WorldWideScience

Sample records for satellite communications applications

  1. Communication satellite applications

    Science.gov (United States)

    Pelton, Joseph N.

    The status and future of the technologies, numbers and services provided by communications satellites worldwide are explored. The evolution of Intelsat satellites and the associated earth terminals toward high-rate all-digital telephony, data, facsimile, videophone, videoconferencing and DBS capabilities are described. The capabilities, services and usage of the Intersputnik, Eutelsat, Arabsat and Palapa systems are also outlined. Domestic satellite communications by means of the Molniya, ANIK, Olympus, Intelsat and Palapa spacecraft are outlined, noting the fast growth of the market and the growing number of different satellite manufacturers. The technical, economic and service definition issues surrounding DBS systems are discussed, along with presently operating and planned maritime and aeronautical communications and positioning systems. Features of search and rescue and tracking, data, and relay satellite systems are summarized, and services offered or which will be offered by every existing or planned communication satellite worldwide are tabulated.

  2. Satellite communications principles and applications

    CERN Document Server

    Calcutt, David

    1994-01-01

    Satellites are increasingly used for global communications, as well as for radio and television transmissions. With the growth of mobile communications, and of digital technology, the use of satellite systems is set to expand substantially and already all students of electronics or communications engineering must study the subject.This book steers a middle path between offering a basic understanding of the process of communication by satellite and the methodology used; and the extensive mathematical analysis normally adopted in similar texts. It presents the basic concepts, using as mu

  3. Intersatellite link application to commercial communications satellites

    Science.gov (United States)

    Lee, Young S.; Atia, Ali E.; Ponchak, Denise S.

    1988-01-01

    The fundamental characteristics of intersatellite link (ISL) systems, and their application to domestic, regional, and global satellite communications, are described. The quantitative advantages of using ISLs to improve orbit utilization, spectrum occupancy, transmission delay (compared to multi-hop links), coverage, and connectivity, and to reduce the number of earth station antennas, are also presented. Cost-effectiveness and other systems benefits of using ISLs are identified, and the technical and systems planning aspects of ISL systems implementation are addressed.

  4. Rural applications of Advanced Traveler Information Systems : evaluation of satellite communications systems for mayday applications

    Science.gov (United States)

    This report documents the results of an evaluation of satellite communication systems for mayday applications conducted as part of the Rural Applications of Advanced Traveler Information Systems (ATIS) study. It focuses on satellite communications sy...

  5. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  6. Advanced Communications Technology Satellite (ACTS) and potential system applications

    Science.gov (United States)

    Wright, David L.; Balombin, Joseph R.; Sohn, Philip Y.

    1990-01-01

    A description of the advanced communications technology satellite (ACTS) system is given with special emphasis on the communication characteristics. Potential satellite communications scenarios, including future operational ACTS-like satellite systems, are discussed. The description of the ACTS system updates previously published ACTS system references. Detailed information on items such as experimental ground stations is presented. The potential services can be generically described as voice, video, and data services. The implementation of these services on future operational ACTS-like systems can lead to unique quality, flexibility, and capacity characteristics at lower service costs. The specific service applications that could be supported range from low to high data rates and include both domestic and international applications.

  7. Satellite Communications

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Satellite Communications. Arthur C Clarke wrote a seminal paper in 1945 in wireless world. Use three satellites in geo-synchronous orbit to enable intercontinental communications. System could be realised in '50 to 100 years'

  8. Application of adaptive antenna techniques to future commercial satellite communication

    Science.gov (United States)

    Ersoy, L.; Lee, E. A.; Matthews, E. W.

    1987-01-01

    The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further sub-divided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.

  9. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  10. Implementation of Multiple Access Techniques Applicable for Maritime Satellite Communications

    OpenAIRE

    Stojce Dimov Ilcev

    2013-01-01

    In this paper are introduced fundamentals, characteristics, advantages and disadvantages of Multiple Access (MA) employed as transmission techniques in the Maritime Mobile Satellite Communications (MMSC) between ships and Coast Earth Station (CES) via Geostationary Earth Orbit (GEO) or Not-GEO satellite constellations. In fixed satellite communication, as a rule, especially in MMSC many users are active at the same time. The problem of simultaneous communications between many single or multip...

  11. Optical intersatellite links - Application to commercial satellite communications

    Science.gov (United States)

    Paul, D.; Faris, F.; Garlow, R.; Inukai, T.; Pontano, B.; Razdan, R.; Ganz, Aura; Caudill, L.

    1992-01-01

    Application of optical intersatellite links for commercial satellite communications services is addressed in this paper. The feasibility of commercialization centers around basic issues such as the need and derived benefits, implementation complexity and overall cost. In this paper, commercialization of optical ISLs is assessed in terms of the services provided, systems requirements and feasibility of appropriate technology. Both long- and short-range ISLs for GEO-GEO, GEO-LEO and LEO applications are considered. Impact of systems requirements on the payload design and use of advanced technology in reducing its mass, power, and volume requirements are discussed.

  12. Implementation of Multiple Access Techniques Applicable for Maritime Satellite Communications

    Directory of Open Access Journals (Sweden)

    Stojce Dimov Ilcev

    2013-12-01

    Full Text Available In this paper are introduced fundamentals, characteristics, advantages and disadvantages of Multiple Access (MA employed as transmission techniques in the Maritime Mobile Satellite Communications (MMSC between ships and Coast Earth Station (CES via Geostationary Earth Orbit (GEO or Not-GEO satellite constellations. In fixed satellite communication, as a rule, especially in MMSC many users are active at the same time. The problem of simultaneous communications between many single or multipoint mobile satellite users can be solved by using MA technique, such as Frequency Division Multiple Access (FDMA, Time Division Multiple Access (TDMA, Code Division Multiple Access (CDMA, Space Division Multiple Access (SDMA and Random (Packet Division Multiple Access (RDMA. Since the resources of the systems such as the transmitting power and the bandwidth are limited, it is advisable to use the channels with complete charge and to create a different MA to the channel. This generates a problem of summation and separation of signals in the transmission and reception parts, respectively. Deciding this problem consists in the development of orthogonal channels of transmission in order to divide signals from various users unambiguously on the reception part.

  13. NASA satellite communications application research. Phase 2: Efficient high power, solid state amplifier for EFH communications

    Science.gov (United States)

    Benet, James

    1993-01-01

    The final report describes the work performed from 9 Jun. 1992 to 31 Jul. 1993 on the NASA Satellite Communications Application Research (SCAR) Phase 2 program, Efficient High Power, Solid State Amplifier for EHF Communications. The purpose of the program was to demonstrate the feasibility of high-efficiency, high-power, EHF solid state amplifiers that are smaller, lighter, more efficient, and less costly than existing traveling wave tube (TWT) amplifiers by combining the output power from up to several hundred solid state amplifiers using a unique orthomode spatial power combiner (OSPC).

  14. Satellite Communications for ATM

    Science.gov (United States)

    Shamma, Mohammed A.

    2003-01-01

    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  15. Texas Telecommunication Satellite Demonstration Project. Planning Effort for Application of Communication Satellites in Education.

    Science.gov (United States)

    Education Service Center Region 4, Houston, TX.

    The primary goal of the Texas Telecommunication Satellite Demonstration consortium is to install, operate, and evaluate a comprehensive communication service delivery system which would provide the citizens of Texas with greater opportunity for equal access to education and information. The four major objectives of the demonstration are (1) to…

  16. IMT-2000 Satellite Standards with Applications to Mobile Air Traffic Communications Networks

    Science.gov (United States)

    Shamma, Mohammed A.

    2004-01-01

    The International Mobile Telecommunications - 2000 (IMT-2000) standard and more specifically the Satellite component of it, is investigated as a potential alternative for communications to aircraft mobile users en-route and in terminal area. Its application to Air Traffic Management (ATM) communication needs is considered. A summary of the specifications of IMT-2000 satellite standards are outlined. It is shown via a system research analysis that it is possible to support most air traffic communication needs via an IMT-2000 infrastructure. This technology can compliment existing, or future digital aeronautical communications technologies such as VDL2, VDL3, Mode S, and UAT.

  17. Application of communications satellites to educational development. [technology utilization/information systems - bibliographies

    Science.gov (United States)

    Morgan, R. P.

    1975-01-01

    A summary of research is presented. The broad objectives of this interdisciplinary research effort were: (1) to assess the role of satellite communications as a means of improving education in the United States, as well as in less-developed areas of the world; (2) to generate basic knowledge which will aid in making rational decisions about satellite application in the field of education in the years ahead; (3) to devise systems and strategies for improving education; and (4) to educate individuals who will be knowledgeable about aspects of satellite communications policy which transcend any single discipline.

  18. Global mobile satellite communications theory for maritime, land and aeronautical applications

    CERN Document Server

    Ilčev, Stojče Dimov

    2017-01-01

    This book discusses current theory regarding global mobile satellite communications (GMSC) for maritime, land (road and rail), and aeronautical applications. It covers how these can enable connections between moving objects such as ships, road and rail vehicles and aircrafts on one hand, and on the other ground telecommunications subscribers through the medium of communications satellites, ground earth stations, Terrestrial Telecommunication Networks (TTN), Internet Service Providers (ISP) and other wireless and landline telecommunications providers. This new edition covers new developments and initiatives that have resulted in land and aeronautical applications and the introduction of new satellite constellations in non-geostationary orbits and projects of new hybrid satellite constellations. The book presents current GMSC trends, mobile system concepts and network architecture using a simple mode of style with understandable technical information, characteristics, graphics, illustrations and mathematics equ...

  19. R and D limited partnerships (possible applications in advanced communications satellite technology experiment program)

    Science.gov (United States)

    1985-01-01

    Typical R&D limited partnership arrangements, advantages and disadvantages of R&D limited partnership (RDLPs) and antitrust and tax implications are described. A number of typical forms of RDLPs are described that may be applicable for use in stimulating R&D and experimental programs using the advanced communications technology satellite. The ultimate goal is to increase the rate of market penetration of goods and/or services based upon advanced satellite communications technology. The conditions necessary for these RDLP forms to be advantageous are outlined.

  20. Intersatellite Link (ISL) application to commercial communications satellites. Volume 1: Executive summary

    Science.gov (United States)

    Young, S. Lee

    1987-01-01

    Based on a comprehensive evaluation of the fundamental Intersatellite Link (ISL) systems characteristics, potential applications of ISLs to domestic, regional, and global commercial satellite communications were identified, and their cost-effectiveness and other systems benefits quantified wherever possible. Implementation scenarios for the cost-effective communications satellite systems employing ISLs were developed for the first launch in 1993 to 1994 and widespread use of ISLs in the early 2000's. Critical technology requirements for both the microwave (60 GHz) and optical (0.85 micron) ISL implementations were identified, and their technology development programs, including schedule and cost estimates, were derived.

  1. Intersatellite Link (ISL) application to commercial communications satellites. Volume 2: Technical final report

    Science.gov (United States)

    Young, S. Lee

    1987-01-01

    Intersatellite Link (ISL) applications can improve and expand communication satellite services in a number of ways. As the demand for orbital slots within prime regions of the geostationary arc increases, attention is being focused on ISLs as a method to utilize this resource more efficiently and circumvent saturation. Various GEO-to-GEO applications were determined that provide potential benefits over existing communication systems. A set of criteria was developed to assess the potential applications. Intersatellite link models, network system architectures, and payload configurations were developed. For each of the chosen ISL applications, ISL versus non-ISL satellite systems architectures were derived. Both microwave and optical ISL implementation approaches were evaluated for payload sizing and cost analysis. The technological availability for ISL implementations was assessed. Critical subsystems technology areas were identified, and an estamate of the schedule and cost to advance the technology to the requiered state of readiness was made.

  2. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    Science.gov (United States)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial

  3. Domestic Communication Satellites

    Science.gov (United States)

    Horowitz, Andrew

    1974-01-01

    A discussion of the Federal Communications Commission's new policy on domestic satellites in light of our 1) military and economic history; 2) corporate interests; 3) citizen surveillance; and 4) media control. (HB)

  4. NASA satellite communications application research, phase 2 addendum. Efficient high power, solid state amplifier for EHF communications

    Science.gov (United States)

    Benet, James

    1994-01-01

    This document is an addendum to the NASA Satellite Communications Application Research (SCAR) Phase 2 Final Report, 'Efficient High Power, Solid State Amplifier for EHF Communications.' This report describes the work performed from 1 August 1993 to 11 March 1994, under contract number NASW-4513. During this reporting period an array of transistor amplifiers was repaired by replacing all MMIC amplifier chips. The amplifier array was then tested using three different feedhorn configurations. Descriptions, procedures, and results of this testing are presented in this report, and conclusions are drawn based on the test results obtained.

  5. Satellite Communications Using Commercial Protocols

    Science.gov (United States)

    Ivancic, William D.; Griner, James H.; Dimond, Robert; Frantz, Brian D.; Kachmar, Brian; Shell, Dan

    2000-01-01

    NASA Glenn Research Center has been working with industry, academia, and other government agencies in assessing commercial communications protocols for satellite and space-based applications. In addition, NASA Glenn has been developing and advocating new satellite-friendly modifications to existing communications protocol standards. This paper summarizes recent research into the applicability of various commercial standard protocols for use over satellite and space- based communications networks as well as expectations for future protocol development. It serves as a reference point from which the detailed work can be readily accessed. Areas that will be addressed include asynchronous-transfer-mode quality of service; completed and ongoing work of the Internet Engineering Task Force; data-link-layer protocol development for unidirectional link routing; and protocols for aeronautical applications, including mobile Internet protocol routing for wireless/mobile hosts and the aeronautical telecommunications network protocol.

  6. ESA's satellite communications programme

    Science.gov (United States)

    Bartholome, P.

    1985-02-01

    The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.

  7. Mobile satellite service communications tests using a NASA satellite

    Science.gov (United States)

    Chambers, Katherine H.; Koschmeder, Louis A.; Hollansworth, James E.; ONeill, Jack; Jones, Robert E.; Gibbons, Richard C.

    1995-01-01

    Emerging applications of commercial mobile satellite communications include satellite delivery of compact disc (CD) quality radio to car drivers who can select their favorite programming as they drive any distance; transmission of current air traffic data to aircraft; and handheld communication of data and images from any remote corner of the world. Experiments with the enabling technologies and tests and demonstrations of these concepts are being conducted before the first satellite is launched by utilizing an existing NASA spacecraft.

  8. Next generation satellite communications networks

    Science.gov (United States)

    Garland, P. J.; Osborne, F. J.; Streibl, I.

    The paper introduces two potential uses for new space hardware to permit enhanced levels of signal handling and switching in satellite communication service for Canada. One application involves increased private-sector services in the Ku band; the second supports new personal/mobile services by employing higher levels of handling and switching in the Ka band. First-generation satellite regeneration and switching experiments involving the NASA/ACTS spacecraft are described, where the Ka band and switching satellite network problems are emphasized. Second-generation satellite development is outlined based on demand trends for more packet-based switching, low-cost earth stations, and closed user groups. A demonstration mission for new Ka- and Ku-band technologies is proposed, including the payload configuration. The half ANIK E payload is shown to meet the demonstration objectives, and projected to maintain a fully operational payload for at least 10 years.

  9. Application of the advanced communications technology satellite for teleradiology and telemedicine

    Science.gov (United States)

    Stewart, Brent K.; Carter, Stephen J.; Rowberg, Alan H.

    1995-05-01

    The authors have an in-kind grant from NASA to investigate the application of the Advanced Communications Technology Satellite (ACTS) to teleradiology and telemedicine using the JPL developed ACTS Mobile Terminal (AMT) uplink. This experiment involves the transmission of medical imagery (CT, MR, CR, US and digitized radiographs including mammograms), between the ACTS/AMT and the University of Washington. This is accomplished by locating the AMT experiment van in various locations throughout Washington state, Idaho, Montana, Oregon and Hawaii. The medical images are transmitted from the ACTS to the downlink at the NASA Lewis Research Center (LeRC) in Cleveland, Ohio, consisting of AMT equipment and the high burst rate-link evaluation terminal (HBR-LET). These images are then routed from LeRC to the University of Washington School of Medicine (UWSoM) through the Internet and public switched Integrated Serviced Digital Network (ISDN). Once images arrive in the UW Radiology Department, they are reviewed using both video monitor softcopy and laser-printed hardcopy. Compressed video teleconferencing and transmission of real-time ultrasound video between the AMT van and the UWSoM are also tested. Image quality comparisons are made using both subjective diagnostic criteria and quantitative engineering analysis. Evaluation is performed during various weather conditions (including rain to assess rain fade compensation algorithms). Compression techniques also are tested to evaluate their effects on image quality, allowing further evaluation of portable teleradiology/telemedicine at lower data rates and providing useful information for additional applications (e.g., smaller remote units, shipboard, emergency disaster, etc.). The medical images received at the UWSoM over the ACTS are directly evaluated against the original digital images. The project demonstrates that a portable satellite-land connection can provide subspecialty consultation and education for rural and remote

  10. Estimating Rain Attenuation In Satellite Communication Links

    Science.gov (United States)

    Manning, R. M.

    1991-01-01

    Attenuation computed with help of statistical model and meteorological data. NASA Lewis Research Center Satellite Link Attenuation Model (SLAM) program QuickBASIC computer program evaluating static and dynamic statistical assessment of impact of rain attenuation on communication link established between Earth terminal and geosynchronous satellite. Application in specification, design, and assessment of satellite communication links for any terminal location in continental United States. Written in Microsoft QuickBASIC.

  11. An assessment of the status and trends in satellite communications 1986-2000: An information document prepared for the Communications Subcommittee of the Space Applications Advisory Committee

    Science.gov (United States)

    Poley, W. A.; Stevens, G. H.; Stevenson, S. M.; Lekan, J.; Arth, C. H.; Hollansworth, J. E.; Miller, E. F.

    1986-01-01

    This is a response to a Space Applications Advisory Committee (SAAC) request for information about the status and trends in satellite communications, to be used to support efforts to conceive and recommend long range goals for NASA communications activities. Included in this document are assessments of: (1) the outlook for satellite communications, including current applications, potential future applications, and impact of the changing environment such as optical fiber networks, the Integrated Services Digital Network (ISDN) standard, and the rapidly growing market for Very Small Aperture Terminals (VSAT); (2) the restrictions imposed by our limited spectrum resource; and (3) technology needs indicated by future trends. Potential future systems discussed include: large powerful satellites for providing personal communications; VSAT compatible satellites with onboard switching and having voice capability; large satellites which offer a pervasive T1 network service (primarily for video-phone); and large geostationary communications facilities which support common use by several carriers. Also, discussion is included of NASA particular needs and possible future systems. Based on the mentioned system concepts, specific technology recommendations are provided for the time frames of now - 1993, 1994 - 2000, and 2000 - 2010.

  12. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2013-01-01

    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  13. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication sa...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  14. Reusable Communication Infrastructure for Small Satellites

    Data.gov (United States)

    National Aeronautics and Space Administration — The research goal of this project is to develop a comprehensive communications reference architecture that is applicable to a wide variety of small satellite...

  15. Encryption protection for communication satellites

    Science.gov (United States)

    Sood, D. R.; Hoernig, O. W., Jr.

    In connection with the growing importance of the commercial communication satellite systems and the introduction of new technological developments, users and operators of these systems become increasingly concerned with aspects of security. The user community is concerned with maintaining confidentiality and integrity of the information being transmitted over the satellite links, while the satellite operators are concerned about the safety of their assets in space. In response to these concerns, the commercial satellite operators are now taking steps to protect the communication information and the satellites. Thus, communication information is being protected by end-to-end encryption of the customer communication traffic. Attention is given to the selection of the NBS DES algorithm, the command protection systems, and the communication protection systems.

  16. Satellite Communication and Development: A Reassessment.

    Science.gov (United States)

    Hudson, Heather E.

    The potential benefits of satellite communications development have been recognized since the notion of a geostationary "space platform" was proposed by Arthur C. Clarke in 1945. Although there have been examples of developmental applications of satellite technology, the promise has been slow in being fulfilled. The history of the…

  17. Satellite communications network design and analysis

    CERN Document Server

    Jo, Kenneth Y

    2011-01-01

    This authoritative book provides a thorough understanding of the fundamental concepts of satellite communications (SATCOM) network design and performance assessments. You find discussions on a wide class of SATCOM networks using satellites as core components, as well as coverage key applications in the field. This in-depth resource presents a broad range of critical topics, from geosynchronous Earth orbiting (GEO) satellites and direct broadcast satellite systems, to low Earth orbiting (LEO) satellites, radio standards and protocols.This invaluable reference explains the many specific uses of

  18. Trends in mobile satellite communication

    Science.gov (United States)

    Johannsen, Klaus G.; Bowles, Mike W.; Milliken, Samuel; Cherrette, Alan R.; Busche, Gregory C.

    1993-01-01

    Ever since the U.S. Federal Communication Commission opened the discussion on spectrum usage for personal handheld communication, the community of satellite manufacturers has been searching for an economically viable and technically feasible satellite mobile communication system. Hughes Aircraft Company and others have joined in providing proposals for such systems, ranging from low to medium to geosynchronous orbits. These proposals make it clear that the trend in mobile satellite communication is toward more sophisticated satellites with a large number of spot beams and onboard processing, providing worldwide interconnectivity. Recent Hughes studies indicate that from a cost standpoint the geosynchronous satellite (GEOS) is most economical, followed by the medium earth orbit satellite (MEOS) and then by the low earth orbit satellite (LEOS). From a system performance standpoint, this evaluation may be in reverse order, depending on how the public will react to speech delay and collision. This paper discusses the trends and various mobile satellite constellations in satellite communication under investigation. It considers the effect of orbital altitude and modulation/multiple access on the link and spacecraft design.

  19. Satellite Communications Industry

    Science.gov (United States)

    1993-04-01

    Ariane $loom SAJAC 1 Hughes Satellite Japan 06/94 $150m SAJAC 2 Hughes Satellite Japan -- (spare) $150m SatcomHl GE GE Americom /95 $50m SOLIDARIDAD ...1 Hughes SCT (Mexico) 11/93 Ariane $loom SOLIDARIDAD 2 Hughes SCT (Mexico) /94 $loom Superbird Al Loral Space Com Gp (Jap) 11/92 Ariane $175m

  20. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  1. A New Era Begins: Satellite Communications and Development.

    Science.gov (United States)

    Pelton, Joseph N.

    This overview of changes in the field of telecommunications development produced by satellite communications over the last 15 years focuses on applications of satellite systems for educational and health purposes in developing countries. Satellite communications development from 1974 to 1986 is identified as the first stage of telecommunications…

  2. Deep space optical communication via relay satellite

    Science.gov (United States)

    Dolinar, S.; Vilnrotter, V.; Gagliardi, R.

    1981-01-01

    The application of optical communications for a deep space link via an earth-orbiting relay satellite is discussed. The system uses optical frequencies for the free-space channel and RF links for atmospheric transmission. The relay satellite is in geostationary orbit and contains the optics necessary for data processing and formatting. It returns the data to earth through the RF terrestrial link and also transmits an optical beacon to the satellite for spacecraft return pointing and for the alignment of the transmitting optics. Future work will turn to modulation and coding, pointing and tracking, and optical-RF interfacing.

  3. SDR Implementation for Satellite Communication

    OpenAIRE

    Jakobsson, Carin; Sjödin, Olof

    2017-01-01

    SDR (Software Defined Radio) is a radio communicationsystem that has been of great interest and developmentover the last 20 years. It decreases communication costs significantlyas it replaces expensive analogue system components withcheap and flexible digital ones. In this article we describe anSDR implementation for communication with the SEAM (SmallExplorer for Advances Missions) satellite, a CubeSat satellitethat will perform high quality magnetic measurements in theEarth orbit. The projec...

  4. New Channel Coding Methods for Satellite Communication

    Directory of Open Access Journals (Sweden)

    J. Sebesta

    2010-04-01

    Full Text Available This paper deals with the new progressive channel coding methods for short message transmission via satellite transponder using predetermined length of frame. The key benefits of this contribution are modification and implementation of a new turbo code and utilization of unique features with applications of methods for bit error rate estimation and algorithm for output message reconstruction. The mentioned methods allow an error free communication with very low Eb/N0 ratio and they have been adopted for satellite communication, however they can be applied for other systems working with very low Eb/N0 ratio.

  5. Clock Management Data Analysis for Satellite Communications

    National Research Council Canada - National Science Library

    Gross, Rachel; Melkers, Raimond

    2005-01-01

    The U.S. Naval Research Laboratory has installed GPS-based timing systems in several Defense Satellite Communication System "DSCS-III" satellite communication facilities to support the Single Channel Transponder "SCT" program...

  6. Potential markets for advanced satellite communications

    Science.gov (United States)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-09-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  7. Potential markets for advanced satellite communications

    Science.gov (United States)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-01-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  8. Advances in satellite communications

    CERN Document Server

    Minoli, Daniel

    2015-01-01

    Discussing advances in modulation techniques and HTS spotbeam technologiesSurveying emerging high speed aeronautical mobility services and maritime and other terrestrial mobility servicesAssessing M2M (machine-to-machine) applications, emerging Ultra HD video technologies and new space technology

  9. Satellite communications: possibilities and problems

    International Nuclear Information System (INIS)

    Hine, M.

    1986-01-01

    Communication links via satellites are becoming available in Europe, both as part of the development of the telephone system and as special services aimed at data traffic. They offer the possibility of speeds between 50 kb/s and 2 Mb/s, without the problems and long term commitments of long distance land lines. Such links are provided by the PTT's as circuits which can be booked for variable periods, and have error rates which can be very low and well controlled. Problems in networking can arise from the satellite delay, particularly if errors occur in the local connections, and from the leased circuit and tariff philosophies of the PTT's. (Auth.)

  10. Hybrid Maritime Satellite Communication Antenna

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst

    Hybrid antennas for a maritime satellite communication terminal with simultaneous operation at L- and Ka-band have been investigated. The frequency bands of interest are 1; 525:0 1; 660:5 MHz (RX+TX, RHCP), 19:7 20:2 (RX, LHCP) and 29:5 30:0 GHz (TX, RHCP), which are all part of the Inmarsat BGAN...

  11. Leveraging the NPS Femto Satellite for Alternative Satellite Communication Networks

    Science.gov (United States)

    2017-09-01

    programmed for eventual integration with the Iridium Network , which is then tested. C. THESIS ORGANIZATION The thesis addresses these questions...NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS by Faisal S. Alshaya September 2017 Co-Advisors: Steven J. Iatrou...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE LEVERAGING THE NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS 5

  12. Odyssey, an optimized personal communications satellite system

    Science.gov (United States)

    Rusch, Roger J.

    Personal communications places severe demands on service providers and transmission facilities. Customers are not satisfied with the current levels of service and want improvements. Among the characteristics that users seek are: lower service rates, hand held convenience, acceptable time delays, ubiquitous service, high availability, reliability, and high quality. The space industry is developing commercial space systems for providing mobile communications to personal telephones. Provision of land mobile satellite service is fundamentally different from the fixed satellite service provided by geostationary satellites. In fixed service, the earth based antennas can depend on a clear path from user to satellite. Mobile users in a terrestrial environment commonly encounter blockage due to vegetation, terrain or buildings. Consequently, high elevation angles are of premium value. TRW studied the issues and concluded that a Medium Earth Orbit constellation is the best solution for Personal Communications Satellite Service. TRW has developed Odyssey, which uses twelve satellites in medium altitude orbit to provide personal communications satellite service. The Odyssey communications system projects a multibeam antenna pattern to the Earth. The attitude control system orients the satellites to ensure constant coverage of land mass and coastal areas. Pointing can be reprogrammed by ground control to ensure optimized coverage of the desired service areas. The payload architecture features non-processing, "bent pipe" transponders and matrix amplifiers to ensure dynamic power delivery to high demand areas. Circuit capacity is 3000 circuits per satellite. Each satellite weighs 1917 kg (4226 pounds) at launch and the solar arrays provide 3126 Watts of power. Satellites are launched in pairs on Ariane, Atlas, or other vehicles. Each satellite is placed in a circular orbit at an altitude of 10,354 km. There are three orbit planes inclined at 55° to the equatorial plane

  13. Experiment In Aeronautical-Mobile/Satellite Communication

    Science.gov (United States)

    Jedrey, Thomas C.; Lay, Norman E.; Dessouky, Khaled

    1992-01-01

    Report describes study of performance of digital mobile/satellite communication terminals of advanced design intended for use in ground stations and airplanes in aeronautical-mobile service. Study was collaboration of NASA, Federal Aviation Administration (FAA), Communications Satellite Corp. (COMSAT), and International Maritime Satellite System (INMARSAT).

  14. Antennas for mobile satellite communications

    Science.gov (United States)

    Huang, John

    1991-12-01

    A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.

  15. Program on application of communications satellites to educational development: Design of a 12 channel FM microwave receiver. [color television from communication satellites

    Science.gov (United States)

    Risch, C. O.; Rosenbaum, F. J.; Gregory, R. O.

    1974-01-01

    The design, fabrication, and performance of elements of a low cost FM microwave satellite ground station receiver is described. It is capable of accepting 12 contiguous color television equivalent bandwidth channels in the 11.72 to 12.2 GHz band. Each channel is 40 MHz wide and incorporates a 4 MHz guard band. The modulation format is wideband FM and the channels are frequency division multiplexed. Twelve independent CATV compatible baseband outputs are provided. The overall system specifications are first discussed, then consideration is given to the receiver subsystems and the signal branching network.

  16. Research of the key technology in satellite communication networks

    Science.gov (United States)

    Zeng, Yuan

    2018-02-01

    According to the prediction, in the next 10 years the wireless data traffic will be increased by 500-1000 times. Not only the wireless data traffic will be increased exponentially, and the demand for diversified traffic will be increased. Higher requirements for future mobile wireless communication system had brought huge market space for satellite communication system. At the same time, the space information networks had been greatly developed with the depth of human exploration of space activities, the development of space application, the expansion of military and civilian application. The core of spatial information networks is the satellite communication. The dissertation presented the communication system architecture, the communication protocol, the routing strategy, switch scheduling algorithm and the handoff strategy based on the satellite communication system. We built the simulation platform of the LEO satellites networks and simulated the key technology using OPNET.

  17. Study of LiTiMg-ferrite radome for the application of satellite communication

    International Nuclear Information System (INIS)

    Saxena, Naveen Kumar; Kumar, Nitendar; Pourush, P.K.S.

    2010-01-01

    In this paper the characteristics of LiTiMg-ferrite radome are presented. A thin layer of LiTiMg-ferrite is used as superstrate or radome, which controls the radiation, reception, and scattering from a printed antenna or array by applying a dc magnetic bias field in the plane of the ferrite, orthogonal to the RF magnetic field. In this analysis absorbing and transmission power coefficients are calculated to obtain the power loss and transmitted power through the radome layer respectively. The absorbing power coefficient verifies the switching behavior of radome for certain range of applied external magnetic field (Ho), which depends on the resonance width parameter (ΔH) of ferrite material. By properly choosing the bias field, electromagnetic wave propagation in the ferrite layer can be made zero or negligible over a certain frequency range, resulting in switching behavior of the ferrite layer. In this communication we also show precise preparation of radome layer and present its electric and magnetic properties along with its Curie temperature, which shows the working efficiency of layer under extreme situation. This radome layer can be very useful for the sensitive and smart communication systems.

  18. A Survey of Satellite Communications System Vulnerabilities

    National Research Council Canada - National Science Library

    Steinberger, Jessica A

    2008-01-01

    The U.S. military's increasing reliance on commercial and military communications satellites to enable widely-dispersed, mobile forces to communicate makes these space assets increasingly vulnerable to attack by adversaries...

  19. Satellite Communication and Long Distance Education

    OpenAIRE

    Hafied Cangara

    2016-01-01

    Since Indonesia introduced communication satellite for telecommunication network, the satellite has brought a number of advantages for national development in various areas, such as telephone network, mass media development, business, education, politics, security and national defence as well as regional and International cooperation. In education, satellite communication could be used for long-distance learning as implemented by 13 state universities in eastern parts of Indonesia. It is also...

  20. High power communication satellites power systems study

    International Nuclear Information System (INIS)

    Josloff, A.T.; Peterson, J.R.

    1994-01-01

    This paper discusses a DOE-funded study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. This study brings together a preeminent US Industry/Russian team to cooperate on the role of high power communication satellites in the rapidly expanding communications revolution. These high power satellites play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities will be significant

  1. A new antenna concept for satellite communications

    Science.gov (United States)

    Skahill, G.; Ciccolella, D.

    1982-01-01

    A novel antenna configuration of two reflecting surfaces and a phased array is examined for application to satellite communications and shown to be superior in every respect to earlier designs for service to the continental United States from synchronous orbit. The vignetting that afflicts other two reflector optical systems is eliminated by use of a reflecting field element. The remaining aberrations, predominantly coma, are isolated in the time delay distribution at the surface of the array and can be compensated by ordinary array techniques. The optics exhibits infinite bandwidth and the frequency range is limited only by the design of the array.

  2. Economics of satellite communications systems

    Science.gov (United States)

    Pritchard, Wilbur L.

