other parameters that are not directly observed by the satellites. The variety of measurements from the R/V Roger Revelle during the 2003 STRATUS cruise and from the R/V Ron Brown during EPIC 2001 and the 2004 STRATUS cruises are suitable for validating and improving the interpretation of the satellite derived cloud properties. In this study, satellite-derived cloud properties including coverage, height, optical depth, and liquid water path are compared with in situ measurements taken during the EPIC and STRATUS cruises. The remotely sensed values are derived from Geostationary Operational Environmental Satellite (GOES) imager data, Moderate Resolution Imaging Spectroradiometer (MODIS) data from the Terra and Aqua satellites, and from the Visible and Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring Mission (TRMM) satellite. The products from this study will include regional monthly cloud climatologies derived from the GOES data for the 2003 and 2004 cruises as well as micro and macro physical cloud property retrievals centered over the ship tracks from MODIS and VIRS.

  10. Sorghum yield and associated satellite-derived meteorological ...

    African Journals Online (AJOL)

    Sorghum yield and associated satellite-derived meteorological parameters in semi-arid Botswana. ... African Crop Science Journal ... Sorghum (Sorghum bicolor) yield for five seasons (2005/6 to 2009/10) from the Botswana Department of Crop ... Key Words: Coefficient of determination, NDVI, Pearson correlation ...

  11. Application of a chlorophyll index derived from satellite data to ...

    African Journals Online (AJOL)

    Application of a chlorophyll index derived from satellite data to investigate the variability of phytoplankton in the Benguela ecosystem. H Demarcq, R Barlow, L Hutchings. Abstract. No Abstract. African Journal of Marine Science Vol.29(2) 2007: pp. 271-282. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD ...

  12. Analysis of satellite-derived solar irradiance over the Netherlands

    Science.gov (United States)

    Dirksen, Marieke; Fokke Meirink, Jan; Sluiter, Raymond

    2017-04-01

    Measurements from geostationary satellites allow the retrieval of surface solar irradiance homogeneously over large areas, thereby providing essential information for the solar energy sector. In this paper, the SICCS solar irradiance data record derived from 12 years of Meteosat Second Generation satellite measurements is analysed with a focus on the Netherlands, where the spatial resolution is about 6 by 3 km2. Extensive validation of the SICCS data with pyranometer observations is performed, indicating a bias of approximately 3 W/m2 and RMSE of 11 W/m2 for daily data. Long term averages and seasonal variations of solar irradiance show regional patterns related to the surface type (e.g., coastal waters, forests, cities). The inter-annual variability over the time frame of the data record is quantified. Methods to merge satellite and surface observations into an optimized data record are explored.

  13. Mid-term fire danger index based on satellite imagery and ancillary geographic data

    Science.gov (United States)

    Stefanidou, A.; Dragozi, E.; Tompoulidou, M.; Stepanidou, L.; Grigoriadis, D.; Katagis, T.; Stavrakoudis, D.; Gitas, I.

    2017-09-01

    Fire danger forecast constitutes one of the most important components of integrated fire management since it provides crucial information for efficient pre-fire planning, alertness and timely response to a possible fire event. The aim of this work is to develop an index that has the capability of predicting accurately fire danger on a mid-term basis. The methodology that is currently under development is based on an innovative approach that employs dry fuel spatial connectivity as well as biophysical and topological variables for the reliable prediction of fire danger. More specifically, the estimation of the dry fuel connectivity is based on a previously proposed automated procedure implemented in R software that uses Moderate Resolution Imaging Spectrometer (MODIS) time series data. Dry fuel connectivity estimates are then combined with other ancillary data such as fuel type and proximity to roads in order to result in the generation of the proposed mid-term fire danger index. The innovation of the proposed index—which will be evaluated by comparison to historical fire data—lies in the fact that its calculation is almost solely affected by the availability of satellite data. Finally, it should be noted that the index is developed within the framework of the National Observatory of Forest Fires (NOFFi) project.

  14. The relationship of multispectral satellite imagery to immediate fire effects

    Science.gov (United States)

    Andrew T. Hudak; Penelope Morgan; Michael J. Bobbitt; Allstair M. S. Smith; Sarah A. Lewis; Leigh B. Lentile; Peter R. Robichaud; Jess T. Clark; Randy A. McKinley

    2007-01-01

    The Forest Service Remote Sensing Applications Center (RSAC) and the U.S. Geological Survey Earth Resources Observation and Science (EROS) Data Center produce Burned Area Reflectance Classification (BARC) maps for use by Burned Area Emergency Response (BAER) teams in rapid response to wildfires. BAER teams desire maps indicative of fire effects on soils, but green and...

  15. Forest fires detection in Indonesia using satellite Himawari-8 (case study: Sumatera and Kalimantan on august-october 2015)

    Science.gov (United States)

    Fatkhuroyan; Wati, Trinah; Panjaitan, Andersen

    2017-01-01

    Forest fires in Indonesia are serious problem affecting widely in material losses, health and environment. Himawari-8 as one of meteorological satellites with high resolution 0,5 km x 0,5 km can be used for forest fire monitoring and detection. Combination between 3, 4 and 6 channels using Sataid (Satellite Animation and Interactive Diagnosis) software will visualize forest fire in the study site. Monitoring which used Himawari-8 data on August, September and October 2015 can detect the distribution of smoke and the extents of forest fire in Sumatera and Kalimantan. The result showed the extent of forest fire can be identified for anticipation in the next step.

  16. Estimating vegetation dryness to optimize fire risk assessment with spot vegetation satellite data in savanna ecosystems

    Science.gov (United States)

    Verbesselt, J.; Somers, B.; Lhermitte, S.; van Aardt, J.; Jonckheere, I.; Coppin, P.

    2005-10-01

    The lack of information on vegetation dryness prior to the use of fire as a management tool often leads to a significant deterioration of the savanna ecosystem. This paper therefore evaluated the capacity of SPOT VEGETATION time-series to monitor the vegetation dryness (i.e., vegetation moisture content per vegetation amount) in order to optimize fire risk assessment in the savanna ecosystem of Kruger National Park in South Africa. The integrated Relative Vegetation Index approach (iRVI) to quantify the amount of herbaceous biomass at the end of the rain season and the Accumulated Relative Normalized Difference vegetation index decrement (ARND) related to vegetation moisture content were selected. The iRVI and ARND related to vegetation amount and moisture content, respectively, were combined in order to monitor vegetation dryness and optimize fire risk assessment in the savanna ecosystems. In situ fire activity data was used to evaluate the significance of the iRVI and ARND to monitor vegetation dryness for fire risk assessment. Results from the binary logistic regression analysis confirmed that the assessment of fire risk was optimized by integration of both the vegetation quantity (iRVI) and vegetation moisture content (ARND) as statistically significant explanatory variables. Consequently, the integrated use of both iRVI and ARND to monitor vegetation dryness provides a more suitable tool for fire management and suppression compared to other traditional satellite-based fire risk assessment methods, only related to vegetation moisture content.

  17. Migratory herbivorous waterfowl track satellite-derived green wave index.

    Directory of Open Access Journals (Sweden)

    Mitra Shariatinajafabadi

    Full Text Available Many migrating herbivores rely on plant biomass to fuel their life cycles and have adapted to following changes in plant quality through time. The green wave hypothesis predicts that herbivorous waterfowl will follow the wave of food availability and quality during their spring migration. However, testing this hypothesis is hampered by the large geographical range these birds cover. The satellite-derived normalized difference vegetation index (NDVI time series is an ideal proxy indicator for the development of plant biomass and quality across a broad spatial area. A derived index, the green wave index (GWI, has been successfully used to link altitudinal and latitudinal migration of mammals to spatio-temporal variations in food quality and quantity. To date, this index has not been used to test the green wave hypothesis for individual avian herbivores. Here, we use the satellite-derived GWI to examine the green wave hypothesis with respect to GPS-tracked individual barnacle geese from three flyway populations (Russian n = 12, Svalbard n = 8, and Greenland n = 7. Data were collected over three years (2008-2010. Our results showed that the Russian and Svalbard barnacle geese followed the middle stage of the green wave (GWI 40-60%, while the Greenland geese followed an earlier stage (GWI 20-40%. Despite these differences among geese populations, the phase of vegetation greenness encountered by the GPS-tracked geese was close to the 50% GWI (i.e. the assumed date of peak nitrogen concentration, thereby implying that barnacle geese track high quality food during their spring migration. To our knowledge, this is the first time that the migration of individual avian herbivores has been successfully studied with respect to vegetation phenology using the satellite-derived GWI. Our results offer further support for the green wave hypothesis applying to long-distance migrants on a larger scale.

  18. Maritime NOx Emissions Over Chinese Seas Derived From Satellite Observations

    Science.gov (United States)

    Ding, J.; van der A, R. J.; Mijling, B.; Jalkanen, J.-P.; Johansson, L.; Levelt, P. F.

    2018-02-01

    By applying an inversion algorithm to NOx satellite observations from Ozone Monitoring Instrument, monthly NOx emissions for a 10 year period (2007 to 2016) over Chinese seas are presented for the first time. No effective regulations on NOx emissions have been implemented for ships in China, which is reflected in the trend analysis of maritime emissions. The maritime emissions display a continuous increase rate of about 20% per year until 2012 and slow down to 3% after that. The seasonal cycle of shipping emissions has regional variations, but all regions show lower emissions during winter. Simulations by an atmospheric chemistry transport model show a notable influence of maritime emissions on air pollution over coastal areas, especially in summer. The satellite-derived spatial distribution and the magnitude of maritime emissions over Chinese seas are in good agreement with bottom-up studies based on the Automatic Identification System of ships.

  19. Satellite-Based Evaluation of the Post-Fire Recovery Process from the Worst Forest Fire Case in South Korea

    Directory of Open Access Journals (Sweden)

    Jae-Hyun Ryu

    2018-06-01

    different, using only one satellite-based indicator will not be suitable to understand the post-fire recovery process. NBR, NDVI, and GPP can be combined. Further studies will require more approaches using various terms of indices.

  20. Evaluation of forest fires in Portugal Mainland during 2016 summer considering different satellite datasets

    Science.gov (United States)

    Teodoro, A. C.; Amaral, A.

    2017-10-01

    Portugal is one of the most affected countries in Europe by forest fires. Every year in the summer, hundreds of hectares burn, destroying goods and forests at an alarming rate. The objective of this work was to analyze the forest areas burned in Portugal in 2016 (summer) using different satellite data with different spatial resolution (Sentinel-2A MSI and Landsat 8 OLI) in two affected areas. Data from spring from 2016 and 2017 were chosen (pre-fire event and post-fire event) in order to maximize the Normalized Difference Vegetation Index (NDVI) values. The QGIS software's plugin - Semi- Automatic Classification Plugin- which allowed to obtain NDVI values for the Landsat 8 OLI and Sentinel- 2A was used. The results showed that the NDVI decreased considerably in Arouca and Vila Nova de Cerveira after de fire event, meaning a marked drop in vegetation level. In Sintra municipality this change was not verified because non forest fire was registered in this area during the study period. The results from the Sentinel-2A and Landsat 8 OLI data analysis are in agreement, however the Sentinel-2A satellite gives results more accurate than Landsat-8 OLI since it has best spatial resolution. This study could help the experts to understand both the causes and consequences of spatial variability of post-fire effects. Other vegetation spectral indices related with fire and burnt areas could also be calculated in order to discriminate burnt areas. Added to the best spatial resolution of Sentinel-2A (10 m), the temporal resolution of Sentinel- 2A (10 days) was increased with the launch of the twin Sentinel-2B (very recently) and therefore the frequency of the combined constellation revisit will be 5 days. However, for historical studies, the Landsat program remains the best option.

  1. Quantifying Fire Impact on Alaskan Tundra from Satellite Observations and Field Measurements

    Science.gov (United States)

    Loboda, T. V.; Chen, D.; He, J.; Jenkins, L. K.

    2017-12-01

    Wildfire is a major disturbance agent in Alaskan tundra. The frequency and extent of fire events obtained from paleo, management, and satellite records may yet underestimate the scope of tundra fire impact. Field measurements, collected within the NASA's ABoVE campaign, revealed unexpectedly shallow organic soils ( 15 cm) across all sampled sites of the Noatak valley with no significant difference between recently burned and unburned sites. In typical small and medium-sized tundra burns vegetation recovers rapidly and scars are not discernable in 30 m optical satellite imagery by the end of the first post-fire season. However, field observations indicate that vegetation and subsurface characteristics within fire scars of different ages vary across the landscape. In this study we develop linkages between fire-induced changes to tundra and satellite-based observations from optical, thermal, and microwave imagers to enable extrapolation of in-situ observations to cover the full extent of Alaskan tundra. Our results show that recent ( 30 years) fire history can be reconstructed from optical observations (R2 0.65, pfire history can be determined for 4 years post fire primarily due to increased soil moisture at burned sites. Field measurements suggest that the relatively quick SAR signal dissipation results from more even distribution of surface moisture through the soil column with increases in Active Layer Thickness (ALT). Similar to previous long-term field studies we find an increase in shrub fraction and shrub height within burns over time at the landscape scale; however, the strength and significance of the relationship between shrub fraction and time since fire is governed by burn severity with more severe burns predictably (p post-fire shrub cover. Although reasonably well-correlated to each other when adjusted for topography (R2 0.35, p < 0.001), neither ALT nor soil temperature can be directly linked to optical or thermal brightness observations with acceptable

  2. Verifying Air Force Weather Passive Satellite Derived Cloud Analysis Products

    Science.gov (United States)

    Nobis, T. E.

    2017-12-01

    Air Force Weather (AFW) has developed an hourly World-Wide Merged Cloud Analysis (WWMCA) using imager data from 16 geostationary and polar-orbiting satellites. The analysis product contains information on cloud fraction, height, type and various optical properties including optical depth and integrated water path. All of these products are derived using a suite of algorithms which rely exclusively on passively sensed data from short, mid and long wave imager data. The system integrates satellites with a wide-range of capabilities, from the relatively simple two-channel OLS imager to the 16 channel ABI/AHI to create a seamless global analysis in real time. Over the last couple of years, AFW has started utilizing independent verification data from active sensed cloud measurements to better understand the performance limitations of the WWMCA. Sources utilized include space based lidars (CALIPSO, CATS) and radar (CloudSat) as well as ground based lidars from the Department of Energy ARM sites and several European cloud radars. This work will present findings from our efforts to compare active and passive sensed cloud information including comparison techniques/limitations as well as performance of the passive derived cloud information against the active.

  3. Theoretical algorithms for satellite-derived sea surface temperatures

    Science.gov (United States)

    Barton, I. J.; Zavody, A. M.; O'Brien, D. M.; Cutten, D. R.; Saunders, R. W.; Llewellyn-Jones, D. T.

    1989-03-01

    Reliable climate forecasting using numerical models of the ocean-atmosphere system requires accurate data sets of sea surface temperature (SST) and surface wind stress. Global sets of these data will be supplied by the instruments to fly on the ERS 1 satellite in 1990. One of these instruments, the Along-Track Scanning Radiometer (ATSR), has been specifically designed to provide SST in cloud-free areas with an accuracy of 0.3 K. The expected capabilities of the ATSR can be assessed using transmission models of infrared radiative transfer through the atmosphere. The performances of several different models are compared by estimating the infrared brightness temperatures measured by the NOAA 9 AVHRR for three standard atmospheres. Of these, a computationally quick spectral band model is used to derive typical AVHRR and ATSR SST algorithms in the form of linear equations. These algorithms show that a low-noise 3.7-μm channel is required to give the best satellite-derived SST and that the design accuracy of the ATSR is likely to be achievable. The inclusion of extra water vapor information in the analysis did not improve the accuracy of multiwavelength SST algorithms, but some improvement was noted with the multiangle technique. Further modeling is required with atmospheric data that include both aerosol variations and abnormal vertical profiles of water vapor and temperature.

  4. MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India

    International Nuclear Information System (INIS)

    Vadrevu, Krishna Prasad; Ellicott, Evan; Badarinath, K.V.S.; Vermote, Eric

    2011-01-01

    Agricultural residue burning is one of the major causes of greenhouse gas emissions and aerosols in the Indo-Ganges region. In this study, we characterize the fire intensity, seasonality, variability, fire radiative energy (FRE) and aerosol optical depth (AOD) variations during the agricultural residue burning season using MODIS data. Fire counts exhibited significant bi-modal activity, with peak occurrences during April-May and October-November corresponding to wheat and rice residue burning episodes. The FRE variations coincided with the amount of residues burnt. The mean AOD (2003-2008) was 0.60 with 0.87 (+1σ) and 0.32 (-1σ). The increased AOD during the winter coincided well with the fire counts during rice residue burning season. In contrast, the AOD-fire signal was weak during the summer wheat residue burning and attributed to dust and fossil fuel combustion. Our results highlight the need for 'full accounting of GHG's and aerosols', for addressing the air quality in the study area. - Highlights: → MODIS data could capture rice and wheat residue burning events. → The total FRP was high during the rice burning season than the wheat. → MODIS AOD variations coincided well with rice burning events than wheat. → AOD values exceeding one suggested intense air pollution. - This research work highlights the satellite derived fire products and their potential in characterizing the agricultural residue burning events and air pollution.

  5. Satellite observations for describing fire patterns and climate-related fire drivers in the Brazilian savannas

    Science.gov (United States)

    Verola Mataveli, Guilherme Augusto; Siqueira Silva, Maria Elisa; Pereira, Gabriel; da Silva Cardozo, Francielle; Shinji Kawakubo, Fernando; Bertani, Gabriel; Cezar Costa, Julio; de Cássia Ramos, Raquel; Valéria da Silva, Viviane

    2018-01-01

    In the Brazilian savannas (Cerrado biome) fires are natural and a tool for shifting land use; therefore, temporal and spatial patterns result from the interaction of climate, vegetation condition and human activities. Moreover, orbital sensors are the most effective approach to establish patterns in the biome. We aimed to characterize fire, precipitation and vegetation condition regimes and to establish spatial patterns of fire occurrence and their correlation with precipitation and vegetation condition in the Cerrado. The Cerrado was first and second biome for the occurrence of burned areas (BA) and hotspots, respectively. Occurrences are higher during the dry season and in the savanna land use. Hotspots and BA tend to decrease, and concentrate in the north, but more intense hotspots are not necessarily located where concentration is higher. Spatial analysis showed that averaged and summed values can hide patterns, such as for precipitation, which has the lowest average in August, but minimum precipitation in August was found in 7 % of the Cerrado. Usually, there is a 2-3-month lag between minimum precipitation and maximum hotspots and BA, while minimum VCI and maximum hotspots and BA occur in the same month. Hotspots and BA are better correlated with VCI than precipitation, qualifying VCI as an indicator of the susceptibility of vegetation to ignition.

  6. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird)

    OpenAIRE

    Atwood, Elizabeth C.; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Ni?o-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sen...

  7. Best Longitudinal Adjustment of Satellite Trajectories for the Observation of Forest Fires (Blastoff): A Stochastic Programming Approach to Satellite System Design

    Science.gov (United States)

    Hoskins, Aaron B.

    Forest fires cause a significant amount of damage and destruction each year. Optimally dispatching resources reduces the amount of damage a forest fire can cause. Models predict the fire spread to provide the data required to optimally dispatch resources. However, the models are only as accurate as the data used to build them. Satellites are one valuable tool in the collection of data for the forest fire models. Satellites provide data on the types of vegetation, the wind speed and direction, the soil moisture content, etc. The current operating paradigm is to passively collect data when possible. However, images from directly overhead provide better resolution and are easier to process. Maneuvering a constellation of satellites to fly directly over the forest fire provides higher quality data than is achieved with the current operating paradigm. Before launch, the location of the forest fire is unknown. Therefore, it is impossible to optimize the initial orbits for the satellites. Instead, the expected cost of maneuvering to observe the forest fire determines the optimal initial orbits. A two-stage stochastic programming approach is well suited for this class of problem where initial decisions are made with an uncertain future and then subsequent decisions are made once a scenario is realized. A repeat ground track orbit provides a non-maneuvering, natural solution providing a daily flyover of the forest fire. However, additional maneuvers provide a second daily flyover of the forest fire. The additional maneuvering comes at a significant cost in terms of additional fuel, but provides more data collection opportunities. After data are collected, ground stations receive the data for processing. Optimally selecting the ground station locations reduce the number of built ground stations and reduces the data fusion issues. However, the location of the forest fire alters the optimal ground station sites. A two-stage stochastic programming approach optimizes the

  8. Deriving forest fire ignition risk with biogeochemical process modelling.

    Science.gov (United States)

    Eastaugh, C S; Hasenauer, H

    2014-05-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's 'soil water' and 'labile litter carbon' variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness.

  9. Deriving forest fire ignition risk with biogeochemical process modelling☆

    Science.gov (United States)

    Eastaugh, C.S.; Hasenauer, H.

    2014-01-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's ‘soil water’ and ‘labile litter carbon’ variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness. PMID:26109905

  10. Improving satellite-based post-fire evapotranspiration estimates in semi-arid regions

    Science.gov (United States)

    Poon, P.; Kinoshita, A. M.

    2017-12-01

    Climate change and anthropogenic factors contribute to the increased frequency, duration, and size of wildfires, which can alter ecosystem and hydrological processes. The loss of vegetation canopy and ground cover reduces interception and alters evapotranspiration (ET) dynamics in riparian areas, which can impact rainfall-runoff partitioning. Previous research evaluated the spatial and temporal trends of ET based on burn severity and observed an annual decrease of 120 mm on average for three years after fire. Building upon these results, this research focuses on the Coyote Fire in San Diego, California (USA), which burned a total of 76 km2 in 2003 to calibrate and improve satellite-based ET estimates in semi-arid regions affected by wildfire. The current work utilizes satellite-based products and techniques such as the Google Earth Engine Application programming interface (API). Various ET models (ie. Operational Simplified Surface Energy Balance Model (SSEBop)) are compared to the latent heat flux from two AmeriFlux eddy covariance towers, Sky Oaks Young (US-SO3), and Old Stand (US-SO2), from 2000 - 2015. The Old Stand tower has a low burn severity and the Young Stand tower has a moderate to high burn severity. Both towers are used to validate spatial ET estimates. Furthermore, variables and indices, such as Enhanced Vegetation Index (EVI), Normalized Difference Moisture Index (NDMI), and the Normalized Burn Ratio (NBR) are utilized to evaluate satellite-based ET through a multivariate statistical analysis at both sites. This point-scale study will able to improve ET estimates in spatially diverse regions. Results from this research will contribute to the development of a post-wildfire ET model for semi-arid regions. Accurate estimates of post-fire ET will provide a better representation of vegetation and hydrologic recovery, which can be used to improve hydrologic models and predictions.

  11. Satellite-Derived Bathymetry: Accuracy Assessment on Depths Derivation Algorithm for Shallow Water Area

    Science.gov (United States)

    Said, N. M.; Mahmud, M. R.; Hasan, R. C.

    2017-10-01

    Over the years, the acquisition technique of bathymetric data has evolved from a shipborne platform to airborne and presently, utilising space-borne acquisition. The extensive development of remote sensing technology has brought in the new revolution to the hydrographic surveying. Satellite-Derived Bathymetry (SDB), a space-borne acquisition technique which derives bathymetric data from high-resolution multispectral satellite imagery for various purposes recently considered as a new promising technology in the hydrographic surveying industry. Inspiring by this latest developments, a comprehensive study was initiated by National Hydrographic Centre (NHC) and Universiti Teknologi Malaysia (UTM) to analyse SDB as a means for shallow water area acquisition. By adopting additional adjustment in calibration stage, a marginal improvement discovered on the outcomes from both Stumpf and Lyzenga algorithms where the RMSE values for the derived (predicted) depths were 1.432 meters and 1.728 meters respectively. This paper would deliberate in detail the findings from the study especially on the accuracy level and practicality of SDB over the tropical environmental setting in Malaysia.

  12. New fire diurnal cycle characterizations to improve fire radiative energy assessments made from MODIS observations

    NARCIS (Netherlands)

    Andela, N.; Kaiser, J.; van der Werf, G.R.

    2015-01-01

    Accurate near real time fire emissions estimates are required for air quality forecasts. To date, most approaches are based on satellite-derived estimates of fire radiative power (FRP), which can be converted to fire radiative energy (FRE) which is directly related to fire emissions. Uncertainties

  13. Assessing variability and long-term trends in burned area by merging multiple satellite fire products

    Directory of Open Access Journals (Sweden)

    L. Giglio

    2010-03-01

    Full Text Available Long term, high quality estimates of burned area are needed for improving both prognostic and diagnostic fire emissions models and for assessing feedbacks between fire and the climate system. We developed global, monthly burned area estimates aggregated to 0.5° spatial resolution for the time period July 1996 through mid-2009 using four satellite data sets. From 2001–2009, our primary data source was 500-m burned area maps produced using Moderate Resolution Imaging Spectroradiometer (MODIS surface reflectance imagery; more than 90% of the global area burned during this time period was mapped in this fashion. During times when the 500-m MODIS data were not available, we used a combination of local regression and regional regression trees developed over periods when burned area and Terra MODIS active fire data were available to indirectly estimate burned area. Cross-calibration with fire observations from the Tropical Rainfall Measuring Mission (TRMM Visible and Infrared Scanner (VIRS and the Along-Track Scanning Radiometer (ATSR allowed the data set to be extended prior to the MODIS era. With our data set we estimated that the global annual area burned for the years 1997–2008 varied between 330 and 431 Mha, with the maximum occurring in 1998. We compared our data set to the recent GFED2, L3JRC, GLOBCARBON, and MODIS MCD45A1 global burned area products and found substantial differences in many regions. Lastly, we assessed the interannual variability and long-term trends in global burned area over the past 13 years. This burned area time series serves as the basis for the third version of the Global Fire Emissions Database (GFED3 estimates of trace gas and aerosol emissions.

  14. Online Assessment of Satellite-Derived Global Precipitation Products

    Science.gov (United States)

    Liu, Zhong; Ostrenga, D.; Teng, W.; Kempler, S.

    2012-01-01

    Precipitation is difficult to measure and predict. Each year droughts and floods cause severe property damages and human casualties around the world. Accurate measurement and forecast are important for mitigation and preparedness efforts. Significant progress has been made over the past decade in satellite precipitation product development. In particular, products' spatial and temporal resolutions as well as timely availability have been improved by blended techniques. Their resulting products are widely used in various research and applications. However biases and uncertainties are common among precipitation products and an obstacle exists in quickly gaining knowledge of product quality, biases and behavior at a local or regional scale, namely user defined areas or points of interest. Current online inter-comparison and validation services have not addressed this issue adequately. To address this issue, we have developed a prototype to inter-compare satellite derived daily products in the TRMM Online Visualization and Analysis System (TOVAS). Despite its limited functionality and datasets, users can use this tool to generate customized plots within the United States for 2005. In addition, users can download customized data for further analysis, e.g. comparing their gauge data. To meet increasing demands, we plan to increase the temporal coverage and expanded the spatial coverage from the United States to the globe. More products have been added as well. In this poster, we present two new tools: Inter-comparison of 3B42RT and 3B42 Inter-comparison of V6 and V7 TRMM L-3 monthly products The future plans include integrating IPWG (International Precipitation Working Group) Validation Algorithms/statistics, allowing users to generate customized plots and data. In addition, we will expand the current daily products to monthly and their climatology products. Whenever the TRMM science team changes their product version number, users would like to know the differences by

  15. Use of satellite imagery to identify vegetation cover changes following the Waldo Canyon Fire event, Colorado, 2012-2013

    Science.gov (United States)

    Cole, Christopher J.; Friesen, Beverly A.; Wilson, Earl M.

    2014-01-01

    The Waldo Canyon Fire of 2012 was one of the most destructive wildfire events in Colorado history. The fire burned a total of 18,247 acres, claimed 2 lives, and destroyed 347 homes. The Waldo Canyon Fire continues to pose challenges to nearby communities. In a preliminary emergency assessment conducted in 2012, the U.S. Geological Survey (USGS) concluded that drainage basins within and near the area affected by the Waldo Canyon Fire pose a risk for future debris flow events. Rainfall over burned, formerly vegetated surfaces resulted in multiple flood and debris flow events that affected the cities of Colorado Springs and Manitou Springs in 2013. One fatality resulted from a mudslide near Manitou Springs in August 2013. Federal, State, and local governments continue to monitor these hazards and other post-fire effects, along with the region’s ecological recovery. At the request of the Colorado Springs Office of Emergency Management, the USGS Special Applications Science Center developed a geospatial product to identify vegetation cover changes following the 2012 Waldo Canyon Fire event. Vegetation cover was derived from July 2012 WorldView-2 and September 2013 QuickBird multispectral imagery at a spatial resolution of two meters. The 2012 image was collected after the fire had reached its maximum extent. Per-pixel increases and decreases in vegetation cover were identified by measuring spectral changes that occurred between the 2012 and 2013 image dates. A Normalized Difference Vegetation Index (NDVI), and Green-Near Infrared Index (GRNIR) were computed from each image. These spectral indices are commonly used to characterize vegetation cover and health condition, due to their sensitivity to detect foliar chlorophyll content. Vector polygons identifying surface-cover feature boundaries were derived from the 2013 imagery using image segmentation software. This geographic software groups similar image pixels into vector objects based upon their spatial and spectral

  16. A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1

    Directory of Open Access Journals (Sweden)

    M. Forkel

    2017-12-01

    Full Text Available Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. However, the climatic, environmental, and socioeconomic factors that control global fire activity in vegetation are only poorly understood, and in various complexities and formulations are represented in global process-oriented vegetation-fire models. Data-driven model approaches such as machine learning algorithms have successfully been used to identify and better understand controlling factors for fire activity. However, such machine learning models cannot be easily adapted or even implemented within process-oriented global vegetation-fire models. To overcome this gap between machine learning-based approaches and process-oriented global fire models, we introduce a new flexible data-driven fire modelling approach here (Satellite Observations to predict FIre Activity, SOFIA approach version 1. SOFIA models can use several predictor variables and functional relationships to estimate burned area that can be easily adapted with more complex process-oriented vegetation-fire models. We created an ensemble of SOFIA models to test the importance of several predictor variables. SOFIA models result in the highest performance in predicting burned area if they account for a direct restriction of fire activity under wet conditions and if they include a land cover-dependent restriction or allowance of fire activity by vegetation density and biomass. The use of vegetation optical depth data from microwave satellite observations, a proxy for vegetation biomass and water content, reaches higher model performance than commonly used vegetation variables from optical sensors. We further analyse spatial patterns of the sensitivity between anthropogenic, climate, and vegetation predictor variables and burned area. We finally discuss how multiple observational datasets on climate, hydrological, vegetation, and socioeconomic variables together with

  17. A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1)

    Science.gov (United States)

    Forkel, Matthias; Dorigo, Wouter; Lasslop, Gitta; Teubner, Irene; Chuvieco, Emilio; Thonicke, Kirsten

    2017-12-01

    Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. However, the climatic, environmental, and socioeconomic factors that control global fire activity in vegetation are only poorly understood, and in various complexities and formulations are represented in global process-oriented vegetation-fire models. Data-driven model approaches such as machine learning algorithms have successfully been used to identify and better understand controlling factors for fire activity. However, such machine learning models cannot be easily adapted or even implemented within process-oriented global vegetation-fire models. To overcome this gap between machine learning-based approaches and process-oriented global fire models, we introduce a new flexible data-driven fire modelling approach here (Satellite Observations to predict FIre Activity, SOFIA approach version 1). SOFIA models can use several predictor variables and functional relationships to estimate burned area that can be easily adapted with more complex process-oriented vegetation-fire models. We created an ensemble of SOFIA models to test the importance of several predictor variables. SOFIA models result in the highest performance in predicting burned area if they account for a direct restriction of fire activity under wet conditions and if they include a land cover-dependent restriction or allowance of fire activity by vegetation density and biomass. The use of vegetation optical depth data from microwave satellite observations, a proxy for vegetation biomass and water content, reaches higher model performance than commonly used vegetation variables from optical sensors. We further analyse spatial patterns of the sensitivity between anthropogenic, climate, and vegetation predictor variables and burned area. We finally discuss how multiple observational datasets on climate, hydrological, vegetation, and socioeconomic variables together with data

  18. Combining satellite-based fire observations and ground-based lightning detections to identify lightning fires across the conterminous USA

    Science.gov (United States)

    Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2012-01-01

    Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.

  19. Asynchronous Processing of a Constellation of Geostationary and Polar-Orbiting Satellites for Fire Detection and Smoke Estimation

    Science.gov (United States)

    Hyer, E. J.; Peterson, D. A.; Curtis, C. A.; Schmidt, C. C.; Hoffman, J.; Prins, E. M.

    2014-12-01

    The Fire Locating and Monitoring of Burning Emissions (FLAMBE) system converts satellite observations of thermally anomalous pixels into spatially and temporally continuous estimates of smoke release from open biomass burning. This system currently processes data from a constellation of 5 geostationary and 2 polar-orbiting sensors. Additional sensors, including NPP VIIRS and the imager on the Korea COMS-1 geostationary satellite, will soon be added. This constellation experiences schedule changes and outages of various durations, making the set of available scenes for fire detection highly variable on an hourly and daily basis. Adding to the complexity, the latency of the satellite data is variable between and within sensors. FLAMBE shares with many fire detection systems the goal of detecting as many fires as possible as early as possible, but the FLAMBE system must also produce a consistent estimate of smoke production with minimal artifacts from the changing constellation. To achieve this, NRL has developed a system of asynchronous processing and cross-calibration that permits satellite data to be used as it arrives, while preserving the consistency of the smoke emission estimates. This talk describes the asynchronous data ingest methodology, including latency statistics for the constellation. We also provide an overview and show results from the system we have developed to normalize multi-sensor fire detection for consistency.

  20. Sensitivity to spatial and temporal scale and fire regime inputs in deriving fire regime condition class

    Science.gov (United States)

    Linda Tedrow; Wendel J. Hann

    2015-01-01

    The Fire Regime Condition Class (FRCC) is a composite departure measure that compares current vegetation structure and fire regime to historical reference conditions. FRCC is computed as the average of: 1) Vegetation departure (VDEP) and 2) Regime (frequency and severity) departure (RDEP). In addition to the FRCC rating, the Vegetation Condition Class (VCC) and Regime...

  1. Gravity Anomalies and Estimated Topography Derived from Satellite Altimetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In many areas of the global ocean, the depth of the seafloor is not well known because survey lines by ships are hundreds of kilometers apart. Satellites carrying...

  2. Satellite versus ground-based estimates of burned area: A comparison between MODIS based burned area and fire agency reports over North America in 2007

    Science.gov (United States)

    Stephane Mangeon; Robert Field; Michael Fromm; Charles McHugh; Apostolos Voulgarakis

    2015-01-01

    North American wildfire management teams routinely assess burned area on site during firefighting campaigns; meanwhile, satellite observations provide systematic and global burned-area data. Here we compare satellite and ground-based daily burned area for wildfire events for selected large fires across North America in 2007 on daily timescales. In a sample of 26 fires...

  3. Fire hazard notifications via Satellite, Twitter, Citizen Reports, and Android Apps

    CSIR Research Space (South Africa)

    Butgereit, L

    2014-11-01

    Full Text Available Humanity has had a long historical relationship with fire. According to anthropologists, the first humanoid species learned to use and control fire approximately two million years ago. Using fire and controlling fire, however, are dramatically...

  4. Active Fire Mapping Program

    Science.gov (United States)

    Active Fire Mapping Program Current Large Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS Data Fire Data in Google Earth ...

  5. Burn severity mapping using simulation modeling and satellite imagery

    Science.gov (United States)

    Eva C. Karau; Robert E. Keane

    2010-01-01

    Although burn severity maps derived from satellite imagery provide a landscape view of fire impacts, fire effects simulation models can provide spatial fire severity estimates and add a biotic context in which to interpret severity. In this project, we evaluated two methods of mapping burn severity in the context of rapid post-fire assessment for four wildfires in...

  6. Nearshore Benthic Habitats of Timor-Leste Derived from WorldView-2 Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic habitat classes were derived for nearshore waters (< 20 m depths) around Timor-Leste from DigitalGlobe WorldView-2 satellite imagery, acquired from Jan 26...

  7. Performance assessment of fire-sat monitoring system based on satellite time series for fire danger estimation : the experience of the pre-operative application in the Basilicata Region (Italy)

    Science.gov (United States)

    Lanorte, Antonio; Desantis, Fortunato; Aromando, Angelo; Lasaponara, Rosa

    2013-04-01

    This paper presents the results we obtained in the context of the FIRE-SAT project during the 2012 operative application of the satellite based tools for fire monitoring. FIRE_SAT project has been funded by the Civil Protection of the Basilicata Region in order to set up a low cost methodology for fire danger monitoring and fire effect estimation based on satellite Earth Observation techniques. To this aim, NASA Moderate Resolution Imaging Spectroradiometer (MODIS), ASTER, Landsat TM data were used. Novel data processing techniques have been developed by researchers of the ARGON Laboratory of the CNR-IMAA for the operative monitoring of fire. In this paper we only focus on the danger estimation model which has been fruitfully used since 2008 to 2012 as an reliable operative tool to support and optimize fire fighting strategies from the alert to the management of resources including fire attacks. The daily updating of fire danger is carried out using satellite MODIS images selected for their spectral capability and availability free of charge from NASA web site. This makes these data sets very suitable for an effective systematic (daily) and sustainable low-cost monitoring of large areas. The preoperative use of the integrated model, pointed out that the system properly monitor spatial and temporal variations of fire susceptibility and provide useful information of both fire severity and post fire regeneration capability.

  8. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  9. Vegetation fires and air pollution in Vietnam.

    Science.gov (United States)

    Le, Thanh Ha; Thanh Nguyen, Thi Nhat; Lasko, Kristofer; Ilavajhala, Shriram; Vadrevu, Krishna Prasad; Justice, Chris

    2014-12-01

    Forest fires are a significant source of air pollution in Asia. In this study, we integrate satellite remote sensing data and ground-based measurements to infer fire-air pollution relationships in selected regions of Vietnam. We first characterized the active fires and burnt areas at a regional scale from MODIS satellite data. We then used satellite-derived active fire data to correlate the resulting atmospheric pollution. Further, we analyzed the relationship between satellite atmospheric variables and ground-based air pollutant parameters. Our results show peak fire activity during March in Vietnam, with hotspots in the Northwest and Central Highlands. Active fires were significantly correlated with UV Aerosol Index (UVAI), aerosol extinction absorption optical depth (AAOD), and Carbon Monoxide. The use of satellite aerosol optical thickness improved the prediction of Particulate Matter (PM) concentration significantly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Valuing fire planning alternatives in forest restoration: using derived demand to integrate economics with ecological restoration.

    Science.gov (United States)

    Rideout, Douglas B; Ziesler, Pamela S; Kernohan, Nicole J

    2014-08-01

    Assessing the value of fire planning alternatives is challenging because fire affects a wide array of ecosystem, market, and social values. Wildland fire management is increasingly used to address forest restoration while pragmatic approaches to assessing the value of fire management have yet to be developed. Earlier approaches to assessing the value of forest management relied on connecting site valuation with management variables. While sound, such analysis is too narrow to account for a broad range of ecosystem services. The metric fire regime condition class (FRCC) was developed from ecosystem management philosophy, but it is entirely biophysical. Its lack of economic information cripples its utility to support decision-making. We present a means of defining and assessing the deviation of a landscape from its desired fire management condition by re-framing the fire management problem as one of derived demand. This valued deviation establishes a performance metric for wildland fire management. Using a case study, we display the deviation across a landscape and sum the deviations to produce a summary metric. This summary metric is used to assess the value of alternative fire management strategies on improving the fire management condition toward its desired state. It enables us to identify which sites are most valuable to restore, even when they are in the same fire regime condition class. The case study site exemplifies how a wide range of disparate values, such as watershed, wildlife, property and timber, can be incorporated into a single landscape assessment. The analysis presented here leverages previous research on environmental capital value and non-market valuation by integrating ecosystem management, restoration, and microeconomics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Utility of satellite fire product accuracy information — perspectives and recommendations from the Southern Africa fire network

    CSIR Research Space (South Africa)

    Roy, DP

    2006-07-01

    Full Text Available findings from a SAFNet focus group study that explored factors that promote and constrain the use of the MODIS fire products. In giving this perspective, the authors comment on the approach and findings of recent fire product validation articles, including...

  12. Ten Years of Post-Fire Vegetation Recovery following the 2007 Zaca Fire using Landsat Satellite Imagery

    Science.gov (United States)

    Hallett, J. K. E.; Miller, D.; Roberts, D. A.

    2017-12-01

    Forest fires play a key role in shaping eco-systems. The risk to vegetation depends on the fire regime, fuel conditions (age and amount), fire temperature, and physiological characteristics such as bark thickness and stem diameter. The 2007 Zaca Fire (24 kilometers NE of Buellton, Santa Barbara County, California) burned 826.4 km2 over the course of 2 months. In this study, we used a time series of Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager imagery, to evaluate plant burn severity and post fire recovery as defined into classes of above average recovery, normal recovery, and below average recovery. We spectrally unmixed the images into green vegetation (GV), non-photosynthetic vegetation (NPV), soil surface (SOIL), and ash with a spectral library developed using Constrained Reference Endmember Selection (CRES). We delineated the fire perimeter using the differenced Normalized Burn Ratio (dNBR) and evaluated changes in this index and the Normalized Difference Vegetation Index through time. The results showed an immediate decline in GV and NPV fractions, with a rise in soil and ash fractions directly following the fire, with a slow recovery in GV fraction and a loss of bare soil cover. The was a sharp increase in the ash fraction following the fire and gradual decrease in the year after. Most areas have recovered as of 2017, with prominent recovery in the center of the burn scar and reduced recovery in areas to the south. These results indicate how post-fire vegetation varies based on initial burn severity and pre-fire GV and NPV fractions.

  13. Smoke reduction from pool fires using ferrocene and derivatives

    International Nuclear Information System (INIS)

    Mitchell, J.B.A.; Moir, M.E.

    1992-01-01

    A series of acyl and alkyl substituted ferrocene derivatives were tested as smoke control agents in laboratory-scale burn tests. In the tests, the soot produced by a given volume was collected on a filter and its weight measured to determine the relative smoke reducing effectiveness of the various derivatives. As the molecular weight of the derivative increases, the effectiveness decreases when added at a fixed weight concentration. The heavier derivatives were much less effective on a per-weight basis than ferrocene, while the multiply substituted compounds appeared to be more effective. In field tests conducted to evaluate the effectiveness of ferrocene in reducing smoke during combustion of other hydrocarbon fuels, it was found that there was a very large soot yield from gasoline fuel, higher than for crude oil even when ferrocene was used. In meso-scale tests, a drastic reduction in smoke yield was obtained when using a new liquid smoke-control additive during combustion of dilbit (bitumen diluted by gas condensate) floating on water. 3 refs., 5 figs., 1 tab

  14. Smoke Dispersion Modeling Over Complex Terrain Using High-Resolution Meteorological Data and Satellite Observations: The FireHub Platform

    Science.gov (United States)

    Solomos, S.; Amiridis, V.; Zanis, P.; Gerasopoulos, E.; Sofiou, F. I.; Herekakis, T.; Brioude, J.; Stohl, A.; Kahn, R. A.; Kontoes, C.

    2015-01-01

    A total number of 20,212 fire hot spots were recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument over Greece during the period 2002e2013. The Fire Radiative Power (FRP) of these events ranged from 10 up to 6000 MW at 1 km resolution, and many of these fire episodes resulted in long-range transport of smoke over distances up to several hundred kilometers. Three different smoke episodes over Greece are analyzed here using real time hot-spot observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) satellite instrument as well as from MODIS hot-spots. Simulations of smoke dispersion are performed with the FLEXPART-WRF model and particulate matter emissions are calculated directly from the observed FRP. The modeled smoke plumes are compared with smoke stereo-heights from the Multiangle Imaging Spectroradiometer (MISR) instrument and the sensitivities to atmospheric and modeling parameters are examined. Driving the simulations with high resolution meteorology (4 4 km) and using geostationary satellite data to identify the hot spots allows the description of local scale features that govern smoke dispersion. The long-range transport of smoke is found to be favored over the complex coastline environment of Greece due to the abrupt changes between land and marine planetary boundary layers (PBL) and the decoupling of smoke layers from the surface.

  15. FIRE

    International Nuclear Information System (INIS)

    Brtis, J.S.; Hausheer, T.G.

    1990-01-01

    FIRE, a microcomputer based program to assist engineers in reviewing and documenting the fire protection impact of design changes has been developed. Acting as an electronic consultant, FIRE is designed to work with an experienced nuclear system engineer, who may not have any detailed fire protection expertise. FIRE helps the engineer to decide if a modification might adversely affect the fire protection design of the station. Since its first development, FIRE has been customized to reflect the fire protection philosophy of the Commonwealth Edison Company. That program is in early production use. This paper discusses the FIRE program in light of its being a useful application of expert system technologies in the power industry

  16. Evaluation of the Precision of Satellite-Derived Sea Surface Temperature Fields

    Science.gov (United States)

    Wu, F.; Cornillon, P. C.; Guan, L.

    2016-02-01

    A great deal of attention has been focused on the temporal accuracy of satellite-derived sea surface temperature (SST) fields with little attention being given to their spatial precision. Specifically, the primary measure of the quality of SST fields has been the bias and variance of selected values minus co-located (in space and time) in situ values. Contributing values, determined by the location of the in situ values and the necessity that the satellite-derived values be cloud free, are generally widely separated in space and time hence provide little information related to the pixel-to-pixel uncertainty in the retrievals. But the main contribution to the uncertainty in satellite-derived SST retrievals relates to atmospheric contamination and because the spatial scales of atmospheric features are, in general, large compared with the pixel separation of modern infra-red sensors, the pixel-to-pixel uncertainty is often smaller than the accuracy determined from in situ match-ups. This makes selection of satellite-derived datasets for the study of submesoscale processes, for which the spatial structure of the upper ocean is significant, problematic. In this presentation we present a methodology to characterize the spatial precision of satellite-derived SST fields. The method is based on an examination of the high wavenumber tail of the 2-D spectrum of SST fields in the Sargasso Sea, a low energy region of the ocean close to the track of the MV Oleander, a container ship making weekly roundtrips between New York and Bermuda, with engine intake temperatures sampled every 75 m along track. Important spectral characteristics are the point at which the satellite-derived spectra separate from the Oleander spectra and the spectral slope following separation. In this presentation a number of high resolution 375 m to 10 km SST datasets are evaluated based on this approach.

  17. Modeling spatially explicit fire impact on gross primary production in interior Alaska using satellite images coupled with eddy covariance

    Science.gov (United States)

    Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Welp, Lisa R.; Liu, Jinxun; Liu, Shuguang

    2013-01-01

    In interior Alaska, wildfires change gross primary production (GPP) after the initial disturbance. The impact of fires on GPP is spatially heterogeneous, which is difficult to evaluate by limited point-based comparisons or is insufficient to assess by satellite vegetation index. The direct prefire and postfire comparison is widely used, but the recovery identification may become biased due to interannual climate variability. The objective of this study is to propose a method to quantify the spatially explicit GPP change caused by fires and succession. We collected three Landsat images acquired on 13 July 2004, 5 August 2004, and 6 September 2004 to examine the GPP recovery of burned area from 1987 to 2004. A prefire Landsat image acquired in 1986 was used to reconstruct satellite images assuming that the fires of 1987–2004 had not occurred. We used a light-use efficiency model to estimate the GPP. This model was driven by maximum light-use efficiency (Emax) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR). We applied this model to two scenarios (i.e., an actual postfire scenario and an assuming-no-fire scenario), where the changes in Emax and FPAR were taken into account. The changes in Emax were represented by the change in land cover of evergreen needleleaf forest, deciduous broadleaf forest, and shrub/grass mixed, whose Emax was determined from three fire chronosequence flux towers as 1.1556, 1.3336, and 0.5098 gC/MJ PAR. The changes in FPAR were inferred from NDVI change between the actual postfire NDVI and the reconstructed NDVI. After GPP quantification for July, August, and September 2004, we calculated the difference between the two scenarios in absolute and percent GPP changes. Our results showed rapid recovery of GPP post-fire with a 24% recovery immediately after burning and 43% one year later. For the fire scars with an age range of 2–17 years, the recovery rate ranged from 54% to 95%. In addition to the averaging

  18. A statistical model for determining impact of wildland fires on Particulate Matter (PM2.5) in Central California aided by satellite imagery of smoke

    Science.gov (United States)

    Haiganoush K. Preisler; Donald Schweizer; Ricardo Cisneros; Trent Procter; Mark Ruminski; Leland Tarnay

    2015-01-01

    As the climate in California warms and wildfires become larger and more severe, satellite-based observational tools are frequently used for studying impact of those fires on air quality. However little objective work has been done to quantify the skill these satellite observations of smoke plumes have in predicting impacts to PM2.5 concentrations...

  19. Changes in Fire-Derived Soil Black Carbon Storage in a Sub-humid Woodland

    Science.gov (United States)

    White, J. D.; Yao, J.; Murray, D. B.; Hockaday, W. C.

    2014-12-01

    Fire-derived black carbon (BC) in soil, including charcoal, represents a potentially important fraction of terrestrial carbon cycling due to its presumed long persistence in soil. Interpretation of site BC retention is important for assessing feedbacks to ecosystem processes including nutrient and water cycling. However, interaction between vegetation disturbance, BC formation, and off site transport may exist that complicate interpretation of BC addition to soils from wildfire or prescribed burns directly. To investigate the relationship between disturbance and site retention on soil BC, we determined BC concentrations for a woodland in central Texas, USA, from study plots in hilly terrain with a fire scar dendrochronology spanning 100 years. BC values were determined from 13C nuclear magnetic resonance (NMR) spectroscopy. Estimated values showed mean BC concentration of 2.73 ± 3.06 g BC kg-1 (0.91 ± 0.51 kg BC m-2) for sites with fire occurrence within the last 40 years compared with BC values of1.21 ± 1.70 g BC kg-1 soil (0.18 ± 0.14 kg BC m-2) for sites with fire 40 - 100 years ago. Sites with no tree ring evidence of fire during the last 100 years had the lowest mean soil BC concentration of 0.05 ± 0.11 g BC kg-1 (0.02 ± 0.03 kg BC m-2). Molecular proxies of stability (lignin/N) and decomposition (Alkyl C/O-Alky C) showed no differences across the sites, indicating that low potential for BC mineralization. Modeled soil erosion and time since fire from fire scar data showed that soil BC concentrations were inversely correlated. A modified the ecosystem process model, Biome-BGC, was also used simulate the effects of fire disturbance with different severities and seasonality on C cycling related to the BC production, effect on soil water availability, and off-site transport. Results showed that BC impacts on ecosystem processes, including net ecosystem exchange and leaf area development, were predominantly related to fire frequency. Site BC loss rates were

  20. Development of new index for forest fire risk using satellite images in Indonesia through the direct spectral measurements of soil

    Science.gov (United States)

    Hashimoto, A.; Akita, M.; Takahashi, Y.; Suzuki, H.; Hasegawa, Y.; Ogino, Y.; Naruse, N.; Takahashi, Y.

    2016-12-01

    In recent years, the smoke caused by the forest fires in Indonesia has become a serious problem. Most of the land in Indonesia is covered with peat moss, which occurs the expanding of fires due to the burning itself. Thus, the surface soil water, reflecting the amount of precipitation in the area, can become the indication of the risk of fires. This study aims to develop a new index reflecting the risk of forest fires in Indonesia using satellite remote sensing through the direct spectral measurements of peat moss soil.We have prepared the peat moss in 7 steps of soil water content measured at an accuracy of ±15 percent (Field pro, WD-3). We obtained spectra between 400nm and 1050nm (Source: halogen lamp, spectroscope: self-made space time, spectral analysis kit) from the peat moss.The obtained spectra show the difference from the previous spectral measurement for the soil in various water content. There are the features, especially, in the wavelength range of ultraviolet (400-450nm) and infrared (530-800nm) as shown in the figure; the more the soil water increases, the lower the reflectance becomes. We have developed a new index using the New deep blue band (433 453nm and NIR band 845 885nm of Landsat 8. The resulting satellite images calculated by our original index appears to reflect the risk of forest fires rather than well-known indices such as Normalized Difference Water Index and Normalized difference Soil Index.In conclusion, we have created a new index that highly reflects to the degree of soil water of a peat soil in Indonesia.

  1. CyAN satellite-derived Cyanobacteria products in support of Public Health Protection

    Science.gov (United States)

    The timely distribution of satellite-derived cyanoHAB data is necessary for adaptive water quality management decision-making and for targeted deployment of existing government and non-government water quality monitoring resources. The Cyanobacteria Assessment Network (CyAN) is a...

  2. Topographic Controls on Southern California Ecosystem Function and Post-fire Recovery: a Satellite and Near-surface Remote Sensing Approach

    Science.gov (United States)

    Azzari, George

    Southern Californian wildfires can influence climate in a variety of ways, including changes in surface albedo, emission of greenhouse gases and aerosols, and the production of tropospheric ozone. Ecosystem post-fire recovery plays a key role in determining the strength, duration, and relative importance of these climate forcing agents. Southern California's ecosystems vary markedly with topography, creating sharp transitions with elevation, aspect, and slope. Little is known about the ways topography influences ecosystem properties and function, particularly in the context of post-fire recovery. We combined images from the USGS satellite Landsat 5 with flux tower measurements to analyze pre- and post-fire albedo and carbon exchanged by Southern California's ecosystems in the Santa Ana Mountains. We reduced the sources of external variability in Landsat images using several correction methods for topographic and bidirectional effects. We used time series of corrected images to infer the Net Ecosystem Exchange and surface albedo, and calculated the radiative forcing due to CO2 emissions and albedo changes. We analyzed the patterns of recovery and radiative forcing on north- and south-facing slopes, stratified by vegetation classes including grassland, coastal sage scrub, chaparral, and evergreen oak forest. We found that topography strongly influenced post-fire recovery and radiative forcing. Field observations are often limited by the difficulty of collecting ground validation data. Current instrumentation networks do not provide adequate spatial resolution for landscape-level analysis. The deployment of consumer-market technology could reduce the cost of near-surface measurements, allowing the installation of finer-scale instrument networks. We tested the performance of the Microsoft Kinect sensor for measuring vegetation structure. We used Kinect to acquire 3D vegetation point clouds in the field, and used these data to compute plant height, crown diameter, and

  3. Historic global biomass burning emissions for CMIP6 (BB4CMIP based on merging satellite observations with proxies and fire models (1750–2015

    Directory of Open Access Journals (Sweden)

    M. J. E. van Marle

    2017-09-01

    Full Text Available Fires have influenced atmospheric composition and climate since the rise of vascular plants, and satellite data have shown the overall global extent of fires. Our knowledge of historic fire emissions has progressively improved over the past decades due mostly to the development of new proxies and the improvement of fire models. Currently, there is a suite of proxies including sedimentary charcoal records, measurements of fire-emitted trace gases and black carbon stored in ice and firn, and visibility observations. These proxies provide opportunities to extrapolate emission estimates back in time based on satellite data starting in 1997, but each proxy has strengths and weaknesses regarding, for example, the spatial and temporal extents over which they are representative. We developed a new historic biomass burning emissions dataset starting in 1750 that merges the satellite record with several existing proxies and uses the average of six models from the Fire Model Intercomparison Project (FireMIP protocol to estimate emissions when the available proxies had limited coverage. According to our approach, global biomass burning emissions were relatively constant, with 10-year averages varying between 1.8 and 2.3 Pg C yr−1. Carbon emissions increased only slightly over the full time period and peaked during the 1990s after which they decreased gradually. There is substantial uncertainty in these estimates, and patterns varied depending on choices regarding data representation, especially on regional scales. The observed pattern in fire carbon emissions is for a large part driven by African fires, which accounted for 58 % of global fire carbon emissions. African fire emissions declined since about 1950 due to conversion of savanna to cropland, and this decrease is partially compensated for by increasing emissions in deforestation zones of South America and Asia. These global fire emission estimates are mostly suited for global analyses and

  4. Uncertainties and applications of satellite-derived coastal water quality products

    Science.gov (United States)

    Zheng, Guangming; DiGiacomo, Paul M.

    2017-12-01

    Recent and forthcoming launches of a plethora of ocean color radiometry sensors, coupled with increasingly adopted free and open data policies are expected to boost usage of satellite ocean color data and drive the demand to use these data in a quantitative and routine manner. Here we review factors that introduce uncertainties to various satellite-derived water quality products and recommend approaches to minimize the uncertainty of a specific product. We show that the regression relationships between remote-sensing reflectance and water turbidity (in terms of nephelometric units) established for different regions tend to converge and therefore it is plausible to develop a global satellite water turbidity product derived using a single algorithm. In contrast, solutions to derive suspended particulate matter concentration are much less generalizable; in one case it might be more accurate to estimate this parameter based on satellite-derived particulate backscattering coefficient, whereas in another the nonagal particulate absorption coefficient might be a better proxy. Regarding satellite-derived chlorophyll concentration, known to be subject to large uncertainties in coastal waters, studies summarized here clearly indicate that the accuracy of classical reflectance band-ratio algorithms depends largely on the contribution of phytoplankton to total light absorption coefficient as well as the degree of correlation between phytoplankton and the dominant nonalgal contributions. Our review also indicates that currently available satellite-derived water quality products are restricted to optically significant materials, whereas many users are interested in toxins, nutrients, pollutants, and pathogens. Presently, proxies or indicators for these constituents are inconsistently (and often incorrectly) developed and applied. Progress in this general direction will remain slow unless, (i) optical oceanographers and environmental scientists start collaborating more closely

  5. Characterization of active fires in West African savannas by analysis of satellite data: Landsat Thematic Mapper

    International Nuclear Information System (INIS)

    Brustet, J.M.; Vickos, J.B.; Fontan, J.; Podaire, A.; Lavenu, F.