    This paper is partly a tutorial, telling systematically how one goes about calculating the total annual costs of a satellite communications system, and partly the expression of some original ideas on the choice of parameters so as to minimize these costs. The calculation of costs can be divided into two broad categories. The first is technical and is concerned with estimating what particular equipment will cost and what will be the annual expense to maintain and operate it. One starts in the estimation of any new system by listing the principal items of equipment, such as satellites, earth stations of various sizes and functions, telemetry and tracking equipment and terrestrial interfaces, and then estimating how much each item will cost. Methods are presented for generating such estimates, based on a knowledge of the gross parameters, such as antenna size, coverage area, transmitter power and information rate. These parameters determine the system performance and it is usually possible, knowing them, to estimate the costs of the equipment rather well. Some formulae based on regression analyses are presented. Methods are then given for estimating closely related expenses, such as maintenance and operation, and then an approximate method is developed for estimating terrestrial interconnection costs. It is pointed out that in specific cases when tariff and geographical information are available, it is usually better to work with specific data, but nonetheless it is often desirable, especially in global system estimating, to approximate these interconnect costs without recourse to individual tariffs. The procedure results in a set of costs for the purchase of equipment and its maintenance, and a schedule of payments. Some payments will be incurred during the manufacture of the satellite and before any systems operation, but many will not be incurred until the system is no longer in use, e.g. incentives. In any case, with the methods presented in the first section, one

  3. Space industrialization - Education. [via communication satellites

    Science.gov (United States)

    Joels, K. M.

    1978-01-01

    The components of an educational system based on, and perhaps enhanced by, space industrialization communications technology are considered. Satellite technology has introduced a synoptic distribution system for various transmittable educational media. The cost of communications satellite distribution for educational programming has been high. It has, therefore, been proposed to utilize Space Shuttle related technology and Large Space Structures (LSS) to construct a system with a quantum advancement in communication capability and a quantum reduction in user cost. LSS for communications purposes have three basic advantages for both developed and emerging nations, including the ability to distribute signals over wide geographic areas, the reduced cost of satellite communications systems versus installation of land based systems, and the ability of a communication satellite system to create instant educational networks.

  4. Activities of Canadian Satellite Communications, Inc.

    Science.gov (United States)

    1992-12-01

    Canadian Satellite Communications (Cancom) has as its core business the provision of television and radio signals to cable systems in Canada, with the objective of making affordable broadcast signals available to remote and/or small communities. Cancom also provides direct-to-home services to backyard receiving dishes, as well as satellite digital data business communications services, satellite business television, and satellite network services. Its business communication services range from satellite links for big-city businesses with small branch operations located far from major centers, to a mobile messaging and tracking system for the trucking industry. Revenues in 1992 totalled $48,212,000 and net income was just over $7 million. Cancom bought 10 percent interest in Leosat Corp. of Washington, DC, who are seeking approval to operate a position locator network from low-orbit satellites. Cancom has also become a partner in SovCan Star Satellite Communications Inc., which will build an international satellite system in partnership with Russia. The first satellite in this east-west business network will be placed in a Russian orbital slot over the Atlantic by 1996, and a second satellite will follow for the Pacific region. This annual report of Cancom's activities for 1992 includes financial statements and a six year financial review.

  5. Digital, Satellite-Based Aeronautical Communication

    Science.gov (United States)

    Davarian, F.

    1989-01-01

    Satellite system relays communication between aircraft and stations on ground. System offers better coverage with direct communication between air and ground, costs less and makes possible new communication services. Carries both voice and data. Because many data exchanged between aircraft and ground contain safety-related information, probability of bit errors essential.

  6. Communication satellites to enter a new age of flexibility

    Science.gov (United States)

    Balty, Cédric; Gayrard, Jean-Didier; Agnieray, Patrick

    2009-07-01

    To cope with the economical and technical evolutions of the communication market and to better compete with or complement terrestrial networks, satellite operators are requiring more flexible satellites. It allows a better fleet planning potential and back-up policy, a more standardized and efficient procurement process, mission adaptation to market evolution and the possibility of early entry in new markets. New technologies that are developed either for terrestrial networks or for space defense applications would become soon available to satellite and equipment manufacturers. A skilful mix of these new technologies with the older and more mature ones should boost satellite performances and bring flexibility to the new generation of communication satellites. This paper reviews the economical and technical environment of the space communication business for the next decade. It identifies the needs and levels of flexibility that are required by the market but also allowed by technologies, in both a top-down and bottom-up approach.

  7. Protected transitional solution to transformational satellite communications

    Science.gov (United States)

    Brand, Jerry C.

    2005-06-01

    As the Warfighter progresses into the next generation battlefield, transformational communications become evident as an enabling technology. Satellite communications become even more vital as the battles range over greater non-contiguous spaces. While current satellite communications provide suitable beyond line-of-sight communications and the Transformational Communications Architecture (TCA) sets the stage for sound information exchange, a realizable transition must occur to ensure successful succession to this higher level. This paper addresses the need for a planned escalation to the next generation satellite communications architecture and offers near-term alternatives. Commercial satellite systems continue to enable the Warfighter to reach back to needed information resources, providing a large majority of available bandwidth. Four areas of concentration for transition include encrypted Telemetry, Tracking and Control (or Command) (TT&C), encrypted and covered data, satellite attack detection and protection, and operational mobility. Solution methodologies include directly embedding COMSEC devices in the satellites and terminals, and supplementing existing terminals with suitable equipment and software. Future satellites planned for near-term launches can be adapted to include commercial grade and higher-level secure equipment. Alternately, the expected use of programmable modems (Software Defined Radios (SDR)) enables incorporation of powerful cipher methods approaching military standards as well as waveforms suitable for on-the-move operation. Minimal equipment and software additions on the satellites can provide reasonable attack detection and protection methods in concert with the planned satellite usage. Network management suite modifications enable cohesive incorporation of these protection schemes. Such transitional ideas offer a smooth and planned transition as the TCA takes life.

  8. Satellite Communication and Long Distance Education

    Directory of Open Access Journals (Sweden)

    Hafied Cangara

    2016-02-01

    Full Text Available Since Indonesia introduced communication satellite for telecommunication network, the satellite has brought a number of advantages for national development in various areas, such as telephone network, mass media development, business, education, politics, security and national defence as well as regional and international cooperation. In education, satellite communication could be used for long-distance learning as implemented by 13 state universities in eastern parts of Indonesia. It is also possible to develop the Open University System in teaching and learning process, particularly since the internet technology has been intensively used

  9. Soviet satellite communications science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Birch, J.N.; Campanella, S.J.; Gordon, G.D.; McElroy, D.R.; Pritchard, W.L.; Stamminger, R.

    1991-08-01

    This is a report by six US scientists and engineers concerning the current state of the art and projections of future Soviet satellite communications technologies. The panel members are experts in satellite stabilization, spacecraft environments, space power generation, launch systems, spacecraft communications sciences and technologies, onboard processing, ground stations, and other technologies that impact communications. The panel assessed the Soviet ability to support high-data-rate space missions at 128 Mbps by evaluating current and projected Soviet satellite communications technologies. A variety of space missions were considered, including Earth-to-Earth communications via satellites in geostationary or highly elliptical orbits, those missions that require space-to-Earth communications via a direct path and those missions that require space-to-Earth communications via a relay satellite. Soviet satellite communications capability, in most cases, is 10 years behind that of the United States and other industrialized nations. However, based upon an analysis of communications links needed to support these missions using current Soviet capabilities, it is well within the current Soviet technology to support certain space missions outlined above at rates of 128 Mbps or higher, although published literature clearly shows that the Soviet Union has not exceeded 60 Mbps in its current space system. These analyses are necessary but not sufficient to determine mission data rates, and other technologies such as onboard processing and storage could limit the mission data rate well below that which could actually be supported via the communications links. Presently, the Soviet Union appears to be content with data rates in the low-Earth-orbit relay via geostationary mode of 12 Mbps. This limit is a direct result of power amplifier limits, spacecraft antenna size, and the utilization of K{sub u}-band frequencies. 91 refs., 16 figs., 15 tabs.

  10. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    Science.gov (United States)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  11. High power communication satellites power systems study

    Science.gov (United States)

    Josloff, Allan T.; Peterson, Jerry R.

    1995-01-01

    This paper discusses a planned study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. These high power satellites can play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities can be significant.

  12. The Emerging Trends in Satellite and Wireless Communications ...

    Indian Academy of Sciences (India)

    Table of contents. The Emerging Trends in Satellite and Wireless Communications Technologies · Satellite Communications · Communications Satellites for Global Coverage · Satellite Transponders · The Four Generations Of Commercial Communication Geo-Sat · PowerPoint Presentation · An Indian Scenario INSAT ...

  13. Multiquantum well beam-steering device for laser satellite communication

    Science.gov (United States)

    Lahat, Roee; Levy, Itamar; Shlomi, Arnon

    2002-01-01

    With the increasing interest in laser satellite communications, new methods are sought to solve the existing problems of accurate and rapid laser beam deflection. Current solutions in the form of galvanometers or piezo fast steering mirrors with one or two degrees of freedom are bulky, power-consuming and slow. The Multi-Quantum Well (MQW) is a semiconductor device with unique potential to steer laser beams without any moving parts. We have conducted a preliminary evaluation of the potential application of the MQW as a laser beam-steering device for laser satellite communication, examining the performance of critical parameters for this type of communications.

  14. Satellite communications - Intelsat and global patterns

    Science.gov (United States)

    Astrain, S.

    1983-10-01

    The global pattern of mankind's population growth is examined, taking into account the exponential increase in population which began only in the 17th century. As world population has grown, trade has increased, and transportation and communications have become vitally important. A revolution in global communications was initiated when Intelsat launched the first international communications satellite, 'Early Bird', in April 1965. Since April 1965, a tremendous development in global communications by means of satellites has taken place. The Intelsat VI satellite will have a capacity of 36,000 telephone circuits plus 2 TV channels, while the capacity of Early Bird was only 240 telephone circuits. Today, Intelsat is truly an international organization which includes 108 member countries. Attention is given to the particular importance of the Intelsat services to the developing countries, the exploration of new technologies and system concepts, and the extension of services to those portions of the global village which have remained electronically isolated.

  15. Mass and power modeling of communication satellites

    Science.gov (United States)

    Price, Kent M.; Pidgeon, David; Tsao, Alex

    1991-01-01

    Analytic estimating relationships for the mass and power requirements for major satellite subsystems are described. The model for each subsystem is keyed to the performance drivers and system requirements that influence their selection and use. Guidelines are also given for choosing among alternative technologies which accounts for other significant variables such as cost, risk, schedule, operations, heritage, and life requirements. These models are intended for application to first order systems analyses, where resources do not warrant detailed development of a communications system scenario. Given this ground rule, the models are simplified to 'smoothed' representation of reality. Therefore, the user is cautioned that cost, schedule, and risk may be significantly impacted where interpolations are sufficiently different from existing hardware as to warrant development of new devices.

  16. SAW based systems for mobile communications satellites

    Science.gov (United States)

    Peach, R. C.; Miller, N.; Lee, M.

    1993-01-01

    Modern mobile communications satellites, such as INMARSAT 3, EMS, and ARTEMIS, use advanced onboard processing to make efficient use of the available L-band spectrum. In all of these cases, high performance surface acoustic wave (SAW) devices are used. SAW filters can provide high selectivity (100-200 kHz transition widths), combined with flat amplitude and linear phase characteristics; their simple construction and radiation hardness also makes them especially suitable for space applications. An overview of the architectures used in the above systems, describing the technologies employed, and the use of bandwidth switchable SAW filtering (BSSF) is given. The tradeoffs to be considered when specifying a SAW based system are analyzed, using both theoretical and experimental data. Empirical rules for estimating SAW filter performance are given. Achievable performance is illustrated using data from the INMARSAT 3 engineering model (EM) processors.

  17. Spread spectrum mobile communication experiment using ETS-V satellite

    Science.gov (United States)

    Ikegami, Tetsushi; Suzuki, Ryutaro; Kadowaki, Naoto; Taira, Shinichi; Sato, Nobuyasu

    1990-01-01

    The spread spectrum technique is attractive for application to mobile satellite communications, because of its random access capability, immunity to inter-system interference, and robustness to overloading. A novel direct sequence spread spectrum communication equipment is developed for land mobile satellite applications. The equipment is developed based on a matched filter technique to improve the initial acquisition performance. The data rate is 2.4 kilobits per sec. and the PN clock rate is 2.4552 mega-Hz. This equipment also has a function of measuring the multipath delay profile of land mobile satellite channel, making use of a correlation property of a PN code. This paper gives an outline of the equipment and the field test results with ETS-V satellite.

  18. Recent Korean R&D in Satellite Communications

    Science.gov (United States)

    Lee, Ho-Jin; Kim, Jae Moung; Lee, Byung-Seub; Lee, Han; Ryoo, Jang-Soo

    The R&D in satellite communications in Korea has been driven mainly by KCC (Korea Communications Commission) but in a small scale compared to Korea space development program organized by MEST (Ministry of Education, Science and Technology). Public and civilian satcom sector R&D has been led mainly by ETRI with small/medium companies contrary to rare investment in private sector while military sector R&D has been orchestrated by ADD with defense industry. By the COMS (Communication, Ocean and Meteorological Satellite) experimental Ka-band payload, Korea pursues a space qualification of own technology for national infrastructure evolution as well as industrialization of space R&D results. Once COMS launched and space qualified in 2009, subsequent application experiments and new technology R&D like UHDTV will entail service and industry promotion. The payload technology is expected for the next Korean commercial satellites or for new OBP satellites. The COMS ground control system and GNSS ground station technologies are under development for COMS operation and enhanced GNSS services along with advent of Galileo respectively. Satellite broadband mobile VSAT based on DVB-S2/RCS (+M) and low profile tracking antennas have been developed for trains, ships, and planes. While APSI is developing GMR-1 based Thuraya handset functions, ETRI is designing IMT-Advanced satellite radio interface for satellite and terrestrial dual-mode handheld communication system like Japanese STICS, with universities' satellite OFDM researches. A 21GHz Ka-band higher-availability scalable HD broadcasting technology and SkyLife's hybrid satellite IPTV technology are being developed. In near term Korea will extend R&D programs to upgrade the space communication infrastructure for universal access to digital opportunity and safer daily life from disaster, and to promote space green IT industrialization, national security, and space resources sovereign. Japanese stakeholders are invited to establish

  19. Worldwide satellite communications for the energy utility industry. Final report

    International Nuclear Information System (INIS)

    Skelton, R.L.

    1998-07-01

    Recent and future generations of low earth orbiting (LEO) satellites are promising new possibilities for using space communications to achieve operational improvements and business expansion in energy supply and delivery industries. The ability to reach remote locations with relatively inexpensive devices and infrastructure is a unique property of satellites. Applications include remote monitoring and control of distributed resources and emergency and personal communication. Satellite systems are emerging as a significant opportunity for investment minded utilities. Over a dozen groups are planning to launch a total of 1200 LEOs in the period from 1996 to 2006, at a probable cost of over $20 Billion. This large number of systems can provide a worldwide mix of narrow band and wideband services including data, voice, video and Internet access. This paper examines the two primary factors which have limited applications in the energy industry: cost and propagation delay. The former has so far limited the technology to fixed communications with a few important sites such as remote substations. The latter has rendered the technology unsuitable for applications where critical protection mechanisms are involved. These constraints are effectively countered by the emerging LEO systems. Big LEOs will be used for voice service, little LEOs will be the systems of choice for most utility data applications. The author concludes that there are good technical and business reasons to reconsider future satellite communications as an option for meeting certain strategic business objectives in power system management and customer oriented information services

  20. The Advanced Communications Technology Satellite (ACTS) capabilities for serving science

    Science.gov (United States)

    Meyer, Thomas R.

    1990-01-01

    Results of research on potential science applications of the NASA Advanced Communications Technology Satellite (ACTS) are presented. Discussed here are: (1) general research on communications related issues; (2) a survey of science-related activities and programs in the local area; (3) interviews of selected scientists and associated telecommunications support personnel whose projects have communications requirements; (4) analysis of linkages between ACTS functionality and science user communications activities and modes of operation; and (5) an analysis of survey results and the projection of conclusions to a national scale.

  1. Satellite communication from user to user

    Science.gov (United States)

    Gern, Manfred

    Satellite communication systems which allow a multitude of user-to-user, point-to-point, and multipoint connections, are presented. The bit rates are 64 kbit/sec and multiples, up to 1.92 Mbit/sec. If required, the ground-stations are installed at the customer's site or at suitable locations in order to serve several customers. However, technical requirements for station location have also to be fulfulled, in order to avoid interference with terrestrial radio services. The increasing number of participants to Satellite Multi Service and INTELSAT Business Services imposes the solution of the problem of communication using cheap techniques. The changes of the German Federal Post Office also permit the economic use of satellite radio techniques for short distances.

  2. Investigation of multipactor breakdown in communication satellite

    Indian Academy of Sciences (India)

    Multipactor breakdown or multipactor discharge is a form of high frequency discharge that may occur in microwave components operating at very low pressures. Some RF components of multi-channel communication satellites have co-axial geometry and handle high RF power under near-vacuum conditions.

  3. Effect of Ionosphere on Geostationary Communication Satellite Signals

    Science.gov (United States)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    Geostationary orbit (GEO) communications satellites allow radio, television, and telephone transmissions to be sent live anywhere in the world. They are extremely important in daily life and also for military applications. Since, satellite communication is an expensive technology addressing crowd of people, it is critical to improve the performance of this technology. GEO satellites are at 35,786 kilometres from Earth's surface situated directly over the equator. A satellite in a geostationary orbit (GEO) appears to stand still in the sky, in a fixed position with respect to an observer on the earth, because the satellite's orbital period is the same as the rotation rate of the Earth. The advantage of this orbit is that ground antennas can be fixed to point towards to satellite without their having to track the satellite's motion. Radio frequency ranges used in satellite communications are C, X, Ku, Ka and even EHG and V-band. Satellite signals are disturbed by atmospheric effects on the path between the satellite and the receiver antenna. These effects are mostly rain, cloud and gaseous attenuation. It is expected that ionosphere has a minor effect on the satellite signals when the ionosphere is quiet. But there are anomalies and perturbations on the structure of ionosphere with respect to geomagnetic field and solar activity and these conditions may cause further affects on the satellite signals. In this study IONOLAB-RAY algorithm is adopted to examine the effect of ionosphere on satellite signals. IONOLAB-RAY is developed to calculate propagation path and characteristics of high frequency signals. The algorithm does not have any frequency limitation and models the plasmasphere up to 20,200 km altitude, so that propagation between a GEO satellite and antenna on Earth can be simulated. The algorithm models inhomogeneous, anisotropic and time dependent structure of the ionosphere with a 3-D spherical grid geometry and calculates physical parameters of the

  4. Ground test of satellite constellation based quantum communication

    OpenAIRE

    Liao, Sheng-Kai; Yong, Hai-Lin; Liu, Chang; Shentu, Guo-Liang; Li, Dong-Dong; Lin, Jin; Dai, Hui; Zhao, Shuang-Qiang; Li, Bo; Guan, Jian-Yu; Chen, Wei; Gong, Yun-Hong; Li, Yang; Lin, Ze-Hong; Pan, Ge-Sheng

    2016-01-01

    Satellite based quantum communication has been proven as a feasible way to achieve global scale quantum communication network. Very recently, a low-Earth-orbit (LEO) satellite has been launched for this purpose. However, with a single satellite, it takes an inefficient 3-day period to provide the worldwide connectivity. On the other hand, similar to how the Iridium system functions in classic communication, satellite constellation (SC) composed of many quantum satellites, could provide global...

  5. Satellite switched FDMA advanced communication technology satellite program

    Science.gov (United States)

    Atwood, S.; Higton, G. H.; Wood, K.; Kline, A.; Furiga, A.; Rausch, M.; Jan, Y.

    1982-01-01

    The satellite switched frequency division multiple access system provided a detailed system architecture that supports a point to point communication system for long haul voice, video and data traffic between small Earth terminals at Ka band frequencies at 30/20 GHz. A detailed system design is presented for the space segment, small terminal/trunking segment at network control segment for domestic traffic model A or B, each totaling 3.8 Gb/s of small terminal traffic and 6.2 Gb/s trunk traffic. The small terminal traffic (3.8 Gb/s) is emphasized, for the satellite router portion of the system design, which is a composite of thousands of Earth stations with digital traffic ranging from a single 32 Kb/s CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as 33 Mb/s. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both traffic models A and B with minimum reorganization of the satellite payload transponder subsystem hardware design. The unique zoning concept allows multiple beam antennas while maximizing multiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicate a weight and dc power budget of 353 lbs, 195 watts for traffic model A and 498 lbs, 244 watts for traffic model B.

  6. Advanced domestic digital satellite communications systems experiments

    Science.gov (United States)

    Iso, A.; Izumisawa, T.; Ishida, N.

    1984-02-01

    The characteristics of advanced digital transmission systems were measured, using newly developed small earth stations and a K-band and C-band communication satellite. Satellite link performance for data, facsimile, video and packet switching information transmission at bit rates ranging from 6.4 kbit/s to 6.3 Mbit/s have been confirmed, using a small K-band earth station and a demand-assignment time division multiple access system. A low-capacity omni-use C-band terminal experiment has verified a telephone channel transmission performance by spread-spectrum multiple access. Single point to multipoint transmission characteristics of the 64 kbit/s data signals from the computer center were tested, using a receive-only 4 GHz earth terminal. Basic satellite link performance was confirmed under clear-sky conditions. Precise satellite orbit and attitude keeping experiments were carried out to obtain precise satellite antenna pointing accuracy for development of K-band earth stations that do not require satellite tracking equipment. Precise station keeping accuracy of 0.02 degrees was obtained.

  7. Some design considerations for planetary relay communications satellites.

    Science.gov (United States)

    Barber, T. A.; Bourke, R. D.

    1966-01-01

    Items affecting information transmitted from payload landed on remote planet to Earth via communications satellite including orbit, transmission policy and orbit injection error effect on communication capability

  8. Advances in MMIC technology for communications satellites

    Science.gov (United States)

    Leonard, Regis F.

    1992-01-01

    This paper discusses NASA Lewis Research Center's program for development of monolithic microwave integrated circuits (MMIC) for application in space communications. Emphasis will be on the improved performance in power amplifiers and low noise receivers which has been made possible by the development of new semiconductor materials and devices. Possible applications of high temperature superconductivity for space communications will also be presented.

  9. Modular approach for satellite communication ground terminals

    Science.gov (United States)

    Gould, G. R.

    1984-01-01

    The trend in satellite communications is toward completely digital, time division multiple access (TDMA) systems with uplink and downlink data rates dictated by the type of service offered. Trunking terminals will operate in the 550 MBPS (megabit per second) region uplink and downlink, whereas customer premise service (CPS) terminals will operate in the 25 to 10 MBPS region uplink and in the 200 MBPS region downlink. Additional criteria for the ground terminals will be to maintain clock sychronization with the system and burst time integrity to within a matter of nanoseconds, to process required order-fire information, to provide adaptive data scrambing, and to compensate for variations in the user input output data rates, and for changes in range in the satellite communications links resulting from satellite perturbations in orbit. To achieve the required adaptability of a ground terminal to the above mentioned variables, programmable building blocks can be developed that will meet all of these requirements. To maintain system synchronization, i.e., all bursted data arriving at the satellite within assigned TDMA windows, ground terminal transmit data rates and burst timing must be maintained within tight tolerances. With a programmable synchronizer as the heart of the terminal timing generation, variable data rates and burst timing tolerances are achievable. In essence, the unit inputs microprocessor generated timing words and outputs discrete timing pulses.

  10. Servicing communication satellites in geostationary orbit

    Science.gov (United States)

    Russell, Paul K.; Price, Kent M.

    1990-01-01

    The econmic benefits of a LEO space station are quantified by identifying alternative operating scenarios utilizing the space station's transportation facilities and assembly and repair facilities. Particular consideration is given to the analysis of the impact of on-orbit assembly and servicing on a typical communications satellite is analyzed. The results of this study show that on-orbit servicing can increase the internal rate of return by as much as 30 percent.

  11. Vibration noise control in laser satellite communication

    Science.gov (United States)

    Saksonov, Avigdor; Shlomi, Arnon; Kopeika, Norman S.

    2001-08-01

    Laser satellite communication has become especially attractive in recent years. Because the laser beam width is narrow than in the RF or microwave range, the transmitted optical power may be significantly reduced. This leads to development of miniature communication systems with extremely low power consumption. On the other hand, the laser communication channel is very sensitive to vibrations of the optical platform. These vibrations cause angular noise in laser beam pointing, comparable to the laser beam width. As result, as significant portion of the optical power between transmitter and receiver is lost and the bit error rate is increased. Consequently, vibration noise control is a critical problem in laser satellite communication. The direction of the laser beam is corrected with a fast steering mirror (FSM). In this paper are presented two approaches for the FSM control. One is the feedback control that uses an LQG algorithm. The second is the direct feed- forward control when vibration noise is measured by three orthogonal accelerometers and drives directly the F SM. The performances of each approach are evaluated using MATLAB simulations.

  12. An up-link power control for demand assignment International Business Satellite Communications Network

    Science.gov (United States)

    Nohara, Mitsuo; Takeuchi, Yoshio; Takahata, Fumio

    Up-link power control (UPC) is one of the essential technologies to provide efficient satellite communication systems operated at frequency bands above 10 GHz. A simple and cost-effective UPC scheme applicable to a demand assignment international business satellite communications system has been developed. This paper presents the UPC scheme, including the hardware implementation and its performance.

  13. Trellis-coded CPM for satellite-based mobile communications

    Science.gov (United States)

    Abrishamkar, Farrokh; Biglieri, Ezio

    1988-01-01

    Digital transmission for satellite-based land mobile communications is discussed. To satisfy the power and bandwidth limitations imposed on such systems, a combination of trellis coding and continuous-phase modulated signals are considered. Some schemes based on this idea are presented, and their performance is analyzed by computer simulation. The results obtained show that a scheme based on directional detection and Viterbi decoding appears promising for practical applications.

  14. Apple - Indian experimental geostationary communication satellite

    Science.gov (United States)

    Rao, U. R.; Vasagam, R. M.

    Developmental steps, responsibilities, design goals, performance characteristics, and support systems for the ISRO Ariane Passenger Payload Experiment (APPLE) experimental GEO communication satellite are described. The spacecraft underwent structural, thermal, engineering, prototype, and flight qualification tests in India before being shipped to Guyana for launch on the third Ariane test flight. APPLE carries a redundant C-band communication transponder fed by a 900 mm diam parabolic reflector. A 6 GHz uplink and 4 GHz downlink are processed through a diplexer, with the receiver employing a low noise GaAs FET amplifier. In-orbit telemetry is provided by a 4095 MHz beacon with a data rate of 64 bits/sec. Two solar panels supply 210 W of power, while an on-board Ni-Cd storage battery stores 240 Wh for the ascent and during eclipse. Teleconferencing has been successfully performed using the spacecraft link.

  15. Medical image transmission via communication satellite: evaluation of ultrasonographic images.

    Science.gov (United States)

    Suzuki, H; Horikoshi, H; Shiba, H; Shimamoto, S

    1996-01-01

    As compared with terrestrial circuits, communication satellites possess superior characteristics such as wide area coverage, broadcasting functions, high capacity, and resistance to disasters. Utilizing the narrow band channel (64 kbps) of the stationary communication satellite JCSAT1 located at an altitude of 36,000 km above the equator, we investigated satelliterelayed dynamic medical images transmitted by video signals, using hepatic ultrasonography as a model. We conclude that the "variable playing speed transmission scheme" proposed by us is effective for the transmission of dynamic images in the narrow band channel. This promises to permit diverse utilization and applications for purposes such as the transmission of other types of ultrasonic images as well as remotely directed medical diagnosis and treatment.

  16. The Future of Satellite Communications Technology.

    Science.gov (United States)

    Nowland, Wayne

    1985-01-01

    Discusses technical advances in satellite technology since the 1960s, and the International Telecommunications Satellite Organization's role in these developments; describes how AUSSAT, Australia's domestic satellite system, exemplifies the latest developments in satellite technology; and reviews satellite system features, possible future…

  17. The Advanced Communication Technology Satellite and ISDN

    Science.gov (United States)

    Lowry, Peter A.

    1996-01-01

    This paper depicts the Advanced Communication Technology Satellite (ACTS) system as a global central office switch. The ground portion of the system is the collection of earth stations or T1-VSAT's (T1 very small aperture terminals). The control software for the T1-VSAT's resides in a single CPU. The software consists of two modules, the modem manager and the call manager. The modem manager (MM) controls the RF modem portion of the T1-VSAT. It processes the orderwires from the satellite or from signaling generated by the call manager (CM). The CM controls the Recom Laboratories MSPs by receiving signaling messages from the stacked MSP shelves ro units and sending appropriate setup commands to them. There are two methods used to setup and process calls in the CM; first by dialing up a circuit using a standard telephone handset or, secondly by using an external processor connected to the CPU's second COM port, by sending and receiving signaling orderwires. It is the use of the external processor which permits the ISDN (Integrated Services Digital Network) Signaling Processor to implement ISDN calls. In August 1993, the initial testing of the ISDN Signaling Processor was carried out at ACTS System Test at Lockheed Marietta, Princeton, NJ using the spacecraft in its test configuration on the ground.

  18. Technical comparison of several global mobile satellite communications systems

    Science.gov (United States)

    Comparetto, Gary M.

    The era of satellite-based mobile satellite communications (MSC) systems started with the first MARISAT satellite which was launched into a geostationary orbit over the Pacific Ocean in 1976 to provide communications between ships and shore stations. The combination of high cost and unacceptably large equipment has kept the space-based MSC systems from appealing to the wider market of personal mobile communications. The progress made over the last ten years, however, in digital voice processing, satellite technology, and component miniaturization has resulted in the viability of satellite-based mobile satellite communications systems to meet the growing market in personal mobile communications using handsets similar to those currently in use with land-based cellular systems. Three of the more mature LEO/MEO satellite systems are addressed in this paper including GLOBALSTAR, Iridium, and Odyssey. The system architectures of each system are presented along with a description of the satellite and user handset designs and the multiaccess techniques employed. It will be shown that, although a number of similarities exist among the system addressed, each system is unique in a variety of significant design areas. It is concluded that the technical feasibility of satellite-based mobile satellite communications systems seems to be secure. It will be challenging, however, for the vendors to actually develop and deploy these systems in a cost effective, timely, and reliable way that meets a continually evolving set of requirements based upon a rapidly changing technology base.

  19. Communication Satellite: Nigeria's Efforts at Bridging Digital Divide ...

    African Journals Online (AJOL)

    Communication Satellite in the wireless age has the potentials of bridging the digital gulf that exists between civilized and developing nation. If well used, communication Satellite is a potent infrastructure of addressing technology convergence for holistic national development. This paper examines Nigeria's technological ...

  20. A Study on Fuel Estimation Algorithms for a Geostationary Communication & Broadcasting Satellite

    Directory of Open Access Journals (Sweden)

    Jong Won Eun

    2000-12-01

    Full Text Available It has been developed to calculate fuel budget for a geostationary communication and broadcasting satellite. It is quite essential that the pre-launch fuel budget estimation must account for the deterministic transfer and drift orbit maneuver requirements. After on-station, the calculation of satellite lifetime should be based on the estimation of remaining fuel and assessment of actual performance. These estimations step from the proper algorithms to produce the prediction of satellite lifetime. This paper concentrates on the fuel estimation method that was studied for calculation of the propellant budget by using the given algorithms. Applications of this method are discussed for a communication and broadcasting satellite.

  1. Personal communications via ACTS satellite HBR transponders

    Science.gov (United States)

    Fang, Russell J. F.

    1991-01-01

    The concept of a fully meshed network of briefcase-sized terminals is presented for personal communications over Ka-band satellite transponders. In this concept, undesirable double-hop delays are avoided for voice communications. The bandwidth and power resources of the transponder are efficiently shared by users in a simple demand-assigned manner via code-division multiple access (CDMA). Voice, data, and facsimile are statistically multiplexed at each terminal. In order to minimize terminal costs, frequency-precorrected, and level-preadjusted continuous-wave tones are sent from the central network control station in each beam so that the terminals in each down-link beam can use these pilots as references for antenna acquisition and tracking, as reliable frequency sources, and as indicators of signal fade for up-link power control (ULPC). The potential CDMA 'near-far' problem due to up-link fades is mitigated by using ULPC. Quasi-burst mode transmission is employed to minimize the potential clock and pseudorandom number code synchronization.

  2. Advanced mobile satellite communications using COMETS satellite in MM-wave and Ka-band

    Science.gov (United States)

    Ohmori, Shingo; Isobe, Shunkichi; Takeuchi, Makoto; Naito, Hideyuki

    1993-01-01

    Early in the 21st century, the demand for personal communications using mobile, hand-held, and VSAT terminals will rapidly increase. In a future system, many different types of services should be provided with one-hop connection. The Communications Research Laboratory (CRL) has studied a future advanced mobile satellite communications system using millimeter wave and Ka band. In 1990, CRL started the Communications and Broadcasting Engineering Test Satellite (COMETS) project. The satellite has been developed in conjunction with NASDA and will be launched in 1997. This paper describes the COMETS payload configuration and the experimental system for the advanced mobile communications mission.

  3. A demand assignment control in international business satellite communications network

    Science.gov (United States)

    Nohara, Mitsuo; Takeuchi, Yoshio; Takahata, Fumio; Hirata, Yasuo

    An experimental system is being developed for use in an international business satellite (IBS) communications network based on demand-assignment (DA) and TDMA techniques. This paper discusses its system design, in particular from the viewpoints of a network configuration, a DA control, and a satellite channel-assignment algorithm. A satellite channel configuration is also presented along with a tradeoff study on transmission rate, HPA output power, satellite resource efficiency, service quality, and so on.

  4. Effect of digital scrambling on satellite communication links

    Science.gov (United States)

    Dessouky, K.

    1985-01-01

    Digital data scrambling has been considered for communication systems using NRZ symbol formats. The purpose is to increase the number of transitions in the data to improve the performance of the symbol synchronizer. This is accomplished without expanding the bandwidth but at the expense of increasing the data bit error rate (BER). Models for the scramblers/descramblers of practical interest are presented together with the appropriate link model. The effects of scrambling on the performance of coded and uncoded links are studied. The results are illustrated by application to the Tracking and Data Relay Satellite System (TDRSS) links. Conclusions regarding the usefulness of scrambling are also given.

  5. Biophysical applications of satellite remote sensing

    CERN Document Server

    Hanes, Jonathan

    2014-01-01

    Including an introduction and historical overview of the field, this comprehensive synthesis of the major biophysical applications of satellite remote sensing includes in-depth discussion of satellite-sourced biophysical metrics such as leaf area index.

  6. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    Science.gov (United States)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  7. Cockpit weather graphics using mobile satellite communications

    Science.gov (United States)

    Seth, Shashi

    1993-01-01

    Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.

  8. Taking the Politics Out of Satellite and Space-Based Communications Protocols

    Science.gov (United States)

    Ivancic, William D.

    2006-01-01

    After many years of studies, experimentation, and deployment, large amounts of misinformation and misconceptions remain regarding applicability of various communications protocols for use in satellite and space-based networks. This paper attempts to remove much of the politics, misconceptions, and misinformation that have plagued spacebased communications protocol development and deployment. This paper provides a common vocabulary for communications; a general discussion of the requirements for various communication environments; an evaluation of tradeoffs between circuit and packet-switching technologies, and the pros and cons of various link, network, transport, application, and security protocols. Included is the applicability of protocol enhancing proxies to NASA, Department of Defense (DOD), and commercial space communication systems.

  9. A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks

    Science.gov (United States)

    Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.

    2000-01-01

    Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.

  10. Live Satellite Communications... An Exciting Teaching Aid

    Science.gov (United States)

    Journal of Aerospace Education, 1976

    1976-01-01

    Describes ways that orbiting satellites carrying amateur radios can be used in the classroom at various grade levels to supplement physics, mathematics, electronics, and social science curricula. (MLH)

  11. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 3: A stochastic rain fade control algorithm for satellite link power via non linear Markow filtering theory

    Science.gov (United States)

    Manning, Robert M.

    1991-01-01

    The dynamic and composite nature of propagation impairments that are incurred on Earth-space communications links at frequencies in and above 30/20 GHz Ka band, i.e., rain attenuation, cloud and/or clear air scintillation, etc., combined with the need to counter such degradations after the small link margins have been exceeded, necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) Project by the implementation of optimal processing schemes derived through the use of the Rain Attenuation Prediction Model and nonlinear Markov filtering theory.

  12. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. Part 2: Theoretical development of a dynamic model and application to rain fade durations and tolerable control delays for fade countermeasures

    Science.gov (United States)

    Manning, Robert M.

    1987-01-01

    A dynamic rain attenuation prediction model is developed for use in obtaining the temporal characteristics, on time scales of minutes or hours, of satellite communication link availability. Analagous to the associated static rain attenuation model, which yields yearly attenuation predictions, this dynamic model is applicable at any location in the world that is characterized by the static rain attenuation statistics peculiar to the geometry of the satellite link and the rain statistics of the location. Such statistics are calculated by employing the formalism of Part I of this report. In fact, the dynamic model presented here is an extension of the static model and reduces to the static model in the appropriate limit. By assuming that rain attenuation is dynamically described by a first-order stochastic differential equation in time and that this random attenuation process is a Markov process, an expression for the associated transition probability is obtained by solving the related forward Kolmogorov equation. This transition probability is then used to obtain such temporal rain attenuation statistics as attenuation durations and allowable attenuation margins versus control system delay.

  13. Integration of Satellite and Terrestrial Systems in Future Multimedia Communications

    OpenAIRE

    Evans, Barry; Werner, Markus; Lutz, Erich; Bousquet, Michel; Corazza, Giovanni E; Maral, Gerard; Rumeau, Robert; Ferro, Erina

    2005-01-01

    In this article we examine the role of satellite communications in future telecommunication networks and service provision. Lessons from the past indicate that satellites are successful as a result of their wide area coverage or speed to market for new services. Niche areas such as coverage of air and sea will persist, but for land masses convergence of fixed, mobile, and broadcasting will dictate that the only way forward for satellites is in an integrated format with terrestrial systems. We...

  14. LEOPACK The integrated services communications system based on LEO satellites

    Science.gov (United States)

    Negoda, A.; Bunin, S.; Bushuev, E.; Dranovsky, V.

    LEOPACK is yet another LEO satellite project which provides global integrated services for 'business' communications. It utilizes packet rather then circuit switching in both terrestrial and satellite chains as well as cellular approach for frequencies use. Original multiple access protocols and decentralized network control make it possible to organize regionally or logically independent and world-wide networks. Relatively small number of satellites (28) provides virtually global network coverage.

  15. An Analysis of Military Use of Commercial Satellite Communications

    National Research Council Canada - National Science Library

    Forest, Benjamin D

    2008-01-01

    Since the Gulf War of 1991, United States military satellite communication (SATCOM) bandwidth demand has increased dramatically, as evidenced by recent usage rates in Operation Enduring Freedom and Operation Iraqi Freedom...

  16. Integration of Commercial Mobile Satellite Services into Naval Communications

    National Research Council Canada - National Science Library

    Stone, Cary

    1997-01-01

    Mobile Satellite Services (MSS) need to be integrated into Naval Communications. DoD SATCOM military owned systems fall well short of meeting DoD SATCOM requirements in general and mobile SATCOM specifically...

  17. Military Dependence on Commercial Satellite Communications Systems - Strength or Vulnerability

    National Research Council Canada - National Science Library

    Hook, Jack

    1999-01-01

    The military's growing dependence on commercial satellite communications systems will become a strength or vulnerability based on how well the right balance is achieved between commercial and military systems...

  18. Computer-Aided Communication Satellite System Analysis and Optimization.

    Science.gov (United States)

    Stagl, Thomas W.; And Others

    Various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. The rationale for selecting General Dynamics/Convair's Satellite Telecommunication Analysis and Modeling Program (STAMP) in modified form to aid in the system costing and sensitivity analysis work in the Program on…

  19. Estimating Effects Of Rain On Ground/Satellite Communication

    Science.gov (United States)

    Manning, R. M.

    1992-01-01

    LeRC-SLAM provides static and dynamic statistical assessment of impact of attenuation by rain on communication link established between Earth terminal and geosynchronous satellite. Program designed for use in specification, design, and assessment of satellite link for any terminal location in continental United States. IBM PC version written in Microsoft QuickBASIC, and Macintosh version written in Microsoft Basic.

  20. Mobile satellite communications in the 1990's

    Science.gov (United States)

    Singh, Jai

    1992-07-01

    The evolution of Inmarsat global services from a single market and single service of the 1980's to all of the key mobile markets and a wide range of new terminals and services in the 1990's is described. An overview of existing mobile satellite services, as well as new services under implementation for introduction in the near and longer term, including a handheld satellite phone (Inmarsat-P), is provided. The initiative taken by Inmarsat in the integration of its global mobile satellite services with global navigation capability derived from GPS (Global Positioning System) and the GLONASS (Russian GPS) navigation satellite systems and the provision of an international civil overlay for GPS/GLONASS integrity and augmentation is highlighted. To complete the overview of the development of mobile satellite services in the 1990's, the known national and regional mobile satellite system plans and the various recent proposals for both orbiting and geostationary satellite systems for proving handheld satellite phone and/or data messaging services are described.

  1. Use of Advanced Solar Cells for Commercial Communication Satellites

    Science.gov (United States)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  2. Key issues of multiple access technique for LEO satellite communication systems

    Institute of Scientific and Technical Information of China (English)

    温萍萍; 顾学迈

    2004-01-01

    The large carrier frequency shift caused by the high-speed movement of satellite (Doppler effects) and the propagation delay on the up-down link are very critical issues in an LEO satellite communication system, which affects both the selection and the implementation of a suitable access method. A Doppler based multiple access technique is used here to control the flow and an MPRMA-HS protocol is proposed for the application in LEO satellite communication systems. The extended simulation trials prove that the proposed scheme seems to be a very promising access method.

  3. Anti-jamming Technology in Small Satellite Communication

    Science.gov (United States)

    Jia, Zixiang

    2018-01-01

    Small satellite communication has an increasingly important position among the wireless communications due to the advantages of low cost and high technology. However, in view of the case that its relay station stays outside the earth, its uplink may face interference from malicious signal frequently. Here this paper classified enumerates existing interferences, and proposes channel signals as main interference by comparison. Based on a basic digital communication process, then this paper discusses the possible anti - jamming techniques that commonly be realized at all stages in diverse processes, and comes to the conclusion that regarding the spread spectrum technology and antenna anti-jamming technology as fundamental direction of future development. This work provides possible thought for the design of new small satellite communication system with the coexistence of multi - technologies. This basic popular science can be consulted for people interested in small satellite communication.

  4. Uses of communication satellites in water utility operations

    Science.gov (United States)

    Tighe, W. S.

    This paper proposes a system to serve the communications needs of the operating side of a water utility and estimates the requirements and capabilities of the equipment needed. The system requires the shared use of a satellite transponder with 100% backup. Messages consist of data packets containing data and control information, plus voice transmission. Satellite communication may have a price advantage in some instances over wire line or VHF radio and have greater survivability in case of a natural disaster. Water and other utilities represent a significant market for low cost mass produced satellite earth terminals.

  5. Advanced Communications Technology Satellite (ACTS): Four-Year System Performance

    Science.gov (United States)

    Acosta, Roberto J.; Bauer, Robert; Krawczyk, Richard J.; Reinhart, Richard C.; Zernic, Michael J.; Gargione, Frank

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) was conceived at the National Aeronautics and Space Administration (NASA) in the late 1970's as a follow-on program to ATS and CTS to continue NASA's long history of satellite communications projects. The ACTS project set the stage for the C-band satellites that started the industry, and later the ACTS project established the use of Ku-band for video distribution and direct-to-home broadcasting. ACTS, launched in September 1993 from the space shuttle, created a revolution in satellite system architecture by using digital communications techniques employing key technologies such as a fast hopping multibeam antenna, an on-board baseband processor, a wide-band microwave switch matrix, adaptive rain fade compensation, and the use of 900 MHz transponders operating at Ka-band frequencies. This paper describes the lessons learned in each of the key ACTS technology areas, as well as in the propagation investigations.

  6. COMMUNICATION SATELLITES FOR EDUCATION, SCIENCE AND CULTURE. REPORTS AND PAPERS ON MASS COMMUNICATION, NO. 53.

    Science.gov (United States)

    SCHRAMM, WILBUR

    THE TECHNOLOGY OF COMMUNICATION SATELLITES IS SUFFICIENTLY ADVANCED THAT CONCERNED AGENCIES, SUCH AS UNESCO, SHOULD BEGIN TO PLAN FOR THEIR USE IN EXCHANGE OF DATA, NEWS TRANSMISSION, CULTURAL EXCHANGE, AND EDUCATION. GROUNDWORK IN TECHNOLOGY, IN THE DESIGN OF A SATELLITE COMMUNICATION SYSTEM, IN VALUE JUDGMENTS, IN AGREEMENTS OF COOPERATION AND…

  7. Satellite communications for the next generation telecommunication services and networks

    Science.gov (United States)

    Chitre, D. M.

    1991-01-01

    Satellite communications can play an important role in provisioning the next-generation telecommunication services and networks, provided the protocols specifying these services and networks are satellite-compatible and the satellite subnetworks, consisting of earth stations interconnected by the processor and the switch on board the satellite, interwork effectively with the terrestrial networks. The specific parameters and procedures of frame relay and broadband integrated services digital network (B-ISDN) protocols which are impacted by a satellite delay. Congestion and resource management functions for frame relay and B-ISDN are discussed in detail, describing the division of these functions between earth stations and on board the satellite. Specific onboard and ground functions are identified as potential candidates for their implementation via neural network technology.

  8. Performances des applications IP dans les systèmes de communications par satellite : cas du DVB-RCS et du DVB-S2

    OpenAIRE

    Jegham , Nizar

    2008-01-01

    Despite of a number of IP satellite networks developed and deployed, only a limited number of studies and feedbacks about the performance is available. IP over satellite systems raises several constraints. One of the main reasons is the lack of adaptation of IP protocol, initially designed for terrestrial wired networks, to the large bandwidth delay product of the satellite media. Another reason is a lack of coordination between the IP protocol stack upper layer and the satellite MAC and phys...

  9. 47 CFR 25.401 - Satellite DARS applications subject to competitive bidding.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Satellite DARS applications subject to competitive bidding. 25.401 Section 25.401 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Competitive Bidding Procedures for DARS § 25.401...

  10. Satellite systems for personal applications concepts and technology

    CERN Document Server

    Richharia, Madhavendra

    2010-01-01

    Presents the concepts, technology, and role of satellite systems in support of personal applications, such as mobile and broadband communications, navigation, television, radio and multimedia broadcasting, safety of life services, etc. This book presents a novel perspective on satellite systems, reflecting the modern personal technology context, and hence a focus on the individual as end-user. The book begins by outlining key generic concepts before discussing techniques adopted in particular application areas; next, it exemplifies these techniques through discussion of state-of-art c

  11. Modeling and Performance Analysis of 10 Gbps Inter-satellite Optical Wireless Communication Link

    Science.gov (United States)

    Singh, Mehtab

    2017-12-01

    Free-space optical (FSO) communication has the advantages of two of the most predominant data transmission technologies - optical fiber communication and wireless communication. Most of the technical aspects of FSO are similar to that of optical fiber communication, with major difference in the information signal propagation medium which is free space in case of FSO rather than silica glass in optical fiber communication. One of the most important applications of FSO is inter-satellite optical wireless communication (IsOWC) links which will be deployed in the future in space. The IsOWC links have many advantages over the previously existing microwave satellite communication technologies such as higher bandwidth, lower power consumption, low cost of implementation, light size, and weight. In this paper, modeling and performance analysis of a 10-Gbps inter-satellite communication link with two satellites separated at a distance of 1,200 km has been done using OPTISYSTEM simulation software. Performance has been analyzed on the basis of quality factor, signal to noise ratio (SNR), and total power of the received signal.

  12. Denying Access to Commercial Communications Satellites

    National Research Council Canada - National Science Library

    Washington, Tania

    1999-01-01

    .... Commercial systems such as Orion, Panamsat, Iridium and Globalstar will provide the U.S. military and its potential adversaries with a relatively inexpensive and highly effective means to increase the command, control and communications (C3...

  13. Medical image transmission via communication satellite. Evaluation of bone scintigraphy

    International Nuclear Information System (INIS)

    Suzuki, Hideki; Inoue, Tomio; Endo, Keigo; Shimamoto, Shigeru.

    1995-01-01

    As compared with terrestrial circuits, the communication satellite possesses superior characteristics such as wide area coverage, broadcasting, high capacity, and robustness to disasters. Utilizing the narrow band channel (64 kbps) of the geostationary satellite JCSAT 1 located at the altitude of 36,000 km above the equator, the authors investigated satellite-relayed medical imagings by video signals, with bone scintigraphy as a model. Each bone scintigraphy was taken by a handy-video camera, digitalized and transmitted from faculty of technology located at 25 kilometers apart from our department. Clear bone scintigraphy was obtained via satellite, as seen on the view box. Eight nuclear physicians evaluated 20 cases of bone scintigraphy. ROC (Receiver Operating Characteristic) analysis was performed between the scintigraphies on view box and via satellite by the rating method. The area under the ROC curve was 91.6±2.6% via satellite, and 93.2±2.4% on the view box and there was no significant difference between them. These results suggest that the satellite communication is very useful and effective system to send nuclear imagings to distant institutes. (author)

  14. [Medical image transmission via communication satellite: evaluation of bone scintigraphy].

    Science.gov (United States)

    Suzuki, H; Inoue, T; Endo, K; Shimamoto, S

    1995-10-01

    As compared with terrestrial circuits, the communication satellite possesses superior characteristics such as wide area coverage, broadcasting, high capacity, and robustness to disasters. Utilizing the narrow band channel (64 kbps) of the geostationary satellite JCSAT1 located at the altitude of 36,000 km above the equator, the authors investigated satellite-relayed medical images by video signals, with bone scintigraphy as a model. Each bone scintigraphy was taken by a handy-video camera, digitalized and transmitted from faculty of technology located at 25 kilometers apart from our department. Clear bone scintigraphy was obtained via satellite, as seen on the view box. Eight nuclear physicians evaluated 20 cases of bone scintigraphy. ROC (Receiver Operating Characteristic) analysis was performed between the scintigraphies on view box and via satellite by the rating method. The area under the ROC curve was 91.6 +/- 2.6% via satellite, and 93.2 +/- 2.4% on the view box and there was no significant difference between them. These results suggest that the satellite communication is very useful and effective system to send nuclear imagings to distant institutes.

  15. College curriculum-sharing via CTS. [Communications Technology Satellite

    Science.gov (United States)

    Hudson, H. E.; Guild, P. D.; Coll, D. C.; Lumb, D. R.

    1975-01-01

    Domestic communication satellites and video compression techniques will increase communication channel capacity and reduce cost of video transmission. NASA Ames Research Center, Stanford University and Carleton University are participants in an experiment to develop, demonstrate, and evaluate college course sharing techniques via satellite using video compression. The universities will exchange televised seminar and lecture courses via CTS. The experiment features real-time video compression with channel coding and quadra-phase modulation for reducing transmission bandwidth and power requirements. Evaluation plans and preliminary results of Carleton surveys on student attitudes to televised teaching are presented. Policy implications for the U.S. and Canada are outlined.

  16. DS-CDMA satellite diversity reception for personal satellite communication: Downlink performance analysis

    Science.gov (United States)

    DeGaudenzi, Riccardo; Giannetti, Filippo

    1995-01-01

    The downlink of a satellite-mobile personal communication system employing power-controlled Direct Sequence Code Division Multiple Access (DS-CDMA) and exploiting satellite-diversity is analyzed and its performance compared with a more traditional communication system utilizing single satellite reception. The analytical model developed has been thoroughly validated by means of extensive Monte Carlo computer simulations. It is shown how the capacity gain provided by diversity reception shrinks considerably in the presence of increasing traffic or in the case of light shadowing conditions. Moreover, the quantitative results tend to indicate that to combat system capacity reduction due to intra-system interference, no more than two satellites shall be active over the same region. To achieve higher system capacity, differently from terrestrial cellular systems, Multi-User Detection (MUD) techniques are likely to be required in the mobile user terminal, thus considerably increasing its complexity.

  17. NASA to launch second business communications satellite

    Science.gov (United States)

    1981-01-01

    The two stage Delta 3910 launch vehicle was chosen to place the second small business satellite (SBS-B) into a transfer orbit with an apogee of 36,619 kilometers and a perigee of 167 km, at an inclination of 27.7 degrees to Earth's equator. The firing and separation sequence and the inertial guidance system are described as well as the payload assist module. Facilities and services for tracking and control by NASA, COMSAT, Intelsat, and SBS are outlined and prelaunch operations are summarized.

  18. Payload system tradeoffs for mobile communications satellites

    Science.gov (United States)

    Moody, H. J.

    1990-01-01

    System level trade-offs carried out during Mobile Satellite (M-SAT) design activities are described. These trade-offs relate to the use of low level beam forming, flexible power and spectrum distribution, and selection of the number of beams to cover the service area. It is shown that antenna performance can be improved by sharing horns between beams using a low level beam forming network (BFN). Additionally, greatly increased power utilization is possible using a hybrid matrix concept to share power between beams.

  19. Communications satellite business ventures - Measuring the impact of technology programmes and related policies

    Science.gov (United States)

    Greenberg, J. S.

    1986-01-01

    An economic evaluation and planning procedure which assesses the effects of various policies on fixed satellite business ventures is described. The procedure is based on a stochastic financial simulation model, the Domsat II, which evaluates spacecraft reliability, market performance, and cost uncertainties. The application of the Domsat II model to the assessment of NASA's ion thrusters for on-orbit propulsion and GaAs solar cell technology is discussed. The effects of insurance rates and the self-insurance option on the financial performance of communication satellite business ventures are investigated. The selection of a transportation system for placing the satellites into GEO is analyzed.

  20. Advanced Communication Technology Satellite (ACTS) multibeam antenna technology verification experiments

    Science.gov (United States)

    Acosta, Roberto J.; Larko, Jeffrey M.; Lagin, Alan R.

    1992-01-01

    The Advanced Communication Technology Satellite (ACTS) is a key to reaching NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams, and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna with rapidly reconfigurable hopping and fixed spot beam to serve users equipped with small-aperature terminals within the coverage areas. The proposed antenna technology experiments are designed to evaluate in-orbit ACTS multibeam antenna performance (radiation pattern, gain, cross pol levels, etc.).

  1. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 1: Theoretical development and application to yearly predictions for selected cities in the United States

    Science.gov (United States)

    Manning, Robert M.

    1986-01-01

    A rain attenuation prediction model is described for use in calculating satellite communication link availability for any specific location in the world that is characterized by an extended record of rainfall. Such a formalism is necessary for the accurate assessment of such availability predictions in the case of the small user-terminal concept of the Advanced Communication Technology Satellite (ACTS) Project. The model employs the theory of extreme value statistics to generate the necessary statistical rainrate parameters from rain data in the form compiled by the National Weather Service. These location dependent rain statistics are then applied to a rain attenuation model to obtain a yearly prediction of the occurrence of attenuation on any satellite link at that location. The predictions of this model are compared to those of the Crane Two-Component Rain Model and some empirical data and found to be very good. The model is then used to calculate rain attenuation statistics at 59 locations in the United States (including Alaska and Hawaii) for the 20 GHz downlinks and 30 GHz uplinks of the proposed ACTS system. The flexibility of this modeling formalism is such that it allows a complete and unified treatment of the temporal aspects of rain attenuation that leads to the design of an optimum stochastic power control algorithm, the purpose of which is to efficiently counter such rain fades on a satellite link.

  2. Modulation/demodulation techniques for satellite communications. Part 1: Background

    Science.gov (United States)

    Omura, J. K.; Simon, M. K.

    1981-01-01

    Basic characteristics of digital data transmission systems described include the physical communication links, the notion of bandwidth, FCC regulations, and performance measurements such as bit rates, bit error probabilities, throughputs, and delays. The error probability performance and spectral characteristics of various modulation/demodulation techniques commonly used or proposed for use in radio and satellite communication links are summarized. Forward error correction with block or convolutional codes is also discussed along with the important coding parameter, channel cutoff rate.

  3. Applications of Geostationary Satellite Data to Aviation

    Science.gov (United States)

    Ellrod, Gary P.; Pryor, Kenneth

    2018-03-01

    Weather is by far the most important factor in air traffic delays in the United States' National Airspace System (NAS) according to the Federal Aviation Administration (FAA). Geostationary satellites have been an effective tool for the monitoring of meteorological conditions that affect aviation operations since the launch of the first Synchronous Meteorological Satellite (SMS) in the United States in 1974. This paper will review the global use of geostationary satellites in support of aviation weather since their inception, with an emphasis on the latest generation of satellites, such as Geostationary Operational Environmental Satellite (GOES)-R (16) with its Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM). Specific applications discussed in this paper include monitoring of convective storms and their associated hazards, fog and low stratus, turbulence, volcanic hazards, and aircraft icing.

  4. The C3PO project: a laser communication system concept for small satellites

    Science.gov (United States)

    d'Humières, Benoît; Esmiller, Bruno; Gouy, Yann; Steck, Emilie; Quintana, Crisanto; Faulkner, Graham; O'Brien, Dominic; Sproll, Fabian; Wagner, Paul; Hampf, Daniel; Riede, Wolfgang; Salter, Michael; Wang, Qin; Platt, Duncan; Jakonis, Darius; Piao, Xiaoyu; Karlsson, Mikael; Oberg, Olof; Petermann, Ingemar; Michalkiewicz, Aneta; Krezel, Jerzy; Debowska, Anna; Thueux, Yoann

    2017-02-01

    The satellite market is shifting towards smaller (micro and nanosatellites), lowered mass and increased performance platforms. Nanosatellites and picosatellites have been used for a number of new, innovative and unique payloads and missions. This trend requires new concepts for a reduced size, a better performance/weight ratio and a reduction of onboard power consumption. In this context, disruptive technologies, such as laser-optical communication systems, are opening new possibilities. This paper presents the C3PO1 system, "advanced Concept for laser uplink/ downlink CommuniCation with sPace Objects", and the first results of the development of its key technologies. This project targets the design of a communications system that uses a ground-based laser to illuminate a satellite, and a Modulating Retro-Reflector (MRR) to return a beam of light modulated by data to the ground. This enables a downlink, without a laser source on the satellite. This architecture suits well to small satellite applications so as high data rates are potentially provided with very low board mass. C3PO project aims to achieve data rates of 1Gbit/s between LEO satellites and Earth with a communication payload mass of less than 1kilogram. In this paper, results of the initial experiments and demonstration of the key technologies will be shown.

  5. DOA estimation for attitude determination on communication satellites

    Directory of Open Access Journals (Sweden)

    Yang Bin

    2014-06-01

    Full Text Available In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA estimation of a ground signal source. It differs from optical measurement, magnetic field measurement, inertial measurement, and global positioning system (GPS attitude determination. The proposed method is characterized by taking the ground signal source as the attitude reference and acquiring attitude information from DOA estimation. Firstly, an attitude measurement equation with DOA estimation is derived in detail. Then, the error of the measurement equation is analyzed. Finally, an attitude determination algorithm is presented using a dynamic model, the attitude measurement equation, and measurement errors. A developing low Earth orbit (LEO satellite which tests mobile communication technology with smart antennas can be stabilized in three axes by corporately using a magnetometer, reaction wheels, and three-axis magnetorquer rods. Based on the communication satellite, simulation results demonstrate the effectiveness of the method. The method could be a backup of attitude determination to prevent a system failure on the satellite. Its precision depends on the number of snapshots and the input signal-to-noise ratio (SNR with DOA estimation.

  6. Research of remote control for Chinese Antarctica Telescope based on iridium satellite communication

    Science.gov (United States)

    Xu, Lingzhe; Yang, Shihai

    2010-07-01

    Astronomers are ever dreaming of sites with best seeing on the Earth surface for celestial observation, and the Antarctica is one of a few such sites only left owing to the global air pollution. However, Antarctica region is largely unaccessible for human being due to lacking of fundamental living conditions, travel facilities and effective ways of communication. Worst of all, the popular internet source as a general way of communication scarcely exists there. Facing such a dilemma and as a solution remote control and data transmission for telescopes through iridium satellite communication has been put forward for the Chinese network Antarctic Schmidt Telescopes 3 (AST3), which is currently under all round research and development. This paper presents iridium satellite-based remote control application adapted to telescope control. The pioneer work in China involves hardware and software configuration utilizing techniques for reliable and secure communication, which is outlined in the paper too.

  7. A network architecture for International Business Satellite communications

    Science.gov (United States)

    Takahata, Fumio; Nohara, Mitsuo; Takeuchi, Yoshio

    Demand Assignment (DA) control is expected to be introduced in the International Business Satellte communications (IBS) network in order to cope with a growing international business traffic. The paper discusses the DA/IBS network from the viewpoints of network configuration, satellite channel configuration and DA control. The network configuration proposed here consists of one Central Station with network management function and several Network Coordination Stations with user management function. A satellite channel configuration is also presented along with a tradeoff study on transmission bit rate, high power amplifier output power requirement, and service quality. The DA control flow and protocol based on CCITT Signalling System No. 7 are also proposed.

  8. Communication Media and Educational Technology: An Overview and Assessment with Reference to Communication Satellites.

    Science.gov (United States)

    Ohlman, Herbert

    In this survey and analysis of the present state and future trends of communication media and educational technology, particular emphasis is placed on the potential uses of communication satellites and the substitution of electronic transmission for physical distribution of educational materials. The author analyzes in detail the characteristics…

  9. Proposed advanced satellite applications utilizing space nuclear power systems

    International Nuclear Information System (INIS)

    Bailey, P.G.; Isenberg, L.

    1990-01-01

    A review of the status of space nuclear reactor systems and their possible applications is presented. Such systems have been developed over the past twenty years and are capable of use in various military and civilian applications in the 5-1000 kWe power range. The capabilities and limitations of the currently proposed nuclear reactor systems are summarized. Safety issues are shown to be identified, and if properly addressed should not pose a hindrance. Applications are summarized for the federal and civilian community. These applications include both low and high altitude satellite surveillance missions, communications satellites, planetary probes, low and high power lunar and planetary base power systems, broad-band global telecommunications, air traffic control, and high-definition television

  10. 22 CFR 123.27 - Special licensing regime for export to U.S. allies of commercial communications satellite...

    Science.gov (United States)

    2010-04-01

    .... allies of commercial communications satellite components, systems, parts, accessories, attachments and... export to U.S. allies of commercial communications satellite components, systems, parts, accessories... associated technical data for commercial communications satellites, and who are so registered with the...

  11. Networks systems and operations. [wideband communication techniques for data links with satellites

    Science.gov (United States)

    1975-01-01

    The application of wideband communication techniques for data links with satellites is discussed. A diagram of the demand assigned voice communications system is provided. The development of prototype integrated spacecraft paramps at S- and C-bands is described and the performance of space-qualified paramps is tabulated. The characteristics of a dual parabolic cylinder monopulse zoom antenna for use with the tracking and data relay satellite system (TDRSS) are analyzed. The development of a universally applicable transponder at S-band is reported. A block diagram of the major subassemblies of the S-band transponder is included. The technology aspects of network timing and synchronization of communication systems are to show the use of the Omega navigation system. The telemetry data compression system used during the Skylab program is evaluated.

  12. Communications satellites in the national and global health care information infrastructure: their role, impact, and issues

    Science.gov (United States)

    Zuzek, J. E.; Bhasin, K. B.

    1996-01-01

    Health care services delivered from a distance, known collectively as telemedicine, are being increasingly demonstrated on various transmission media. Telemedicine activities have included diagnosis by a doctor at a remote location, emergency and disaster medical assistance, medical education, and medical informatics. The ability of communications satellites to offer communication channels and bandwidth on demand, connectivity to mobile, remote and under served regions, and global access will afford them a critical role for telemedicine applications within the National and Global Information Infrastructure (NII/GII). The importance that communications satellites will have in telemedicine applications within the NII/GII the differences in requirements for NII vs. GII, the major issues such as interoperability, confidentiality, quality, availability, and costs, and preliminary conclusions for future usability based on the review of several recent trails at national and global levels are presented.

  13. Advanced mobile satellite communications system using Ka and MM-wave bands in Japan's R and D satellite project

    Science.gov (United States)

    Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru

    1991-01-01

    Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.

  14. 78 FR 31576 - Enforcement Proceeding; Certain Two-Way Global Satellite Communication Devices, System and...

    Science.gov (United States)

    2013-05-24

    ...-Way Global Satellite Communication Devices, System and Components Thereof; Notice of Institution of... importation of certain two-way global satellite communication devices, system and components thereof by reason... importation any two-way global satellite communication devices, system, and components thereof that infringe...

  15. Emerging markets for satellite data communications in the public service

    Science.gov (United States)

    Potter, J. G.

    1978-01-01

    The paper discusses some of the current and potential markets for satellite data communications as projected by the Public Service Satellite Consortium (PSSC). Organizations in the public service sector are divided into three categories, depending on their expected benefits and organizational changes due to increased satellite telecommunications use: A - modest institutional adjustments are necessary and significant productivity gains are likely; B - institutional requirements picture is promising, but more information is needed to assess benefits and risk; and C - major institutional adjustments are needed, risks are high but possible benefits are high. These criteria are applied to the U.S. health care system, continuing education, equipment maintenance, libraries, environmental monitoring, and other potential markets. The potential revenues are seen to be significant, but what is needed is a cooperative effort by common carriers and major public service institutions to aggregate the market.

  16. First satellite mobile communication trials using BLQS-CDMA

    Science.gov (United States)

    Luzdemateo, Maria; Johns, Simon; Dothey, Michel; Vanhimbeeck, Carl; Deman, Ivan; Wery, Bruno

    1993-01-01

    In this paper, technical results obtained in the first MSBN Land mobile technical trial are reported. MSBN (Mobile Satellite Business Network) is a new program undertaken by the European Space Agency (ESA) to promote mobile satellite communication in Europe, in particular voice capability. The first phase of the MSBN system implementation plan is an experimental phase. Its purpose is to evaluate through field experiments the performance of the MSBN system prior to finalization of its specifications. Particularly, the objective is to verify in the field and possibly improve the performance of the novel satellite access technique BLQS-CDMA (Band Limited Quasi-Synchronous-Code Division Multiple Access), which is proposed as baseline for the MSBN.

  17. The 30/20 GHz communications satellite trunking network study

    Science.gov (United States)

    Kolb, W.

    1981-01-01

    Alternative transmission media for a CONUS-wide trunking network in the years 1990 and 2000 are examined. The alternative technologies comprised fiber optic cable, conventional C- and Ku-band satellites, and 30/20 GHz satellites. Three levels of implementation were considered - a 10-city network, a 20-city network, and a 40-city network. The cities selected were the major metropolitan areas with the greatest communications demand. All intercity voice, data, and video traffic carried more than 40 miles was included in the analysis. In the optimized network, traffic transmitted less than 500 miles was found to be better served by fiber optic cable in 1990. By the year 2000, the crossover point would be down to 200 miles, assuming availability of 30/20 GHz satellites.