    1991-01-01

    Landsat Thematic Mapper provides valuable information on biomass burning, such as the apparent temperature of a fire and its shape. However, the surface determined by remote sensing does not exactly correspond to the burning area, due to an artificial enlargement of the fire front width. This enlargement of the fire front width. This enlargement may have diverse origins. In particular, it is difficult to estimate the temperature of the areas that are behind the fire front and that have been just burned. Emissions from these areas may be detectable by Landsat channels, thus resulting in the observed enlargement of the fire front. Additional experiments including remote sensing by plane are necessary to allow a more complete understanding of these phenomena. Biomass burning is an important source of atmospheric pollution on a global scale. This study indicates that a fire is a significant source of pollution on a local scale

  6. Combining Landsat TM multispectral satellite imagery and different modelling approaches for mapping post-fire erosion changes in a Mediterranean site

    Science.gov (United States)

    Petropoulos, George P.; Kairis, Orestis; Karamesouti, Mina; Papanikolaou, Ioannis D.; Kosmas, Constantinos

    2013-04-01

    South European countries are naturally vulnerable to wildfires. Their natural resources such as soil, vegetation and water may be severely affected by wildfires, causing an imminent environmental deterioration due to the complex interdependence among biophysical components. Soil surface water erosion is a natural process essential for soil formation that is affected by such interdependences. Accelerated erosion due to wildfires, constitutes a major restrictive factor for ecosystem sustainability. In 2007, South European countries were severely affected by wildfires, with more than 500,000 hectares of land burnt in that year alone, well above the average of the last 30 years. The present work examines the changes in spatial variability of soil erosion rates as a result of a wildfire event that took place in Greece in 2007, one of the most devastating years in terms of wildfire hazards. Regional estimates of soil erosion rates before and after the fire outbreak were derived from the Revised Universal Soil Loss Equation (RUSLE, Renard et al. 1991) and the Pan-European Soil Erosion Risk Assessment model (PESERA, Kirkby, 1999; Kirkby et al., 2000). Inputs for both models included climatic, land-use, soil type, topography and land use management data. Where appropriate, both models were also fed with input data derived from the analysis of LANDSAT TM satellite imagery available in our study area, acquired before and shortly after the fire suppression. Our study was compiled and performed in a GIS environment. In overall, the loss of vegetation from the fire outbreak caused a substantial increase of soil erosion rates in the affected area, particularly towards the steep slopes. Both tested models were compared to each other and noticeable differences were observed in the soil erosion predictions before and after the fire event. These are attributed to the different parameterization requirements of the 2 models. This quantification of sediment supply through the river

  7. Forecasting distributions of large federal-lands fires utilizing satellite and gridded weather information

    Science.gov (United States)

    H.K. Preisler; R.E. Burgan; J.C. Eidenshink; J.M. Klaver; R.W. Klaver

    2009-01-01

    The current study presents a statistical model for assessing the skill of fire danger indices and for forecasting the distribution of the expected numbers of large fires over a given region and for the upcoming week. The procedure permits development of daily maps that forecast, for the forthcoming week and within federal lands, percentiles of the distributions of (i)...

  8. Analysis of Post-Fire Vegetation Recovery in the Mediterranean Basin using MODIS Derived Vegetation Indices

    Science.gov (United States)

    Hawtree, Daniel; San Miguel, Jesus; Sedano, Fernando; Kempeneers, Pieter

    2010-05-01

    The Mediterranean basin region is highly susceptible to wildfire, with approximately 60,000 individual fires and half a million ha of natural vegetation burnt per year. Of particular concern in this region is the impact of repeated wildfires on the ability of natural lands to return to a pre-fire state, and of the possibility of desertification of semi-arid areas. Given these concerns, understanding the temporal patterns of vegetation recovery is important for the management of environmental resources in the region. A valuable tool for evaluating these recovery patterns are vegetation indices derived from remote sensing data. Previous research on post-fire vegetation recovery conducted in this region has found significant variability in recovery times across different study sites. It is unclear what the primary variables are affecting the differences in the rates of recovery, and if any geographic patterns of behavior exist across the Mediterranean basin. This research has primarily been conducted using indices derived from Landsat imagery. However, no extensive analysis of vegetation regeneration for large regions has been published, and assessment of vegetation recovery on the basis of medium-spatial resolution imagery such as that of MODIS has not yet been analyzed. This study examines the temporal pattern of vegetation recovery in a number of fire sites in the Mediterranean basin, using data derived from MODIS 16 -day composite vegetation indices. The intent is to develop a more complete picture of the temporal sequence of vegetation recovery, and to evaluate what additional factors impact variations in the recovery sequence. In addition, this study evaluates the utility of using MODIS derived vegetation indices for regeneration studies, and compares the findings to earlier studies which rely on Landsat data. Wildfires occurring between the years 2000 and 2004 were considered as potential study sites for this research. Using the EFFIS dataset, all wildfires

  9. Detection, Emission Estimation and Risk Prediction of Forest Fires in China Using Satellite Sensors and Simulation Models in the Past Three Decades—An Overview

    Directory of Open Access Journals (Sweden)

    Cheng Liu

    2011-07-01

    Full Text Available Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction,have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR and near infrared (NIR channels of satellite sensors have been employed for detecting live fuel moisture content (FMC, and the Normalized Difference Water Index (NDWI was used for evaluating the forest vegetation condition and its moisture status.

  10. Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades--an overview.

    Science.gov (United States)

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K

    2011-08-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status.

  11. Detection, Emission Estimation and Risk Prediction of Forest Fires in China Using Satellite Sensors and Simulation Models in the Past Three Decades—An Overview

    Science.gov (United States)

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K.

    2011-01-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status. PMID:21909297

  12. Moisture convergence using satellite-derived wind fields - A severe local storm case study

    Science.gov (United States)

    Negri, A. J.; Vonder Haar, T. H.

    1980-01-01

    Five-minute interval 1-km resolution SMS visible channel data were used to derive low-level wind fields by tracking small cumulus clouds on NASA's Atmospheric and Oceanographic Information Processing System. The satellite-derived wind fields were combined with surface mixing ratios to derive horizontal moisture convergence in the prestorm environment of April 24, 1975. Storms began developing in an area extending from southwest Oklahoma to eastern Tennessee 2 h subsequent to the time of the derived fields. The maximum moisture convergence was computed to be 0.0022 g/kg per sec and areas of low-level convergence of moisture were in general indicative of regions of severe storm genesis. The resultant moisture convergence fields derived from two wind sets 20 min apart were spatially consistent and reflected the mesoscale forcing of ensuing storm development. Results are discussed with regard to possible limitations in quantifying the relationship between low-level flow and between low-level flow and satellite-derived cumulus motion in an antecedent storm environment.

  13. Arctic sea ice albedo - A comparison of two satellite-derived data sets

    Science.gov (United States)

    Schweiger, Axel J.; Serreze, Mark C.; Key, Jeffrey R.

    1993-01-01

    Spatial patterns of mean monthly surface albedo for May, June, and July, derived from DMSP Operational Line Scan (OLS) satellite imagery are compared with surface albedos derived from the International Satellite Cloud Climatology Program (ISCCP) monthly data set. Spatial patterns obtained by the two techniques are in general agreement, especially for June and July. Nevertheless, systematic differences in albedo of 0.05 - 0.10 are noted which are most likely related to uncertainties in the simple parameterizations used in the DMSP analyses, problems in the ISCCP cloud-clearing algorithm and other modeling simplifications. However, with respect to the eventual goal of developing a reliable automated retrieval algorithm for compiling a long-term albedo data base, these initial comparisons are very encouraging.

  14. Global detailed gravimetric geoid. [based on gravity model derived from satellite tracking and surface gravity data

    Science.gov (United States)

    Vincent, S.; Marsh, J. G.

    1973-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  15. Quantifying scaling effects on satellite-derived forest area estimates for the conterminous USA

    Science.gov (United States)

    Daolan Zheng; L.S. Heath; M.J. Ducey; J.E. Smith

    2009-01-01

    We quantified the scaling effects on forest area estimates for the conterminous USA using regression analysis and the National Land Cover Dataset 30m satellite-derived maps in 2001 and 1992. The original data were aggregated to: (1) broad cover types (forest vs. non-forest); and (2) coarser resolutions (1km and 10 km). Standard errors of the model estimates were 2.3%...

  16. Exploration of satellite-derived data products for atmospheric turbulence studies

    CSIR Research Space (South Africa)

    Griffith, DJ

    2014-09-01

    Full Text Available reasonable proxy in the absence of in-situ measurements. 3.2 ORNL DAAC The Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) provides a global subsetting and time-series derivation for Moderate Resolution Imaging Spectrometer... (MODIS) data from the NASA Terra and Aqua satellite platforms. The products available for subsetting and time-series generation from the ORNL DAAC are given in Table 2. Moreover, this MODIS facility is available programmatically using the Simple Object...

  17. A diagnostic approach to obtaining planetary boundary layer winds using satellite-derived thermal data

    Science.gov (United States)

    Belt, Carol L.; Fuelberg, Henry E.

    1984-01-01

    The feasibility of using satellite derived thermal data to generate realistic synoptic scale winds within the planetary boundary layer (PBL) is examined. Diagnostic modified Ekman wind equations from the Air Force Global Weather Central (AFGWC) Boundary Layer Model are used to compute winds at seven levels within the PBL transition layer (50 m to 1600 m AGL). Satellite derived winds based on 62 predawn TIROS-N soundings are compared to similarly derived wind fields based on 39 AVE-SESAME II rawinsonde (RAOB) soundings taken 2 h later. Actual wind fields are also used as a basis for comparison. Qualitative and statistical comparisons show that the Ekman winds from both sources are in very close agreement, with an average vector correlation coefficient of 0.815. Best results are obtained at 300 m AGL. Satellite winds tend to be slightly weaker than their RAOB counterparts and exhibit a greater degree of cross-isobaric flow. The modified Ekman winds show a significant improvement over geostrophic values at levels nearest the surface.

  18. CHAOS-2-a geomagnetic field model derived from one decade of continuous satellite data

    DEFF Research Database (Denmark)

    Olsen, Nils; Mandea, M.; Sabaka, T.J.

    2009-01-01

    We have derived a model of the near-Earth's magnetic field using more than 10 yr of high-precision geomagnetic measurements from the three satellites Orsted, CHAMP and SAC-C. This model is an update of the two previous models, CHAOS (Olsen et al. 2006) and xCHAOS (Olsen & Mandea 2008). Data...... by minimizing the second time derivative of the squared magnetic field intensity at the core-mantle boundary. The CHAOS-2 model describes rapid time changes, as monitored by the ground magnetic observatories, much better than its predecessors....

  19. Comparing land surface phenology derived from satellite and GPS network microwave remote sensing.

    Science.gov (United States)

    Jones, Matthew O; Kimball, John S; Small, Eric E; Larson, Kristine M

    2014-08-01

    The land surface phenology (LSP) start of season (SOS) metric signals the seasonal onset of vegetation activity, including canopy growth and associated increases in land-atmosphere water, energy and carbon (CO2) exchanges influencing weather and climate variability. The vegetation optical depth (VOD) parameter determined from satellite passive microwave remote sensing provides for global LSP monitoring that is sensitive to changes in vegetation canopy water content and biomass, and insensitive to atmosphere and solar illumination constraints. Direct field measures of canopy water content and biomass changes desired for LSP validation are generally lacking due to the prohibitive costs of maintaining regional monitoring networks. Alternatively, a normalized microwave reflectance index (NMRI) derived from GPS base station measurements is sensitive to daily vegetation water content changes and may provide for effective microwave LSP validation. We compared multiyear (2007-2011) NMRI and satellite VOD records at over 300 GPS sites in North America, and their derived SOS metrics for a subset of 24 homogenous land cover sites to investigate VOD and NMRI correspondence, and potential NMRI utility for LSP validation. Significant correlations (P<0.05) were found at 276 of 305 sites (90.5 %), with generally favorable correspondence in the resulting SOS metrics (r (2)=0.73, P<0.001, RMSE=36.8 days). This study is the first attempt to compare satellite microwave LSP metrics to a GPS network derived reflectance index and highlights both the utility and limitations of the NMRI data for LSP validation, including spatial scale discrepancies between local NMRI measurements and relatively coarse satellite VOD retrievals.

  20. Assessment of Satellite Ocean Colour Radiometry and Derived Geophysical Products. Chapter 6.1

    Science.gov (United States)

    Melin, Frederic; Franz, Bryan A.

    2014-01-01

    Standardization of methods to assess and assign quality metrics to satellite ocean color radiometry and derived geophysical products has become paramount with the inclusion of the marine reflectance and chlorophyll-a concentration (Chla) as essential climate variables (ECV; [1]) and the recognition that optical remote sensing of the oceans can only contribute to climate research if and when a continuous succession of satellite missions can be shown to collectively provide a consistent, long-term record with known uncertainties. In 20 years, the community has made significant advancements toward that objective, but providing a complete uncertainty budget for all products and for all conditions remains a daunting task. In the retrieval of marine water-leaving radiance from observed top-of-atmosphere radiance, the sources of uncertainties include those associated with propagation of sensor noise and radiometric calibration and characterization errors, as well as a multitude of uncertainties associated with the modeling and removal of effects from the atmosphere and sea surface. This chapter describes some common approaches used to assess quality and consistency of ocean color satellite products and reviews the current status of uncertainty quantification in the field. Its focus is on the primary ocean color product, the spectrum of marine reflectance Rrs, but uncertainties in some derived products such as the Chla or inherent optical properties (IOPs) will also be considered.

  1. A climate index derived from satellite measured spectral infrared radiation. Ph.D. Thesis

    Science.gov (United States)

    Abel, M. D.; Fox, S. K.

    1982-01-01

    The vertical infrared radiative emitting structure (VIRES) climate index, based on radiative transfer theory and derived from the spectral radiances typically used to retrieve temperature profiles, is introduced. It is assumed that clouds and climate are closely related and a change in one will result in a change in the other. The index is a function of the cloud, temperature, and moisture distributions. It is more accurately retrieved from satellite data than is cloudiness per se. The VIRES index is based upon the shape and relative magnitude of the broadband weighting function of the infrared radiative transfer equation. The broadband weighting curves are retrieved from simulated satellite infrared sounder data (spectral radiances). The retrieval procedure is described and the error error sensitivities of the method investigated. Index measuring options and possible applications of the VIRES index are proposed.

  2. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Tutuila Island, American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  3. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Rose Atoll, American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry were...

  4. Mosaic of bathymetry derived from multispectral World View-2 satellite imagery of Sarigan Island, Territory of Territory of Mariana, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetric data derived from a multipectral World View-2 satellite image mosaiced to provide near complete coverage of nearshore terrain around the islands....

  5. Mosaic of bathymetry derived from multispectral WV-2 satellite imagery of Agrihan Island, Territory of Mariana, USA (NODC Accession 0126914)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetric data derived from a multispectral World View-2 satellite image mosaiced to provide near complete coverage of nearshore terrain around the islands....

  6. Mosaic of bathymetry derived from multispectral WV-2 satellite imagery of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetric data derived from a multipectral World View-2 satellite image mosaiced to provide near complete coverage of nearshore terrain around the islands....

  7. Validation of satellite-derived tropical cyclone heat potential with in situ observations in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nagamani, P.V.; Ali, M.M.; Goni, G.J.; Dinezio, P.N.; Pezzullo, J.C.; UdayaBhaskar, T.V.S.; Gopalakrishna, V.V.; Nisha, K.

    validation with in situ estimations for quantification of their reliability and consistency. Once the validation has been carried out, the satellite-derived TCHP values with their improved tempo- ral and spatial properties can be conveniently used...

  8. Quantifying the clear-sky bias of satellite-derived infrared LST

    Science.gov (United States)

    Ermida, S. L.; Trigo, I. F.; DaCamara, C.

    2017-12-01

    Land surface temperature (LST) is one of the most relevant parameters when addressing the physical processes that take place at the surface of the Earth. Satellite data are particularly appropriate for measuring LST over the globe with high temporal resolution. Remote-sensed LST estimation from space-borne sensors has been systematically performed over the Globe for nearly 3 decades and geostationary LST climate data records are now available. The retrieval of LST from satellite observations generally relies on measurements in the thermal infrared (IR) window. Although there is a large number of IR sensors on-board geostationary satellites and polar orbiters suitable for LST retrievals with different temporal and spatial resolutions, the use of IR observations limits LST estimates to clear sky conditions. As a consequence, climate studies based on IR LST are likely to be affected by the restriction of LST data to cloudless conditions. However, such "clear sky bias" has never been quantified and, therefore, the actual impact of relying only on clear sky data is still to be determined. On the other hand, an "all-weather" global LST database may be set up based on passive microwave (MW) measurements which are much less affected by clouds. An 8-year record of all-weather MW LST is here used to quantify the clear-sky bias of IR LST at global scale based on MW observations performed by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) onboard NASA's Aqua satellite. Selection of clear-sky and cloudy pixels is based on information derived from measurements performed by the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the same satellite.

  9. Improving Fire Emission Estimates in the eastern United States Using Satellite-Based Fuel Loading Factors

    Science.gov (United States)

    Yongqiang Liu; John J. Qu; Xianjun Hao; Wanting Wang

    2005-01-01

    Wildfires can lead to severe environmental consequences by releasing large amounts of particulate matter (PM) and precursors of ozone (Sandberg et al., 1999; Riebau and Fox, 2001). The Southeast has the most burned area among various U.S. regions (Stanturf et al., 2002) and has regionally some of the highest levels of PM and ozone in the nation. Fires have been found...

  10. The Implications of Fire Management in the Andean Paramo: A Preliminary Assessment Using Satellite Remote Sensing

    Directory of Open Access Journals (Sweden)

    Pasquale Borrelli

    2015-08-01

    Full Text Available The upper ranges of the northern Andes are characterized by unique Neotropical, high altitude ecosystems known as paramos. These tundra-like grasslands are widely recognized by the scientific community for their biodiversity and their important ecosystem services for the local human population. Despite their remoteness, limited accessibility for humans and waterlogged soils, paramos are highly flammable ecosystems. They are constantly under the influence of seasonal biomass burning mostly caused by humans. Nevertheless, little is known about the spatial extent of these fires, their regime and the resulting ecological impacts. This paper presents a thorough mapping and analysis of the fires in one of the world’s largest paramo, namely the “Complejo de Páramos” of Cruz Verde-Sumapaz in the Eastern mountain range of the Andes (Colombia. Landsat TM/ETM+ and MODIS imagery from 2001 to 2013 was used to map and analyze the spatial distribution of fires and their intra- and inter-annual variability. Moreover, a logistic regression model analysis was undertaken to test the hypothesis that the dynamics of the paramo fires can be related to human pressures. The resulting map shows that the burned paramo areas account for 57,179.8 hectares, of which 50% (28,604.3 hectares are located within the Sumapaz National Park. The findings show that the fire season mainly occurs from January to March. The accuracy assessment carried out using a confusion matrix based on 20 reference burned areas shows values of 90.1% (producer accuracy for the mapped burned areas with a Kappa Index of Agreement (KIA of 0.746. The results of the logistic regression model suggest a significant predictive relevance of the variables road distance (0.55 ROC (receiver operating characteristic and slope gradient (0.53 ROC, indicating that the higher the probability of fire occurrence, the smaller the distance to the road and the higher the probability of more gentle slopes. The paper

  11. Derivation and evaluation of land surface temperature from the geostationary operational environmental satellite series

    Science.gov (United States)

    Fang, Li

    The Geostationary Operational Environmental Satellites (GOES) have been continuously monitoring the earth surface since 1970, providing valuable and intensive data from a very broad range of wavelengths, day and night. The National Oceanic and Atmospheric Administration's (NOAA's) National Environmental Satellite, Data, and Information Service (NESDIS) is currently operating GOES-15 and GOES-13. The design of the GOES series is now heading to the 4 th generation. GOES-R, as a representative of the new generation of the GOES series, is scheduled to be launched in 2015 with higher spatial and temporal resolution images and full-time soundings. These frequent observations provided by GOES Image make them attractive for deriving information on the diurnal land surface temperature (LST) cycle and diurnal temperature range (DTR). These parameters are of great value for research on the Earth's diurnal variability and climate change. Accurate derivation of satellite-based LSTs from thermal infrared data has long been an interesting and challenging research area. To better support the research on climate change, the generation of consistent GOES LST products for both GOES-East and GOES-West from operational dataset as well as historical archive is in great demand. The derivation of GOES LST products and the evaluation of proposed retrieval methods are two major objectives of this study. Literature relevant to satellite-based LST retrieval techniques was reviewed. Specifically, the evolution of two LST algorithm families and LST retrieval methods for geostationary satellites were summarized in this dissertation. Literature relevant to the evaluation of satellite-based LSTs was also reviewed. All the existing methods are a valuable reference to develop the GOES LST product. The primary objective of this dissertation is the development of models for deriving consistent GOES LSTs with high spatial and high temporal coverage. Proper LST retrieval algorithms were studied

  12. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile

    Science.gov (United States)

    Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye; Lillo-Saavedra, Mario; Lagos, Octavio

    2017-04-01

    Precipitation is a key parameter for the study of climate change and variability and the detection and monitoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applications. This is challenging in many parts of the world, which often have a limited number of weather stations and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several remotely sensed precipitation datasets now available with long historical data records (+30years), which include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) datasets. This study presents a comparative analysis of three historical satellite-based precipitation datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile to assess their performance across the country and for the case of the two long-term products the applicability for agricultural drought were evaluated when used in the calculation of commonly used drought indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in situ rainfall measurements across Chile were initially compared to the satellite data. The study area (Chile) was divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine if there were a regional difference among these satellite products, and nine statistics were used to evaluate their performance to estimate the amount and spatial distribution of historical rainfall across Chile. Hierarchical cluster analysis, k-means and singular value decomposition were used to analyze

  13. Bio-Optical Data Assimilation With Observational Error Covariance Derived From an Ensemble of Satellite Images

    Science.gov (United States)

    Shulman, Igor; Gould, Richard W.; Frolov, Sergey; McCarthy, Sean; Penta, Brad; Anderson, Stephanie; Sakalaukus, Peter

    2018-03-01

    An ensemble-based approach to specify observational error covariance in the data assimilation of satellite bio-optical properties is proposed. The observational error covariance is derived from statistical properties of the generated ensemble of satellite MODIS-Aqua chlorophyll (Chl) images. The proposed observational error covariance is used in the Optimal Interpolation scheme for the assimilation of MODIS-Aqua Chl observations. The forecast error covariance is specified in the subspace of the multivariate (bio-optical, physical) empirical orthogonal functions (EOFs) estimated from a month-long model run. The assimilation of surface MODIS-Aqua Chl improved surface and subsurface model Chl predictions. Comparisons with surface and subsurface water samples demonstrate that data assimilation run with the proposed observational error covariance has higher RMSE than the data assimilation run with "optimistic" assumption about observational errors (10% of the ensemble mean), but has smaller or comparable RMSE than data assimilation run with an assumption that observational errors equal to 35% of the ensemble mean (the target error for satellite data product for chlorophyll). Also, with the assimilation of the MODIS-Aqua Chl data, the RMSE between observed and model-predicted fractions of diatoms to the total phytoplankton is reduced by a factor of two in comparison to the nonassimilative run.

  14. Assessment of Satellite-Derived Surface Reflectances by NASA's CAR Airborne Radiometer over Railroad Valley, Nevada

    Science.gov (United States)

    Kharbouche, Said; Muller, Jan-Peter; Gatebe, Charles K.; Scanlon, Tracy; Banks, Andrew C.

    2017-01-01

    CAR (Cloud Absorption Radiometer) is a multi-angular and multi-spectral airborne radiometer instrument, whose radiometric and geometric characteristics are well calibrated and adjusted before and after each flight campaign. CAR was built by NASA (National Aeronautics and Space Administration) in 1984. On 16 May 2008, a CAR flight campaign took place over the well-known calibration and validation site of Railroad Valley in Nevada (38.504 deg N, 115.692 deg W).The campaign coincided with the overpasses of several key EO (Earth Observation) satellites such as Landsat-7, Envisat and Terra. Thus, there are nearly simultaneous measurements from these satellites and the CAR airborne sensor over the same calibration site. The CAR spectral bands are close to those of most EO satellites. CAR has the ability to cover the whole range of azimuth view angles and a variety of zenith angles depending on altitude and, as a consequence, the biases seen between satellite and CAR measurements due to both unmatched spectral bands and unmatched angles can be significantly reduced. A comparison is presented here between CARs land surface reflectance (BRF or Bidirectional Reflectance Factor) with those derived from Terra/MODIS (MOD09 and MAIAC), Terra/MISR, Envisat/MERIS and Landsat-7. In this study, we utilized CAR data from low altitude flights (approx. 180 m above the surface) in order to minimize the effects of the atmosphere on these measurements and then obtain a valuable ground-truth data set of surface reflectance. Furthermore, this study shows that differences between measurements caused by surface heterogeneity can be tolerated, thanks to the high homogeneity of the study site on the one hand, and on the other hand, to the spatial sampling and the large number of CAR samples. These results demonstrate that satellite BRF measurements over this site are in good agreement with CAR with variable biases across different spectral bands. This is most likely due to residual aerosol

  15. A new CM SAF Solar Surface Radiation Climate Data Set derived from Meteosat Satellite Observations

    Science.gov (United States)

    Trentmann, J.; Mueller, R. W.; Pfeifroth, U.; Träger-Chatterjee, C.; Cremer, R.

    2014-12-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. It is mandatory to monitor this part of the earth's energy balance, and thus gain insights on the state and variability of the climate system. In addition, data sets of the surface solar radiation have received increased attention over the recent years as an important source of information for the planning of solar energy applications. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving surface solar radiation from geostationary and polar-orbiting satellite instruments. While CM SAF is focusing on the generation of high-quality long-term climate data records, also operationally data is provided in short time latency within 8 weeks. Here we present SARAH (Solar Surface Radiation Dataset - Heliosat), i.e. the new CM SAF Solar Surface Radiation data set based on Meteosat satellite observations. SARAH provides instantaneous, daily- and monthly-averaged data of the effective cloud albedo (CAL), the direct normalized solar radiation (DNI) and the solar irradiance (SIS) from 1983 to 2013 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05 deg allowing for detailed regional studies, and are available in netcdf-format at no cost without restrictions at www.cmsaf.eu. We provide an overview of the data sets, including a validation against reference measurements from the BSRN and GEBA surface station networks.

  16. Constraining relationships between rainfall and landsliding with satellite derived rainfall measurements and landslide inventories.

    Science.gov (United States)

    Marc, Odin; Malet, Jean-Philippe; Stumpf, Andre; Gosset, Marielle

    2017-04-01

    In mountainous and hilly regions, landslides are an important source of damage and fatalities. Landsliding correlates with extreme rainfall events and may increase with climate change. Still, how precipitation drives landsliding at regional scales is poorly understood quantitatively in part because constraining simultaneously landsliding and rainfall across large areas is challenging. By combining optical images acquired from satellite observation platforms and rainfall measurements from satellite constellations we are building a database of landslide events caused by with single storm events. We present results from storm-induced landslides from Brazil, Taiwan, Micronesia, Central America, Europe and the USA. We present scaling laws between rainfall metrics derived by satellites (total rainfall, mean intensity, antecedent rainfall, ...) and statistical descriptors of landslide events (total area and volume, size distribution, mean runout, ...). Total rainfall seems to be the most important parameter driving non-linearly the increase in total landslide number, and area and volume. The maximum size of bedrock landslides correlates with the total number of landslides, and thus with total rainfall, within the limits of available topographic relief. In contrast, the power-law scaling exponent of the size distribution, controlling the relative abundance of small and large landslides, appears rather independent of the rainfall metrics (intensity, duration and total rainfall). These scaling laws seem to explain both the intra-storm pattern of landsliding, at the scale of satellite rainfall measurements ( 25kmx25km), and the different impacts observed for various storms. Where possible, we evaluate the limits of standard rainfall products (TRMM, GPM, GSMaP) by comparing them to in-situ data. Then we discuss how slope distribution and other geomorphic factors (lithology, soil presence,...) modulate these scaling laws. Such scaling laws at the basin scale and based only on a

  17. Using satellite imagery for qualitative evaluation of plume transport in modeling the effects of the Kuwait oil fire smoke plumes

    International Nuclear Information System (INIS)

    Bass, A.; Janota, P.

    1992-01-01

    To forecast the behavior of the Kuwait oil fire smoke plumes and their possible acute or chronic health effects over the Arabian Gulf region, TASC created a comprehensive health and environmental impacts modeling system. A specially-adapted Lagrangian puff transport model was used to create (a) short-term (multiday) forecasts of plume transport and ground-level concentrations of soot and SO 2 ; and (b) long-term (seasonal and longer) estimates of average surface concentrations and depositions. EPA-approved algorithms were used to transform exposures to SO 2 and soot (as PAH/BaP) into morbidity, mortality and crop damage risks. Absent any ground truth, satellite imagery from the NOAA Polar Orbiter and the ESA Geostationary Meteosat offered the only opportunity for timely qualitative evaluation of the long-range plume transport and diffusion predictions. This paper shows the use of actual satellite images (including animated loops of hourly Meteosat images) to evaluate plume forecasts in near-real-time, and to sanity-check the meso- and long-range plume transport projections for the long-term estimates. Example modeled concentrations, depositions and health effects are shown

  18. Influence of satellite-derived photolysis rates and NOx emissions on Texas ozone modeling

    Science.gov (United States)

    Tang, W.; Cohan, D. S.; Pour-Biazar, A.; Lamsal, L. N.; White, A. T.; Xiao, X.; Zhou, W.; Henderson, B. H.; Lash, B. F.

    2015-02-01

    Uncertain photolysis rates and emission inventory impair the accuracy of state-level ozone (O3) regulatory modeling. Past studies have separately used satellite-observed clouds to correct the model-predicted photolysis rates, or satellite-constrained top-down NOx emissions to identify and reduce uncertainties in bottom-up NOx emissions. However, the joint application of multiple satellite-derived model inputs to improve O3 state implementation plan (SIP) modeling has rarely been explored. In this study, Geostationary Operational Environmental Satellite (GOES) observations of clouds are applied to derive the photolysis rates, replacing those used in Texas SIP modeling. This changes modeled O3 concentrations by up to 80 ppb and improves O3 simulations by reducing modeled normalized mean bias (NMB) and normalized mean error (NME) by up to 0.1. A sector-based discrete Kalman filter (DKF) inversion approach is incorporated with the Comprehensive Air Quality Model with extensions (CAMx)-decoupled direct method (DDM) model to adjust Texas NOx emissions using a high-resolution Ozone Monitoring Instrument (OMI) NO2 product. The discrepancy between OMI and CAMx NO2 vertical column densities (VCDs) is further reduced by increasing modeled NOx lifetime and adding an artificial amount of NO2 in the upper troposphere. The region-based DKF inversion suggests increasing NOx emissions by 10-50% in most regions, deteriorating the model performance in predicting ground NO2 and O3, while the sector-based DKF inversion tends to scale down area and nonroad NOx emissions by 50%, leading to a 2-5 ppb decrease in ground 8 h O3 predictions. Model performance in simulating ground NO2 and O3 are improved using sector-based inversion-constrained NOx emissions, with 0.25 and 0.04 reductions in NMBs and 0.13 and 0.04 reductions in NMEs, respectively. Using both GOES-derived photolysis rates and OMI-constrained NOx emissions together reduces modeled NMB and NME by 0.05, increases the model

  19. Satellite Derived Bathymetry as a Coastal Geo-Intelligence Tool for Alaska

    Science.gov (United States)

    Ventura, D. C.

    2017-12-01

    What do marine rescue, navigation safety, resource management, coastal infrastructure management, climate adaptation and resilience, economic investment, habitat protection agencies and institutions all have in common? They all benefit from accurate coastal bathymetric data As Arctic-Related Incidents of National Significance (IoNS) workshop points out, reducing time and cost of collecting coastal bathymetry in the Arctic is fundamental to addressing needs of a multitude of stakeholders. Until recently, high resolution coastal data acquisition involved field mobilization of planes, vessels, and people. Given limited resources, short season and remoteness, this approach results in very modest progress toward filling the Alaska's coastal bathymetry data gap and updating vintage data from circa Captain Cook.After successfully executing Satellite Derived Bathymetry (SDB) projects in other more environmentally suitable locations, Fugro and its partner EOMAP are now assessing suitability SDB technique along the Alaska coast. This includes aaccessing archived satellite data and understanding best environmental conditions for the mapping and defining maximum mapping depth as an initial action to understand potentials for Alaska. Here we leverage the physics-based approach to satellite imagery data extraction to derive water depth and complimentary intelligence such as seafloor habitat mapping and certain water quality parameters, such as clarity, turbidity, sediment and chlorophyll-a concentrations, and seasonal changes. Both new and archive imagery are utilized as part of the process. If successful, the benefits and cost savings of this approach are enormous as repeat rate for data collects like this can be measured in months/years as opposed to decades/centuries. Arctic coasts have multiple vulnerabilities and the rate of change will continue to outpace the budgets. As innovative and learning organizations, Fugro and EOMAP strive to not only share the results of this

  20. Satellite-derived SIF and CO2 Observations Show Coherent Responses to Interannual Climate Variations

    Science.gov (United States)

    Butterfield, Z.; Hogikyan, A.; Kulawik, S. S.; Keppel-Aleks, G.

    2017-12-01

    Gross primary production (GPP) is the single largest carbon flux in the Earth system, but its sensitivity to changes in climate is subject to significant uncertainty. Satellite measurements of solar-induced chlorophyll fluorescence (SIF) offer insight into spatial and temporal patterns in GPP at a global scale and, combined with other satellite-derived datasets, provide unprecedented opportunity to explore interactions between atmospheric CO2, GPP, and climate variability. To explore potential drivers of GPP in the Northern Hemisphere (NH), we compare monthly-averaged SIF data from the Global Ozone Monitoring Experiment 2 (GOME-2) with observed anomalies in temperature (T; CRU-TS), liquid water equivalent (LWE) from the Gravity Recovery and Climate Experiment (GRACE), and photosynthetically active radiation (PAR; CERES SYN1deg). Using observations from 2007 through 2015 for several NH regions, we calculate month-specific sensitivities of SIF to variability in T, LWE, and PAR. These sensitivities provide insight into the seasonal progression of how productivity is affected by climate variability and can be used to effectively model the observed SIF signal. In general, we find that high temperatures are beneficial to productivity in the spring, but detrimental in the summer. The influences of PAR and LWE are more heterogeneous between regions; for example, higher LWE in North American temperate forest leads to decreased springtime productivity, while exhibiting a contrasting effect in water-limited regions. Lastly, we assess the influence of variations in terrestrial productivity on atmospheric carbon using a new lower tropospheric CO2 product derived from the Greenhouse Gases Observing Satellite (GOSAT). Together, these data shed light on the drivers of interannual variability in the annual cycle of NH atmospheric CO2, and may provide improved constraints on projections of long-term carbon cycle responses to climate change.

  1. Long-term trends and interannual variability of forest, savanna and agricultural fires in South America

    NARCIS (Netherlands)

    Chen, Y.; Morton, D. C.; Yin, Y. F.; Collatz, G. J.; Kasibhatla, P. S.; van der Werf, G.R.; DeFries, R. S.; Randerson, J. T.

    2013-01-01

    Background: Landscape fires in South America have considerable impacts on ecosystems, air quality and the climate system. We examined long-term trends and interannual variability of forest, savanna and agricultural fires for the continent during 2001-2012 using multiple satellite-derived fire

  2. Utilizing Multi-Sensor Fire Detections to Map Fires in the United States

    Science.gov (United States)

    Howard, S. M.; Picotte, J. J.; Coan, M. J.

    2014-11-01

    In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 "unknown" or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.

  3. Improving evapotranspiration in a land surface model using biophysical variables derived from MSG/SEVIRI satellite

    Directory of Open Access Journals (Sweden)

    N. Ghilain

    2012-08-01

    Full Text Available Monitoring evapotranspiration over land is highly dependent on the surface state and vegetation dynamics. Data from spaceborn platforms are desirable to complement estimations from land surface models. The success of daily evapotranspiration monitoring at continental scale relies on the availability, quality and continuity of such data. The biophysical variables derived from SEVIRI on board the geostationary satellite Meteosat Second Generation (MSG and distributed by the Satellite Application Facility on Land surface Analysis (LSA-SAF are particularly interesting for such applications, as they aimed at providing continuous and consistent daily time series in near-real time over Africa, Europe and South America. In this paper, we compare them to monthly vegetation parameters from a database commonly used in numerical weather predictions (ECOCLIMAP-I, showing the benefits of the new daily products in detecting the spatial and temporal (seasonal and inter-annual variability of the vegetation, especially relevant over Africa. We propose a method to handle Leaf Area Index (LAI and Fractional Vegetation Cover (FVC products for evapotranspiration monitoring with a land surface model at 3–5 km spatial resolution. The method is conceived to be applicable for near-real time processes at continental scale and relies on the use of a land cover map. We assess the impact of using LSA-SAF biophysical variables compared to ECOCLIMAP-I on evapotranspiration estimated by the land surface model H-TESSEL. Comparison with in-situ observations in Europe and Africa shows an improved estimation of the evapotranspiration, especially in semi-arid climates. Finally, the impact on the land surface modelled evapotranspiration is compared over a north–south transect with a large gradient of vegetation and climate in Western Africa using LSA-SAF radiation forcing derived from remote sensing. Differences are highlighted. An evaluation against remote sensing derived land

  4. On the assimilation of satellite derived soil moisture in numerical weather prediction models

    Science.gov (United States)

    Drusch, M.

    2006-12-01

    Satellite derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analysed from the modelled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. Three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF) have been performed for the two months period of June and July 2002: A control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating bias corrected TMI (TRMM Microwave Imager) derived soil moisture over the southern United States through a nudging scheme using 6-hourly departures. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analysed in the nudging experiment is the most accurate estimate when compared against in-situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage. The transferability of the results to other satellite derived soil moisture data sets will be discussed.

  5. Meteosat SEVIRI Fire Radiative Power (FRP) products from the Land Surface Analysis Satellite Applications Facility (LSA SAF) - Part 1: Algorithms, product contents and analysis

    Science.gov (United States)

    Wooster, M. J.; Roberts, G.; Freeborn, P. H.; Xu, W.; Govaerts, Y.; Beeby, R.; He, J.; Lattanzio, A.; Mullen, R.

    2015-06-01

    Characterising changes in landscape scale fire activity at very high temporal resolution is best achieved using thermal observations of actively burning fires made from geostationary Earth observation (EO) satellites. Over the last decade or more, a series of research and/or operational "active fire" products have been developed from these types of geostationary observations, often with the aim of supporting the generation of data related to biomass burning fuel consumption and trace gas and aerosol emission fields. The Fire Radiative Power (FRP) products generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from data collected by the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) are one such set of products, and are freely available in both near real-time and archived form. Every 15 min, the algorithms used to generate these products identify and map the location of new SEVIRI observations containing actively burning fires, and characterise their individual rates of radiative energy release (fire radiative power; FRP) that is believed proportional to rates of biomass consumption and smoke emission. The FRP-PIXEL product contains the highest spatial resolution FRP dataset, delivered for all of Europe, northern and southern Africa, and part of South America at a spatial resolution of 3 km (decreasing away from the west African sub-satellite point) at the full 15 min temporal resolution. The FRP-GRID product is an hourly summary of the FRP-PIXEL data, produced at a 5° grid cell size and including simple bias adjustments for meteorological cloud cover and for the regional underestimation of FRP caused, primarily, by the non-detection of low FRP fire pixels at SEVIRI's relatively coarse pixel size. Here we describe the enhanced geostationary Fire Thermal Anomaly (FTA) algorithm used to detect the SEVIRI active fire pixels, and detail methods used to deliver atmospherically corrected FRP information

  6. Comparison of precision orbit derived density estimates for CHAMP and GRACE satellites

    Science.gov (United States)

    Fattig, Eric Dale

    Current atmospheric density models cannot adequately represent the density variations observed by satellites in Low Earth Orbit (LEO). Using an optimal orbit determination process, precision orbit ephemerides (POE) are used as measurement data to generate corrections to density values obtained from existing atmospheric models. Densities obtained using these corrections are then compared to density data derived from the onboard accelerometers of satellites, specifically the CHAMP and GRACE satellites. This comparison takes two forms, cross correlation analysis and root mean square analysis. The densities obtained from the POE method are nearly always superior to the empirical models, both in matching the trends observed by the accelerometer (cross correlation), and the magnitudes of the accelerometer derived density (root mean square). In addition, this method consistently produces better results than those achieved by the High Accuracy Satellite Drag Model (HASDM). For satellites orbiting Earth that pass through Earth's upper atmosphere, drag is the primary source of uncertainty in orbit determination and prediction. Variations in density, which are often not modeled or are inaccurately modeled, cause difficulty in properly calculating the drag acting on a satellite. These density variations are the result of many factors; however, the Sun is the main driver in upper atmospheric density changes. The Sun influences the densities in Earth's atmosphere through solar heating of the atmosphere, as well as through geomagnetic heating resulting from the solar wind. Data are examined for fourteen hour time spans between November 2004 and July 2009 for both the CHAMP and GRACE satellites. This data spans all available levels of solar and geomagnetic activity, which does not include data in the elevated and high solar activity bins due to the nature of the solar cycle. Density solutions are generated from corrections to five different baseline atmospheric models, as well as

  7. Kriging and local polynomial methods for blending satellite-derived and gauge precipitation estimates to support hydrologic early warning systems

    Science.gov (United States)

    Verdin, Andrew; Funk, Christopher C.; Rajagopalan, Balaji; Kleiber, William

    2016-01-01

    Robust estimates of precipitation in space and time are important for efficient natural resource management and for mitigating natural hazards. This is particularly true in regions with developing infrastructure and regions that are frequently exposed to extreme events. Gauge observations of rainfall are sparse but capture the precipitation process with high fidelity. Due to its high resolution and complete spatial coverage, satellite-derived rainfall data are an attractive alternative in data-sparse regions and are often used to support hydrometeorological early warning systems. Satellite-derived precipitation data, however, tend to underrepresent extreme precipitation events. Thus, it is often desirable to blend spatially extensive satellite-derived rainfall estimates with high-fidelity rain gauge observations to obtain more accurate precipitation estimates. In this research, we use two different methods, namely, ordinary kriging and κ-nearest neighbor local polynomials, to blend rain gauge observations with the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates in data-sparse Central America and Colombia. The utility of these methods in producing blended precipitation estimates at pentadal (five-day) and monthly time scales is demonstrated. We find that these blending methods significantly improve the satellite-derived estimates and are competitive in their ability to capture extreme precipitation.

  8. Poverty, health and satellite-derived vegetation indices: their inter-spatial relationship in West Africa

    Science.gov (United States)

    Sedda, Luigi; Tatem, Andrew J.; Morley, David W.; Atkinson, Peter M.; Wardrop, Nicola A.; Pezzulo, Carla; Sorichetta, Alessandro; Kuleszo, Joanna; Rogers, David J.

    2015-01-01

    Background Previous analyses have shown the individual correlations between poverty, health and satellite-derived vegetation indices such as the normalized difference vegetation index (NDVI). However, generally these analyses did not explore the statistical interconnections between poverty, health outcomes and NDVI. Methods In this research aspatial methods (principal component analysis) and spatial models (variography, factorial kriging and cokriging) were applied to investigate the correlations and spatial relationships between intensity of poverty, health (expressed as child mortality and undernutrition), and NDVI for a large area of West Africa. Results This research showed that the intensity of poverty (and hence child mortality and nutrition) varies inversely with NDVI. From the spatial point-of-view, similarities in the spatial variation of intensity of poverty and NDVI were found. Conclusions These results highlight the utility of satellite-based metrics for poverty models including health and ecological components and, in general for large scale analysis, estimation and optimisation of multidimensional poverty metrics. However, it also stresses the need for further studies on the causes of the association between NDVI, health and poverty. Once these relationships are confirmed and better understood, the presence of this ecological component in poverty metrics has the potential to facilitate the analysis of the impacts of climate change on the rural populations afflicted by poverty and child mortality. PMID:25733559

  9. Satellite-Based Derivation of High-Resolution Forest Information Layers for Operational Forest Management

    Directory of Open Access Journals (Sweden)

    Johannes Stoffels

    2015-06-01

    Full Text Available A key factor for operational forest management and forest monitoring is the availability of up-to-date spatial information on the state of forest resources. Earth observation can provide valuable contributions to these information needs. The German federal state of Rhineland-Palatinate transferred its inherited forest information system to a new architecture that is better able to serve the needs of centralized inventory and planning services, down to the level of forest districts. During this process, a spatially adaptive classification approach was developed to derive high-resolution forest information layers (e.g., forest type, tree species distribution, development stages based on multi-temporal satellite data. This study covers the application of the developed approach to a regional scale (federal state level and the further adaptation of the design to meet the information needs of the state forest service. The results confirm that the operational requirements for mapping accuracy can, in principle, be fulfilled. However, the state-wide mapping experiment also revealed that the ability to meet the required level of accuracy is largely dependent on the availability of satellite observations within the optimum phenological time-windows.

  10. Exploring Machine Learning to Correct Satellite-Derived Sea Surface Temperatures

    Directory of Open Access Journals (Sweden)

    Stéphane Saux Picart

    2018-02-01

    Full Text Available Machine learning techniques are attractive tools to establish statistical models with a high degree of non linearity. They require a large amount of data to be trained and are therefore particularly suited to analysing remote sensing data. This work is an attempt at using advanced statistical methods of machine learning to predict the bias between Sea Surface Temperature (SST derived from infrared remote sensing and ground “truth” from drifting buoy measurements. A large dataset of collocation between satellite SST and in situ SST is explored. Four regression models are used: Simple multi-linear regression, Least Square Shrinkage and Selection Operator (LASSO, Generalised Additive Model (GAM and random forest. In the case of geostationary satellites for which a large number of collocations is available, results show that the random forest model is the best model to predict the systematic errors and it is computationally fast, making it a good candidate for operational processing. It is able to explain nearly 31% of the total variance of the bias (in comparison to about 24% for the multi-linear regression model.

  11. A comparison of geospatially modeled fire behavior and potential application to fire and fuels management for the Savannah River Site.

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, Laurie; Hollingsworth, LaWen; Shea, Dan

    2011-12-20

    This study evaluates modeled fire behavior for the Savannah River Site in the Atlantic Coastal Plain of the southeastern U.S. using three data sources: FCCS, LANDFIRE, and SWRA. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the U.S. using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern U.S. using satellite imagery.

  12. A European satellite-derived UV climatology available for impact studies

    International Nuclear Information System (INIS)

    Verdebout, J.

    2004-01-01

    This paper presents a satellite-derived climatology of the surface UV radiation, intended to support impact studies on the environment and human health. As of today, the dataset covers the period from 1 January 1984 to 31 August 2003, with daily dose maps covering Europe with a spatial resolution of 0.05 deg.. A comparison between the modelled erythemal daily dose and measurements in Ispra yields an r.m.s value with a relative difference of 29% and a bias of 3%. The seemingly large dispersion is, however, due to a restricted number of days for which the relative difference is very high. The climatological dataset documents systematic patterns in the geographical distribution of the surface UV radiation due to cloudiness, altitude and snow. It also shows a large year-to-year variability in monthly doses of up to ±50% in spring and ±30% in summer. (authors)

  13. Analysis of Satellite AIS Data to Derive Weather Judging Criteria for Voyage Route Selection

    Directory of Open Access Journals (Sweden)

    Michio Fujii

    2017-06-01

    Full Text Available The operational limitations are discussed at the IMO as a part of the second generation intact stability criteria. Since it is a first attempt to introduce operational efforts into safety regulations, comprehensive discussions are necessary to realize practically acceptable ones. Therefore this study investigates actual navigation routes of container ships and pure car carriers in the trans-North Pacific Ocean in winter, because they are prone to suffer significant parametric roll which is one of stability failure modes. Firstly, interviews are made to shipmasters who have experiences to have operated the subject ships to identify major elements for route selection in the North Pacific Ocean. Secondly, sufficient number of actual navigation records is collected from Satellite AIS data to derive the weather criteria for the route selection in severe weather condition. Finally, shipmaster’s on-board decision-making criteria are discussed by analysing the ship tracking data and weather data.

  14. A statistical model for determining impact of wildland fires on Particulate Matter (PM2.5) in Central California aided by satellite imagery of smoke

    International Nuclear Information System (INIS)

    Preisler, Haiganoush K.; Schweizer, Donald; Cisneros, Ricardo; Procter, Trent; Ruminski, Mark; Tarnay, Leland

    2015-01-01

    As the climate in California warms and wildfires become larger and more severe, satellite-based observational tools are frequently used for studying impact of those fires on air quality. However little objective work has been done to quantify the skill these satellite observations of smoke plumes have in predicting impacts to PM 2.5 concentrations at ground level monitors, especially those monitors used to determine attainment values for air quality under the Clean Air Act. Using PM 2.5 monitoring data from a suite of monitors throughout the Central California area, we found a significant, but weak relationship between satellite-observed smoke plumes and PM 2.5 concentrations measured at the surface. However, when combined with an autoregressive statistical model that uses weather and seasonal factors to identify thresholds for flagging unusual events at these sites, we found that the presence of smoke plumes could reliably identify periods of wildfire influence with 95% accuracy. - Highlights: • Satellite observed smoke is useful for predicting wildfire impacts on Particulate Matter. • A metric was developed to flag ‘exceptional events’ days as defined by EPA. • We found significant impact of wildfires on PM 2.5 at various sites in Central California. • Fires in most years had no significant impact on compliance with EPA standards. - This work quantifies the skill of satellite observations of smoke plumes in predicting wildfire impacts on PM 2.5 concentrations at ground level monitors

  15. Fire and EMS Districts, Fire District boundaries within Sedgwick County. Cover is programmatically derived from taxing unit districts. Used for Public Safety map rolls. Primary attribute is fire district name. Published to scfiredia.shp., Published in 2008, 1:1200 (1in=100ft) scale, Sedgwick County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Fire and EMS Districts dataset current as of 2008. Fire District boundaries within Sedgwick County. Cover is programmatically derived from taxing unit districts....

  16. Estimation efficiency of usage satellite derived and modelled biophysical products for yield forecasting

    Science.gov (United States)

    Kolotii, Andrii; Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii; Ostapenko, Vadim; Oliinyk, Tamara

    2015-04-01

    Efficient and timely crop monitoring and yield forecasting are important tasks for ensuring of stability and sustainable economic development [1]. As winter crops pay prominent role in agriculture of Ukraine - the main focus of this study is concentrated on winter wheat. In our previous research [2, 3] it was shown that usage of biophysical parameters of crops such as FAPAR (derived from Geoland-2 portal as for SPOT Vegetation data) is far more efficient for crop yield forecasting to NDVI derived from MODIS data - for available data. In our current work efficiency of usage such biophysical parameters as LAI, FAPAR, FCOVER (derived from SPOT Vegetation and PROBA-V data at resolution of 1 km and simulated within WOFOST model) and NDVI product (derived from MODIS) for winter wheat monitoring and yield forecasting is estimated. As the part of crop monitoring workflow (vegetation anomaly detection, vegetation indexes and products analysis) and yield forecasting SPIRITS tool developed by JRC is used. Statistics extraction is done for landcover maps created in SRI within FP-7 SIGMA project. Efficiency of usage satellite based and modelled with WOFOST model biophysical products is estimated. [1] N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "Sensor Web approach to Flood Monitoring and Risk Assessment", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 815-818. [2] F. Kogan, N. Kussul, T. Adamenko, S. Skakun, O. Kravchenko, O. Kryvobok, A. Shelestov, A. Kolotii, O. Kussul, and A. Lavrenyuk, "Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models," International Journal of Applied Earth Observation and Geoinformation, vol. 23, pp. 192-203, 2013. [3] Kussul O., Kussul N., Skakun S., Kravchenko O., Shelestov A., Kolotii A, "Assessment of relative efficiency of using MODIS data to winter wheat yield forecasting in Ukraine", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 3235 - 3238.

  17. Forest fire danger index based on modifying Nesterov Index, fuel, and anthropogenic activities using MODIS TERRA, AQUA and TRMM satellite datasets

    Science.gov (United States)

    Suresh Babu, K. V.; Roy, Arijit; Ramachandra Prasad, P.

    2016-05-01

    Forest fire has been regarded as one of the major causes of degradation of Himalayan forests in Uttarakhand. Forest fires occur annually in more than 50% of forests in Uttarakhand state, mostly due to anthropogenic activities and spreads due to moisture conditions and type of forest fuels. Empirical drought indices such as Keetch-Byram drought index, the Nesterov index, Modified Nesterov index, the Zhdanko index which belongs to the cumulative type and the Angstrom Index which belongs to the daily type have been used throughout the world to assess the potential fire danger. In this study, the forest fire danger index has been developed from slightly modified Nesterov index, fuel and anthropogenic activities. Datasets such as MODIS TERRA Land Surface Temperature and emissivity (MOD11A1), MODIS AQUA Atmospheric profile product (MYD07) have been used to determine the dew point temperature and land surface temperature. Precipitation coefficient has been computed from Tropical Rainfall measuring Mission (TRMM) product (3B42RT). Nesterov index has been slightly modified according to the Indian context and computed using land surface temperature, dew point temperature and precipitation coefficient. Fuel type danger index has been derived from forest type map of ISRO based on historical fire location information and disturbance danger index has been derived from disturbance map of ISRO. Finally, forest fire danger index has been developed from the above mentioned indices and MODIS Thermal anomaly product (MOD14) has been used for validating the forest fire danger index.

  18. Frequent fire promotes diversity and cover of biological soil crusts in a derived temperate grassland.

    Science.gov (United States)

    O'Bryan, Katharine E; Prober, Suzanne Mary; Lunt, Ian D; Eldridge, David J

    2009-04-01

    The intermediate disturbance hypothesis (IDH) predicts that species diversity is maximized at moderate disturbance levels. This model is often applied to grassy ecosystems, where disturbance can be important for maintaining vascular plant composition and diversity. However, effects of disturbance type and frequency on cover and diversity of non-vascular plants comprising biological soil crusts are poorly known, despite their potentially important role in ecosystem function. We established replicated disturbance regimes of different type (fire vs. mowing) and frequency (2, 4, 8 yearly and unburnt) in a high-quality, representative Themeda australis-Poa sieberiana derived grassland in south-eastern Australia. Effects on soil crust bryophytes and lichens (hereafter cryptogams) were measured after 12 years. Consistent with expectations under IDH, cryptogam richness and abundance declined under no disturbance, likely due to competitive exclusion by vascular plants as well as high soil turnover by soil invertebrates beneath thick grass. Disturbance type was also significant, with burning enhancing richness and abundance more than mowing. Contrary to expectations, however, cryptogam richness increased most dramatically under our most frequent and recent (2 year) burning regime, even when changes in abundance were accounted for by rarefaction analysis. Thus, from the perspective of cryptogams, 2-year burning was not an adequately severe disturbance regime to reduce diversity, highlighting the difficulty associated with expression of disturbance gradients in the application of IDH. Indeed, significant correlations with grassland structure suggest that cryptogam abundance and diversity in this relatively mesic (600 mm annual rainfall) grassland is maximised by frequent fires that reduce vegetation and litter cover, providing light, open areas and stable soil surfaces for colonisation. This contrasts with detrimental effects of 2-year burning on native perennial grasses

  19. Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia

    Science.gov (United States)

    Tadesse, Tsegaye; Senay, Gabriel B.; Berhan, Getachew; Regassa, Teshome; Beyene, Shimelis

    2015-08-01

    Satellite-derived evapotranspiration anomalies and normalized difference vegetation index (NDVI) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data are currently used for African agricultural drought monitoring and food security status assessment. In this study, a process to evaluate satellite-derived evapotranspiration (ETa) products with a geospatial statistical exploratory technique that uses NDVI, satellite-derived rainfall estimate (RFE), and crop yield data has been developed. The main goal of this study was to evaluate the ETa using the NDVI and RFE, and identify a relationship between the ETa and Ethiopia's cereal crop (i.e., teff, sorghum, corn/maize, barley, and wheat) yields during the main rainy season. Since crop production is one of the main factors affecting food security, the evaluation of remote sensing-based seasonal ETa was done to identify the appropriateness of this tool as a proxy for monitoring vegetation condition in drought vulnerable and food insecure areas to support decision makers. The results of this study showed that the comparison between seasonal ETa and RFE produced strong correlation (R2 > 0.99) for all 41 crop growing zones in Ethiopia. The results of the spatial regression analyses of seasonal ETa and NDVI using Ordinary Least Squares and Geographically Weighted Regression showed relatively weak yearly spatial relationships (R2 products have a good predictive potential for these 31 identified zones in Ethiopia. Decision makers may potentially use ETa products for monitoring cereal crop yields and early warning of food insecurity during drought years for these identified zones.

  20. Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS

    Directory of Open Access Journals (Sweden)

    N. Theys

    2013-06-01

    Full Text Available Sulphur dioxide (SO2 fluxes of active degassing volcanoes are routinely measured with ground-based equipment to characterize and monitor volcanic activity. SO2 of unmonitored volcanoes or from explosive volcanic eruptions, can be measured with satellites. However, remote-sensing methods based on absorption spectroscopy generally provide integrated amounts of already dispersed plumes of SO2 and satellite derived flux estimates are rarely reported. Here we review a number of different techniques to derive volcanic SO2 fluxes using satellite measurements of plumes of SO2 and investigate the temporal evolution of the total emissions of SO2 for three very different volcanic events in 2011: Puyehue-Cordón Caulle (Chile, Nyamulagira (DR Congo and Nabro (Eritrea. High spectral resolution satellite instruments operating both in the ultraviolet-visible (OMI/Aura and GOME-2/MetOp-A and thermal infrared (IASI/MetOp-A spectral ranges, and multispectral satellite instruments operating in the thermal infrared (MODIS/Terra-Aqua are used. We show that satellite data can provide fluxes with a sampling of a day or less (few hours in the best case. Generally the flux results from the different methods are consistent, and we discuss the advantages and weaknesses of each technique. Although the primary objective of this study is the calculation of SO2 fluxes, it also enables us to assess the consistency of the SO2 products from the different sensors used.

  1. Attribution and evolution of ozone from Asian wild fires using satellite and aircraft measurements during the ARCTAS campaign

    Directory of Open Access Journals (Sweden)

    R. Dupont

    2012-01-01

    Full Text Available We use ozone and carbon monoxide measurements from the Tropospheric Emission Spectrometer (TES, model estimates of Ozone, CO, and ozone pre-cursors from the Real-time Air Quality Modeling System (RAQMS, and data from the NASA DC8 aircraft to characterize the source and dynamical evolution of ozone and CO in Asian wildfire plumes during the spring ARCTAS campaign 2008. On the 19 April, NASA DC8 O3 and aerosol Differential Absorption Lidar (DIAL observed two biomass burning plumes originating from North-Western Asia (Kazakhstan and South-Eastern Asia (Thailand that advected eastward over the Pacific reaching North America in 10 to 12 days. Using both TES observations and RAQMS chemical analyses, we track the wildfire plumes from their source to the ARCTAS DC8 platform. In addition to photochemical production due to ozone pre-cursors, we find that exchange between the stratosphere and the troposphere is a major factor influencing O3 concentrations for both plumes. For example, the Kazakhstan and Siberian plumes at 55 degrees North is a region of significant springtime stratospheric/tropospheric exchange. Stratospheric air influences the Thailand plume after it is lofted to high altitudes via the Himalayas. Using comparisons of the model to the aircraft and satellite measurements, we estimate that the Kazakhstan plume is responsible for increases of O3 and CO mixing ratios by approximately 6.4 ppbv and 38 ppbv in the lower troposphere (height of 2 to 6 km, and the Thailand plume is responsible for increases of O3 and CO mixing ratios of approximately 11 ppbv and 71 ppbv in the upper troposphere (height of 8 to 12 km respectively. However, there are significant sources of uncertainty in these estimates that point to the need for future improvements in both model and satellite observations. For example, it is challenging to characterize the fraction of air parcels from the stratosphere versus those from the

  2. Combining satellite derived phenology with climate data for climate change impact assessment

    Science.gov (United States)

    Ivits, E.; Cherlet, M.; Tóth, G.; Sommer, S.; Mehl, W.; Vogt, J.; Micale, F.