  18. Broadband and scalable mobile satellite communication system for future access networks

    Science.gov (United States)

    Ohata, Kohei; Kobayashi, Kiyoshi; Nakahira, Katsuya; Ueba, Masazumi

    2005-07-01

    Due to the recent market trends, NTT has begun research into next generation satellite communication systems, such as broadband and scalable mobile communication systems. One service application objective is to provide broadband Internet access for transportation systems, temporal broadband access networks and telemetries to remote areas. While these are niche markets the total amount of capacity should be significant. We set a 1-Gb/s total transmission capacity as our goal. Our key concern is the system cost, which means that the system should be unified system with diversified services and not tailored for each application. As satellites account for a large portion of the total system cost, we set the target satellite size as a small, one-ton class dry mass with a 2-kW class payload power. In addition to the payload power and weight, the mobile satellite's frequency band is extremely limited. Therefore, we need to develop innovative technologies that will reduce the weight and maximize spectrum and power efficiency. Another challenge is the need for the system to handle up to 50 dB and a wide data rate range of other applications. This paper describes the key communication system technologies; the frequency reuse strategy, multiplexing scheme, resource allocation scheme, and QoS management algorithm to ensure excellent spectrum efficiency and support a variety of services and quality requirements in the mobile environment.

  19. DOD Use of Commercial Wideband Satellite Communications Systems: How Much is Needed, and How Do We Get It?

    National Research Council Canada - National Science Library

    Hutchens, Robert

    2001-01-01

    ..., A key enabler to this end is sufficient wideband satellite communications connectivity DoD's organic wideband satellite communications capabilities are inadequate, so commercial services must be used...

  20. Integration of an ion engine on the Communications Technology Satellite.

    Science.gov (United States)

    Payne, W. F.; Finke, R. C.

    1972-01-01

    An ion engine subsystem intended for satellite stationkeeping tasks is described. Ion thrusters are chosen to perform the task because the specific impulse is at least an order of magnitude higher than the commonly used reaction control jets. The higher the value of specific impulse, the greater the total impulse that can be attained for a given weight of propellant, hence cost benefits result. The integration, subsystem testing, and the operating plans for the ion engine experiment to be flown in 1975 on the Canadian Communications Technology Satellite (CTS) are described. The subsystem is designed to demonstrate north-south stationkeeping, attitude control by means of thrust vectoring, long-term space storage and restart capability, and compatibility with a high powered communications transponder.

  1. Spectrum and power allocation in cognitive multi-beam satellite communications with flexible satellite payloads

    Science.gov (United States)

    Liu, Zhihui; Wang, Haitao; Dong, Tao; Yin, Jie; Zhang, Tingting; Guo, Hui; Li, Dequan

    2018-02-01

    In this paper, the cognitive multi-beam satellite system, i.e., two satellite networks coexist through underlay spectrum sharing, is studied, and the power and spectrum allocation method is employed for interference control and throughput maximization. Specifically, the multi-beam satellite with flexible payload reuses the authorized spectrum of the primary satellite, adjusting its transmission band as well as power for each beam to limit its interference on the primary satellite below the prescribed threshold and maximize its own achievable rate. This power and spectrum allocation problem is formulated as a mixed nonconvex programming. For effective solving, we first introduce the concept of signal to leakage plus noise ratio (SLNR) to decouple multiple transmit power variables in the both objective and constraint, and then propose a heuristic algorithm to assign spectrum sub-bands. After that, a stepwise plus slice-wise algorithm is proposed to implement the discrete power allocation. Finally, simulation results show that adopting cognitive technology can improve spectrum efficiency of the satellite communication.

  2. Mechanical Design of Military Communication Satellite X-band PCM

    Directory of Open Access Journals (Sweden)

    Hyung Je Woo

    1998-12-01

    Full Text Available Before an actual military communications satellite is designed and constructed, a feasibility study should take place. The basic functions of such system can be observed and demonstrated in an X-Band payload simulator. For this purpose a Payload Concept Model (PCM for X-Band payload subsystem has been developed to simulate the workings of an actual military communications payload. This paper explains and illustrates the mechanical design, manufacture, and integration of the PCM. Basic RF tests also have been performed in order to verify the design requirement of the system. The results demonstrate successful development of the PCM and operation without RF losses.

  3. Attitude Control Subsystem for the Advanced Communications Technology Satellite

    Science.gov (United States)

    Hewston, Alan W.; Mitchell, Kent A.; Sawicki, Jerzy T.

    1996-01-01

    This paper provides an overview of the on-orbit operation of the Attitude Control Subsystem (ACS) for the Advanced Communications Technology Satellite (ACTS). The three ACTS control axes are defined, including the means for sensing attitude and determining the pointing errors. The desired pointing requirements for various modes of control as well as the disturbance torques that oppose the control are identified. Finally, the hardware actuators and control loops utilized to reduce the attitude error are described.

  4. Spread Spectrum Techniques and their Applications to Wireless Communications

    DEFF Research Database (Denmark)

    Prasad, Ramjee; Cianca, E.

    2005-01-01

    Spread Spectrum (SS) radio communications is on the verge of potentially explosive commercial development An SS-based multiple access, such as CDMA, has been chosen for 3G wireless communications. Other current applications of SS techniues are in Wireless LANs and Satellite Navigation Systems...

  5. Applications of Satellite Observations of Tropospheric Composition

    Science.gov (United States)

    Monks, Paul S.; Beirle, Steffen

    A striking feature of the field of tropospheric composition is the sheer number of chemical species that have been detected and measured with satellite instruments. The measurements have found application both in atmospheric chemistry itself, providing evidence, for example, of unexpected cryochemistry in the Arctic regions, and also in environmental monitoring with, for example, the observed growth in NO2 emissions over eastern Asia. Chapter 8 gives an overview of the utility of satellite observations for measuring tropospheric composition, dealing with each of the many compounds seen in detail. A comprehensive compound by compound table of the many studies performed is a most useful feature.

  6. Satellite information for wind energy applications

    DEFF Research Database (Denmark)

    Nielsen, M.; Astrup, Poul; Hasager, Charlotte Bay

    2004-01-01

    An introduction to satellite information relevant for wind energy applications is given. It includes digital elevation model (DEM) data based on satellite observations. The Shuttle Radar Topography Mission (SRTM) is useful for regional scale wind resourcestudies. Comparison results from complex...... terrain in Spain and flat terrain in Denmark are found to be acceptable for both sites. Also land cover type information can be retrieved from satellite observations. Land cover type maps have to be combined withroughness data from field observation or literature values. Land cover type maps constitute...... an aid to map larger regions within shorter time. Field site observations of obstacles and hedges are still necessary. The raster-based map information from DEMand land cover maps can be converted for use in WASP. For offshore locations it is possible to estimate the wind resources based on ocean surface...

  7. Software defined radio (SDR) architecture for concurrent multi-satellite communications

    Science.gov (United States)

    Maheshwarappa, Mamatha R.

    SDRs have emerged as a viable approach for space communications over the last decade by delivering low-cost hardware and flexible software solutions. The flexibility introduced by the SDR concept not only allows the realisation of concurrent multiple standards on one platform, but also promises to ease the implementation of one communication standard on differing SDR platforms by signal porting. This technology would facilitate implementing reconfigurable nodes for parallel satellite reception in Mobile/Deployable Ground Segments and Distributed Satellite Systems (DSS) for amateur radio/university satellite operations. This work outlines the recent advances in embedded technologies that can enable new communication architectures for concurrent multi-satellite or satellite-to-ground missions where multi-link challenges are associated. This research proposes a novel concept to run advanced parallelised SDR back-end technologies in a Commercial-Off-The-Shelf (COTS) embedded system that can support multi-signal processing for multi-satellite scenarios simultaneously. The initial SDR implementation could support only one receiver chain due to system saturation. However, the design was optimised to facilitate multiple signals within the limited resources available on an embedded system at any given time. This was achieved by providing a VHDL solution to the existing Python and C/C++ programming languages along with parallelisation so as to accelerate performance whilst maintaining the flexibility. The improvement in the performance was validated at every stage through profiling. Various cases of concurrent multiple signals with different standards such as frequency (with Doppler effect) and symbol rates were simulated in order to validate the novel architecture proposed in this research. Also, the architecture allows the system to be reconfigurable by providing the opportunity to change the communication standards in soft real-time. The chosen COTS solution provides a

  8. Satellite-based quantum communication terminal employing state-of-the-art technology

    Science.gov (United States)

    Pfennigbauer, Martin; Aspelmeyer, Markus; Leeb, Walter R.; Baister, Guy; Dreischer, Thomas; Jennewein, Thomas; Neckamm, Gregor; Perdigues, Josep M.; Weinfurter, Harald; Zeilinger, Anton

    2005-09-01

    Feature Issue on Optical Wireless Communications (OWC) We investigate the design and the accommodation of a quantum communication transceiver in an existing classical optical communication terminal on board a satellite. Operation from a low earth orbit (LEO) platform (e.g., the International Space Station) would allow transmission of single photons and pairs of entangled photons to ground stations and hence permit quantum communication applications such as quantum cryptography on a global scale. Integration of a source generating entangled photon pairs and single-photon detection into existing optical terminal designs is feasible. Even more, major subunits of the classical terminals such as those for pointing, acquisition, and tracking as well as those providing the required electronic, thermal, and structural backbone can be adapted so as to meet the quantum communication terminal needs.

  9. Data Collection Satellite Application in Precision Agriculture

    Science.gov (United States)

    Durào, O.

    2002-01-01

    's over Brazilian territory. There were 25 platforms when SCD-1 was launched. However this number is growing rapidly to 400 platforms, at first for measurements of water reservoir levels as well as other hydrology applications (The Brazilian Electricity Regulatory Agency - ANEEL is the customer), and for many other different applications such as meteorology, oceanography, environmental monitoring sciences, and people and animal tracking. The clear feeling is that users are discovering a satellite system whose benefits were not previously well understood when launched and being able to propose and come up with different and useful applications. A new field in the country that has a great potential to benefit from this system is agriculture. Per se, this is a very important sector of the Brazilian economy and its international trade. Combining it with space technology may justify the investment of new and low cost dedicated satellites. This paper describes a new proposal for use of the SCD-1,2,CBERS-1 satellite system for precision agriculture. New PCD's would be developed for measurements of chemical content of the soil, such as, for example, Nitrogen and others, beyond humidity and solar incidence. This can lead to a more efficient fertilization, harvesting and even the spray of chemical defensives, with the consequence of environment protection. The PCD's ground network so established, along with the information network already available, combined with the space segment of such a system may, as previously said, be able to justify the investment in low cost satellites with this sole purpose.

  10. Development of Mission and Spacecraft Dynamics Analysis System for Geostationary Communication Satellite

    Directory of Open Access Journals (Sweden)

    Hyeon Cheol Gong

    1998-06-01

    Full Text Available We consider the motion of the subsystems as separate bodies as well as the entire satellite for the attitude and orbit control of a communication satellite by multi-body modeling technique. Thus, the system can be applied to a general communication satellite as well as a specific communication satellite, i.e. Koreasat I, II. The simulation results can be viewed by two-dimensional graphics and three-dimensional animation. The graphical user interface (GUI makes its usage much simpler. We have simulated a couple of scenarios for Koreasat I, II which are being operated as geostationary communication satellites to verify the system performance.

  11. ACTS TDMA network control. [Advanced Communication Technology Satellite

    Science.gov (United States)

    Inukai, T.; Campanella, S. J.

    1984-01-01

    This paper presents basic network control concepts for the Advanced Communications Technology Satellite (ACTS) System. Two experimental systems, called the low-burst-rate and high-burst-rate systems, along with ACTS ground system features, are described. The network control issues addressed include frame structures, acquisition and synchronization procedures, coordinated station burst-time plan and satellite-time plan changes, on-board clock control based on ground drift measurements, rain fade control by means of adaptive forward-error-correction (FEC) coding and transmit power augmentation, and reassignment of channel capacities on demand. The NASA ground system, which includes a primary station, diversity station, and master control station, is also described.

  12. NASA/DARPA advanced communications technology satellite project for evaluation of telemedicine outreach using next-generation communications satellite technology: Mayo Foundation participation.

    Science.gov (United States)

    Gilbert, B K; Mitchell, M P; Bengali, A R; Khandheria, B K

    1999-08-01

    To describe the development of telemedicine capabilities-application of remote consultation and diagnostic techniques-and to evaluate the feasibility and practicality of such clinical outreach to rural and underserved communities with limited telecommunications infrastructures. In 1992, Mayo Foundation (Rochester, Minn, Jacksonville, Fla, and Scottsdale, Ariz), the National Aeronautics and Space Administration, and the Defense Advanced Research Projects Agency collaborated to create a complex network of fiberoptic landlines, video recording systems, satellite terminals, and specially developed data translators linking Mayo sites with other locations in the continental United States on an on-demand basis. The purpose was to transmit data via the asynchronous transfer mode (ATM) digital communications protocol over the Advanced Communications Technology Satellite. The links were intended to provide a conduit for transmission of data for patient-specific consultations between physicians, evaluation of medical imagery, and medical education for clinical staffs at remote sites. Low-data-rate (LDR) experiments went live late in 1993. Mayo Clinic Rochester successfully provided medical consultation and services to 2 small regional medical facilities. High-data-rate (HDR) experiments included studies of remote digital echocardiography, store-and-forward telemedicine, cardiac catheterization, and teleconsultation for congenital heart disease. These studies combined landline data transmission with use of the satellite. The complexity of the routing paths and network components, immaturity of available software, and inexperience with existing telecommunications caused significant study delays. These experiments demonstrated that next-generation satellite technology can provide batch and real-time imagery for telemedicine. The first-generation of the ATM and satellite network technology used in these experiments created several technical problems and inconveniences that should

  13. Crosstalk cancellation on linearly and circularly polarized communications satellite links

    Science.gov (United States)

    Overstreet, W. P.; Bostian, C. W.

    1979-01-01

    The paper discusses the cancellation network approach for reducing crosstalk caused by depolarization on a dual-polarized communications satellite link. If the characteristics of rain depolarization are sufficiently well known, the cancellation network can be designed in a way that reduces system complexity, the most important parameter being the phase of the cross-polarized signal. Relevant theoretical calculations and experimental data are presented. The simplicity of the cancellation system proposed makes it ideal for use with small domestic or private earth terminals.

  14. The 30/20 GHz experimental communications satellite system

    Science.gov (United States)

    Sivo, J. N.

    NASA is continuing to pursue an agressive satellite communications technology development program focused on the 30/20 GHz frequency band. A review of the program progress to date is presented. Included is a discussion of the technology program status as well as a description of the experimental system concept under study. Expected system performance characteristics together with spacecraft and payload configuration details including weight and power budget is presented. Overall program schedules of both the technology development and the flight system development are included.

  15. More About Lens Antenna For Mobile/Satellite Communication

    Science.gov (United States)

    Rahmat-Samii, Y.; Bodnar, D. G.; Rainer, B. K.

    1990-01-01

    Report presents additional details of design of proposed phased-array antenna described in "Lens Antenna for Mobile/Satellite Communication" (NPO-16948). Intended to be compact and to lie flat on top of vehicle on ground. Transmits and receives circularly polarized radiation in frequency ranges of 821 to 825 MHz and 860 to 870 MHz. Transmitting and receiving beams electronically steerable to any of 48 evenly spaced directions to provide complete azimuth coverage, and would be fixed, but wide, in elevation, to provide coverage at elevation angles from 20 degrees to 60 degrees.

  16. Why is CDMA the solution for mobile satellite communication

    Science.gov (United States)

    Gilhousen, Klein S.; Jacobs, Irwin M.; Padovani, Roberto; Weaver, Lindsay A.

    1989-01-01

    It is demonstrated that spread spectrum Code Division Multiple Access (CDMA) systems provide an economically superior solution to satellite mobile communications by increasing the system maximum capacity with respect to single channel per carrier Frequency Division Multiple Access (FDMA) systems. Following the comparative analysis of CDMA and FDMA systems, the design of a model that was developed to test the feasibility of the approach and the performance of a spread spectrum system in a mobile environment. Results of extensive computer simulations as well as laboratory and field tests results are presented.

  17. Data manage and communication of lunar orbital X-ray imaging analyzer in CE-1 satellite

    International Nuclear Information System (INIS)

    Wang Jinzhou; Wang Huanyu; Zhang Chengmo; Liang Xiaohua; Gao Min; CaoXuelei; Zhang Jiayu; Peng Wenxi; Cui Xingzhu; Xu Yupeng; Zhang Yongjie

    2006-01-01

    We present the software design for data management and communication software designed for the Lunar Orbital X-ray Imaging Analyzer in CE-1 Satellite. The software uses the appropriate format to assemble science data package and appropriate command respond mode, realizes the data transferring tasks through the 1553B bus on time, event though the channel bandwidth is under the limited. Also, the memory distribution and management of LOXIA (remote terminal) that fitted the communication with BC(Bus Controller) was introduced. Furthermore, for the spatial application, the security and reliability of software are emphasized. (authors)

  18. Integrating small satellite communication in an autonomous vehicle network: A case for oceanography

    Science.gov (United States)

    Guerra, André G. C.; Ferreira, António Sérgio; Costa, Maria; Nodar-López, Diego; Aguado Agelet, Fernando

    2018-04-01

    Small satellites and autonomous vehicles have greatly evolved in the last few decades. Hundreds of small satellites have been launched with increasing functionalities, in the last few years. Likewise, numerous autonomous vehicles have been built, with decreasing costs and form-factor payloads. Here we focus on combining these two multifaceted assets in an incremental way, with an ultimate goal of alleviating the logistical expenses in remote oceanographic operations. The first goal is to create a highly reliable and constantly available communication link for a network of autonomous vehicles, taking advantage of the small satellite lower cost, with respect to conventional spacecraft, and its higher flexibility. We have developed a test platform as a proving ground for this network, by integrating a satellite software defined radio on an unmanned air vehicle, creating a system of systems, and several tests have been run successfully, over land. As soon as the satellite is fully operational, we will start to move towards a cooperative network of autonomous vehicles and small satellites, with application in maritime operations, both in-situ and remote sensing.

  19. Estimation of the demand for public services communications. [market research and economic analysis for a communications satellite system

    Science.gov (United States)

    1976-01-01

    Market analyses and economic studies are presented to support NASA planning for a communications satellite system to provide public services in health, education, mobile communications, data transfer, and teleconferencing.

  20. Multiple wavelength spectral system simulating background light noise environment in satellite laser communications

    Science.gov (United States)

    Lu, Wei; Sun, Jianfeng; Hou, Peipei; Xu, Qian; Xi, Yueli; Zhou, Yu; Zhu, Funan; Liu, Liren

    2017-08-01

    Performance of satellite laser communications between GEO and LEO satellites can be influenced by background light noise appeared in the field of view due to sunlight or planets and some comets. Such influences should be studied on the ground testing platform before the space application. In this paper, we introduce a simulator that can simulate the real case of background light noise in space environment during the data talking via laser beam between two lonely satellites. This simulator can not only simulate the effect of multi-wavelength spectrum, but also the effects of adjustable angles of field-of-view, large range of adjustable optical power and adjustable deflection speeds of light noise in space environment. We integrate these functions into a device with small and compact size for easily mobile use. Software control function is also achieved via personal computer to adjust these functions arbitrarily. Keywords:

  1. The ACTS Flight System - Cost-Effective Advanced Communications Technology. [Advanced Communication Technology Satellite

    Science.gov (United States)

    Holmes, W. M., Jr.; Beck, G. A.

    1984-01-01

    The multibeam communications package (MCP) for the Advanced Communications Technology Satellite (ACTS) to be STS-launched by NASA in 1988 for experimental demonstration of satellite-switched TDMA (at 220 Mbit/sec) and baseband-processor signal routing (at 110 or 27.5 Mbit/sec) is characterized. The developmental history of the ACTS, the program definition, and the spacecraft-bus and MCP parameters are reviewed and illustrated with drawings, block diagrams, and maps of the coverage plan. Advanced features of the MPC include 4.5-dB-noise-figure 30-GHz FET amplifiers and 20-GHz TWTA transmitters which provide either 40-W or 8-W RF output, depending on rain conditions. The technologies being tested in ACTS can give frequency-reuse factors as high as 20, thus greatly expanding the orbit/spectrum resources available for U.S. communications use.

  2. 77 FR 58579 - Certain Two-Way Global Satellite Communication Devices, System and Components Thereof...

    Science.gov (United States)

    2012-09-21

    ... Communication Devices, System and Components Thereof; Institution of Investigation Pursuant to 19 U.S.C. 1337... certain two-way global satellite communication devices, system and components thereof that infringe one or... within the United States after importation of certain two-way global satellite communication devices...

  3. Cybersecurity threats to satellite communications: Towards a typology of state actor responses

    Science.gov (United States)

    Housen-Couriel, Deborah

    2016-11-01

    both natural and man-made hazards and the possible development of disruptive and destructive counterspace capabilities" [14].Ongoing work under the auspices of UN bodies and other intergovernmental organizations regarding the developing parameters of outer space governance has in recent years sharpened the understanding that a new, unified approach is needed [15]. The underlying assumption of this article is that international law has a key role to play in articulating these "rules of the road" for the activities of state actors relating to satellites, including the imposition of realistic and effective sanctions for those states that do not uphold and implement the applicable legal norms. Yet the additional and relatively unexplored issue of the application of international law to state activities in cyberspace is a relevant legal consideration that also needs to be weighed in evaluating the range of possible state responses to hostile disruption of satellite communications. This consideration is largely absent from existing intergovernmental initiatives regarding outer space governance [16]. Thus, the incorporation of cybersecurity considerations will be an important element of the analysis of harmful interference to satellite transmissions in light of the four regimes reviewed below. Thus, space law imposes upon states the responsibility for actions carried out by satellites under their jurisdiction and control, and duly attributable to them under international law. These actions may include physical damage caused by the creation of space debris that inflicts physical harm to other satellites.The full regime establishing responsibility and stipulating damages is set out in the Liability Convention, which elaborates on OST Article VII. The degree of liability incurred under particular circumstances is stipulated in the Liability Convention's Articles II through VI. For instance, Article II establishes absolute liability "for damage caused by [the launching state

  4. Design of an anti-Rician-fading modem for mobile satellite communication systems

    Science.gov (United States)

    Kojima, Toshiharu; Ishizu, Fumio; Miyake, Makoto; Murakami, Keishi; Fujino, Tadashi

    1995-01-01

    To design a demodulator applicable to mobile satellite communication systems using differential phase shift keying modulation, we have developed key technologies including an anti-Rician-fading demodulation scheme, an initial acquisition scheme, automatic gain control (AGC), automatic frequency control (AFC), and bit timing recovery (BTR). Using these technologies, we have developed one-chip digital signal processor (DSP) modem for mobile terminal, which is compact, of light weight, and of low power consumption. Results of performance test show that the developed DSP modem achieves good performance in terms of bit error ratio in mobile satellite communication environment, i.e., Rician fading channel. It is also shown that the initial acquisition scheme acquires received signal rapidly even if the carrier-to-noise power ratio (CNR) of the received signal is considerably low.

  5. Optimizing communication satellites payload configuration with exact approaches

    Science.gov (United States)

    Stathakis, Apostolos; Danoy, Grégoire; Bouvry, Pascal; Talbi, El-Ghazali; Morelli, Gianluigi

    2015-12-01

    The satellite communications market is competitive and rapidly evolving. The payload, which is in charge of applying frequency conversion and amplification to the signals received from Earth before their retransmission, is made of various components. These include reconfigurable switches that permit the re-routing of signals based on market demand or because of some hardware failure. In order to meet modern requirements, the size and the complexity of current communication payloads are increasing significantly. Consequently, the optimal payload configuration, which was previously done manually by the engineers with the use of computerized schematics, is now becoming a difficult and time consuming task. Efficient optimization techniques are therefore required to find the optimal set(s) of switch positions to optimize some operational objective(s). In order to tackle this challenging problem for the satellite industry, this work proposes two Integer Linear Programming (ILP) models. The first one is single-objective and focuses on the minimization of the length of the longest channel path, while the second one is bi-objective and additionally aims at minimizing the number of switch changes in the payload switch matrix. Experiments are conducted on a large set of instances of realistic payload sizes using the CPLEX® solver and two well-known exact multi-objective algorithms. Numerical results demonstrate the efficiency and limitations of the ILP approach on this real-world problem.

  6. Theory of satellite geodesy applications of satellites to geodesy

    CERN Document Server

    Kaula, William M

    2000-01-01

    The main purpose of this classic text is to demonstrate how Newtonian gravitational theory and Euclidean geometry can be used and developed in the earth's environment. The second is to collect and explain some of the mathematical techniques developed for measuring the earth by satellite.Book chapters include discussions of the earth's gravitational field, with special emphasis on spherical harmonies and the potential of the ellipsoid; matrices and orbital geometry; elliptic motion, linear perturbations, resonance, and other aspects of satellite orbit dynamics; the geometry of satellite obser

  7. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 2

    Science.gov (United States)

    Greenburg, J. S.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-01-01

    The computational procedures used in the evaluation of spacecraft technology programs that impact upon commercial communication satellite operations are discussed. Computer programs and data bases are described.

  8. Environmental statement for Applications Technology Satellite program

    Science.gov (United States)

    1971-01-01

    The experiments, environmental impact, and applications of data collected by ATS are discussed. Data cover communications, navigation, meteorology, data collection (including data from small unattended remote stations such as buoys, seismology and hydrology monitors, etc.), geodesy, and scientific experiments to define the environment at synchronous orbit, and to monitor emissions from the sun.

  9. Satellite information for wind energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Astrup, P.; Bay Hasager, C.

    2004-11-01

    An introduction to satellite information relevant for wind energy applications is given. It includes digital elevation model (DEM) data based on satellite observations. The Shuttle Radar Topography Mission (SRTM) is useful for regional scale wind resource studies. Comparison results from complex terrain in Spain and flat terrain in Denmark are found to be acceptable for both sites. Also land cover type information can be retrieved from satellite observations. Land cover type maps have to be combined with roughness data from field observation or literature values. Land cover type maps constitute an aid to map larger regions within shorter time. Field site observations of obstacles and hedges are still necessary. The raster-based map information from DEM and land cover maps can be converted for use in WASP. For offshore locations it is possible to estimate the wind resources based on ocean surface wind data from several types of satellite observations. The RWT software allows an optimal calculation of SAR wind resource statistics. A tab-file with SAR-based observed wind climate (OWC) data can be obtained for 10 m above sea level and used in WASP. RWT uses a footprint averaging technique to obtain data as similar as possible to mast observations. Maximum-likelihood fitting is used to calculate the Weibull A and k parameters from the constrained data set. Satellite SAR wind maps cover the coastal zone from 3 km and offshore with very detailed information of 400 m by 400 m grid resolution. Spatial trends in mean wind, energy density, Weibull A and k and uncertainty values are provided for the area of interest. Satellite scatterometer wind observations have a spatial resolution of 25 km by 25 km. These data typically represent a site further offshore, and the tab-file statistics should be used in WASP combined with topography and roughness information to assess the coastal wind power potential. Scatterometer wind data are observed {approx} twice per day, whereas SAR only

  10. Scheduling algorithm for data relay satellite optical communication based on artificial intelligent optimization

    Science.gov (United States)

    Zhao, Wei-hu; Zhao, Jing; Zhao, Shang-hong; Li, Yong-jun; Wang, Xiang; Dong, Yi; Dong, Chen

    2013-08-01

    Optical satellite communication with the advantages of broadband, large capacity and low power consuming broke the bottleneck of the traditional microwave satellite communication. The formation of the Space-based Information System with the technology of high performance optical inter-satellite communication and the realization of global seamless coverage and mobile terminal accessing are the necessary trend of the development of optical satellite communication. Considering the resources, missions and restraints of Data Relay Satellite Optical Communication System, a model of optical communication resources scheduling is established and a scheduling algorithm based on artificial intelligent optimization is put forwarded. According to the multi-relay-satellite, multi-user-satellite, multi-optical-antenna and multi-mission with several priority weights, the resources are scheduled reasonable by the operation: "Ascertain Current Mission Scheduling Time" and "Refresh Latter Mission Time-Window". The priority weight is considered as the parameter of the fitness function and the scheduling project is optimized by the Genetic Algorithm. The simulation scenarios including 3 relay satellites with 6 optical antennas, 12 user satellites and 30 missions, the simulation result reveals that the algorithm obtain satisfactory results in both efficiency and performance and resources scheduling model and the optimization algorithm are suitable in multi-relay-satellite, multi-user-satellite, and multi-optical-antenna recourses scheduling problem.

  11. Developing status of satellite remote sensing and its application

    International Nuclear Information System (INIS)

    Zhang Wanliang; Liu Dechang

    2005-01-01

    This paper has discussed the latest development of satellite remote sensing in sensor resolutions, satellite motion models, load forms, data processing and its application. The authors consider that sensor resolutions of satellite remote sensing have increased largely. Valid integration of multisensors is a new idea and technology of satellite remote sensing in the 21st century, and post-remote sensing application technology is the important part of deeply applying remote sensing information and has great practical significance. (authors)

  12. High Data Rate Satellite Communications for Environmental Remote Sensing

    Science.gov (United States)

    Jackson, J. M.; Munger, J.; Emch, P. G.; Sen, B.; Gu, D.

    2014-12-01

    Satellite to ground communication bandwidth limitations place constraints on current earth remote sensing instruments which limit the spatial and spectral resolution of data transmitted to the ground for processing. Instruments such as VIIRS, CrIS and OMPS on the Soumi-NPP spacecraft must aggregate data both spatially and spectrally in order to fit inside current data rate constraints limiting the optimal use of the as-built sensors. Future planned missions such as HyspIRI, SLI, PACE, and NISAR will have to trade spatial and spectral resolution if increased communication band width is not made available. A number of high-impact, environmental remote sensing disciplines such as hurricane observation, mega-city air quality, wild fire detection and monitoring, and monitoring of coastal oceans would benefit dramatically from enabling the downlinking of sensor data at higher spatial and spectral resolutions. The enabling technologies of multi-Gbps Ka-Band communication, flexible high speed on-board processing, and multi-Terabit SSRs are currently available with high technological maturity enabling high data volume mission requirements to be met with minimal mission constraints while utilizing a limited set of ground sites from NASA's Near Earth Network (NEN) or TDRSS. These enabling technologies will be described in detail with emphasis on benefits to future remote sensing missions currently under consideration by government agencies.

  13. Equalization and detection for digital communication over nonlinear bandlimited satellite communication channels. Ph.D. Thesis

    Science.gov (United States)

    Gutierrez, Alberto, Jr.

    1995-01-01

    This dissertation evaluates receiver-based methods for mitigating the effects due to nonlinear bandlimited signal distortion present in high data rate satellite channels. The effects of the nonlinear bandlimited distortion is illustrated for digitally modulated signals. A lucid development of the low-pass Volterra discrete time model for a nonlinear communication channel is presented. In addition, finite-state machine models are explicitly developed for a nonlinear bandlimited satellite channel. A nonlinear fixed equalizer based on Volterra series has previously been studied for compensation of noiseless signal distortion due to a nonlinear satellite channel. This dissertation studies adaptive Volterra equalizers on a downlink-limited nonlinear bandlimited satellite channel. We employ as figure of merits performance in the mean-square error and probability of error senses. In addition, a receiver consisting of a fractionally-spaced equalizer (FSE) followed by a Volterra equalizer (FSE-Volterra) is found to give improvement beyond that gained by the Volterra equalizer. Significant probability of error performance improvement is found for multilevel modulation schemes. Also, it is found that probability of error improvement is more significant for modulation schemes, constant amplitude and multilevel, which require higher signal to noise ratios (i.e., higher modulation orders) for reliable operation. The maximum likelihood sequence detection (MLSD) receiver for a nonlinear satellite channel, a bank of matched filters followed by a Viterbi detector, serves as a probability of error lower bound for the Volterra and FSE-Volterra equalizers. However, this receiver has not been evaluated for a specific satellite channel. In this work, an MLSD receiver is evaluated for a specific downlink-limited satellite channel. Because of the bank of matched filters, the MLSD receiver may be high in complexity. Consequently, the probability of error performance of a more practical

  14. Spacecraft design project: Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  15. Considerations of digital phase modulation for narrowband satellite mobile communication

    Science.gov (United States)

    Grythe, Knut

    1990-01-01

    The Inmarsat-M system for mobile satellite communication is specified as a frequency division multiple access (FDMA) system, applying Offset Quadrature Phase Shift Keying (QPSK) for transmitting 8 kbit/sec in 10 kHz user channel bandwidth. We consider Digital Phase Modulation (DPM) as an alternative modulation format for INMARSAT-M. DPM is similar to Continuous Phase Modulation (CPM) except that DPM has a finite memory in the premodular filter with a continuous varying modulation index. It is shown that DPM with 64 states in the VA obtains a lower bit error rate (BER). Results for a 5 kHz system, with the same 8 kbit/sec transmitted bitstream, is also presented.