    2012-05-01

    The projected influence of climate change on the timing and volume of phytomass production is expected to affect a number of ecosystem services. In order to develop coherent and locally effective adaptation and mitigation strategies, spatially explicit information on the observed changes is needed. Long-term variations of the vegetative growing season in different environmental zones of Europe for 1982-2006 have been derived by analysing time series of GIMMS NDVI data. The associations of phenologically homogenous spatial clusters to time series of temperature and precipitation data were evaluated. North-east Europe showed a trend to an earlier and longer growing season, particularly in the northern Baltic areas. Despite the earlier greening up large areas of Europe exhibited rather stable season length indicating the shift of the entire growing season to an earlier period. The northern Mediterranean displayed a growing season shift towards later dates while some agglomerations of earlier and shorter growing season were also seen. The correlation of phenological time series with climate data shows a cause-and-effect relationship over the semi natural areas consistent with results in literature. Managed ecosystems however appear to have heterogeneous change pattern with less or no correlation to climatic trends. Over these areas climatic trends seemed to overlap in a complex manner with more pronounced effects of local biophysical conditions and/or land management practices. Our results underline the importance of satellite derived phenological observations to explain local nonconformities to climatic trends for climate change impact assessment.

  3. Validation of Satellite-Derived Sea Surface Temperatures for Waters around Taiwan

    Directory of Open Access Journals (Sweden)

    Ming-An Lee

    2005-01-01

    Full Text Available In order to validate the Advanced Very High Resolution Radiometer (AVHRR-derived sea surface temperatures (SST of the waters around Taiwan, we generated a match-up data set of 961 pairs, which included in situ SSTs and concurrent AVHRR measurements for the period of 1998 to 2002. Availability of cloud-free images, i.e., images with more than 85% of cloud-free area in their coverage, was about 2.23% of all AVHRR images during the study period. The range of in situ SSTs was from _ to _ The satellite derived-SSTs through MCSST and NLSST algorithms were linearly related to the in situ SSTs with correlation coefficients of 0.985 and 0.98, respectively. The MCSSTs and NLSSTs had small biases of 0.009 _ and 0.256 _ with root mean square deviations of 0.64 _ and 0.801 _ respectively, therefore the AVHRR-based MCSSTs and NLSSTs had high accuracy in the seas around Taiwan.

  4. Suitability Assessment of Satellite-Derived Drought Indices for Mongolian Grassland

    Directory of Open Access Journals (Sweden)

    Sheng Chang

    2017-06-01

    Full Text Available In Mongolia, drought is a major natural disaster that can influence and devastate large regions, reduce livestock production, cause economic damage, and accelerate desertification in association with destructive human activities. The objective of this article is to determine the optimal satellite-derived drought indices for accurate and real-time expression of grassland drought in Mongolia. Firstly, an adaptability analysis was performed by comparing nine remote sensing-derived drought indices with reference indicators obtained from field observations using several methods (correlation, consistency percentage (CP, and time-space analysis. The reference information included environmental data, vegetation growth status, and region drought-affected (RDA information at diverse scales (pixel, county, and region for three types of land cover (forest steppe, steppe, and desert steppe. Second, a meteorological index (PED, a normalized biomass (NorBio reference indicator, and the RDA-based drought CP method were adopted for describing Mongolian drought. Our results show that in forest steppe regions the normalized difference water index (NDWI is most sensitive to NorBio (maximum correlation coefficient (MAX_R: up to 0.92 and RDA (maximum CP is 87%, and is most consistent with RDA spatial distribution. The vegetation health index (VHI and temperature condition index (TCI are most correlated with the PED index (MAX_R: 0.75 and soil moisture (MAX_R: 0.58, respectively. In steppe regions, the NDWI is most closely related to soil moisture (MAX_R: 0.69 and the VHI is most related to the PED (MAX_R: 0.76, NorBio (MCC: 0.95, and RDA data (maximum CP is 89%, exhibiting the most consistency with RDA spatial distribution. In desert steppe areas, the vegetation condition index (VCI correlates best with NorBio (MAX_R: 0.92, soil moisture (MAX_R: 0.61, and RDA spatial distribution, while TCI correlates best with the PED (MAX_R: 0.75 and the RDA data (maximum CP is 79

  5. Monitoring vegetation recovery in fire-affected areas using temporal profiles of spectral signal from time series MODIS and LANDSAT satellite images

    Science.gov (United States)

    Georgopoulou, Danai; Koutsias, Nikos

    2015-04-01

    Vegetation phenology is an important element of vegetation characteristics that can be useful in vegetation monitoring especially when satellite remote sensing observations are used. In that sense temporal profiles extracted from spectral signal of time series MODIS and LANDSAT satellite images can be used to characterize vegetation phenology and thus to be helpful for monitoring vegetation recovery in fire-affected areas. The aim of this study is to explore the vegetation recovery pattern of the catastrophic wildfires that occurred in Peloponnisos, southern Greece, in 2007. These fires caused the loss of 67 lives and were recognized as the most extreme natural disaster in the country's recent history. Satellite remote sensing data from MODIS and LANDSAT satellites in the period from 2000 to 2014 were acquired and processed to extract the temporal profiles of the spectral signal for selected areas within the fire-affected areas. This dataset and time period analyzed together with the time that these fires occurred gave the opportunity to create temporal profiles seven years before and seven years after the fire. The different scale of the data used gave us the chance to understand how vegetation phenology and therefore the recovery patterns are influenced by the spatial resolution of the satellite data used. Different metrics linked to key phenological events have been created and used to assess vegetation recovery in the fire-affected areas. Our analysis was focused in the main land cover types that were mostly affected by the 2007 wildland fires. Based on CORINE land-cover maps these were agricultural lands highly interspersed with large areas of natural vegetation followed by sclerophyllous vegetation, transitional woodland shrubs, complex cultivation patterns and olive groves. Apart of the use of the original spectral data we estimated and used vegetation indices commonly found in vegetation studies as well as in burned area mapping studies. In this study we

  6. A Regional-Scale Assessment of Satellite Derived Precipitable Water Vapor Across The Amazon Basin

    Science.gov (United States)

    DeLiberty, Tracy; Callahan, John; Guillory, Anthony R.; Jedlovec, Gary

    2000-01-01

    Atmospheric water vapor is widely recognized as a key climate variable, linking an assortment of poorly understood and complex processes. It is a major element of the hydrological cycle and provides a mechanism for energy exchange among many of the Earth system components. Reducing uncertainty in our current knowledge of water vapor and its role in the climate system requires accurate measurement, improved modeling techniques, and long-term prediction. Satellites have the potential to satisfy these criteria, as well as provide high resolution measurements that are not available from conventional sources. The focus of this paper is to examine the temporal and mesoscale variations of satellite derived precipitable water vapor (PW) across the Amazon Basin. This region is pivotal in the functioning of the global climate system through its abundant release of latent heat associated with heavy precipitation events. In addition, anthropogenic deforestation and biomass burning activities in recent decades are altering the conditions of the atmosphere, especially in the planetary boundary layer. A physical split-window (PSW) algorithm estimates PW using images from the GOES satellites along with the NCEP/NCAR Reanalysis data that provides the first guess information. Retrievals are made at a three-hourly time step during daylight hours in the Amazon Basin and surrounding areas for the months of June and October in 1988 (dry year) and 1995 (wet year). Spatially continuous fields are generated 5 times daily at 12Z, 15Z, 18Z, 21Z, and 00Z. These fields are then averaged to create monthly and 3 hourly monthly grids. Overall, the PSW estimates PW reasonable well in the Amazon with MAE ranging from 3.0 - 9.0 mm and MAE/observed mean around 20% in comparison to radiosonde observations. The distribution of PW generally mimics that of precipitation. Maximum values (42 - 52 mm) are located in the Northwest whereas minimum values (18 - 27 mm) are found along Brazil's East coast. Aside

  7. A new model of Earth's radial conductivity structure derived from over 10 yr of satellite and observatory magnetic data

    DEFF Research Database (Denmark)

    Püthe, Christoph; Kuvshinov, Alexey; Khan, Amir

    2015-01-01

    We present a newmodel of the radial (1-D) conductivity structure of Earth's mantle. This model is derived frommore than 10 yr of magnetic measurements from the satellites ørsted, CHAMP, SAC-C and the Swarm trio as well as the global network of geomagnetic observatories. After removal of core...

  8. "Using Satellite Remote Sensing to Derive Numeric Criteria in Coastal and Inland Waters of the United States"

    Science.gov (United States)

    Crawford, T. N.; Schaeffer, B. A.

    2016-12-01

    Anthropogenic nutrient pollution is a major stressor of aquatic ecosystems around the world. In the United States, states and tribes can adopt numeric water quality values (i.e. criteria) into their water quality management standards to protect aquatic life from eutrophication impacts. However, budget and resource constraints have limited the ability of many states and tribes to collect the water quality monitoring data needed to derive numeric criteria. Over the last few decades, satellite technology has provided water quality measurements on a global scale over long time periods. Water quality managers are finding the data provided by satellite technology useful in managing eutrophication impacts in coastal waters, estuaries, lakes, and reservoirs. In recent years EPA has worked with states and tribes to derive remotely sensed numeric Chl-a criteria for coastal waters with limited field-based data. This approach is now being expanded and used to derive Chl-a criteria in freshwater systems across the United States. This presentation will cover EPA's approach to derive numeric Chl-a criteria using satellite remote sensing, recommendations to improve satellite sensors to expand applications, potential areas of interest, and the challenges of using remote sensing to establish water quality management goals, as well as provide a case in which this approach has been applied.

  9. Error estimates for near-Real-Time Satellite Soil Moisture as Derived from the Land Parameter Retrieval Model

    NARCIS (Netherlands)

    Parinussa, R.M.; Meesters, A.G.C.A.; Liu, Y.Y.; Dorigo, W.; Wagner, W.; de Jeu, R.A.M.

    2011-01-01

    A time-efficient solution to estimate the error of satellite surface soil moisture from the land parameter retrieval model is presented. The errors are estimated using an analytical solution for soil moisture retrievals from this radiative-transfer-based model that derives soil moisture from

  10. A statistical model for determining impact of wildland fires on Particulate Matter (PM₂.₅) in Central California aided by satellite imagery of smoke.

    Science.gov (United States)

    Preisler, Haiganoush K; Schweizer, Donald; Cisneros, Ricardo; Procter, Trent; Ruminski, Mark; Tarnay, Leland

    2015-10-01

    As the climate in California warms and wildfires become larger and more severe, satellite-based observational tools are frequently used for studying impact of those fires on air quality. However little objective work has been done to quantify the skill these satellite observations of smoke plumes have in predicting impacts to PM2.5 concentrations at ground level monitors, especially those monitors used to determine attainment values for air quality under the Clean Air Act. Using PM2.5 monitoring data from a suite of monitors throughout the Central California area, we found a significant, but weak relationship between satellite-observed smoke plumes and PM2.5 concentrations measured at the surface. However, when combined with an autoregressive statistical model that uses weather and seasonal factors to identify thresholds for flagging unusual events at these sites, we found that the presence of smoke plumes could reliably identify periods of wildfire influence with 95% accuracy. Published by Elsevier Ltd.

  11. Remote sensing techniques in monitoring areas affected by forest fire

    Science.gov (United States)

    Karagianni, Aikaterini Ch.; Lazaridou, Maria A.

    2017-09-01

    Forest fire is a part of nature playing a key role in shaping ecosystems. However, fire's environmental impacts can be significant, affecting wildlife habitat and timber, human settlements, man-made technical constructions and various networks (road, power networks) and polluting the air with emissions harmful to human health. Furthermore, fire's effect on the landscape may be long-lasting. Monitoring the development of a fire occurs as an important aspect at the management of natural hazards in general. Among the used methods for monitoring, satellite data and remote sensing techniques can be proven of particular importance. Satellite remote sensing offers a useful tool for forest fire detection, monitoring, management and damage assessment. Especially for fire scars detection and monitoring, satellite data derived from Landsat 8 can be a useful research tool. This paper includes critical considerations of the above and concerns in particular an example of the Greek area (Thasos Island). This specific area was hit by fires several times in the past and recently as well (September 2016). Landsat 8 satellite data are being used (pre and post fire imagery) and digital image processing techniques are applied (enhancement techniques, calculation of various indices) for fire scars detection. Visual interpretation of the example area affected by the fires is also being done, contributing to the overall study.

  12. Using NASA Satellite Observations to Map Wildfire Risk in the United States for Allocation of Fire Management Resources

    Science.gov (United States)

    Farahmand, A.; Reager, J. T., II; Behrangi, A.; Stavros, E. N.; Randerson, J. T.

    2017-12-01

    Fires are a key disturbance globally acting as a catalyst for terrestrial ecosystem change and contributing significantly to both carbon emissions and changes in surface albedo. The socioeconomic impacts of wildfire activities are also significant with wildfire activity results in billions of dollars of losses every year. Fire size, area burned and frequency are increasing, thus the likelihood of fire danger, defined by United States National Interagency Fire Center (NFIC) as the demand of fire management resources as a function of how flammable fuels (a function of ignitability, consumability and availability) are from normal, is an important step toward reducing costs associated with wildfires. Numerous studies have aimed to predict the likelihood of fire danger, but few studies use remote sensing data to map fire danger at scales commensurate with regional management decisions (e.g., deployment of resources nationally throughout fire season with seasonal and monthly prediction). Here, we use NASA Gravity Recovery And Climate Experiment (GRACE) assimilated surface soil moisture, NASA Atmospheric Infrared Sounder (AIRS) vapor pressure deficit, NASA Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index products and landcover products, along with US Forest Service historical fire activity data to generate probabilistic monthly fire potential maps in the United States. These maps can be useful in not only government operational allocation of fire management resources, but also improving understanding of the Earth System and how it is changing in order to refine predictions of fire extremes.

  13. Measuring radiant emissions from entire prescribed fires with ground, airborne and satellite sensors - RxCADRE 2012

    Science.gov (United States)

    Matthew B. Dickinson; Andrew T. Hudak; Thomas Zajkowski; E. Louise Loudermilk; Wilfrid Schroeder; Luke Ellison; Robert L. Kremens; William Holley; Otto Martinez; Alexander Paxton; Benjamin C. Bright; Joseph O' Brien; Ben Hornsby; Charles Ichoku; Jason Faulring; Aaron Gerace; David Peterson; Joseph Mauceri

    2016-01-01

    Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE)...

  14. The potential of satellite data to study individual wildfire events

    Science.gov (United States)

    Benali, Akli; López-Saldana, Gerardo; Russo, Ana; Sá, Ana C. L.; Pinto, Renata M. S.; Nikos, Koutsias; Owen, Price; Pereira, Jose M. C.

    2014-05-01

    Large wildfires have important social, economic and environmental impacts. In order to minimize their impacts, understand their main drivers and study their dynamics, different approaches have been used. The reconstruction of individual wildfire events is usually done by collection of field data, interviews and by implementing fire spread simulations. All these methods have clear limitations in terms of spatial and temporal coverage, accuracy, subjectivity of the collected information and lack of objective independent validation information. In this sense, remote sensing is a promising tool with the potential to provide relevant information for stakeholders and the research community, by complementing or filling gaps in existing information and providing independent accurate quantitative information. In this work we show the potential of satellite data to provide relevant information regarding the dynamics of individual large wildfire events, filling an important gap in wildfire research. We show how MODIS active-fire data, acquired up to four times per day, and satellite-derived burnt perimeters can be combined to extract relevant information wildfire events by describing the methods involved and presenting results for four regions of the world: Portugal, Greece, SE Australia and California. The information that can be retrieved encompasses the start and end date of a wildfire event and its ignition area. We perform an evaluation of the information retrieved by comparing the satellite-derived parameters with national databases, highlighting the strengths and weaknesses of both and showing how the former can complement the latter leading to more complete and accurate datasets. We also show how the spatio-temporal distribution of wildfire spread dynamics can be reconstructed using satellite-derived active-fires and how relevant descriptors can be extracted. Applying graph theory to satellite active-fire data, we define the major fire spread paths that yield

  15. SACRA - global data sets of satellite-derived crop calendars for agricultural simulations: an estimation of a high-resolution crop calendar using satellite-sensed NDVI

    Science.gov (United States)

    Kotsuki, S.; Tanaka, K.

    2015-01-01

    To date, many studies have performed numerical estimations of food production and agricultural water demand to understand the present and future supply-demand relationship. A crop calendar (CC) is an essential input datum to estimate food production and agricultural water demand accurately with the numerical estimations. CC defines the date or month when farmers plant and harvest in cropland. This study aims to develop a new global data set of a satellite-derived crop calendar for agricultural simulations (SACRA) and reveal advantages and disadvantages of the satellite-derived CC compared to other global products. We estimate global CC at a spatial resolution of 5 min (≈10 km) using the satellite-sensed NDVI data, which corresponds well to vegetation growth and death on the land surface. We first demonstrate that SACRA shows similar spatial pattern in planting date compared to a census-based product. Moreover, SACRA reflects a variety of CC in the same administrative unit, since it uses high-resolution satellite data. However, a disadvantage is that the mixture of several crops in a grid is not considered in SACRA. We also address that the cultivation period of SACRA clearly corresponds to the time series of NDVI. Therefore, accuracy of SACRA depends on the accuracy of NDVI used for the CC estimation. Although SACRA shows different CC from a census-based product in some regions, multiple usages of the two products are useful to take into consideration the uncertainty of the CC. An advantage of SACRA compared to the census-based products is that SACRA provides not only planting/harvesting dates but also a peak date from the time series of NDVI data.

  16. A corotation electric field model of the Earth derived from Swarm satellite magnetic field measurements

    Science.gov (United States)

    Maus, Stefan

    2017-08-01

    Rotation of the Earth in its own geomagnetic field sets up a primary corotation electric field, compensated by a secondary electric field of induced electrical charges. For the geomagnetic field measured by the Swarm constellation of satellites, a derivation of the global corotation electric field inside and outside of the corotation region is provided here, in both inertial and corotating reference frames. The Earth is assumed an electrical conductor, the lower atmosphere an insulator, followed by the corotating ionospheric E region again as a conductor. Outside of the Earth's core, the induced charge is immediately accessible from the spherical harmonic Gauss coefficients of the geomagnetic field. The charge density is positive at high northern and southern latitudes, negative at midlatitudes, and increases strongly toward the Earth's center. Small vertical electric fields of about 0.3 mV/m in the insulating atmospheric gap are caused by the corotation charges located in the ionosphere above and the Earth below. The corotation charges also flow outward into the region of closed magnetic field lines, forcing the plasmasphere to corotate. The electric field of the corotation charges further extends outside of the corotating regions, contributing radial outward electric fields of about 10 mV/m in the northern and southern polar caps. Depending on how the magnetosphere responds to these fields, the Earth may carry a net electric charge.

  17. Urban thermal environment and its biophysical parameters derived from satellite remote sensing imagery

    Science.gov (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.

    2013-10-01

    In frame of global warming, the field of urbanization and urban thermal environment are important issues among scientists all over the world. This paper investigated the influences of urbanization on urban thermal environment as well as the relationships of thermal characteristics to other biophysical variables in Bucharest metropolitan area of Romania based on satellite remote sensing imagery Landsat TM/ETM+, time series MODIS Terra/Aqua data and IKONOS acquired during 1990 - 2012 period. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also retrieved from thermal infrared band of Landsat TM/ETM+, from MODIS Terra/Aqua datasets. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. Results indicated that the metropolitan area ratio of impervious surface in Bucharest increased significantly during two decades investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.

  18. Oceanic geoid and tides derived from GEOS 3 satellite data in the Northwestern Atlantic Ocean

    Science.gov (United States)

    Won, I. J.; Miller, L. S.

    1979-01-01

    Two sets of GEOS 3 altimeter data which fall within about a 2.5-deg width are analyzed for ocean geoid and tides. One set covers a path from Newfoundland to Cuba, and the other a path from Puerto Rico to the North Carolina coast. Forty different analyses using various parameters are performed in order to investigate convergence. Profiles of the geoid and four tides, M2, O1, S2, and K1, are derived along the two strips. While the analyses produced convergent solutions for all 40 cases, the uncertainty caused by the linear orbital bias error of the satellite is too large to claim that the solutions represent the true ocean tides in the area. A spot check of the result with the Mode deep-sea tide gauge data shows poor agreement. A positive conclusion of this study is that despite the uncertain orbital error the oceanic geoid obtained through this analysis can improve significantly the short-wavelength structure over existing spherical harmonic geoid models.

  19. Statistical Characteristics of Mesoscale Eddies in the North Pacific Derived from Satellite Altimetry

    Directory of Open Access Journals (Sweden)

    Yu-Hsin Cheng

    2014-06-01

    Full Text Available The sea level anomaly data derived from satellite altimetry are analyzed to investigate statistical characteristics of mesoscale eddies in the North Pacific. Eddies are detected by a free-threshold eddy identification algorithm. The results show that the distributions of size, amplitude, propagation speed, and eddy kinetic energy of eddy follow the Rayleigh distribution. The most active regions of eddies are the Kuroshio Extension region, the Subtropical Counter Current zone, and the Northeastern Tropical Pacific region. By contrast, eddies are seldom observed around the center of the eastern part of the North Pacific Subarctic Gyre. The propagation speed and kinetic energy of cyclonic and anticyclonic eddies are almost the same, but anticyclonic eddies possess greater lifespans, sizes, and amplitudes than those of cyclonic eddies. Most eddies in the North Pacific propagate westward except in the Oyashio region. Around the northeastern tropical Pacific and the California currents, cyclonic and anticyclonic eddies propagate westward with slightly equatorward (197° average azimuth relative to east and poleward (165° deflection, respectively. This implies that the background current may play an important role in formation of the eddy pathway patterns.

  20. Water Level Fluctuations in the Congo Basin Derived from ENVISAT Satellite Altimetry

    Directory of Open Access Journals (Sweden)

    Mélanie Becker

    2014-09-01

    Full Text Available In the Congo Basin, the elevated vulnerability of food security and the water supply implies that sustainable development strategies must incorporate the effects of climate change on hydrological regimes. However, the lack of observational hydro-climatic data over the past decades strongly limits the number of studies investigating the effects of climate change in the Congo Basin. We present the largest altimetry-based dataset of water levels ever constituted over the entire Congo Basin. This dataset of water levels illuminates the hydrological regimes of various tributaries of the Congo River. A total of 140 water level time series are extracted using ENVISAT altimetry over the period of 2003 to 2009. To improve the understanding of the physical phenomena dominating the region, we perform a K-means cluster analysis of the altimeter-derived river level height variations to identify groups of hydrologically similar catchments. This analysis reveals nine distinct hydrological regions. The proposed regionalization scheme is validated and therefore considered reliable for estimating monthly water level variations in the Congo Basin. This result confirms the potential of satellite altimetry in monitoring spatio-temporal water level variations as a promising and unprecedented means for improved representation of the hydrologic characteristics in large ungauged river basins.

  1. Northern South China Sea Surface Circulation and its Variability Derived by Combining Satellite Altimetry and Surface Drifter Data

    Directory of Open Access Journals (Sweden)

    N. Peter Benny

    2015-01-01

    Full Text Available The present study analyses the mean and seasonal mesoscale surface circulation of the Northern South China Sea (NSCS and determines the influence of El Niño/SouthernNiño/Southern Oscillation (ENSO. High resolution Eulerian velocity field is derived by combining the available satellite tracked surface drifter data with satellite altimetry during 1993 - 2012. The wind driven current is computed employing the weekly ocean surface mean wind fields derived from the scatterometers on board ERS 1/2, QuikSCAT and ASCAT. The derived mean velocity field exhibits strong boundary currents and broad zonal flow across NSCS. The anomalous field is quite strong in the southern part and the Seasonal circulation clearly depicts the monsoonal forcing. Eddy Kinetic Energy (EKE distribution and its spatial and temporal structures are determined employing Empirical Orthogonal Function (EOF analysis. The ENSO influence on NSCS surface circulation has been analyzed using monthly absolute geostrophic velocity fields during 1996 - 1999.

  2. Data Filtering and Assimilation of Satellite Derived Aerosol Optical Depth, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellite observations of the Earth often contain excessive noise and extensive data voids. Aerosol measurements, for instance, are obscured and contaminated by...

  3. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

    Directory of Open Access Journals (Sweden)

    M. Ashrafi

    2005-01-01

    Full Text Available Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.

  4. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

    Directory of Open Access Journals (Sweden)

    M. Ashrafi

    2005-01-01

    Full Text Available Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.

  5. Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards: Part II. Validation of satellite-derived Volcanic Sulphur Dioxide Levels.

    Science.gov (United States)

    Koukouli, MariLiza; Balis, Dimitris; Dimopoulos, Spiros; Clarisse, Lieven; Carboni, Elisa; Hedelt, Pascal; Spinetti, Claudia; Theys, Nicolas; Tampellini, Lucia; Zehner, Claus

    2014-05-01

    The eruption of the Icelandic volcano Eyjafjallajökull in the spring of 2010 turned the attention of both the public and the scientific community to the susceptibility of the European airspace to the outflows of large volcanic eruptions. The ash-rich plume from Eyjafjallajökull drifted towards Europe and caused major disruptions of European air traffic for several weeks affecting the everyday life of millions of people and with a strong economic impact. This unparalleled situation revealed limitations in the decision making process due to the lack of information on the tolerance to ash of commercial aircraft engines as well as limitations in the ash monitoring and prediction capabilities. The European Space Agency project Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards, was introduced to facilitate the development of an optimal End-to-End System for Volcanic Ash Plume Monitoring and Prediction. This system is based on comprehensive satellite-derived ash plume and sulphur dioxide [SO2] level estimates, as well as a widespread validation using supplementary satellite, aircraft and ground-based measurements. The validation of volcanic SO2 levels extracted from the sensors GOME-2/MetopA and IASI/MetopA are shown here with emphasis on the total column observed right before, during and after the Eyjafjallajökull 2010 eruptions. Co-located ground-based Brewer Spectrophotometer data extracted from the World Ozone and Ultraviolet Radiation Data Centre, WOUDC, were compared to the different satellite estimates. The findings are presented at length, alongside a comprehensive discussion of future scenarios.

  6. Potential of satellite-derived ecosystem functional attributes to anticipate species range shifts

    Science.gov (United States)

    Alcaraz-Segura, Domingo; Lomba, Angela; Sousa-Silva, Rita; Nieto-Lugilde, Diego; Alves, Paulo; Georges, Damien; Vicente, Joana R.; Honrado, João P.

    2017-05-01

    In a world facing rapid environmental changes, anticipating their impacts on biodiversity is of utmost relevance. Remotely-sensed Ecosystem Functional Attributes (EFAs) are promising predictors for Species Distribution Models (SDMs) by offering an early and integrative response of vegetation performance to environmental drivers. Species of high conservation concern would benefit the most from a better ability to anticipate changes in habitat suitability. Here we illustrate how yearly projections from SDMs based on EFAs could reveal short-term changes in potential habitat suitability, anticipating mid-term shifts predicted by climate-change-scenario models. We fitted two sets of SDMs for 41 plant species of conservation concern in the Iberian Peninsula: one calibrated with climate variables for baseline conditions and projected under two climate-change-scenarios (future conditions); and the other calibrated with EFAs for 2001 and projected annually from 2001 to 2013. Range shifts predicted by climate-based models for future conditions were compared to the 2001-2013 trends from EFAs-based models. Projections of EFAs-based models estimated changes (mostly contractions) in habitat suitability that anticipated, for the majority (up to 64%) of species, the mid-term shifts projected by traditional climate-change-scenario forecasting, and showed greater agreement with the business-as-usual scenario than with the sustainable-development one. This study shows how satellite-derived EFAs can be used as meaningful essential biodiversity variables in SDMs to provide early-warnings of range shifts and predictions of short-term fluctuations in suitable conditions for multiple species.

  7. Using Social Media and Mobile Devices to Discover and Share Disaster Data Products Derived From Satellites

    Science.gov (United States)

    Mandl, Daniel; Cappelaere, Patrice; Frye, Stuart; Evans, John; Moe, Karen

    2014-01-01

    Data products derived from Earth observing satellites are difficult to find and share without specialized software and often times a highly paid and specialized staff. For our research effort, we endeavored to prototype a distributed architecture that depends on a standardized communication protocol and applications program interface (API) that makes it easy for anyone to discover and access disaster related data. Providers can easily supply the public with their disaster related products by building an adapter for our API. Users can use the API to browse and find products that relate to the disaster at hand, without a centralized catalogue, for example floods, and then are able to share that data via social media. Furthermore, a longerterm goal for this architecture is to enable other users who see the shared disaster product to be able to generate the same product for other areas of interest via simple point and click actions on the API on their mobile device. Furthermore, the user will be able to edit the data with on the ground local observations and return the updated information to the original repository of this information if configured for this function. This architecture leverages SensorWeb functionality [1] presented at previous IGARSS conferences. The architecture is divided into two pieces, the frontend, which is the GeoSocial API, and the backend, which is a standardized disaster node that knows how to talk to other disaster nodes, and also can communicate with the GeoSocial API. The GeoSocial API, along with the disaster node basic functionality enables crowdsourcing and thus can leverage insitu observations by people external to a group to perform tasks such as improving water reference maps, which are maps of existing water before floods. This can lower the cost of generating precision water maps. Keywords-Data Discovery, Disaster Decision Support, Disaster Management, Interoperability, CEOS WGISS Disaster Architecture

  8. Using GIS data and satellite derived irradiance to optimize siting of PV installations in Switzerland

    Science.gov (United States)

    Kahl, Annelen; Nguyen, Viet-Anh; Bartlett, Stuart; Sossan, Fabrizio; Lehning, Michael

    2016-04-01

    For a successful distribution strategy of PV installations, it does not suffice to choose the locations with highest annual total irradiance. Attention needs to be given to spatial correlation patterns of insolation to avoid large system-wide variations, which can cause extended deficits in supply or might even damage the electrical network. One alternative goal instead is to seek configurations that provide the smoothest energy production, with the most reliable and predictable supply. Our work investigates several scenarios, each pursuing a different strategy for a future renewable Switzerland without nuclear power. Based on an estimate for necessary installed capacity for solar power [Bartlett, 2015] we first use heuristics to pre-select realistic placements for PV installations. Then we apply optimization methods to find a subset of locations that provides the best possible combined electricity production. For the first part of the selection process, we use a DEM to exclude high elevation zones which would be difficult to access and which are prone to natural hazards. Then we use land surface cover information to find all zones with potential roof area, deemed suitable for installation of solar panels. The optimization employs Principal Component Analysis of satellite derived irradiance data (Surface Incoming Shortwave Radiation (SIS), based on Meteosat Second Generation sensors) to incorporate a spatial aspect into the selection process that does not simply maximize annual total production but rather provides the most robust supply, by combining regions with anti-correlated cloud cover patterns. Depending on the initial assumptions and constraints, the resulting distribution schemes for PV installations vary with respect to required surface area, annual total and lowest short-term production, and illustrate how important it is to clearly define priorities and policies for a future renewable Switzerland.

  9. Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational 1-Norm Regularization in the Derivative Domain

    Science.gov (United States)

    Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.

    2013-01-01

    The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall),and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients(called 1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a database of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case

  10. Interpretation of Aura satellite observations of CO and aerosol index related to the December 2006 Australia fires

    Science.gov (United States)

    Luo, M.; Boxe, C.; Jiang, J.; Nassar, R.; Livesey, N.

    2009-11-01

    Enhanced Carbon Monoxide (CO) in the upper troposphere (UT) is shown by collocated Tropospheric Emission Spectrometer (TES) and Microwave Limb Sounder (MLS) measurements near and down-wind from the known wildfire region of SE Australia from 12-19 December 2006. Enhanced UV aerosol index (AI) derived from Ozone Monitoring Instrument (OMI) measurements correlate with these high CO concentrations. HYSPLIT model back trajectories trace selected air parcels to the SE Australia fire region as their initial location, where TES observes enhanced CO in the upper and lower troposphere. Simultaneously, they show a lack of vertical advection along their tracks. TES retrieved CO vertical profiles in the higher and lower southern latitudes are examined together with the averaging kernels and show that TES CO retrievals are most sensitive at approximately 300-400 hPa. The enhanced CO observed by TES at the upper (215 hPa) and lower (681 hPa) troposphere are, therefore, influenced by mid-tropospheric CO. GEOS-Chem model simulations with an 8-day emission inventory, as the wildfire source over Australia, are sampled to the TES/MLS observation times and locations. These simulations only show CO enhancements in the lower troposphere near and down-wind from the wildfire region of SE Australia with drastic underestimates of UT CO. Although CloudSat along-track ice-water content curtains are examined to see whether possible vertical convection events can explain the high UT CO values, sparse observations of collocated Aura CO and CloudSat along-track ice-water content measurements for the single event precludes any conclusive correlation. Vertical convection that uplift fire-induced CO (i.e. most notably referred to as pyro-cumulonimbus, pyroCb) may provide an explanation for the incongruence between these simulations and the TES/MLS observations of enhanced CO in the UT. Future GEOS-Chem simulations are needed to validate this conjecture as the the PyroCb mechanism is currently not

  11. An operational system for the assimilation of the satellite information on wild-land fires for the needs of air quality modelling and forecasting

    Directory of Open Access Journals (Sweden)

    M. Sofiev

    2009-09-01

    Full Text Available This paper investigates a potential of two remotely sensed wild-land fire characteristics: 4-μm Brightness Temperature Anomaly (TA and Fire Radiative Power (FRP for the needs of operational chemical transport modelling and short-term forecasting of atmospheric composition and air quality. The treatments of the TA and FRP data are presented and a methodology for evaluating the emission fluxes of primary aerosols (PM2.5 and total PM is described. The method does not include the complicated analysis of vegetation state, fuel load, burning efficiency and related factors, which are uncertain but inevitably involved in approaches based on burnt-area scars or similar products. The core of the current methodology is based on the empirical emission factors that are used to convert the observed temperature anomalies and fire radiative powers into emission fluxes. These factors have been derived from the analysis of several fire episodes in Europe (28.4–5.5.2006, 15.8–25.8.2006 and in August 2008. These episodes were characterised by: (i well-identified FRP and TA values, and (ii available ground-based observations of aerosol concentrations, and optical thickness for the regions where the contribution of the fire smoke to the concentrations of PM2.5 was dominant, in comparison with those of other pollution sources. The emission factors were determined separately for the forested and grassland areas; in case of mixed-type land use, an intermediate scaling was assumed. Despite significant differences between the TA and FRP methodologies, an accurate non-linear fitting was found between the predictions of these approaches. The agreement was comparatively weak only for small fires, for which the accuracy of both products is expected to be low. The applications of the Fire Assimilation System (FAS in combination with the dispersion model SILAM showed that both the TA and FRP products are suitable for the evaluation of the emission

  12. Satellite Derived Water Quality Observations Are Related to River Discharge and Nitrogen Loads in Pensacola Bay, Florida

    OpenAIRE

    John C. Lehrter; John C. Lehrter; Chengfeng Le

    2017-01-01

    Relationships between satellite-derived water quality variables and river discharges, concentrations and loads of nutrients, organic carbon, and sediments were investigated over a 9-year period (2003–2011) in Pensacola Bay, Florida, USA. These analyses were conducted to better understand which river forcing factors were the primary drivers of estuarine variability in several water quality variables. Remote sensing reflectance time-series data were retrieved from the MEdium Resolution Imaging ...

  13. Distribution and Variability of Satellite-Derived Signals of Isolated Convection Initiation Events Over Central Eastern China

    Science.gov (United States)

    Huang, Yipeng; Meng, Zhiyong; Li, Jing; Li, Wanbiao; Bai, Lanqiang; Zhang, Murong; Wang, Xi

    2017-11-01

    This study combined measurements from the Chinese operational geostationary satellite Fengyun-2E (FY-2E) and ground-based weather radars to conduct a statistical survey of isolated convection initiation (CI) over central eastern China (CEC). The convective environment in CEC is modulated by the complex topography and monsoon climate. From May to August 2010, a total of 1,630 isolated CI signals were derived from FY-2E using a semiautomated method. The formation of these satellite-derived CI signals peaks in the early afternoon and occurs with high frequency in areas with remarkable terrain inhomogeneity (e.g., mountain, water, and mountain-water areas). The high signal frequency areas shift from northwest CEC (dry, high altitude) in early summer to southeast CEC (humid, low altitude) in midsummer along with an increasing monthly mean frequency. The satellite-derived CI signals tend to have longer lead times (the time difference between satellite-derived signal formation and radar-based CI) in the late morning and afternoon than in the early morning and night. During the early morning and night, the distinction between cloud top signatures and background terrestrial radiation becomes less apparent, resulting in delayed identification of the signals and thus short and even negative lead times. A decline in the lead time is observed from May to August, likely due to the increasing cloud growth rate and warm-rain processes. Results show increasing lead times with increasing landscape elevation, likely due to more warm-rain processes over the coastal sea and plain, along with a decreasing cloud growth rate from hill and mountain to the plateau.

  14. Estimated Depth Maps of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Estimated shallow-water, depth maps were produced using rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations in the...

  15. Artificial intelligence techniques applied to hourly global irradiance estimation from satellite-derived cloud index

    Energy Technology Data Exchange (ETDEWEB)

    Zarzalejo, L.F.; Ramirez, L.; Polo, J. [DER-CIEMAT, Madrid (Spain). Renewable Energy Dept.

    2005-07-01

    Artificial intelligence techniques, such as fuzzy logic and neural networks, have been used for estimating hourly global radiation from satellite images. The models have been fitted to measured global irradiance data from 15 Spanish terrestrial stations. Both satellite imaging data and terrestrial information from the years 1994, 1995 and 1996 were used. The results of these artificial intelligence models were compared to a multivariate regression based upon Heliosat I model. A general better behaviour was observed for the artificial intelligence models. (author)

  16. Artificial intelligence techniques applied to hourly global irradiance estimation from satellite-derived cloud index

    International Nuclear Information System (INIS)

    Zarzalejo, Luis F.; Ramirez, Lourdes; Polo, Jesus

    2005-01-01

    Artificial intelligence techniques, such as fuzzy logic and neural networks, have been used for estimating hourly global radiation from satellite images. The models have been fitted to measured global irradiance data from 15 Spanish terrestrial stations. Both satellite imaging data and terrestrial information from the years 1994, 1995 and 1996 were used. The results of these artificial intelligence models were compared to a multivariate regression based upon Heliosat I model. A general better behaviour was observed for the artificial intelligence models

  17. Algorithm Development and Validation for Satellite-Derived Distributions of DOC and CDOM in the US Middle Atlantic Bight

    Science.gov (United States)

    Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.

    2007-01-01

    In coastal ocean waters, distributions of dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) vary seasonally and interannually due to multiple source inputs and removal processes. We conducted several oceanographic cruises within the continental margin of the U.S. Middle Atlantic Bight (MAB) to collect field measurements in order to develop algorithms to retrieve CDOM and DOC from NASA's MODIS-Aqua and SeaWiFS satellite sensors. In order to develop empirical algorithms for CDOM and DOC, we correlated the CDOM absorption coefficient (a(sub cdom)) with in situ radiometry (remote sensing reflectance, Rrs, band ratios) and then correlated DOC to Rrs band ratios through the CDOM to DOC relationships. Our validation analyses demonstrate successful retrieval of DOC and CDOM from coastal ocean waters using the MODIS-Aqua and SeaWiFS satellite sensors with mean absolute percent differences from field measurements of cdom)(355)1,6 % for a(sub cdom)(443), and 12% for the CDOM spectral slope. To our knowledge, the algorithms presented here represent the first validated algorithms for satellite retrieval of a(sub cdom) DOC, and CDOM spectral slope in the coastal ocean. The satellite-derived DOC and a(sub cdom) products demonstrate the seasonal net ecosystem production of DOC and photooxidation of CDOM from spring to fall. With accurate satellite retrievals of CDOM and DOC, we will be able to apply satellite observations to investigate interannual and decadal-scale variability in surface CDOM and DOC within continental margins and monitor impacts of climate change and anthropogenic activities on coastal ecosystems.

  18. Mapping post-fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery

    Science.gov (United States)

    Mitri, George H.; Gitas, Ioannis Z.

    2013-02-01

    Careful evaluation of forest regeneration and vegetation recovery after a fire event provides vital information useful in land management. The use of remotely sensed data is considered to be especially suitable for monitoring ecosystem dynamics after fire. The aim of this work was to map post-fire forest regeneration and vegetation recovery on the Mediterranean island of Thasos by using a combination of very high spatial (VHS) resolution (QuickBird) and hyperspectral (EO-1 Hyperion) imagery and by employing object-based image analysis. More specifically, the work focused on (1) the separation and mapping of three major post-fire classes (forest regeneration, other vegetation recovery, unburned vegetation) existing within the fire perimeter, and (2) the differentiation and mapping of the two main forest regeneration classes, namely, Pinus brutia regeneration, and Pinus nigra regeneration. The data used in this study consisted of satellite images and field observations of homogeneous regenerated and revegetated areas. The methodology followed two main steps: a three-level image segmentation, and, a classification of the segmented images. The process resulted in the separation of classes related to the aforementioned objectives. The overall accuracy assessment revealed very promising results (approximately 83.7% overall accuracy, with a Kappa Index of Agreement of 0.79). The achieved accuracy was 8% higher when compared to the results reported in a previous work in which only the EO-1 Hyperion image was employed in order to map the same classes. Some classification confusions involving the classes of P. brutia regeneration and P. nigra regeneration were observed. This could be attributed to the absence of large and dense homogeneous areas of regenerated pine trees in the study area.

  19. Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments

    Directory of Open Access Journals (Sweden)

    A. Hilboll

    2013-04-01

    Full Text Available Tropospheric NO2, a key pollutant in particular in cities, has been measured from space since the mid-1990s by the GOME, SCIAMACHY, OMI, and GOME-2 instruments. These data provide a unique global long-term dataset of tropospheric pollution. However, the observations differ in spatial resolution, local time of measurement, viewing geometry, and other details. All these factors can severely impact the retrieved NO2 columns. In this study, we present three ways to account for instrumental differences in trend analyses of the NO2 columns derived from satellite measurements, while preserving the individual instruments' spatial resolutions. For combining measurements from GOME and SCIAMACHY into one consistent time series, we develop a method to explicitly account for the instruments' difference in ground pixel size (40 × 320 km2 vs. 30 × 60 km2. This is especially important when analysing NO2 changes over small, localised sources like, e.g. megacities. The method is based on spatial averaging of the measured earthshine spectra and extraction of a spatial pattern of the resolution effect. Furthermore, two empirical corrections, which summarise all instrumental differences by including instrument-dependent offsets in a fitted trend function, are developed. These methods are applied to data from GOME and SCIAMACHY separately, to the combined time series, and to an extended dataset comprising also GOME-2 and OMI measurements. All approaches show consistent trends of tropospheric NO2 for a selection of areas on both regional and city scales, for the first time allowing consistent trend analysis of the full time series at high spatial resolution. Compared to previous studies, the longer study period leads to significantly reduced uncertainties. We show that measured tropospheric NO2 columns have been strongly increasing over China, the Middle East, and India, with values over east-central China tripling from 1996 to 2011. All parts of the developed world

  20. Comparison and evaluation of satellite derived precipitation products for hydrological modeling of the Zambezi River Basin

    Directory of Open Access Journals (Sweden)

    T. Cohen Liechti

    2012-02-01

    Full Text Available In the framework of the African DAms ProjecT (ADAPT, an integrated water resource management study in the Zambezi Basin is currently under development. In view of the sparse gauging network for rainfall monitoring, the observations from spaceborne instrumentation currently produce the only available rainfall data for a large part of the basin.

    Three operational and acknowledged high resolution satellite derived estimates: the Tropical Rainfall Measuring Mission product 3B42 (TRMM 3B42, the Famine Early Warning System product 2.0 (FEWS RFE2.0 and the National Oceanic and Atmospheric Administration/Climate Prediction Centre (NOAA/CPC morphing technique (CMORPH are analyzed in terms of spatial and temporal repartition of the precipitations. They are compared to ground data for the wet seasons of the years 2003 to 2009 on a point to pixel basis at daily, 10-daily and monthly time steps and on a pixel to pixel basis for the wet seasons of the years 2003 to 2007 at monthly time steps.

    The general North-South gradient of precipitation is captured by all the analyzed products. Regarding the spatial heterogeneity, FEWS pixels are much more inter-correlated than TRMM and CMORPH pixels. For a rainfall homogeneity threshold criterion of 0.5 global mean correlation coefficient, the area of each sub-basin should not exceed a circle of 2.5° latitude/longitude radius for FEWS and a circle of 0.75° latitude/longitude radius for TRMM and CMORPH considering rectangular meshes.

    In terms of reliability, the correspondence of all estimates with ground data increases with the time step chosen for the analysis. The volume ratio computation indicates that CMORPH is overestimating the rainfall by nearly 50%. The statistics of TRMM and FEWS estimates show quite similar results.

    Due to its lower inter-correlation and longer data set, the TRMM 3B42 product is chosen as input for the hydraulic-hydrologic model of the basin.

  1. Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia

    Science.gov (United States)

    Tadesse, Tsegaye; Senay, Gabriel B.; Berhan, Getachew; Regassa, Teshome; Beyene, Shimelis

    2015-01-01

    Satellite-derived evapotranspiration anomalies and normalized difference vegetation index (NDVI) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data are currently used for African agricultural drought monitoring and food security status assessment. In this study, a process to evaluate satellite-derived evapotranspiration (ETa) products with a geospatial statistical exploratory technique that uses NDVI, satellite-derived rainfall estimate (RFE), and crop yield data has been developed. The main goal of this study was to evaluate the ETa using the NDVI and RFE, and identify a relationship between the ETa and Ethiopia’s cereal crop (i.e., teff, sorghum, corn/maize, barley, and wheat) yields during the main rainy season. Since crop production is one of the main factors affecting food security, the evaluation of remote sensing-based seasonal ETa was done to identify the appropriateness of this tool as a proxy for monitoring vegetation condition in drought vulnerable and food insecure areas to support decision makers. The results of this study showed that the comparison between seasonal ETa and RFE produced strong correlation (R2 > 0.99) for all 41 crop growing zones in Ethiopia. The results of the spatial regression analyses of seasonal ETa and NDVI using Ordinary Least Squares and Geographically Weighted Regression showed relatively weak yearly spatial relationships (R2 < 0.7) for all cropping zones. However, for each individual crop zones, the correlation between NDVI and ETa ranged between 0.3 and 0.84 for about 44% of the cropping zones. Similarly, for each individual crop zones, the correlation (R2) between the seasonal ETa anomaly and de-trended cereal crop yield was between 0.4 and 0.82 for 76% (31 out of 41) of the crop growing zones. The preliminary results indicated that the ETa products have a good predictive potential for these 31 identified zones in Ethiopia. Decision makers may potentially use ETa products for monitoring cereal

  2. Fire and Deforestation Dynamics in South America over the Past 50 Years

    Science.gov (United States)

    van Marle, M.; Field, R. D.; van der Werf, G.

    2015-12-01

    Fires play an important role in the Earth system and are one of the major sources of greenhouse gases and aerosols. Satellites have been key to understand their spatial and temporal variability in space and time, but the most frequently used satellite datasets start only in 1995. There are still large uncertainties about the frequency and intensity of fires in the pre-satellite time period, especially in regions with active deforestation, which may have changed dramatically in intensity in the past decades influencing fire dynamics. We used two datasets to extend the record of fires and deforestation in the Amazon region back in time: 1) annual forest loss rates starting in 1990 derived from Vegetation Optical Depth (VOD), which is a satellite-based vegetation product that can be used as proxy for forest loss, and 2) horizontal visibility as proxy for fire emissions, reported by weather stations and airports in the Amazon, which started around 1940, and having widespread coverage since 1973. We show that these datasets overlap with fire emission estimates from the Global Fire Emissions Database (GFED) enabling us to estimate fire emissions over the last 50 years. We will discuss how fires have varied over time in this region with globally significant emissions, how droughts have influenced fire activity and deforestation rates, and what the impact is of land-use change caused by fire on emissions in the Amazon region.

  3. Merged/integrated Bathymetric Data Derived from Multibeam Sonar, LiDAR, and Satellite-derived Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with derived bathymetry from alternate sources to provide a GIS layer with expanded spatial coverage. Integrated products...

  4. Prescribed fire effects on field-derived and simulated forest carbon stocks over time

    Science.gov (United States)

    Nicole M. Vaillant; Alicia L. Reiner; Erin K. Noonan-Wright

    2013-01-01

    To better understand the impact of prescribed fire on carbon stocks, we quantified aboveground and belowground carbon stocks within five pools (live trees and coarse roots, dead trees and coarse roots, live understory vegetation, down woody debris, and litter and duff) and potential carbon emissions from a simulated wildfire before and up to 8 years after prescribed...

  5. Photochemical model evaluation of 2013 California wild fire air quality impacts using surface, aircraft, and satellite data.

    Science.gov (United States)

    Baker, K R; Woody, M C; Valin, L; Szykman, J; Yates, E L; Iraci, L T; Choi, H D; Soja, A J; Koplitz, S N; Zhou, L; Campuzano-Jost, Pedro; Jimenez, Jose L; Hair, J W

    2018-10-01

    The Rim Fire was one of the largest wildfires in California history, burning over 250,000 acres during August and September 2013 affecting air quality locally and regionally in the western U.S. Routine surface monitors, remotely sensed data, and aircraft based measurements were used to assess how well the Community Multiscale Air Quality (CMAQ) photochemical grid model applied at 4 and 12 km resolution represented regional plume transport and chemical evolution during this extreme wildland fire episode. Impacts were generally similar at both grid resolutions although notable differences were seen in some secondary pollutants (e.g., formaldehyde and peroxyacyl nitrate) near the Rim fire. The modeling system does well at capturing near-fire to regional scale smoke plume transport compared to remotely sensed aerosol optical depth (AOD) and aircraft transect measurements. Plume rise for the Rim fire was well characterized as the modeled plume top was consistent with remotely sensed data and the altitude of aircraft measurements, which were typically made at the top edge of the plume. Aircraft-based lidar suggests O 3 downwind in the Rim fire plume was vertically stratified and tended to be higher at the plume top, while CMAQ estimated a more uniformly mixed column of O 3 . Predicted wildfire ozone (O 3 ) was overestimated both at the plume top and at nearby rural and urban surface monitors. Photolysis rates were well characterized by the model compared with aircraft measurements meaning aerosol attenuation was reasonably estimated and unlikely contributing to O 3 overestimates at the top of the plume. Organic carbon was underestimated close to the Rim fire compared to aircraft data, but was consistent with nearby surface measurements. Periods of elevated surface PM 2.5 at rural monitors near the Rim fire were not usually coincident with elevated O 3 . Published by Elsevier B.V.

  6. Merging of airborne gravity and gravity derived from satellite altimetry: Test cases along the coast of greenland

    DEFF Research Database (Denmark)

    Olesen, Arne Vestergaard; Andersen, Ole Baltazar; Tscherning, C.C.

    2002-01-01

    for the use of gravity data especially, when computing geoid models in coastal regions. The presence of reliable marine gravity data for independent control offers an opportunity to study procedures for the merging of airborne and satellite data around Greenland. Two different merging techniques, both based......The National Survey and Cadastre - Denmark (KMS) has for several years produced gravity anomaly maps over the oceans derived from satellite altimetry. During the last four years, KMS has also conducted airborne gravity surveys along the coast of Greenland dedicated to complement the existing...... onshore gravity coverage and fill in new data in the very-near coastal area, where altimetry data may contain gross errors. The airborne surveys extend from the coastline to approximately 100 km offshore, along 6000 km of coastline. An adequate merging of these different data sources is important...

  7. A model of Earth’s magnetic field derived from 2 years of Swarm satellite constellation data

    DEFF Research Database (Denmark)

    Olsen, Nils; Finlay, Chris; Kotsiaros, Stavros

    2016-01-01

    More than 2 years of magnetic field data taken by the three-satellite constellation mission Swarm are used to derive a model of Earth’s magnetic field and its time variation. This model is called SIFMplus. In addition to the magnetic field observations provided by each of the three Swarm satellites...... the North–South gradient. The SIFMplus model provides a description of the static lithospheric field that is very similar to models determined from CHAMP data, up to at least spherical harmonic degree n=75. Also the core field part of SIFMplus, with a quadratic time dependence for n≤6 and a linear time...... with the model of the core, lithospheric and large-scale magnetospheric fields, a magnetic potential that depends on quasi-dipole latitude and magnetic local time....

  8. Mosaic of 10 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Alamagan Island, Commonwealth of Northern Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (10 m cell size) multibeam bathymetry collected...

  9. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Palmyra Atoll, Pacific Remote Island Area, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  10. Mosaic of 10 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Asuncion Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (10 m cell size) multibeam bathymetry collected...

  11. Mosaic of 5 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Alamagan Island, Commonwealth of Northern Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  12. Mosaic of 10 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Maug Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (5m and 10 m cell size) multibeam bathymetry...

  13. Mosaic of 5 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Asuncion Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  14. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Sarigan Island, Territory of Mariana, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (10 m cell size) multibeam bathymetry...

  15. Mosaic of 5 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Maug Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (5m and 10 m cell size) multibeam bathymetry...

  16. Mosaic of 5m gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Swains Island, Territory of American Samoa, South Pacific, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (5 m cell size) multibeam bathymetry...

  17. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Ofu and Olosega Islands, Territory of American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multipectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  18. Mosaic of bathymetry derived from multispectral World View-2 satellite imagery of Ni'ihau Island, Territory of the Main Hawaiian Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetric data derived from a multipectral World View-2 satellite image mosaiced to provide near complete coverage of nearshore terrain around the islands....

  19. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (10 m cell size) multibeam bathymetry...

  20. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Rota Island, Territory of Mariana, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (5 m cell size) multibeam bathymetry...

  1. Mosaic of 2m bathymetry derived from multispectral IKONOS World View-2 satellite imagery of Swains Island, Territory of American Samoa, South Pacific, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetric data derived from a multipectral World View-2 satellite image mosaiced to provide near complete coverage of nearshore terrain around the islands....

  2. Mosaic of gridded multibeam bathymetry, gridded LiDAR bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Tinian Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with gridded LiDAR bathymetry and bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size)...

  3. Plantago lagopus B Chromosome Is Enriched in 5S rDNA-Derived Satellite DNA

    Czech Academy of Sciences Publication Activity Database

    Kumke, K.; Macas, Jiří; Fuchs, J.; Altschmied, L.; Kour, J.; Dhar, M.K.; Houben, A.

    2016-01-01

    Roč. 148, č. 1 (2016), s. 68-73 ISSN 1424-8581 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:60077344 Keywords : Polymorhpic A chromosome segment * Satellite repeat * Supernumerary chromosome * 5S rDNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.354, year: 2016

  4. Will the aerosol derived from the OCM satellite sensor be representative of the aerosol over Goa?

    Digital Repository Service at National Institute of Oceanography (India)

    Talaulikar, M.; Suresh, T.; Rodrigues, A.; Desa, E.; Chauhan, P.

    Most of the ocean color satellite sensors such as IRS-P4 OCM, SeaWiFS and MODIS are sun synchronous and have pass over the regions during noon. From our measurements of aerosol optical properties using five-channel sunphotometer over the coastal...

  5. How consistent is the satellite derived SST-LHF relationship in comparison with observed values ?

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.

    Arabian Sea was generally above 27 degrees C, the satellite underestimation often produced SSTs less than 27 degrees C, thereby supporting a linear relationship with LHF, as suggested by Zhang and McPhaden. Similarly for SSTs higher than 28 degrees C...

  6. A Satellite-Based Surface Radiation Climatology Derived by Combining Climate Data Records and Near-Real-Time Data

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-09-01

    Full Text Available This study presents a method for adjusting long-term climate data records (CDRs for the integrated use with near-real-time data using the example of surface incoming solar irradiance (SIS. Recently, a 23-year long (1983–2005 continuous SIS CDR has been generated based on the visible channel (0.45–1 μm of the MVIRI radiometers onboard the geostationary Meteosat First Generation Platform. The CDR is available from the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF. Here, it is assessed whether a homogeneous extension of the SIS CDR to the present is possible with operationally generated surface radiation data provided by CM SAF using the SEVIRI and GERB instruments onboard the Meteosat Second Generation satellites. Three extended CM SAF SIS CDR versions consisting of MVIRI-derived SIS (1983–2005 and three different SIS products derived from the SEVIRI and GERB instruments onboard the MSG satellites (2006 onwards were tested. A procedure to detect shift inhomogeneities in the extended data record (1983–present was applied that combines the Standard Normal Homogeneity Test (SNHT and a penalized maximal T-test with visual inspection. Shift detection was done by comparing the SIS time series with the ground stations mean, in accordance with statistical significance. Several stations of the Baseline Surface Radiation Network (BSRN and about 50 stations of the Global Energy Balance Archive (GEBA over Europe were used as the ground-based reference. The analysis indicates several breaks in the data record between 1987 and 1994 probably due to artefacts in the raw data and instrument failures. After 2005 the MVIRI radiometer was replaced by the narrow-band SEVIRI and the broadband GERB radiometers and a new retrieval algorithm was applied. This induces significant challenges for the homogenisation across the satellite generations. Homogenisation is performed by applying a mean-shift correction depending on the shift size of

  7. The annual cycle of satellite derived sea surface temperature on the western South Atlantic shelf

    Directory of Open Access Journals (Sweden)

    Carlos A. D. Lentini

    2000-01-01

    Full Text Available In this article, thirteen years of weekly sea surface temperature (SST fields derived from NOAA Advanced Very High Resolution Radiometer global area coverage infrared satellite data, from January 1982 to December 1994, are used to investigate spatial and temporal variabilities of SST seasonal cycle in the Southwest Atlantic Oceano This work addresses large scale variations over the eastem South American continental shelf and slope regions limited offshore by the 1000-m isobath, between 42° and 22°S. SST time series are fit with annual and semi-annual harmonics to describe the annual variation of sea surface temperatures. The annual harmonic explains a large proportion of the SST variability. The coefficient of determination is highest (> 90% on the continental shelf, decreasing offshore. The estimated amplitude of the seasonal cycle ranges between 4° and 13°e throughout the study area, with minima in August­September and maxima in February-March. After the identification and removal of the dominant annual components ofSST variability, models such as the one presented here are an attractive tool to study interannual SST variability.Neste artigo, treze anos de imagens semanais da temperatura da superfície do mar (TSM obtidas através do sensor infravermelho Advanced Very High Resolution Radiometer a bordo dos satélites NOAA, de janeiro de 1982 a dezembro de 1994, são utlilizadas para investigar as variabilidades espacial e temporal do cicIo sazonal de TSM no Oceano Atlântico Sudoeste. Este trabalho objetiva as variações de larga escala sobre a plataforma continental e o talude leste da América do Sul limitados ao largo pela isóbata de 1000 metros, entre 42°5 e 22°S. As séries temporais de TSM são ajustadas aos .harmônicos anual e sem i-anual para descrever a variação anual das temperaturas da superfície do mar. O harmônico anual explica a maior parte da variabilidade da TSM. O coeficiente de determinação é alto (> 90

  8. Preliminary hard and soft bottom seafloor substrate map derived from an supervised classification of bathymetry derived from multispectral World View-2 satellite imagery of Ni'ihau Island, Territory of Main Hawaiian Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from a supervised classification from multispectral World View-2 satellite imagery of Ni'ihau Island,...

  9. Statistical modeling of phenological phases in Poland based on coupling satellite derived products and gridded meteorological data

    Science.gov (United States)

    Czernecki, Bartosz; Jabłońska, Katarzyna; Nowosad, Jakub

    2016-04-01

    The aim of the study was to create and evaluate different statistical models for reconstructing and predicting selected phenological phases. This issue is of particular importance in Poland where national-wide phenological monitoring was abandoned in the middle of 1990s and the reactivated network was established in 2006. Authors decided to evaluate possibilities of using a wide-range of statistical modeling techniques to create synthetic archive dataset. Additionally, a robust tool for predicting the most distinguishable phenophases using only free of charge data as predictors was created. Study period covers the years 2007-2014 and contains only quality-controlled dataset of 10 species and 14 phenophases. Phenological data used in this study originates from the manual observations network run by the Institute of Meteorology and Water Management - National Research Institute (IMGW-PIB). Three kind of data sources were used as predictors: (i) satellite derived products, (ii) preprocessed gridded meteorological data, and (iii) spatial properties (longitude, latitude, altitude) of the monitoring site. Moderate-Resolution Imaging Spectroradiometer (MODIS) level-3 vegetation products were used for detecting onset dates of particular phenophases. Following indices were used: Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), and Fraction of Photosynthetically Active Radiation (fPAR). Additionally, Interactive Multisensor Snow and Ice Mapping System (IMS) products were chosen to detect occurrence of snow cover. Due to highly noisy data, authors decided to take into account pixel reliability information. Besides satellite derived products (NDVI, EVI, FPAR, LAI, Snow cover), a wide group of observational data and agrometeorological indices derived from the European Climate Assessment & Dataset (ECA&D) were used as a potential predictors: cumulative growing degree days (GDD), cumulative growing precipitation days (GPD

  10. Space transportation. [user needs met by information derived from satellites and the interface with space transportation systems

    Science.gov (United States)

    1975-01-01

    User-oriented panels were formed to examine practical applications of information or services derived from earth orbiting satellites. Topics discussed include: weather and climate; uses of communication; land use planning; agriculture, forest, and range; inland water resources; retractable resources; environmental quality; marine and maritime uses; and materials processing in space. Emphasis was placed on the interface of the space transportation system (STS) with the applications envisioned by the user panels. User requirements were compared with expected STS capabilities in terms of availability, carrying payload to orbit, and estimated costs per launch. Conclusions and recommendations were reported.

  11. A satellite digital controller or 'play that PID tune again, Sam'. [Position, Integral, Derivative feedback control algorithm for design strategy

    Science.gov (United States)

    Seltzer, S. M.

    1976-01-01

    The problem discussed is to design a digital controller for a typical satellite. The controlled plant is considered to be a rigid body acting in a plane. The controller is assumed to be a digital computer which, when combined with the proposed control algorithm, can be represented as a sampled-data system. The objective is to present a design strategy and technique for selecting numerical values for the control gains (assuming position, integral, and derivative feedback) and the sample rate. The technique is based on the parameter plane method and requires that the system be amenable to z-transform analysis.

  12. The validation and analysis of novel stereo-derived smoke plume products from AATSR and their application to fire events from the 2008 Russian fire season

    Science.gov (United States)

    Fisher, D.; Muller, J.-P.; Yershov, V.

    2012-04-01

    Burning as a Source of Atmospheric Gases Co, H-2, N2o, No, Ch3cl and Cos." Nature 282(5736): 253-256. [2] Martin, M. V., J. A. Logan, et al. (2010). "Smoke injection heights from fires in North America: analysis of 5 years of satellite observations." Atmospheric Chemistry and Physics 10(4): 1491-1510. [3] Muller, J. P., M. A. Denis, et al. (2007). "Stereo cloud-top heights and cloud fraction retrieval from ATSR-2." International Journal of Remote Sensing 28(9): 1921-1938. [4] Muller, J.-P., A. Mandanyake, et al. (2002). "MISR stereoscopic image matchers: Techniques and results." IEEE Transactions on Geoscience and Remote Sensing 40: 1547-1559. [5] Fisher, D.N., Muller, J.-P., Yershov, V.N. (2012) "Automated Smoke Plume Injection Heights (SPIH) and Smoke-Plume Masks (SPM) from AATSR stereo for mapping aerosol and trace gas injection into the free troposphere", Remote Sensing of Environment (in review)

  13. An Assessment of Satellite-Derived Rainfall Products Relative to Ground Observations over East Africa

    OpenAIRE

    Kimani, M.W.; Hoedjes, Johannes Cornelis Bernardus; Su, Z.

    2017-01-01

    Accurate and consistent rainfall observations are vital for climatological studies in support of better agricultural and water management decision-making and planning. In East Africa, accurate rainfall estimation with an adequate spatial distribution is limited due to sparse rain gauge networks. Satellite rainfall products can potentially play a role in increasing the spatial coverage of rainfall estimates; however, their performance needs to be understood across space–time scales and factors...

  14. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Science.gov (United States)

    Fita, L.; Romero, R.; Luque, A.; Ramis, C.

    2009-08-01

    The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA). An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity on temporal and

  15. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Directory of Open Access Journals (Sweden)

    L. Fita

    2009-08-01

    Full Text Available The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA. An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity

  16. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Energy Technology Data Exchange (ETDEWEB)

    Fita, L.; Romero, R.; Luque, A.; Ramis, C. [Univ. de les Illes Balears, Palma de Mallorca (Spain). Grup de Meteorologia

    2009-07-01

    The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA). An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity on temporal and

  17. Estimates of biomass burning emissions in tropical Asia based on satellite-derived data

    OpenAIRE

    D. Chang; Y. Song

    2009-01-01

    Biomass burning in tropical Asia emits large amounts of trace gases and particulate matter into the atmosphere, which has significant implications for atmospheric chemistry and climatic change. In this study, emissions from open biomass burning over tropical Asia were evaluated during seven fire years from 2000 to 2006 (1 March 2000–31 February 2007). The size of the burned areas was estimated from newly published 1-km L3JRC and 500-m MODIS burned area products (MCD45A1). Available fuel loads...

  18. Oceanic Weather Decision Support for Unmanned Global Hawk Science Missions into Hurricanes with Tailored Satellite Derived Products

    Science.gov (United States)

    Feltz, Wayne; Griffin, Sarah; Velden, Christopher; Zipser, Ed; Cecil, Daniel; Braun, Scott

    2017-04-01

    The purpose of this presentation is to identify in-flight hazards to high-altitude aircraft, namely the Global Hawk. The Global Hawk was used during Septembers 2012-2016 as part of two NASA funded Hurricane Sentinel-3 field campaigns to over-fly hurricanes in the Atlantic Ocean. This talk identifies the cause of severe turbulence experienced over Hurricane Emily (2005) and how a combination of NOAA funded GOES-R algorithm derived cloud top heights/tropical overshooting tops using GOES-13/SEVIRI imager radiances, and lightning information are used to identify areas of potential turbulence for near real-time navigation decision support. Several examples will demonstrate how the Global Hawk pilots remotely received and used real-time satellite derived cloud and lightning detection information to keep the aircraft safely above clouds and avoid regions of potential turbulence.

  19. Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge datasets (2002-2012)

    Science.gov (United States)

    Prat, O. P.; Nelson, B. R.

    2014-10-01

    We use a suite of quantitative precipitation estimates (QPEs) derived from satellite, radar, and surface observations to derive precipitation characteristics over CONUS for the period 2002-2012. This comparison effort includes satellite multi-sensor datasets (bias-adjusted TMPA 3B42, near-real time 3B42RT), radar estimates (NCEP Stage IV), and rain gauge observations. Remotely sensed precipitation datasets are compared with surface observations from the Global Historical Climatology Network (GHCN-Daily) and from the PRISM (Parameter-elevation Regressions on Independent Slopes Model). The comparisons are performed at the annual, seasonal, and daily scales over the River Forecast Centers (RFCs) for CONUS. Annual average rain rates present a satisfying agreement with GHCN-D for all products over CONUS (± 6%). However, differences at the RFC are more important in particular for near-real time 3B42RT precipitation estimates (-33 to +49%). At annual and seasonal scales, the bias-adjusted 3B42 presented important improvement when compared to its near real time counterpart 3B42RT. However, large biases remained for 3B42 over the Western US for higher average accumulation (≥ 5 mm day-1) with respect to GHCN-D surface observations. At the daily scale, 3B42RT performed poorly in capturing extreme daily precipitation (> 4 in day-1) over the Northwest. Furthermore, the conditional analysis and the contingency analysis conducted illustrated the challenge of retrieving extreme precipitation from remote sensing estimates.

  20. Solar resources and power potential mapping in Vietnam using satellite-derived and GIS-based information

    International Nuclear Information System (INIS)

    Polo, J.; Bernardos, A.; Navarro, A.A.; Fernandez-Peruchena, C.M.; Ramírez, L.; Guisado, María V.; Martínez, S.

    2015-01-01

    Highlights: • Satellite-based, reanalysis data and measurements are combined for solar mapping. • Plant output modeling for PV and CSP results in simple expressions of solar potential. • Solar resource, solar potential are used in a GIS for determine technical solar potential. • Solar resource and potential maps of Vietnam are presented. - Abstract: The present paper presents maps of the solar resources in Vietnam and of the solar potential for concentrating solar power (CSP) and for grid-connected photovoltaic (PV) technology. The mapping of solar radiation components has been calculated from satellite-derived data combined with solar radiation derived from sunshine duration and other additional sources of information based on reanalysis for several atmospheric and meteorological parameters involved. Two scenarios have been selected for the study of the solar potential: CSP Parabolic Trough of 50 MWe and grid-connected Flat Plate PV plant of around 1 MWe. For each selected scenario plant performance simulations have been computed for developing simple expressions that allow the estimation of the solar potential from the annual solar irradiation and the latitude of every site in Vietnam. Finally, Geographic Information Systems (GIS) have been used for combining the solar potential with the land availability according each scenario to deliver the technical solar potential maps of Vietnam

  1. A fire history derived from Pinus resinosa Ait. for the Islands of Eastern Lac La Croix, Minnesota, USA.

    Science.gov (United States)

    Johnson, Lane B; Kipfmueller, Kurt F

    2016-06-01

    We reconstructed fire occurrence near a fur-trade era canoe travel corridor (used ca. 1780-1802) in the Quetico-Superior region west of Lake Superior to explore the possibility of human influence on pre-fire suppression rates of fire occurrence. Our research objectives were to (1) examine the spatial and temporal patterns of fire in the study area, (2) test fires' strength of association with regional drought, and (3) assess whether reconstructed fire frequencies could be explained by observed rates of lightning fire ignition over the modern period of record. We developed a 420-year fire history for the eastern portion of Lac La Croix in the Boundary Waters Canoe Area Wilderness (BWCAW). Seventy-one fire-scarred samples were collected from remnant Pinus resinosa Ait. (red pine) stumps and logs from thirteen distinct island and three mainland forest stands. Collectively these samples contained records of 255 individual fire scars representing 79 fire events from 1636 to 1933 (study area mean fire intervals [MFI] 3.8 yr). Reconstructed fires were spatially and temporally asynchronous and not strongly associated with regional drought (P > 0.05). When compared to the conservative, tree-ring reconstructed estimate of historical fire occurrence and modern lightning-caused fires (1929-2012), a noticeable change in the distribution and frequency of fires within the study area was evident with only two lightning-ignited island fires since 1934 in the study area. Our results suggest a high likelihood that indigenous land use contributed to surface fire ignitions within our study area and highlights the importance of examining the potential effects of past indigenous land use when determining modern approaches to fire and wilderness management in fire-adapted ecosystems.

  2. On the reliable use of satellite-derived surface water products for global flood monitoring

    Science.gov (United States)

    Hirpa, F. A.; Revilla-Romero, B.; Thielen, J.; Salamon, P.; Brakenridge, R.; Pappenberger, F.; de Groeve, T.

    2015-12-01

    Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response management. To this end, real-time flood forecasting and satellite-based detection systems have been developed at global scale. However, due to the limited availability of up-to-date ground observations, the reliability of these systems for real-time applications have not been assessed in large parts of the globe. In this study, we performed comparative evaluations of the commonly used satellite-based global flood detections and operational flood forecasting system using 10 major flood cases reported over three years (2012-2014). Specially, we assessed the flood detection capabilities of the near real-time global flood maps from the Global Flood Detection System (GFDS), and from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the operational forecasts from the Global Flood Awareness System (GloFAS) for the major flood events recorded in global flood databases. We present the evaluation results of the global flood detection and forecasting systems in terms of correctly indicating the reported flood events and highlight the exiting limitations of each system. Finally, we propose possible ways forward to improve the reliability of large scale flood monitoring tools.

  3. A lithospheric magnetic field model derived from the Swarm satellite magnetic field measurements

    Science.gov (United States)

    Hulot, G.; Thebault, E.; Vigneron, P.

    2015-12-01

    The Swarm constellation of satellites was launched in November 2013 and has since then delivered high quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency (ESA) to provide a number of scientific products which will be made available to the scientific community. Within this framework, specific tools were tailor-made to better extract the magnetic signal emanating from Earth's the lithospheric. These tools rely on the scalar gradient measured by the lower pair of Swarm satellites and rely on a regional modeling scheme that is more sensitive to small spatial scales and weak signals than the standard spherical harmonic modeling. In this presentation, we report on various activities related to data analysis and processing. We assess the efficiency of this dedicated chain for modeling the lithospheric magnetic field using more than one year of measurements, and finally discuss refinements that are continuously implemented in order to further improve the robustness and the spatial resolution of the lithospheric field model.

  4. Characterization of precipitation features over CONUS derived from satellite, radar, and rain gauge datasets (2002-2012)

    Science.gov (United States)

    Prat, O. P.; Nelson, B. R.

    2013-12-01

    We use a suite of quantitative precipitation estimates (QPEs) derived from satellite, radar, surface observations, and models to derive precipitation characteristics over CONUS for the period 2002-2012. This comparison effort includes satellite multi-sensor datasets of TMPA 3B42, CMORPH, and PERSIANN. The satellite based QPEs are compared over the concurrent period with the NCEP Stage IV product, which is a near real time product providing precipitation data at the hourly temporal scale gridded at a nominal 4-km spatial resolution. In addition, remotely sensed precipitation datasets are compared with surface observations from the Global Historical Climatology Network (GHCN-Daily) and from the PRISM (Parameter-elevation Regressions on Independent Slopes Model), which provides gridded precipitation estimates that are used as a baseline for multi-sensor QPE products comparison. The comparisons are performed at the annual, seasonal, monthly, and daily scales with focus on selected river basins (Southeastern US, Pacific Northwest, Great Plains). While, unconditional annual rain rates present a satisfying agreement between all products, results suggest that satellite QPE datasets exhibit important biases in particular at higher rain rates (≥4 mm/day). Conversely, on seasonal scales differences between remotely sensed data and ground surface observations can be greater than 50% and up to 90% for low daily accumulation (≤1 mm/day) such as in the Western US (summer) and Central US (winter). The conditional analysis performed using different daily rainfall accumulation thresholds (from low rainfall intensity to intense precipitation) shows that while intense events measured at the ground are infrequent (around 2% for daily accumulation above 2 inches/day), remotely sensed products displayed differences from 20-50% and up to 90-100%. A discussion on the impact of differing spatial and temporal resolutions with respect to the datasets ability to capture extreme

  5. Modeling fire occurrence as a function of landscape

    Science.gov (United States)

    Loboda, T. V.; Carroll, M.; DiMiceli, C.

    2011-12-01

    Wildland fire is a prominent component of ecosystem functioning worldwide. Nearly all ecosystems experience the impact of naturally occurring or anthropogenically driven fire. Here, we present a spatially explicit and regionally parameterized Fire Occurrence Model (FOM) aimed at developing fire occurrence estimates at landscape and regional scales. The model provides spatially explicit scenarios of fire occurrence based on the available records from fire management agencies, satellite observations, and auxiliary geospatial data sets. Fire occurrence is modeled as a function of the risk of ignition, potential fire behavior, and fire weather using internal regression tree-driven algorithms and empirically established, regionally derived relationships between fire occurrence, fire behavior, and fire weather. The FOM presents a flexible modeling structure with a set of internal globally available default geospatial independent and dependent variables. However, the flexible modeling environment adapts to ingest a variable number, resolution, and content of inputs provided by the user to supplement or replace the default parameters to improve the model's predictive capability. A Southern California FOM instance (SC FOM) was developed using satellite assessments of fire activity from a suite of Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, Monitoring Trends in Burn Severity fire perimeters, and auxiliary geospatial information including land use and ownership, utilities, transportation routes, and the Remote Automated Weather Station data records. The model was parameterized based on satellite data acquired between 2001 and 2009 and fire management fire perimeters available prior to 2009. SC FOM predictive capabilities were assessed using observed fire occurrence available from the MODIS active fire product during 2010. The results show that SC FOM provides a realistic estimate of fire occurrence at the landscape level: the fraction of

  6. A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data

    International Nuclear Information System (INIS)

    Elvidge, Ch. D.; Erwin, E. H.; Ziskin, D.; Baugh, K. E.; Tuttle, B. T.; Ghosh, T.; Tuttle, B. T.; Ghosh, T.; Pack, D. W.; Zhizhin, M.

    2009-01-01

    We have produced annual estimates of national and global gas flaring and gas flaring efficiency from 1994 through 2008 using low light imaging data acquired by the Defense Meteorological Satellite Program (DMSP). Gas flaring is a widely used practice for the disposal of associated gas in oil production and processing facilities where there is insufficient infrastructure for utilization of the gas (primarily methane). Improved utilization of the gas is key to reducing global carbon emissions to the atmosphere. The DMSP estimates of flared gas volume are based on a calibration developed with a pooled set of reported national gas flaring volumes and data from individual flares. Flaring efficiency was calculated as the volume of flared gas per barrel of crude oil produced. Global gas flaring has remained largely stable over the past fifteen years, in the range of 140 to 170 billion cubic meters (BCM). Global flaring efficiency was in the seven to eight cubic meters per barrel from 1994 to 2005 and declined to 5.6 m 3 per barrel by 2008. The 2008 gas flaring estimate of 139 BCM represents 21% of the natural gas consumption of the USA with a potential retail market value of 68 billions USD. The 2008 flaring added more than 278 million metric tons of carbon dioxide equivalent (CO 2e ) into the atmosphere. The DMSP estimated gas flaring volumes indicate that global gas flaring has declined by 19% since 2005, led by gas flaring reductions in Russia and Nigeria, the two countries with the highest gas flaring levels. The flaring efficiency of both Russia and Nigeria improved from 2005 to 2008, suggesting that the reductions in gas flaring are likely the result of either improved utilization of the gas, reinjection, or direct venting of gas into the atmosphere, although the effect of uncertainties in the satellite data cannot be ruled out. It is anticipated that the capability to estimate gas flaring volumes based on satellite data will spur improved utilization of gas that

  7. An Assessment of Satellite-Derived Rainfall Products Relative to Ground Observations over East Africa

    Directory of Open Access Journals (Sweden)

    Margaret Wambui Kimani

    2017-05-01

    Full Text Available Accurate and consistent rainfall observations are vital for climatological studies in support of better agricultural and water management decision-making and planning. In East Africa, accurate rainfall estimation with an adequate spatial distribution is limited due to sparse rain gauge networks. Satellite rainfall products can potentially play a role in increasing the spatial coverage of rainfall estimates; however, their performance needs to be understood across space–time scales and factors relating to their errors. This study assesses the performance of seven satellite products: Tropical Applications of Meteorology using Satellite and ground-based observations (TAMSAT, African Rainfall Climatology And Time series (TARCAT, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS, Tropical Rainfall Measuring Mission (TRMM-3B43, Climate Prediction Centre (CPC Morphing technique (CMORPH, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Climate Data Record (PERSIANN-CDR, CPC Merged Analysis of Precipitation (CMAP, and Global Precipitation Climatology Project (GPCP, using locally developed gridded (0.05° rainfall data for 15 years (1998–2012 over East Africa. The products’ assessments were done at monthly and yearly timescales and were remapped to the gridded rain gauge data spatial scale during the March to May (MAM and October to December (OND rainy seasons. A grid-based statistical comparison between the two datasets was used, but only pixel values located at the rainfall stations were considered for validation. Additionally, the impact of topography on the performance of the products was assessed by analyzing the pixels in areas of highest negative bias. All the products could substantially replicate rainfall patterns, but their differences are mainly based on retrieving high rainfall amounts, especially of localized orographic types. The products exhibited systematic errors, which

  8. Accuracy Assessment of Satellite Derived Forest Cover Products in South and Southeast Asia

    Science.gov (United States)

    Gilani, H.; Xu, X.; Jain, A. K.

    2017-12-01

    South and Southeast Asia (SSEA) region occupies 16 % of worlds land area. It is home to over 50% of the world's population. The SSEA's countries are experiencing significant land-use and land-cover changes (LULCCs), primarily in agriculture, forest, and urban land. For this study, we compiled four existing global forest cover maps for year 2010 by Gong et al.(2015), Hansen et al. (2013), Sexton et al.(2013) and Shimada et al. (2014), which were all medium resolution (≤30 m) products based on Landsat and/or PALSAR satellite images. To evaluate the accuracy of these forest products, we used three types of information: (1) ground measurements, (2) high resolution satellite images and (3) forest cover maps produced at the national scale. The stratified random sampling technique was used to select a set of validation data points from the ground and high-resolution satellite images. Then the confusion matrix method was used to assess and rank the accuracy of the forest cover products for the entire SSEA region. We analyzed the spatial consistency of different forest cover maps, and further evaluated the consistency with terrain characteristics. Our study suggests that global forest cover mapping algorithms are trained and tested using limited ground measurement data. We found significant uncertainties in mountainous areas due to the topographical shadow effect and the dense tree canopies effects. The findings of this study will facilitate to improve our understanding of the forest cover dynamics and their impacts on the quantities and pathways of terrestrial carbon and nitrogen fluxes. Gong, P., et al. (2012). "Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data." International Journal of Remote Sensing 34(7): 2607-2654. Hansen, M. C., et al. (2013). "High-Resolution Global Maps of 21st-Century Forest Cover Change." Science 342(6160): 850-853. Sexton, J. O., et al. (2013). "Global, 30-m resolution

  9. A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data

    Science.gov (United States)

    Leng, Pei; Li, Zhao-Liang; Duan, Si-Bo; Gao, Mao-Fang; Huo, Hong-Yuan

    2017-09-01

    Soil moisture has long been recognized as one of the essential variables in the water cycle and energy budget between Earth's surface and atmosphere. The present study develops a practical approach for deriving all-weather soil moisture using combined satellite images and gridded meteorological products. In this approach, soil moisture over the Moderate Resolution Imaging Spectroradiometer (MODIS) clear-sky pixels are estimated from the Vegetation Index/Temperature (VIT) trapezoid scheme in which theoretical dry and wet edges were determined pixel to pixel by China Meteorological Administration Land Data Assimilation System (CLDAS) meteorological products, including air temperature, solar radiation, wind speed and specific humidity. For cloudy pixels, soil moisture values are derived by the calculation of surface and aerodynamic resistances from wind speed. The approach is capable of filling the soil moisture gaps over remaining cloudy pixels by traditional optical/thermal infrared methods, allowing for a spatially complete soil moisture map over large areas. Evaluation over agricultural fields indicates that the proposed approach can produce an overall generally reasonable distribution of all-weather soil moisture. An acceptable accuracy between the estimated all-weather soil moisture and in-situ measurements at different depths could be found with an Root Mean Square Error (RMSE) varying from 0.067 m3/m3 to 0.079 m3/m3 and a slight bias ranging from 0.004 m3/m3 to -0.011 m3/m3. The proposed approach reveals significant potential to derive all-weather soil moisture using currently available satellite images and meteorological products at a regional or global scale in future developments.

  10. Fire Monitoring - The use of medium resolution satellites (AVHRR, MODIS, TET) for long time series processing and the implementation in User Driven Applications and Services

    Science.gov (United States)

    Fuchs, E.-M.; Stein, E.; Strunz, G.; Strobl, C.; Frey, C.

    2015-04-01

    This paper introduces fire monitoring works of two different projects, namely TIMELINE (TIMe Series Processing of Medium Resolution Earth Observation Data assessing Long -Term Dynamics In our Natural Environment) and PHAROS (Project on a Multi-Hazard Open Platform for Satellite Based Downstream Services). It describes the evolution from algorithm development from in applied research to the implementation in user driven applications and systems. Concerning TIMELINE, the focus of the work lies on hot spot detection. A detailed description of the choice of a suitable algorithm (round robin approach) will be given. Moreover, strengths and weaknesses of the AVHRR sensor for hot spot detection, a literature review, the study areas and the selected approach will be highlighted. The evaluation showed that the contextual algorithm performed best, and will therefore be used for final implementation. Concerning the PHAROS project, the key aspect is on the use of satellite-based information to provide valuable support to all phases of disaster management. The project focuses on developing a pre-operational sustainable service platform that integrates space-based EO (Earth Observation), terrestrial sensors and communication and navigation assets to enhance the availability of services and products following a multi-hazard approach.

  11. Quantifying the Impact of BOReal Forest Fires on Tropospheric Oxidants Over the Atlantic Using Aircraft and Satellites (BORTAS) Experiment: Design, Execution, and Science Overview

    Science.gov (United States)

    Palmer, Paul I.; Parrington, Mark; Lee, James D.; Lewis, Alistair C.; Richard, Andrew R.; Bernath, Peter F.; Pawson, Steven; daSilva, Arlindo M.; Duck, Thomas J.; Waugh, David L.; hide

    2013-01-01

    We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of airmasses that contain the emission products from seasonal boreal wildfires and how these airmasses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada. The planned July 2010 deployment of the ARA was postponed by 12 months because of activities related to the dispersal of material emitted by the Eyjafjallaj¨okull volcano. However, most other planned model and measurement activities, including ground-based measurements at the Dalhousie University Ground Station (DGS), enhanced ozonesonde launches, and measurements at the Pico Atmospheric Observatory in the Azores, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 included the same measurements, but included the ARA, special satellite observations and a more comprehensive measurement suite at the DGS. Integrating these data helped us to describe pyrogenic plumes from wildfires on a wide spectrum of temporal and spatial scales. We interpret these data using a range of chemistry models, from a near-explicit gas-phase chemical mechanism to regional and global models of atmospheric transport and lumped chemistry. We also present an overview of some of the new science that has originated from this project.

  12. A first map of tropical Africa's above-ground biomass derived from satellite imagery

    International Nuclear Information System (INIS)

    Baccini, A; Laporte, N; Goetz, S J; Sun, M; Dong, H

    2008-01-01

    Observations from the moderate resolution imaging spectroradiometer (MODIS) were used in combination with a large data set of field measurements to map woody above-ground biomass (AGB) across tropical Africa. We generated a best-quality cloud-free mosaic of MODIS satellite reflectance observations for the period 2000-2003 and used a regression tree model to predict AGB at 1 km resolution. Results based on a cross-validation approach show that the model explained 82% of the variance in AGB, with a root mean square error of 50.5 Mg ha -1 for a range of biomass between 0 and 454 Mg ha -1 . Analysis of lidar metrics from the Geoscience Laser Altimetry System (GLAS), which are sensitive to vegetation structure, indicate that the model successfully captured the regional distribution of AGB. The results showed a strong positive correlation (R 2 = 0.90) between the GLAS height metrics and predicted AGB.

  13. Modeling directional effects in land surface temperature derived from geostationary satellite data

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander

    This PhD-thesis investigates the directional effects in land surface temperature (LST) estimates from the SEVIRI sensor onboard the Meteosat Second Generation (MSG) satellites. The directional effects are caused by the land surface structure (i.e. tree size and shape) interacting with the changing...... sun-target-sensor geometry. The directional effects occur because the different surface components, e.g. tree canopies and bare soil surfaces, will in many cases have significantly different temperatures. Depending on the viewing angle, different fractions of each of the components will be viewed...... by the sensor. This is further complicated by temperature differences between the sunlit and shaded parts of each of the components, controlled by the exposure of the components to direct sunlight. As the SEVIRI sensor is onboard a geostationary platform, the viewing geometry is fixed (for each pixel), while...

  14. Lunar tidal acceleration obtained from satellite-derived ocean tide parameters

    Science.gov (United States)

    Goad, C. C.; Douglas, B. C.

    1978-01-01

    One hundred sets of mean elements of GEOS-3 computed at 2-day intervals yielded observation equations for the M sub 2 ocean tide from the long periodic variations of the inclination and node of the orbit. The 2nd degree Love number was given the value k sub 2 = 0.30 and the solid tide phase angle was taken to be zero. Combining obtained equations with results for the satellite 1967-92A gives the M sub 2 ocean tide parameter values. Under the same assumption of zero solid tide phase lag, the lunar tidal acceleration was found mostly due to the C sub 22 term in the expansion of the M sub 2 tide with additional small contributions from the 0 sub 1 and N sub 2 tides. Using Lambeck's (1975) estimates for the latter, the obtained acceleration in lunar longitudal in excellent agreement with the most recent determinations from ancient and modern astronomical data.

  15. Estuarine Suspended Sediment Dynamics: Observations Derived from over a Decade of Satellite Data

    Directory of Open Access Journals (Sweden)

    Anthony Reisinger

    2017-12-01

    Full Text Available Suspended sediment dynamics of Corpus Christi Bay, Texas, USA, a shallow-water wind-driven estuary, were investigated by combining field and satellite measurements of total suspended solids (TSS. An algorithm was developed to transform 500-m Moderate Resolution Imaging Spectroradiometer (MODIS Aqua satellite reflectance data into estimated TSS values. The algorithm was developed using a reflectance ratio regression of MODIS Band 1 (red and Band 3 (green with TSS measurements (n = 54 collected by the Texas Commission on Environmental Quality for Corpus Christi Bay and other Texas estuaries. The algorithm was validated by independently collected TSS measurements during the period of 2011–2014 with an uncertainty estimate of 13%. The algorithm was applied to the period of 2002–2014 to create a synoptic time series of TSS for Corpus Christi Bay. Potential drivers of long-term variability in suspended sediment were investigated. Median and IQR composites of suspended sediments were generated for seasonal wind regimes. From this analysis it was determined that long-term, spatial patterns of suspended sediment in the estuary are related to wind-wave resuspension during the predominant northerly and prevalent southeasterly seasonal wind regimes. The impact of dredging is also apparent in long-term patterns of Corpus Christi Bay as concentrations of suspended sediments over dredge spoil disposal sites are higher and more variable than surrounding areas, which is most likely due to their less consolidated sediments and shallower depths requiring less wave energy for sediment resuspension. This study highlights the advantage of how long-synoptic time series of TSS can be used to elucidate the major drivers of suspended sediments in estuaries.

  16. Advanced Satellite-Derived Wind Observations, Assimilation, and Targeting Strategies during TCS-08 for Developing Improved Operational Analysis and Prediction of Western Pacific Tropical Cyclones

    Science.gov (United States)

    2013-09-30

    TC structure evolve up to landfall or extratropical transition. In particular, winds derived from geostationary satellites have been shown to be an... extratropical transition, it is clear that a dedicated research effort is needed to optimize the satellite data processing strategies, assimilation, and...applications to better understand the behavior of the near- storm environmental flow fields during these evolutionary TC stages. To our knowledge, this

  17. Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data

    Directory of Open Access Journals (Sweden)

    A. Lana

    2012-09-01

    Full Text Available Aerosols have a large potential to influence climate through their effects on the microphysics and optical properties of clouds and, hence, on the Earth's radiation budget. Aerosol–cloud interactions have been intensively studied in polluted air, but the possibility that the marine biosphere plays an important role in regulating cloud brightness in the pristine oceanic atmosphere remains largely unexplored. We used 9 yr of global satellite data and ocean climatologies to derive parameterizations of the temporal variability of (a production fluxes of sulfur aerosols formed by the oxidation of the biogenic gas dimethylsulfide emitted from the sea surface; (b production fluxes of secondary organic aerosols from biogenic organic volatiles; (c emission fluxes of biogenic primary organic aerosols ejected by wind action on sea surface; and (d emission fluxes of sea salt also lifted by the wind upon bubble bursting. Series of global monthly estimates of these fluxes were correlated to series of potential cloud condensation nuclei (CCN numbers derived from satellite (MODIS. More detailed comparisons among weekly series of estimated fluxes and satellite-derived cloud droplet effective radius (re data were conducted at locations spread among polluted and clean regions of the oceanic atmosphere. The outcome of the statistical analysis was that positive correlation to CCN numbers and negative correlation to re were common at mid and high latitude for sulfur and organic secondary aerosols, indicating both might be important in seeding cloud droplet activation. Conversely, primary aerosols (organic and sea salt showed widespread positive correlations to CCN only at low latitudes. Correlations to re were more variable, non-significant or positive, suggesting that, despite contributing to large shares of the marine aerosol mass, primary aerosols are not widespread major drivers of the variability of cloud

  18. Comparison of measured and satellite-derived spectral diffuse attenuation coefficients for the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Desa, E.; Matondkar, S.G.P.; Mascarenhas, A.

    The results of study comparing the spectral diffuse attenuation coefficients Kd(Lambda) measured in the Arabian Sea with those derived from the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) using three algorithms, of which two are empirical...

  19. Uncertainty analysis of moderate- versus coarse-scale satellite fire products for quantifying agricultural burning: Implications for Air Quality in European Russia, Belarus, and Lithuania

    Science.gov (United States)

    McCarty, J. L.; Krylov, A.; Prishchepov, A. V.; Banach, D. M.; Potapov, P.; Tyukavina, A.; Rukhovitch, D.; Koroleva, P.; Turubanova, S.; Romanenkov, V.

    2015-12-01

    Cropland and pasture burning are common agricultural management practices that negatively impact air quality at a local and regional scale, including contributing to short-lived climate pollutants (SLCPs). This research focuses on both cropland and pasture burning in European Russia, Lithuania, and Belarus. Burned area and fire detections were derived from 500 m and 1 km Moderate Resolution Imaging Spectroradiometer (MODIS), 30 m Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) data. Carbon, particulate matter, volatile organic carbon (VOCs), and harmful air pollutants (HAPs) emissions were then calculated using MODIS and Landsat-based estimates of fire and land-cover and land-use. Agricultural burning in Belarus, Lithuania, and European Russia showed a strong and consistent seasonal geographic pattern from 2002 to 2012, with the majority of fire detections occurring in March - June and smaller peak in July and August. Over this 11-year period, there was a decrease in both cropland and pasture burning throughout this region. For Smolensk Oblast, a Russian administrative region with comparable agro-environmental conditions to Belarus and Lithuania, a detailed analysis of Landsat-based burned area estimations for croplands and pastures and field data collected in summer 2014 showed that the agricultural burning area can be up to 10 times higher than the 1 km MODIS active fire estimates. In general, European Russia is the main source of agricultural burning emissions compared to Lithuania and Belarus. On average, all cropland burning in European Russia as detected by the MCD45A1 MODIS Burned Area Product emitted 17.66 Gg of PM10 while annual burning of pasture in Smolensk Oblast, Russia as detected by Landsat burn scars emitted 494.85 Gg of PM10, a 96% difference. This highlights that quantifying the contribution of pasture burning and burned area versus cropland burning in agricultural regions is important for accurately

  20. Satellite-derived land covers for runoff estimation using SCS-CN method in Chen-You-Lan Watershed, Taiwan

    Science.gov (United States)

    Zhang, Wen-Yan; Lin, Chao-Yuan

    2017-04-01

    The Soil Conservation Service Curve Number (SCS-CN) method, which was originally developed by the USDA Natural Resources Conservation Service, is widely used to estimate direct runoff volume from rainfall. The runoff Curve Number (CN) parameter is based on the hydrologic soil group and land use factors. In Taiwan, the national land use maps were interpreted from aerial photos in 1995 and 2008. Rapid updating of post-disaster land use map is limited due to the high cost of production, so the classification of satellite images is the alternative method to obtain the land use map. In this study, Normalized Difference Vegetation Index (NDVI) in Chen-You-Lan Watershed was derived from dry and wet season of Landsat imageries during 2003 - 2008. Land covers were interpreted from mean value and standard deviation of NDVI and were categorized into 4 groups i.e. forest, grassland, agriculture and bare land. Then, the runoff volume of typhoon events during 2005 - 2009 were estimated using SCS-CN method and verified with the measured runoff data. The result showed that the model efficiency coefficient is 90.77%. Therefore, estimating runoff by using the land cover map classified from satellite images is practicable.

  1. Seasonal and nonseasonal variability of satellite-derived chlorophyll and colored dissolved organic matter concentration in the California Current

    Science.gov (United States)

    Kahru, Mati; Mitchell, B. Greg

    2001-02-01

    Time series of surface chlorophyll a concentration (Chl) and colored dissolved organic matter (CDOM) derived from the Ocean Color and Temperature Sensor and Sea-Viewing Wide Field-of-View Sensor were evaluated for the California Current area using regional algorithms. Satellite data composited for 8-day periods provide the ability to describe large-scale changes in surface parameters. These changes are difficult to detect based on in situ observations alone that suffer from undersampling the large temporal and spatial variability, especially in Chl. We detected no significant bias in satellite Chl estimates compared with ship-based measurements. The variability in CDOM concentration was significantly smaller than that in Chl, both spatially and temporally. While being subject to large interannual and short-term variations, offshore waters (100-1000 km from the shore) have an annual cycle of Chl and CDOM with a maximum in winter-spring (December-March) and a minimum in late summer. For inshore waters the maximum is more likely in spring (April-May). We detect significant increase in both Chl and CDOM off central and southern California during the La Niña year of 1999. The trend of increasing Chl and CDOM from October 1996 to June 2000 is statistically significant in many areas.

  2. Determining the Pixel-to-Pixel Uncertainty in Satellite-Derived SST Fields

    Directory of Open Access Journals (Sweden)

    Fan Wu

    2017-08-01

    Full Text Available The primary measure of the quality of sea surface temperature (SST fields obtained from satellite-borne infrared sensors has been the bias and variance of matchups with co-located in-situ values. Because such matchups tend to be widely separated, these bias and variance estimates are not necessarily a good measure of small scale (several pixels gradients in these fields because one of the primary contributors to the uncertainty in satellite retrievals is atmospheric contamination, which tends to have large spatial scales compared with the pixel separation of infrared sensors. Hence, there is not a good measure to use in selecting SST fields appropriate for the study of submesoscale processes and, in particular, of processes associated with near-surface fronts, both of which have recently seen a rapid increase in interest. In this study, two methods are examined to address this problem, one based on spectra of the SST data and the other on their variograms. To evaluate the methods, instrument noise was estimated in Level-2 Visible-Infrared Imager-Radiometer Suite (VIIRS and Advanced Very High Resolution Radiometer (AVHRR SST fields of the Sargasso Sea. The two methods provided very nearly identical results for AVHRR: along-scan values of approximately 0.18 K for both day and night and along-track values of 0.21 K for day and night. By contrast, the instrument noise estimated for VIIRS varied by method, scan geometry and day-night. Specifically, daytime, along-scan (along-track, spectral estimates were found to be approximately 0.05 K (0.08 K and the corresponding nighttime values of 0.02 K (0.03 K. Daytime estimates based on the variogram were found to be 0.08 K (0.10 K with the corresponding nighttime values of 0.04 K (0.06 K. Taken together, AVHRR instrument noise is significantly larger than VIIRS instrument noise, along-track noise is larger than along-scan noise and daytime levels are higher than nighttime levels. Given the similarity of

  3. Improvement of global and regional mean sea level derived from satellite altimetry multi missions

    Science.gov (United States)

    Ablain, M.; Faugere, Y.; Larnicol, G.; Picot, N.; Cazenave, A.; Benveniste, J.

    2012-04-01

    With the satellite altimetry missions, the global mean sea level (GMSL) has been calculated on a continual basis since January 1993. 'Verification' phases, during which the satellites follow each other in close succession (Topex/Poseidon--Jason-1, then Jason-1--Jason-2), help to link up these different missions by precisely determining any bias between them. Envisat, ERS-1 and ERS-2 are also used, after being adjusted on these reference missions, in order to compute Mean Sea Level at high latitudes (higher than 66°N and S), and also to improve spatial resolution by combining all these missions together. The global mean sea level (MSL) deduced from TOPEX/Poseidon, Jason-1 and Jason-2 provide a global rate of 3.2 mm from 1993 to 2010 applying the post glacial rebound (MSL aviso website http://www.jason.oceanobs.com/msl). Besides, the regional sea level trends bring out an inhomogeneous repartition of the ocean elevation with local MSL slopes ranging from + 8 mm/yr to - 8 mm/year. A study published in 2009 [Ablain et al., 2009] has shown that the global MSL trend unceratainty was estimated at +/-0.6 mm/year with a confidence interval of 90%. The main sources of errors at global and regional scales are due to the orbit calculation and the wet troposphere correction. But others sea-level components have also a significant impact on the long-term stability of MSL as for instance the stability of instrumental parameters and the atmospheric corrections. Thanks to recent studies performed in the frame of the SALP project (supported by CNES) and Sea-level Climate Change Initiative project (supported by ESA), strong improvements have been provided for the estimation of the global and regional MSL trends. In this paper, we propose to describe them; they concern the orbit calculation thanks to new gravity fields, the atmospheric corrections thanks to ERA-interim reanalyses, the wet troposphere corrections thanks to the stability improvement, and also empirical corrections

  4. The Effects of Climate Variability on Phytoplankton Composition in the Equatorial Pacific Ocean using a Model and a Satellite-Derived Approach

    Science.gov (United States)

    Rousseaux, C. S.; Gregg, W. W.

    2012-01-01

    Compared the interannual variation in diatoms, cyanobacteria, coccolithophores and chlorophytes from the NASA Ocean Biogeochemical Model with those derived from satellite data (Hirata et al. 2011) between 1998 and 2006 in the Equatorial Pacific. Using NOBM, La Ni a events were characterized by an increase in diatoms (correlation with MEI, r=-0.81, Pphytoplankton community in response to climate variability. However, satellite-derived phytoplankton groups were all negatively correlated with climate variability (r ranged from -0.39 for diatoms to -0.64 for coccolithophores, Pphytoplankton groups except diatoms than NOBM. However, the different responses of phytoplankton to intense interannual events in the Equatorial Pacific raises questions about the representation of phytoplankton dynamics in models and algorithms: is a phytoplankton community shift as in the model or an across-the-board change in abundances of all phytoplankton as in the satellite-derived approach.

  5. Climatology 2011: An MLS and Sonde Derived Ozone Climatology for Satellite Retrieval Algorithms

    Science.gov (United States)

    McPeters, Richard D.; Labow, Gordon J.

    2012-01-01

    The ozone climatology used as the a priori for the version 8 Solar Backscatter Ultraviolet (SBUV) retrieval algorithms has been updated. The Microwave Limb Sounder (MLS) instrument on Aura has excellent latitude coverage and measures ozone daily from the upper troposphere to the lower mesosphere. The new climatology consists of monthly average ozone profiles for ten degree latitude zones covering pressure altitudes from 0 to 65 km. The climatology was formed by combining data from Aura MLS (2004-2010) with data from balloon sondes (1988-2010). Ozone below 8 km (below 12 km at high latitudes) is based on balloons sondes, while ozone above 16 km (21 km at high latitudes) is based on MLS measurements. Sonde and MLS data are blended in the transition region. Ozone accuracy in the upper troposphere is greatly improved because of the near uniform coverage by Aura MLS, while the addition of a large number of balloon sonde measurements improves the accuracy in the lower troposphere, in the tropics and southern hemisphere in particular. The addition of MLS data also improves the accuracy of climatology in the upper stratosphere and lower mesosphere. The revised climatology has been used for the latest reprocessing of SBUV and TOMS satellite ozone data.

  6. Global Electric Circuit Diurnal Variation Derived from Storm Overflight and Satellite Optical Lightning Datasets

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, R. J.; Bateman, M. J.; Bailey, J. C.

    2011-01-01

    We have combined analyses of over 1000 high altitude aircraft observations of electrified clouds with diurnal lightning statistics from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to produce an estimate of the diurnal variation in the global electric circuit. Using basic assumptions about the mean storm currents as a function of flash rate and location, and the global electric circuit, our estimate of the current in the global electric circuit matches the Carnegie curve diurnal variation to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Mean contributions to the global electric circuit from land and ocean thunderstorms are 1.1 kA (land) and 0.7 kA (ocean). Contributions to the global electric circuit from ESCs are 0.22 kA for ocean storms and 0.04 kA for land storms. Using our analysis, the mean total conduction current for the global electric circuit is 2.0 kA.

  7. Satellite-derived land surface parameters for mesoscale modelling of the Mexico City basin

    Directory of Open Access Journals (Sweden)

    B. de Foy

    2006-01-01

    Full Text Available Mesoscale meteorological modelling is an important tool to help understand air pollution and heat island effects in urban areas. Accurate wind simulations are difficult to obtain in areas of weak synoptic forcing. Local factors have a dominant role in the circulation and include land surface parameters and their interaction with the atmosphere. This paper examines an episode during the MCMA-2003 field campaign held in the Mexico City Metropolitan Area (MCMA in April of 2003. Because the episode has weak synoptic forcing, there is the potential for the surface heat budget to influence the local meteorology. High resolution satellite observations are used to specify the land use, vegetation fraction, albedo and surface temperature in the MM5 model. Making use of these readily available data leads to improved meteorological simulations in the MCMA, both for the wind circulation patterns and the urban heat island. Replacing values previously obtained from land-use tables with actual measurements removes the number of unknowns in the model and increases the accuracy of the energy budget. In addition to improving the understanding of local meteorology, this sets the stage for the use of advanced urban modules.

  8. Snowmelt on the Greenland Ice Sheet as Derived From Passive Microwave Satellite Data

    Science.gov (United States)

    Abdalati, Waleed; Steffen, Konrad

    1997-01-01

    The melt extent of the snow on the Greenland ice sheet is of considerable importance to the ice sheet's mass and energy balance, as well as Arctic and global climates. By comparing passive microwave satellite data to field observations, variations in melt extent have been detected by establishing melt thresholds in the cross-polarized gradient ratio (XPGR). The XPGR, defined as the normalized difference between the 19-GHz horizontal channel and the 37-GHz vertical channel of the Special Sensor Microwave/Imager (SSM/I), exploits the different effects of snow wetness on different frequencies and polarizations and establishes a distinct melt signal. Using this XPGR melt signal, seasonal and interannual variations in snowmelt extent of the ice sheet are studied. The melt is found to be most extensive on the western side of the ice sheet and peaks in late July. Moreover, there is a notable increasing trend in melt area between the years 1979 and 1991 of 4.4% per year, which came to an abrupt halt in 1992 after the eruption of Mt. Pinatubo. A similar trend is observed in the temperatures at six coastal stations. The relationship between the warming trend and increasing melt trend between 1979 and 1991 suggests that a 1 C temperature rise corresponds to an increase in melt area of 73000 sq km, which in general exceeds one standard deviation of the natural melt area variability.

  9. Validation of satellite derived LHF using coare_3.0 scheme and time series data over north-east Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Sathe, P.V.

    to the scientific community as it call for near perfect observational platforms and sensors to Page 1 of 10Gayana (Concepción) - VALIDATION OF SATELLITE DERIVED LHF USING C... 8/11/2006http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717...>VALIDATION OF SATELLITE DERIVED LHF USING C... 8/11/2006http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-65382004000300019&lng=... Day and night passes of SSMI (wind speed and columnar water vapor) and TMI (sea surface temperature) data for the period July...

  10. Land-ocean contrast on electrical characteristics of lightning discharge derived from satellite optical measurements

    Science.gov (United States)

    Adachi, T.; Said, R.; Cummer, S. A.; Li, J.; Takahashi, Y.; Hsu, R.; Su, H.; Chen, A. B.; Mende, S. B.; Frey, H. U.

    2010-12-01

    Comparative studies on the electrical properties of oceanic and continental lightning are crucial to elucidate air discharge processes occurring under different conditions. Past studies however have primarily focused on continental lightning because of the limited coverage of ground-based instruments. Recent satellite measurements by FORMOSAT-2/ISUAL provided a new way to survey the global characteristics of lightning and transient luminous events regardless of land and ocean. In this study, we analyze ISUAL/spectrophotometer data to clarify the electrical properties of lightning on a global level. Based on the results obtained by Cummer et al. [2006] and Adachi et al. [2009], the OI-777.4nm emission intensity is used to infer lightning electrical parameters. Results show a clear land-ocean contrast on the parameters of lightning discharge: in oceanic lightning, peak luminosity is 60 % higher and the time scale of return stroke is 30 % shorter. These results suggest higher peak current in oceanic lightning, which is consistent with the fact that elves, EMP-driven phenomena, also tend to occur over the ocean [Chen et al., 2008]. Further analysis of lightning events occurring around the Caribbean Sea shows that the transition-line of lightning electrical properties is precisely located along the coastline. We suggest that the differences in these electrical properties may be due to the boundary conditions (conductivity, surface terrain, etc). In this talk, based on the calibration with NLDN and Duke magnetometer data, current moment change and charge moment change will be globally evaluated using a complete set of the ISUAL-observed lightning events.

  11. A Satellite-Derived Climatological Analysis of Urban Heat Island over Shanghai during 2000–2013

    Directory of Open Access Journals (Sweden)

    Weijiao Huang

    2017-06-01

    Full Text Available The urban heat island is generally conducted based on ground observations of air temperature and remotely sensing of land surface temperature (LST. Satellite remotely sensed LST has the advantages of global coverage and consistent periodicity, which overcomes the weakness of ground observations related to sparse distributions and costs. For human related studies and urban climatology, canopy layer urban heat island (CUHI based on air temperatures is extremely important. This study has employed remote sensing methodology to produce monthly CUHI climatology maps during the period 2000–2013, revealing the spatiotemporal characteristics of daytime and nighttime CUHI during this period of rapid urbanization in Shanghai. Using stepwise linear regression, daytime and nighttime air temperatures at the four overpass times of Terra/Aqua were estimated based on time series of Terra/Aqua-MODIS LST and other auxiliary variables including enhanced vegetation index, normalized difference water index, solar zenith angle and distance to coast. The validation results indicate that the models produced an accuracy of 1.6–2.6 °C RMSE for the four overpass times of Terra/Aqua. The models based on Terra LST showed higher accuracy than those based on Aqua LST, and nighttime air temperature estimation had higher accuracy than daytime. The seasonal analysis shows daytime CUHI is strongest in summer and weakest in winter, while nighttime CUHI is weakest in summer and strongest in autumn. The annual mean daytime CUHI during 2000–2013 is 1.0 and 2.2 °C for Terra and Aqua overpass, respectively. The annual mean nighttime CUHI is about 1.0 °C for both Terra and Aqua overpass. The resultant CUHI climatology maps provide a spatiotemporal quantification of CUHI with emphasis on temperature gradients. This study has provided information of relevance to urban planners and environmental managers for assessing and monitoring urban thermal environments which are constantly

  12. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Staahlberg, P; Laatikainen-Luntama, J [VTT Energy, Espoo (Finland). Energy Production Technologies; and others

    1997-10-01

    The conventional fluidized-bed combustion has become commercially available also to relatively small scale (5 MWe), but this technology has rather low power-to-heat ratio and consequently it`s potential is limited to applications where district or process heat is the main product. Thus, there seems to be a real need to develop more efficient methods for small-scale power production from biomass. Gasification diesel power plant is one alternative for the small-scale power production, which has clearly higher power-to-heat ratio than can be reached in conventional steam cycles. The main technical problem in this process is the gas cleaning from condensable tars. In addition to the diesel-power plants, there are several other interesting applications for atmospheric-pressure clean gas technology. One alternative for cost-effective biomass utilization is co-firing of biomass derived product gas in existing pulverized coal fired boilers (or other types of boilers and furnaces). The aim of the project is to develop dry gas cleaning methods for gasification-diesel power plants and for other atmospheric-pressure applications of biomass and waste gasification. The technical objectives of the project are as follows: To develop and test catalytic gas cleaning methods for engine. To study the removal of problematic ash species of (CFE) gasification with regard to co-combustion of the product gas in PC boilers. To evaluate the technical and economical feasibility of different small-scale power plant concepts based on fixed-bed updraft and circulating fluidized- bed gasification of biomass and waste. (orig.)

  13. Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast

    Science.gov (United States)

    Masselink, Thomas; Schluessel, P.

    1995-12-01

    Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.

  14. Satellite-derived aerosol radiative forcing from the 2004 British Columbia wildfires

    Science.gov (United States)

    Guo, Song; Leighton, H.

    2008-01-01

    The British Columbia wildfires of 2004 was one of the largest wildfire events in the last ten years in Canada. Both the shortwave and longwave smoke aerosol radiative forcing at the top-of-atmosphere (TOA) are investigated using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES) instruments. Relationships between the radiative forcing fluxes (??F) and wildfire aerosol optical thickness (AOT) at 0.55 ??m (??0.55) are deduced for both noontime instantaneous forcing and diurnally averaged forcing. The noontime averaged instantaneous shortwave and longwave smoke aerosol radiative forcing at the TOA are 45.8??27.5 W m-2 and -12.6??6.9 W m-2, respectively for a selected study area between 62??N and 68??N in latitude and 125??W and 145??W in longitude over three mainly clear-sky days (23-25 June). The derived diurnally averaged smoke aerosol shortwave radiative forcing is 19.9??12.1 W m-2 for a mean ??0.55 of 1.88??0.71 over the same time period. The derived ??F-?? relationship can be implemented in the radiation scheme used in regional climate models to assess the effect of wildfire aerosols.

  15. Satellite-derived temperature data for monitoring water status in a floodplain forest of the Upper Sabine River, Texas

    Science.gov (United States)

    Lemon, Mary Grace T.; Allen, Scott T.; Edwards, Brandon L.; King, Sammy L.; Keim, Richard F.

    2016-01-01

    Decreased water availability due to hydrologic modifications, groundwater withdrawal, and climate change threaten bottomland hardwood (BLH) forest communities. We used satellite-derived (MODIS) land-surface temperature (LST) data to investigate spatial heterogeneity of canopy temperature (an indicator of plant-water status) in a floodplain forest of the upper Sabine River for 2008–2014. High LST pixels were generally further from the river and at higher topographic locations, indicating lower water-availability. Increasing rainfall-derived soil moisture corresponded with decreased heterogeneity of LST between pixels but there was weaker association between Sabine River stage and heterogeneity. Stronger dependence of LST convergence on rainfall rather than river flow suggests that some regions are less hydrologically connected to the river, and vegetation may rely on local precipitation and other contributions to the riparian aquifer to replenish soil moisture. Observed LST variations associated with hydrology encourage further investigation of the utility of this approach for monitoring forest stress, especially with considerations of climate change and continued river management.

  16. A New ENSO Index Derived from Satellite Measurements of Column Ozone

    Science.gov (United States)

    Ziemke, J. R.; Chandra, S.; Oman, L. D.; Bhartia, P. K.

    2010-01-01

    Column Ozone measured in tropical latitudes from Nimbus 7 total ozone mapping spectrometer (TOMS), Earth Probe TOMS, solar backscatter ultraviolet (SBUV), and Aura ozone monitoring instrument (OMI) are used to derive an El Nino-Southern Oscillation (ENSO) index. This index, which covers a time period from 1979 to the present, is defined as the Ozone ENSO Index (OEI) and is the first developed from atmospheric trace gas measurements. The OEI is constructed by first averaging monthly mean column ozone over two broad regions in the western and eastern Pacific and then taking their difference. This differencing yields a self-calibrating ENSO index which is independent of individual instrument calibration offsets and drifts in measurements over the long record. The combined Aura OMI and MLS ozone data confirm that zonal variability in total column ozone in the tropics caused by ENSO events lies almost entirely in the troposphere. As a result, the OEI can be derived directly from total column ozone instead of tropospheric column ozone. For clear-sky ozone measurements a +1K change in Nino 3.4 index corresponds to +2.9 Dobson Unit (DU) change in the OEI, while a +1 hPa change in SOI coincides with a -1.7DU change in the OEI. For ozone measurements under all cloud conditions these numbers are +2.4DU and -1.4 DU, respectively. As an ENSO index based upon ozone, it is potentially useful in evaluating climate models predicting long term changes in ozone and other trace gases.

  17. Nature of the Venus thermosphere derived from satellite drag measurements (solicited paper)

    Science.gov (United States)

    Keating, G.; Theriot, M.; Bougher, S.