  16. Particle Filtering Equalization Method for a Satellite Communication Channel

    Directory of Open Access Journals (Sweden)

    Amblard Pierre-Olivier

    2004-01-01

    Full Text Available We propose the use of particle filtering techniques and Monte Carlo methods to tackle the in-line and blind equalization of a satellite communication channel. The main difficulties encountered are the nonlinear distortions caused by the amplifier stage in the satellite. Several processing methods manage to take into account these nonlinearities but they require the knowledge of a training input sequence for updating the equalizer parameters. Blind equalization methods also exist but they require a Volterra modelization of the system which is not suited for equalization purpose for the present model. The aim of the method proposed in the paper is also to blindly restore the emitted message. To reach this goal, a Bayesian point of view is adopted. Prior knowledge of the emitted symbols and of the nonlinear amplification model, as well as the information available from the received signal, is jointly used by considering the posterior distribution of the input sequence. Such a probability distribution is very difficult to study and thus motivates the implementation of Monte Carlo simulation methods. The presentation of the equalization method is cut into two parts. The first part solves the problem for a simplified model, focusing on the nonlinearities of the model. The second part deals with the complete model, using sampling approaches previously developed. The algorithms are illustrated and their performance is evaluated using bit error rate versus signal-to-noise ratio curves.

  17. Advanced Communication Technology Satellite (ACTS) multibeam antenna analysis and experiment

    Science.gov (United States)

    Acosta, Roberto J.; Lagin, Alan R.; Larko, Jeffrey M.; Narvaez, Adabelle

    1992-01-01

    One of the most important aspects of a satellite communication system design is the accurate estimation of antenna performance degradation. Pointing error, end coverage gain, peak gain degradation, etc. are the main concerns. The thermal or dynamic distortions of a reflector antenna structural system can affect the far-field antenna power distribution in a least four ways. (1) The antenna gain is reduced; (2) the main lobe of the antenna can be mispointed thus shifting the destination of the delivered power away from the desired locations; (3) the main lobe of the antenna pattern can be broadened, thus spreading the RF power over a larger area than desired; and (4) the antenna pattern sidelobes can increase, thus increasing the chances of interference among adjacent beams of multiple beam antenna system or with antenna beams of other satellites. The in-house developed NASA Lewis Research Center thermal/structural/RF analysis program was designed to accurately simulate the ACTS in-orbit thermal environment and predict the RF antenna performance. The program combines well establish computer programs (TRASYS, SINDA and NASTAN) with a dual reflector-physical optics RF analysis program. The ACTS multibeam antenna configuration is analyzed and several thermal cases are presented and compared with measurements (pre-flight).

  18. Fiber optical sensing on-board communication satellites

    Science.gov (United States)

    Hurni, A.; Lemke, N. M. K.; Roner, M.; Obermaier, J.; Putzer, P.; Kuhenuri Chami, N.

    2017-11-01

    Striving constantly to reduce mass, AIT effort and overall cost of the classical point-to-point wired temperature sensor harness on-board telecommunication satellites, OHB System (formerly Kayser-Threde) has introduced the Hybrid Sensor Bus (HSB) system. As a future spacecraft platform element, HSB relies on electrical remote sensor units as well as fiber-optical sensors, both of which can serially be connected in a bus architecture. HSB is a modular measurement system with many applications, also thanks to the opportunities posed by the digital I²C bus. The emphasis, however, is on the introduction of fiber optics and especially fiber-Bragg grating (FBG) temperature sensors as disruptive innovation for the company's satellite platforms. The light weight FBG sensors are directly inscribed in mechanically robust and radiation tolerant fibers, reducing the need for optical fiber connectors and splices to a minimum. Wherever an FBG sensor shall be used, the fiber is glued together with a corresponding temperature transducer to the satellites structure or to a subsystem. The transducer is necessary to provide decoupling of mechanical stress, but simultaneously ensure a high thermal conductivity. HSB has been developed in the frame of an ESA-ARTES program with European and German co-funding and will be verified as flight demonstrator on-board the German Heinrich Hertz satellite (H2Sat). In this paper the Engineering Model development of HSB is presented and a Fiber-optical Sensor Multiplexer for a more flexible sensor bus architecture is introduced. The HSB system aims at telecommunication satellite platforms with an operational life time beyond 15 years in geostationary orbit. It claims a high compatibility in terms of performance and interfaces with existing platforms while it was designed with future applications with increased radiation exposure already in mind. In its basic configuration HSB consists of four modules which are the Power Supply Unit, the HSB

  19. Using satellite communications for a mobile computer network

    Science.gov (United States)

    Wyman, Douglas J.

    1993-01-01

    The topics discussed include the following: patrol car automation, mobile computer network, network requirements, network design overview, MCN mobile network software, MCN hub operation, mobile satellite software, hub satellite software, the benefits of patrol car automation, the benefits of satellite mobile computing, and national law enforcement satellite.

  20. Network design consideration of a satellite-based mobile communications system

    Science.gov (United States)

    Yan, T.-Y.

    1986-01-01

    Technical considerations for the Mobile Satellite Experiment (MSAT-X), the ground segment testbed for the low-cost spectral efficient satellite-based mobile communications technologies being developed for the 1990's, are discussed. The Network Management Center contains a flexible resource sharing algorithm, the Demand Assigned Multiple Access scheme, which partitions the satellite transponder bandwidth among voice, data, and request channels. Satellite use of multiple UHF beams permits frequency reuse. The backhaul communications and the Telemetry, Tracking and Control traffic are provided through a single full-coverage SHF beam. Mobile Terminals communicate with the satellite using UHF. All communications including SHF-SHF between Base Stations and/or Gateways, are routed through the satellite. Because MSAT-X is an experimental network, higher level network protocols (which are service-specific) will be developed only to test the operation of the lowest three levels, the physical, data link, and network layers.

  1. R&D of a Next Generation LEO System for Global Multimedia Mobile Satellite Communications

    Science.gov (United States)

    Morikawa, E.; Motoyoshi, S.; Koyama, Y.; Suzuki, R.; Yasuda, Y.

    2002-01-01

    satellite communication systems. Therefore, the experimental DBF network with 16 radiating elements was developed for confirming a basic signal processing performance. A/D sampled data are processed by using FPGA circuit for beam forming by real-time basis. Optical Inter-Satellite Link Technology: The inter-satellite link (ISL) technology is also important, because the inter-satellite network is essential to realize the low delay network connection for multimedia services. The optical ISL simulator was developed for the study of optical modem and optical tracking mechanism. And the sensitivity of 56 photons/bit at 10-9 of error rate has been achieved by employing the Erbium doped fiber amplifier, polarizing filter and narrow band optical filter. Coude path type, the active universal joint (AUJ) type and two flat mirror type of optical antenna mechanism were developed. Satellite Network Technology: For constructing this optical ISL ring, the utilization of wavelength division multiplexing (WDM) technology is envisaged. By applying WDM technology to the optical intra-orbital ISL, logical mesh connections can be achieved by assigning the appropriate wavelength for the links among satellites. By using inclined orbit, inter-orbital ISL connection can be keep continuously. Therefore, WDM technology is also applicable to the inter-orbital ISL network. The satellite ATM network simulator was developed in order to investigate the effect of delay fluctuation caused by the satellite constellations. This simulator works as real-time basis by using commercial ATM switches and personal computers. This simulator was installed Dijkstra's algorithm to determine satellite routing path in order to minimize the end-to-end delay time from the source terminal to the destination terminal. The satellite IP network simulator has been developed in order to evaluate the congestion of the multimedia traffic. Variable Rate Modulation Technology: Considering the propagation impairments in the mobile

  2. Economic benefits of the Space Station to commercial communication satellite operators

    Science.gov (United States)

    Price, Kent M.; Dixson, John E.; Weyandt, Charles J.

    1987-01-01

    The economic and financial aspects of newly defined space-based activities, procedures, and operations (APOs) and associated satellite system designs are presented that have the potential to improve economic performance of future geostationary communications satellites. Launch insurance, launch costs, and the economics of APOs are examined. Retrieval missions and various Space Station scenarios are addressed. The potential benefits of the new APOs to the commercial communications satellite system operator are quantified.

  3. Virtual target tracking (VTT) as applied to mobile satellite communication networks

    Science.gov (United States)

    Amoozegar, Farid

    1999-08-01

    Traditionally, target tracking has been used for aerospace applications, such as, tracking highly maneuvering targets in a cluttered environment for missile-to-target intercept scenarios. Although the speed and maneuvering capability of current aerospace targets demand more efficient algorithms, many complex techniques have already been proposed in the literature, which primarily cover the defense applications of tracking methods. On the other hand, the rapid growth of Global Communication Systems, Global Information Systems (GIS), and Global Positioning Systems (GPS) is creating new and more diverse challenges for multi-target tracking applications. Mobile communication and computing can very well appreciate a huge market for Cellular Communication and Tracking Devices (CCTD), which will be tracking networked devices at the cellular level. The objective of this paper is to introduce a new concept, i.e., Virtual Target Tracking (VTT) for commercial applications of multi-target tracking algorithms and techniques as applied to mobile satellite communication networks. It would be discussed how Virtual Target Tracking would bring more diversity to target tracking research.

  4. Applications of FBG sensors on telecom satellites

    Science.gov (United States)

    Abad, S.; Araújo, F. M.; Ferreira, L. A.; Pedersen, F.; Esteban, M. A.; McKenzie, I.; Karafolas, N.

    2017-11-01

    Monitoring needs of spacecraft are rapidly increasing due to new and more challenging missions, along with demands to reduce launching costs by minimizing the manufacture, assembly, integration and test time and employing new low weight materials balanced by the need for maximizing system lifetime while maintaining good reliability. Conventional electronic sensors are characterized by their low multiplexing capability and their EMI/RF susceptibility and it is in this scenario that Fiber Optic Sensors (FOS) in general, and more specifically Fiber Bragg Grating (FBG) technology offers important benefits, improving in various ways the already deployed sensing subsystems (e.g. reducing the weight associated with sensor cabling, increasing the number of sensing points) and enabling new monitoring applications that were not possible by using conventional sensing technologies. This work presents the activities performed and the lessons learnt in the frame of ESA's ARTES-5 project "Fiber Optic Sensing Subsystem for Spacecraft Health Monitoring in Telecommunication Satellites". This project finished in July 2009, with the implementation and testing of two different demonstrators employing FBG sensor technology: FBG sensors for temperature monitoring in high voltage environments, and in particular in several parts of electric propulsion subsystems [1], and FBG sensors for thermal monitoring of array-antennas during RF testing [2]. In addition, the contacts performed with different actors within the space community allowed the identification of a special area of interest for the substitution of regular thermocouple instrumentation by FBG technology for thermal vacuum ground testing of satellites.

  5. Development of a demand assignment/TDMA system for international business satellite communications

    Science.gov (United States)

    Nohara, Mitsuo; Takeuchi, Yoshio; Takahata, Fumio; Hirata, Yasuo; Yamazaki, Yoshiharu

    An experimental IBS (international business satellite) communications system based on a demand assignment and TDMA (time-division multiple-access) operation has been developed. The system utilizes a limited satellite resource efficiently and provides various kinds of ISDN services totally. A discussion is presented of the IBS network configurations suitable to international communications and describes the developed communications system from the viewpoint of the hardware and software implementation. The performance in terms of the transmission quality and call processing is also demonstrated.

  6. 47 CFR 25.149 - Application requirements for ancillary terrestrial components in the mobile-satellite service...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Application requirements for ancillary terrestrial components in the mobile-satellite service networks operating in the 1.5./1.6 GHz, 1.6/2.4 GHz and 2 GHz mobile-satellite service. 25.149 Section 25.149 Telecommunication FEDERAL COMMUNICATIONS...

  7. Network coding and its applications to satellite systems

    DEFF Research Database (Denmark)

    Vieira, Fausto; Roetter, Daniel Enrique Lucani

    2015-01-01

    Network coding has its roots in information theory where it was initially proposed as a way to improve a two-node communication using a (broadcasting) relay. For this theoretical construct, a satellite communications system was proposed as an illustrative example, where the relay node would be a ...

  8. Communications Satellite Systems Conference, 9th, San Diego, CA, March 7-11, 1982, Collection of Technical Papers

    Science.gov (United States)

    The Shuttle-to-Geostationary Orbital Transfer by mid-level thrust is considered along with multibeam antenna concepts for global communications, the antenna pointing systems for large communication satellites, the connection phase of multidestination protocols for broadcast satellites, and an experiment in high-speed international packet switching. Attention is given to a dynamic switch matrix for the TDMA satellite switching system, the characterization of 16 bit microprocessors for space use, in-orbit operation and test of Intelsat V satellites, the first operational communications system via satellite in Europe, the Arab satellite communications systems, second generation business satellite systems for Europe, and a high performance Ku-band satellite for the 1980's. Other topics investigated are related to Ku-band terminal design tradeoffs, progress in the definition of the Italian satellite for domestic telecommunications, future global satellite systems for Intelsat, and satellite refuelling in orbit.

  9. Swarm Satellites : Design, Characteristics and Applications

    NARCIS (Netherlands)

    Engelen, S.

    2016-01-01

    Satellite swarms are a novelty, yet promise to deliver unprecedented robustness and data-collection efficiency. They are so new in fact that even the definition of what a satellite swarm is is disputable, and consequently, the term "swarm" is used for practically any type of distributed space

  10. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    Science.gov (United States)

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  11. INVESTIGATION OF ADS-B MESSAGES TRAFFIC VIA SATELLITE COMMUNICATION CHANNEL

    OpenAIRE

    Volodymyr Kharchenko; Wang Bo; Andrii Grekhov; Marina Kovalenko

    2014-01-01

    For modelling of ADS-B messages transmition with the help of low-orbit satellite complex Іrіdіumdifferent models of communication channel "Aircraft-to-Satellites-to-Ground Stations" were built using NetCrackerProfessіonal 4.1 software. Influence of aircraft and satellites amount on average link utilization and message travellingtime was studied for telecommunication channels with intersatellite link and bent-pipe architecture. The effect ofcommunication channel "saturation" during simultaneou...

  12. A Study on Fuel Estimation Algorithms for a Geostationary Communication & Broadcasting Satellite

    OpenAIRE

    Jong Won Eun

    2000-01-01

    It has been developed to calculate fuel budget for a geostationary communication and broadcasting satellite. It is quite essential that the pre-launch fuel budget estimation must account for the deterministic transfer and drift orbit maneuver requirements. After on-station, the calculation of satellite lifetime should be based on the estimation of remaining fuel and assessment of actual performance. These estimations step from the proper algorithms to produce the prediction of satellite lifet...

  13. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Optical and Microwave Communications

    Science.gov (United States)

    Israel, David J.; Shaw, Harry

    2018-01-01

    NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available.In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the

  14. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Microwave and Optical Communications

    Science.gov (United States)

    Israel, David J.

    2018-01-01

    NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available. In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the

  15. The Future of Satellite Communications. Resource Management and the Needs of Nations.

    Science.gov (United States)

    Hinchman, Walter R.; Dunn, D. A.

    Recent events suggest that Intelsat (the 68-nation International Telecommunications Satellite Consortium) will coordinate a number of domestic and regional systems that provide satellite communications services, some of which will be maintained by Intelsat and some of which will be independent. This report addresses the problems of conflict in…

  16. Satellite Application for Disaster Management Information Systems

    Science.gov (United States)

    Okpanachi, George

    Abstract Satellites are becoming increasingly vital to modern day disaster management activities. Earth observation (EO) satellites provide images at various wavelengths that assist rapid-mapping in all phases of the disaster management cycle: mitigation of potential risks in a given area, preparedness for eventual disasters, immediate response to a disaster event, and the recovery/reconstruction efforts follo wing it. Global navigation satellite systems (GNSS) such as the Global Positioning System (GPS) assist all the phases by providing precise location and navigation data, helping manage land and infrastructures, and aiding rescue crews coordinate their search efforts. Effective disaster management is a complex problem, because it involves many parameters, which are usually not easy to measure and even identify: Analysis of current situation, planning, optimum resource management, coordination, controlling and monitoring current activities and making quick and correct decisions are only some of these parameters, whose complete list is very long. Disaster management information systems (DMIS) assist disaster management to analyse the situation better, make decisions and suggest further actions following the emergency plans. This requires not only fast and thorough processing and optimization abilities, but also real-time data provided to the DMIS. The need of DMIS for disaster’s real-time data can be satisfied by small satellites data utilization. Small satellites can provide up-to-data, plus a better media to transfer data. This paper suggests a rationale and a framework for utilization of small Satellite data by DMIS. DMIS should be used ‘’before’’, ‘’during’’ and ‘’after’’ the disasters. Data provided by the Small Satellites are almost crucial in any period of the disasters, because early warning can save lives, and satellite data may help to identify disasters before they occur. The paper also presents’ ‘when’’,

  17. Communication schemes for olfar's inter-satellite links

    NARCIS (Netherlands)

    Budianu, A.; Willink-Castro, T.J.; Meijerink, Arjan; Bentum, Marinus Jan

    2012-01-01

    The Orbiting Low Frequency Array for Radio astronomy(OLFAR) project is aimed at developing a radio telescope in space sensitive for the 0.3–30 MHz range by using a swarm of more than 50 identical nano-satellites. The satellites will form a very large aperture, capable of capturing very weak

  18. Communications Satellite Receiver Systems for Public Schools: A Technical Primer.

    Science.gov (United States)

    Texas Education Agency, Austin.

    Designed to aid school districts contemplating use of some of the telecommunications services now available by satellite, this document contains information on home satellite receiving dishes (Television Receive-Only--TVROs), which can receive radio signals carrying television, sound, and data. This information includes: some factors involved in…

  19. A digital simulation of message traffic for natural disaster warning communications satellite

    Science.gov (United States)

    Hein, G. F.; Stevenson, S. M.

    1972-01-01

    Various types of weather communications are required to alert industries and the general public about the impending occurrence of tornados, hurricanes, snowstorms, floods, etc. A natural disaster warning satellite system has been proposed for meeting the communications requirements of the National Oceanic and Atmospheric Administration. Message traffic for a communications satellite was simulated with a digital computer in order to determine the number of communications channels to meet system requirements. Poisson inputs are used for arrivals and an exponential distribution is used for service.

  20. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    Science.gov (United States)

    Downey, Joseph; Downey, James; Reinhart, Richard C.; Evans, Michael Alan; Mortensen, Dale John

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 248-phase shift keying (PSK) and 1632- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 bsHz) modulation combined with various LDPC encoding rates to maximize throughput. With a symbol rate of 200 Mbaud, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results, compensation

  1. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    Science.gov (United States)

    Downey, Joseph A.; Downey, James M.; Reinhart, Richard C.; Evans, Michael A.; Mortensen, Dale J.

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 2/4/8-phase shift keying (PSK) and 16/32- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 b/s/Hz) modulation combined with various LDPC encoding rates to maximize through- put. With a symbol rate of 200 M-band, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results

  2. Modulation Classification of Satellite Communication Signals Using Cumulants and Neural Networks

    Science.gov (United States)

    Smith, Aaron; Evans, Michael; Downey, Joseph

    2017-01-01

    National Aeronautics and Space Administration (NASA)'s future communication architecture is evaluating cognitive technologies and increased system intelligence. These technologies are expected to reduce the operational complexity of the network, increase science data return, and reduce interference to self and others. In order to increase situational awareness, signal classification algorithms could be applied to identify users and distinguish sources of interference. A significant amount of previous work has been done in the area of automatic signal classification for military and commercial applications. As a preliminary step, we seek to develop a system with the ability to discern signals typically encountered in satellite communication. Proposed is an automatic modulation classifier which utilizes higher order statistics (cumulants) and an estimate of the signal-to-noise ratio. These features are extracted from baseband symbols and then processed by a neural network for classification. The modulation types considered are phase-shift keying (PSK), amplitude and phase-shift keying (APSK),and quadrature amplitude modulation (QAM). Physical layer properties specific to the Digital Video Broadcasting - Satellite- Second Generation (DVB-S2) standard, such as pilots and variable ring ratios, are also considered. This paper will provide simulation results of a candidate modulation classifier, and performance will be evaluated over a range of signal-to-noise ratios, frequency offsets, and nonlinear amplifier distortions.

  3. Do future commercial broadband communication satellites really need laser-communication intersatellite links (ISLs)?

    Science.gov (United States)

    Freidell, James E.

    1997-04-01

    Large commercial satellite programs requiring ISLs are growing in number and maturing. An important segment of the commercial satellite market, and its ISL needs, is discussed in the paper. ISL value will increase as long-haul terrestrial backbones become increasingly congested. Providing interregional and intercontinental connectivity via ISL presents far lower cost and fewer problems than relying on terrestrial fiber-optic networks. To demonstrate this, a new metric is proposed which allows 'apples-to- apples' cost/performance comparisons between laser communications in GEO, LEO, and terrestrial fiber-optics. ISL requirements in to the next decade are predicted >= 50-100 Gb/s full duplex. Many attitudinal changes must be embraced among those who choose to focus on this new commercial business. Foremost among these is a preponderance to delivering fully acceptable hardware fast and at low cost, as opposed to merely designing such. Considerable attention must be given business considerations foreign to professionals who have spent time in the government or government contracting sectors. Successful ISL customers will come to recognize that ISLs are not commodity products. Failure to embrace these attitudes will nonetheless constitute decision to which the commercial market, and particularly the financial market, will appropriately respond.

  4. Study to forecast and determine characteristics of world satellite communications market

    Science.gov (United States)

    Filep, R. T.; Schnapf, A.; Fordyce, S. W.

    1983-01-01

    The world commercial communications satellite market during the spring and summer of 1983 was examined and characteristics and forecasts of the market extending to the year 2000 were developed. Past, present and planned satellites were documented in relation to frequencies, procurement and launch dates, costs, transponders, and prime contractor. Characteristics of the market are outlined for the periods 1965 - 1985, 1986 - 1989, and 1990 - 2000. Market share forecasts, discussions of potential competitors in various world markets, and profiles of major communication satellite manufacturing and user countries are documented.

  5. INVESTIGATION OF ADS-B MESSAGES TRAFFIC VIA SATELLITE COMMUNICATION CHANNEL

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2014-12-01

    Full Text Available For modelling of ADS-B messages transmition with the help of low-orbit satellite complex Іrіdіumdifferent models of communication channel "Aircraft-to-Satellites-to-Ground Stations" were built using NetCrackerProfessіonal 4.1 software. Influence of aircraft and satellites amount on average link utilization and message travellingtime was studied for telecommunication channels with intersatellite link and bent-pipe architecture. The effect ofcommunication channel "saturation" during simultaneous data transmission through a satellite communicationchannel from many planes was investigated.

  6. The application of microwave photonic detection in quantum communication

    Science.gov (United States)

    Diao, Wenting; Zhuang, Yongyong; Song, Xuerui; Wang, Liujun; Duan, Chongdi

    2018-03-01

    Quantum communication has attracted much attention in recent years, provides an ultimate level of security, and uniquely it is one of the most likely practical quantum technologies at present. In order to realize global coverage of quantum communication networks, not only need the help of satellite to realize wide area quantum communication, need implementation of optical fiber system to realize city to city quantum communication, but also, it is necessary to implement end-to-end quantum communications intercity and wireless quantum communications that can be received by handheld devices. Because of the limitation of application of light in buildings, it needs quantum communication with microwave band to achieve quantum reception of wireless handheld devices. The single microwave photon energy is very low, it is difficult to directly detect, which become a difficulty in microwave quantum detection. This paper summarizes the mode of single microwave photon detection methods and the possibility of application in microwave quantum communication, and promotes the development of quantum communication in microwave band and quantum radar.

  7. Satellite communication transponders and their reliability; Eisei tosai tsushin kiki oyobi shinraisei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, H [NTT Wireless System Laboratories, Kanagawa (Japan)

    1994-11-01

    The Engineering Test Satellite-VI is a large composite test satellite weighing two tons to perform different communication experiments. Adoption of the multi-beam satellite communication system has made possible to increase the transmission capacity, reduce the sizes of earth stations, and utilize frequencies more effectively. This paper describes the configuration of the relaying devices mounted thereon, the newly developed circuit technologies, and their reliability. The multi-beam satellite communication system mounts a number of transponders, with the frequency bands used divided into the 2.6/2.5 GHz band between the moving body and the satellite, the 6/4 GHz band for the channels between the earth stations and the satellite, and the 30/20 GHz band for the fixed communications. These arrangements were intended to achieve large size reduction as a result of applying the integrated circuit technology. The transmitters and the receivers corresponding to each beam are connected by using the satellite switches (16 inputs {times} 12 outputs). The parts used were general purpose ones rather than those specified in the MIL standards because of their number having reached so huge. Their reliability was ensured by long-term burn-in operations. 5 refs., 6 figs., 1 tab.

  8. Optical Multiple Access Network (OMAN) for advanced processing satellite applications

    Science.gov (United States)

    Mendez, Antonio J.; Gagliardi, Robert M.; Park, Eugene; Ivancic, William D.; Sherman, Bradley D.

    1991-01-01

    An OMAN breadboard for exploring advanced processing satellite circuit switch applications is introduced. Network architecture, hardware trade offs, and multiple user interference issues are presented. The breadboard test set up and experimental results are discussed.

  9. Dual Fine Tracking Control of a Satellite Laser Communication Uplink

    National Research Council Canada - National Science Library

    Noble, Louis A

    2006-01-01

    A dual fine tracking control system (FTCS) is developed for a single aperture optical communication receiver to compensate for high frequency disturbances affecting tracking of two incident laser communication beams...

  10. ESA personal communications and digital audio broadcasting systems based on non-geostationary satellites

    Science.gov (United States)

    Logalbo, P.; Benedicto, J.; Viola, R.

    1993-01-01

    Personal Communications and Digital Audio Broadcasting are two new services that the European Space Agency (ESA) is investigating for future European and Global Mobile Satellite systems. ESA is active in promoting these services in their various mission options including non-geostationary and geostationary satellite systems. A Medium Altitude Global Satellite System (MAGSS) for global personal communications at L and S-band, and a Multiregional Highly inclined Elliptical Orbit (M-HEO) system for multiregional digital audio broadcasting at L-band are described. Both systems are being investigated by ESA in the context of future programs, such as Archimedes, which are intended to demonstrate the new services and to develop the technology for future non-geostationary mobile communication and broadcasting satellites.

  11. Australia's Domestic Communication Satellite and Education: Has Education Missed the Boat?

    Science.gov (United States)

    White, Peter B.

    Educators have been critized for being unable to develop any firm plans for the use of Australia's Domestic Communications Satellite (AUSSAT). However, conferences, talks, and papers have resulted in some significant achievements. First, it is now possible to raise issues of communications and telecommunications planning at the very highest…

  12. Forecast of space shuttle flight requirements for launch of commercial communications satellites

    Science.gov (United States)

    1977-01-01

    The number of communication satellites required over the next 25 years to support domestic and regional communication systems for telephony, telegraphy and other low speed data; video teleconferencing, new data services, direct TV broadcasting; INTELSAT; and maritime and aeronautical services was estimated to determine the number of space shuttle flights necessary for orbital launching.

  13. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-29

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 2 and 25 [IB Docket No. 12-376; FCC 12-161] Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit Space Stations... the Federal Register of March 8, 2013. The document proposed rules for Earth Stations Aboard Aircraft...

  14. Sunflower array antenna for multi-beam satellite applications

    NARCIS (Netherlands)

    Vigano, M.C.

    2011-01-01

    Saving space on board, reducing costs and improving the antenna performances are tasks of outmost importance in the field of satellite communication. In this work it is shown how a non-uniformly spaced, direct radiating array designed according to the so called ‘sunflower’ law is able to satisfy

  15. Mission studies on constellation of LEO satellites with remote-sensing and communication payloads

    Science.gov (United States)

    Chen, Chia-Ray; Hwang, Feng-Tai; Hsueh, Chuang-Wei

    2017-09-01

    Revisiting time and global coverage are two major requirements for most of the remote sensing satellites. Constellation of satellites can get the benefit of short revisit time and global coverage. Typically, remote sensing satellites prefer to choose Sun Synchronous Orbit (SSO) because of fixed revisiting time and Sun beta angle. The system design and mission operation will be simple and straightforward. However, if we focus on providing remote sensing and store-and-forward communication services for low latitude countries, Sun Synchronous Orbit will not be the best choice because we need more satellites to cover the communication service gap in low latitude region. Sometimes the design drivers for remote sensing payloads are conflicted with the communication payloads. For example, lower orbit altitude is better for remote sensing payload performance, but the communication service zone will be smaller and we need more satellites to provide all time communication service. The current studies focus on how to provide remote sensing and communication services for low latitude countries. A cost effective approach for the mission, i.e. constellation of microsatellites, will be evaluated in this paper.

  16. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  17. Programming a real-time operating system for satellite control applications Satellite Control Applications

    International Nuclear Information System (INIS)

    Omer, M.; Anjum, O.; Suddle, M.R.

    2004-01-01

    With the realization of ideas like formation flights and multi-body space vehicles the demands on an attitude control system have become increasingly complex. Even in its most simplified form, the control system for a typical geostationary satellite has to run various supervisory functions along with determination and control algorithms side by side. Within each algorithm it has to employ multiple actuation and sensing mechanisms and service real time interrupts, for example, in the case of actuator saturation and sensor data fusion. This entails the idea of thread scheduling and program synchronization, tasks specifically meant for a real time OS. This paper explores the embedding of attitude determination and control loop within the framework of a real time operating system provided for TI's DSP C6xxx series. The paper details out the much functionality provided within the scaleable real time kernel and the analysis and configuration tools available, It goes on to describe a layered implementation stack associated with a typical control for Geo Stationary satellites. An application for control is then presented in which state of the art analysis tools are employed to view program threads, synchronization semaphores, hardware interrupts and data exchange pipes operating in real time. (author)

  18. A Multibeam Dual-Band Orthogonal Linearly Polarized Antenna Array for Satellite Communication on the Move

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2015-01-01

    Full Text Available The design and simulation of a 10 × 8 multibeam dual-band orthogonal linearly polarized antenna array operating at Ku-band are presented for transmit-receive applications. By using patches with different coupling methods as elements, both perpendicular polarization in 12.25–12.75 GHz band and horizontal polarization in 14.0–14.5 GHz band are realized in a shared antenna aperture. A microstrip Rotman lens is employed as the beamforming network with 7 input ports, which can generate a corresponding number of beams to cover −30°–30° with 5 dB beamwidth along one dimension. This type of multibeam orthogonal linearly polarized planar antenna is a good candidate for satellite communication (SatCom.

  19. An approach to effective UHF (S/L band) data communications for satellite Personal Communication Service (PCS)

    Science.gov (United States)

    Hayase, Joshua Y.

    1995-01-01

    Reliable signaling information transfer is fundamental in supporting the needs of data communication PCS via LMS (Land Mobile Service) SSs (satellite systems). The needs of the system designer can be satisfied only through the collection of media information that can be brought to bear on the pertinent design issues. We at ISI hope to continue our dialogue with fading media experts to address the unique data communications needs of PCS via LMS SSs.

  20. Analysis of synchronous digital-modulation schemes for satellite communication

    Science.gov (United States)

    Takhar, G. S.; Gupta, S. C.

    1975-01-01

    The multipath communication channel for space communications is modeled as a multiplicative channel. This paper discusses the effects of multiplicative channel processes on the symbol error rate for quadrature modulation (QM) digital modulation schemes. An expression for the upper bound on the probability of error is derived and numerically evaluated. The results are compared with those obtained for additive channels.

  1. Multi-Satellite MIMO Communications at Ku-Band and Above: Investigations on Spatial Multiplexing for Capacity Improvement and Selection Diversity for Interference Mitigation

    Directory of Open Access Journals (Sweden)

    Liolis Konstantinos P

    2007-01-01

    Full Text Available This paper investigates the applicability of multiple-input multiple-output (MIMO technology to satellite communications at the Ku-band and above. After introducing the possible diversity sources to form a MIMO matrix channel in a satellite environment, particular emphasis is put on satellite diversity. Two specific different topics from the field of MIMO technology applications to satellite communications at these frequencies are further analyzed: (i capacity improvement achieved by MIMO spatial multiplexing systems and (ii interference mitigation achieved by MIMO diversity systems employing receive antenna selection. In the first case, a single-user capacity analysis of a satellite MIMO spatial multiplexing system is presented and a useful analytical closed form expression is derived for the outage capacity achieved. In the second case, a satellite MIMO diversity system with receive antenna selection is considered, adjacent satellite cochannel interference on its forward link is studied and an analytical model predicting the interference mitigation achieved is presented. In both cases, an appropriate physical MIMO channel model is assumed which takes into account the propagation phenomena related to the frequencies of interest, such as clear line-of-sight operation, high antenna directivity, the effect of rain fading, and the slant path lengths difference. Useful numerical results obtained through the analytical expressions derived are presented to compare the performance of multi-satellite MIMO systems to relevant single-input single-output (SISO ones.

  2. Accurate beacon positioning method for satellite-to-ground optical communication.

    Science.gov (United States)

    Wang, Qiang; Tong, Ling; Yu, Siyuan; Tan, Liying; Ma, Jing

    2017-12-11

    In satellite laser communication systems, accurate positioning of the beacon is essential for establishing a steady laser communication link. For satellite-to-ground optical communication, the main influencing factors on the acquisition of the beacon are background noise and atmospheric turbulence. In this paper, we consider the influence of background noise and atmospheric turbulence on the beacon in satellite-to-ground optical communication, and propose a new locating algorithm for the beacon, which takes the correlation coefficient obtained by curve fitting for image data as weights. By performing a long distance laser communication experiment (11.16 km), we verified the feasibility of this method. Both simulation and experiment showed that the new algorithm can accurately obtain the position of the centroid of beacon. Furthermore, for the distortion of the light spot through atmospheric turbulence, the locating accuracy of the new algorithm was 50% higher than that of the conventional gray centroid algorithm. This new approach will be beneficial for the design of satellite-to ground optical communication systems.

  3. Technology programs and related policies - Impacts on communications satellite business ventures

    Science.gov (United States)

    Greenberg, J. S.