    2008-09-01

    From drag measurements obtained by Pioneer Venus and Magellan, the Venus upper atmosphere was discovered to be much colder than Earth's, even though Venus is much closer to the Sun than the Earth. On the dayside, exospheric temperatures are near 300K compared to Earth's of near 1200K [1]. This is thought to result principally from 15 micron excitation of carbon dioxide by atomic oxygen resulting in very strong 15 micron emission to space, cooling off the upper atmosphere [2]. On the nightside the Venus upper atmosphere is near 100K [3], compared to Earth where temperatures are near 900K. The nightside Venus temperatures drop with altitude contrary to a thermosphere where temperatures rise with altitude. As a result, the very cold nightside is called a "cryosphere" rather than a thermosphere. This is the first cryosphere discovered in the solar system [1]. Temperatures sharply drop near the terminator. Apparently, heat is somehow blocked near the terminator from being significantly transported to the nightside [4]. Recently, drag studies were performed on a number of Earth satellites to establish whether the rise of carbon dioxide on Earth was cooling the Earth's thermosphere similar to the dayside of Venus. Keating et al. [5] discovered that a 10 percent drop in density near 350km at solar minimum occurred globally over a period of 20 years with a 10 per cent rise in carbon dioxide. This should result in about a factor of 2 decline in density from 1976 values, by the end of the 21st century brought on by thermospheric cooling. Subsequent studies have confirmed these results. Thus we are beginning to see the cooling of Earth's upper atmosphere apparently from the same process cooling the Venus thermosphere. Fig. 1 VIRA Exospheric Temperatures Atmospheric drag data from the Pioneer Venus Orbiter and Magellan were combined to generate an improved version of the Venus International Reference Atmosphere (VIRA) [6], [7]. A "fountain effect" was discovered where the

  18. Hydrological differentiation and spatial distribution of high altitude wetlands in a semi-arid Andean region derived from satellite data

    Science.gov (United States)

    Otto, M.; Scherer, D.; Richters, J.

    2011-05-01

    High Altitude Wetlands of the Andes (HAWA) belong to a unique type of wetland within the semi-arid high Andean region. Knowledge about HAWA has been derived mainly from studies at single sites within different parts of the Andes at only small time scales. On the one hand, HAWA depend on water provided by glacier streams, snow melt or precipitation. On the other hand, they are suspected to influence hydrology through water retention and vegetation growth altering stream flow velocity. We derived HAWA land cover from satellite data at regional scale and analysed changes in connection with precipitation over the last decade. Perennial and temporal HAWA subtypes can be distinguished by seasonal changes of photosynthetically active vegetation (PAV) indicating the perennial or temporal availability of water during the year. HAWA have been delineated within a region of 12 800 km2 situated in the Northwest of Lake Titicaca. The multi-temporal classification method used Normalized Differenced Vegetation Index (NDVI) and Normalized Differenced Infrared Index (NDII) data derived from two Landsat ETM+ scenes at the end of austral winter (September 2000) and at the end of austral summer (May 2001). The mapping result indicates an unexpected high abundance of HAWA covering about 800 km2 of the study region (6 %). Annual HAWA mapping was computed using NDVI 16-day composites of Moderate Resolution Imaging Spectroradiometer (MODIS). Analyses on the relation between HAWA and precipitation was based on monthly precipitation data of the Tropical Rain Measurement Mission (TRMM 3B43) and MODIS Eight Day Maximum Snow Extent data (MOD10A2) from 2000 to 2010. We found HAWA subtype specific dependencies on precipitation conditions. A strong relation exists between perennial HAWA and snow fall (r2: 0.82) in dry austral winter months (June to August) and between temporal HAWA and precipitation (r2: 0.75) during austral summer (March to May). Annual changes in spatial extend of perennial HAWA

  19. Integrating Global Satellite-Derived Data Products as a Pre-Analysis for Hydrological Modelling Studies: A Case Study for the Red River Basin

    Directory of Open Access Journals (Sweden)

    Gijs Simons

    2016-03-01

    Full Text Available With changes in weather patterns and intensifying anthropogenic water use, there is an increasing need for spatio-temporal information on water fluxes and stocks in river basins. The assortment of satellite-derived open-access information sources on rainfall (P and land use/land cover (LULC is currently being expanded with the application of actual evapotranspiration (ETact algorithms on the global scale. We demonstrate how global remotely sensed P and ETact datasets can be merged to examine hydrological processes such as storage changes and streamflow prior to applying a numerical simulation model. The study area is the Red River Basin in China in Vietnam, a generally challenging basin for remotely sensed information due to frequent cloud cover. Over this region, several satellite-based P and ETact products are compared, and performance is evaluated using rain gauge records and longer-term averaged streamflow. A method is presented for fusing multiple satellite-derived ETact estimates to generate an ensemble product that may be less susceptible, on a global basis, to errors in individual modeling approaches. Subsequently, monthly satellite-derived rainfall and ETact are combined to assess the water balance for individual subcatchments and types of land use, defined using a global land use classification improved based on auxiliary satellite data. It was found that a combination of TRMM rainfall and the ensemble ETact product is consistent with streamflow records in both space and time. It is concluded that monthly storage changes, multi-annual streamflow and water yield per LULC type in the Red River Basin can be successfully assessed based on currently available global satellite-derived products.

  20. Deriving the effect of wind speed on clean marine aerosol optical properties using the A-Train satellites

    Directory of Open Access Journals (Sweden)

    V. P. Kiliyanpilakkil

    2011-11-01

    Full Text Available The relationship between "clean marine" aerosol optical properties and ocean surface wind speed is explored using remotely sensed data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP on board the CALIPSO satellite and the Advanced Microwave Scanning Radiometer (AMSR-E on board the AQUA satellite. Detailed data analyses are carried out over 15 regions selected to be representative of different areas of the global ocean for the time period from June 2006 to April 2011. Based on remotely sensed optical properties the CALIPSO algorithm is capable of discriminating "clean marine" aerosols from other types often present over the ocean (such as urban/industrial pollution, desert dust and biomass burning. The global mean optical depth of "clean marine" aerosol at 532 nm (AOD532 is found to be 0.052 ± 0.038 (mean plus or minus standard deviation. The mean layer integrated particulate depolarization ratio of marine aerosols is 0.02 ± 0.016. Integrated attenuated backscatter and color ratio of marine aerosols at 532 nm were found to be 0.003 ± 0.002 sr−1 and 0.530 ± 0.149, respectively. A logistic regression between AOD532 and 10-m surface wind speed (U10 revealed three distinct regimes. For U10 ≤ 4 m s−1 the mean CALIPSO-derived AOD532 is found to be 0.02 ± 0.003 with little dependency on the surface wind speed. For 4 < U10 ≤ 12 m s−1, representing the dominant fraction of all available data, marine aerosol optical depth is linearly correlated with the surface wind speed values, with a slope of 0.006 s m−1. In this intermediate wind speed region, the AOD532 vs. U10 regression slope derived here is comparable to previously reported values. At very high wind speed values (U10 > 18 m s−1, the AOD532-wind speed relationship

  1. Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data

    NARCIS (Netherlands)

    de Hoogh, Kees; Gulliver, John; Donkelaar, Aaron van; Martin, Randall V; Marshall, Julian D; Bechle, Matthew J; Cesaroni, Giulia; Pradas, Marta Cirach; Dedele, Audrius; Eeftens, Marloes|info:eu-repo/dai/nl/315028300; Forsberg, Bertil; Galassi, Claudia; Heinrich, Joachim; Hoffmann, Barbara; Jacquemin, Bénédicte; Katsouyanni, Klea; Korek, Michal; Künzli, Nino; Lindley, Sarah J; Lepeule, Johanna; Meleux, Frederik; de Nazelle, Audrey; Nieuwenhuijsen, Mark; Nystad, Wenche; Raaschou-Nielsen, Ole; Peters, Annette; Peuch, Vincent-Henri; Rouil, Laurence; Udvardy, Orsolya; Slama, Rémy; Stempfelet, Morgane; Stephanou, Euripides G; Tsai, Ming Y; Yli-Tuomi, Tarja; Weinmayr, Gudrun; Brunekreef, Bert|info:eu-repo/dai/nl/067548180; Vienneau, Danielle; Hoek, Gerard|info:eu-repo/dai/nl/069553475

    2016-01-01

    Satellite-derived (SAT) and chemical transport model (CTM) estimates of PM2.5 and NO2 are increasingly used in combination with Land Use Regression (LUR) models. We aimed to compare the contribution of SAT and CTM data to the performance of LUR PM2.5 and NO2 models for Europe. Four sets of models,

  2. Integrating global satellite-derived data products as a pre-analysis for hydrological modelling studies : a case study for the Red River Basin

    NARCIS (Netherlands)

    Simons, G.W.H.; Bastiaanssen, W.G.M.; Ngô, L.A.; Hain, C.R.; Anderson, M.; Senay, G.

    2016-01-01

    With changes in weather patterns and intensifying anthropogenic water use, there is an increasing need for spatio-temporal information on water fluxes and stocks in river basins. The assortment of satellite-derived open-access information sources on rainfall (P) and land use/land cover (LULC) is

  3. Application of the Coastal and Marine Ecological Classification Standard using Satellite-derived and Modeled Data Products for Pelagic Habitats in the Northern Gulf of Mexico

    Science.gov (United States)

    Satellite-derived data for sea surface temperature, salinity, chlorophyll; euphotic depth; and modeled bottom to surface temperature differences (Delta t) were evaluated to assess the utility of these products as proxies for in situ measurements. The data were used to classify su...

  4. On the use of satellite-derived CH4 : CO2 columns in a joint inversion of CH4 and CO2 fluxes

    NARCIS (Netherlands)

    Pandey, S.

    2015-01-01

    We present a method for assimilating total column CH4 : CO2 ratio measurements from satellites for inverse modeling of CH4 and CO2 fluxes using the variational approach. Unlike conventional approaches, in which retrieved CH4 : CO2 are multiplied by model-derived total column CO2 and only the

  5. Time-Series Similarity Analysis of Satellite Derived Data to Understand Changes in Forest Biomass.

    Science.gov (United States)

    Singh, N.; Fritz, B.

    2017-12-01

    One of the goals of promoting bioenergy is reducing green-house gas emissions by replacing fossil fuels. However, there are concerns that carbon emissions due to changes in land use resulting from crop production for ethanol will negate the impact of biofuels on the environment. So, the current focus is to use lignocellulose feedstocks also referred to as second generation biofuels as the new source of bioenergy. Wood based pellets derived from the forests of southeastern United States are one such source which is being exported to Europe as a carbon-neutral fuel. These wood-pellets meet the EU standard for carbon emissions and are being used to replace coal for energy generation and heating. As a result US exports of wood-based pellets have increased from nearly zero to over 6 million metric tons over the past 8 years. Wood-based pellets are traditionally produced from softwood trees which have a relatively shorter life-cycle and propagate easily, and thus are expected to provide a sustainable source of wood chips used for pellet production. However, there are concerns that as the demand and price of wood pellets increases, lumber mills will seek wood chips from other sources as well, particularly from hardwood trees resulting in higher carbon emissions as well as loss of biodiversity. In this study we use annual stacks of normalized difference vegetation index (NDVI) data at a 16-day temporal resolution to monitor biomass around pellet mills in southeastern United States. We use a combination of time series similarity technique and supervised learning to understand if there have been significant changes in biomass around pellet mills in the southeastern US. We also demonstrate how our method can be used to monitor biomass over large geographic regions using phenological properties of growing vegetation.

  6. Satellite Derived Water Quality Observations Are Related to River Discharge and Nitrogen Loads in Pensacola Bay, Florida

    Directory of Open Access Journals (Sweden)

    John C. Lehrter

    2017-09-01

    Full Text Available Relationships between satellite-derived water quality variables and river discharges, concentrations and loads of nutrients, organic carbon, and sediments were investigated over a 9-year period (2003–2011 in Pensacola Bay, Florida, USA. These analyses were conducted to better understand which river forcing factors were the primary drivers of estuarine variability in several water quality variables. Remote sensing reflectance time-series data were retrieved from the MEdium Resolution Imaging Spectrometer (MERIS and used to calculate monthly and annual estuarine time-series of chlorophyll a (Chla, colored dissolved organic matter (CDOM, and total suspended sediments (TSS. Monthly MERIS Chla varied from 2.0 mg m−3 in the lower region of the bay to 17.2 mg m−3 in the upper bay. MERIS CDOM and TSS exhibited similar patterns with ranges of 0.51–2.67 (m−1 and 0.11–8.9 (g m−3. Variations in the MERIS-derived monthly and annual Chla, CDOM, and TSS time-series were significantly related to monthly and annual river discharge and loads of nitrogen, organic carbon, and suspended sediments from the Escambia and Yellow rivers. Multiple regression models based on river loads (independent variables and MERIS Chla, CDOM, or TSS (dependent variables explained significant fractions of the variability (up to 62% at monthly and annual scales. The most significant independent variables in the regressions were river nitrogen loads, which were associated with increased MERIS Chla, CDOM, and TSS concentrations, and river suspended sediment loads, which were associated with decreased concentrations. In contrast, MERIS water quality variations were not significantly related to river total phosphorus loads. The spatially synoptic, nine-year satellite record expanded upon the spatial extent of past field studies to reveal previously unseen system-wide responses to river discharge and loading variation. The results indicated that variations in Pensacola Bay Chla

  7. Evaluation of the ISBA-TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets

    Directory of Open Access Journals (Sweden)

    V. Pedinotti

    2012-06-01

    Full Text Available During the 1970s and 1980s, West Africa has faced extreme climate variations with extended drought conditions. Of particular importance is the Niger basin, since it traverses a large part of the Sahel and is thus a critical source of water for an ever-increasing local population in this semi arid region. However, the understanding of the hydrological processes over this basin is currently limited by the lack of spatially distributed surface water and discharge measurements. The purpose of this study is to evaluate the ability of the ISBA-TRIP continental hydrologic system to represent key processes related to the hydrological cycle of the Niger basin. ISBA-TRIP is currently used within a coupled global climate model, so that the scheme must represent the first order processes which are critical for representing the water cycle while retaining a limited number of parameters and a simple representation of the physics. To this end, the scheme uses first-order approximations to account explicitly for the surface river routing, the floodplain dynamics, and the water storage using a deep aquifer reservoir. In the current study, simulations are done at a 0.5 by 0.5° spatial resolution over the 2002–2007 period (in order to take advantage of the recent satellite record and data from the African Monsoon Multidisciplinary Analyses project, AMMA. Four configurations of the model are compared to evaluate the separate impacts of the flooding scheme and the aquifer on the water cycle. Moreover, the model is forced by two different rainfall datasets to consider the sensitivity of the model to rainfall input uncertainties. The model is evaluated using in situ discharge measurements as well as satellite derived flood extent, total continental water storage changes and river height changes. The basic analysis of in situ discharges confirms the impact of the inner delta area, known as a significant flooded area, on the discharge, characterized by a strong

  8. Global Burned Area and Biomass Burning Emissions from Small Fires

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity

  9. Producing a satellite-derived map and modelling Spartina alterniflora expansion for Willapa Bay in Washington State

    Science.gov (United States)

    Berlin, Cynthia Jane

    1998-12-01

    This research addresses the identification of the areal extent of the intertidal wetlands of Willapa Bay, Washington, and the evaluation of the potential for exotic Spartina alterniflora (smooth cordgrass) expansion in the bay using a spatial geographic approach. It is hoped that the results will address not only the management needs of the study area but provide a research design that may be applied to studies of other coastal wetlands. Four satellite images, three Landsat Multi-Spectral (MSS) and one Thematic Mapper (TM), are used to derive a map showing areas of water, low, middle and high intertidal, and upland. Two multi-date remote sensing mapping techniques are assessed: a supervised classification using density-slicing and an unsupervised classification using an ISODATA algorithm. Statistical comparisons are made between the resultant derived maps and the U.S.G.S. topographic maps for the Willapa Bay area. The potential for Spartina expansion in the bay is assessed using a sigmoidal (logistic) growth model and a spatial modelling procedure for four possible growth scenarios: without management controls (Business-as-Usual), with moderate management controls (e.g. harvesting to eliminate seed setting), under a hypothetical increase in the growth rate that may reflect favorable environmental changes, and under a hypothetical decrease in the growth rate that may reflect aggressive management controls. Comparisons for the statistics of the two mapping techniques suggest that although the unsupervised classification method performed satisfactorily, the supervised classification (density-slicing) method provided more satisfactory results. Results from the modelling of potential Spartina expansion suggest that Spartina expansion will proceed rapidly for the Business-as-Usual and hypothetical increase in the growth rate scenario, and at a slower rate for the elimination of seed setting and hypothetical decrease in the growth rate scenarios, until all potential

  10. 4SM: A Novel Self-Calibrated Algebraic Ratio Method for Satellite-Derived Bathymetry and Water Column Correction.

    Science.gov (United States)

    Morel, Yann G; Favoretto, Fabio

    2017-07-21

    All empirical water column correction methods have consistently been reported to require existing depth sounding data for the purpose of calibrating a simple depth retrieval model; they yield poor results over very bright or very dark bottoms. In contrast, we set out to (i) use only the relative radiance data in the image along with published data, and several new assumptions; (ii) in order to specify and operate the simplified radiative transfer equation (RTE); (iii) for the purpose of retrieving both the satellite derived bathymetry (SDB) and the water column corrected spectral reflectance over shallow seabeds. Sea truth regressions show that SDB depths retrieved by the method only need tide correction. Therefore it shall be demonstrated that, under such new assumptions, there is no need for (i) formal atmospheric correction; (ii) conversion of relative radiance into calibrated reflectance; or (iii) existing depth sounding data, to specify the simplified RTE and produce both SDB and spectral water column corrected radiance ready for bottom typing. Moreover, the use of the panchromatic band for that purpose is introduced. Altogether, we named this process the Self-Calibrated Supervised Spectral Shallow-sea Modeler (4SM). This approach requires a trained practitioner, though, to produce its results within hours of downloading the raw image. The ideal raw image should be a "near-nadir" view, exhibit homogeneous atmosphere and water column, include some coverage of optically deep waters and bare land, and lend itself to quality removal of haze, atmospheric adjacency effect, and sun/sky glint.

  11. Estimation of time-series properties of gourd observed solar irradiance data using cloud properties derived from satellite observations

    Science.gov (United States)

    Watanabe, T.; Nohara, D.

    2017-12-01

    The shorter temporal scale variation in the downward solar irradiance at the ground level (DSI) is not understood well because researches in the shorter-scale variation in the DSI is based on the ground observation and ground observation stations are located coarsely. Use of dataset derived from satellite observation will overcome such defect. DSI data and MODIS cloud properties product are analyzed simultaneously. Three metrics: mean, standard deviation and sample entropy, are used to evaluate time-series properties of the DSI. Three metrics are computed from two-hours time-series centered at the observation time of MODIS over the ground observation stations. We apply the regression methods to design prediction models of each three metrics from cloud properties. The validation of the model accuracy show that mean and standard deviation are predicted with a higher degree of accuracy and that the accuracy of prediction of sample entropy, which represents the complexity of time-series, is not high. One of causes of lower prediction skill of sample entropy is the resolution of the MODIS cloud properties. Higher sample entropy is corresponding to the rapid fluctuation, which is caused by the small and unordered cloud. It seems that such clouds isn't retrieved well.

  12. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    Science.gov (United States)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  13. Quality of Life Assessment Based on Spatial and Temporal Analysis of the Vegetation Area Derived from Satellite Images

    Directory of Open Access Journals (Sweden)

    MARIA IOANA VLAD

    2011-01-01

    Full Text Available The quality of life in urban areas is a function of many parameters among which, one highly important is the number and quality of green areas for people and wildlife to thrive. The quality of life is also a political concept often used to describe citizen satisfaction within different residential locations. Only in the last decades green areas have suffered a progressive decrease in quality, pointing out the ecological urban risk with a negative impact on the standard of living and population health status. This paper presents the evolution of green areas in the cities of South-Eastern Romania within the last 20 years and sets forth the current state of quality of life from the perspective of vegetation reference. By using state-of-the-art processing tools applied on high-resolution satellite images, we have derived knowledge about the spatial and temporal expansion of urbanized regions. Our semi-automatic technologies for analysis of remote sensing data such as Landsat 7 ETM+, correlated with statistical information inferred from urban charts, demonstrate a negative trend in the distribution of green areas within the analyzed cities, with long-term implications on multiple areas in our lives.

  14. The comparison of the actual fire protection and control measures according to the data derived from Istanbul Forest Directorate

    Directory of Open Access Journals (Sweden)

    Mehmet Altuğ Küçükosmanoğlu

    2015-01-01

    Full Text Available The aim of this study is to examine Istanbul Regional Forest Directorate precautions and control measures against the forest fires. With the study it is obvious to see the Regional Directorate of Forestry’s success by means of controlling the fires.

  15. Advanced fire information system

    CSIR Research Space (South Africa)

    Frost, PE

    2007-01-01

    Full Text Available The South African Advanced Fire Information System (AFIS) is the first near real-time satellite-based fire monitoring system in Africa. It was originally developed for, and funded by, the electrical power utility Eskom, to reduce the impact of wild...

  16. An Overview of Recent Geostationary Fire Monitoring Activities and Applications in the Western Hemisphere

    Science.gov (United States)

    McRae, D. J.; Conard, S. G.; Ivanova, G. A.; Sukhinin, A. I.; Hao, W. M.; Koutzenogii, K. P.; Prins, E. M.; Schmidt, C. C.; Feltz, J. M.

    2002-05-01

    -ESE Fire Locating And Mapping of Burning Emissions (FLAMBE) project. Furthermore, the dissemination and use of geostationary imagery and derived fire products in the Western Hemisphere provide a glimpse of future global geostationary fire monitoring capabilities. Global geostationary active fire monitoring will be possible with the launch of the European METEOSAT (METEOrological SATellite) Second Generation (MSG) and the replacement Japanese Multi-functional Transport Satellite (MTSAT-1R) over the next two years. This global network of geostationary satellites will complement the U.S. and international suite of environmental polar-orbiting satellites.

  17. National Fire Risk Map for Continental USA: Creation and Validation

    International Nuclear Information System (INIS)

    Zhang, Q; Wollersheim, M; Griffiths, S; Maddox, I

    2014-01-01

    A nation-wide fire risk map for the continental USA has been created based on a hybrid fire risk model, incorporating a combination of static risk indicators which change very slowly over time, and dynamic risk indicators that may vary significantly from week-to-week. Static risk indicators include: terrain elevation, terrain slope, terrain aspect, and distance from roads and settlements. Each of the static risk indicators are derived from Intermap's high-accuracy NEXTMap ® USA database. The dynamic risk indicators are derived from satellite-based multi-spectral imagery and provide a snapshot of the fuel-moisture conditions during fire seasons. Each of these risk indicators are combined to produce a map provided at 5m posting and normalized to the range of 0 (very low risk) and 255 (very high risk). The map has been validated in two selected areas using historical fire information

  18. A Comparison of Satellite Based, Modeled Derived Daily Solar Radiation Data with Observed Data for the Continental US

    Science.gov (United States)

    White, Jeffrey W.; Hoogenboom, Gerrit; Wilkens, Paul W.; Stackhouse, Paul W., Jr.; Hoell, James M.

    2010-01-01

    Many applications of simulation models and related decision support tools for agriculture and natural resource management require daily meteorological data as inputs. Availability and quality of such data, however, often constrain research and decision support activities that require use of these tools. Daily solar radiation (SRAD) data are especially problematic because the instruments require electronic integrators, accurate sensors are expensive, and calibration standards are seldom available. The Prediction Of Worldwide Energy Resources (NASA/POWER; power.larc.nasa.gov) project at the NASA Langley Research Center estimates daily solar radiation based on data that are derived from satellite observations of outgoing visible radiances and atmospheric parameters based upon satellite observations and assimilation models. The solar data are available for a global 1 degree x 1 degree coordinate grid. SRAD can also be estimated based on attenuation of extraterrestrial radiation (Q0) using daily temperature and rainfall data to estimate the optical thickness of the atmosphere. This study compares daily solar radiation data from NASA/POWER (SRADNP) with instrument readings from 295 stations (SRADOB), as well as with values that were estimated with the WGENR solar generator. WGENR was used both with daily temperature and precipitation records from the stations reporting solar data and records from the NOAA Cooperative Observer Program (COOP), thus providing two additional sources of solar data, SRADWG and SRADCO. Values of SRADNP for different grid cells consistently showed higher correlations (typically 0.85 to 0.95) with SRADOB data than did SRADWG or SRADCO for sites within the corresponding cells. Mean values of SRADOB, SRADWG and SRADNP for sites within a grid cell usually were within 1 MJm-2d-1 of each other, but NASA/POWER values averaged 1.1 MJm-2d-1 lower than SRADOB. The magnitude of this bias was greater at lower latitudes and during summer months and may be at

  19. Hydrological differentiation and spatial distribution of high altitude wetlands in a semi-arid Andean region derived from satellite data

    Directory of Open Access Journals (Sweden)

    M. Otto

    2011-05-01

    Full Text Available High Altitude Wetlands of the Andes (HAWA belong to a unique type of wetland within the semi-arid high Andean region. Knowledge about HAWA has been derived mainly from studies at single sites within different parts of the Andes at only small time scales. On the one hand, HAWA depend on water provided by glacier streams, snow melt or precipitation. On the other hand, they are suspected to influence hydrology through water retention and vegetation growth altering stream flow velocity. We derived HAWA land cover from satellite data at regional scale and analysed changes in connection with precipitation over the last decade. Perennial and temporal HAWA subtypes can be distinguished by seasonal changes of photosynthetically active vegetation (PAV indicating the perennial or temporal availability of water during the year. HAWA have been delineated within a region of 12 800 km2 situated in the Northwest of Lake Titicaca. The multi-temporal classification method used Normalized Differenced Vegetation Index (NDVI and Normalized Differenced Infrared Index (NDII data derived from two Landsat ETM+ scenes at the end of austral winter (September 2000 and at the end of austral summer (May 2001. The mapping result indicates an unexpected high abundance of HAWA covering about 800 km2 of the study region (6 %. Annual HAWA mapping was computed using NDVI 16-day composites of Moderate Resolution Imaging Spectroradiometer (MODIS. Analyses on the relation between HAWA and precipitation was based on monthly precipitation data of the Tropical Rain Measurement Mission (TRMM 3B43 and MODIS Eight Day Maximum Snow Extent data (MOD10A2 from 2000 to 2010. We found HAWA subtype specific dependencies on precipitation conditions. A strong relation exists between perennial HAWA and snow fall (r2: 0.82 in dry austral winter months (June to August and between temporal HAWA and precipitation (r2: 0.75 during austral summer

  20. The 2015 Indonesian biomass-burning season with extensive peat fires: Remote sensing measurements of biomass burning aerosol optical properties from AERONET and MODIS satellite data

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Giles, D. M.; Smirnov, A.; Slutsker, I.; Sinyuk, A.; Schafer, J.; Sorokin, M. G.; Reid, J. S.; Sayer, A. M.; Hsu, N. Y. C.; Levy, R. C.; Lyapustin, A.; Wang, Y.; Rahman, M. A.; Liew, S. C.; Salinas Cortijo, S. V.; Li, T.; Kalbermatter, D.; Keong, K. L.; Elifant, M.; Aditya, F.; Mohamad, M.; Mahmud, M.; Chong, T. K.; Lim, H. S.; Choon, Y. E.; Deranadyan, G.; Kusumaningtyas, S. D. A.

    2016-12-01

    The strong El Nino event in 2015 resulted in below normal rainfall throughout Indonesia, which in turn allowed for exceptionally large numbers of biomass burning fires (including much peat burning) from Aug though Oct 2015. Over the island of Borneo, three AERONET sites measured monthly mean fine mode aerosol optical depth (AOD) at 500 nm from the spectral deconvolution algorithm in Sep and Oct ranging from 1.6 to 3.7, with daily average AOD as high as 6.1. In fact, the AOD was sometimes too high to obtain significant signal at mid-visible, therefore a newly developed algorithm in the AERONET Version 3 database was invoked to retain the measurements in as many of the longer wavelengths as possible. The AOD at longer wavelengths were then utilized to provide estimates of AOD at 550 nm with maximum values of 9 to 11. Additionally, satellite retrievals of AOD at 550 nm from MODIS data and the Dark Target, Deep Blue, and MAIAC algorithms were analyzed and compared to AERONET measured AOD. The AOD was sometimes too high for the satellite algorithms to make retrievals in the densest smoke regions. Since the AOD was often extremely high there was often insufficient AERONET direct sun signal at 440 nm for the larger solar zenith angles (> 50 degrees) required for almucantar retrievals. However, new hybrid sky radiance scans can attain sufficient scattering angle range even at small solar zenith angles when 440 nm direct beam irradiance can be accurately measured, thereby allowing for more retrievals and at higher AOD levels. The retrieved volume median radius of the fine mode increased from 0.18 to 0.25 micron as AOD increased from 1 to 3 (at 440 nm). These are very large size particles for biomass burning aerosol and are similar in size to smoke particles measured in Alaska during the very dry years of 2004 and 2005 (Eck et al. 2009) when peat soil burning also contributed to the fuel burned. The average single scattering albedo over the wavelength range of 440 to 1020 nm

  1. Satellite-derived NO

    NARCIS (Netherlands)

    Ding, J.

    2018-01-01

    Nitrogen oxides (NOx) are important air pollutants and play a crucial role in climate change. NOx emissions are important for chemical transport models to simulate and forecast air quality. Up-to-date emission information also helps policymakers to mitigate air pollution. In this thesis, we have

  2. The 27-28 October 1986 FIRE IFO Cirrus case study: Comparison of radiative transfer theory with observations by satellite and aircraft

    Science.gov (United States)

    Wielicki, Bruce A.; Suttles, J. T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Wu, Man-Li C.; Starr, David OC.; Parker, Lindsay; Arduini, Robert F.

    1989-01-01

    Observations of cirrus and altocumulus clouds during the First International Satellite Cloud Climatology Project Regional Experiment (FIRE) are compared to theoretical models of cloud radiative properties. Three tests are performed. First, LANDSAT radiances are used to compare the relationship between nadir reflectance ot 0.83 micron and beam emittance at 11.5 microns with that predicted for model calculations using spherical and nonspherical phase functions. Good agreement is found between observations and theory when water droplets dominate. Poor agreement is found when ice particles dominate, especially using scattering phase functions for spherical particles. Even when compared to a laboratory measured ice particle phase function, the observations show increased side scattered radiation relative to the theoretical calculations. Second, the anisotropy of conservatively scattered radiation is examined using simultaneous multiple angle views of the cirrus from LANDSAT and ER-2 aircraft radiometers. Observed anisotropy gives good agreement with theoretical calculations using the laboratory measured ice particle phase function and poor agreement with a spherical particle phase function. Third, Landsat radiances at 0.83, 1.65, and 2.21 microns are used to infer particle phase and particle size. For water droplets, good agreement is found with King Air FSSP particle probe measurements in the cloud. For ice particles, the LANDSAT radiance observations predict an effective radius of 60 microns versus aircraft observations of about 200 microns. It is suggested that this descrepancy may be explained by uncertainty in the imaginary index of ice and by inadequate measurements of small ice particles by microphysical probes.

  3. Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2010-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie

  4. 4SM: A Novel Self-Calibrated Algebraic Ratio Method for Satellite-Derived Bathymetry and Water Column Correction

    Directory of Open Access Journals (Sweden)

    Yann G. Morel

    2017-07-01

    Full Text Available All empirical water column correction methods have consistently been reported to require existing depth sounding data for the purpose of calibrating a simple depth retrieval model; they yield poor results over very bright or very dark bottoms. In contrast, we set out to (i use only the relative radiance data in the image along with published data, and several new assumptions; (ii in order to specify and operate the simplified radiative transfer equation (RTE; (iii for the purpose of retrieving both the satellite derived bathymetry (SDB and the water column corrected spectral reflectance over shallow seabeds. Sea truth regressions show that SDB depths retrieved by the method only need tide correction. Therefore it shall be demonstrated that, under such new assumptions, there is no need for (i formal atmospheric correction; (ii conversion of relative radiance into calibrated reflectance; or (iii existing depth sounding data, to specify the simplified RTE and produce both SDB and spectral water column corrected radiance ready for bottom typing. Moreover, the use of the panchromatic band for that purpose is introduced. Altogether, we named this process the Self-Calibrated Supervised Spectral Shallow-sea Modeler (4SM. This approach requires a trained practitioner, though, to produce its results within hours of downloading the raw image. The ideal raw image should be a “near-nadir” view, exhibit homogeneous atmosphere and water column, include some coverage of optically deep waters and bare land, and lend itself to quality removal of haze, atmospheric adjacency effect, and sun/sky glint.

  5. Improving spatio-temporal model estimation of satellite-derived PM2.5 concentrations: Implications for public health

    Science.gov (United States)

    Barik, M. G.; Al-Hamdan, M. Z.; Crosson, W. L.; Yang, C. A.; Coffield, S. R.

    2017-12-01

    Satellite-derived environmental data, available in a range of spatio-temporal scales, are contributing to the growing use of health impact assessments of air pollution in the public health sector. Models developed using correlation of Moderate Resolution Imaging Spectrometer (MODIS) Aerosol Optical Depth (AOD) with ground measurements of fine particulate matter less than 2.5 microns (PM2.5) are widely applied to measure PM2.5 spatial and temporal variability. In the public health sector, associations of PM2.5 with respiratory and cardiovascular diseases are often investigated to quantify air quality impacts on these health concerns. In order to improve predictability of PM2.5 estimation using correlation models, we have included meteorological variables, higher-resolution AOD products and instantaneous PM2.5 observations into statistical estimation models. Our results showed that incorporation of high-resolution (1-km) Multi-Angle Implementation of Atmospheric Correction (MAIAC)-generated MODIS AOD, meteorological variables and instantaneous PM2.5 observations improved model performance in various parts of California (CA), USA, where single variable AOD-based models showed relatively weak performance. In this study, we further asked whether these improved models actually would be more successful for exploring associations of public health outcomes with estimated PM2.5. To answer this question, we geospatially investigated model-estimated PM2.5's relationship with respiratory and cardiovascular diseases such as asthma, high blood pressure, coronary heart disease, heart attack and stroke in CA using health data from the Centers for Disease Control and Prevention (CDC)'s Wide-ranging Online Data for Epidemiologic Research (WONDER) and the Behavioral Risk Factor Surveillance System (BRFSS). PM2.5 estimation from these improved models have the potential to improve our understanding of associations between public health concerns and air quality.

  6. Does quality control matter? Surface urban heat island intensity variations estimated by satellite-derived land surface temperature products

    Science.gov (United States)

    Lai, Jiameng; Zhan, Wenfeng; Huang, Fan; Quan, Jinling; Hu, Leiqiu; Gao, Lun; Ju, Weimin

    2018-05-01

    The temporally regular and spatially comprehensive monitoring of surface urban heat islands (SUHIs) have been extremely difficult, until the advent of satellite-based land surface temperature (LST) products. However, these LST products have relatively higher errors compared to in situ measurements. This has resulted in comparatively inaccurate estimations of SUHI indicators and, consequently, may have distorted interpretations of SUHIs. Although reports have shown that LST qualities are important for SUHI interpretations, systematic investigations of the response of SUHI indicators to LST qualities across cities with dissimilar bioclimates are rare. To address this issue, we chose eighty-six major cities across mainland China and analyzed SUHI intensity (SUHII) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) LST data. The LST-based SUHII differences due to inclusion or exclusion of MODIS quality control (QC) flags (i.e., ΔSUHII) were evaluated. Our major findings included, but are not limited to, the following four aspects: (1) SUHIIs can be significantly impacted by MODIS QC flags, and the associated QC-induced ΔSUHIIs generally accounted for 24.3% (29.9%) of the total SUHII value during the day (night); (2) the ΔSUHIIs differed between seasons, with considerable differences between transitional (spring and autumn) and extreme (summer and winter) seasons; (3) significant discrepancies also appeared among cities located in northern and southern regions, with northern cities often possessing higher annual mean ΔSUHIIs. The internal variations of ΔSUHIIs within individual cities also showed high heterogeneity, with ΔSUHII variations that generally exceeded 5.0 K (3.0 K) in northern (southern) cities; (4) ΔSUHIIs were negatively related to SUHIIs and cloud cover percentages (mostly in transitional seasons). No significant relationship was found in the extreme seasons. Our findings highlight the need to be extremely cautious when using LST

  7. Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational ℓ1-Norm Regularization in the Derivative Domain

    Science.gov (United States)

    Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.

    2014-05-01

    The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall), and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients (called ℓ1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a data base of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case

  8. Assessment of satellite and model derived long term solar radiation for spatial crop models: A case study using DSSAT in Andhra Pradesh

    Directory of Open Access Journals (Sweden)

    Anima Biswal

    2014-09-01

    Full Text Available Crop Simulation models are mathematical representations of the soil plant-atmosphere system that calculate crop growth and yield, as well as the soil and plant water and nutrient balances, as a function of environmental conditions and crop management practices on daily time scale. Crop simulation models require meteorological data as inputs, but data availability and quality are often problematic particularly in spatialising the model for a regional studies. Among these weather variables, daily total solar radiation and air temperature (Tmax and Tmin have the greatest influence on crop phenology and yield potential. The scarcity of good quality solar radiation data can be a major limitation to the use of crop models. Satellite-sensed weather data have been proposed as an alternative when weather station data are not available. These satellite and modeled based products are global and, in general, contiguous in time and also been shown to be accurate enough to provide reliable solar and meteorological resource data over large regions where surface measurements are sparse or nonexistent. In the present study, an attempt was made to evaluate the satellite and model derived daily solar radiation for simulating groundnut crop growth in the rainfed distrcits of Andhra Pradesh. From our preliminary investigation, we propose that satellite derived daily solar radiation data could be used along with ground observed temperature and rainfall data for regional crop simulation studies where the information on ground observed solar radiation is missing or not available.

  9. Can Airborne Laser Scanning (ALS and Forest Estimates Derived from Satellite Images Be Used to Predict Abundance and Species Richness of Birds and Beetles in Boreal Forest?

    Directory of Open Access Journals (Sweden)

    Eva Lindberg

    2015-04-01

    Full Text Available In managed landscapes, conservation planning requires effective methods to identify high-biodiversity areas. The objective of this study was to evaluate the potential of airborne laser scanning (ALS and forest estimates derived from satellite images extracted at two spatial scales for predicting the stand-scale abundance and species richness of birds and beetles in a managed boreal forest landscape. Multiple regression models based on forest data from a 50-m radius (i.e., corresponding to a homogenous forest stand had better explanatory power than those based on a 200-m radius (i.e., including also parts of adjacent stands. Bird abundance and species richness were best explained by the ALS variables “maximum vegetation height” and “vegetation cover between 0.5 and 3 m” (both positive. Flying beetle abundance and species richness, as well as epigaeic (i.e., ground-living beetle richness were best explained by a model including the ALS variable “maximum vegetation height” (positive and the satellite-derived variable “proportion of pine” (negative. Epigaeic beetle abundance was best explained by “maximum vegetation height” at 50 m (positive and “stem volume” at 200 m (positive. Our results show that forest estimates derived from satellite images and ALS data provide complementary information for explaining forest biodiversity patterns. We conclude that these types of remote sensing data may provide an efficient tool for conservation planning in managed boreal landscapes.

  10. Intercomparison of Satellite Derived Gravity Time Series with Inferred Gravity Time Series from TOPEX/POSEIDON Sea Surface Heights and Climatological Model Output

    Science.gov (United States)

    Cox, C.; Au, A.; Klosko, S.; Chao, B.; Smith, David E. (Technical Monitor)

    2001-01-01

    The upcoming GRACE mission promises to open a window on details of the global mass budget that will have remarkable clarity, but it will not directly answer the question of what the state of the Earth's mass budget is over the critical last quarter of the 20th century. To address that problem we must draw upon existing technologies such as SLR, DORIS, and GPS, and climate modeling runs in order to improve our understanding. Analysis of long-period geopotential changes based on SLR and DORIS tracking has shown that addition of post 1996 satellite tracking data has a significant impact on the recovered zonal rates and long-period tides. Interannual effects such as those causing the post 1996 anomalies must be better characterized before refined estimates of the decadal period changes in the geopotential can be derived from the historical database of satellite tracking. A possible cause of this anomaly is variations in ocean mass distribution, perhaps associated with the recent large El Nino/La Nina. In this study, a low-degree spherical harmonic gravity time series derived from satellite tracking is compared with a TOPEX/POSEIDON-derived sea surface height time series. Corrections for atmospheric mass effects, continental hydrology, snowfall accumulation, and ocean steric model predictions will be considered.

  11. Daily and 3-hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    Science.gov (United States)

    Mu, M.; Randerson, J. T.; vanderWerf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions during 2003.2009 to a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS) ]derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of burning in savannas. These patterns were consistent with earlier field and modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top ]down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from

  12. Impact of Land Cover Change Induced by a Fire Event on the Surface Energy Fluxes Derived from Remote Sensing

    Directory of Open Access Journals (Sweden)

    Juan M. Sánchez

    2015-11-01

    Full Text Available Forest fires affect the natural cycle of the vegetation, and the structure and functioning of ecosystems. As a consequence of defoliation and vegetation mortality, surface energy flux patterns can suffer variations. Remote sensing techniques together with surface energy balance modeling offer the opportunity to explore these changes. In this paper we focus on a Mediterranean forest ecosystem. A fire event occurred in 2001 in Almodóvar del Pinar (Spain affecting a pine and shrub area. A two-source energy balance approach was applied to a set of Landsat 5-TM and Landsat 7-EMT+ images to estimate the surface fluxes in the area. Three post-fire periods were analyzed, six, seven, nine, and 11 years after the fire event. Results showed the regeneration of the shrub area in 6–7 years, in contrast to the pine area, where an important decrease in evapotranspiration, around 1 mm·day−1, remained. Differences in evapotranspiration were mitigated nine and 11 years after the fire in the pine area, whereas significant deviations in the rest of the terms of the energy balance equation were still observed. The combined effect of changes in the vegetation structure and surface variables, such as land surface temperature, albedo, or vegetation coverage, is responsible for these variations in the surface energy flux patterns.

  13. Neuron-Derived ADAM10 Production Stimulates Peripheral Nerve Injury-Induced Neuropathic Pain by Cleavage of E-Cadherin in Satellite Glial Cells.

    Science.gov (United States)

    Li, Jian; Ouyang, Qing; Chen, Cheng-Wen; Chen, Qian-Bo; Li, Xiang-Nan; Xiang, Zheng-Hua; Yuan, Hong-Bin

    2017-09-01

    Increasing evidence suggests the potential involvement of metalloproteinase family proteins in the pathogenesis of neuropathic pain, although the underlying mechanisms remain elusive. Using the spinal nerve ligation model, we investigated whether ADAM10 proteins participate in pain regulation. By implementing invitro methods, we produced a purified culture of satellite glial cells to study the underlying mechanisms of ADAM10 in regulating neuropathic pain. Results showed that the ADAM10 protein was expressed in calcitonin gene-related peptide (CGRP)-containing neurons of the dorsal root ganglia, and expression was upregulated following spinal nerve ligation surgery invivo. Intrathecal administration of GI254023X, an ADAM10 selective inhibitor, to the rats one to three days after spinal nerve ligation surgery attenuated the spinal nerve ligation-induced mechanical allodynia and thermal hyperalgesia. Intrathecal injection of ADAM10 recombinant protein simulated pain behavior in normal rats to a similar extent as those treated by spinal nerve ligation surgery. These results raised a question about the relative contribution of ADAM10 in pain regulation. Further results showed that ADAM10 might act by cleaving E-cadherin, which is mainly expressed in satellite glial cells. GI254023X reversed spinal nerve ligation-induced downregulation of E-cadherin and activation of cyclooxygenase 2 after spinal nerve ligation. β-catenin, which creates a complex with E-cadherin in the membranes of satellite glial cells, was also downregulated by spinal nerve ligation surgery in satellite glial cells. Finally, knockdown expression of β-catenin by lentiviral infection in purified satellite glial cells increased expression of inducible nitric oxide synthase and cyclooxygenase 2. Our findings indicate that neuron-derived ADAM10 production stimulates peripheral nerve injury-induced neuropathic pain by cleaving E-cadherin in satellite glial cells. © 2017 American Academy of Pain Medicine

  14. Health and environmental effects of refuse derived fuel (RDF) production and RDF/coal co-firing technologies

    Energy Technology Data Exchange (ETDEWEB)

    O' Toole, J.J.; Wessels, T.E.; Lynch, J.F.; Fassel, V.A.; Lembke, L.L.; Kniseley, R.N.; Norton, G.A.; Junk, G.A.; Richard, J.J.; Dekalb, E.L.; Dobosy, R.J.

    1981-10-01

    Six facilities, representing the scope of different co-firing techniques with their associated RDF production systems were reviewed in detail for combustion equipment, firing modes, emission control systems, residue handling/disposal, and effluent wastewater treatment. These facilities encompass all currently operational or soon to be operational co-firing plants and associated RDF production systems. Occupational health and safety risks for these plants were evaluated on the basis of fatal and nonfatal accidents and disease arising from the respective fuel cycles, coal and RDF. Occupational risks include exposure to pathogenic organisms in the workplace. Unusual events that are life threatening in the RDF processing industry (e.g., explosions) are also discussed and remedial and safety measures reviewed. 80 refs., 4 figs., 30 tabs.

  15. Crust-mantle density distribution in the eastern Qinghai-Tibet Plateau revealed by satellite-derived gravity gradients

    Science.gov (United States)

    LI, Honglei; Fang, Jian; Braitenberg, Carla; Wang, Xinsheng

    2015-04-01

    As the highest, largest and most active plateau on Earth, the Qinghai-Tibet Plateau has a complex crust-mantle structure, especially in its eastern part. In response to the subduction of the lithospheric mantle of the Indian plate, large-scale crustal motion occurs in this area. Despite the many previous studies, geodynamic processes at depth remain unclear. Knowledge of crust and upper mantle density distribution allows a better definition of the deeper geological structure and thus provides critically needed information for understanding of the underlying geodynamic processes. With an unprecedented precision of 1-2 mGal and a spatial resolution better than 100 km, GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission products can be used to constrain the crust-mantle density distribution. Here we used GOCE gravitational gradients at an altitude of 10km after reducing the effects of terrain, sediment thickness variations, and Moho undulations to image the density structures of eastern Tibet up to 200 km depths. We inverted the residual satellite gravitational gradients using a least square approach. The initial density model for the inversion is based on seismic velocities from the tomography. The model is composed of rectangular blocks, having a uniform density, with widths of about 100 km and variable thickness and depths. The thickness of the rectangular cells changes from10 to 60km in accordance with the seismic model. Our results reveal some large-scale, structurally controlled density variations at depths. The lithospheric root defined by higher-density contrast features from southwest to northeast, with shallowing in the central part: base of lithosphere reaches a depth of180 km, less than 100km, and 200 km underneath the Lhasa, Songpan-Ganzi, and Ordos crustal blocks, respectively. However, these depth values only represent a first-order parameterization because they depend on model discretization inherited from the original seismic

  16. Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level

    Science.gov (United States)

    Hopkins, Jo; Lucas, Marc; Dufau, Claire; Sutton, Marion; Lauret, Olivier

    2013-04-01

    The Congo River in Africa has the world's second highest annual mean daily freshwater discharge and is the second largest exporter of terrestrial organic carbon into the oceans. It annually discharges an average of 1,250 × 109 m3 of freshwater into the southeast Atlantic producing a vast fresh water plume, whose signature can be traced hundreds of kilometres from the river mouth. Large river plumes such as this play important roles in the ocean carbon cycle, often functioning as carbon sinks. An understanding of their extent and seasonality is therefore essential if they are to be realistically accounted for in global assessments of the carbon cycle. Despite its size, the variability and dynamics of the Congo plume are minimally documented. In this paper we analyse satellite derived sea surface temperature, salinity, ocean colour and sea level anomaly to describe and quantify the extent, strength and variability of the far-field plume and to explain its behaviour in relation to winds, ocean currents and fresh water discharge. Empirical Orthogonal Function analysis reveals strong seasonal and coastal upwelling signals, potential bimodal seasonality of the Angola Current and responses to fresh water discharge peaks in all data sets. The strongest plume-like signatures however were found in the salinity and ocean colour where the dominant sources of variability come from the Congo River itself, rather than from the wider atmosphere and ocean. These two data sets are then analysed using a statistically based water mass detection technique to isolate the behaviour of the plume. The Congo's close proximity to the equator means that the influence of the earth's rotation on the fresh water inflow is relatively small and the plume tends not to form a distinct coastal current. Instead, its behaviour is determined by wind and surface circulation patterns. The main axis of the plume between November and February, following peak river discharge, is oriented northwest, driven

  17. PPARγ and MyoD are differentially regulated by myostatin in adipose-derived stem cells and muscle satellite cells

    International Nuclear Information System (INIS)

    Zhang, Feng; Deng, Bing; Wen, Jianghui; Chen, Kun; Liu, Wu; Ye, Shengqiang; Huang, Haijun; Jiang, Siwen; Xiong, Yuanzhu

    2015-01-01

    Myostatin (MSTN) is a secreted protein belonging to the transforming growth factor-β (TGF-β) family that is primarily expressed in skeletal muscle and also functions in adipocyte maturation. Studies have shown that MSTN can inhibit adipogenesis in muscle satellite cells (MSCs) but not in adipose-derived stem cells (ADSCs). However, the mechanism by which MSTN differently regulates adipogenesis in these two cell types remains unknown. Peroxisome proliferator-activated receptor-γ (PPARγ) and myogenic differentiation factor (MyoD) are two key transcription factors in fat and muscle cell development that influence adipogenesis. To investigate whether MSTN differentially regulates PPARγ and MyoD, we analyzed PPARγ and MyoD expression by assessing mRNA, protein and methylation levels in ADSCs and MSCs after treatment with 100 ng/mL MSTN for 0, 24, and 48 h. PPARγ mRNA levels were downregulated after 24 h and upregulated after 48 h of treatment in ADSCs, whereas in MSCs, PPARγ levels were downregulated at both time points. MyoD expression was significantly increased in ADSCs and decreased in MSCs. PPARγ and MyoD protein levels were upregulated in ADSCs and downregulated in MSCs. The CpG methylation levels of the PPARγ and MyoD promoters were decreased in ADSCs and increased in MSCs. Therefore, this study demonstrated that the different regulatory adipogenic roles of MSTN in ADSCs and MSCs act by differentially regulating PPARγ and MyoD expression. - Highlights: • PPARγ and MyoD mRNA and protein levels are upregulated by myostatin in ADSCs. • PPARγ and MyoD mRNA and protein levels are downregulated by myostatin in MSCs. • PPARγ exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • MyoD exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • PPARγ and MyoD are differentially regulated by myostatin in ADSCs and MSCs

  18. PPARγ and MyoD are differentially regulated by myostatin in adipose-derived stem cells and muscle satellite cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Deng, Bing [Wuhan Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208 (China); Wen, Jianghui [Wu Han University of Technology, Wuhan 430074 (China); Chen, Kun [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Liu, Wu; Ye, Shengqiang; Huang, Haijun [Wuhan Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208 (China); Jiang, Siwen, E-mail: jiangsiwen@mail.hzau.edu.cn [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Xiong, Yuanzhu, E-mail: xiongyzhu@163.com [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China)

    2015-03-06

    Myostatin (MSTN) is a secreted protein belonging to the transforming growth factor-β (TGF-β) family that is primarily expressed in skeletal muscle and also functions in adipocyte maturation. Studies have shown that MSTN can inhibit adipogenesis in muscle satellite cells (MSCs) but not in adipose-derived stem cells (ADSCs). However, the mechanism by which MSTN differently regulates adipogenesis in these two cell types remains unknown. Peroxisome proliferator-activated receptor-γ (PPARγ) and myogenic differentiation factor (MyoD) are two key transcription factors in fat and muscle cell development that influence adipogenesis. To investigate whether MSTN differentially regulates PPARγ and MyoD, we analyzed PPARγ and MyoD expression by assessing mRNA, protein and methylation levels in ADSCs and MSCs after treatment with 100 ng/mL MSTN for 0, 24, and 48 h. PPARγ mRNA levels were downregulated after 24 h and upregulated after 48 h of treatment in ADSCs, whereas in MSCs, PPARγ levels were downregulated at both time points. MyoD expression was significantly increased in ADSCs and decreased in MSCs. PPARγ and MyoD protein levels were upregulated in ADSCs and downregulated in MSCs. The CpG methylation levels of the PPARγ and MyoD promoters were decreased in ADSCs and increased in MSCs. Therefore, this study demonstrated that the different regulatory adipogenic roles of MSTN in ADSCs and MSCs act by differentially regulating PPARγ and MyoD expression. - Highlights: • PPARγ and MyoD mRNA and protein levels are upregulated by myostatin in ADSCs. • PPARγ and MyoD mRNA and protein levels are downregulated by myostatin in MSCs. • PPARγ exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • MyoD exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • PPARγ and MyoD are differentially regulated by myostatin in ADSCs and MSCs.

  19. Evaluation of Land Surface Models in Reproducing Satellite-Derived LAI over the High-Latitude Northern Hemisphere. Part I: Uncoupled DGVMs

    Directory of Open Access Journals (Sweden)

    Ning Zeng

    2013-10-01

    Full Text Available Leaf Area Index (LAI represents the total surface area of leaves above a unit area of ground and is a key variable in any vegetation model, as well as in climate models. New high resolution LAI satellite data is now available covering a period of several decades. This provides a unique opportunity to validate LAI estimates from multiple vegetation models. The objective of this paper is to compare new, satellite-derived LAI measurements with modeled output for the Northern Hemisphere. We compare monthly LAI output from eight land surface models from the TRENDY compendium with satellite data from an Artificial Neural Network (ANN from the latest version (third generation of GIMMS AVHRR NDVI data over the period 1986–2005. Our results show that all the models overestimate the mean LAI, particularly over the boreal forest. We also find that seven out of the eight models overestimate the length of the active vegetation-growing season, mostly due to a late dormancy as a result of a late summer phenology. Finally, we find that the models report a much larger positive trend in LAI over this period than the satellite observations suggest, which translates into a higher trend in the growing season length. These results highlight the need to incorporate a larger number of more accurate plant functional types in all models and, in particular, to improve the phenology of deciduous trees.

  20. Comparison of cloud top heights derived from FY-2 meteorological satellites with heights derived from ground-based millimeter wavelength cloud radar

    Science.gov (United States)

    Wang, Zhe; Wang, Zhenhui; Cao, Xiaozhong; Tao, Fa

    2018-01-01

    Clouds are currently observed by both ground-based and satellite remote sensing techniques. Each technique has its own strengths and weaknesses depending on the observation method, instrument performance and the methods used for retrieval. It is important to study synergistic cloud measurements to improve the reliability of the observations and to verify the different techniques. The FY-2 geostationary orbiting meteorological satellites continuously observe the sky over China. Their cloud top temperature product can be processed to retrieve the cloud top height (CTH). The ground-based millimeter wavelength cloud radar can acquire information about the vertical structure of clouds-such as the cloud base height (CBH), CTH and the cloud thickness-and can continuously monitor changes in the vertical profiles of clouds. The CTHs were retrieved using both cloud top temperature data from the FY-2 satellites and the cloud radar reflectivity data for the same time period (June 2015 to May 2016) and the resulting datasets were compared in order to evaluate the accuracy of CTH retrievals using FY-2 satellites. The results show that the concordance rate of cloud detection between the two datasets was 78.1%. Higher consistencies were obtained for thicker clouds with larger echo intensity and for more continuous clouds. The average difference in the CTH between the two techniques was 1.46 km. The difference in CTH between low- and mid-level clouds was less than that for high-level clouds. An attenuation threshold of the cloud radar for rainfall was 0.2 mm/min; a rainfall intensity below this threshold had no effect on the CTH. The satellite CTH can be used to compensate for the attenuation error in the cloud radar data.

  1. Reconstructing satellite images to quantify spatially explicit land surface change caused by fires and succession: A demonstration in the Yukon River Basin of interior Alaska

    Science.gov (United States)

    Huang, Shengli; Jin, Suming; Dahal, Devendra; Chen, Xuexia; Young, Claudia; Liu, Heping; Liu, Shuguang

    2013-01-01

    Land surface change caused by fires and succession is confounded by many site-specific factors and requires further study. The objective of this study was to reveal the spatially explicit land surface change by minimizing the confounding factors of weather variability, seasonal offset, topography, land cover, and drainage. In a pilot study of the Yukon River Basin of interior Alaska, we retrieved Normalized Difference Vegetation Index (NDVI), albedo, and land surface temperature (LST) from a postfire Landsat image acquired on August 5th, 2004. With a Landsat reference image acquired on June 26th, 1986, we reconstructed NDVI, albedo, and LST of 1987–2004 fire scars for August 5th, 2004, assuming that these fires had not occurred. The difference between actual postfire and assuming-no-fire scenarios depicted the fires and succession impact. Our results demonstrated the following: (1) NDVI showed an immediate decrease after burning but gradually recovered to prefire levels in the following years, in which burn severity might play an important role during this process; (2) Albedo showed an immediate decrease after burning but then recovered and became higher than prefire levels; and (3) Most fires caused surface warming, but cooler surfaces did exist; time-since-fire affected the prefire and postfire LST difference but no absolute trend could be found. Our approach provided spatially explicit land surface change rather than average condition, enabling a better understanding of fires and succession impact on ecological consequences at the pixel level.

  2. How robust are in situ observations for validating satellite-derived albedo over the dark zone of the Greenland Ice Sheet?

    Science.gov (United States)

    Ryan, J.; Hubbard, A., II; Irvine-Fynn, T. D.; Doyle, S. H.; Cook, J.; Stibal, M.; Smith, L. C.; Box, J. E.

    2017-12-01

    Calibration and validation of satellite-derived ice sheet albedo data require high-quality, in situ measurements commonly acquired by up and down facing pyranometers mounted on automated weather stations (AWS). However, direct comparison between ground and satellite-derived albedo can only be justified when the measured surface is homogeneous at the length-scale of both satellite pixel and in situ footprint. We used digital imagery acquired by an unmanned aerial vehicle to evaluate point-to-pixel albedo comparisons across the western, ablating margin of the Greenland Ice Sheet. Our results reveal that in situ measurements overestimate albedo by up to 0.10 at the end of the melt season because the ground footprints of AWS-mounted pyranometers are insufficient to capture the spatial heterogeneity of the ice surface as it progressively ablates and darkens. Statistical analysis of 21 AWS across the entire Greenland Ice Sheet reveals that almost half suffer from this bias, including some AWS located within the wet snow zone.