    1985-01-01

    The DOMSAT II stochastic communication satellite business venture financial planning simulation model is described. The specification of business scenarios and the results of several analyses are presented. In particular, the impacts of NASA on-orbit propulsion and power technology programs are described. The effects of insurance rates and self-insurance and of the use of the Space Shuttle and Ariane transportation systems on a typical fixed satellite service business venture are discussed.

  4. Comparison of TCeMA and TDMA for Inter-Satellite Communications using OPNET Simulation

    Science.gov (United States)

    Hain, Regina Rosales; Ramanathan, Ram; Bergamo, Marcos; Wallett, Thomas M.

    2003-01-01

    A robust data link protocol, enabling unique physical and MAC layer technologies and sub-network level protocols, is needed in order to take advantage of the full potential of using both TDMA and CDMA in a satellite communication network. A novel MAC layer protocol, TDMA with CDMA-encoding multiple access (TCeMA) integrated with null-steered digital beam-forming spatial multiplexing, is investigated to support flexible spacecraft communications. Abstract models of the TCeMA and TDMA processes are developed in OPNFiT and a comparison of the performances of TCeMA and TDMA in a satellite network simulation are made. TCeMA provides the better connectivity and capacity with respect to TDMA for satellite communication traffic.

  5. A description of QUALCOMM Automatic Satellite Position Reporting (QASPR(R)) for mobile communications

    Science.gov (United States)

    Ames, William G.

    1990-01-01

    Two satellite position reporting has been introduced into the OmniTRACS mobile satellite communication system. This system significantly improves position reporting reliability and accuracy while simplifying the terminal's hardware. The positioning technique uses the original OmniTRACS TDMA timing signal formats in the forward and return link directions plus an auxiliary, low power forward link signal through a second satellite to derive distance values. The distances are then converted into the mobile terminal's latitude and longitude in real time. A minor augmentation of the spread spectrum profile of the return link allowed the resolution of periodic ambiguities. The system also locates the two satellites in real time with fixed platforms in known locations using identical mobile terminal hardware. Initial accuracies of 1/4 mile have been realized uniformly throughout the USA using a satellite separation of 22 degrees and there are no dead zones, skywaves, or cycle slips as found in terrestrial systems like LORAN-C.

  6. Intelligent Media Access Protocol for SDR-Based Satellite Communications

    Data.gov (United States)

    National Aeronautics and Space Administration — In a communications channel, the space environment between a spacecraft and an Earth ground station can potentially cause the loss of a data link or at least degrade...

  7. Improved Coast Guard Communications Using Commercial Satellites and WWW Technology

    Science.gov (United States)

    1997-06-18

    Information collection and distribution are essential components of most Coast Guard missions. However, information needs have typically outpaced the ability of the installed communications systems to meet those needs. This mismatch leads to reduced ...

  8. Wideband autonomous cognitive radios for networked satellites communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is growing recognition that success in a variety of space mission types can be greatly enhanced by making current communication transceivers and networks...

  9. Positional stabilization of communications satellites - The RITA ion propulsion system is ready for commercial use

    Science.gov (United States)

    The radiofrequency ion thruster assembly (RITA) intended for service aboard the new Artemis communications satellite will operate for three hours twice a day, in order to furnish orbital position adjustments that keep antennas accurately pointed toward the earth. These engines are, despite such frequent and sustained use, projected to eject no more than 30 kG of Xe over the course of a decade. RITA operation is also extremely reliable and, due to its very low propellant consumption, is the basis of a long satellite service life. RITA will be among the 15 experiments that are to be performed by ESA's Eureca research satellite.

  10. Satellite communication system for emergency monitoring within the Chernobyl exclusion zone

    International Nuclear Information System (INIS)

    Franchini, C.; Mensa, M.; Kanevsky, V.A.

    1997-01-01

    A Satellite Emergency Monitoring system of the Chernobyl Exclusive Zone (SEM CEZ) was designed to provide the Ukraine authorities and the neighbouring countries with updated information when an emergency situation occurs in the Exclusion Zone. This is of particular importance when environment contamination has transboundary effect. SEM system consists of mobile and fixed sensors reporting data via a dedicated satellite communications link. Mobile sensors are fitted with Global Positioning System (GPS) receivers that determine current coordinates of the sensor. Sensors data are transmitted to the Emergency Monitoring Centre equipped with PC and a satellite terminal. Both sensors data and the current position are visualized on digital maps

  11. Prediction of Communication Outage Period between Satellite and Earth station Due to Sun Interference

    Directory of Open Access Journals (Sweden)

    Yongjun Song

    2010-03-01

    Full Text Available We developed a computer program to predict solar interference period. To calculate Sun‘s position, we used DE406 ephemerides and Earth ellipsoid model. The Sun‘s position error is smaller than 10arcsec. For the verification of the calculation, we used TU media ground station on Seongsu-dong, and MBSAT geostationary communication satellite. We analysis errors, due to satellite perturbation and antenna align. The time error due to antenna align has -35 to +16 seconds at 0.1 degree, and -27 to +41 seconds at 0.25 degree. The time errors derived by satellite perturbation has 30 to 60 seconds.

  12. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 1

    Science.gov (United States)

    Greenburg, J. S.; Gaelick, C.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-01-01

    Commercial organizations as well as government agencies invest in spacecraft (S/C) technology programs that are aimed at increasing the performance of communications satellites. The value of these programs must be measured in terms of their impacts on the financial performane of the business ventures that may ultimately utilize the communications satellites. An economic evaluation and planning capability was developed and used to assess the impact of NASA on-orbit propulsion and space power programs on typical fixed satellite service (FSS) and direct broadcast service (DBS) communications satellite business ventures. Typical FSS and DBS spin and three-axis stabilized spacecraft were configured in the absence of NASA technology programs. These spacecraft were reconfigured taking into account the anticipated results of NASA specified on-orbit propulsion and space power programs. In general, the NASA technology programs resulted in spacecraft with increased capability. The developed methodology for assessing the value of spacecraft technology programs in terms of their impact on the financial performance of communication satellite business ventures is described. Results of the assessment of NASA specified on-orbit propulsion and space power technology programs are presented for typical FSS and DBS business ventures.

  13. Leo Satellite Communication through a LEO Constellation using TCP/IP Over ATM

    Science.gov (United States)

    Foore, Lawrence R.; Konangi, Vijay K.; Wallett, Thomas M.

    1999-01-01

    The simulated performance characteristics for communication between a terrestrial client and a Low Earth Orbit (LEO) satellite server are presented. The client and server nodes consist of a Transmission Control Protocol /Internet Protocol (TCP/IP) over ATM configuration. The ATM cells from the client or the server are transmitted to a gateway, packaged with some header information and transferred to a commercial LEO satellite constellation. These cells are then routed through the constellation to a gateway on the globe that allows the client/server communication to take place. Unspecified Bit Rate (UBR) is specified as the quality of service (QoS). Various data rates are considered.

  14. Europe at the crossroads: The future of its satellite communications industry

    Science.gov (United States)

    Bartholome, Pierre; Battrick, B.

    1993-11-01

    Ways of adapting the European Space Agency's role to the new industrial environment of satellite communications, which is characterized by the disappearance of traditional monopolies and the introduction of competition, are presented. As far as ESA is concerned, it is found that a general consensus exists to recommend that the agency should take a much wider view of its role as a research and development (R&D) organization. It should no longer restrict its field of activity to space technology only, but should take a more global approach. More emphasis should be placed on the development of complete communications systems and of commercial applications. European industry indeed feels very strongly that it is not getting from ESA the support it needs to match the performance of its foreign competitors on the world markets. It can only succeed commercially in the fierce competition with the U.S. and Japan if a substantial R&D program is defined and funded at European level, as required by the magnitude of the financial effort necessary. It is concluded that anything the agency untertakes in the future to redress the situation would produce much greater dividends if it were part of a coherent plan where all the European partners play their role in a cooperative spirit. It is recommended that the European Commission should, as a matter of urgency, take steps to institute a concertation mechanism involving all major players with a view to defining and developing a coherent strategy for Europe.

  15. Potential markets for a satellite-based mobile communications system

    Science.gov (United States)

    Jamieson, W. M.; Peet, C. S.; Bengston, R. J.

    1976-01-01

    The objective of the study was to define the market needs for improved land mobile communications systems. Within the context of this objective, the following goals were set: (1) characterize the present mobile communications industry; (2) determine the market for an improved system for mobile communications; and (3) define the system requirements as seen from the potential customer's viewpoint. The scope of the study was defined by the following parameters: (1) markets were confined to U.S. and Canada; (2) range of operation generally exceeded 20 miles, but this was not restrictive; (3) the classes of potential users considered included all private sector users, and non-military public sector users; (4) the time span examined was 1975 to 1985; and (5) highly localized users were generally excluded - e.g., taxicabs, and local paging.

  16. Causal relationships between solar proton events and single event upsets for communication satellites

    Science.gov (United States)

    Lohmeyer, W. Q.; Cahoy, K.; Liu, Shiyang

    In this work, we analyze a historical archive of single event upsets (SEUs) maintained by Inmarsat, one of the world's leading providers of global mobile satellite communications services. Inmarsat has operated its geostationary communication satellites and collected extensive satellite anomaly and telemetry data since 1990. Over the course of the past twenty years, the satellites have experienced more than 226 single event upsets (SEUs), a catch-all term for anomalies that occur in a satellite's electronics such as bit-flips, trips in power supplies, and memory changes in attitude control systems. While SEUs are seemingly random and difficult to predict, we correlate their occurrences to space weather phenomena, and specifically show correlations between SEUs and solar proton events (SPEs). SPEs are highly energetic protons that originate from solar coronal mass ejections (CMEs). It is thought that when these particles impact geostationary (GEO) satellites they can cause SEUs as well as solar array degradation. We calculate the associated statistical correlations that each SEU occurs within one day, one week, two weeks, and one month of 10 MeV SPEs between 10 - 10,000 particle flux units (pfu). However, we find that SPEs are most prevalent at solar maximum and that the SEUs on Inmarsat's satellites occur out of phase with the solar maximum. Ultimately, this suggests that SPEs are not the primary cause of the Inmarsat SEUs. A better understanding of the causal relationship between SPEs and SEUs will help the satellite communications industry develop component and operational space weather mitigation techniques as well as help the space weather community to refine radiation models.

  17. Advanced communication methods developed for nuclear data communication applications

    International Nuclear Information System (INIS)

    Tiwari, Akash; Tiwari, Railesha; Tiwari, S.S.; Panday, Lokesh; Suri, Nitin; Takle, Tarun Rao; Jain, Sanjeev; Gupta, Rishi; Sharma, Dipeeka; Takle, Rahul Rao; Gautam, Rajeev; Bhargava, Vishal; Arora, Himanshu; Agarwal, Ankur; Rupesh; Chawla, Mohit; Sethi, Amardeep Singh; Gupta, Mukesh; Gupta, Ankit; Verma, Neha; Sood, Nitin; Singh, Sunil; Agarwal, Chandresh

    2004-01-01

    We conducted various experiments and tested data communications methods that may be useful for various applications in nuclear industries. We explored the following areas. I. Scientific data communication among scientists within the laboratory and inter-laboratory data exchange. 2.Data from sensors from remote and wired sensors. 3.Data from multiple sensors with small zone. 4.Data from single or multiple sensors from distances above 100 m and less than 10 km. No any single data communication method was found to be the best solution for nuclear applications and multiple modes of communication were found to be advantageous than any single mode of data communication. Network of computers in the control room and in between laboratories connected with optical fiber or an isolated Ethernet coaxial LAN was found to be optimum. Information from multiple analog process sensors in smaller zones like reactor building and laboratories on 12C LAN and short-range wireless LAN were found to be advantageous. Within the laboratory sensor data network of 12C was found to be cost effective and wireless LAN was comparatively expansive. Within a room infrared optical LAN and FSK wireless LAN were found to be highly useful in making the sensors free from wires. Direct sensor interface on FSK wireless link were found to be fast accurate, cost effective over large distance data communication. Such links are the only way to communicate from sea boy and balloons hardware. 1-wire communication network of Dallas Semiconductor USA for weather station data communication Computer to computer communication using optical LAN links has been tried, temperature pressure, humidity, ionizing radiation, generator RPM and voltage and various other analog signals were also transported o FSK optical and wireless links. Multiple sensors needed a dedicated data acquisition system and wireless LAN for data telemetry. (author)

  18. Geostationary Communications Satellites as Sensors for the Space Weather Environment: Telemetry Event Identification Algorithms

    Science.gov (United States)

    Carlton, A.; Cahoy, K.

    2015-12-01

    Reliability of geostationary communication satellites (GEO ComSats) is critical to many industries worldwide. The space radiation environment poses a significant threat and manufacturers and operators expend considerable effort to maintain reliability for users. Knowledge of the space radiation environment at the orbital location of a satellite is of critical importance for diagnosing and resolving issues resulting from space weather, for optimizing cost and reliability, and for space situational awareness. For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to acquire and analyze archived data from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms, collectively called SEER (System Event Evaluation Routine), to statistically analyze power amplifier current and temperature telemetry by identifying deviations from nominal operations or other events and trends of interest. This paper focuses on our work in progress, which currently includes methods for detection of jumps ("spikes", outliers) and step changes (changes in the local mean) in the telemetry. We then examine available space weather data from the NOAA GOES and the NOAA-computed Kp index and sunspot numbers to see what role, if any, it might have played. By combining the results of the algorithm for many components, the spacecraft can be used as a "sensor" for the space radiation environment. Similar events occurring at one time across many component telemetry streams may be indicative of a space radiation event or system-wide health and safety concern. Using SEER on representative datasets of telemetry from Inmarsat and Intelsat, we find events that occur across all or many of

  19. Defense Science Board Task Force on Military Satellite Communication and Tactical Networking. Executive Summary

    Science.gov (United States)

    2017-03-01

    Interface Processor BCT Brigade Combat Team BFT Blue Force Tracking BLOS Beyond Line-of-Sight C2 Command And Control C2E Communications in...Satellite Communications and Tactical Networking Appendix D-2 GIG Global Information Grid GMR Ground Mobile Radio GPS Global Positioning System...System SIPRNet Secret Internet Protocol Router Network SITREPS Situational Reports SMART -T Secure Mobile Anti-Jam Reliable Tactical Terminal SMC Space

  20. A communication protocol for mobile satellite systems affected by rain attenuation

    Science.gov (United States)

    Lay, Norman; Dessouky, Khaled

    1992-01-01

    A communication protocol is described that has been developed as part of a K/Ka-band mobile terminal breadboard system to be demonstrated through NASA's Advanced Communications Technology Satellite (ACTS) in 1993. The protocol is aimed at providing the means for enhancing link availability and continuity by supporting real-time data rate selection and changes during rain events. Particular attention is given to the system architecture; types of links, connections, and packets; the protocol procedures; and design rationales.

  1. Air traffic management system design using satellite based geo-positioning and communications assets

    Science.gov (United States)

    Horkin, Phil

    1995-01-01

    The current FAA and ICAO FANS vision of Air Traffic Management will transition the functions of Communications, Navigation, and Surveillance to satellite based assets in the 21st century. Fundamental to widespread acceptance of this vision is a geo-positioning system that can provide worldwide access with best case differential GPS performance, but without the associated problems. A robust communications capability linking-up aircraft and towers to meet the voice and data requirements is also essential. The current GPS constellation does not provide continuous global coverage with a sufficient number of satellites to meet the precision landing requirements as set by the world community. Periodic loss of the minimum number of satellites in view creates an integrity problem, which prevents GPS from becoming the primary system for navigation. Furthermore, there is reluctance on the part of many countries to depend on assets like GPS and GLONASS which are controlled by military communities. This paper addresses these concerns and provides a system solving the key issues associated with navigation, automatic dependent surveillance, and flexible communications. It contains an independent GPS-like navigation system with 27 satellites providing global coverage with a minimum of six in view at all times. Robust communications is provided by a network of TDMA/FDMA communications payloads contained on these satellites. This network can support simultaneous communications for up to 30,000 links, nearly enough to simultaneously support three times the current global fleet of jumbo air passenger aircraft. All of the required hardware is directly traceable to existing designs.

  2. Optimization of Power Allocation for Multiusers in Multi-Spot-Beam Satellite Communication Systems

    Directory of Open Access Journals (Sweden)

    Heng Wang

    2014-01-01

    Full Text Available In recent years, multi-spot-beam satellite communication systems have played a key role in global seamless communication. However, satellite power resources are scarce and expensive, due to the limitations of satellite platform. Therefore, this paper proposes optimizing the power allocation of each user in order to improve the power utilization efficiency. Initially the capacity allocated to each user is calculated according to the satellite link budget equations, which can be achieved in the practical satellite communication systems. The problem of power allocation is then formulated as a convex optimization, taking account of a trade-off between the maximization of the total system capacity and the fairness of power allocation amongst the users. Finally, an iterative algorithm based on the duality theory is proposed to obtain the optimal solution to the optimization. Compared with the traditional uniform resource allocation or proportional resource allocation algorithms, the proposed optimal power allocation algorithm improves the fairness of power allocation amongst the users. Moreover, the computational complexity of the proposed algorithm is linear with both the numbers of the spot beams and users. As a result, the proposed power allocation algorithm is easy to be implemented in practice.

  3. Improving the satellite communication efficiency of the accumulative acknowledgement strategies

    Science.gov (United States)

    Duarte, Otto Carlos M. B.; de Lima, Heliomar Medeiros

    The performances of two finite buffer error recovery strategies are analyzed. In both strategies the retransmission request decision between selective repeat and continuous retransmission is based on an imminent buffer overflow condition. These are accumulative acknowledgment schemes, but in the second strategy the selective-repeat control frame is uniquely an individual negative acknowledgment. The two strategies take advantage of the availability of a greater buffer capacity, making the most of the selective repeat, postponing the sending of a continuous retransmission request. Numerical results show a better performance very close to the ideal, but it does not integrally conform to the high-level data link control (HDLC) procedures. It is shown that these strategies are well suited for high-speed data transfer in the high-error-rate satellite environment.

  4. 77 FR 51045 - Certain Two-Way Global Satellite Communication Devices, System and Components Thereof; Notice of...

    Science.gov (United States)

    2012-08-23

    ... Certain Two-Way Global Satellite Communication Devices, System and Components Thereof, DN 2907; the... INTERNATIONAL TRADE COMMISSION [Docket No. 2907] Certain Two-Way Global Satellite Communication Devices, System and Components Thereof; Notice of Receipt of Complaint; Solicitation of Comments Relating...

  5. The design of a linear L-band high power amplifier for mobile communication satellites

    Science.gov (United States)

    Whittaker, N.; Brassard, G.; Li, E.; Goux, P.

    1990-01-01

    A linear L-band solid state high power amplifier designed for the space segment of the Mobile Satellite (MSAT) mobile communication system is described. The amplifier is capable of producing 35 watts of RF power with multitone signal at an efficiency of 25 percent and with intermodulation products better than 16 dB below carrier.

  6. Study on networking issues of medium earth orbit satellite communications systems

    Science.gov (United States)

    Araki, Noriyuki; Shinonaga, Hideyuki; Ito, Yasuhiko

    1993-01-01

    Two networking issues of communications systems with medium earth orbit (MEO) satellites, namely network architectures and location determination and registration methods for hand-held terminals, are investigated in this paper. For network architecture, five candidate architectures are considered and evaluated in terms of signaling traffic. For location determination and registration, two methods are discussed and evaluated.

  7. Communication and Control in the Canadian North: The Role of Interactive Satellites.

    Science.gov (United States)

    Valaskakis, Gail G.

    In 1972 the Canadian government launched its first domestic communications satellite, Anik A, which relays direct broadcast television and telephone messages to northern communities. The impact of television on Inuit life has raised issues and concerns pertaining to native language broadcasting, media access and control, and cultural identity…

  8. Summary of the CTS Transient Event Counter data after one year of operation. [Communication Technology Satellite

    Science.gov (United States)

    Stevens, N. J.; Klinect, V. W.; Gore, J. V.

    1977-01-01

    The environmental charging of satellite surfaces during geomagnetic substorms is the apparent cause of a significant number of anomalous events occurring on geosynchronous satellites since the early 1970's. Electromagnetic pulses produced in connection with the differential charging of insulators can couple into the spacecraft harness and cause electronic switching anomalies. An investigation conducted to determine the response of the spacecraft surfaces to substorm particle fluxes makes use of a harness transient detector. The harness transient detector, called the Transient Event Counter (TEC) was built and integrated into the Canadian-American Communications Technology Satellite (CTS). A description of the TEC and its operational characteristics is given and the obtained data are discussed. The data show that the satellite surfaces appear to be charged to the point that discharges occur and that the discharge-induced transients couple into the wire harnesses.

  9. Study of LEO-SAT microwave link for broad-band mobile satellite communication system

    Science.gov (United States)

    Fujise, Masayuki; Chujo, Wataru; Chiba, Isamu; Furuhama, Yoji; Kawabata, Kazuaki; Konishi, Yoshihiko

    1993-01-01

    In the field of mobile satellite communications, a system based on low-earth-orbit satellites (LEO-SAT's) such as the Iridium system has been proposed. The LEO-SAT system is able to offer mobile telecommunication services in high-latitude areas. Rain degradation, fading and shadowing are also expected to be decreased when the system is operated at a high elevation angle. Furthermore, the propagation delay generated in the LEO-SAT system is less pronounced than that in the geostationary orbit satellite (GEO-SAT) system and, in voice services, the effect of the delay is almost negligible. We proposed a concept of a broad-band mobile satellite communication system with LEO-SAT's and Optical ISL. In that system, a fixed L-band (1.6/1.5 GHz) multibeam is used to offer narrow band service to the mobile terminals in the entire area covered by a LEO-SAT and steerable Ka-band (30/20 GHz) spot beams are used for the wide band service. In this paper, we present results of a study of LEO-SAT microwave link between a satellite and a mobile terminal for a broad-band mobile satellite communication system. First, the results of link budget calculations are presented and the antennas mounted on satellites are shown. For a future mobile antenna technology, we also show digital beamforming (DBF) techniques. DBF, together with modulation and/or demodulation, is becoming a key technique for mobile antennas with advanced functions such as antenna pattern calibration, correction, and radio interference suppression. In this paper, efficient DBF techniques for transmitting and receiving are presented. Furthermore, an adaptive array antenna system suitable for this LEO-SAT is presented.

  10. Application of INSAT Satellite Cloud-Imagery Data for Site ...

    Indian Academy of Sciences (India)

    tribpo

    Application of INSAT Satellite Cloud-Imagery Data for Site Evaluation. Work of ... sources like Cyg X-3 and AM-Her binary systems (Bhat et al. 1986; Bhat et al. ... one is dealing with in the very high energy (VHE) and ultra high energy (UHE) .... shows the monthly distribution of 'spectroscopic' hours averaged over the 5-year.

  11. Application of a chlorophyll index derived from satellite data to ...

    African Journals Online (AJOL)

    Application of a chlorophyll index derived from satellite data to investigate the variability of phytoplankton in the Benguela ecosystem. H Demarcq, R Barlow, L Hutchings. Abstract. No Abstract. African Journal of Marine Science Vol.29(2) 2007: pp. 271-282. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD ...

  12. Deep Charging Evaluation of Satellite Power and Communication System Components

    Science.gov (United States)

    Schneider, T. A.; Vaughn, J. A.; Chu, B.; Wong, F.; Gardiner, G.; Wright, K. H.; Phillips, B.

    2016-01-01

    Deep charging, in contrast to surface charging, focuses on electron penetration deep into insulating materials applied over conductors. A classic example of this scenario is an insulated wire. Deep charging can pose a threat to material integrity, and to sensitive electronics, when it gives rise to an electrostatic discharge or arc. With the advent of Electric Orbit Raising, which requires spiraling through Earth's radiation belts, satellites are subjected to high energy electron environments which they normally would not encounter. Beyond Earth orbit, missions to Jupiter and Saturn face deep charging concerns due to the high energy radiation environments. While predictions can be made about charging in insulating materials, it is difficult to extend those predictions to complicated geometries, such as the case of an insulating coating around a small wire, or a non-uniform silicone grouting on a bus bar. Therefore, to conclusively determine the susceptibility of a system to arcs from deep charging, experimental investigations must be carried out. This paper will describe the evaluation carried out by NASA's Marshall Space Flight Center on subscale flight-like samples developed by Space Systems/Loral, LLC. Specifically, deep charging evaluations of solar array wire coupons, a photovoltaic cell coupon, and a coaxial microwave transmission cable, will be discussed. The results of each evaluation will be benchmarked against control sample tests, as well as typical power system levels, to show no significant deep charging threat existed for this set of samples under the conditions tested.

  13. Rain Fade Compensation for Ka-Band Communications Satellites

    Science.gov (United States)

    Mitchell, W. Carl; Nguyen, Lan; Dissanayake, Asoka; Markey, Brian; Le, Anh

    1997-01-01

    This report provides a review and evaluation of rain fade measurement and compensation techniques for Ka-band satellite systems. This report includes a description of and cost estimates for performing three rain fade measurement and compensation experiments. The first experiment deals with rain fade measurement techniques while the second one covers the rain fade compensation techniques. The third experiment addresses a feedback flow control technique for the ABR service (for ATM-based traffic). The following conclusions were observed in this report; a sufficient system signal margin should be allocated for all carriers in a network, that is a fixed clear-sky margin should be typically in the range of 4-5 dB and should be more like 15 dB in the up link for moderate and heavy rain zones; to obtain a higher system margin it is desirable to combine the uplink power control technique with the technique that implements the source information rate and FEC code rate changes resulting in a 4-5 dB increase in the dynamic part of the system margin. The experiments would assess the feasibility of the fade measurements and compensation techniques, and ABR feedback control technique.

  14. Utilization of photovoltaic for broadband satellite communications in rural area of Thailand

    Science.gov (United States)

    Jinayim, Theerawut; Mungkung, Narong; Kasayapanand, Nat

    2013-06-01

    Electricity, Information and Communication Technologies (ICTs) are very important not only in urban areas but also in rural areas. To provide ICTs service in rural areas, sources of electricity and communication infrastructures must be implemented. Electricity is a major condition due to the fact that all electronic devices needed it in order to power on, so that it is impossible to operate any forms of ICTs in areas where the main national grid line is unavailable. Almost rural areas of Thailand where the main national grid line is unavailable have very good sunlight intensity. Photovoltaic is the most effective renewable energy technologies in those areas for meeting electricity needed in areas that are not connected to the main national grid line. In this paper, the efficiency utilization of photovoltaic as source of electricity for broadband satellite communication systems as well as social and economic impact and quality of life of people in rural areas of Thailand are presented. The results show that most rural communities would be able to universally access to the basic telecommunications services such as internet access and public telephone via satellite communication systems. However, in some field case study, broadband internet access via satellite communication may be unnecessary for some rural communities and the most exactly rural communities needed are electricity for household usage and battery charger.

  15. Communicating embedded systems networks applications

    CERN Document Server

    Krief, Francine

    2013-01-01

    Embedded systems become more and more complex and require having some knowledge in various disciplines such as electronics, data processing, telecommunications and networks. Without detailing all the aspects related to the design of embedded systems, this book, which was written by specialists in electronics, data processing and telecommunications and networks, gives an interesting point of view of communication techniques and problems in embedded systems. This choice is easily justified by the fact that embedded systems are today massively communicating and that telecommunications and network

  16. Information and Communication Technology (ICT) Application in ...

    African Journals Online (AJOL)

    Information and Communication Technology (ICT) Application in Secondary Schools and Students‟ Academic Performance in Social Studies. ... of ICT in schools ICT, skills competence of junior secondary school students (public and private ...

  17. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX XX) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nassar (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting and associated Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop convene yearly to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom)industry, academia, and government with an interest in space-ground radio wave propagation have peer discussion of work in progress, disseminate propagation results, and interact with the satcom industry. NAPEX XX, in Fairbanks, Alaska, June 4-5, 1996, had three sessions: (1) "ACTS Propagation Study: Background, Objectives, and Outcomes," covered results from thirteen station-years of Ka-band experiments; (2) "Propagation Studies for Mobile and Personal Satellite Applications," provided the latest developments in measurement, modeling, and dissemination of propagation phenomena of interest to the mobile, personal, and aeronautical satcom industry; and (3)"Propagation Research Topics," covered a range of topics including space/ground optical propagation experiments, propagation databases, the NASA Propagation Web Site, and revision plans for the NASA propagation effects handbooks. The ACTS Miniworkshop, June 6, 1996, covered ACTS status, engineering support for ACTS propagation terminals, and the ACTS Propagation Data Center. A plenary session made specific recommendations for the future direction of the program.

  18. Small satellite technologies and applications II; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    Science.gov (United States)

    Horais, Brian J.

    The present conference on small satellite (SS) systems and their supporting technologies discusses the Medsat SS for malaria early warning and control, results of the Uosat earth-imaging system, commercial applications for MSSs, an SS family for LEO communications, videosignal signature-synthesis for fast narrow-bandwidth transmission, and NiH battery applications in SSs. Also discussed are the 'PegaStar' spacecraft concept for remote sensing, dual-cone scanning earth sensor processing algorithms, SS radiation-budget instrumentation, SDI's relevance to SSs, spacecraft fabrication and test integration, and cryocooler producibility. (For individual items see A93-28077 to A93-28100)

  19. Deviations in CBERS-4 Satellite Direction Components From The Electromagnetic Disturbance of Communication Antennas

    Science.gov (United States)

    Heilmann, A.; Fernandes, C.

    2017-10-01

    The CBERS-4 is a low Earth orbit satellite, with a set of antennas S-band/UHF for communication almost omni-direcional. For the electromagnetic radiation from transmission antennas, was developed a model of electromagnetic disturbance considering the antennas theory and the laws of the conservation energy-momentum. Was propagated the orbit of the CBERS-4 satellite considering your state vector from the March 14, 2016, at 11h 14m 15.23s using the equation of motion in the form of cartesian components. From the state vector of the CBERS-4 satellite was possible to propagate the orbit for different periods, without disturbance (considering just the problem of two bodies) and with a disturbance of electromagnetic origin. The model of reaction of electromagnetic acceleration on the satellite depends on only the type of antenna. Quadrifilar and parabolic propeller antennas were considered in this paper. Using the equation of motion of the satellite based on the method of Runge-Kutta of fourth and fifth degree, the effect disturber this modeling was applied on the CBERS-4 considering the mass of satellite, characteristics of antenna, power irradiated and gain maximum of antenna. The final analysis discusses the values of components in the direction (radial, cross and normal) and the coordinates X-Y-Z considering the case disturbed to both antennas.

  20. Ultraviolet Communication for Medical Applications

    Science.gov (United States)

    2014-05-01

    MATLAB features were coded but not used in the test bench. First, FEC using low density parity checking ( LDPC ) codes was implemented but not used...modulation, and demodulation. MATLAB code is freely available for encryption, and a toolbox is available for the Zephyr Bioharness to capture streams... MATLAB 5 MATLAB communication system code was implemented in a basic, functional way for the first milestone test. Tested data rate was 50 kbps and

  1. Ultraviolet Communication for Medical Applications

    Science.gov (United States)

    2015-06-01

    DEI procured several UVC phosphors and tested them with vacuum UV (VUV) excitation. Available emission peaks include: 226 nm, 230 nm, 234 nm, 242...SUPPLEMENTARY NOTES Report contains color. 14. ABSTRACT Under this Phase II SBIR effort, Directed Energy Inc.’s (DEI) proprietary ultraviolet ( UV ...15. SUBJECT TERMS Non-line-of-sight (NLOS), networking, optical communication, plasma-shells, short range, ultraviolet ( UV ) light 16. SECURITY

  2. TWT design requirements for 30/20 GHz digital communications' satellite

    Science.gov (United States)

    Stankiewicz, N.; Anzic, G.

    1979-01-01

    The rapid growth of communication traffic (voice, data, and video) requires the development of additional frequency bands before the 1990's. The frequencies currently in use for satellite communications at 6/4 GHz are crowded and demands for 14/12 GHz systems are increasing. Projections are that these bands will be filled to capacity by the late 1980's. The next higher frequency band allocated for satellite communications is at 30/20 GHz. For interrelated reasons of efficiency, power level, and system reliability criteria, a candidate for the downlink amplifier in a 30/20 GHz communications' satellite is a dual mode traveling wave tube (TWT) equipped with a highly efficient depressed collector. A summary is given of the analyses which determine the TWT design requirements. The overall efficiency of such a tube is then inferred from a parametric study and from experimental data on multistaged depressed collectors. The expected TWT efficiency at 4 dB below output saturation is 24 percent in the high mode and 22 percent in the low mode.

  3. K-Band Phased Array Developed for Low- Earth-Orbit Satellite Communications

    Science.gov (United States)

    Anzic, Godfrey

    1999-01-01

    Future rapid deployment of low- and medium-Earth-orbit satellite constellations that will offer various narrow- to wide-band wireless communications services will require phased-array antennas that feature wide-angle and superagile electronic steering of one or more antenna beams. Antennas, which employ monolithic microwave integrated circuits (MMIC), are perfectly suited for this application. Under a cooperative agreement, an MMIC-based, K-band phased-array antenna is being developed with 50/50 cost sharing by the NASA Lewis Research Center and Raytheon Systems Company. The transmitting array, which will operate at 19 gigahertz (GHz), is a state-of-the-art design that features dual, independent, electronically steerable beam operation ( 42 ), a stand-alone thermal management, and a high-density tile architecture. This array can transmit 622 megabits per second (Mbps) in each beam from Earth orbit to small Earth terminals. The weight of the total array package is expected to be less than 8 lb. The tile integration technology (flip chip MMIC tile) chosen for this project represents a major advancement in phased-array engineering and holds much promise for reducing manufacturing costs.