  3. Investigation of CO, C2H6 and aerosols in a boreal fire plume over eastern Canada during BORTAS 2011 using ground- and satellite-based observations and model simulations

    Directory of Open Access Journals (Sweden)

    D. Griffin

    2013-10-01

    Full Text Available We present the results of total column measurements of CO, C2H6 and fine-mode aerosol optical depth (AOD during the "Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites" (BORTAS-B campaign over eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs and sun photometers, were carried out in July and August 2011. These measurements were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and also in Toronto, Ontario. Measurements of fine-mode AOD enhancements were highly correlated with enhancements in coincident trace gas (CO and C2H6 observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this paper, we focus on the identification of the origin and the transport of this smoke plume. We use back trajectories calculated by the Canadian Meteorological Centre as well as FLEXPART forward trajectories to demonstrate that the enhanced CO, C2H6 and fine-mode AOD seen near Halifax and Toronto originated from forest fires in northwestern Ontario that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the enhancement ratio – that is, in this case equivalent to the emission ratio (ERC2H6/CO – was estimated from these ground-based observations. These C2H6 emission results from boreal fires in northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to fires from other geographical regions. The ground-based CO and C2H6 observations were compared with outputs from the 3-D global chemical transport model GEOS-Chem, using the Fire Locating And Modeling of Burning Emissions (FLAMBE inventory

  4. Investigation of CO, C2H6 and aerosols in a boreal fire plume over eastern Canada during BORTAS 2011 using ground- and satellite-based observations and model simulations

    Science.gov (United States)

    Griffin, D.; Walker, K. A.; Franklin, J. E.; Parrington, M.; Whaley, C.; Hopper, J.; Drummond, J. R.; Palmer, P. I.; Strong, K.; Duck, T. J.; Abboud, I.; Bernath, P. F.; Clerbaux, C.; Coheur, P.-F.; Curry, K. R.; Dan, L.; Hyer, E.; Kliever, J.; Lesins, G.; Maurice, M.; Saha, A.; Tereszchuk, K.; Weaver, D.

    2013-10-01

    We present the results of total column measurements of CO, C2H6 and fine-mode aerosol optical depth (AOD) during the "Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites" (BORTAS-B) campaign over eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs) and sun photometers, were carried out in July and August 2011. These measurements were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and also in Toronto, Ontario. Measurements of fine-mode AOD enhancements were highly correlated with enhancements in coincident trace gas (CO and C2H6) observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this paper, we focus on the identification of the origin and the transport of this smoke plume. We use back trajectories calculated by the Canadian Meteorological Centre as well as FLEXPART forward trajectories to demonstrate that the enhanced CO, C2H6 and fine-mode AOD seen near Halifax and Toronto originated from forest fires in northwestern Ontario that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI) have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the enhancement ratio - that is, in this case equivalent to the emission ratio (ERC2H6/CO) - was estimated from these ground-based observations. These C2H6 emission results from boreal fires in northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to fires from other geographical regions. The ground-based CO and C2H6 observations were compared with outputs from the 3-D global chemical transport model GEOS-Chem, using the Fire Locating And Modeling of Burning Emissions (FLAMBE) inventory. Agreement within the

  5. Daily and Hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    Science.gov (United States)

    Mu, M.; Randerson, J. T.; van der Werf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We distributed monthly GFED3 emissions during 2003-2009 on a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) active fire observations. We found that patterns of daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of bunting in savannas. On diurnal timescales, our analysis of the GOES active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates.

  6. Co-firing a pressurized fluidized-bed combustion system with coal and refuse derived fuels and/or sludges. Task 16

    Energy Technology Data Exchange (ETDEWEB)

    DeLallo, M.; Zaharchuk, R.

    1994-01-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach, the atmospheric fluidized-bed combustor (AFBC) has demonstrated its commercial acceptance in the utility market as a reliable source of power burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Wastes considered for co-firing include municipal solid waste (MSW), tire-derived fuel (TDF), sewage sludge, and industrial de-inking sludge. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  7. Mosaic of bathymetry derived from multispectral WV-2 satellite imagery of Agrihan Island, Territory of Mariana, USA from 2003-08-26 to 2012-05-03 (NODC Accession 0126914)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetric data derived from a multipectral World View-2 satellite image mosaiced to provide near complete coverage of nearshore terrain around the islands....

  8. Assessing Wildfire Risk in Cultural Heritage Properties Using High Spatial and Temporal Resolution Satellite Imagery and Spatially Explicit Fire Simulations: The Case of Holy Mount Athos, Greece

    Directory of Open Access Journals (Sweden)

    Giorgos Mallinis

    2016-02-01

    Full Text Available Fire management implications and the design of conservation strategies on fire prone landscapes within the UNESCO World Heritage Properties require the application of wildfire risk assessment at landscape level. The objective of this study was to analyze the spatial variation of wildfire risk on Holy Mount Athos in Greece. Mt. Athos includes 20 monasteries and other structures that are threatened by increasing frequency of wildfires. Site-specific fuel models were created by measuring in the field several fuel parameters in representative natural fuel complexes, while the spatial extent of the fuel types was determined using a synergy of high-resolution imagery and high temporal information from medium spatial resolution imagery classified through object-based analysis and a machine learning classifier. The Minimum Travel Time (MTT algorithm, as it is embedded in FlamMap software, was applied in order to evaluate Burn Probability (BP, Conditional Flame Length (CFL, Fire Size (FS, and Source-Sink Ratio (SSR. The results revealed low burn probabilities for the monasteries; however, nine out of the 20 monasteries have high fire potential in terms of fire intensity, which means that if an ignition occurs, an intense fire is expected. The outputs of this study may be used for decision-making for short-term predictions of wildfire risk at an operational level, contributing to fire suppression and management of UNESCO World Heritage Properties.

  9. Recent history of large-scale ecosystem disturbances in North America derived from the AVHRR satellite record.

    Science.gov (United States)

    Christopher Potter; Tan Pang-Ning; Vipin Kumar; Chris Kucharik; Steven Klooster; Vanessa Genovese; Warren Cohen; Sean. Healey

    2005-01-01

    Ecosystem structure and function are strongly affected by disturbance events, many of which in North America are associated with seasonal temperature extremes, wildfires, and tropical storms. This study was conducted to evaluate patterns in a 19-year record of global satellite observations of vegetation phenology from the advanced very high resolution radiometer (AVHRR...

  10. Comparison of global inventories of CO_2 emissions from biomass burning during 2002–2011 derived from multiple satellite products

    International Nuclear Information System (INIS)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto; Yamaguchi, Yasushi; Chen, Xuehong

    2015-01-01

    This study compared five widely used globally gridded biomass burning emissions inventories for the 2002–2011 period (Global Fire Emissions Database 3 (GFED3), Global Fire Emissions Database 4 (GFED4), Global Fire Assimilation System 1.0 (GFAS1.0), Fire INventory from NCAR 1.0 (FINN1.0) and Global Inventory for Chemistry-Climate studies-GFED4 (G-G)). Average annual CO_2 emissions range from 6521.3 to 9661.5 Tg year"−"1 for five inventories, with extensive amounts in Africa, South America and Southeast Asia. Coefficient of Variation for Southern America, Northern and Southern Africa are 30%, 39% and 48%. Globally, the majority of CO_2 emissions are released from savanna burnings, followed by forest and cropland burnings. The largest differences among the five inventories are mainly attributable to the overestimation of CO_2 emissions by FINN1.0 in Southeast Asia savanna and cropland burning, and underestimation in Southern Africa savanna and Amazon forest burning. The overestimation in Africa by G-G also contributes to the differences. - Highlights: • Five widely used global biomass burning emissions inventories were compared. • Global CO_2 emissions compared well while regional differences are large. • The largest differences were found in Southeast Asia and Southern Africa. • Savanna burning emission was the largest contributor to the global emissions. • Variations in savanna burning emission led to the differences among inventories. - Differences of the five biomass burning CO_2 emissions inventories were found in Southeast Asia and Southern Africa due to the variations in savanna burning emissions estimation.

  11. Validation of Cloud Parameters Derived from Geostationary Satellites, AVHRR, MODIS, and VIIRS Using SatCORPS Algorithms

    Science.gov (United States)

    Minnis, P.; Sun-Mack, S.; Bedka, K. M.; Yost, C. R.; Trepte, Q. Z.; Smith, W. L., Jr.; Painemal, D.; Chen, Y.; Palikonda, R.; Dong, X.; hide

    2016-01-01

    Validation is a key component of remote sensing that can take many different forms. The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) is applied to many different imager datasets including those from the geostationary satellites, Meteosat, Himiwari-8, INSAT-3D, GOES, and MTSAT, as well as from the low-Earth orbiting satellite imagers, MODIS, AVHRR, and VIIRS. While each of these imagers have similar sets of channels with wavelengths near 0.65, 3.7, 11, and 12 micrometers, many differences among them can lead to discrepancies in the retrievals. These differences include spatial resolution, spectral response functions, viewing conditions, and calibrations, among others. Even when analyzed with nearly identical algorithms, it is necessary, because of those discrepancies, to validate the results from each imager separately in order to assess the uncertainties in the individual parameters. This paper presents comparisons of various SatCORPS-retrieved cloud parameters with independent measurements and retrievals from a variety of instruments. These include surface and space-based lidar and radar data from CALIPSO and CloudSat, respectively, to assess the cloud fraction, height, base, optical depth, and ice water path; satellite and surface microwave radiometers to evaluate cloud liquid water path; surface-based radiometers to evaluate optical depth and effective particle size; and airborne in-situ data to evaluate ice water content, effective particle size, and other parameters. The results of comparisons are compared and contrasted and the factors influencing the differences are discussed.

  12. Large-Scale Controls and Characteristics of Fire Activity in Central Chile, 2001-2015

    Science.gov (United States)

    McWethy, D. B.; Pauchard, A.; García, R.; Holz, A.; González, M.; Veblen, T. T.; Stahl, J.

    2016-12-01

    In recent decades, fire activity has increased in many ecosystems worldwide, even where fuel conditions and natural ignitions historically limited fire activity, and this increase begs questions of whether climate change, land-use change, and/or altered vegetation are responsible. Increased frequency of large fires in these settings has been attributed to drier-than-average summers and longer fire seasons as well as fuel accumulation related to ENSO events, raising concerns about the trajectory of post-fire vegetation dynamics and future fire regimes. In temperate and Mediterranean forests of central Chile, recent large fires associated with altered ecosystems, climate variability and land-use change highlight the risk and hazard of increasing fire activity yet the causes and consequences are poorly understood. To better understand characteristics of recent fire activity, key drivers of fire occurrence and the spatial probability of wildfire we examined the relationship between fire activity derived from MODIS satellite imagery and biophysical, land-cover and land-use variables. The probability of fire occurrence and annual area burned was best predicted by seasonal precipitation, annual temperature and land cover type. The likelihood of fire occurrence was greatest in Matorral shrublands, agricultural lands (including pasture lands) and Pinus and Eucalyptus plantations, highlighting the importance of vegetation type and fuel flammability as a critical control on fire activity. Our results suggest that land-use change responsible for the widespread presence of highly flammable vegetation and projections for continued warming and drying will likely combine to promote the occurrence of large fires in central Chile in the future.

  13. SPATIOTEMPORAL VISUALIZATION OF TIME-SERIES SATELLITE-DERIVED CO2 FLUX DATA USING VOLUME RENDERING AND GPU-BASED INTERPOLATION ON A CLOUD-DRIVEN DIGITAL EARTH

    Directory of Open Access Journals (Sweden)

    S. Wu

    2017-10-01

    Full Text Available The ocean carbon cycle has a significant influence on global climate, and is commonly evaluated using time-series satellite-derived CO2 flux data. Location-aware and globe-based visualization is an important technique for analyzing and presenting the evolution of climate change. To achieve realistic simulation of the spatiotemporal dynamics of ocean carbon, a cloud-driven digital earth platform is developed to support the interactive analysis and display of multi-geospatial data, and an original visualization method based on our digital earth is proposed to demonstrate the spatiotemporal variations of carbon sinks and sources using time-series satellite data. Specifically, a volume rendering technique using half-angle slicing and particle system is implemented to dynamically display the released or absorbed CO2 gas. To enable location-aware visualization within the virtual globe, we present a 3D particlemapping algorithm to render particle-slicing textures onto geospace. In addition, a GPU-based interpolation framework using CUDA during real-time rendering is designed to obtain smooth effects in both spatial and temporal dimensions. To demonstrate the capabilities of the proposed method, a series of satellite data is applied to simulate the air-sea carbon cycle in the China Sea. The results show that the suggested strategies provide realistic simulation effects and acceptable interactive performance on the digital earth.

  14. Pseudofaults and associated seamounts in the conjugate Arabian and Eastern Somali basins, NW Indian Ocean - New constraints from high-resolution satellite-derived gravity data

    Science.gov (United States)

    Sreejith, K. M.; Chaubey, A. K.; Mishra, Akhil; Kumar, Shravan; Rajawat, A. S.

    2016-12-01

    Marine gravity data derived from satellite altimeters are effective tools in mapping fine-scale tectonic features of the ocean basins such as pseudofaults, fracture zones and seamounts, particularly when the ocean basins are carpeted with thick sediments. We use high-resolution satellite-generated gravity and seismic reflection data to map boundaries of pseudofaults and transferred crust related to the Paleocene spreading ridge propagation in the Arabian and its conjugate Eastern Somali basins. The study has provided refinement in the position of previously reported pseudofaults and their spatial extensions in the conjugate basins. It is observed that the transferred crustal block bounded by inner pseudofault and failed spreading ridge is characterized by a gravity low and rugged basement. The refined satellite gravity image of the Arabian Basin also revealed three seamounts in close proximity to the pseudofaults, which were not reported earlier. In the Eastern Somali Basin, seamounts are aligned along NE-SW direction forming ∼300 km long seamount chain. Admittance analysis and Flexural model studies indicated that the seamount chain is isostatically compensated locally with Effective Elastic Thickness (Te) of 3-4 km. Based on the present results and published plate tectonic models, we interpret that the seamounts in the Arabian Basin are formed by spreading ridge propagation and are associated with pseudofaults, whereas the seamount chain in the Eastern Somali Basin might have probably originated due to melting and upwelling of upper mantle heterogeneities in advance of migrating/propagating paleo Carlsberg Ridge.

  15. Satellite-Derived Photic Depth on the Great Barrier Reef: Spatio-Temporal Patterns of Water Clarity

    Directory of Open Access Journals (Sweden)

    Scarla Weeks

    2012-11-01

    Full Text Available Detecting changes to the transparency of the water column is critical for understanding the responses of marine organisms, such as corals, to light availability. Long-term patterns in water transparency determine geographical and depth distributions, while acute reductions cause short-term stress, potentially mortality and may increase the organisms’ vulnerability to other environmental stressors. Here, we investigated the optimal, operational algorithm for light attenuation through the water column across the scale of the Great Barrier Reef (GBR, Australia. We implemented and tested a quasi-analytical algorithm to determine the photic depth in GBR waters and matched regional Secchi depth (ZSD data to MODIS-Aqua (2002–2010 and SeaWiFS (1997–2010 satellite data. The results of the in situ ZSD/satellite data matchup showed a simple bias offset between the in situ and satellite retrievals. Using a Type II linear regression of log-transformed satellite and in situ data, we estimated ZSD and implemented the validated ZSD algorithm to generate a decadal satellite time series (2002–2012 for the GBR. Water clarity varied significantly in space and time. Seasonal effects were distinct, with lower values during the austral summer, most likely due to river runoff and increased vertical mixing, and a decline in water clarity between 2008–2012, reflecting a prevailing La Niña weather pattern. The decline in water clarity was most pronounced in the inshore area, where a significant decrease in mean inner shelf ZSD of 2.1 m (from 8.3 m to 6.2 m occurred over the decade. Empirical Orthogonal Function Analysis determined the dominance of Mode 1 (51.3%, with the greatest variation in water clarity along the mid-shelf, reflecting the strong influence of oceanic intrusions on the spatio-temporal patterns of water clarity. The newly developed photic depth product has many potential applications for the GBR from water quality monitoring to analyses of

  16. Comparison of the peak resolution and the stationary phase retention between the satellite and the planetary motions using the coil satellite centrifuge with counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives.

    Science.gov (United States)

    Shinomiya, Kazufusa; Zaima, Kazumasa; Harada, Yukina; Yasue, Miho; Harikai, Naoki; Tokura, Koji; Ito, Yoichiro

    2017-01-20

    Coil satellite centrifuge (CSC) produces the complex satellite motion consisting of the triplicate rotation of the coiled column around three axes including the sun axis (the angular velocity, ω 1 ), the planet axis (ω 2 ) and the satellite axis (the central axis of the column) (ω 3 ) according to the following formula: ω 1 =ω 2 +ω 3 . Improved peak resolution in the separation of 4-methylumbelliferyl sugar derivatives was achieved using the conventional multilayer coiled columns with ethyl acetate/1-butanol/water (3: 2: 5, v/v) for the lower mobile phase at the combination of the rotation speeds (ω 1 , ω 2 , ω 3 )=(300, 150, 150rpm), and (1:4:5, v/v) for the upper mobile phase at (300:100:200rpm). The effect of the satellite motion on the peak resolution and the stationary phase retention was evaluated by each CSC separation with the different rotation speeds of ω 2 and ω 3 under the constant revolution speed at ω 1 =300rpm. With the lower mobile phase, almost constant peak resolution and stationary phase retention were yielded regardless of the change of ω 2 and ω 3 , while with the upper mobile phase these two values were sensitively varied according to the different combination of ω 2 and ω 3 . For example, when ω 2 =147 or 200rpm is used, no stationary phase was retained in the coiled column while ω 2 =150rpm could retain enough volume of stationary phase for separation. On the other hand, the combined rotation speeds at (ω 1 , ω 2 , ω 3 )=(300, 300, 0rpm) or (300, 0, 300rpm) produced insufficient peak resolution regardless of the choice of the mobile phase apparently due to the lack of rotation speed except at (300, 0, 300rpm) with the upper mobile phase. At lower rotation speed of ω 1 =300rpm, better peak resolution and stationary phase retention were obtained by the satellite motion (ω 3 ) than by the planetary motion (ω 2 ), or ω 3 >ω 2 . The effect of the hydrophobicity of the two-phase solvent systems on the stationary phase

  17. Spatio-temporal Root Zone Soil Moisture Estimation for Indo - Gangetic Basin from Satellite Derived (AMSR-2 and SMOS) Surface Soil Moisture

    Science.gov (United States)

    Sure, A.; Dikshit, O.

    2017-12-01

    Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.

  18. Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing.

    Science.gov (United States)

    Richardson, Andrew D; Hufkens, Koen; Milliman, Tom; Frolking, Steve

    2018-04-09

    Phenology is a valuable diagnostic of ecosystem health, and has applications to environmental monitoring and management. Here, we conduct an intercomparison analysis using phenological transition dates derived from near-surface PhenoCam imagery and MODIS satellite remote sensing. We used approximately 600 site-years of data, from 128 camera sites covering a wide range of vegetation types and climate zones. During both "greenness rising" and "greenness falling" transition phases, we found generally good agreement between PhenoCam and MODIS transition dates for agricultural, deciduous forest, and grassland sites, provided that the vegetation in the camera field of view was representative of the broader landscape. The correlation between PhenoCam and MODIS transition dates was poor for evergreen forest sites. We discuss potential reasons (including sub-pixel spatial heterogeneity, flexibility of the transition date extraction method, vegetation index sensitivity in evergreen systems, and PhenoCam geolocation uncertainty) for varying agreement between time series of vegetation indices derived from PhenoCam and MODIS imagery. This analysis increases our confidence in the ability of satellite remote sensing to accurately characterize seasonal dynamics in a range of ecosystems, and provides a basis for interpreting those dynamics in the context of tangible phenological changes occurring on the ground.

  19. Global analysis of approaches for deriving total water storage changes from GRACE satellites and implications for groundwater storage change estimation

    Science.gov (United States)

    Long, D.; Scanlon, B. R.; Longuevergne, L.; Chen, X.

    2015-12-01

    Increasing interest in use of GRACE satellites and a variety of new products to monitor changes in total water storage (TWS) underscores the need to assess the reliability of output from different products. The objective of this study was to assess skills and uncertainties of different approaches for processing GRACE data to restore signal losses caused by spatial filtering based on analysis of 1°×1° grid scale data and basin scale data in 60 river basins globally. Results indicate that scaling factors from six land surface models (LSMs), including four models from GLDAS-1 (Noah 2.7, Mosaic, VIC, and CLM 2.0), CLM 4.0, and WGHM, are similar over most humid, sub-humid, and high-latitude regions but can differ by up to 100% over arid and semi-arid basins and areas with intensive irrigation. Large differences in TWS anomalies from three processing approaches (scaling factor, additive, and multiplicative corrections) were found in arid and semi-arid regions, areas with intensive irrigation, and relatively small basins (e.g., ≤ 200,000 km2). Furthermore, TWS anomaly products from gridded data with CLM4.0 scaling factors and the additive correction approach more closely agree with WGHM output than the multiplicative correction approach. Estimation of groundwater storage changes using GRACE satellites requires caution in selecting an appropriate approach for restoring TWS changes. A priori ground-based data used in forward modeling can provide a powerful tool for explaining the distribution of signal gains or losses caused by low-pass filtering in specific regions of interest and should be very useful for more reliable estimation of groundwater storage changes using GRACE satellites.

  20. Fire Perimeters

    Data.gov (United States)

    California Natural Resource Agency — The Fire Perimeters data consists of CDF fires 300 acres and greater in size and USFS fires 10 acres and greater throughout California from 1950 to 2003. Some fires...

  1. Fire History

    Data.gov (United States)

    California Natural Resource Agency — The Fire Perimeters data consists of CDF fires 300 acres and greater in size and USFS fires 10 acres and greater throughout California from 1950 to 2002. Some fires...

  2. Comparison of Satellite-Derived Phytoplankton Size Classes Using In-Situ Measurements in the South China Sea

    Directory of Open Access Journals (Sweden)

    Shuibo Hu

    2018-03-01

    Full Text Available Ocean colour remote sensing is used as a tool to detect phytoplankton size classes (PSCs. In this study, the Medium Resolution Imaging Spectrometer (MERIS, Moderate Resolution Imaging Spectroradiometer (MODIS, and Sea-viewing Wide Field-of-view Sensor (SeaWiFS phytoplankton size classes (PSCs products were compared with in-situ High Performance Liquid Chromatography (HPLC data for the South China Sea (SCS, collected from August 2006 to September 2011. Four algorithms were evaluated to determine their ability to detect three phytoplankton size classes. Chlorophyll-a (Chl-a and absorption spectra of phytoplankton (aph(λ were also measured to help understand PSC’s algorithm performance. Results show that the three abundance-based approaches performed better than the inherent optical property (IOP-based approach in the SCS. The size detection of microplankton and picoplankton was generally better than that of nanoplankton. A three-component model was recommended to produce maps of surface PSCs in the SCS. For the IOP-based approach, satellite retrievals of inherent optical properties and the PSCs algorithm both have impacts on inversion accuracy. However, for abundance-based approaches, the selection of the PSCs algorithm seems to be more critical, owing to low uncertainty in satellite Chl-a input data

  3. Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements

    Science.gov (United States)

    Kramarova, Natalya A.; Bhartia, Pawan K.; Jaross, Glen; Moy, Leslie; Xu, Philippe; Chen, Zhong; DeLand, Matthew; Froidevaux, Lucien; Livesey, Nathaniel; Degenstein, Douglas; Bourassa, Adam; Walker, Kaley A.; Sheese, Patrick

    2018-05-01

    The Limb Profiler (LP) is a part of the Ozone Mapping and Profiler Suite launched on board of the Suomi NPP satellite in October 2011. The LP measures solar radiation scattered from the atmospheric limb in ultraviolet and visible spectral ranges between the surface and 80 km. These measurements of scattered solar radiances allow for the retrieval of ozone profiles from cloud tops up to 55 km. The LP started operational observations in April 2012. In this study we evaluate more than 5.5 years of ozone profile measurements from the OMPS LP processed with the new NASA GSFC version 2.5 retrieval algorithm. We provide a brief description of the key changes that had been implemented in this new algorithm, including a pointing correction, new cloud height detection, explicit aerosol correction and a reduction of the number of wavelengths used in the retrievals. The OMPS LP ozone retrievals have been compared with independent satellite profile measurements obtained from the Aura Microwave Limb Sounder (MLS), Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) and Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS). We document observed biases and seasonal differences and evaluate the stability of the version 2.5 ozone record over 5.5 years. Our analysis indicates that the mean differences between LP and correlative measurements are well within required ±10 % between 18 and 42 km. In the upper stratosphere and lower mesosphere (> 43 km) LP tends to have a negative bias. We find larger biases in the lower stratosphere and upper troposphere, but LP ozone retrievals have significantly improved in version 2.5 compared to version 2 due to the implemented aerosol correction. In the northern high latitudes we observe larger biases between 20 and 32 km due to the remaining thermal sensitivity issue. Our analysis shows that LP ozone retrievals agree well with the correlative satellite observations in characterizing vertical, spatial and temporal

  4. Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF's Integrated Forecast System and the TMI soil moisture data set

    Science.gov (United States)

    Drusch, M.

    2007-02-01

    Satellite-derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analyzed from the modeled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. For this study, three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been performed for the 2-month period of June and July 2002: a control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating TMI (TRMM Microwave Imager) derived soil moisture over the southern United States. In this experimental run the satellite-derived soil moisture product is introduced through a nudging scheme using 6-hourly increments. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analyzed in the nudging experiment is the most accurate estimate when compared against in situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage.

  5. Local time dependences of electron flux changes during substorms derived from mulit-satellite observation at synchronous orbit

    International Nuclear Information System (INIS)

    Nagai, T.

    1982-01-01

    Energetic electron (energy higher than 2 MeV) observation by a synchronous satellite chain (which consists of GOES 2, GOES 3, and GMS covering the local time extent of approximately 10 hr) have been used to study the large-scale characteristics of the dynamic behavior in the near-earth magnetosphere for substorms, in which low-latitude positive bay aspects are clearly seen in the ground magnetic data. Simultaneous multi-satellite observations have clearly demonstrated the local time dependence of electron flux changes during substorms and the longitudinal extent of electron flux variations. Before a ground substorm onset the energetic electron flux decreases in a wide longitudinal region of the nighttime and the flux decrease is seen even on the afternoonside. For the flux behavior associated with the onset of the substorm expansion phase, there exists a demarcation line, the LT position of which can be represented as LT = 24.3-1.5 K/sub p/. The flux shows a recovery to a normal level east of the demarcation line, and it shows a decrease west of the demarcation line. The region of the flux decrease during the expansion phase is restricted, and it is observed mainly on the afternoonside. The afternoonside flux decrease has a different characteristic from the nightside flux decrease preceding the expansion phase. The nighside flux decrease-recovery sequence is observed in a wide region of more than 6 hr in the nighttime and the center of this variation exists in the premidnight region. It should be noted that the afternoonside flux decrease is not observed for every substorm and the nightside signature noted that the afternoonside flux sometimes becomes a dominent feature even on the afternoonside

  6. Estimating carbon flux phenology with satellite-derived land surface phenology and climate drivers for different biomes: a synthesis of AmeriFlux observations.

    Directory of Open Access Journals (Sweden)

    Wenquan Zhu

    Full Text Available Carbon Flux Phenology (CFP can affect the interannual variation in Net Ecosystem Exchange (NEE of carbon between terrestrial ecosystems and the atmosphere. In this study, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands, using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU by more than 70% and End of Carbon Uptake (ECU by more than 60%. The Root Mean Square Error (RMSE of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. This methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data.

  7. Hurricane Satellite (HURSAT) Microwave (MW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from Microwave (MW) observations of tropical cyclones worldwide data consist of raw satellite observations. The data derive from the...

  8. Monitoring Cyanobacteria with Satellites Webinar

    Science.gov (United States)

    real-world satellite applications can quantify cyanobacterial harmful algal blooms and related water quality parameters. Provisional satellite derived cyanobacteria data and different software tools are available to state environmental and health agencies.

  9. Intraseasonal patterns in coastal plankton biomass off central Chile derived from satellite observations and a biochemical model

    Science.gov (United States)

    Gomez, Fabian A.; Spitz, Yvette H.; Batchelder, Harold P.; Correa-Ramirez, Marco A.

    2017-10-01

    Subseasonal (5-130 days) environmental variability can strongly affect plankton dynamics, but is often overlooked in marine ecology studies. We documented the main subseasonal patterns of plankton biomass in the coastal upwelling system off central Chile, the southern part of the Humboldt System. Subseasonal variability was extracted from temporal patterns in satellite data of wind stress, sea surface temperature, and chlorophyll from the period 2003-2011, and from a realistically forced eddy-resolving physical-biochemical model from 2003 to 2008. Although most of the wind variability occurs at submonthly frequencies (< 30 days), we found that the dominant subseasonal pattern of phytoplankton biomass is within the intraseasonal band (30-90 days). The strongest intraseasonal coupling between wind and plankton is in spring-summer, when increased solar radiation enhances the phytoplankton response to upwelling. Biochemical model outputs show intraseasonal shifts in plankton community structure, mainly associated with the large fluctuations in diatom biomass. Diatom biomass peaks near surface during strong upwelling, whereas small phytoplankton biomass peaks at subsurface depths during relaxation or downwelling periods. Strong intraseasonally forced changes in biomass and species composition could strongly impact trophodynamics connections in the ecosystem, including the recruitment of commercially important fish species such as common sardine and anchovy. The wind-driven variability of chlorophyll concentration was connected to mid- and high-latitude atmospheric anomalies, which resemble disturbances with frequencies similar to the tropical Madden-Julian Oscillation.

  10. Development of methods for inferring cloud thickness and cloud-base height from satellite radiance data

    Science.gov (United States)

    Smith, William L., Jr.; Minnis, Patrick; Alvarez, Joseph M.; Uttal, Taneil; Intrieri, Janet M.; Ackerman, Thomas P.; Clothiaux, Eugene

    1993-01-01

    Cloud-top height is a major factor determining the outgoing longwave flux at the top of the atmosphere. The downwelling radiation from the cloud strongly affects the cooling rate within the atmosphere and the longwave radiation incident at the surface. Thus, determination of cloud-base temperature is important for proper calculation of fluxes below the cloud. Cloud-base altitude is also an important factor in aircraft operations. Cloud-top height or temperature can be derived in a straightforward manner using satellite-based infrared data. Cloud-base temperature, however, is not observable from the satellite, but is related to the height, phase, and optical depth of the cloud in addition to other variables. This study uses surface and satellite data taken during the First ISCCP Regional Experiment (FIRE) Phase-2 Intensive Field Observation (IFO) period (13 Nov. - 7 Dec. 1991, to improve techniques for deriving cloud-base height from conventional satellite data.

  11. Estimation of biogenic emissions with satellite-derived land use and land cover data for air quality modeling of Houston-Galveston ozone nonattainment area.

    Science.gov (United States)

    Byun, Daewon W; Kim, Soontae; Czader, Beata; Nowak, David; Stetson, Stephen; Estes, Mark

    2005-06-01

    The Houston-Galveston Area (HGA) is one of the most severe ozone non-attainment regions in the US. To study the effectiveness of controlling anthropogenic emissions to mitigate regional ozone nonattainment problems, it is necessary to utilize adequate datasets describing the environmental conditions that influence the photochemical reactivity of the ambient atmosphere. Compared to the anthropogenic emissions from point and mobile sources, there are large uncertainties in the locations and amounts of biogenic emissions. For regional air quality modeling applications, biogenic emissions are not directly measured but are usually estimated with meteorological data such as photo-synthetically active solar radiation, surface temperature, land type, and vegetation database. In this paper, we characterize these meteorological input parameters and two different land use land cover datasets available for HGA: the conventional biogenic vegetation/land use data and satellite-derived high-resolution land cover data. We describe the procedures used for the estimation of biogenic emissions with the satellite derived land cover data and leaf mass density information. Air quality model simulations were performed using both the original and the new biogenic emissions estimates. The results showed that there were considerable uncertainties in biogenic emissions inputs. Subsequently, ozone predictions were affected up to 10 ppb, but the magnitudes and locations of peak ozone varied each day depending on the upwind or downwind positions of the biogenic emission sources relative to the anthropogenic NOx and VOC sources. Although the assessment had limitations such as heterogeneity in the spatial resolutions, the study highlighted the significance of biogenic emissions uncertainty on air quality predictions. However, the study did not allow extrapolation of the directional changes in air quality corresponding to the changes in LULC because the two datasets were based on vastly different

  12. Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002-2012)

    Science.gov (United States)

    Prat, O. P.; Nelson, B. R.

    2015-04-01

    We use a suite of quantitative precipitation estimates (QPEs) derived from satellite, radar, and surface observations to derive precipitation characteristics over the contiguous United States (CONUS) for the period 2002-2012. This comparison effort includes satellite multi-sensor data sets (bias-adjusted TMPA 3B42, near-real-time 3B42RT), radar estimates (NCEP Stage IV), and rain gauge observations. Remotely sensed precipitation data sets are compared with surface observations from the Global Historical Climatology Network-Daily (GHCN-D) and from the PRISM (Parameter-elevation Regressions on Independent Slopes Model). The comparisons are performed at the annual, seasonal, and daily scales over the River Forecast Centers (RFCs) for CONUS. Annual average rain rates present a satisfying agreement with GHCN-D for all products over CONUS (±6%). However, differences at the RFC are more important in particular for near-real-time 3B42RT precipitation estimates (-33 to +49%). At annual and seasonal scales, the bias-adjusted 3B42 presented important improvement when compared to its near-real-time counterpart 3B42RT. However, large biases remained for 3B42 over the western USA for higher average accumulation (≥ 5 mm day-1) with respect to GHCN-D surface observations. At the daily scale, 3B42RT performed poorly in capturing extreme daily precipitation (> 4 in. day-1) over the Pacific Northwest. Furthermore, the conditional analysis and a contingency analysis conducted illustrated the challenge in retrieving extreme precipitation from remote sensing estimates.

  13. Modelling spatio-temporal variability of Mytilus edulis (L.) growth by forcing a dynamic energy budget model with satellite-derived environmental data

    Science.gov (United States)

    Thomas, Yoann; Mazurié, Joseph; Alunno-Bruscia, Marianne; Bacher, Cédric; Bouget, Jean-François; Gohin, Francis; Pouvreau, Stéphane; Struski, Caroline

    2011-11-01

    In order to assess the potential of various marine ecosystems for shellfish aquaculture and to evaluate their carrying capacities, there is a need to clarify the response of exploited species to environmental variations using robust ecophysiological models and available environmental data. For a large range of applications and comparison purposes, a non-specific approach based on 'generic' individual growth models offers many advantages. In this context, we simulated the response of blue mussel ( Mytilus edulis L.) to the spatio-temporal fluctuations of the environment in Mont Saint-Michel Bay (North Brittany) by forcing a generic growth model based on Dynamic Energy Budgets with satellite-derived environmental data (i.e. temperature and food). After a calibration step based on data from mussel growth surveys, the model was applied over nine years on a large area covering the entire bay. These simulations provide an evaluation of the spatio-temporal variability in mussel growth and also show the ability of the DEB model to integrate satellite-derived data and to predict spatial and temporal growth variability of mussels. Observed seasonal, inter-annual and spatial growth variations are well simulated. The large-scale application highlights the strong link between food and mussel growth. The methodology described in this study may be considered as a suitable approach to account for environmental effects (food and temperature variations) on physiological responses (growth and reproduction) of filter feeders in varying environments. Such physiological responses may then be useful for evaluating the suitability of coastal ecosystems for shellfish aquaculture.

  14. Satellite-derived surface and sub-surface water storage in the Ganges–Brahmaputra River Basin

    Directory of Open Access Journals (Sweden)

    Fabrice Papa

    2015-09-01

    New hydrological insights: Basin-scale monthly SWS variations for the period 2003–2007 show a mean annual amplitude of ∼410 km3, contributing to about 45% of the Gravity Recovery And Climate Experiment (GRACE-derived total water storage variations (TWS. During the drought-like conditions in 2006, we estimate that the SWS deficit over the entire GB basin in July–August–September was about 30% as compared to other years. The SWS variations are then used to decompose the GB GRACE-derived TWS and isolate the variations of SSWS whose mean annual amplitude is estimated to be ∼550 km3. This new dataset of water storage variations represent an unprecedented source of information for hydrological and climate modeling studies of the ISC.

  15. Estimation of Forest Fire-fighting Budgets Using Climate Indexes

    OpenAIRE

    Zhen Xu; G. Cornelis van Kooten

    2012-01-01

    Given the complexity and relative short length of current predicting system for fire behavior, it is inappropriate to be referred for planning fire-fighting budgets of BC government due to the severe uncertainty of fire behavior across fire seasons. Therefore, a simple weather derived index for predicting fire frequency and burned area is developed in this paper to investigate the potential feasibility to predict fire behavior and fire-fighting expenses for the upcoming fire season using clim...

  16. Peak Satellite-to-Earth Data Rates Derived From Measurements of a 20 Gbps Bread-Board Modem

    Science.gov (United States)

    Landon, David G.; Simons, Rainee N.; Wintucky, Edwin G.; Sun, Jun Y.; Winn, James S.; Laraway, Stephen A.; McIntire, William K.; Metz, John L.; Smith, Francis J.

    2011-01-01

    A prototype data link using a Ka-band space qualified, high efficiency 200 W TWT amplifier and a bread-board modem emulator were created to explore the feasibility of very high speed communications in satellite-to-earth applications. Experiments were conducted using a DVB-S2-like waveform with modifications to support up to 20 Gbps through the addition of 128-Quadrature Amplitude Modulation (QAM). Limited by the bandwidth of the amplifier, a constant peak symbol rate of 3.2 Giga-symbols/sec was selected and the modulation order was varied to explore what peak data rate might be supported by an RF link through this amplifier. Using 128-QAM, an implementation loss of 3 dB was observed at 20 Gbps, and the loss decreased as data rate or bandwidth were reduced. Building on this measured data, realistic link budget calculations were completed. Low-Earth orbit (LEO) missions based on this TWTA with reasonable hardware assumptions and antenna sizing are found to be bandwidth-limited, rather than power-limited, making the spectral efficiency of 9/10-rate encoded 128-QAM very attractive. Assuming a bandwidth allocation of 1 GHz, these computations indicate that low-Earth orbit vehicles could achieve data rates up to 5 Gbps-an order of magnitude beyond the current state-of-practice, yet still within the processing power of a current FPGA-based software-defined modem. The measured performance results and a description of the experimental setup are presented to support these conclusions.

  17. Satellite-derived submarine melt rates and mass balance (2011-2015) for Greenland's largest remaining ice tongues

    Science.gov (United States)

    Wilson, Nat; Straneo, Fiammetta; Heimbach, Patrick

    2017-12-01

    Ice-shelf-like floating extensions at the termini of Greenland glaciers are undergoing rapid changes with potential implications for the stability of upstream glaciers and the ice sheet as a whole. While submarine melting is recognized as a major contributor to mass loss, the spatial distribution of submarine melting and its contribution to the total mass balance of these floating extensions is incompletely known and understood. Here, we use high-resolution WorldView satellite imagery collected between 2011 and 2015 to infer the magnitude and spatial variability of melt rates under Greenland's largest remaining ice tongues - Nioghalvfjerdsbræ (79 North Glacier, 79N), Ryder Glacier (RG), and Petermann Glacier (PG). Submarine melt rates under the ice tongues vary considerably, exceeding 50 m a-1 near the grounding zone and decaying rapidly downstream. Channels, likely originating from upstream subglacial channels, give rise to large melt variations across the ice tongues. We compare the total melt rates to the influx of ice to the ice tongue to assess their contribution to the current mass balance. At Petermann Glacier and Ryder Glacier, we find that the combined submarine and aerial melt approximately balances the ice flux from the grounded ice sheet. At Nioghalvfjerdsbræ the total melt flux (14.2 ± 0.96 km3 a-1 w.e., water equivalent) exceeds the inflow of ice (10.2 ± 0.59 km3 a-1 w.e.), indicating present thinning of the ice tongue.

  18. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    International Nuclear Information System (INIS)

    Kirkham, R.R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy's Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, G T , is a major component of the energy balance in arid systems and G T generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and G T for all sites

  19. Multiscale assessment of progress of electrification in Indonesia based on brightness level derived from nighttime satellite imagery.

    Science.gov (United States)

    Ramdani, Fatwa; Setiani, Putri

    2017-06-01

    Availability of electricity can be used as an indicator to proximate parameters related to human well-being. Overall, the electrification process in Indonesia has been accelerating in the past two decades. Unfortunately, monitoring the country's progress on its effort to provide wider access to electricity poses challenges due to inconsistency of data provided by each national bureau, and limited availability of information. This study attempts to provide a reliable measure by employing nighttime satellite imagery to observe and to map the progress of electrification within a duration of 20 years, from 1993 to 2013. Brightness of 67,021 settlement-size points in 1993, 2003, and 2013 was assessed using data from DMSP/OLS instruments to study the electrification progress in the three service regions (Sumatera, Java-Bali, and East Indonesia) of the country's public electricity company, PLN. Observation of all service areas shows that the increase in brightness, which correspond with higher electricity development and consumption, has positive correlation with both population density (R 2  = 0.70) and urban change (R 2  = 0.79). Moreover, urban change has a stronger correlation with brightness, which is probably due to the high energy consumption in urban area per capita. This study also found that the brightness in Java-Bali region is very dominant, while the brightness in other areas has been lagging during the period of analysis. The slow development of electricity infrastructure, particularly in major parts of East Indonesia region, affects the low economic growth in some areas and formed vicious cycle.

  20. Impact of highway construction on land surface energy balance and local climate derived from LANDSAT satellite data.

    Science.gov (United States)

    Nedbal, Václav; Brom, Jakub

    2018-08-15

    Extensive construction of highways has a major impact on the landscape and its structure. They can also influence local climate and heat fluxes in the surrounding area. After the removal of vegetation due to highway construction, the amount of solar radiation energy used for plant evapotranspiration (latent heat flux) decreases, bringing about an increase in landscape surface temperature, changing the local climate and increasing surface run-off. In this study, we evaluated the impact of the D8 highway construction (Central Bohemia, Czech Republic) on the distribution of solar radiation energy into the various heat fluxes (latent, sensible and ground heat flux) and related surface functional parameters (surface temperature and surface wetness). The aim was to describe the severity of the impact and the distance from the actual highway in which it can be observed. LANDSAT multispectral satellite images and field meteorological measurements were used to calculate surface functional parameters and heat balance before and during the highway construction. Construction of a four-lane highway can influence the heat balance of the landscape surface as far as 90m in the perpendicular direction from the highway axis, i.e. up to 75m perpendicular from its edge. During a summer day, the decrease in evapotranspired water can reach up to 43.7m 3 per highway kilometre. This means a reduced cooling effect, expressed as the decrease in latent heat flux, by an average of 29.7MWh per day per highway kilometre and its surroundings. The loss of the cooling ability of the land surface by evaporation can lead to a rise in surface temperature by as much as 7°C. Thus, the results indicate the impact of extensive line constructions on the local climate. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Global Land Product Validation Protocols: An Initiative of the CEOS Working Group on Calibration and Validation to Evaluate Satellite-derived Essential Climate Variables

    Science.gov (United States)

    Guillevic, P. C.; Nickeson, J. E.; Roman, M. O.; camacho De Coca, F.; Wang, Z.; Schaepman-Strub, G.

    2016-12-01

    The Global Climate Observing System (GCOS) has specified the need to systematically produce and validate Essential Climate Variables (ECVs). The Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV) and in particular its subgroup on Land Product Validation (LPV) is playing a key coordination role leveraging the international expertise required to address actions related to the validation of global land ECVs. The primary objective of the LPV subgroup is to set standards for validation methods and reporting in order to provide traceable and reliable uncertainty estimates for scientists and stakeholders. The Subgroup is comprised of 9 focus areas that encompass 10 land surface variables. The activities of each focus area are coordinated by two international co-leads and currently include leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FAPAR), vegetation phenology, surface albedo, fire disturbance, snow cover, land cover and land use change, soil moisture, land surface temperature (LST) and emissivity. Recent additions to the focus areas include vegetation indices and biomass. The development of best practice validation protocols is a core activity of CEOS LPV with the objective to standardize the evaluation of land surface products. LPV has identified four validation levels corresponding to increasing spatial and temporal representativeness of reference samples used to perform validation. Best practice validation protocols (1) provide the definition of variables, ancillary information and uncertainty metrics, (2) describe available data sources and methods to establish reference validation datasets with SI traceability, and (3) describe evaluation methods and reporting. An overview on validation best practice components will be presented based on the LAI and LST protocol efforts to date.

  2. Recent Vegetation Fire Incidence in Russia

    OpenAIRE

    Hayasaka, Hiroshi

    2011-01-01

    MODIS hotspot data from NASA have now become a standard means of evaluating vegetation fires worldwide. Remote sensing is the most effective tool for large countries like Russia because it is hard to obtain exact, detailed forest fire data. Accumulated MODIS hotspot data of the nine years from 2002 to 2010 may allow us to assess recent changes in the vegetation fire incidence in Russia. This kind of analysis using various satellites is useful in estimating fire intensity and sever...

  3. New Generation of Satellite-Derived Ocean Thermal Structure for the Western North Pacific Typhoon Intensity Forecasting

    Science.gov (United States)

    2013-10-26

    took 35% of error as a threshold to deter- mine whether the parameters derived by the REGWNP are of acceptable accuracy. Fig. 13 shows the applicable...2000. The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Monthly Weather Review 128, 1347–1365. Jacob, S.D...Hurricane Opal . Monthly Weather Review 128, 1366–1383. Stephens, C., Antonov, J.I., Boyer, T.P., Conkright, M.E., Locarnini, R.A., O’Brien, T.D., Carcia

  4. Relationship Between Satellite-Derived Snow Cover and Snowmelt-Runoff Timing in the Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2010-01-01

    MODIS-derived snow cover measured on 30 April in any given year explains approximately 89 % of the variance in stream discharge for maximum monthly streamflow in that year. Observed changes in streamflow appear to be related to increasing maximum air temperatures over the last four decades causing lower spring snow-cover extent. The majority (>70%) of the water supply in the western United States comes from snowmelt, thus analysis of the declining spring snowpack (and resulting declining stream discharge) has important implications for streamflow management in the drought-prone western U.S.

  5. Fire risk in California

    Science.gov (United States)

    Peterson, Seth Howard

    Fire is an integral part of ecosystems in the western United States. Decades of fire suppression have led to (unnaturally) large accumulations of fuel in some forest communities, such as the lower elevation forests of the Sierra Nevada. Urban sprawl into fire prone chaparral vegetation in southern California has put human lives at risk and the decreased fire return intervals have put the vegetation community at risk of type conversion. This research examines the factors affecting fire risk in two of the dominant landscapes in the state of California, chaparral and inland coniferous forests. Live fuel moisture (LFM) is important for fire ignition, spread rate, and intensity in chaparral. LFM maps were generated for Los Angeles County by developing and then inverting robust cross-validated regression equations from time series field data and vegetation indices (VIs) and phenological metrics from MODIS data. Fire fuels, including understory fuels which are not visible to remote sensing instruments, were mapped in Yosemite National Park using the random forests decision tree algorithm and climatic, topographic, remotely sensed, and fire history variables. Combining the disparate data sources served to improve classification accuracies. The models were inverted to produce maps of fuel models and fuel amounts, and these showed that fire fuel amounts are highest in the low elevation forests that have been most affected by fire suppression impacting the natural fire regime. Wildland fires in chaparral commonly burn in late summer or fall when LFM is near its annual low, however, the Jesusita Fire burned in early May of 2009, when LFM was still relatively high. The HFire fire spread model was used to simulate the growth of the Jesusita Fire using LFM maps derived from imagery acquired at the time of the fire and imagery acquired in late August to determine how much different the fire would have been if it had occurred later in the year. Simulated fires were 1.5 times larger

  6. A hydroclimatic model of global fire patterns

    Science.gov (United States)

    Boer, Matthias

    2015-04-01

    Satellite-based earth observation is providing an increasingly accurate picture of global fire patterns. The highest fire activity is observed in seasonally dry (sub-)tropical environments of South America, Africa and Australia, but fires occur with varying frequency, intensity and seasonality in almost all biomes on Earth. The particular combination of these fire characteristics, or fire regime, is known to emerge from the combined influences of climate, vegetation, terrain and land use, but has so far proven difficult to reproduce by global models. Uncertainty about the biophysical drivers and constraints that underlie current global fire patterns is propagated in model predictions of how ecosystems, fire regimes and biogeochemical cycles may respond to projected future climates. Here, I present a hydroclimatic model of global fire patterns that predicts the mean annual burned area fraction (F) of 0.25° x 0.25° grid cells as a function of the climatic water balance. Following Bradstock's four-switch model, long-term fire activity levels were assumed to be controlled by fuel productivity rates and the likelihood that the extant fuel is dry enough to burn. The frequency of ignitions and favourable fire weather were assumed to be non-limiting at long time scales. Fundamentally, fuel productivity and fuel dryness are a function of the local water and energy budgets available for the production and desiccation of plant biomass. The climatic water balance summarizes the simultaneous availability of biologically usable energy and water at a site, and may therefore be expected to explain a significant proportion of global variation in F. To capture the effect of the climatic water balance on fire activity I focused on the upper quantiles of F, i.e. the maximum level of fire activity for a given climatic water balance. Analysing GFED4 data for annual burned area together with gridded climate data, I found that nearly 80% of the global variation in the 0.99 quantile of F

  7. Satellite Derived Seafloor Bathymetry and Habitat Mapping on a Shallow Carbonate Platform: Campeche Bank, México.

    Science.gov (United States)

    Garza-Perez, J. R.; Rankey, E. C.; Rodriguez-Vázquez, R. A.; Naranjo-Garcia, M. J.

    2017-12-01

    Extensive and consistent high-resolution seafloor mapping is a difficult task involving important financial resources, intensive field work and careful planning; thus there is a paucity of this type of mapping products both in spatial distribution and through time. Remote sensed imagery has supported continuous mapping efforts elsewhere, but extensive seafloor mapping, even in shallow regions keeps being elusive. Challenges to this effort include cloud cover, surface sun-glint, and water turbidity caused by sediment resuspension and primary productivity. Nevertheless, using high-quality satellite imagery (Landsat-8 OLI -30x30m/pixel- and GeoEye-1 -2x2m/pixel) and rigorous pre-processing (atmospheric correction, de-glinting and water-column light extinction compensation), resulting data contribute towards the advancement of seafloor mapping. The Yucatan Peninsula in México is a carbonate ramp devoid of significant orographic features and surface water bodies. Its submerged portion is the Campeche Bank, gently sloping towards the Gulf of Mexico. The bottom features several distinct blankets composed by medium-fine sediment (dominated by pelecypods, gastropods, foraminifera, lithoclasts, calcareous peloids and algal nodules, Halimeda plaques and coralline algae fragments), and a reef unit with several bank-type coral reefs. Outside the coral reefs, biotic cover down to 20 m deep is dominated by macroalgae (red, brown, green), coralline and filamentous algae with sharp seasonal changes in abundance, from almost nil during north-winds (Oct. - Jan.) to high during dry (Feb.- May) and rainy seasons (Jun. - Sept.), with changes of dominance by algae groups between dry and rainy seasons. This bloom is favored by increases in sunlight and nutrients carried by the Caribbean current upwelling washing the Campeche Bank. Beyond 20 m depth, sandy plains dominate the seascape. Corals, octocorals, sponges and tunicates are spatially restricted to bottoms with thin layers of

  8. A new website with real-time dissemination of information on fire activity and meteorological fire danger in Portugal

    Science.gov (United States)

    DaCamara, Carlos; Trigo, Ricardo; Nunes, Sílvia; Pinto, Miguel; Oliveira, Tiago; Almeida, Rui

    2017-04-01

    In Portugal, like in Mediterranean Europe, fire activity is a natural phenomenon linking climate, humans and vegetation and is therefore conditioned by natural and anthropogenic factors. Natural factors include topography, vegetation cover and prevailing weather conditions whereas anthropogenic factors encompass land management practices and fire prevention policies. Land management practices, in particular the inadequate use of fire, is a crucial anthropogenic factor that accounts for about 90% of fire ignitions. Fire prevention policies require adequate and timely information about wildfire potential assessment, which is usually based on fire danger rating systems that provide indices to be used on an operational and tactical basis in decision support systems. We present a new website designed to provide the user community with relevant real-time information on fire activity and meteorological fire danger that will allow adopting the adequate measures to mitigate fire damage. The fire danger product consists of forecasts of fire danger over Portugal based on a statistical procedure that combines information about fire history derived from the Fire Radiative Power product disseminated by the Land Surface Analysis Satellite Application Facility (LSA SAF) with daily meteorological forecasts provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The aim of the website is fourfold; 1) to concentrate all information available (databases and maps) relevant to fire management in a unique platform so that access by end users becomes easier, faster and friendlier; 2) to supervise the access of users to the different products available; 3) to control and assist the access to the platform and obtain feedbacks from users for further improvements; 4) to outreach the operational community and foster the use of better information that increase efficiency in risk management. The website is sponsored by The Navigator Company, a leading force in the global pulp

  9. A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data

    Science.gov (United States)

    Pengra, Bruce; Long, Jordan; Dahal, Devendra; Stehman, Stephen V.; Loveland, Thomas R.

    2015-01-01

    The methodology for selection, creation, and application of a global remote sensing validation dataset using high resolution commercial satellite data is presented. High resolution data are obtained for a stratified random sample of 500 primary sampling units (5 km  ×  5 km sample blocks), where the stratification based on Köppen climate classes is used to distribute the sample globally among biomes. The high resolution data are classified to categorical land cover maps using an analyst mediated classification workflow. Our initial application of these data is to evaluate a global 30 m Landsat-derived, continuous field tree cover product. For this application, the categorical reference classification produced at 2 m resolution is converted to percent tree cover per 30 m pixel (secondary sampling unit)for comparison to Landsat-derived estimates of tree cover. We provide example results (based on a subsample of 25 sample blocks in South America) illustrating basic analyses of agreement that can be produced from these reference data. Commercial high resolution data availability and data quality are shown to provide a viable means of validating continuous field tree cover. When completed, the reference classifications for the full sample of 500 blocks will be released for public use.

  10. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods

    Directory of Open Access Journals (Sweden)

    J. L. Bamber

    2009-05-01

    Full Text Available Digital elevation models (DEMs of the whole of Antarctica have been derived, previously, from satellite radar altimetry (SRA and limited terrestrial data. Near the ice sheet margins and in other areas of steep relief the SRA data tend to have relatively poor coverage and accuracy. To remedy this and to extend the coverage beyond the latitudinal limit of the SRA missions (81.5° S we have combined laser altimeter measurements from the Geosciences Laser Altimeter System onboard ICESat with SRA data from the geodetic phase of the ERS-1 satellite mission. The former provide decimetre vertical accuracy but with poor spatial coverage. The latter have excellent spatial coverage but a poorer vertical accuracy. By combining the radar and laser data using an optimal approach we have maximised the vertical accuracy and spatial resolution of the DEM and minimised the number of grid cells with an interpolated elevation estimate. We assessed the optimum resolution for producing a DEM based on a trade-off between resolution and interpolated cells, which was found to be 1 km. This resulted in just under 32% of grid cells having an interpolated value. The accuracy of the final DEM was assessed using a suite of independent airborne altimeter data and used to produce an error map. The RMS error in the new DEM was found to be roughly half that of the best previous 5 km resolution, SRA-derived DEM, with marked improvements in the steeper marginal and mountainous areas and between 81.5 and 86° S. The DEM contains a wealth of information related to ice flow. This is particularly apparent for the two largest ice shelves – the Filchner-Ronne and Ross – where the surface expression of flow of ice streams and outlet glaciers can be traced from the grounding line to the calving front. The surface expression of subglacial lakes and other basal features are also illustrated. We also use the DEM to derive new estimates of balance velocities and ice divide locations.

  11. NESDIS Hazard Mapping System Fire and Smoke Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Satellite Services Division of NESDIS/NOAA created an interactive Web-based GIS used to display satellite data of fire detects in near-real time. It converts the...

  12. Estimation of Mangrove Forest Aboveground Biomass Using Multispectral Bands, Vegetation Indices and Biophysical Variables Derived from Optical Satellite Imageries: Rapideye, Planetscope and SENTINEL-2

    Science.gov (United States)

    Balidoy Baloloy, Alvin; Conferido Blanco, Ariel; Gumbao Candido, Christian; Labadisos Argamosa, Reginal Jay; Lovern Caboboy Dumalag, John Bart; Carandang Dimapilis, Lee, , Lady; Camero Paringit, Enrico

    2018-04-01

    Aboveground biomass estimation (AGB) is essential in determining the environmental and economic values of mangrove forests. Biomass prediction models can be developed through integration of remote sensing, field data and statistical models. This study aims to assess and compare the biomass predictor potential of multispectral bands, vegetation indices and biophysical variables that can be derived from three optical satellite systems: the Sentinel-2 with 10 m, 20 m and 60 m resolution; RapidEye with 5m resolution and PlanetScope with 3m ground resolution. Field data for biomass were collected from a Rhizophoraceae-dominated mangrove forest in Masinloc, Zambales, Philippines where 30 test plots (1.2 ha) and 5 validation plots (0.2 ha) were established. Prior to the generation of indices, images from the three satellite systems were pre-processed using atmospheric correction tools in SNAP (Sentinel-2), ENVI (RapidEye) and python (PlanetScope). The major predictor bands tested are Blue, Green and Red, which are present in the three systems; and Red-edge band from Sentinel-2 and Rapideye. The tested vegetation index predictors are Normalized Differenced Vegetation Index (NDVI), Soil-adjusted Vegetation Index (SAVI), Green-NDVI (GNDVI), Simple Ratio (SR), and Red-edge Simple Ratio (SRre). The study generated prediction models through conventional linear regression and multivariate regression. Higher coefficient of determination (r2) values were obtained using multispectral band predictors for Sentinel-2 (r2 = 0.89) and Planetscope (r2 = 0.80); and vegetation indices for RapidEye (r2 = 0.92). Multivariate Adaptive Regression Spline (MARS) models performed better than the linear regression models with r2 ranging from 0.62 to 0.92. Based on the r2 and root-mean-square errors (RMSE's), the best biomass prediction model per satellite were chosen and maps were generated. The accuracy of predicted biomass maps were high for both Sentinel-2 (r2 = 0

  13. Advanced Fire Information System - A real time fire information system for Africa

    Science.gov (United States)

    Frost, P. E.; Roy, D. P.

    2012-12-01

    The Council for Scientific and Industrial Research (CSIR) lead by the Meraka Institute and supported by the South African National Space Agency (SANSA) developed the Advanced Fire Information System (AFIS) to provide near real time fire information to a variety of operational and science fire users including disaster managers, fire fighters, farmers and forest managers located across Southern and Eastern Africa. The AFIS combines satellite data with ground based observations and statistics and distributes the information via mobile phone technology. The system was launched in 2004, and Eskom (South Africa' and Africa's largest power utility) quickly became the biggest user and today more than 300 Eskom line managers and support staff receive cell phone and email fire alert messages whenever a wildfire is within 2km of any of the 28 000km of Eskom electricity transmission lines. The AFIS uses Earth observation satellites from NASA and Europe to detect possible actively burning fires and their fire radiative power (FRP). The polar orbiting MODIS Terra and Aqua satellites provide data at around 10am, 15pm, 22am and 3am daily, while the European Geostationary MSG satellite provides 15 minute updates at lower spatial resolution. The AFIS processing system ingests the raw satellite data and within minutes of the satellite overpass generates fire location and FRP based fire intensity information. The AFIS and new functionality are presented including an incident report and permiting system that can be used to differentiate between prescribed burns and uncontrolled wild fires, and the provision of other information including 5-day fire danger forecasts, vegetation curing information and historical burned area maps. A new AFIS mobile application for IOS and Android devices as well as a fire reporting tool are showcased that enable both the dissemination and alerting of fire information and enable user upload of geo tagged photographs and on the fly creation of fire reports

  14. ASSESSMENT OF SEA ICE FREEBOARD AND THICKNESS IN MCMURDO SOUND, ANTARCTICA, DERIVED BY GROUND VALIDATED SATELLITE ALTIMETER DATA

    Directory of Open Access Journals (Sweden)

    D. Price

    2012-07-01

    Full Text Available This investigation employs the use of ICESat to derive freeboard measurements in McMurdo Sound in the western Ross Sea, Antarctica, for the time period 2003-2009. Methods closely follow those previously presented in the literature but are complemented by a good understanding of general sea ice characteristics in the study region from extensive temporal ground investigations but with limited spatial coverage. The aim of remote sensing applications in this area is to expand the good knowledge of sea ice characteristics within these limited areas to the wider McMurdo Sound and western Ross Sea region. The seven year Austral Spring (September, October, and November investigation is presented for sea ice freeboard alone. An interannual comparison of mean freeboard indicates an increase in multiyear sea ice freeboard from 1.08 m in 2003 to 1.15 m in 2009 with positive and negative variation in between. No significant trend was detected for first year sea ice freeboard. Further, an Envisat imagery investigation complements the freeboard assessment. The multiyear sea ice was observed to increase by 254 % of its original 2003 area, as firstyear sea ice persisted through the 2004 melt season into 2005. This maximum coverage then gradually diminished by 2009 to 20 % above the original 2003 value. The mid study period increase is likely attributed to the passage of iceberg B-15A minimising oceanic pressures and preventing sea ice breakout in the region.

  15. Near-real-time global biomass burning emissions product from geostationary satellite constellation

    Science.gov (United States)

    Zhang, Xiaoyang; Kondragunta, Shobha; Ram, Jessica; Schmidt, Christopher; Huang, Ho-Chun

    2012-07-01

    Near-real-time estimates of biomass burning emissions are crucial for air quality monitoring and forecasting. We present here the first near-real-time global biomass burning emission product from geostationary satellites (GBBEP-Geo) produced from satellite-derived fire radiative power (FRP) for individual fire pixels. Specifically, the FRP is retrieved using WF_ABBA V65 (wildfire automated biomass burning algorithm) from a network of multiple geostationary satellites. The network consists of two Geostationary Operational Environmental Satellites (GOES) which are operated by the National Oceanic and Atmospheric Administration, the Meteosat second-generation satellites (Meteosat-09) operated by the European Organisation for the Exploitation of Meteorological Satellites, and the Multifunctional Transport Satellite (MTSAT) operated by the Japan Meteorological Agency. These satellites observe wildfires at an interval of 15-30 min. Because of the impacts from sensor saturation, cloud cover, and background surface, the FRP values are generally not continuously observed. The missing observations are simulated by combining the available instantaneous FRP observations within a day and a set of representative climatological diurnal patterns of FRP for various ecosystems. Finally, the simulated diurnal variation in FRP is applied to quantify biomass combustion and emissions in individual fire pixels with a latency of 1 day. By analyzing global patterns in hourly biomass burning emissions in 2010, we find that peak fire season varied greatly and that annual wildfires burned 1.33 × 1012 kg dry mass, released 1.27 × 1010 kg of PM2.5 (particulate mass for particles with diameter forest and savanna fires in Africa, South America, and North America. Evaluation of emission result reveals that the GBBEP-Geo estimates are comparable with other FRP-derived estimates in Africa, while the results are generally smaller than most of the other global products that were derived from burned

  16. A hydro-optical model for deriving water quality variables from satellite images (HydroSat): A case study of the Nile River demonstrating the future Sentinel-2 capabilities

    NARCIS (Netherlands)

    Salama, M.; Radwan, M.; van der Velde, R.

    2012-01-01

    This paper describes a hydro-optical model for deriving water quality variables from satellite images, hereafter HydroSat. HydroSat corrects images for atmospheric interferences and simultaneously retrieves water quality variables. An application of HydroSat to Landsat Enhanced Thematic Mapper (ETM)

  17. El Nino and Health Risks from Landscape Fire Emissions in Southeast Asia

    Science.gov (United States)

    Marlier, Miriam E.; Defries, Ruth S.; Voulgarakis, Apostolos; Kinney, Patrick L.; Randerson, James T.; Shindell, Drew T.; Chen, Yang; Faluvegi, Greg

    2013-01-01

    Emissions from landscape fires affect both climate and air quality. Here, we combine satellite-derived fire estimates and atmospheric modelling to quantify health effects from fire emissions in southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity owing to coupling between El Nino-induced droughts and anthropogenic land-use change. We show that during strong El Nino years, fires contribute up to 200 micrograms per cubic meter and 50 ppb in annual average fine particulate matter (PM2.5) and ozone surface concentrations near fire sources, respectively. This corresponds to a fire contribution of 200 additional days per year that exceed the World Health Organization 50 micrograms per cubic metre 24-hr PM(sub 2.5) interim target and an estimated 10,800 (6,800-14,300)-person (approximately 2 percent) annual increase in regional adult cardiovascular mortality. Our results indicate that reducing regional deforestation and degradation fires would improve public health along with widely established benefits from reducing carbon emissions, preserving biodiversity and maintaining ecosystem services.

  18. Sequential assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area

    Science.gov (United States)

    Albergel, Clément; Munier, Simon; Leroux, Delphine Jennifer; Dewaele, Hélène; Fairbairn, David; Lavinia Barbu, Alina; Gelati, Emiliano; Dorigo, Wouter; Faroux, Stéphanie; Meurey, Catherine; Le Moigne, Patrick; Decharme, Bertrand; Mahfouf, Jean-Francois; Calvet, Jean-Christophe

    2017-10-01

    In this study, a global land data assimilation system (LDAS-Monde) is applied over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. LDAS-Monde is able to ingest information from satellite-derived surface soil moisture (SSM) and leaf area index (LAI) observations to constrain the interactions between soil-biosphere-atmosphere (ISBA, Interactions between Soil, Biosphere and Atmosphere) land surface model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (ISBA-CTRIP) continental hydrological system. It makes use of the CO2-responsive version of ISBA which models leaf-scale physiological processes and plant growth. Transfer of water and heat in the soil rely on a multilayer diffusion scheme. SSM and LAI observations are assimilated using a simplified extended Kalman filter (SEKF), which uses finite differences from perturbed simulations to generate flow dependence between the observations and the model control variables. The latter include LAI and seven layers of soil (from 1 to 100 cm depth). A sensitivity test of the Jacobians over 2000-2012 exhibits effects related to both depth and season. It also suggests that observations of both LAI and SSM have an impact on the different control variables. From the assimilation of SSM, the LDAS is more effective in modifying soil moisture (SM) from the top layers of soil, as model sensitivity to SSM decreases with depth and has almost no impact from 60 cm downwards. From the assimilation of LAI, a strong impact on LAI itself is found. The LAI assimilation impact is more pronounced in SM layers that contain the highest fraction of roots (from 10 to 60 cm). The assimilation is more efficient in summer and autumn than in winter and spring. Results shows that the LDAS works well constraining the model to the observations and that stronger corrections are applied to LAI than to SM. A comprehensive evaluation of

  19. Potentials of satellite derived SIF products to constrain GPP simulated by the new ORCHIDEE-FluOR terrestrial model at the global scale

    Science.gov (United States)

    Bacour, C.; Maignan, F.; Porcar-Castell, A.; MacBean, N.; Goulas, Y.; Flexas, J.; Guanter, L.; Joiner, J.; Peylin, P.

    2016-12-01

    A new era for improving our knowledge of the terrestrial carbon cycle at the global scale has begun with recent studies on the relationships between remotely sensed Sun Induce Fluorescence (SIF) and plant photosynthetic activity (GPP), and the availability of such satellite-derived products now "routinely" produced from GOSAT, GOME-2, or OCO-2 observations. Assimilating SIF data into terrestrial ecosystem models (TEMs) represents a novel opportunity to reduce the uncertainty of their prediction with respect to carbon-climate feedbacks, in particular the uncertainties resulting from inaccurate parameter values. A prerequisite is a correct representation in TEMs of the several drivers of plant fluorescence from the leaf to the canopy scale, and in particular the competing processes of photochemistry and non photochemical quenching (NPQ).In this study, we present the first results of a global scale assimilation of GOME-2 SIF products within a new version of the ORCHIDEE land surface model including a physical module of plant fluorescence. At the leaf level, the regulation of fluorescence yield is simulated both by the photosynthesis module of ORCHIDEE to calculate the photochemical yield and by a parametric model to estimate NPQ. The latter has been calibrated on leaf fluorescence measurements performed for boreal coniferous and Mediterranean vegetation species. A parametric representation of the SCOPE radiative transfer model is used to model the plant fluorescence fluxes for PSI and PSII and the scaling up to the canopy level. The ORCHIDEE-FluOR model is firstly evaluated with respect to in situ measurements of plant fluorescence flux and photochemical yield for scots pine and wheat. The potentials of SIF data to constrain the modelled GPP are evaluated by assimilating one year of GOME-2-SIF products within ORCHIDEE-FluOR. We investigate in particular the changes in the spatial patterns of GPP following the optimization of the photosynthesis and phenology parameters

  20. The investigation of identifying method on grass fire by FY-3 VIRR images

    Science.gov (United States)

    Jiang, Youyan; Han, Tao; Wang, Dawei

    2018-03-01

    Grassland fire has the characteristics of fierce fire and rapid spreading, and many fires occur in sparsely populated places. Satellite remote sensing has the characteristics of fast imaging period and wide coverage, and plays an important role in the rapid monitoring and evaluation of grassland fire. FY-3 satellite has been widely used since its launch in September 2008, and this paper uses the fire information of Gansu grassland from 2011 to 2016, based on the more mature MODIS and NOAA-AVHRR fire identification method. The results show that the accuracy of FY-3/VIRR satellite data fire detection are higher than that of NOAA-AVHRR satellite, and the accuracy of FY-3/VIRR satellite data is described. There is a greater improvement, the ability to identify slightly worse than the MODIS satellite, the region is relatively large fire detection accuracy is higher.

  1. OMS engine firing

    Science.gov (United States)

    1983-01-01

    An Orbital maneuvering system (OMS) engine firing caused this bright glow at the aft end of the shuttle Challenger during STS-7. Also visible in the open payload bay are parts of the Shuttle pallet satellite (SPAS-01), the experiment package for NASA's Office of Space and Terrestrial Applications (OSTA-2), the protective cradles for the Indonesian Palapa-B and Telesat Canada Anik C2 satellites, some getaway special (GAS) canisters and the Canadian built remote manipulator system (RMS). Only a small portion of the earth's horizon can be seen above the orbiter's vertical stabilizer.

  2. Sensitivity study of land biosphere CO2 exchange through an atmospheric tracer transport model using satellite-derived vegetation index data

    International Nuclear Information System (INIS)

    Knorr, W.; Heimann, M.

    1994-01-01

    We develop a simple, globally uniform model of CO 2 exchange between the atmosphere and the terrestrial biosphere by coupling the model with a three-dimensional atmospheric tracer transport model using observed winds, and checking results against observed concentrations of CO 2 at various monitoring sites. CO 2 fluxes are derived from observed greenness using satellite-derived Global Vegetation Index data, combined with observations of temperature, radiation, and precipitation. We explore a range of CO 2 flux formulations together with some modifications of the modelled atmospheric transport. We find that while some formulations can be excluded, it cannot be decided whether or not to make CO 2 uptake and release dependent on water stress. It appears that the seasonality of net CO 2 fluxes in the tropics, which would be expected to be driven by water availability, is small and is therefore not visible in the seasonal cycle of atmospheric CO 2 . The latter is dominated largely by northern temperate and boreal vegetation, where seasonality is mostly temperature determined. We find some evidence that there is still considerable CO 2 release from soils during northern-hemisphere winter. An exponential air temperature dependence of soil release with a Q 10 of 1.5 is found to be most appropriate, with no cutoff at low freezing temperatures. This result is independent of the year from which observed winds were taken. This is remarkable insofar as year-to-year changes in modelled CO 2 concentrations caused by changes in the wind data clearly outweigh those caused by year-to-year variability in the climate and vegetation index data. (orig.)

  3. A simple model for yield prediction of rice based on vegetation index derived from satellite and AMeDAS data during ripening period

    International Nuclear Information System (INIS)

    Wakiyama, Y.; Inoue, K.; Nakazono, K.

    2003-01-01

    The present study was conducted to show a simple model for rice yield predicting by using a vegetation index (NDVI) derived from satellite and meteorological data. In a field experiment, the relationship between the vegetation index and radiation absorbed by the rice canopy was investigated from transplanting to maturity. Their correlation held. This result revealed that the vegetation index could be used as a measure of absorptance of solar radiation by rice canopy. NDVI multiplied by solar radiation (SR) every day was accumulated (Σ(SR·NDVI)) from the field experiment. Σ(SR·NDVI) was plotted against above ground dry matter. It was obvious that they had a strong relationship. Rice yield largely depends on solar radiation and air temperature during the ripening period. Air temperature affects dry matter production. Relationships between Y SR -1 (Y: rice yield, SR: solar radiation) and mean air temperature were investigated from meteorological data and statistical data on rice yield. There was an optimum air temperature, 21.3°C, for ripening. When it was near 21.3°C in the ripening period, the rice yield was higher. We proposed a simple model for yield prediction of rice based on these results. The model is composed with SR·NDVI and the optimum air temperature. Vegetation index was derived from 3 years, LANDSAT TM data in Toyama, Ishikawa, Fukui and Nagano prefectures at heading. The meteorological data was used from AMeDAS data. The model was described as follows: Y = 0.728 SR·NDVI−2.04(T−21.3) 2 + 282 (r 2 = 0.65, n = 43) where Y is rice yield (kg 10a -1 ), SR is solar radiation (MJ m -2 ) during the ripening period (from 10 days before heading to 30 days after heading), T is mean air temperature (°C) during the ripening period. RMSE was 33.7kg 10a -1 . The model revealed good precision. (author)

  4. High spatial resolution radiation budget for Europe: derived from satellite data, validation of a regional model; Raeumlich hochaufgeloeste Strahlungsbilanz ueber Europa: Ableitung aus Satellitendaten, Validation eines regionalen Modells

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    2000-07-01

    Since forty years instruments onboard satellites have been demonstrated their usefulness for many applications in the field of meteorology and oceanography. Several experiments, like ERBE, are dedicated to establish a climatology of the global Earth radiation budget at the top of the atmosphere. Now the focus has been changed to the regional scale, e.g. GEWEX with its regional sub-experiments like BALTEX. To obtain a regional radiation budget for Europe in the first part of the work the well calibrated measurements from ScaRaB (scanner for radiation budget) are used to derive a narrow-to-broadband conversion, which is applicable to the AVHRR (advanced very high resolution radiometer). It is shown, that the accuracy of the method is in the order of that from SCaRaB itself. In the second part of the work, results of REMO have been compared with measurements of ScaRaB and AVHRR for March 1994. The model reproduces the measurements overall well, but it is overestimating the cold areas and underestimating the warm areas in the longwave spectral domain. Similarly it is overestimating the dark areas and underestimating the bright areas in the solar spectral domain. (orig.)

  5. Volumetrically-Derived Global Navigation Satellite System Performance Assessment from the Earths Surface through the Terrestrial Service Volume and the Space Service Volume

    Science.gov (United States)

    Welch, Bryan W.

    2016-01-01

    NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user from the Earth's surface through the Terrestrial Service Volume (TSV) to the edge of the Space Service Volume (SSV), when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative was recently expanded to compare nadir-facing and zenith-facing user hemispherical antenna coverage with omnidirectional antenna coverage at different distances of 8,000 km altitude and 36,000 km altitude. This report summarizes the performance using these antenna coverage techniques at distances ranging from 100 km altitude to 36,000 km to be all encompassing, as well as the volumetrically-derived system availability metrics.

  6. Principle and geomorphological applicability of summit level and base level technique using Aster Gdem satellite-derived data and the original software Baz

    Directory of Open Access Journals (Sweden)

    Akihisa Motoki

    2015-05-01

    Full Text Available This article presents principle and geomorphological applicability of summit level technique using Aster Gdem satellite-derived topographicdata. Summit level corresponds to thevirtualtopographic surface constituted bylocalhighest points, such as peaks and plateau tops, and reconstitutes palaeo-geomorphology before the drainage erosion. Summit level map is efficient for reconstitution of palaeo-surfaces and detection of active tectonic movement. Base level is thevirtualsurface composed oflocallowest points, as valley bottoms. The difference between summit level and base level is called relief amount. Thesevirtualmapsareconstructed by theoriginalsoftwareBaz. Themacroconcavity index, MCI, is calculated from summit level and relief amount maps. The volume-normalised three-dimensional concavity index, TCI, is calculated from hypsometric diagram. The massifs with high erosive resistance tend to have convex general form and low MCI and TCI. Those with low resistance have concave form and high MCI and TCI. The diagram of TCI vs. MCI permits to distinguish erosive characteristics of massifs according to their constituent rocks. The base level map for ocean bottom detects the basement tectonic uplift which occurred before the formation of the volcanic seamounts.

  7. Satellite derived trends in NO2 over the major global hotspot regions during the past decade and their inter-comparison

    International Nuclear Information System (INIS)

    Ghude, Sachin D.; Van der A, R.J.; Beig, G.; Fadnavis, S.; Polade, S.D.

    2009-01-01

    We assessed satellite derived tropospheric NO 2 distribution on a global scale and identified the major NO 2 hotspot regions. Combined GOME and SCIAMACHY measurements for the period 1996-2006 have been used to compute the trends over these regions. Our analysis shows that tropospheric NO 2 column amounts have increased over the newly and rapidly developing regions like China (11 ± 2.6%/year), south Asia (1.76 ± 1.1%/year), Middle East (2.3 ± 1%/year) and South Africa (2.4 ± 2.2%/year). Tropospheric NO 2 column amounts show some decrease over the eastern US (-2 ± 1.5%/year) and Europe (0.9 ± 2.1%/year). We found that although tropospheric NO 2 column amounts decreased over the major developed regions in the past decade, the present tropospheric NO 2 column amounts over these regions are still significantly higher than those observed over newly and rapidly developing regions (except China). Tropospheric NO 2 column amounts show some decrease over South America and Central Africa, which are major biomass burning regions in the Southern Hemisphere. - Trends in tropospheric column NO 2 over newly developing regions.

  8. Quantifying the influence of agricultural fires in northwest India on urban air pollution in Delhi, India

    Science.gov (United States)

    Cusworth, Daniel H.; Mickley, Loretta J.; Sulprizio, Melissa P.; Liu, Tianjia; Marlier, Miriam E.; DeFries, Ruth S.; Guttikunda, Sarath K.; Gupta, Pawan

    2018-04-01

    Since at least the 1980s, many farmers in northwest India have switched to mechanized combine harvesting to boost efficiency. This harvesting technique leaves abundant crop residue on the fields, which farmers typically burn to prepare their fields for subsequent planting. A key question is to what extent the large quantity of smoke emitted by these fires contributes to the already severe pollution in Delhi and across other parts of the heavily populated Indo-Gangetic Plain located downwind of the fires. Using a combination of observed and modeled variables, including surface measurements of PM2.5, we quantify the magnitude of the influence of agricultural fire emissions on surface air pollution in Delhi. With surface measurements, we first derive the signal of regional PM2.5 enhancements (i.e. the pollution above an anthropogenic baseline) during each post-monsoon burning season for 2012–2016. We next use the Stochastic Time-Inverted Lagrangian Transport model (STILT) to simulate surface PM2.5 using five fire emission inventories. We reproduce up to 25% of the weekly variability in total observed PM2.5 using STILT. Depending on year and emission inventory, our method attributes 7.0%–78% of the maximum observed PM2.5 enhancements in Delhi to fires. The large range in these attribution estimates points to the uncertainties in fire emission parameterizations, especially in regions where thick smoke may interfere with hotspots of fire radiative power. Although our model can generally reproduce the largest PM2.5 enhancements in Delhi air quality for 1–3 consecutive days each fire season, it fails to capture many smaller daily enhancements, which we attribute to the challenge of detecting small fires in the satellite retrieval. By quantifying the influence of upwind agricultural fire emissions on Delhi air pollution, our work underscores the potential health benefits of changes in farming practices to reduce fires.

  9. Heterogeneous benefits of precision nitrogen management over the Midwestern US: evidence from 1,000 fields derived by satellite imagery and crop modeling

    Science.gov (United States)

    Jin, Z.; Archontoulis, S.; Lobell, D. B.

    2017-12-01

    The wise management of nitrogen (N) fertilizer is important for both economic and environmental considerations. The variable rate technology (VRT) that applies different rates of N fertilizer by fully taking account of the spatial heterogeneity within fields has gained popularity with the recent advent of high-resolution satellites and spectrometers, but its profitability is still uncertain given the dependence of corn-nitrogen responses to soil and climate. To our knowledge, the benefits of adopting VRT in the vast Midwestern US agricultural zones have only been assessed at a very limited number of fields based on labor-costing on-farm samplings. Here we present a study that integrates a range of geospatial tools and data to quantifying the economic benefit of VRT versus uniform N application over 1,000 randomly selected corn fields in the US Midwest. We employed the Google Earth Engine (GEE) and Landsat-5, 7 and 8 collections to derive 30m-resolution yield map for years 2007-2015, and used the multi-year averaged yields to characterize the yield variation and hence the management zones for each field and zone-specific yield goal. The yield goals as well as the Soil Survey Geographic Database (SSURGO) data were then used to calibrate the Agricultural Production Systems sIMulator (APSIM) model, which generated a range of variables such as yields, N balance and leaching. Our preliminary results showed that the calibrated APSIM model was able to capture about 60% of the variation in the satellite-based yield estimates, and more than 70% of the yield spread (i.e. maximum - minimum yield). Regardless of the overall environmental benefits of less N loss through leaching, the economic difference between adopting VRT and uniform application ranged from -50 to 200 per acre, with the majority lay between -10 and 40 per acre. Fields with a wider range of yield spread benefited more from adopting VRT, yet the conclusion varies upon weather, especially the precipitation. Our

  10. Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia

    International Nuclear Information System (INIS)

    Vadrevu, Krishna Prasad; Lasko, Kristofer; Giglio, Louis; Justice, Chris

    2015-01-01

    In this study, we explored the relationships between the satellite-retrieved fire counts (FC), fire radiative power (FRP) and aerosol indices using multi-satellite datasets at a daily time-step covering ten different biomass burning regions in Asia. We first assessed the variations in MODIS-retrieved aerosol optical depths (AOD’s) in agriculture, forests, plantation and peat land burning regions and then used MODIS FC and FRP (hereafter FC/FRP) to explain the variations in AOD characteristics. Results suggest that tropical broadleaf forests in Laos burn more intensively than the other vegetation fires. FC/FRP-AOD correlations in different agricultural residue burning regions did not exceed 20% whereas in forest regions they reached 40%. To specifically account for absorbing aerosols, we used Ozone Monitoring Instrument-derived aerosol absorption optical depth (AAOD) and UV aerosol index (UVAI). Results suggest relatively high AAOD and UVAI values in forest fires compared with peat and agriculture fires. Further, FC/FRP could explain a maximum of 29% and 53% of AAOD variations, whereas FC/FRP could explain at most 33% and 51% of the variation in agricultural and forest biomass burning regions, respectively. Relatively, UVAI was found to be a better indicator than AOD and AAOD in both agriculture and forest biomass burning plumes. Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations data showed vertically elevated aerosol profiles greater than 3.2–5.3 km altitude in the forest fire plumes compared to 2.2–3.9 km and less than 1 km in agriculture and peat-land fires, respectively. We infer the need to assimilate smoke plume height information for effective characterization of pollutants from different sources. (letter)

  11. Determining Optimal New Generation Satellite Derived Metrics for Accurate C3 and C4 Grass Species Aboveground Biomass Estimation in South Africa

    Directory of Open Access Journals (Sweden)

    Cletah Shoko

    2018-04-01

    Full Text Available While satellite data has proved to be a powerful tool in estimating C3 and C4 grass species Aboveground Biomass (AGB, finding an appropriate sensor that can accurately characterize the inherent variations remains a challenge. This limitation has hampered the remote sensing community from continuously and precisely monitoring their productivity. This study assessed the potential of a Sentinel 2 MultiSpectral Instrument, Landsat 8 Operational Land Imager, and WorldView-2 sensors, with improved earth imaging characteristics, in estimating C3 and C4 grasses AGB in the Cathedral Peak, South Africa. Overall, all sensors have shown considerable potential in estimating species AGB; with the use of different combinations of the derived spectral bands and vegetation indices producing better accuracies. However, WorldView-2 derived variables yielded better predictive accuracies (R2 ranging between 0.71 and 0.83; RMSEs between 6.92% and 9.84%, followed by Sentinel 2, with R2 between 0.60 and 0.79; and an RMSE 7.66% and 14.66%. Comparatively, Landsat 8 yielded weaker estimates, with R2 ranging between 0.52 and 0.71 and high RMSEs ranging between 9.07% and 19.88%. In addition, spectral bands located within the red edge (e.g., centered at 0.705 and 0.745 µm for Sentinel 2, SWIR, and NIR, as well as the derived indices, were found to be very important in predicting C3 and C4 AGB from the three sensors. The competence of these bands, especially of the free-available Landsat 8 and Sentinel 2 dataset, was also confirmed from the fusion of the datasets. Most importantly, the three sensors managed to capture and show the spatial variations in AGB for the target C3 and C4 grassland area. This work therefore provides a new horizon and a fundamental step towards C3 and C4 grass productivity monitoring for carbon accounting, forage mapping, and modelling the influence of environmental changes on their productivity.

  12. ASSESSMENT OF FIRE SEVERITY AND POST-FIRE REGENERATION BASED ON TOPOGRAPHICAL FEATURES USING MULTITEMPORAL LANDSAT IMAGERY: A CASE STUDY in MERSIN, TURKEY

    Directory of Open Access Journals (Sweden)

    H. Tonbul

    2016-06-01

    Full Text Available Satellite based remote sensing technologies and Geographical Information Systems (GIS present operable and cost-effective solutions for mapping fires and observing post-fire regeneration. Mersin-Gülnar wildfire, which occurred in August 2008 in Turkey, selected as study site. The fire was devastating and continued 55 days. According to Turkish General Directorate of Forestry reports, it caused two deaths and left hundreds of people homeless. The aim of this study is to determine the fire severity and monitor vegetation recovery with using multitemporal spectral indices together with topographical factors. Pre-fire and post-fire Landsat ETM+ images were obtained to assess the related fire severity with using the widely-used differenced Normalized Burn Ratio (dNBR algorithm. Also, the Normalized Vegetation Index (NDVI and Soil Adjusted Vegetation Index (SAVI were used to determine vegetation regeneration dynamics for a period of six consecutive years. In addition, aspect image derived from Aster Global Digital Elevation Model (GDEM were used to determine vegetation regeneration regime of the study area. Results showed that 5388 ha of area burned with moderate to high severity damage. As expected, NDVI and SAVI values distinctly declined post-fire and then began to increase in the coming years. Mean NDVI value of burned area changed from 0.48 to 0.17 due to wildfire, whilst mean SAVI value changed from 0.61 to 0.26. Re-growth rates calculated for NDVI and SAVI 57% and 63% respectively, six years after the fire. Moreover, NDVI and SAVI were estimated six consecutive year period by taking into consideration east, south, north and west facing slopes. Analysis showed that north-facing and east-facing slopes have higher regeneration rates in compared to other aspects. This study serves as a window to an understanding of the process of fire severity and vegetation regeneration that is vital in wildfire management systems.

  13. Assessment of Fire Severity and Post-Fire Regeneration Based on Topographical Features Using Multitemporal Landsat Imagery: a Case Study in Mersin, Turkey

    Science.gov (United States)

    Tonbul, H.; Kavzoglu, T.; Kaya, S.

    2016-06-01

    Satellite based remote sensing technologies and Geographical Information Systems (GIS) present operable and cost-effective solutions for mapping fires and observing post-fire regeneration. Mersin-Gülnar wildfire, which occurred in August 2008 in Turkey, selected as study site. The fire was devastating and continued 55 days. According to Turkish General Directorate of Forestry reports, it caused two deaths and left hundreds of people homeless. The aim of this study is to determine the fire severity and monitor vegetation recovery with using multitemporal spectral indices together with topographical factors. Pre-fire and post-fire Landsat ETM+ images were obtained to assess the related fire severity with using the widely-used differenced Normalized Burn Ratio (dNBR) algorithm. Also, the Normalized Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) were used to determine vegetation regeneration dynamics for a period of six consecutive years. In addition, aspect image derived from Aster Global Digital Elevation Model (GDEM) were used to determine vegetation regeneration regime of the study area. Results showed that 5388 ha of area burned with moderate to high severity damage. As expected, NDVI and SAVI values distinctly declined post-fire and then began to increase in the coming years. Mean NDVI value of burned area changed from 0.48 to 0.17 due to wildfire, whilst mean SAVI value changed from 0.61 to 0.26. Re-growth rates calculated for NDVI and SAVI 57% and 63% respectively, six years after the fire. Moreover, NDVI and SAVI were estimated six consecutive year period by taking into consideration east, south, north and west facing slopes. Analysis showed that north-facing and east-facing slopes have higher regeneration rates in compared to other aspects. This study serves as a window to an understanding of the process of fire severity and vegetation regeneration that is vital in wildfire management systems.

  14. Fire protection

    International Nuclear Information System (INIS)

    Janetzky, E.

    1980-01-01

    Safety and fire prevention measurements have to be treated like the activities developing, planning, construction and erection. Therefore it is necessary that these measurements have to be integrated into the activities mentioned above at an early stage in order to guarantee their effectiveness. With regard to fire accidents the statistics of the insurance companies concerned show that the damage caused increased in the last years mainly due to high concentration of material. Organization of fire prevention and fire fighting, reasons of fire break out, characteristics and behaviour of fire, smoke and fire detection, smoke and heat venting, fire extinguishers (portable and stationary), construction material in presence of fire, respiratory protection etc. will be discussed. (orig./RW)

  15. Fire Propagation Tracing Model in the Explicit Treatment of Events of Fire PSA

    International Nuclear Information System (INIS)

    Lim, Ho Gon; Han, Sang Hoon; Yang, Jun Eon

    2010-01-01

    The fire propagation model in a fire PSA has not been considered analytically instead a simplified analyst's intuition was used to consider the fire propagation path. A fire propagation equation is developed to trace all the propagation paths in the fire area in which a zone is defined to identify various fire ignition sources. An initiation of fire is assumed to take place in a zone. Then, the propagation is modeled with a Boolean equation. Since the explicit fire PSA modeling requires an exclusive event set to sum up the..., exclusive event sets are derived from the fire propagation equation. As an example, we show the exclusive set for a 2x3 rectangular fire zone. Also, the applicability the developed fire equation is discussed when the number of zone increases including the limitation of the explicit fire PSA modeling method

  16. Application Study of Fire Severity Classification

    International Nuclear Information System (INIS)

    Kim, In Hwan; Kim, Hyeong Taek; Jee, Moon Hak; Kim, Yun Jung

    2013-01-01

    This paper introduces the Fire Incidents Severity Classification Method for Korean NPPs that may be derived directly from the data fields and feasibility study for domestic uses. FEDB was characterized in more detail and assessed based on the significance of fire incidents in the updated database and five fire severity categories were defined. The logical approach to determine the fire severity starts from the most severe characteristics, namely challenging fires, and continues to define the less challenging and undetermined categories in progress. If the FEDB is utilized for Korean NPPs, the ways of Fire Severity Classification suggested in 2.4 above can be utilized for the quantitative fire risk analysis in future. The Fire Events Database (FEDB) is the primary source of fire data which are used for fire frequency in Fire PSA (Probabilistic Safety Assessment). The purpose of its development is to calculate the quantitative fire frequency at the comprehensive and consolidated source derived from the fire incident information available for Nuclear Power Plants (NPPs). Recently, the Fire Events Database (FEDB) was updated by Electric Power Research Institute (EPRI) and Nuclear Regulatory Commission (NRC) in U. S. The FEDB is intended to update the fire event history up to 2009. A significant enhancement to it is the reorganization and refinement of the database structure and data fields. It has been expanded and improved data fields, coding consistency, incident detail, data review fields, and reference data source traceability. It has been designed to better support several Fire PRA uses as well

  17. Quantifying soil burn severity for hydrologic modeling to assess post-fire effects on sediment delivery

    Science.gov (United States)

    Dobre, Mariana; Brooks, Erin; Lew, Roger; Kolden, Crystal; Quinn, Dylan; Elliot, William; Robichaud, Pete

    2017-04-01

    Soil erosion is a secondary fire effect with great implications for many ecosystem resources. Depending on the burn severity, topography, and the weather immediately after the fire, soil erosion can impact municipal water supplies, degrade water quality, and reduce reservoirs' storage capacity. Scientists and managers use field and remotely sensed data to quickly assess post-fire burn severity in ecologically-sensitive areas. From these assessments, mitigation activities are implemented to minimize post-fire flood and soil erosion and to facilitate post-fire vegetation recovery. Alternatively, land managers can use fire behavior and spread models (e.g. FlamMap, FARSITE, FOFEM, or CONSUME) to identify sensitive areas a priori, and apply strategies such as fuel reduction treatments to proactively minimize the risk of wildfire spread and increased burn severity. There is a growing interest in linking fire behavior and spread models with hydrology-based soil erosion models to provide site-specific assessment of mitigation treatments on post-fire runoff and erosion. The challenge remains, however, that many burn severity mapping and modeling products quantify vegetation loss rather than measuring soil burn severity. Wildfire burn severity is spatially heterogeneous and depends on the pre-fire vegetation cover, fuel load, topography, and weather. Severities also differ depending on the variable of interest (e.g. soil, vegetation). In the United States, Burned Area Reflectance Classification (BARC) maps, derived from Landsat satellite images, are used as an initial burn severity assessment. BARC maps are classified from either a Normalized Burn Ratio (NBR) or differenced Normalized Burned Ratio (dNBR) scene into four classes (Unburned, Low, Moderate, and High severity). The development of soil burn severity maps requires further manual field validation efforts to transform the BARC maps into a product more applicable for post-fire soil rehabilitation activities

  18. Angora Fire, Lake Tahoe

    Science.gov (United States)

    2007-01-01

    On the weekend of June 23, 2007, a wildfire broke out south of Lake Tahoe, which stretches across the California-Nevada border. By June 28, the Angora Fire had burned more than 200 homes and forced some 2,000 residents to evacuate, according to The Seattle Times and the Central Valley Business Times. On June 27, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the burn scar left by the Angora fire. The burn scar is dark gray, or charcoal. Water bodies, including the southern tip of Lake Tahoe and Fallen Leaf Lake, are pale silvery blue, the silver color a result of sunlight reflecting off the surface of the water. Vegetation ranges in color from dark to bright green. Streets are light gray, and the customary pattern of meandering residential streets and cul-de-sacs appears throughout the image, including the area that burned. The burn scar shows where the fire obliterated some of the residential areas just east of Fallen Leaf Lake. According to news reports, the U.S. Forest Service had expressed optimism about containing the fire within a week of the outbreak, but a few days after the fire started, it jumped a defense, forcing the evacuation of hundreds more residents. Strong winds that had been forecast for June 27, however, did not materialize, allowing firefighters to regain ground in controlling the blaze. On June 27, authorities hoped that the fire would be completely contained by July 3. According to estimates provided in the daily report from the National Interagency Fire Center, the fire had burned 3,100 acres (about 12.5 square kilometers) and was about 55 percent contained as of June 28. Some mandatory evacuations remained in effect. NASA image by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  19. What is Urban? A study of census and satellite-derived urban classes in the United States (1990-2010) with comparisons to India and Mexico

    Science.gov (United States)

    Balk, D.; Leyk, S.; Jones, B.; Clark, A.; Montgomery, M.

    2017-12-01

    Geographers and demographers have contributed much to understanding urban population and urban place. Yet, we nevertheless remain ill-prepared to fully understand past urban processes and our urban future, and importantly, connect that knowledge to pressing concerns such as climate and environmental change. This is largely due to well-known data limitations and inherent inconsistencies in the urban definition across countries and over time and spatial scales, and because urban models and definitions arise out of disciplinary silos. This paper provides a new framework for urban inquiry in that it combines urban definitions used by the U.S. Census Bureau from 1990-2010 with newly available satellite-based (mostly Landsat) data on built-up area from the Global Human Settlement Layer (GHSL). We identify areas of agreement and disagreement, as well as the population distribution underlying various GHSL derived built-up land thresholds. Our analysis allows for a systematic means of discerning peri-urban areas from other types of urban development, as well as examines differences in these patterns at the national and Metropolitan Statistical Area (MSA)-level. While we find overwhelming areas of agreement - about 70% of the census-designated urban population can be characterized as living on land that is at least 50% built-up - we also learn much of the significant heterogeneity in levels and patterns of growth between different MSAs. We further compare the US results with those for India and Mexico. This research unlocks the potential of such alternative measures for creating globally and temporally consistent proxies of urban land and may guide further research on consistent modeling of spatial demographic urban change, highly urgent for future work to distinguish between fine-scale levels of urban development and to forecast urban expansion.

  20. Combining structure-from-motion derived point clouds from satellites and unmanned aircraft systems images with ground-truth data to create high-resolution digital elevation models

    Science.gov (United States)

    Palaseanu, M.; Thatcher, C.; Danielson, J.; Gesch, D. B.; Poppenga, S.; Kottermair, M.; Jalandoni, A.; Carlson, E.

    2016-12-01

    Coastal topographic and bathymetric (topobathymetric) data with high spatial resolution (1-meter or better) and high vertical accuracy are needed to assess the vulnerability of Pacific Islands to climate change impacts, including sea level rise. According to the Intergovernmental Panel on Climate Change reports, low-lying atolls in the Pacific Ocean are extremely vulnerable to king tide events, storm surge, tsunamis, and sea-level rise. The lack of coastal topobathymetric data has been identified as a critical data gap for climate vulnerability and adaptation efforts in the Republic of the Marshall Islands (RMI). For Majuro Atoll, home to the largest city of RMI, the only elevation dataset currently available is the Shuttle Radar Topography Mission data which has a 30-meter spatial resolution and 16-meter vertical accuracy (expressed as linear error at 90%). To generate high-resolution digital elevation models (DEMs) in the RMI, elevation information and photographic imagery have been collected from field surveys using GNSS/total station and unmanned aerial vehicles for Structure-from-Motion (SfM) point cloud generation. Digital Globe WorldView II imagery was processed to create SfM point clouds to fill in gaps in the point cloud derived from the higher resolution UAS photos. The combined point cloud data is filtered and classified to bare-earth and georeferenced using the GNSS data acquired on roads and along survey transects perpendicular to the coast. A total station was used to collect elevation data under tree canopies where heavy vegetation cover blocked the view of GNSS satellites. A subset of the GPS / total station data was set aside for error assessment of the resulting DEM.

  1. Comparison of satellite-derived LAI and precipitation anomalies over Brazil with a thermal infrared-based Evaporative Stress Index for 2003-2013

    Science.gov (United States)

    Anderson, Martha C.; Zolin, Cornelio A.; Hain, Christopher R.; Semmens, Kathryn; Tugrul Yilmaz, M.; Gao, Feng

    2015-07-01

    Shortwave vegetation index (VI) and leaf area index (LAI) remote sensing products yield inconsistent depictions of biophysical response to drought and pluvial events that have occurred in Brazil over the past decade. Conflicting reports of severity of drought impacts on vegetation health and functioning have been attributed to cloud and aerosol contamination of shortwave reflectance composites, particularly over the rainforested regions of the Amazon basin which are subject to prolonged periods of cloud cover and episodes of intense biomass burning. This study compares timeseries of satellite-derived maps of LAI from the Moderate Resolution Imaging Spectroradiometer (MODIS) and precipitation from the Tropical Rainfall Mapping Mission (TRMM) with a diagnostic Evaporative Stress Index (ESI) retrieved using thermal infrared remote sensing over South America for the period 2003-2013. This period includes several severe droughts and floods that occurred both over the Amazon and over unforested savanna and agricultural areas in Brazil. Cross-correlations between absolute values and standardized anomalies in monthly LAI and precipitation composites as well as the actual-to-reference evapotranspiration (ET) ratio used in the ESI were computed for representative forested and agricultural regions. The correlation analyses reveal strong apparent anticorrelation between MODIS LAI and TRMM precipitation anomalies over the Amazon, but better coupling over regions vegetated with shorter grass and crop canopies. The ESI was more consistently correlated with precipitation patterns over both landcover types. Temporal comparisons between ESI and TRMM anomalies suggest longer moisture buffering timescales in the deeper rooted rainforest systems. Diagnostic thermal-based retrievals of ET and ET anomalies, such as used in the ESI, provide independent information on the impacts of extreme hydrologic events on vegetation health in comparison with VI and precipitation-based drought

  2. Coal fires in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Whitehouse, Alfred E.; Mulyana, Asep A.S. [Office of Surface Mining/Ministry of Energy and Mineral Resources Coal Fire Project, Ministry of Energy and Mineral Resources, Agency for Training and Education, Jl. Gatot Subroto, Kav. 49, Jakarta 12950 (Indonesia)

    2004-07-12

    Indonesia's fire and haze problem is increasingly being ascribed to large-scale forest conversion and land clearing activities making way for pulpwood, rubber and oil palm plantations. Fire is the cheapest tool available to small holders and plantation owners to reduce vegetation cover and prepare and fertilize extremely poor soils. Fires that escaped from agricultural burns have ravaged East Kalimantan forests on the island of Borneo during extreme drought periods in 1982-1983, 1987, 1991, 1994 and 1997-1998. Estimates based on satellite data and ground observations are that more than five million hectares were burned in East Kalimantan during the 1997/1998 dry season. Not only were the economic losses and ecological damage from these surface fires enormous, they ignited coal seams exposed at the ground surface along their outcrops.Coal fires now threaten Indonesia's shrinking ecological resources in Kutai National Park and Sungai Wain Nature Reserve. Sungai Wain has one of the last areas of unburned primary rainforest in the Balikpapan-Samarinda area with an extremely rich biodiversity. Although fires in 1997/1998 damaged nearly 50% of this Reserve and ignited 76 coal fires, it remains the most valuable water catchment area in the region and it has been used as a reintroduction site for the endangered orangutan. The Office of Surface Mining provided Indonesia with the capability to take quick action on coal fires that presented threats to public health and safety, infrastructure or the environment. The US Department of State's Southeast Asia Environmental Protection Initiative through the US Agency for International Development funded the project. Technical assistance and training transferred skills in coal fire management through the Ministry of Energy and Mineral Resource's Training Agency to the regional offices; giving the regions the long-term capability to manage coal fires. Funding was also included to extinguish coal fires as

  3. Multi-index time series monitoring of drought and fire effects on desert grasslands

    Science.gov (United States)

    Villarreal, Miguel; Norman, Laura M.; Buckley, Steven; Wallace, Cynthia S.A.; Coe, Michelle A.

    2016-01-01

    The Western United States is expected to undergo both extended periods of drought and longer wildfire seasons under forecasted global climate change and it is important to understand how these disturbances will interact and affect recovery and composition of plant communities in the future. In this research paper we describe the temporal response of grassland communities to drought and fire in southern Arizona, where land managers are using repeated, prescribed fire as a habitat restoration tool. Using a 25-year atlas of fire locations, we paired sites with multiple fires to unburned control areas and compare satellite and field-based estimates of vegetation cover over time. Two hundred and fifty Landsat TM images, dating from 1985–2011, were used to derive estimates of Total Vegetation Fractional Cover (TVFC) of live and senescent grass using the Soil-Adjusted Total Vegetation Index (SATVI) and post-fire vegetation greenness using the Normalized Difference Vegetation Index (NDVI). We also implemented a Greenness to Cover Index that is the difference of time-standardized SATVI-TVFC and NDVI values at a given time and location to identify post-fire shifts in native, non-native, and annual plant cover. The results highlight anomalous greening and browning during drought periods related to amounts of annual and non-native plant cover present. Results suggest that aggressive application of prescribed fire may encourage spread of non-native perennial grasses and annual plants, particularly during droughts.

  4. The largest forest fires in Portugal: the constraints of burned area size on the comprehension of fire severity.

    Science.gov (United States)

    Tedim, Fantina; Remelgado, Ruben; Martins, João; Carvalho, Salete

    2015-01-01

    Portugal is a European country with highest forest fires density and burned area. Since beginning of official forest fires database in 1980, an increase in number of fires and burned area as well as appearance of large and catastrophic fires have characterized fire activity in Portugal. In 1980s, the largest fires were just a little bit over 10,000 ha. However, in the beginning of 21st century several fires occurred with a burned area over 20,000 ha. Some of these events can be classified as mega-fires due to their ecological and socioeconomic severity. The present study aimed to discuss the characterization of large forest fires trend, in order to understand if the largest fires that occurred in Portugal were exceptional events or evidences of a new trend, and the constraints of fire size to characterize fire effects because, usually, it is assumed that larger the fire higher the damages. Using Portuguese forest fire database and satellite imagery, the present study showed that the largest fires could be seen at the same time as exceptional events and as evidence of a new fire regime. It highlighted the importance of size and patterns of unburned patches within fire perimeter as well as heterogeneity of fire ecological severity, usually not included in fire regime description, which are critical to fire management and research. The findings of this research can be used in forest risk reduction and suppression planning.

  5. The Simulations of Wildland Fire Smoke PM25 in the NWS Air Quality Forecasting Systems

    Science.gov (United States)

    Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2017-12-01

    The increase of wildland fire intensity and frequency in the United States (U.S.) has led to property loss, human fatality, and poor air quality due to elevated particulate matters and surface ozone concentrations. The NOAA/National Weather Service (NWS) built the National Air Quality Forecast Capability (NAQFC) based on the U.S. Environmental Protection Agency (EPA) Community Multi-scale Air Quality (CMAQ) Modeling System driven by the NCEP North American Mesoscale Forecast System meteorology to provide ozone and fine particulate matter (PM2.5) forecast guidance publicly. State and local forecasters use the NWS air quality forecast guidance to issue air quality alerts in their area. The NAQFC PM2.5 predictions include emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and wildland fires. The wildland fire emission inputs to the NAQFC is derived from the NOAA National Environmental Satellite, Data, and Information Service Hazard Mapping System fire and smoke detection product and the emission module of the U.S. Forest Service (USFS) BlueSky Smoke Modeling Framework. Wildland fires are unpredictable and can be ignited by natural causes such as lightning or be human-caused. It is extremely difficult to predict future occurrences and behavior of wildland fires, as is the available bio-fuel to be burned for real-time air quality predictions. Assumptions of future day's wildland fire behavior often have to be made from older observed wildland fire information. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that large errors in PM2.5 prediction can occur if fire smoke emissions are sometimes placed at the wrong location and/or time. A configuration of NAQFC CMAQ-system to re-run previous 24 hours, during which wildland fires were observed from satellites has been included recently. This study focuses on the effort performed to minimize the error in NAQFC PM2.5 predictions

  6. Fire Stations

    Data.gov (United States)

    Department of Homeland Security — Fire Stations in the United States Any location where fire fighters are stationed or based out of, or where equipment that such personnel use in carrying out their...

  7. Intra-pixel variability in satellite tropospheric NO2 column densities derived from simultaneous space-borne and airborne observations over the South African Highveld

    Science.gov (United States)

    Broccardo, Stephen; Heue, Klaus-Peter; Walter, David; Meyer, Christian; Kokhanovsky, Alexander; van der A, Ronald; Piketh, Stuart; Langerman, Kristy; Platt, Ulrich

    2018-05-01

    Aircraft measurements of NO2 using an imaging differential optical absorption spectrometer (iDOAS) instrument over the South African Highveld region in August 2007 are presented and compared to satellite measurements from OMI and SCIAMACHY. In situ aerosol and trace-gas vertical profile measurements, along with aerosol optical thickness and single-scattering albedo measurements from the Aerosol Robotic Network (AERONET), are used to devise scenarios for a radiative transfer modelling sensitivity study. Uncertainty in the air-mass factor due to variations in the aerosol and NO2 profile shape is constrained and used to calculate vertical column densities (VCDs), which are compared to co-located satellite measurements. The lower spatial resolution of the satellites cannot resolve the detailed plume structures revealed in the aircraft measurements. The airborne DOAS in general measured steeper horizontal gradients and higher peak NO2 vertical column density. Aircraft measurements close to major sources, spatially averaged to the satellite resolution, indicate NO2 column densities more than twice those measured by the satellite. The agreement between the high-resolution aircraft instrument and the satellite instrument improves with distance from the source, this is attributed to horizontal and vertical dispersion of NO2 in the boundary layer. Despite the low spatial resolution, satellite images reveal point sources and plumes that retain their structure for several hundred kilometres downwind.

  8. Fires and Smoke Observed from the Earth Observing System MODIS Instrument: Products, Validation, and Operational Use

    Science.gov (United States)

    Kaufman, Y. J.; Ichoku, C.; Giglio, L.; Korontzi, S.; Chu, D. A.; Hao, W. M.; Justice, C. O.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The MODIS sensor, launched on NASA's Terra satellite at the end of 1999, was designed with 36 spectral channels for a wide array of land, ocean, and atmospheric investigations. MODIS has a unique ability to observe fires, smoke, and burn scars globally. Its main fire detection channels saturate at high brightness temperatures: 500 K at 4 microns and 400 K at 11 microns, which can only be attained in rare circumstances at the I kin fire detection spatial resolution. Thus, unlike other polar orbiting satellite sensors with similar thermal and spatial resolutions, but much lower saturation temperatures (e.g. AVHRR and ATSR), MODIS can distinguish between low intensity ground surface fires and high intensity crown forest fires. Smoke column concentration over land is for the first time being derived from the MOMS solar channels, extending from 0.41 microns to 2.1 microns. The smoke product has been provisionally validated both globally and regionally over southern Africa and central and south America. Burn scars are observed from MODIS even in the presence of smoke, using the 1.2 to 2.1 micron channels. MODIS burned area information is used to estimate pyrogenic emissions. A wide range of these fire and related products and validation are demonstrated for the wild fires that occurred in northwestern United States in the summer of 2000. The MODIS rapid response system and direct broadcast capability is being developed to enable users to obtain and generate data in near real time. It is expected that health and land management organizations will use these systems for monitoring the occurrence of fires and the dispersion of smoke within two to six hours after data acquisition.

  9. Satellite remote sensing of landscape freeze/thaw state dynamics for complex Topography and Fire Disturbance Areas Using multi-sensor radar and SRTM digital elevation models

    Science.gov (United States)

    Podest, Erika; McDonald, Kyle; Kimball, John; Randerson, James

    2003-01-01

    We characterize differences in radar-derived freeze/thaw state, examining transitions over complex terrain and landscape disturbance regimes. In areas of complex terrain, we explore freezekhaw dynamics related to elevation, slope aspect and varying landcover. In the burned regions, we explore the timing of seasonal freeze/thaw transition as related to the recovering landscape, relative to that of a nearby control site. We apply in situ biophysical measurements, including flux tower measurements to validate and interpret the remotely sensed parameters. A multi-scale analysis is performed relating high-resolution SAR backscatter and moderate resolution scatterometer measurements to assess trade-offs in spatial and temporal resolution in the remotely sensed fields.

  10. Retrieval of land surface temperature (LST) from landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs

    Science.gov (United States)

    Chatterjee, R. S.; Singh, Narendra; Thapa, Shailaja; Sharma, Dravneeta; Kumar, Dheeraj

    2017-06-01

    The present study proposes land surface temperature (LST) retrieval from satellite-based thermal IR data by single channel radiative transfer algorithm using atmospheric correction parameters derived from satellite-based and in-situ data and land surface emissivity (LSE) derived by a hybrid LSE model. For example, atmospheric transmittance (τ) was derived from Terra MODIS spectral radiance in atmospheric window and absorption bands, whereas the atmospheric path radiance and sky radiance were estimated using satellite- and ground-based in-situ solar radiation, geographic location and observation conditions. The hybrid LSE model which is coupled with ground-based emissivity measurements is more versatile than the previous LSE models and yields improved emissivity values by knowledge-based approach. It uses NDVI-based and NDVI Threshold method (NDVITHM) based algorithms and field-measured emissivity values. The model is applicable for dense vegetation cover, mixed vegetation cover, bare earth including coal mining related land surface classes. The study was conducted in a coalfield of India badly affected by coal fire for decades. In a coal fire affected coalfield, LST would provide precise temperature difference between thermally anomalous coal fire pixels and background pixels to facilitate coal fire detection and monitoring. The derived LST products of the present study were compared with radiant temperature images across some of the prominent coal fire locations in the study area by graphical means and by some standard mathematical dispersion coefficients such as coefficient of variation, coefficient of quartile deviation, coefficient of quartile deviation for 3rd quartile vs. maximum temperature, coefficient of mean deviation (about median) indicating significant increase in the temperature difference among the pixels. The average temperature slope between adjacent pixels, which increases the potential of coal fire pixel detection from background pixels, is

  11. Characterization of wildfire NOx emissions using MODIS fire radiative power and OMI tropospheric NO2 columns

    Directory of Open Access Journals (Sweden)

    R. C. Cohen

    2011-06-01

    Full Text Available We use observations of fire radiative power (FRP from the Moderate Resolution Imaging Spectroradiometer~(MODIS and tropospheric NO2 column measurements from the Ozone Monitoring Instrument (OMI to derive NO2 wildfire emission coefficients (g MJ−1 for three land types over California and Nevada. Retrieved emission coefficients were 0.279±0.077, 0.342±0.053, and 0.696±0.088 g MJ−1 NO2 for forest, grass and shrub fuels, respectively. These emission coefficients reproduce ratios of emissions with fuel type reported previously using independent methods. However, the magnitude of these coefficients is lower than prior estimates. While it is possible that a negative bias in the OMI NO2 retrieval over regions of active fire emissions is partly responsible, comparison with several other studies of fire emissions using satellite platforms indicates that current emission factors may overestimate the contributions of flaming combustion and underestimate the contributions of smoldering combustion to total fire emissions. Our results indicate that satellite data can provide an extensive characterization of the variability in fire NOx emissions; 67 % of the variability in emissions in this region can be accounted for using an FRP-based parameterization.

  12. Adsorber fires

    International Nuclear Information System (INIS)

    Holmes, W.

    1987-01-01

    The following conclusions are offered with respect to activated charcoal filter systems in nuclear power plants: (1) The use of activated charcoal in nuclear facilities presents a potential for deep-seated fires. (2) The defense-in-depth approach to nuclear fire safety requires that if an ignition should occur, fires must be detected quickly and subsequently suppressed. (3) Deep-seated fires in charcoal beds are difficult to extinguish. (4) Automatic water sprays can be used to extinguish fires rapidly and reliably when properly introduced into the burning medium. The second part of the conclusions offered are more like challenges: (1) The problem associated with inadvertent actuations of fire protection systems is not a major one, and it can be reduced further by proper design review, installation, testing, and maintenance. Eliminating automatic fire extinguishing systems for the protection of charcoal adsorbers is not justified. (2) Removal of automatic fire protection systems due to fear of inadvertent fire protection system operation is a case of treating the effect rather than the cause. On the other hand, properly maintaining automatic fire protection systems will preserve the risk of fire loss at acceptable levels while at the same time reducing the risk of damage presented by inadvertent operation of fire protection systems

  13. Detailed Maps Depicting the Shallow-Water Benthic Habitats of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Detailed, shallow-water coral reef ecosystem maps were generated by rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations...

  14. Detailed Maps Depicting the Shallow-Water Benthic Habitats of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Detailed, shallow-water coral reef ecosystem maps were generated by rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations...

  15. US Fire Administration Fire Statistics

    Data.gov (United States)

    Department of Homeland Security — The U.S. Fire Administration collects data from a variety of sources to provide information and analyses on the status and scope of the fire problem in the United...

  16. MODIS data used to study 2002 fires in Kalimantan, Indonesia

    Science.gov (United States)

    Fuller, Douglas O.

    Smoke and haze blanketed western Indonesia during August and September 2002, signaling the arrival of another El Niño event in Southeast Asia. Although not as severe as the 1997-1998 El Niño event, the 2002 El Niño produced drought conditions in western Indonesia that favored extensive biomass burning in lowland areas of Borneo, Sumatra, and Sulawesi, three of the largest islands that form part of the vast Indonesian archipelago. Data derived from the Moderate Resolution Imaging Spectrometer (MODIS) on board the NASA Terra satellite showed that most of the burning during 2002 occurred in central and western Kalimantan (Indonesian Borneo), where forests are being cleared to make way for industrial oil palm and pulp plantations.Comparison of fire data from several different satellite sensors also reveals that fires detected in Kalimantan during 1997 appeared more numerous (Figure 1) and burned over a longer period (Figure 2) than fires that burned in late 2002 (see discussion below). This result is consistent with recent El Niño observations that characterize the current event as moderate relative to the 1997-1998 event (see http://www.cpc.ncep.noaa.gov/ products/analysis_monitoring/enso_advisory/).

  17. Large-scale pool fires

    Directory of Open Access Journals (Sweden)

    Steinhaus Thomas

    2007-01-01

    Full Text Available A review of research into the burning behavior of large pool fires and fuel spill fires is presented. The features which distinguish such fires from smaller pool fires are mainly associated with the fire dynamics at low source Froude numbers and the radiative interaction with the fire source. In hydrocarbon fires, higher soot levels at increased diameters result in radiation blockage effects around the perimeter of large fire plumes; this yields lower emissive powers and a drastic reduction in the radiative loss fraction; whilst there are simplifying factors with these phenomena, arising from the fact that soot yield can saturate, there are other complications deriving from the intermittency of the behavior, with luminous regions of efficient combustion appearing randomly in the outer surface of the fire according the turbulent fluctuations in the fire plume. Knowledge of the fluid flow instabilities, which lead to the formation of large eddies, is also key to understanding the behavior of large-scale fires. Here modeling tools can be effectively exploited in order to investigate the fluid flow phenomena, including RANS- and LES-based computational fluid dynamics codes. The latter are well-suited to representation of the turbulent motions, but a number of challenges remain with their practical application. Massively-parallel computational resources are likely to be necessary in order to be able to adequately address the complex coupled phenomena to the level of detail that is necessary.