  4. Optimization of communication network topology for navigation sharing among distributed satellites

    Science.gov (United States)

    Dang, Zhaohui; Zhang, Yulin

    2013-01-01

    Navigation sharing among distributed satellites is quite important for coordinated motion and collision avoidance. This paper proposes optimization methods of the communication network topology to achieve navigation sharing. The whole communication network constructing by inter-satellite links are considered as a topology graph. The aim of this paper is to find the communication network topology with minimum communication connections' number (MCCN) in different conditions. It has found that the communication capacity and the number of channels are two key parameters affecting the results. The model of MCCN topology for navigation sharing is established and corresponding method is designed. Two main scenarios, viz., homogeneous case and heterogeneous case, are considered. For the homogeneous case where each member has the same communication capacity, it designs a construction method (Algorithm 1) to find the MCCN topology. For the heterogeneous case, it introduces a modified genetic algorithm (Algorithm 2) to find the MCCN topology. When considering the fact that the number of channels is limited, the Algorithm 2 is further modified by adding a penalized term in the fitness function. The effectiveness of these algorithms is all proved in theoretical. Three examples are further tested to illustrate the methods developed in this paper.

  5. Intuitive Tools for the Design and Analysis of Communication Payloads for Satellites

    Science.gov (United States)

    Culver, Michael R.; Soong, Christine; Warner, Joseph D.

    2014-01-01

    In an effort to make future communications satellite payload design more efficient and accessible, two tools were created with intuitive graphical user interfaces (GUIs). The first tool allows payload designers to graphically design their payload by using simple drag and drop of payload components onto a design area within the program. Information about each picked component is pulled from a database of common space-qualified communication components sold by commerical companies. Once a design is completed, various reports can be generated, such as the Master Equipment List. The second tool is a link budget calculator designed specifically for ease of use. Other features of this tool include being able to access a database of NASA ground based apertures for near Earth and Deep Space communication, the Tracking and Data Relay Satellite System (TDRSS) base apertures, and information about the solar system relevant to link budget calculations. The link budget tool allows for over 50 different combinations of user inputs, eliminating the need for multiple spreadsheets and the user errors associated with using them. Both of the aforementioned tools increase the productivity of space communication systems designers, and have the colloquial latitude to allow non-communication experts to design preliminary communication payloads.

  6. WMSA for wireless communication applications

    Energy Technology Data Exchange (ETDEWEB)

    Vats, Monika; Agarwal, Alok, E-mail: alokagarwal26@yahoo.com; Kumar, Ravindra [Dept. of Electronics & Electrical Engineering, Lingaya’s University Faridabad (India)

    2016-03-09

    Modified rectangular compact microstrip patch antenna having finite ground plane is proposed in this paper. Wideband Microstrip Antenna (WMSA) is achieved by corner cut and inserting air gaps inside the edges of the radiating patch having finite ground plane. The obtained impedance bandwidth for 10 dB return loss for the operating frequency f{sub 0} = 2.09 GHz is 28.7 % (600 MHz), which is very high as compared to the bandwidth obtained for the conventional microstrip antenna. Compactness with wide bandwidth of this antenna is practically useful for the wireless communication systems.

  7. Dynamic characterization of satellite assembly for responsive space applications

    International Nuclear Information System (INIS)

    Mascarenas, David; Macknelly, David; Mullins, Josh; Wiest, Heather; Park, Gyuhae

    2013-01-01

    The rapid deployment of satellites for responsive space surveillance applications is hindered by the need to flight-qualify their components and the resulting mechanical assembly. Conventional methods for qualification testing of satellite components are costly and time consuming. Furthermore, full-scale vehicles must be subjected to simulated launch loads during testing, and this harsh testing environment increases the risk of damage to satellite components during qualification. This work focuses on replacing this potentially destructive testing procedure with a non-destructive structural health monitoring (SHM)-based technique while maintaining the same level of confidence in the testing procedure's ability to qualify the satellite for flight. We focus on assessing the performance of SHM techniques to replace the high-cost qualification procedure and to localize faults introduced by improper assembly. The goal of this work is to create a dual-use system that can both assist in the process of qualifying the satellite for launch, as well as provide continuous structural integrity monitoring during manufacture, transport, launch and deployment. SHM techniques were applied on a small-scale structure representative of a responsive satellite. The test structure consisted of an extruded aluminum space-frame covered with aluminum shear plates assembled using bolted joints. Multiple piezoelectric transducers were bonded to the test structure and acted as combined actuators and sensors. Piezoelectric active-sensing based techniques, including measurements of low-frequency global frequency response functions and high-frequency wave propagation techniques, were employed. Using these methods in conjunction with finite element modeling, the dynamic properties of the test structure were established and areas of potential damage could be identified and localized. A procedure for guiding the effective placement of the sensors and actuators is also outlined. (paper)

  8. GAUSS Market Analysis for Integrated Satellite Communication and Navigation Location Based services

    Science.gov (United States)

    Di Fazio, Antonella; Dricot, Fabienne; Tata, Francesco

    2003-07-01

    The demand for mobile information services coupled with positioning technologies for delivering value- added services that depend on a user's location has rapidly increased during last years. In particular, services and applications related with improved mobility safety and transport efficiency look very attractive.Solutions for location services vary in respect of positioning accuracy and the technical infrastructure required, and the associated investment in terminals and networks. From the analysis of the state-of-the art, it comes that various technologies are currently available on the European market, while mobile industry is gearing up to launch a wide variety of location services like tracking, alarming and locating.Nevertheless, when addressing safety of life as well as security applications, severe hurdles have to be posed in the light of existing technologies. Existing navigation (e.g. GPS) and communication systems are not able to completely satisfy the needs and requirements of safety-of-life-critical applications. As a matter of fact, the GPS system's main weaknesses today is its lack of integrity, which means its inability to warn users of a malfunction in a reasonable time, while the other positioning techniques do not provide satisfactory accuracy as well, and terrestrial communication networks are not capable to cope with stringent requirement in terms of service reliability and coverage.In this context, GAUSS proposes an innovative satellite-based solution using novel technology and effective tools for addressing mobility challenges in a cost efficient manner, improving safety and effectiveness.GAUSS (Galileo And UMTS Synergetic System) is a Research and Technological Development project co- funded by European Commission, within the frame of the 5th IST Programme. The project lasted two years, and it was successfully completed in November 2002. GAUSS key concept is the integration of Satellite Navigation GNSS and UMTS communication technology, to

  9. Millimeter wave propagation modeling of inhomogeneous rain media for satellite communications systems

    Science.gov (United States)

    Persinger, R. R.; Stutzman, W. L.

    1978-01-01

    A theoretical propagation model that represents the scattering properties of an inhomogeneous rain often found on a satellite communications link is presented. The model includes the scattering effects of an arbitrary distribution of particle type (rain or ice), particle shape, particle size, and particle orientation within a given rain cell. An associated rain propagation prediction program predicts attenuation, isolation and phase shift as a function of ground rain rate. A frequency independent synthetic storm algorithm is presented that models nonuniform rain rates present on a satellite link. Antenna effects are included along with a discussion of rain reciprocity. The model is verified using the latest available multiple frequency data from the CTS and COMSTAR satellites. The data covers a wide range of frequencies, elevation angles, and ground site locations.

  10. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite

  11. Exploring the boundaries of quantum mechanics: advances in satellite quantum communications.

    Science.gov (United States)

    Agnesi, Costantino; Vedovato, Francesco; Schiavon, Matteo; Dequal, Daniele; Calderaro, Luca; Tomasin, Marco; Marangon, Davide G; Stanco, Andrea; Luceri, Vincenza; Bianco, Giuseppe; Vallone, Giuseppe; Villoresi, Paolo

    2018-07-13

    Recent interest in quantum communications has stimulated great technological progress in satellite quantum technologies. These advances have rendered the aforesaid technologies mature enough to support the realization of experiments that test the foundations of quantum theory at unprecedented scales and in the unexplored space environment. Such experiments, in fact, could explore the boundaries of quantum theory and may provide new insights to investigate phenomena where gravity affects quantum objects. Here, we review recent results in satellite quantum communications and discuss possible phenomena that could be observable with current technologies. Furthermore, stressing the fact that space represents an incredible resource to realize new experiments aimed at highlighting some physical effects, we challenge the community to propose new experiments that unveil the interplay between quantum mechanics and gravity that could be realizable in the near future.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  12. Issues for the integration of satellite and terrestrial cellular networks for mobile communications

    Science.gov (United States)

    Delre, Enrico; Mistretta, Ignazio; Dellipriscoli, Francesco; Settimo, Franco

    1991-01-01

    Satellite and terrestrial cellular systems naturally complement each other for land mobile communications, even though present systems have been developed independently. The main advantages of the integrated system are a faster wide area coverage, a better management of overloading traffic conditions, an extension to geographical areas not covered by the terrestrial network and, in perspective, the provision of only one integrated system for all mobile communications (land, aeronautical, and maritime). To achieve these goals, as far as possible the same protocols of the terrestrial network should be used also for the satellite network. Discussed here are the main issues arising from the requirements of the main integrated system. Some results are illustrated, and possible future improvements due to technical solutions are presented.

  13. The impact of customer-contractor interactions on spacecraft innovation: Insights from communication satellite history

    Science.gov (United States)

    Szajnfarber, Zoe; Stringfellow, Margaret V.; Weigel, Annalisa L.

    2010-11-01

    This paper captures a first detailed attempt to quantitatively analyze the innovation history of the space sector. Building on a communication satellite innovation metric and a spacecraft innovation framework developed as part of an ongoing project, this paper presents a preliminary model of global communication satellite innovation. In addition to innovation being a function of the rate of performance normalized by price, innovation was found to be strongly influenced by characteristics of the customer-contractor contractual relationship. Specifically, Department of Defense contracts tend to result in a lower level of innovation on average as compared to other customers. Also, particular customer-contractor pairs perform differently and exhibit a second order relationship in time.

  14. Advanced architectures and the required technologies for next-generation communications satellite systems

    Science.gov (United States)

    Arnold, Ray; Naderi, F. Michael

    1988-01-01

    The hardware requirements for multibeam operation and onboard data processing and switching on future communication satellites are reviewed. Topics addressed include multiple-beam antennas, frequency-addressable beams, baseband vs IF switching, FDM/TDMA systems, and bulk demodulators. The proposed use of these technologies in the NASA ACTS, Italsat, and the Japanese ETS-VI is discussed in detail and illustrated with extensive diagrams, maps, drawings, and tables of projected performance data.

  15. A research on the application of software defined networking in satellite network architecture

    Science.gov (United States)

    Song, Huan; Chen, Jinqiang; Cao, Suzhi; Cui, Dandan; Li, Tong; Su, Yuxing

    2017-10-01

    Software defined network is a new type of network architecture, which decouples control plane and data plane of traditional network, has the feature of flexible configurations and is a direction of the next generation terrestrial Internet development. Satellite network is an important part of the space-ground integrated information network, while the traditional satellite network has the disadvantages of difficult network topology maintenance and slow configuration. The application of SDN technology in satellite network can solve these problems that traditional satellite network faces. At present, the research on the application of SDN technology in satellite network is still in the stage of preliminary study. In this paper, we start with introducing the SDN technology and satellite network architecture. Then we mainly introduce software defined satellite network architecture, as well as the comparison of different software defined satellite network architecture and satellite network virtualization. Finally, the present research status and development trend of SDN technology in satellite network are analyzed.

  16. A Strategic Analysis of Commercial Satellite communications Enterprises and their Role for the Warfighter of the Future

    National Research Council Canada - National Science Library

    Gonder, Richard

    1998-01-01

    .... After initially setting the baseline, the paper will discuss the ability of the exploding commercial satellite communications market to meet some, if not most of the uniquely military requirements (the pros...

  17. Application opportunities in wireless communications. Final report

    International Nuclear Information System (INIS)

    Abbott, R.E.; Blevins, R.P.; Olmstead, C.

    1998-07-01

    This report presents the results of examinations of wireless technologies and applications that may offer potential to utilities. Five different wireless technology areas are reviewed. Three areas--Communication Networks, Monitored Security Services, and Home Automation--potentially represent new business ventures for utilities. Two areas--Automatic Vehicle Location and Automated Field-Force Management--represent wireless applications with potential for reduced operating costs and improved customer relations

  18. Application of Information and Communication Technologies (ICTs ...

    African Journals Online (AJOL)

    Application of Information and Communication Technologies (ICTs) to Library Operations and Routines in Selected Nigerian Federal University Libraries. ... The study recommended among others that, the NFUL should use Open-source library information management software and DSpace content management system ...

  19. Optimization of Joint Power and Bandwidth Allocation in Multi-Spot-Beam Satellite Communication Systems

    Directory of Open Access Journals (Sweden)

    Heng Wang

    2014-01-01

    Full Text Available Multi-spot-beam technique has been widely applied in modern satellite communication systems. However, the satellite power and bandwidth resources in a multi-spot-beam satellite communication system are scarce and expensive; it is urgent to utilize the resources efficiently. To this end, dynamically allocating the power and bandwidth is an available way. This paper initially formulates the problem of resource joint allocation as a convex optimization problem, taking into account a compromise between the maximum total system capacity and the fairness among the spot beams. A joint bandwidth and power allocation iterative algorithm based on duality theory is then proposed to obtain the optimal solution of this optimization problem. Compared with the existing separate bandwidth or power optimal allocation algorithms, it is shown that the joint allocation algorithm improves both the total system capacity and the fairness among spot beams. Moreover, it is easy to be implemented in practice, as the computational complexity of the proposed algorithm is linear with the number of spot beams.

  20. Small-satellite technology and applications; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    Science.gov (United States)

    Horais, Brian J.

    Remote sensing applications and systems, small satellites for sensing missions, and supporting technologies are the broad topics discussed. Particular papers are presented on small satellites for water cycle experiments, low-cost spacecraft buses for remote sensing applications, Webersat (a low-cost imaging satellite), DARPA initiatives in small-satellite technologies, a solid-state magnetic azimuth sensor for small satellites, and thermal analysis of a small expendable tether satellite package. (For individual items see A93-24152 to A93-24175)

  1. Quantum communication for satellite-to-ground networks with partially entangled states

    International Nuclear Information System (INIS)

    Chen Na; Quan Dong-Xiao; Pei Chang-Xing; Yang-Hong

    2015-01-01

    To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. (paper)

  2. Communications systems for emergency deployment applications

    International Nuclear Information System (INIS)

    Gladden, C.A.

    1987-01-01

    The Emergency Response Team (ERT) communications system was developed by the US Department of Energy (DOE) to provide radio and telecommunications service for scientific and management elements located in, and adjacent to, an emergency area. The telephone system consists of six nodes, interconnected via microwave links that support T-1 data links and simultaneous two-way live video. The radio network is a self-contained VHF system arranged around portable and programmable repeaters. The system is comprised of approximately 183 DES voice-private radios and 168 clear text radios. Capability is available in the form of portable International Maritime Satellite (INMARSAT) terminals that allow direct dial access to coast earth stations in the US or other countries

  3. Application of Unscented Kalman Filter in Satellite Orbit Simulation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dongming; CAI Zhiwu

    2006-01-01

    A new estimate method is proposed, which takes advantage of the unscented transform method, thus the true mean and covariance are approximated more accurately. The new method can be applied to non-linear systems without the linearization process necessary for the EKF, and it does not demand a Gaussian distribution of noise and what's more, its ease of implementation and more accurate estimation features enables it to demonstrate its good performance in the experiment of satellite orbit simulation. Numerical experiments show that the application of the unscented Kalman filter is more effective than the EKF.

  4. Design and Evaluation of 10-Gbps Inter-satellite Optical Wireless Communication Link for Improved Performance

    Science.gov (United States)

    Gupta, Amit; Nagpal, Shaina

    2017-05-01

    Inter-satellite optical wireless communication (IsOWC) systems can be chosen over existing microwave satellite systems for deploying in space in the future due to their high bandwidth, small size, light weight, low power and low cost. However, the IsOWC system suffers from various attenuations due to weather conditions, turbulence or scintillations which limit its performance and decreases its availability. So, in order to improve the performance, IsOWC system using directly modulated laser source is proposed in this work. The system is designed and evaluated to be suitable for high data rate transmissions up to 10 Gbps. The performance of the system is investigated in order to reduce the cost and complexity of link and improving the quality of information signal. Further the proposed IsOWC system is analysed using BER analyser, power meter and oscilloscope Visualizer.

  5. Description and Simulation of a Fast Packet Switch Architecture for Communication Satellites

    Science.gov (United States)

    Quintana, Jorge A.; Lizanich, Paul J.

    1995-01-01

    The NASA Lewis Research Center has been developing the architecture for a multichannel communications signal processing satellite (MCSPS) as part of a flexible, low-cost meshed-VSAT (very small aperture terminal) network. The MCSPS architecture is based on a multifrequency, time-division-multiple-access (MF-TDMA) uplink and a time-division multiplex (TDM) downlink. There are eight uplink MF-TDMA beams, and eight downlink TDM beams, with eight downlink dwells per beam. The information-switching processor, which decodes, stores, and transmits each packet of user data to the appropriate downlink dwell onboard the satellite, has been fully described by using VHSIC (Very High Speed Integrated-Circuit) Hardware Description Language (VHDL). This VHDL code, which was developed in-house to simulate the information switching processor, showed that the architecture is both feasible and viable. This paper describes a shared-memory-per-beam architecture, its VHDL implementation, and the simulation efforts.

  6. The Evolution of Successful Satellite Science to Air Quality Application Projects: From Inception to Realization

    Science.gov (United States)

    Soja, A. J.

    2012-12-01

    Teams of scientist have been working for almost a decade with state, local, regional and federal Air Quality regulators and scientists on several projects that have been focused on improving biomass burning emissions within our nation's National Emissions Inventory (NEI). Initially, the NEI was based strictly on ground-based information that often used data aggregated from previous years reported at the county-centroid and completely ignored the spatial domain of all fires. This methodology resulted in gross inaccuracies; however it was an ingrained system and the users and organizations were largely comfortable. Improvements were viewed as too costly. Our task was to convince regulators, managers and users of the value that could be added by using satellite data to enhance the NEI. Certainly, there were individuals that understood the value of using satellite data, but they needed support to convince the establishment of the intrinsic, cost-effective value of publically-available satellite data. It was essential to present arguments, as well as requested verification and validation statistics, in the format that most suited the objectives of application organizations. This process incorporated: knowledge of state-of-the-art satellite data, algorithms and science; a working knowledge of the users applications and requirements; interacting with individuals with a variety of skill sets and goals; and perhaps most importantly, listening to the goals and responsibilities of the user community and fully communicating. Today, the Environmental Protection Agency and several state and regional organizations are using satellite data to estimate biomass burnings emissions at daily and annual scales for a number of critical environmental management and policy activities including regulation setting and regional strategy development for attainment of the National Ambient Air Quality Standards (NAAQS). We continue to work at the local, state and federal levels to improve the

  7. Mitigating Aviation Communication and Satellite Orbit Operations Surprises from Adverse Space Weather

    Science.gov (United States)

    Tobiska, W. Kent

    2008-01-01

    Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.

  8. Proportional fair scheduling algorithm based on traffic in satellite communication system

    Science.gov (United States)

    Pan, Cheng-Sheng; Sui, Shi-Long; Liu, Chun-ling; Shi, Yu-Xin

    2018-02-01

    In the satellite communication network system, in order to solve the problem of low system capacity and user fairness in multi-user access to satellite communication network in the downlink, combined with the characteristics of user data service, an algorithm study on throughput capacity and user fairness scheduling is proposed - Proportional Fairness Algorithm Based on Traffic(B-PF). The algorithm is improved on the basis of the proportional fairness algorithm in the wireless communication system, taking into account the user channel condition and caching traffic information. The user outgoing traffic is considered as the adjustment factor of the scheduling priority and presents the concept of traffic satisfaction. Firstly,the algorithm calculates the priority of the user according to the scheduling algorithm and dispatches the users with the highest priority. Secondly, when a scheduled user is the business satisfied user, the system dispatches the next priority user. The simulation results show that compared with the PF algorithm, B-PF can improve the system throughput, the business satisfaction and fairness.

  9. Link establishment criterion and topology optimization for hybrid GPS satellite communications with laser crosslinks

    Science.gov (United States)

    Li, Lun; Wei, Sixiao; Tian, Xin; Hsieh, Li-Tse; Chen, Zhijiang; Pham, Khanh; Lyke, James; Chen, Genshe

    2018-05-01

    In the current global positioning system (GPS), the reliability of information transmissions can be enhanced with the aid of inter-satellite links (ISLs) or crosslinks between satellites. Instead of only using conventional radio frequency (RF) crosslinks, the laser crosslinks provide an option to significantly increase the data throughput. The connectivity and robustness of ISL are needed for analysis, especially for GPS constellations with laser crosslinks. In this paper, we first propose a hybrid GPS communication architecture in which uplinks and downlinks are established via RF signals and crosslinks are established via laser links. Then, we design an optical crosslink assignment criteria considering the practical optical communication factors such as optical line- of-sight (LOS) range, link distance, and angular velocity, etc. After that, to further improve the rationality of establishing crosslinks, a topology control algorithm is formulated to optimize GPS crosslink networks at both physical and network layers. The RF transmission features for uplink and downlink and optical transmission features for crosslinks are taken into account as constraints for the optimization problem. Finally, the proposed link establishment criteria are implemented for GPS communication with optical crosslinks. The designs of this paper provide a potential crosslink establishment and topology control algorithm for the next generation GPS.

  10. Analysis on the status of the application of satellite remote sensing technology to nuclear safeguards

    International Nuclear Information System (INIS)

    Tao Zhangsheng; Zhao Yingjun

    2008-01-01

    Based on the application status of satellite remote sensing technology to nuclear safeguards, advantage of satellite remote sensing technology is analyzed, main types of satellite image used in nuclear safeguards are elaborated and the main application of satellite images is regarded to detect, verify and monitor nuclear activities; verify additional protocol declaration and design information, support performing complementary access inspections; investigate alleged undeclared activities based on open source or the third party information. Application examples of satellite image in nuclear safeguards to analyze nuclear facilities by other countries, the ability of remote sensing technology in nuclear safeguards is discussed. (authors)

  11. Trellis coding with Continuous Phase Modulation (CPM) for satellite-based land-mobile communications

    Science.gov (United States)

    1989-01-01

    This volume of the final report summarizes the results of our studies on the satellite-based mobile communications project. It includes: a detailed analysis, design, and simulations of trellis coded, full/partial response CPM signals with/without interleaving over various Rician fading channels; analysis and simulation of computational cutoff rates for coherent, noncoherent, and differential detection of CPM signals; optimization of the complete transmission system; analysis and simulation of power spectrum of the CPM signals; design and development of a class of Doppler frequency shift estimators; design and development of a symbol timing recovery circuit; and breadboard implementation of the transmission system. Studies prove the suitability of the CPM system for mobile communications.

  12. Diamond Electron-Spin Clocks For Space Navigation and Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision clocks are needed in a broad range of applications, including satellite communication, high-bandwidth wireless communication, computing systems, and...

  13. DAS photonics developments for analogue and digital photonic links for intra-satellite communications

    Science.gov (United States)

    Blasco, Julián.; Rico, Eloy; Genovard, Pablo; Sáez, Cristina; Navasquillo, Olga; Martí, Javier

    2017-11-01

    During past years, special efforts have been invested to develop optical links, both digital and analogue, for space applications, such as reference signal distribution or digital communication cables. The aim of this paper is to present the current DAS developments for these applications as well as future work to increase TRL levels and flight opportunities.

  14. Prediction of the Sun-Glint Locations for the Communication, Ocean and Meteorological Satellite

    Directory of Open Access Journals (Sweden)

    Jae-Ik Park

    2005-09-01

    Full Text Available For the Communication, Ocean and Meteorological Satellite (COMS which will be launched in 2008, an algorithm for finding the precise location of the sun-glint point on the ocean surface is studied. The precise locations of the sun-glint are estimated by considering azimuth and elevation angles of Sun-satellite-Earth geometric position and the law of reflection. The obtained nonlinear equations are solved by using the Newton-Raphson method. As a result, when COMS is located at 116.2°E or 128.2°E longitude, the sun-glint covers region of ±10° (N-S latitude and 80-150° (E-W longitude. The diurnal path of the sun-glint in the southern hemisphere is curved towards the North Pole, and the path in the northern hemisphere is forwards the south pole. The algorithm presented in this paper can be applied to predict the precise location of sun-glint region in any other geostationary satellites.

  15. Power attenuation characteristics as switch-over criterion in personal satellite mobile communications

    Science.gov (United States)

    Castro, Jonathan P.

    1993-01-01

    A third generation mobile system intends to support communications in all environments (i.e., outdoors, indoors at home or office and when moving). This system will integrate services that are now available in architectures such as cellular, cordless, mobile data networks, paging, including satellite services to rural areas. One way through which service integration will be made possible is by supporting a hierarchical cellular structure based on umbrella cells, macro cells, micro and pico cells. In this type of structure, satellites are part of the giant umbrella cells allowing continuous global coverage, the other cells belong to cities, neighborhoods, and buildings respectively. This does not necessarily imply that network operation of terrestrial and satellite segments interconnect to enable roaming and spectrum sharing. However, the cell concept does imply hand-off between different cell types, which may involve change of frequency. Within this propsective, the present work uses power attenuation characteristics to determine a dynamic criterion that allows smooth transition from space to terrestrial networks. The analysis includes a hybrid channel that combines Rician, Raleigh and Log Normal fading characteristics.

  16. Hardware demonstration of high-speed networks for satellite applications.

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, Jonathon W.; Lee, David S.

    2008-09-01

    This report documents the implementation results of a hardware demonstration utilizing the Serial RapidIO{trademark} and SpaceWire protocols that was funded by Sandia National Laboratories (SNL's) Laboratory Directed Research and Development (LDRD) office. This demonstration was one of the activities in the Modeling and Design of High-Speed Networks for Satellite Applications LDRD. This effort has demonstrated the transport of application layer packets across both RapidIO and SpaceWire networks to a common downlink destination using small topologies comprised of commercial-off-the-shelf and custom devices. The RapidFET and NEX-SRIO debug and verification tools were instrumental in the successful implementation of the RapidIO hardware demonstration. The SpaceWire hardware demonstration successfully demonstrated the transfer and routing of application data packets between multiple nodes and also was able reprogram remote nodes using configuration bitfiles transmitted over the network, a key feature proposed in node-based architectures (NBAs). Although a much larger network (at least 18 to 27 nodes) would be required to fully verify the design for use in a real-world application, this demonstration has shown that both RapidIO and SpaceWire are capable of routing application packets across a network to a common downlink node, illustrating their potential use in real-world NBAs.

  17. Advanced Communication Technology Satellite (ACTS) Very Small Aperture Terminal (VSAT) Network Control Performance

    Science.gov (United States)

    Coney, T. A.

    1996-01-01

    This paper discusses the performance of the network control function for the Advanced Communications Technology Satellite (ACTS) very small aperture terminal (VSAT) full mesh network. This includes control of all operational activities such as acquisition, synchronization, timing and rain fade compensation as well as control of all communications activities such as on-demand integrated services (voice, video, and date) connects and disconnects Operations control is provided by an in-band orderwire carried in the baseboard processor (BBP) control burst, the orderwire burst, the reference burst, and the uplink traffic burst. Communication services are provided by demand assigned multiple access (DAMA) protocols. The ACTS implementation of DAMA protocols ensures both on-demand and integrated voice, video and data services. Communications services control is also provided by the in-band orderwire but uses only the reference burst and the uplink traffic burst. The performance of the ACTS network control functions have been successfully tested during on-orbit checkout and in various VSAT networks in day to day operations. This paper discusses the network operations and services control performance.

  18. The Chinese FY-1 Meteorological Satellite Application in Observation on Oceanic Environment

    Science.gov (United States)

    Weimin, S.

    meteorological satellite is stated in this paper. exploration of the ocean resources has been a very important question of global strategy in the world. The exploration of the ocean resources includes following items: Making full use of oceanic resources and space, protecting oceanic environment. to observe the ocean is by using of satellite. In 1978, US successfully launched the first ocean observation satellite in the world --- Sea Satellite. It develops ancient oceanography in to advanced space-oceanography. FY-1 B and FY- IC respectively. High quality data were acquired at home and abroad. FY-1 is Chinese meteorological satellite, but with 0.43 ~ 0.48 μm ,0.48 ~ 0.53 μm and 0.53 ~ 0.58 μm three ocean color channels, actually it is a multipurpose remote sensing satellite of meteorology and oceanography. FY-1 satellite's capability of observation on ocean partly, thus the application field is expanded and the value is increased. With the addition of oceanic channels on FY-1, the design of the satellite is changed from the original with meteorological observation as its main purpose into remote sensing satellite possessing capability of observing meteorology and ocean as well. Thus, the social and economic benefit of FY-1 is increased. the social and economic benefit of the development of the satellite is the key technique in the system design of the satellite. technically feasible but also save the funds in researching and manufacturing of the satellite, quicken the tempo of researching and manufacturing satellite. the scanning radiometer for FY-1 is conducted an aviation experiment over Chinese ocean. This experiment was of vital importance to the addition of oceanic observation channel on FY-1. FY-1 oceanic channels design to be correct. detecting ocean color. This is the unique character of Chinese FY-1 meteorological satellite. meteorological remote sensing channel on FY-1 to form detecting capability of three visible channels: red, yellow and blue

  19. Future information communication technology and applications

    CERN Document Server

    Kim, Jung; Sahama, Tony; Yang, Chung-Huang; 2013 International Conference on Future Information & Communication Engineering (ICFICE 2013)

    2013-01-01

    These proceedings are based on the 2013 International Conference on Future Information & Communication Engineering (ICFICE 2013), which will be held at Shenyang in China from June 24-26, 2013. The conference is open to all over the world, and participation from Asia-Pacific region is particularly encouraged. The focus of this conference is on all technical aspects of electronics, information, and communications ICFICE-13 will provide an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of FICE. In addition, the conference will publish high quality papers which are closely related to the various theories and practical applications in FICE. Furthermore, we expect that the conference and its publications will be a trigger for further related research and technology improvements in this important subject.  "This work was supported by the NIPA (National IT Industry Promotion Agency) of Korea Grant funded by the Korean Government (Ministry of Science, ICT...

  20. A systems approach to the commercialization of space communications technology - The NASA/JPL Mobile Satellite Program

    Science.gov (United States)

    Weber, William J., III; Gray, Valerie W.; Jackson, Byron; Steele, Laura C.

    1991-10-01

    This paper discusss the systems approach taken by NASA and the Jet Propulsion Laboratory in the commercialization of land-mobile satellite services (LMSS) in the United States. As the lead center for NASA's Mobile Satellite Program, JPL was involved in identifying and addressing many of the key barriers to commercialization of mobile satellite communications, including technical, economic, regulatory and institutional risks, or uncertainties. The systems engineering approach described here was used to mitigate these risks. The result was the development and implementation of the JPL Mobile Satellite Experiment Project. This Project included not only technology development, but also studies to support NASA in the definition of the regulatory, market, and investment environments within which LMSS would evolve and eventually operate, as well as initiatives to mitigate their associated commercialization risks. The end result of these government-led endeavors was the acceleration of the introduction of commercial mobile satellite services, both nationally and internationally.

  1. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  2. Dual Wideband Antenna for WLAN/WiMAX and Satellite System Applications Based on a Metamaterial Transmission Line

    International Nuclear Information System (INIS)

    Jin Da-Lin; Hong Jing-Song; Xiong Han

    2012-01-01

    A dual band planar antenna based on metamaterial transmission lines is presented for WLAN, WiMAX, and satellite system communication applications. This antenna is composed of an interdigital capacitor and a ground plane with triangular shaped slots on its top edges to broaden the impedance bandwidth. The measured bandwidth for 10 dB return loss is from 3.29 to 4.27 GHz and 5.04 to 9.8 GHz, covering the 5.2/5.8 GHz WLAN, 3.5/5.5 GHz WiMAX bands, and the X-band satellite communication systems at 7.4 GHz. The proposed antenna exhibits stable monopole-like radiation patterns and enough gains across the dual operating bands

  3. Superconductive crossbar system for communication applications

    International Nuclear Information System (INIS)

    Murdock, B.; Kwong, Y.K.; Gimlett, J.

    1994-01-01

    This paper reviews current efforts toward the integration of a high-speed crossbar switch for digital communication applications. This system is an intelligent switching matrix for 128 inputs and 128 outputs, each capable of 2 Gbs (10 9 bits per second). An array of Josephson junction integrated circuits are interconnected with the use of a superconductive multichip module maintained at 4.2 K. This module is connected to room-temperature electronics by means of flexible cables, each containing impedance-matched microstrip transmission lines. Room-temperature interface electronics will permit interconversion between standard level input/output signals and Josephson junction logic levels. (orig.)

  4. Anticipated prospects and civilian applications of Indian satellite navigation services in Sri Lanka

    Directory of Open Access Journals (Sweden)

    I.P. Senanayake

    2013-06-01

    In this paper, positive impacts of 3 Indian Navigational Satellite programmes (GAGAN, IRNSS and INSAT-MSS reporting system for the civilian applications over Sri Lanka are discussed. Other neighbouring countries covered under the footprint of Indian navigational satellite programmes can also employ these services for the location based applications productively.

  5. Design and Operation of an IR-CAGE For Thermal Vacuum Testing of a Communication Satellite

    Science.gov (United States)

    Wuersching, C.