  18. Forest fires

    International Nuclear Information System (INIS)

    Fuller, M.

    1991-01-01

    This book examines the many complex and sensitive issues relating to wildland fires. Beginning with an overview of the fires of 1980s, the book discusses the implications of continued drought and considers the behavior of wildland fires, from ignition and spread to spotting and firestorms. Topics include the effects of weather, forest fuels, fire ecology, and the effects of fire on plants and animals. In addition, the book examines firefighting methods and equipment, including new minimum impact techniques and compressed air foam; prescribed burning; and steps that can be taken to protect individuals and human structures. A history of forest fire policies in the U.S. and a discussion of solutions to fire problems around the world completes the coverage. With one percent of the earth's surface burning every year in the last decade, this is a penetrating book on a subject of undeniable importance

  19. Thematic mapping from satellite imagery

    CERN Document Server

    Denègre, J

    2013-01-01

    Thematic Mapping from Satellite Imagery: A Guidebook discusses methods in producing maps using satellite images. The book is comprised of five chapters; each chapter covers one stage of the process. Chapter 1 tackles the satellite remote sensing imaging and its cartographic significance. Chapter 2 discusses the production processes for extracting information from satellite data. The next chapter covers the methods for combining satellite-derived information with that obtained from conventional sources. Chapter 4 deals with design and semiology for cartographic representation, and Chapter 5 pre

  20. Forest fires in Pennsylvania.

    Science.gov (United States)

    Donald A. Haines; William A. Main; Eugene F. McNamara

    1978-01-01

    Describes factors that contribute to forest fires in Pennsylvania. Includes an analysis of basic statistics; distribution of fires during normal, drought, and wet years; fire cause, fire activity by day-of-week; multiple-fire day; and fire climatology.

  1. Results of combustion and emissions testing when co-firing blends of binder-enhanced densified refuse-derived fuel (b-dRDF) pellets and coal in a 440 MW{sub e} cyclone fired combustor. Volume 3: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Ohlsson, O.

    1994-07-01

    This report contains the data resulting from the co-firing of b-dRDF pellets and coal in a 440-MW{sub e} cyclone-fired combustor. These tests were conducted under a Collaborative Research and Development Agreement (CRADA). The CRADA partners included the U.S. Department of Energy (DOE), National Renewable Energy Laboratory (NREL), Argonne National Laboratory (ANL), Otter Tail Power Company, Green Isle Environmental, Inc., XL Recycling Corporation, and Marblehead Lime Company. The report is made up of three volumes. This volume contains other supporting information, along with quality assurance documentation and safety and test plans. With this multi-volume approach, readers can find information at the desired level of detail, depending on individual interest or need.

  2. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    Directory of Open Access Journals (Sweden)

    Lluís Brotons

    Full Text Available Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain. We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape

  3. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    Science.gov (United States)

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and

  4. How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes

    Science.gov (United States)

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and

  5. Evaluation of Modeling NO2 Concentrations Driven by Satellite-Derived and Bottom-Up Emission Inventories Using In-Situ Measurements Over China

    Science.gov (United States)

    Liu, Fei; van der A, Ronald J.; Eskes, Henk; Ding, Jieying; Mijling, Bas

    2018-01-01

    Chemical transport models together with emission inventories are widely used to simulate NO2 concentrations over China, but validation of the simulations with in situ measurements has been extremely limited. Here we use ground measurements obtained from the air quality monitoring network recently developed by the Ministry of Environmental Protection of China to validate modeling surface NO2 concentrations from the CHIMERE regional chemical transport model driven by the satellite-derived DECSO and the bottom-up MIX emission inventories. We applied a correction factor to the observations to account for the interferences of other oxidized nitrogen compounds (NOz), based on the modeled ratio of NO2 to NOz. The model accurately reproduces the spatial variability in NO2 from in situ measurements, with a spatial correlation coefficient of over 0.7 for simulations based on both inventories. A negative and positive bias is found for the simulation with the DECSO (slopeD0.74 and 0.64 for the daily mean and daytime only) and the MIX (slopeD1.3 and 1.1) inventories, respectively, suggesting an underestimation and overestimation of NOx emissions from corresponding inventories. The bias between observed and modeled concentrations is reduced, with the slope dropping from 1.3 to 1.0 when the spatial distribution of NOx emissions in the DECSO inventory is applied as the spatial proxy for the MIX inventory, which suggests an improvement of the distribution of emissions between urban and suburban or rural areas in the DECSO inventory compared to that used in the bottom-up inventory. A rough estimate indicates that the observed concentrations, from sites predominantly placed in the populated urban areas, may be 10-40% higher than the corresponding model grid cell mean. This reduces the estimate of the negative bias of the DECSO-based simulation to the range of -30 to 0% on average and more firmly establishes that the MIX inventory is biased high over major cities. The performance of

  6. Evaluation of modeling NO2 concentrations driven by satellite-derived and bottom-up emission inventories using in situ measurements over China

    Science.gov (United States)

    Liu, Fei; van der A, Ronald J.; Eskes, Henk; Ding, Jieying; Mijling, Bas

    2018-03-01

    Chemical transport models together with emission inventories are widely used to simulate NO2 concentrations over China, but validation of the simulations with in situ measurements has been extremely limited. Here we use ground measurements obtained from the air quality monitoring network recently developed by the Ministry of Environmental Protection of China to validate modeling surface NO2 concentrations from the CHIMERE regional chemical transport model driven by the satellite-derived DECSO and the bottom-up MIX emission inventories. We applied a correction factor to the observations to account for the interferences of other oxidized nitrogen compounds (NOz), based on the modeled ratio of NO2 to NOz. The model accurately reproduces the spatial variability in NO2 from in situ measurements, with a spatial correlation coefficient of over 0.7 for simulations based on both inventories. A negative and positive bias is found for the simulation with the DECSO (slope = 0.74 and 0.64 for the daily mean and daytime only) and the MIX (slope = 1.3 and 1.1) inventories, respectively, suggesting an underestimation and overestimation of NOx emissions from corresponding inventories. The bias between observed and modeled concentrations is reduced, with the slope dropping from 1.3 to 1.0 when the spatial distribution of NOx emissions in the DECSO inventory is applied as the spatial proxy for the MIX inventory, which suggests an improvement of the distribution of emissions between urban and suburban or rural areas in the DECSO inventory compared to that used in the bottom-up inventory. A rough estimate indicates that the observed concentrations, from sites predominantly placed in the populated urban areas, may be 10-40 % higher than the corresponding model grid cell mean. This reduces the estimate of the negative bias of the DECSO-based simulation to the range of -30 to 0 % on average and more firmly establishes that the MIX inventory is biased high over major cities. The

  7. Some European capabilities in satellite cinema exhibition

    Science.gov (United States)

    Bock, Wolfgang

    1990-08-01

    The likely performance envelope and architecture for satellite cinema systems are derived from simple practical assumptions. A case is made for possible transatlantic cooperation towards establishing a satellite cinema standard.

  8. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven fire...

  9. Wildland fire limits subsequent fire occurrence

    Science.gov (United States)

    Sean A. Parks; Carol Miller; Lisa M. Holsinger; Scott Baggett; Benjamin J. Bird

    2016-01-01

    Several aspects of wildland fire are moderated by site- and landscape-level vegetation changes caused by previous fire, thereby creating a dynamic where one fire exerts a regulatory control on subsequent fire. For example, wildland fire has been shown to regulate the size and severity of subsequent fire. However, wildland fire has the potential to influence...

  10. Climate data system supports FIRE

    Science.gov (United States)

    Olsen, Lola M.; Iascone, Dominick; Reph, Mary G.

    1990-01-01

    The NASA Climate Data System (NCDS) at Goddard Space Flight Center is serving as the FIRE Central Archive, providing a centralized data holding and data cataloging service for the FIRE project. NCDS members are carrying out their responsibilities by holding all reduced observations and data analysis products submitted by individual principal investigators in the agreed upon format, by holding all satellite data sets required for FIRE, by providing copies of any of these data sets to FIRE investigators, and by producing and updating a catalog with information about the FIRE holdings. FIRE researchers were requested to provide their reduced data sets in the Standard Data Format (SDF) to the FIRE Central Archive. This standard format is proving to be of value. An improved SDF document is now available. The document provides an example from an actual FIRE SDF data set and clearly states the guidelines for formatting data in SDF. NCDS has received SDF tapes from a number of investigators. These tapes were analyzed and comments provided to the producers. One product which is now available is William J. Syrett's sodar data product from the Stratocumulus Intensive Field Observation. Sample plots from all SDF tapes submitted to the archive will be available to FSET members. Related cloud products are also available through NCDS. Entries describing the FIRE data sets are being provided for the NCDS on-line catalog. Detailed information for the Extended Time Observations is available in the general FIRE catalog entry. Separate catalog entries are being written for the Cirrus Intensive Field Observation (IFO) and for the Marine Stratocumulus IFO. Short descriptions of each FIRE data set will be installed into the NCDS Summary Catalog.

  11. Estimating Landscape Fire Particulate Matter (PM) Emissions over Southern Africa using MSG-SEVIRI Fire Radiative Power (FRP) and MODIS Aerosol Optical Thickness Observations

    Science.gov (United States)

    Mota, Bernardo; Wooster, Martin J.

    2016-04-01

    The approach to estimating landscape fire fuel consumption based on the remotely sensed fire radiative power (FRP) thermal energy release rate, as opposed to burned area, is now relatively widely used in studies of fire emissions, including operationally within the Copernicus Atmosphere Monitoring Service (CAMS). Nevertheless, there are still limitations to the approach, including uncertainties associated with using only the few daily overpasses typically provided by polar orbiting satellite systems, the conversion between FRP and smoke emissions, and the increased likelihood that the more frequent data from geostationary systems fails to detect the (probably highly numerous) smaller (i.e. low FRP) component of a regions fire regime. In this study, we address these limitations to directly estimate fire emissions of Particular Matter (PM; or smoke aerosols) by presenting an approach combining the "bottom-up" FRP observations available every 15 minutes across Africa from the Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) Fire Radiative Product (FRP) processed at the EUMETSAT LSA SAF, and the "top-down" aerosol optical thickness (AOT) measures of the fire plumes themselves as measured by the Moderate-resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Terra (MOD04_L2) and Aqua (MYD04_L2) satellites. We determine PM emission coefficients that relate directly to FRP measures by combining these two datasets, and the use of the almost continuous geostationary FRP observations allows us to do this without recourse to (uncertain) data on wind speed at the (unknown) height of the matching plume. We also develop compensation factors to address the detection limitations of small/low intensity (low FRP) fires, and remove the need to estimate fuel consumption by going directly from FRP to PM emissions. We derive the smoke PM emissions coefficients per land cover class by comparing the total fire radiative energy (FRE) released from individual fires

  12. Tree mortality based fire severity classification for forest inventories: A Pacific Northwest national forests example

    Science.gov (United States)

    Thomas R. Whittier; Andrew N. Gray

    2016-01-01

    Determining how the frequency, severity, and extent of forest fires are changing in response to changes in management and climate is a key concern in many regions where fire is an important natural disturbance. In the USA the only national-scale fire severity classification uses satellite image changedetection to produce maps for large (>400 ha) fires, and is...

  13. Saturn satellites

    International Nuclear Information System (INIS)

    Ruskol, E.L.

    1981-01-01

    The characteristics of the Saturn satellites are discussed. The satellites close to Saturn - Janus, Mimas, Enceladus, Tethys, Dione and Rhea - rotate along the circular orbits. High reflectivity is attributed to them, and the density of the satellites is 1 g/cm 3 . Titan is one of the biggest Saturn satellites. Titan has atmosphere many times more powerful than that of Mars. The Titan atmosphere is a peculiar medium with a unique methane and hydrogen distribution in the whole Solar system. The external satellites - Hyperion, Japetus and Phoebe - are poorly investigated. Neither satellite substance density, nor their composition are known. The experimental data on the Saturn rings obtained on the ''Pioneer-11'' and ''Voyager-1'' satellites are presented [ru

  14. Forecasting distribution of numbers of large fires

    Science.gov (United States)

    Eidenshink, Jeffery C.; Preisler, Haiganoush K.; Howard, Stephen; Burgan, Robert E.

    2014-01-01

    Systems to estimate forest fire potential commonly utilize one or more indexes that relate to expected fire behavior; however they indicate neither the chance that a large fire will occur, nor the expected number of large fires. That is, they do not quantify the probabilistic nature of fire danger. In this work we use large fire occurrence information from the Monitoring Trends in Burn Severity project, and satellite and surface observations of fuel conditions in the form of the Fire Potential Index, to estimate two aspects of fire danger: 1) the probability that a 1 acre ignition will result in a 100+ acre fire, and 2) the probabilities of having at least 1, 2, 3, or 4 large fires within a Predictive Services Area in the forthcoming week. These statistical processes are the main thrust of the paper and are used to produce two daily national forecasts that are available from the U.S. Geological Survey, Earth Resources Observation and Science Center and via the Wildland Fire Assessment System. A validation study of our forecasts for the 2013 fire season demonstrated good agreement between observed and forecasted values.

  15. Implications of emission inventory choice for modeling fire-related pollution in the U.S.

    Science.gov (United States)

    Koplitz, S. N.; Nolte, C. G.; Pouliot, G.

    2017-12-01

    Wildland fires are a major source of fine particulate matter (PM2.5), one of the most harmful ambient pollutants for human health globally. Within the U.S., wildland fires can account for more than 30% of total annual PM2.5 emissions. In order to represent the influence of fire emissions on atmospheric composition, regional and global chemical transport models (CTMs) rely on fire emission inventories developed from estimates of burned area (i.e. fire size and location). Burned area can be estimated using a range of top-down and bottom-up approaches, including satellite-derived remote sensing and on-the-ground incident reports. While burned area estimates agree with each other reasonably well in the western U.S. (within 20-30% for most years during 2002-2014), estimates for the southern U.S. vary by more than a factor of 3. Differences in burned area estimation methods lead to significant variability in the spatial and temporal allocation of emissions across fire emission inventory platforms. In this work, we implement fire emission estimates for 2011 from three different products - the USEPA National Emission Inventory (NEI), the Fire INventory of NCAR (FINN), and the Global Fire Emission Database (GFED4s) - into the Community Multiscale Air Quality (CMAQ) model to quantify and characterize differences in simulated fire-related PM2.5 and ozone concentrations across the contiguous U.S. due solely to the emission inventory used. Preliminary results indicate that the estimated contribution to national annual average PM2.5 from wildland fire in 2011 is highest using GFED4s emissions (1.0 µg m-3) followed by NEI (0.7 µg m-3) and FINN (0.3 µg m-3), with comparisons varying significantly by region and season. Understanding the sensitivity of modeling fire-related PM2.5 and ozone in the U.S. to fire emission inventory choice will inform future efforts to assess the implications of present and future fire activity for air quality and human health at national and global

  16. Effect of fuel type and deposition surface temperature on the growth and structure of ash deposit collected during co-firing of coal with sewage-sludge, saw-dust and refuse derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kupka, Tomasz; Zajac, Krzysztof; Weber, Roman [Clausthal Univ. of Technology, Clausthal-Zellerfeld (Germany). Inst. of Energy Process Engineering and Fuel Technology

    2008-07-01

    Blends of a South African bituminous ''Middleburg'' coal and three alternative fuels (a municipal sewage-sludge, a saw-dust and a refuse derived fuel) have been fired in the slagging reactor to examine the effect of the added fuel on slagging propensity of the mixtures. Two kinds of deposition probes have been used, un-cooled ceramic probes and air-cooled steal probes. Distinct differences in physical and chemical structures of the deposits collected using the un-cooled ceramic probes and air-cooled metal probes have been observed. Glassy, easily molten deposits collected on un-cooled ceramic deposition probes were characteristic for co-firing of municipal sewage-sludge with coal. Porous, sintered (not molten) but easily removable deposits of the same fuel blend have been collected on the air-cooled metal deposition probes. Loose, easy removable deposits have been sampled on air-cooled metal deposition probe during co-firing of coal/saw-dust blends. The mass of the deposit sampled at lower surface temperatures (550-700 C) was always larger than the mass sampled at higher temperatures (1100-1300 C) since the higher temperature ash agglomerated and sintered much faster than the low temperature deposit. (orig.)

  17. Application of the Coastal and Marine Ecological Classification Standard (CMECS) Water Column Component (WC) to data derived by the Naval Research Lab (NRL) Automated Processing System (APS) modeling of Moderate Resolution Imaging Spectroradiometer (MODIS) Imagery from the Aqua Earth Orbiting Satellite (EOS) PM in the Northern Gulf of Mexico from 2005-01 to 2009-12 (NODC Accession 0094007)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite-derived data for sea surface temperature, salinity, chlorophyll; euphotic depth; and modeled bottom to surface temperature differences were evaluated to...

  18. Landscape fragmentation, severe drought, and the new Amazon forest fire regime.

    Science.gov (United States)

    Alencar, Ane A; Brando, Paulo M; Asner, Gregory P; Putz, Francis E

    2015-09-01

    Changes in weather and land use are transforming the spatial and temporal characteristics of fire regimes in Amazonia, with important effects on the functioning of dense (i.e., closed-canopy), open-canopy, and transitional forests across the Basin. To quantify, document, and describe the characteristics and recent changes in forest fire regimes, we sampled 6 million ha of these three representative forests of the eastern and southern edges of the Amazon using 24 years (1983-2007) of satellite-derived annual forest fire scar maps and 16 years of monthly hot pixel information (1992-2007). Our results reveal that changes in forest fire regime properties differentially affected these three forest types in terms of area burned and fire scar size, frequency, and seasonality. During the study period, forest fires burned 15% (0.3 million ha), 44% (1 million ha), and 46% (0.6 million ha) of dense, open, and transitional forests, respectively. Total forest area burned and fire scar size tended to increase over time (even in years of average rainfall in open canopy and transitional forests). In dense forests, most of the temporal variability in fire regime properties was linked to El Nino Southern Oscillation (ENSO)-related droughts. Compared with dense forests, transitional and open forests experienced fires twice as frequently, with at least 20% of these forests' areas burning two or more times during the 24-year study period. Open and transitional forests also experienced higher deforestation rates than dense forests. During drier years, the end of the dry season was delayed by about a month, which resulted in larger burn scars and increases in overall area burned later in the season. These observations suggest that climate-mediated forest flammability is enhanced by landscape fragmentation caused by deforestation, as observed for open and transitional forests in the Eastern portion of the Amazon Basin.

  19. Global fire emissions estimates during 1997–2016

    Directory of Open Access Journals (Sweden)

    G. R. van der Werf

    2017-09-01

    grasslands. For trace gas and aerosol emissions, differences between GFED4s and GFED3 were often larger due to the use of revised emission factors. If small fire burned area was excluded (GFED4 without the s for small fires, average emissions were 1.5 Pg C yr−1. The addition of small fires had the largest impact on emissions in temperate North America, Central America, Europe, and temperate Asia. This small fire layer carries substantial uncertainties; improving these estimates will require use of new burned area products derived from high-resolution satellite imagery. Our revised dataset provides an internally consistent set of burned area and emissions that may contribute to a better understanding of multi-decadal changes in fire dynamics and their impact on the Earth system. GFED data are available from http://www.globalfiredata.org.

  20. Mega fire emissions in Siberia: potential supply of bioavailable iron from forests to the ocean

    Directory of Open Access Journals (Sweden)

    A. Ito

    2011-06-01

    Full Text Available Significant amounts of carbon and nutrients are released to the atmosphere due to large fires in forests. Characterization of the spatial distribution and temporal variation of the intense fire emissions is crucial for assessing the atmospheric loadings of trace gases and aerosols. This paper discusses issues of the representation of forest fires in the estimation of emissions and the application to an atmospheric chemistry transport model (CTM. The potential contribution of forest fires to the deposition of bioavailable iron (Fe into the ocean is highlighted, with a focus on mega fires in eastern Siberia.

    Satellite products of burned area, active fire, and land cover are used to estimate biomass burning emissions in conjunction with a biogeochemical model. Satellite-derived plume height from MISR is used for the injection height of boreal forest fire emissions. This methodology is applied to quantify fire emission rates in each three-dimensional grid location in the high latitude Northern Hemisphere (>30° N latitude over a 5-yr period from 2001 to 2005. There is large interannual variation in forest burned area during 2001–2005 (13–49 × 103 km2 yr−1 which results in a corresponding variation in the annual emissions of carbon monoxide (CO (14–81 Tg CO y−1. Satellite observations of CO column from MOPITT are used to evaluate the model performance in simulating the spatial distribution and temporal variation of the fire emissions. The model results for CO enhancements due to eastern Siberian fires are in good agreement with MOPITT observations. These validation results suggest that the model using emission rates estimated in this work is able to describe the interannual changes in CO due to intense forest fires.

    Bioavailable iron is derived from atmospheric processing of relatively insoluble iron from desert sources by anthropogenic pollutants (mainly sulfuric acid formed

  1. Tree survey and allometric models for tiger bush in northern Senegal and comparison with tree parameters derived from high resolution satellite data

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander; Goettsche, Frank-M.; Diop, Doudou

    2011-01-01

    A tree survey and an analysis of high resolution satellite data were performed to characterise the woody vegetation within a 10 x 10 km(2) area around a site located close to the town of Dahra in the semiarid northern part of Senegal. The surveyed parameters were tree species, height, tree crown...

  2. Estimation of Forest Fire-fighting Budgets Using Climate Indexes

    NARCIS (Netherlands)

    Xu, Z.; Kooten, van G.C.

    2012-01-01

    Given the complexity and relative short length of current predicting system for fire behavior, it is inappropriate to be referred for planning fire-fighting budgets of BC government due to the severe uncertainty of fire behavior across fire seasons. Therefore, a simple weather derived index for

  3. Holocene fire dynamics in Fennoscandia

    Science.gov (United States)

    Clear, Jennifer; Seppa, Heikki; Kuosmanen, Niina; Molinari, Chiara; Lehsten, Veiko; Allen, Katherine; Bradshaw, Richard

    2015-04-01

    Prescribed burning is advocated in Fennoscandia to promote regeneration and to encourage biodiversity. This method of forest management is based on the perception that fire was much more frequent in the recent past and over a century of active fire suppression has created a boreal forest ecosystem almost free of natural fire. The absence of fire is thought to have contributed to the widespread dominance of Picea abies (Norway spruce) with the successive spruce dominated forest further reducing fire ignition potential. However, humans have altered the natural fire dynamics of Fennoscandia since the early- to mid-Holocene and disentangling the anthropogenic driven fire dynamics from the natural fire dynamics is challenging. Through palaeoecology and sedimentary charcoal deposits we are able to explore the Holocene spatial and temporal variability and changing drivers of fire and vegetation dynamics in Fennoscandia. At the local-scale, two forest hollow environments (history are compared to identify unique and mutual changes in disturbance history. Pollen derived quantitative reconstruction of vegetation at both the local- and regional-scale identifies local-scale disturbance dynamics and large-scale ecosystem response. Spatio-temporal heterogeneity and variability in biomass burning is explored throughout Fennoscandia and Denmark to identify the changing drives of fire dynamics throughout the Holocene. Palaeo-vegetation reconstructions are compared to process-based, climate driven dynamic vegetation model output to test the significance of fire frequency as a driver of vegetation composition and dynamics. Early-Holocene fire regimes in Fennoscandia are driven by natural climate variations and fuel availability. The establishment and spread of Norway spruce is driven by an increase in continentality of climate, but local natural and anthropogenic ecosystem disturbance may have aided this spread. The expansion of spruce led to a step-wise reduction in regional biomass

  4. On fire

    DEFF Research Database (Denmark)

    Hansen, Helle Rabøl

    The title of this paper: “On fire”, refers to two (maybe three) aspects: firstly as a metaphor of having engagement in a community of practice according to Lave & Wenger (1991), and secondly it refers to the concrete element “fire” in the work of the fire fighters – and thirdly fire as a signifier...

  5. Fire Power

    Science.gov (United States)

    Denker, Deb; West, Lee

    2009-01-01

    For education administrators, campus fires are not only a distressing loss, but also a stark reminder that a campus faces risks that require special vigilance. In many ways, campuses resemble small communities, with areas for living, working and relaxing. A residence hall fire may raise the specter of careless youth, often with the complication of…

  6. 46 CFR 28.315 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... After September 15, 1991, and That Operate With More Than 16 Individuals on Board § 28.315 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel 36 feet (11.8 meters) or more in length must...

  7. Forest-fire models

    Science.gov (United States)

    Haiganoush Preisler; Alan Ager

    2013-01-01

    For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...

  8. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  9. Integrated Active Fire Retrievals and Biomass Burning Emissions Using Complementary Near-Coincident Ground, Airborne and Spaceborne Sensor Data

    Science.gov (United States)

    Schroeder, Wilfrid; Ellicott, Evan; Ichoku, Charles; Ellison, Luke; Dickinson, Matthew B.; Ottmar, Roger D.; Clements, Craig; Hall, Dianne; Ambrosia, Vincent; Kremens, Robert

    2013-01-01

    Ground, airborne and spaceborne data were collected for a 450 ha prescribed fire implemented on 18 October 2011 at the Henry W. Coe State Park in California. The integration of various data elements allowed near coincident active fire retrievals to be estimated. The Autonomous Modular Sensor-Wildfire (AMS) airborne multispectral imaging system was used as a bridge between ground and spaceborne data sets providing high quality reference information to support satellite fire retrieval error analyses and fire emissions estimates. We found excellent agreement between peak fire radiant heat flux data (less than 1% error) derived from near-coincident ground radiometers and AMS. Both MODIS and GOES imager active fire products were negatively influenced by the presence of thick smoke, which was misclassified as cloud by their algorithms, leading to the omission of fire pixels beneath the smoke, and resulting in the underestimation of their retrieved fire radiative power (FRP) values for the burn plot, compared to the reference airborne data. Agreement between airborne and spaceborne FRP data improved significantly after correction for omission errors and atmospheric attenuation, resulting in as low as 5 difference between AquaMODIS and AMS. Use of in situ fuel and fire energy estimates in combination with a collection of AMS, MODIS, and GOES FRP retrievals provided a fuel consumption factor of 0.261 kg per MJ, total energy release of 14.5 x 10(exp 6) MJ, and total fuel consumption of 3.8 x 10(exp 6) kg. Fire emissions were calculated using two separate techniques, resulting in as low as 15 difference for various species

  10. Hurricane Satellite (HURSAT) from International Satellite Cloud Climatology Project (ISCCP) B1, Version 6

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from derived International Satellite Cloud Climatology Project (ISCCP) B1 observations of tropical cyclones worldwide. The B1 data...

  11. Pipeline oil fire detection with MODIS active fire products

    Science.gov (United States)

    Ogungbuyi, M. G.; Martinez, P.; Eckardt, F. D.

    2017-12-01

    We investigate 85 129 MODIS satellite active fire events from 2007 to 2015 in the Niger Delta of Nigeria. The region is the oil base for Nigerian economy and the hub of oil exploration where oil facilities (i.e. flowlines, flow stations, trunklines, oil wells and oil fields) are domiciled, and from where crude oil and refined products are transported to different Nigerian locations through a network of pipeline systems. Pipeline and other oil facilities are consistently susceptible to oil leaks due to operational or maintenance error, and by acts of deliberate sabotage of the pipeline equipment which often result in explosions and fire outbreaks. We used ground oil spill reports obtained from the National Oil Spill Detection and Response Agency (NOSDRA) database (see www.oilspillmonitor.ng) to validate MODIS satellite data. NOSDRA database shows an estimate of 10 000 spill events from 2007 - 2015. The spill events were filtered to include largest spills by volume and events occurring only in the Niger Delta (i.e. 386 spills). By projecting both MODIS fire and spill as `input vector' layers with `Points' geometry, and the Nigerian pipeline networks as `from vector' layers with `LineString' geometry in a geographical information system, we extracted the nearest MODIS events (i.e. 2192) closed to the pipelines by 1000m distance in spatial vector analysis. The extraction process that defined the nearest distance to the pipelines is based on the global practices of the Right of Way (ROW) in pipeline management that earmarked 30m strip of land to the pipeline. The KML files of the extracted fires in a Google map validated their source origin to be from oil facilities. Land cover mapping confirmed fire anomalies. The aim of the study is to propose a near-real-time monitoring of spill events along pipeline routes using 250 m spatial resolution of MODIS active fire detection sensor when such spills are accompanied by fire events in the study location.

  12. An enhanced approach for the use of satellite-derived leaf area index values in dry deposition modeling in the Athabasca oil sands region.

    Science.gov (United States)

    Davies, Mervyn; Cho, Sunny; Spink, David; Pauls, Ron; Desilets, Michael; Shen, Yan; Bajwa, Kanwardeep; Person, Reid

    2016-12-15

    In the Athabasca oil sands region (AOSR) of Northern Alberta, the dry deposition of sulphur and nitrogen compounds represents a major fraction of total (wet plus dry) deposition due to oil sands emissions. The leaf area index (LAI) is a critical parameter that affects the dry deposition of these gaseous and particulate compounds to the surrounding boreal forest canopy. For this study, LAI values based on Moderate Resolution Imaging Spectroradiometer satellite imagery were obtained and compared to ground-based measurements, and two limitations with the satellite data were identified. The satellite LAI data firstly represents one-sided LAI values that do not account for the enhanced LAI associated with needle leaf geometry, and secondly, underestimates LAI in winter-time northern latitude regions. An approach for adjusting satellite LAI values for different boreal forest cover types, as a function of time of year, was developed to produce more representative LAI values that can be used by air quality sulphur and nitrogen deposition models. The application of the approach increases the AOSR average LAI for January from 0.19 to 1.40, which represents an increase of 637%. Based on the application of the CALMET/CALPUFF model system, this increases the predicted regional average dry deposition of sulphur and nitrogen compounds for January by factors of 1.40 to 1.30, respectively. The corresponding AOSR average LAI for July increased from 2.8 to 4.0, which represents an increase of 43%. This increases the predicted regional average dry deposition of sulphur and nitrogen compounds for July by factors of 1.28 to 1.22, respectively. These findings reinforce the importance of the LAI metric for predicting the dry deposition of sulphur and nitrogen compounds. While satellite data can provide enhanced spatial and temporal resolution, adjustments are identified to overcome associated limitations. This work is considered to have application for other deposition model studies where

  13. Monitoring Fires from Space and Getting Data in to the hands of Users: An Example from NASA's Fire Information for Resource Management System (FIRMS)

    Science.gov (United States)

    Davies, D.; Wong, M.; Ilavajhala, S.; Molinario, G.; Justice, C. O.

    2012-12-01

    This paper discusses the broad uptake of MODIS near-real-time (NRT) active fire data for applications. Prior to the launch of MODIS most real-time satellite-derived fire information was obtained from NOAA AVHRR via direct broadcast (DB) systems. Whilst there were efforts to make direct broadcast stations affordable in developing countries, such as through the Local Applications of Satellite Remote Technologies (LARST), these systems were relatively few and far between and required expertise to manage and operate. One such system was in Etosha National Park (ENP) in Namibia. Prior to the installation of the AVHRR DB system in ENP, fires were reported by rangers and the quality, accuracy and timing of reports was variable. With the introduction of the DB station, early warning of fires improved and fire maps could be produced for park managers within 2-3 hours by staff trained to process data, interpret images and produce maps. Up keep and maintenance of such systems was relatively costly for parks with limited resources therefore when global fire data from MODIS became available uptake was widespread. NRT data from MODIS became availalbe through a collaboration between the MODIS Fire Team and the US Forest Service (USFS) Remote Sensing Applications Center to provide rapid access to imagery to help fight the Montana wildfires of 2001. This prompted the development of a Rapid Response System for fire data that eventually led to the operational use of MODIS data by the USFS for fire monitoring. Building on this success, the Fire Information for Resource Management System (FIRMS) project was funded by NASA Applications, and developed under the umbrella of the GOFC-GOLD Fire program, to further improve products and services for the global fire information community. FIRMS was developed as a web-based geospatial tool, offering a range of geospatial data services, including a fire email alert service which is widely used around the world. FIRMS was initially developed to

  14. Satellite Communications

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Satellite Communications. Arthur C Clarke wrote a seminal paper in 1945 in wireless world. Use three satellites in geo-synchronous orbit to enable intercontinental communications. System could be realised in '50 to 100 years'

  15. Modeling mechanisms of vegetation change due to fire in a semi-arid ecosystem

    Science.gov (United States)

    White, J.D.; Gutzwiller, K.J.; Barrow, W.C.; Randall, L.J.; Swint, P.

    2008-01-01

    Vegetation growth and community composition in semi-arid environments is determined by water availability and carbon assimilation mechanisms specific to different plant types. Disturbance also impacts vegetation productivity and composition dependent on area affected, intensity, and frequency factors. In this study, a new spatially explicit ecosystem model is presented for the purpose of simulating vegetation cover type changes associated with fire disturbance in the northern Chihuahuan Desert region. The model is called the Landscape and Fire Simulator (LAFS) and represents physiological activity of six functional plant types incorporating site climate, fire, and seed dispersal routines for individual grid cells. We applied this model for Big Bend National Park, Texas, by assessing the impact of wildfire on the trajectory of vegetation communities over time. The model was initialized and calibrated based on landcover maps derived from Landsat-5 Thematic Mapper data acquired in 1986 and 1999 coupled with plant biomass measurements collected in the field during 2000. Initial vegetation cover change analysis from satellite data showed shrub encroachment during this time period that was captured in the simulated results. A synthetic 50-year climate record was derived from historical meteorological data to assess system response based on initial landcover conditions. This simulation showed that shrublands increased to the detriment of grass and yucca-ocotillo vegetation cover types indicating an ecosystem-level trajectory for shrub encroachment. Our analysis of simulated fires also showed that fires significantly reduced site biomass components including leaf area, stem, and seed biomass in this semi-arid ecosystem. In contrast to other landscape simulation models, this new model incorporates detailed physiological responses of functional plant types that will allow us to simulated the impact of increased atmospheric CO2 occurring with climate change coupled with fire

  16. Design of a coil satellite centrifuge and its performance on counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives with polar organic-aqueous two-phase solvent systems.

    Science.gov (United States)

    Shinomiya, Kazufusa; Tokura, Koji; Kimura, Emiru; Takai, Midori; Harikai, Naoki; Yoshida, Kazunori; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2015-05-01

    A new high-speed counter-current chromatograph, named coil satellite centrifuge (CSC), was designed and fabricated in our laboratory. The CSC apparatus produces the satellite motion such that the coiled column simultaneously rotates around the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3). In order to achieve this triplicate rotary motion without twisting of the flow tube, the rotation of each axis was determined by the following formula: ω1=ω2+ω3. This relation enabled to lay out the flow tube without twisting by the simultaneous rotation of three axes. The flow tube was introduced from the bottom side of the apparatus into the sun axis of the first rotary frame reaching the upper side of the planet axis and connected to the column in the satellite axis. The performance of the apparatus was examined on separation of 4-methylumbelliferyl (MU) sugar derivatives as test samples with organic-aqueous two-phase solvent systems composed of ethyl acetate/1-butanol/water (3:2:5, v/v) for lower phase mobile and (1:4:5, v/v) for upper phase mobile. With lower phase mobile, five 4-MU sugar derivatives including β-D-cellobioside (Cel), β-D-glucopyranoside, α-D-mannopyranoside, β-D-fucopyranoside and α-L-fucopyranoside (α-L-Fuc) were separated with the combined rotation around each axis at counterclockwise (CCW) (ω1) - CCW (ω2) - CCW (ω3) by the flow tube distribution. With upper phase mobile, three 4-MU sugar derivatives including α-L-Fuc, β-D-galactopyranoside and Cel were separated with the combined rotation around each axis at clockwise (CW) (ω1) - CW (ω2) - CW (ω3) by the flow tube distribution. A series of experiments on peak resolution and stationary phase retention revealed that better partition efficiencies were obtained at the flow rate of 0.5 mL/min (column 1) and 0.8 mL/min (column 2) for lower phase mobile and 0.2 mL/min (column 1) and 0.4 mL/min (column 2) for upper phase

  17. Fire activity increasing as climate changes

    Science.gov (United States)

    Balcerak, Ernie; Showstack, Randy

    2013-01-01

    Analysis of images from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) satellites shows that more than 2.5 million hectares were burned in 2012 from January through August in the United States. The amount is less than a record 3.2 million hectares in 2011 but greater than the area burned in 12 of 15 years since satellite monitoring began, scientists reported at the AGU Fall Meeting. With satellites "we can detect fires as they're actively burning," said Louis Giglio of the University of Maryland, College Park, at a press conference on 4 December. "We can also map the cumulative area burned on the landscape after the fire's over." He noted that "2012 has been a particularly big fire year" in the United States.

  18. Fire safety

    International Nuclear Information System (INIS)

    Keski-Rahkonen, O.; Bjoerkman, J.; Hostikka, S.; Mangs, J.; Huhtanen, R.; Palmen, H.; Salminen, A.; Turtola, A.

    1998-01-01

    According to experience and probabilistic risk assessments, fires present a significant hazard in a nuclear power plant. Fires may be initial events for accidents or affect safety systems planned to prevent accidents and to mitigate their consequences. The project consists of theoretical work, experiments and simulations aiming to increase the fire safety at nuclear power plants. The project has four target areas: (1) to produce validated models for numerical simulation programmes, (2) to produce new information on the behavior of equipment in case of fire, (3) to study applicability of new active fire protecting systems in nuclear power plants, and (4) to obtain quantitative knowledge of ignitions induced by important electric devices in nuclear power plants. These topics have been solved mainly experimentally, but modelling at different level is used to interpret experimental data, and to allow easy generalisation and engineering use of the obtained data. Numerical fire simulation has concentrated in comparison of CFD modelling of room fires, and fire spreading on cables on experimental data. So far the success has been good to fair. A simple analytical and numerical model has been developed for fire effluents spreading beyond the room of origin in mechanically strongly ventilated compartments. For behaviour of equipment in fire several full scale and scaled down calorimetric experiments were carried out on electronic cabinets, as well as on horizontal and vertical cable trays. These were carried out to supply material for CFD numerical simulation code validation. Several analytical models were developed and validated against obtained experimental results to allow quick calculations for PSA estimates as well as inter- and extrapolations to slightly different objects. Response times of different commercial fire detectors were determined for different types of smoke, especially emanating from smoldering and flaming cables to facilitate selection of proper detector

  19. Mapping Canopy Damage from Understory Fires in Amazon Forests Using Annual Time Series of Landsat and MODIS Data

    Science.gov (United States)

    Morton, Douglas C.; DeFries, Ruth S.; Nagol, Jyoteshwar; Souza, Carlos M., Jr.; Kasischke, Eric S.; Hurtt, George C.; Dubayah, Ralph

    2011-01-01

    Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in separating burning from other types of forest damage in satellite data. We developed a new approach, the Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and spectral information from multi-year time series of satellite data. The BDR approach identifies understory fires in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was applied to time series of Landsat (1997-2004) and MODIS (2000-2005) data covering one Landsat scene (path/row 226/068) in southern Amazonia and the results were compared to field observations, image-derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was essential for detection of burn scars less than 50 ha, yet these small burns contributed only 12% of all burned forest detected during 1997-2002. MODIS data were suitable for mapping medium (50-500 ha) and large (greater than 500 ha) burn scars that accounted for the majority of all fire-damaged forest in this study. Therefore, moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon forest at a regional scale. In the study region, Landsat-based understory fire damages in 1999 (1508 square kilometers) were an order of magnitude higher than during the 1997-1998 El Nino event (124 square kilometers and 39 square kilometers, respectively), suggesting a different link between climate and understory fires than previously reported for other Amazon regions. The results in this study illustrate the potential to address critical questions concerning climate and fire risk in Amazon forests by

  20. Windscale fire

    International Nuclear Information System (INIS)

    Auxier, J.A.

    1986-01-01

    A graphite fire in the Windscale No. 1 reactor occurred during the period October 8-12, 1957. The Windscale reactors were located on a coastal plain in northwest England and were used to produce plutonium. A great wealth of information was gathered on the causes, handling, decontamination, and environmental effects of reactor accidents. Topics of discussion include: the cause of the fire; handling of the incident; radiation doses to the population; and radiation effects on the population

  1. On the Use of Global Flood Forecasts and Satellite-Derived Inundation Maps for Flood Monitoring in Data-Sparse Regions

    Directory of Open Access Journals (Sweden)

    Beatriz Revilla-Romero

    2015-11-01

    Full Text Available Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response decisions. Global-scale flood forecasting and satellite-based flood detection systems are currently operating, however their reliability for decision-making applications needs to be assessed. In this study, we performed comparative evaluations of several operational global flood forecasting and flood detection systems, using 10 major flood events recorded over 2012–2014. Specifically, we evaluated the spatial extent and temporal characteristics of flood detections from the Global Flood Detection System (GFDS and the Global Flood Awareness System (GloFAS. Furthermore, we compared the GFDS flood maps with those from NASA’s two Moderate Resolution Imaging Spectroradiometer (MODIS sensors. Results reveal that: (1 general agreement was found between the GFDS and MODIS flood detection systems, (2 large differences exist in the spatio-temporal characteristics of the GFDS detections and GloFAS forecasts, and (3 the quantitative validation of global flood disasters in data-sparse regions is highly challenging. Overall, satellite remote sensing provides useful near real-time flood information that can be useful for risk management. We highlight the known limitations of global flood detection and forecasting systems, and propose ways forward to improve the reliability of large-scale flood monitoring tools.

  2. Spatial estimation of air PM2.5 emissions using activity data, local emission factors and land cover derived from satellite imagery

    Science.gov (United States)

    Gibe, Hezron P.; Cayetano, Mylene G.

    2017-09-01

    Exposure to particulate matter (PM) is a serious environmental problem in many urban areas on Earth. In the Philippines, most existing studies and emission inventories have mainly focused on point and mobile sources, while research involving human exposures to particulate pollutants is rare. This paper presents a method for estimating the amount of fine particulate (PM2.5) emissions in a test study site in the city of Cabanatuan, Nueva Ecija, in the Philippines, by utilizing local emission factors, regionally procured data, and land cover/land use (activity data) interpreted from satellite imagery. Geographic information system (GIS) software was used to map the estimated emissions in the study area. The present results suggest that vehicular emissions from motorcycles and tricycles, as well as fuels used by households (charcoal) and burning of agricultural waste, largely contribute to PM2.5 emissions in Cabanatuan. Overall, the method used in this study can be applied in other small urbanizing cities, as long as on-site specific activity, emission factor, and satellite-imaged land cover data are available.

  3. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  4. The influence of burn severity on post-fire vegetation recovery and albedo change during early succession in North American boreal forests

    Science.gov (United States)

    Jin, Y.; Randerson, J. T.; Goetz, S. J.; Beck, P. S.; Loranty, M. M.; Goulden, M.

    2011-12-01

    Severity of burning can influence multiple aspects of forest composition, carbon cycling, and climate forcing. We quantified how burn severity affected vegetation recovery and albedo change during early succession in Canadian boreal regions by combining satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Canadian Large Fire Data Base (LFDB). We used the difference Normalized Burn Ratio (dNBR) and changes in spring albedo derived from MODIS 500m albedo product as measures of burn severity. We found that the most severe burns had the greatest reduction in summer EVI in first year after fire, indicating greater loss of vegetation cover immediately following fire. By 5-7 years after fire, summer EVI for all severity classes had recovered to within 90-110% of pre-fire levels. Burn severity had a positive effect on the increase of post-fire spring albedo during the first 7 years after fire, and a shift from low to moderate or moderate to severe fires led to amplification of the post-fire albedo increase by approximately 30%. Fire-induced increases in both spring and summer albedo became progressively larger with stand age from years 1-7, with the trend in spring albedo likely driven by continued losses of needles and branches from trees killed by the fire (and concurrent losses of black carbon coatings on remaining debris), and the summer trend associated with increases in leaf area of short-stature herbs and shrubs. Our results suggest that increases in burn severity and carbon losses observed in some areas of boreal forests (e.g., Turetsky et al., 2011) may be at least partly offset by increases in negative forcing associated with changes in surface albedo.

  5. An assessment of fire occurrence regime and performance of Canadian fire weather index in south central Siberian boreal region

    OpenAIRE

    Chu, T.; Guo, X.

    2014-01-01

    Wildfire is the dominant natural disturbance in Eurasian boreal region, which acts as a major driver of the global carbon cycle. An effectiveness of wildfire management requires suitable tools for fire prevention and fire risk assessment. This study aims to investigate fire occurrence patterns in relation to fire weather conditions in the remote south central Siberia region. The Canadian Fire Weather Index derived from large-scale meteorol...

  6. Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements

    Directory of Open Access Journals (Sweden)

    N. A. Kramarova

    2018-05-01

    Full Text Available The Limb Profiler (LP is a part of the Ozone Mapping and Profiler Suite launched on board of the Suomi NPP satellite in October 2011. The LP measures solar radiation scattered from the atmospheric limb in ultraviolet and visible spectral ranges between the surface and 80 km. These measurements of scattered solar radiances allow for the retrieval of ozone profiles from cloud tops up to 55 km. The LP started operational observations in April 2012. In this study we evaluate more than 5.5 years of ozone profile measurements from the OMPS LP processed with the new NASA GSFC version 2.5 retrieval algorithm. We provide a brief description of the key changes that had been implemented in this new algorithm, including a pointing correction, new cloud height detection, explicit aerosol correction and a reduction of the number of wavelengths used in the retrievals. The OMPS LP ozone retrievals have been compared with independent satellite profile measurements obtained from the Aura Microwave Limb Sounder (MLS, Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS and Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS. We document observed biases and seasonal differences and evaluate the stability of the version 2.5 ozone record over 5.5 years. Our analysis indicates that the mean differences between LP and correlative measurements are well within required ±10 % between 18 and 42 km. In the upper stratosphere and lower mesosphere (> 43 km LP tends to have a negative bias. We find larger biases in the lower stratosphere and upper troposphere, but LP ozone retrievals have significantly improved in version 2.5 compared to version 2 due to the implemented aerosol correction. In the northern high latitudes we observe larger biases between 20 and 32 km due to the remaining thermal sensitivity issue. Our analysis shows that LP ozone retrievals agree well with the correlative satellite observations in characterizing

  7. Satellite myths

    Science.gov (United States)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  8. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  9. Seasonality of fire weather strongly influences fire regimes in South Florida savanna-grassland landscapes.

    Directory of Open Access Journals (Sweden)

    William J Platt

    Full Text Available Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature. We used nonparametric cluster analyses of a 17-year (1993-2009 data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires over a 13-year period with fire records (1997-2009. Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with

  10. Seasonality of Fire Weather Strongly Influences Fire Regimes in South Florida Savanna-Grassland Landscapes

    Science.gov (United States)

    Platt, William J.; Orzell, Steve L.; Slocum, Matthew G.

    2015-01-01

    Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993–2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997–2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of

  11. Review of UCN 5,6 Fire PSA Model based on ANS Fire PRA Standard

    International Nuclear Information System (INIS)

    Yang, Joon Eon; Lee, Yoon Hwan

    2006-12-01

    Recently, under the de-regulation environment, nuclear industry has attempted various approaches to improve the economics of Nuclear Power Plants (NPP). This approach uses the fire risk and performance information to manage the resources effectively and efficiently that are used in the operation of NPP. In fire risk informed/performance-based decision/operation, fire PSA quality is one of the most important things. The nuclear industry and regulatory body of U.S.A have developed a measure to evaluate the quality of fire PSA. ANS (American Nuclear Society) has developed a guidance called 'ANS Fire PRA Methodology Standard'. However, in Korea, there have been no attempts to evaluate the quality of fire PSA model itself. Therefore, we cannot be sure about the quality of fire PSA whether or not the present fire PSA model can be used for the risk-informed applications such as mentioned above. We can say that the evaluation of fire PSA model quality is the basis for the fire risk informed/performance-based decision/operation. In this report, we have evaluated the quality of fire PSA model for Ulchin 5 and 6 units based on the ANS Fire PRA Standard. We, also, have derived what items are to be improved to upgrade the quality of fire PSA model and how it can be improved. This report can be used as the base of the fire risk informed/performance-based decision/operation work in Korea

  12. Boreal forest fires in 1997 and 1998: a seasonal comparison using transport model simulations and measurement data

    Directory of Open Access Journals (Sweden)

    N. Spichtinger

    2004-01-01

    Full Text Available Forest fire emissions have a strong impact on the concentrations of trace gases and aerosols in the atmosphere. In order to quantify the influence of boreal forest fire emissions on the atmospheric composition, the fire seasons of 1997 and 1998 are compared in this paper. Fire activity in 1998 was very strong, especially over Canada and Eastern Siberia, whereas it was much weaker in 1997. According to burned area estimates the burning in 1998 was more than six times as intense as in 1997. Based on hot spot locations derived from ATSR (Along Track Scanning Radiometer data and official burned area data, fire emissions were estimated and their transport was simulated with a Lagrangian tracer transport model. Siberian and Canadian forest fire tracers were distinguished to investigate the transport of both separately. The fire emissions were transported even over intercontinental distances. Due to the El Niño induced meteorological situation, transport from Siberia to Canada was enhanced in 1998. Siberian fire emissions were transported towards Canada and contributed concentrations more than twice as high as those due to Canada's own CO emissions by fires. In 1998 both tracers arrive at higher latitudes over Europe, which is due to a higher North Atlantic Oscillation (NAO index in 1998. The simulated emission plumes are compared to CMDL (Climate Monitoring and Diagnostics Laboratory CO2 and CO data, Total Ozone Mapping Spectrometer (TOMS aerosol index (AI data and Global Ozone Monitoring Experiment (GOME tropospheric NO2 and HCHO columns. All the data show clearly enhanced signals during the burning season of 1998 compared to 1997. The results of the model simulation are in good agreement with ground-based as well as satellite-based measurements.

  13. Evaluating the effectiveness of conservation and development investments in reducing deforestation and fires in Ankeniheny-Zahemena Corridor, Madagascar.

    Science.gov (United States)

    Tabor, Karyn; Jones, Kelly W; Hewson, Jennifer; Rasolohery, Andriambolantsoa; Rambeloson, Andoniaina; Andrianjohaninarivo, Tokihenintsoa; Harvey, Celia A

    2017-01-01

    Forest conservation and REDD+ projects invest millions of dollars each year to reduce local communities' dependence on forests and prevent forest loss and degradation. However, to date, there is limited evidence on whether these investments are effective at delivering conservation outcomes. We explored the relationships between 600+ small-scale conservation and development investments that occurred from 2007 to 2014 and conservation outcomes (deforestation rates and fire detections) within Ankeniheny-Zahamena Corridor in Madagascar using linear fixed effects panel regressions. We derived annual changes in forest cover and fires from satellite remote sensing. We found a statistically significant correlation between presence of any investment and reduced deforestation rates in 2010 and 2011 -years with accelerated deforestation elsewhere in the study area. This result indicated investments abated deforestation rates during times of political instability and lack of governance following a 2009 coup in Madagascar. We also found a statistically significant relationship between presence of any investment and reduced fire detections in the study area, suggesting investments had an impact on reducing burning of forest for agriculture. For both outcomes (i.e., deforestation rates and fire detections), we found that more dollars invested led to greater conservation outcomes (i.e. fewer fires or less deforestation), particularly when funding was sustained for one to two years. Our findings suggest that conservation and development investments can reduce deforestation and fire incidence, but also highlight the many challenges and complexities in assessing relationships between investments and conservation outcomes in a dynamic landscape and a volatile political context.

  14. Satellite cells derived from obese humans with type 2 diabetes and differentiated into myocytes in vitro exhibit abnormal response to IL-6

    DEFF Research Database (Denmark)

    Scheele, Camilla; Nielsen, Søren; Broholm, Christa

    2012-01-01

    isolated satellite cells from skeletal muscle of people that were healthy (He), obese (Ob) or were obese and had type 2 diabetes (DM), and differentiated them in vitro into myocytes. Down-regulation of IL-6Rα was conserved in Ob myocytes. In addition, acute IL-6 administration for 30, 60 and 120 minutes......Obesity and type 2 diabetes are associated with chronically elevated systemic levels of IL-6, a pro-inflammatory cytokine with a role in skeletal muscle metabolism that signals through the IL-6 receptor (IL-6Rα). We hypothesized that skeletal muscle in obesity-associated type 2 diabetes develops...... a resistance to IL-6. By utilizing western blot analysis, we demonstrate that IL-6Rα protein was down regulated in skeletal muscle biopsies from obese persons with and without type 2 diabetes. To further investigate the status of IL-6 signaling in skeletal muscle in obesity-associated type 2 diabetes, we...

  15. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  16. MALIBU: A High Spatial Resolution Multi-Angle Imaging Unmanned Airborne System to Validate Satellite-derived BRDF/Albedo Products

    Science.gov (United States)

    Wang, Z.; Roman, M. O.; Pahlevan, N.; Stachura, M.; McCorkel, J.; Bland, G.; Schaaf, C.

    2016-12-01

    Albedo is a key climate forcing variable that governs the absorption of incoming solar radiation and its ultimate transfer to the atmosphere. Albedo contributes significant uncertainties in the simulation of climate changes; and as such, it is defined by the Global Climate Observing System (GCOS) as a terrestrial essential climate variable (ECV) required by global and regional climate and biogeochemical models. NASA's Goddard Space Flight Center's Multi AngLe Imaging Bidirectional Reflectance Distribution Function small-UAS (MALIBU) is part of a series of pathfinder missions to develop enhanced multi-angular remote sensing techniques using small Unmanned Aircraft Systems (sUAS). The MALIBU instrument package includes two multispectral imagers oriented at two different viewing geometries (i.e., port and starboard sides) capture vegetation optical properties and structural characteristics. This is achieved by analyzing the surface reflectance anisotropy signal (i.e., BRDF shape) obtained from the combination of surface reflectance from different view-illumination angles and spectral channels. Satellite measures of surface albedo from MODIS, VIIRS, and Landsat have been evaluated by comparison with spatially representative albedometer data from sparsely distributed flux towers at fixed heights. However, the mismatch between the footprint of ground measurements and the satellite footprint challenges efforts at validation, especially for heterogeneous landscapes. The BRDF (Bidirectional Reflectance Distribution Function) models of surface anisotropy have only been evaluated with airborne BRDF data over a very few locations. The MALIBU platform that acquires extremely high resolution sub-meter measures of surface anisotropy and surface albedo, can thus serve as an important source of reference data to enable global land product validation efforts, and resolve the errors and uncertainties in the various existing products generated by NASA and its national and

  17. Boreal Forest Fire Cools Climate

    Science.gov (United States)

    Randerson, J. T.; Liu, H.; Flanner, M.; Chambers, S. D.; Harden, J. W.; Hess, P. G.; Jin, Y.; Mack, M. C.; Pfister, G.; Schuur, E. A.; Treseder, K. K.; Welp, L. R.; Zender, C. S.

    2005-12-01

    We report measurements, modeling, and analysis of carbon and energy fluxes from a boreal forest fire that occurred in interior Alaska during 1999. In the first year after the fire, ozone production, atmospheric aerosol loading, greenhouse gas emissions, soot deposition, and decreases in summer albedo contributed to a positive annual radiative forcing (RF). These effects were partly offset by an increase in fall, winter, and spring albedo from reduced canopy cover and increased exposure of snow-covered surfaces. The atmospheric lifetime of aerosols and ozone and are relatively short (days to months). The radiative effects of soot on snow are also attenuated rapidly from the deposition of fresh snow. As a result, a year after the fire, only two classes of RF mechanisms remained: greenhouse gas emissions and post-fire changes in surface albedo. Summer albedo increased rapidly in subsequent years and was substantially higher than unburned control areas (by more than 0.03) after 4 years as a result of grass and shrub establishment. Satellite measurements from MODIS of other interior Alaska burn scars provided evidence that elevated levels of spring and summer albedo (relative to unburned control areas) persisted for at least 4 decades after fire. In parallel, our chamber, eddy covariance, and biomass measurements indicated that the post-fire ecosystems switch from a source to a sink within the first decade. Taken together, the extended period of increased spring and summer albedo and carbon uptake of intermediate-aged stands appears to more than offset the initial warming pulse caused by fire emissions, when compared using the RF concept. This result suggests that management of forests in northern countries to suppress fire and preserve carbon sinks may have the opposite effect on climate as that intended.

  18. Satellite Communications for ATM

    Science.gov (United States)

    Shamma, Mohammed A.

    2003-01-01

    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  19. ASSESSMENT OF THE UTILITY OF THE ADVANCED HIMAWARI IMAGER TO DETECT ACTIVE FIRE OVER AUSTRALIA

    Directory of Open Access Journals (Sweden)

    B. Hally

    2016-06-01

    Full Text Available Wildfire detection and attribution is an issue of importance due to the socio-economic impact of fires in Australia. Early detection of fires allows emergency response agencies to make informed decisions in order to minimise loss of life and protect strategic resources in threatened areas. Until recently, the ability of land management authorities to accurately assess fire through satellite observations of Australia was limited to those made by polar orbiting satellites. The launch of the Japan Meteorological Agency (JMA Himawari-8 satellite, with the 16-band Advanced Himawari Imager (AHI-8 onboard, in October 2014 presents a significant opportunity to improve the timeliness of satellite fire detection across Australia. The near real-time availability of images, at a ten minute frequency, may also provide contextual information (background temperature leading to improvements in the assessment of fire characteristics. This paper investigates the application of the high frequency observation data supplied by this sensor for fire detection and attribution. As AHI-8 is a new sensor we have performed an analysis of the noise characteristics of the two spectral bands used for fire attribution across various land use types which occur in Australia. Using this information we have adapted existing algorithms, based upon least squares error minimisation and Kalman filtering, which utilise high frequency observations of surface temperature to detect and attribute fire. The fire detection and attribution information provided by these algorithms is then compared to existing satellite based fire products as well as in-situ information provided by land management agencies. These comparisons were made Australia-wide for an entire fire season - including many significant fire events (wildfires and prescribed burns. Preliminary detection results suggest that these methods for fire detection perform comparably to existing fire products and fire incident reporting

  20. Fire Safety (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Fire Safety KidsHealth / For Parents / Fire Safety What's in ... event of a fire emergency in your home. Fire Prevention Of course, the best way to practice ...