    2004-08-01

    A specific infrared radiation device was designed and manufactured for infrared simulation on a communication satellite. For the thermal vacuum test of this satellite, radiation fields with different sizes, shapes and radiation intensities were required to deliver additional heating power onto the space- craft panels. Five of the six sides of the cube- shaped satellite had to be equipped with flat IR- frames so that a cage surrounding the S/C had to be designed. The following features of the IR-cage were re- quired: A lightweight, but still rigid construction of the frame with space-proofed materials; using of standard components for cost reasons; radiation intensities of 400 to 1100 W/m2; a computer-based system for individual control of the heating circuits; a user friendly and safe handling of the operation panel and the recording of all operational parame- ter. The mechanical construction was realised by using aluminium profiles. The standard components al- lowed completing the mechanical set-up within a short time. After some investigation concerning the heating devices it was decided to use heating strips for the radiation fields of low intensity and com- mercial IR-quartz radiators for fields with higher intensity. A special suspension for the heating strips was designed to keep them under defined tension. The power supplies for the heating circuits were computer-controlled. The software allowed the individual power setting of each heater. Addition- ally an automatic mode for controlling the heaters by a reference thermocouple was foreseen. Beside design features of the cage, this paper will also describe the heater concept and the control system, and it will have a look at QA relevant mat- ters.

  6. RAPID COMMUNICATION: Improving prediction accuracy of GPS satellite clocks with periodic variation behaviour

    Science.gov (United States)

    Heo, Youn Jeong; Cho, Jeongho; Heo, Moon Beom

    2010-07-01

    The broadcast ephemeris and IGS ultra-rapid predicted (IGU-P) products are primarily available for use in real-time GPS applications. The IGU orbit precision has been remarkably improved since late 2007, but its clock products have not shown acceptably high-quality prediction performance. One reason for this fact is that satellite atomic clocks in space can be easily influenced by various factors such as temperature and environment and this leads to complicated aspects like periodic variations, which are not sufficiently described by conventional models. A more reliable prediction model is thus proposed in this paper in order to be utilized particularly in describing the periodic variation behaviour satisfactorily. The proposed prediction model for satellite clocks adds cyclic terms to overcome the periodic effects and adopts delay coordinate embedding, which offers the possibility of accessing linear or nonlinear coupling characteristics like satellite behaviour. The simulation results have shown that the proposed prediction model outperforms the IGU-P solutions at least on a daily basis.

  7. Performance Analysis of an Enhanced PRMA-HS Protocol for LEO Satellite Communication

    Institute of Scientific and Technical Information of China (English)

    ZHUO Yong-ning; YAN Shao-hu; WU Shi-qi

    2005-01-01

    The packet reservation multiple access with hindering state (PRMA-HS) is a protocol suitable for LEO satellite mobile communication. Although working well with light system payload (amount of user terminals), the protocol imposes high channel congestion on system with heavy payload, thus degrades the system's quality of service. To controlling the channel congestion, a scheme of enhanced PRMA-HS protocol is proposed, which aims to reduce the collision of voice packets by adopting a mechanism of access control. Through theoretic analysis, the system's mathematic model is presented and the packet drop probability of the scheme is deduced. To testify the performance of the scheme, a simulation is performed and the results support our analysis.

  8. Development and Analysis of Image Registration Program for the Communication, Ocean, Meteorological Satellite (COMS

    Directory of Open Access Journals (Sweden)

    Un-Seob Lee

    2007-09-01

    Full Text Available We developed a software for simulations and analyses of the Image Navigation and Registration (INR system, and compares the characteristics of Image Motion Compensation (IMC algorithms for the INR system. According to the orbit errors and attitude errors, the capabilities of the image distortions are analyzed. The distortions of images can be compensated by GOES IMC algorithm and Modified IMC (MIMC algorithm. The capabilities of each IMC algorithm are confirmed based on compensated images. The MIMC yields better results than GOES IMC although both the algorithms well compensate distorted images. The results of this research can be used as valuable asset to design of INR system for the Communication, Ocean, Meteorological Satellite (COMS.

  9. The design and networking of dynamic satellite constellations for global mobile communication systems

    Science.gov (United States)

    Cullen, Cionaith J.; Benedicto, Xavier; Tafazolli, Rahim; Evans, Barry

    1993-01-01

    Various design factors for mobile satellite systems, whose aim is to provide worldwide voice and data communications to users with hand-held terminals, are examined. Two network segments are identified - the ground segment (GS) and the space segment (SS) - and are seen to be highly dependent on each other. The overall architecture must therefore be adapted to both of these segments, rather than each being optimized according to its own criteria. Terrestrial networks are grouped and called the terrestrial segment (TS). In the SS, of fundamental importance is the constellation altitude. The effect of the altitude on decisions such as constellation design choice and on network aspects like call handover statistics are fundamental. Orbit resonance is introduced and referred to throughout. It is specifically examined for its useful properties relating to GS/SS connectivities.

  10. Evaluation of a quarterwave stub antenna for TIROS satellite application

    Science.gov (United States)

    Stogner, L. B.

    1980-06-01

    The TIROS-N quarterwave stub antenna communicated accurate position locations during low power level operations based on data processed by the Local User's Terminal (LUT) and Service ARGOS. This style of antenna is the marine mammal transmitter package. The antenna gain and radiation pattern and vertical polarization enhance the applicability. However, for marine mammal transmitter applications, a spring at the base of the antenna is required to provide flexibility and protection to the animal and the antenna must serve as a seawater sensor requiring it to be insulated from the seawater environment except at the sensory location. These problems appear solved for the NIMBUS system, and the TIROS system will be designed accordingly.

  11. Wireless RF communication in biomedical applications

    Science.gov (United States)

    Jones, Inke; Ricciardi, Lucas; Hall, Leonard; Hansen, Hedley; Varadan, Vijay; Bertram, Chris; Maddocks, Simon; Enderling, Stefan; Saint, David; Al-Sarawi, Said; Abbott, Derek

    2008-02-01

    This paper focuses on wireless transcutaneous RF communication in biomedical applications. It discusses current technology, restrictions and applications and also illustrates possible future developments. It focuses on the application in biotelemetry where the system consists of a transmitter and a receiver with a transmission link in between. The transmitted information can either be a biopotential or a nonelectric value like arterial pressure, respiration, body temperature or pH value. In this paper the use of radio-frequency (RF) communication and identification for those applications is described. Basically, radio-frequency identification or RFID is a technology that is analogous to the working principle of magnetic barcode systems. Unlike magnetic barcodes, passive RFID can be used in extreme climatic conditions—also the tags do not need to be within close proximity of the reader. Our proposed solution is to exploit an exciting new development in making circuits on polymers without the need for battery power. This solution exploits the principle of a surface acoustic wave (SAW) device on a polymer substrate. The SAW device is a set of interdigitated conducting fingers on the polymer substrate. If an appropriate RF signal is sent to the device, the fingers act as microantennas that pick up the signal, and this energy is then converted into acoustic waves that travel across the surface of the polymer substrate. Being a flexible polymer, the acoustic waves cause stresses that can either contract or stretch the material. In our case we mainly focus on an RF controllable microvalve that could ultimately be used for fertility control.

  12. Wireless RF communication in biomedical applications

    International Nuclear Information System (INIS)

    Jones, Inke; Ricciardi, Lucas; Hall, Leonard; Enderling, Stefan; Saint, David; Al-Sarawi, Said; Abbott, Derek; Hansen, Hedley; Varadan, Vijay; Bertram, Chris; Maddocks, Simon

    2008-01-01

    This paper focuses on wireless transcutaneous RF communication in biomedical applications. It discusses current technology, restrictions and applications and also illustrates possible future developments. It focuses on the application in biotelemetry where the system consists of a transmitter and a receiver with a transmission link in between. The transmitted information can either be a biopotential or a nonelectric value like arterial pressure, respiration, body temperature or pH value. In this paper the use of radio-frequency (RF) communication and identification for those applications is described. Basically, radio-frequency identification or RFID is a technology that is analogous to the working principle of magnetic barcode systems. Unlike magnetic barcodes, passive RFID can be used in extreme climatic conditions—also the tags do not need to be within close proximity of the reader. Our proposed solution is to exploit an exciting new development in making circuits on polymers without the need for battery power. This solution exploits the principle of a surface acoustic wave (SAW) device on a polymer substrate. The SAW device is a set of interdigitated conducting fingers on the polymer substrate. If an appropriate RF signal is sent to the device, the fingers act as microantennas that pick up the signal, and this energy is then converted into acoustic waves that travel across the surface of the polymer substrate. Being a flexible polymer, the acoustic waves cause stresses that can either contract or stretch the material. In our case we mainly focus on an RF controllable microvalve that could ultimately be used for fertility control

  13. Virtual Satellite Construction and Application for Image Classification

    International Nuclear Information System (INIS)

    Su, W G; Su, F Z; Zhou, C H

    2014-01-01

    Nowadays, most remote sensing image classification uses single satellite remote sensing data, so the number of bands and band spectral width is consistent. In addition, observed phenomenon such as land cover have the same spectral signature, which causes the classification accuracy to decrease as different data have unique characteristic. Therefore, this paper analyzes different optical remote sensing satellites, comparing the spectral differences and proposes the ideas and methods to build a virtual satellite. This article illustrates the research on the TM, HJ-1 and MODIS data. We obtained the virtual band X 0 through these satellites' bands combined it with the 4 bands of a TM image to build a virtual satellite with five bands. Based on this, we used these data for image classification. The experimental results showed that the virtual satellite classification results of building land and water information were superior to the HJ-1 and TM data respectively

  14. Optical wireless communications: Theory and applications

    Science.gov (United States)

    Aminikashani, Mohammadreza

    on the potentials of currently used FSO systems. Furthermore, utilizing this new statistical channel model, closed-form expressions for the diversity gain and the error rate performance of FSO links with spatial diversity are derived. In addition to addressing ways to improve outdoor FSO communication sys- tems, this dissertation addresses some major challenges in indoor visible light communication (VLC). VLC is an advantageous technique that is proposed for wireless indoor communications. In VLC systems, the existence of multiple paths between the transmitter and receiver causes multipath distortion, particularly in links using non-directional transmitters and receivers, or in links relying upon non-line of-sight propagation. This multipath distortion can lead to intersymbol interference (ISI) at high bit rates. Multicarrier modulation usually implemented by orthogonal frequency division multiplexing (OFDM) can be used to mitigate ISI and multipath dispersion. Nevertheless, the performance of VLC systems employing OFDM modulation is significantly affected by nonlinear characteristic of light-emitting diode (LED) due to the large peak-to-average power ratio (PAPR) of OFDM signal. In other words, signal amplitudes below the LED turn-on-voltage and above the LED saturation point are clipped. This dissertation targets these important issues and successfully addresses them by developing some techniques to reduce high PAPR of optical OFDM signal and determining the optimum operating characteristics of LEDs for combined lighting and communications applications. VLC can also provide a practical solution for indoor positioning as global po- sitioning system (GPS) does not provide an accurate and rapid indoor positioning since GPS radio signals are attenuated and scattered by walls of large buildings and other objects. A practical VLC system would be likely to deploy the same configuration for both positioning and communication purposes where high speed data rates are desired

  15. Education and the Satellite: Possibilities for Saudi Arabia?

    Science.gov (United States)

    Al-Sharhan, Jamal

    2000-01-01

    Discussion of developments in satellite communications and educational applications focuses on the possibilities of adapting satellite technology for instruction in developing countries. Topics include satellite use in Australia and the United States; and recommendations for the adoption of satellite technology in Saudi Arabia. (Author/LRW)

  16. Distress detection, location, and communications using advanced space technology. [satellite-borne synthetic aperture radar

    Science.gov (United States)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  17. Using Satellite Technology to Increase Professional Communications Among Teachers: a Report of Experiments Conducted by the National Education Association.

    Science.gov (United States)

    National Education Association, Washington, DC. Div. of Instruction and Professional Development.

    The National Education Association (NEA) in conjunction with the National Aeronautics and Space Administration, the National Library of Medicine, The Alaska Broadcasting Commission, and the Pacific PEACESAT Network, conducted four satellite experiments designed to improve professional communication among teachers. These programs were the Satellite…

  18. Satellite fixed communications service: A forecast of potential domestic demand through the year 2000. Volume 3: Appendices

    Science.gov (United States)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1983-09-01

    Voice applications, data applications, video applications, impacted baseline forecasts, market distribution model, net long haul forecasts, trunking earth station definition and costs, trunking space segment cost, trunking entrance/exit links, trunking network costs and crossover distances with terrestrial tariffs, net addressable forecasts, capacity requirements, improving spectrum utilization, satellite system market development, and the 30/20 net accessible market are considered.

  19. Method of Performance-Aware Security of Unicast Communication in Hybrid Satellite Networks

    Science.gov (United States)

    Roy-Chowdhury, Ayan (Inventor); Baras, John S. (Inventor)

    2014-01-01

    A method and apparatus utilizes Layered IPSEC (LES) protocol as an alternative to IPSEC for network-layer security including a modification to the Internet Key Exchange protocol. For application-level security of web browsing with acceptable end-to-end delay, the Dual-mode SSL protocol (DSSL) is used instead of SSL. The LES and DSSL protocols achieve desired end-to-end communication security while allowing the TCP and HTTP proxy servers to function correctly.

  20. Cooperative and cognitive satellite systems

    CERN Document Server

    Chatzinotas, Symeon; De Gaudenzi, Riccardo

    2015-01-01

    Cooperative and Cognitive Satellite Systems provides a solid overview of the current research in the field of cooperative and cognitive satellite systems, helping users understand how to incorporate state-of-the-art communication techniques in innovative satellite network architectures to enable the next generation of satellite systems. The book is edited and written by top researchers and practitioners in the field, providing a comprehensive explanation of current research that allows users to discover future technologies and their applications, integrate satellite and terrestrial systems

  1. Dialing long distance : communications to northern operations like the MGP require sophisticated satellite networks for voice, data

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D.

    2006-04-15

    Telecommunications will play a major role in the construction of the Mackenzie Gas Project due to the remoteness of its location and the volume of communication data required to support the number of people involved and the amount of construction activity. While suppliers for communications tools have not yet been identified, initial telecommunications plans call for the installation of communication equipment at all camps, major facility sites and construction locations. Equipment will be housed in self-contained, climate-controlled buildings called telecommunication service modules (TSMs), which will be connected to each other as well as to existing public communications networks. The infrastructure will support telephone and fax systems; Internet and electronic mail services; multiple channel very high frequency radios; air-to-ground communication at airstrips and helipads; ship-to-shore at barge landings; closed circuit television; satellite community antenna television; CBC radio broadcast; public address systems; security systems; and supervisory control and data acquisition (SCADA) systems. An Internet Protocol (IP) network with a voice telephone system will be implemented along with a geostationary orbit satellite network. Satellite servers and real-time data services will be used. Car kits that allow call and battery-operated self-contained telemetry devices designed to communicate via a satellite system have been commissioned for the project that are capable of providing cost-efficient and reliable asset tracking and fleet management in remote regions and assisting in deployment requirements. It was concluded that many of today's mega-projects are the driving factors behind new telecommunications solutions in remote areas. 1 fig.

  2. A geostationary satellite system for mobile multimedia applications using portable, aeronautical and mobile terminals

    Science.gov (United States)

    Losquadro, G.; Luglio, M.; Vatalaro, F.

    1997-01-01

    A geostationary satellite system for mobile multimedia services via portable, aeronautical and mobile terminals was developed within the framework of the Advanced Communications Technology Service (ACTS) programs. The architecture of the system developed under the 'satellite extremely high frequency communications for multimedia mobile services (SECOMS)/ACTS broadband aeronautical terminal experiment' (ABATE) project is presented. The system will be composed of a Ka band system component, and an extremely high frequency band component. The major characteristics of the space segment, the ground control station and the portable, aeronautical and mobile user terminals are outlined.

  3. Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates

    Science.gov (United States)

    Steffen, Konrad; Key, J.; Maslanik, J.; Schweiger, A.

    1993-01-01

    This is the third annual report on: Sea Ice-Atmosphere Interaction - Application of Multispectral Satellite Data in Polar Surface Energy Flux Estimates. The main emphasis during the past year was on: radiative flux estimates from satellite data; intercomparison of satellite and ground-based cloud amounts; radiative cloud forcing; calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible channels and comparison of two satellite derived albedo data sets; and on flux modeling for leads. Major topics covered are arctic clouds and radiation; snow and ice albedo, and leads and modeling.

  4. Evolving earth-based and in-situ satellite network architectures for Mars communications and navigation support

    Science.gov (United States)

    Hastrup, Rolf; Weinberg, Aaron; McOmber, Robert

    1991-09-01

    Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.

  5. 47 CFR 25.159 - Limits on pending applications and unbuilt satellite systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Limits on pending applications and unbuilt... § 25.159 Limits on pending applications and unbuilt satellite systems. (a) Applicants with a total of... band, or a combination of pending GSO-like applications and licensed-but-unbuilt GSO-like space...

  6. System capacity and economic modeling computer tool for satellite mobile communications systems

    Science.gov (United States)

    Wiedeman, Robert A.; Wen, Doong; Mccracken, Albert G.

    1988-01-01

    A unique computer modeling tool that combines an engineering tool with a financial analysis program is described. The resulting combination yields a flexible economic model that can predict the cost effectiveness of various mobile systems. Cost modeling is necessary in order to ascertain if a given system with a finite satellite resource is capable of supporting itself financially and to determine what services can be supported. Personal computer techniques using Lotus 123 are used for the model in order to provide as universal an application as possible such that the model can be used and modified to fit many situations and conditions. The output of the engineering portion of the model consists of a channel capacity analysis and link calculations for several qualities of service using up to 16 types of earth terminal configurations. The outputs of the financial model are a revenue analysis, an income statement, and a cost model validation section.

  7. Advanced Communication Technology Satellite (ACTS) Multibeam Antenna On-Orbit Performance

    Science.gov (United States)

    1995-01-01

    The NASA Lewis Research Center's Advanced Communication Technology Satellite (ACTS) was launched in September 1993. ACTS introduced several new technologies, including a multibeam antenna (MBA) operating at extremely short wavelengths never before used in communications. This antenna, which has both fixed and rapidly reconfigurable high-energy spot beams (150 miles in diameter), serves users equipped with small antenna terminals. Extensive structural and thermal analyses have been performed for simulating the ACTS MBA on-orbit performance. The results show that the reflector surfaces (mainly the front subreflector), antenna support assembly, and metallic surfaces on the spacecraft body will be distorted because of the thermal effects of varying solar heating, which degrade the ACTS MBA performance. Since ACTS was launched, a number of evaluations have been performed to assess MBA performance in the space environment. For example, the on-orbit performance measurements found systematic environmental disturbances to the MBA beam pointing. These disturbances were found to be imposed by the attitude control system, antenna and spacecraft mechanical alignments, and on-orbit thermal effects. As a result, the MBA may not always exactly cover the intended service area. In addition, the on-orbit measurements showed that antenna pointing accuracy is the performance parameter most sensitive to thermal distortions on the front subreflector surface and antenna support assemblies. Several compensation approaches were tested and evaluated to restore on-orbit pointing stability. A combination of autotrack (75 percent of the time) and Earth sensor control (25 percent of the time) was found to be the best way to compensate for antenna pointing error during orbit. This approach greatly minimizes the effects of thermal distortions on antenna beam pointing.

  8. Postinterview communication with residency applicants: a call for clarity!

    Science.gov (United States)

    Frishman, Gary N; Matteson, Kristen A; Bienstock, Jessica L; George, Karen E; Ogburn, Tony; Rauk, Phillip N; Schnatz, Peter F; Learman, Lee A

    2014-10-01

    The residency match is an increasingly competitive process. Communication from medical student applicants to programs varies, and the effect this has on their rank status is unclear. We assessed how obstetrics and gynecology program directors interpret and act on postinterview communication initiated by applicants by conducting an anonymous cross-sectional web-based survey of allopathic obstetrics and gynecology program directors. One hundred thirty-seven program directors (55%) responded to the survey. Twenty-nine percent would consider ranking an applicant more favorably if the applicant expressed interest (beyond a routine thank you) or if a faculty mentor personally known to the program director stated that the applicant was ranking the program first. Fifty-two percent indicated that they would rank an applicant more favorably if a mentor known to them endorsed the applicant as outstanding. Approximately 30% responded that applicants who did not communicate with their program were disadvantaged compared with those who did. Approximately 17% stated it was desirable to create additional specialty-specific guidelines regarding postinterview contact between programs and applications. Based on the wide variation in how program directors interpret and act on postinterview communication from applicants, residency programs should formulate and communicate a clear policy about whether they request and how they respond to postinterview communication from applicants and their mentors. This will establish a more level playing field and eliminate potential inequities resulting from inconsistent communication practices. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Auto Mission Planning System Design for Imaging Satellites and Its Applications in Environmental Field

    Directory of Open Access Journals (Sweden)

    He Yongming

    2016-10-01

    Full Text Available Satellite hardware has reached a level of development that enables imaging satellites to realize applications in the area of meteorology and environmental monitoring. As the requirements in terms of feasibility and the actual profit achieved by satellite applications increase, we need to comprehensively consider the actual status, constraints, unpredictable information, and complicated requirements. The management of this complex information and the allocation of satellite resources to realize image acquisition have become essential for enhancing the efficiency of satellite instrumentation. In view of this, we designed a satellite auto mission planning system, which includes two sub-systems: the imaging satellite itself and the ground base, and these systems would then collaborate to process complicated missions: the satellite mainly focuses on mission planning and functions according to actual parameters, whereas the ground base provides auxiliary information, management, and control. Based on the requirements analysis, we have devised the application scenarios, main module, and key techniques. Comparison of the simulation results of the system, confirmed the feasibility and optimization efficiency of the system framework, which also stimulates new thinking for the method of monitoring environment and design of mission planning systems.

  10. Investigation of multipactor breakdown in communication satellite microwave co-axial systems

    Science.gov (United States)

    Nagesh, S. K.; Revannasiddiah, D.; Shastry, S. V. K.

    2005-01-01

    Multipactor breakdown or multipactor discharge is a form of high frequency discharge that may occur in microwave components operating at very low pressures. Some RF components of multi-channel communication satellites have co-axial geometry and handle high RF power under near-vacuum conditions. The breakdown occurs due to secondary electron resonance, wherein electrons move back and forth in synchronism with the RF voltage across the gap between the inner and outer conductors of the co-axial structure. If the yield of secondary electrons from the walls of the co-axial structure is greater than unity, then the electron density increases with time and eventually leads to the breakdown. In this paper, the current due to the oscillating electrons in the co-axial geometry has been treated as a radially oriented Hertzian dipole. The electric field, due to this dipole, at any point in the coaxial structure, may then be determined by employing the dyadic Green's function technique. This field has been compared with the field that would exist in the absence of multipactor.

  11. Simulative Analysis of Inter-Satellite Optical Wireless Communication (IsOWC) Link with EDFA

    Science.gov (United States)

    Singh, Mehtab; Singh, Navpreet

    2018-04-01

    In this paper, simulative analysis and performance comparison of different EDFA (Erbium-doped fiber amplifier) configurations in a 10 Gbps inter-satellite optical wireless communication (IsOWC) link have been reported for a 5,000 km long link and 1,550 nm operating wavelength. The results show that system in which both pre-amplifier and booster amplifier stages are implemented simultaneously outperforms systems with only pre-amplifier and booster amplifier stage. From the results, it can be seen that by deploying a transmission power level of 15 dBm, a link distance of 9,600 km can be achieved with a quality factor of 6.01 dB and BER (Bit error rate) of 1.07×10-9. Also, in this paper, the performance of an 8×7 Gbps WDM-IsOWC link has been reported. The results show that by using both EDFA pre-amplifier and booster amplifier stages, a link distance of 8,000 km for each channel is achievable with desired performance levels (Q≥6 and BER≤10-9). Also, the effect of channel spacing on the performance of WDM-IsOWC link is investigated. The results show that the received signal has acceptable performance levels when the channel spacing is 100 GHz but when the channel spacing is reduced to 80 GHz, the quality of the received signal degrades and link distance decreases.

  12. Performance characteristics of the 12 GHz, 200 watt Transmitter Experiment Package for CTS. [Communication Technology Satellite

    Science.gov (United States)

    Miller, E. F.; Fiala, J. L.; Hansen, I. G.

    1975-01-01

    Measured performance characteristics from ground test of the Transmitter Experiment Package (TEP) for the Communications Technology Satellite are presented. The experiment package consists of a 200 W Output Stage Tube (OST) powered by a Power Processing System (PPS). Descriptions of both the PPS and OST are given. The PPS provides the necessary voltages with a measured dc/dc conversion efficiency of 89 per cent. The OST, a traveling wave tube with multiple collectors, has a saturated rf output power of 224 W and operates at an overall efficiency exceeding 40 per cent over an 85 MHz bandwidth at 12 GHz. OST performance given includes frequency response, saturation characteristics, group delay, AM to PM conversion, intermodulation distortion, and two channel gain suppression. Single and dual channel FM video performance is presented. It was determined that for 12 MHz peak to peak frequency deviation on each channel, dual channel FM television signals can be transmitted through the TEP at 60 W, each channel, with 40 MHz channel spacing (center to center).

  13. On board processing for future satellite communications systems: Comparison of FDM, TDM and hybrid accessing schemes

    Science.gov (United States)

    Berk, G.; Jean, P. N.; Rotholz, E.

    1982-01-01

    Several satellite uplink and downlink accessing schemes for customer premises service are compared. Four conceptual system designs are presented: satellite-routed frequency division multiple access (FDMA), satellite-switched time division multiple access (TDMA), processor-routed TDMA, and frequency-routed TDMA, operating in the 30/20 GHz band. The designs are compared on the basis of estimated satellite weight, system capacity, power consumption, and cost. The systems are analyzed for fixed multibeam coverage of the continental United States. Analysis shows that the system capacity is limited by the available satellite resources and by the terminal size and cost.

  14. Geolocation applications of the Gonets LEO messaging satellites

    Science.gov (United States)

    Vlasov, Vladimir N.; Ashjaee, Javad M.

    Geostationary satellites carry a majority of the international telecommunications traffic not carried by transoceanic cable. However, because the radio path links to and from geostationary satellites total at least 70,000 km and because of inherent on-board spacecraft power limitations, earth stations used in conjunction with geostationary satellites are usually large and expensive. This limits their installation to areas with a well-developed industrial and economic infrastructure. This reality helps perpetuate a chicken egg dilemma for the developing countries and isolated regions. Economic integration with the developed world requires being 'networked'. But for many developing entities, even the initial price of entry exceeds their modest resources. Exclusion from the global information highways virtually assures retardation of economic growth for developing nations, remote and isolated areas. Very Small Aperture Terminal (VSAT) earth stations are often thought of as a solution for networking developing regions. But economic considerations often forecloses this option. If VSAT size and cost is to be minimized, powerful spot beams from the satellite need to be focused on relatively small regions. This is not often feasible because of the high cost of the satellite itself. To dedicate a high power spot beam to a small region is usually not economically feasible.

  15. Advances in Electronic Commerce, Web Application and Communication v.1

    CERN Document Server

    Lin, Sally; Second International Conference on Electronic Commerce, Web Application and Communication (ECWAC 2012)

    2012-01-01

    ECWAC2012 is an integrated conference devoted to Electronic Commerce, Web Application and Communication. In the this proceedings you can find the carefully reviewed scientific outcome of the second International Conference on Electronic Commerce, Web Application and Communication (ECWAC 2012) held at March 17-18,2012  in Wuhan, China, bringing together researchers from all around the world in the field.

  16. Advances in Electronic Commerce, Web Application and Communication v.2

    CERN Document Server

    Lin, Sally; Second International Conference on Electronic Commerce, Web Application and Communication (ECWAC 2012)

    2012-01-01

    ECWAC2012 is an integrated conference devoted to Electronic Commerce, Web Application and Communication. In the this proceedings you can find the carefully reviewed scientific outcome of the second International Conference on Electronic Commerce, Web Application and Communication (ECWAC 2012) held at March 17-18,2012  in Wuhan, China, bringing together researchers from all around the world in the field.

  17. Design of an Image Motion Compenstaion (IMC Algorithm for Image Registration of the Communication, Ocean, Meteorolotical Satellite (COMS-1

    Directory of Open Access Journals (Sweden)

    Taek Seo Jung

    2006-03-01

    Full Text Available This paper presents an Image Motion Compensation (IMC algorithm for the Korea's Communication, Ocean, and Meteorological Satellite (COMS-1. An IMC algorithm is a priority component of image registration in Image Navigation and Registration (INR system to locate and register radiometric image data. Due to various perturbations, a satellite has orbit and attitude errors with respect to a reference motion. These errors cause depointing of the imager aiming direction, and in consequence cause image distortions. To correct the depointing of the imager aiming direction, a compensation algorithm is designed by adapting different equations from those used for the GOES satellites. The capability of the algorithm is compared with that of existing algorithm applied to the GOES's INR system. The algorithm developed in this paper improves pointing accuracy by 40%, and efficiently compensates the depointings of the imager aiming direction.

  18. Application of photonics in next generation telecommunication satellites payloads

    Science.gov (United States)

    Anzalchi, J.; Inigo, P.; Roy, B.

    2017-11-01

    Next generation broadband telecommunication satellites are required to provide very high data throughput using complex multibeam architectures. These high throughput `Terabit/s' Satellites will incorporate payloads with very large quantity of conventional RF equipment, co-axial cables, waveguides, harnesses and ancillary equipment, making the Assembly, Integration and Test (AIT) very complex. Use of `RF over Fiber' and associated photonics equipment can make the process of AIT much simpler with the added benefit of significant reduction in number of payload equipment and inherent payload mass.

  19. Multi-agent robotic systems and applications for satellite missions

    Science.gov (United States)

    Nunes, Miguel A.

    A revolution in the space sector is happening. It is expected that in the next decade there will be more satellites launched than in the previous sixty years of space exploration. Major challenges are associated with this growth of space assets such as the autonomy and management of large groups of satellites, in particular with small satellites. There are two main objectives for this work. First, a flexible and distributed software architecture is presented to expand the possibilities of spacecraft autonomy and in particular autonomous motion in attitude and position. The approach taken is based on the concept of distributed software agents, also referred to as multi-agent robotic system. Agents are defined as software programs that are social, reactive and proactive to autonomously maximize the chances of achieving the set goals. Part of the work is to demonstrate that a multi-agent robotic system is a feasible approach for different problems of autonomy such as satellite attitude determination and control and autonomous rendezvous and docking. The second main objective is to develop a method to optimize multi-satellite configurations in space, also known as satellite constellations. This automated method generates new optimal mega-constellations designs for Earth observations and fast revisit times on large ground areas. The optimal satellite constellation can be used by researchers as the baseline for new missions. The first contribution of this work is the development of a new multi-agent robotic system for distributing the attitude determination and control subsystem for HiakaSat. The multi-agent robotic system is implemented and tested on the satellite hardware-in-the-loop testbed that simulates a representative space environment. The results show that the newly proposed system for this particular case achieves an equivalent control performance when compared to the monolithic implementation. In terms on computational efficiency it is found that the multi

  20. A Plan for Application of Telecommunications Satellites in Postsecondary Education.

    Science.gov (United States)

    Cincinnati Univ., OH. Coll. of Community Services.

    The proposed system for implementing new uses of telecommunication satellite technology is user-driven, addressing the needs of employed health personnel who would not otherwise have access to university resources, especially women, members of minority and disadvantaged groups, handicapped persons, and persons in rural areas. The plan, which…

  1. Application of KAM Theorem to Earth Orbiting Satellites

    Science.gov (United States)

    2009-03-01

    P m n are the associated Legendre Polynomials, and r, δ and λ are the radius, geocentric latitude and east longitude of the of the satellite...Laskar shows that the cost -to-benefit drops off after windows of order 3-5 [11]. Higher order functions also result in wider peaks, which leads to

  2. A Robust Controller Structure for Pico-Satellite Applications

    DEFF Research Database (Denmark)

    Kragelund, Martin Nygaard; Green, Martin; Kristensen, Mads

    This paper describes the development of a robust controller structure for use in pico-satellite missions. The structure relies on unknown disturbance estimation and use of robust control theory to implement a system that is robust to both unmodeled disturbances and parameter uncertainties. As one...

  3. Prospects of application of survey satellite image for meteorology

    Science.gov (United States)

    Kapochkina, A. B.; Kapochkin, B. B.; Kucherenko, N. V.

    The maximal interest is represented with the information from geostationary satellites. These satellites repeat shootings the chosen territories, allowing to study dynamics of images. Most interesting shootings in IR a range. Studying of survey image is applied to studying linear elements of clouds (LEC). It is established, that "LEC " arise only above breaks of an earth's crust. In research results of the complex analysis of the satellite data, hydrometeorological supervision, seismicity, supervision over deformations of a surface of the Earth are used. It is established that before formation "LEC " in a ground layer arise anomalies of temperature and humidity. The situation above Europe 16 May, 2001 is considered. "LEC " in Europe block carry of air weights from the west to the east. Synoptic conditions above the Great Britain July, 7-10, 2000 is considered. Moving "LEC" trace distribution of deformation waves to an earth's crust. Satellite shootings Europe before earthquake in Greece 14.08.2003 are considered. These days ground supervision were conducted and the data of the geostationary satellite were analyzed. During moving "LEC " occur failures (destruction houses & of gas mains), earthquake. The situation above Iberian peninsula 12-16.11.2001 is considered. "LEC" arose before flooding in Europe. The situation before flooding in Germany June, 6-8, 2002 and flooding on the river Kuban June, 16-23, 2002 is considered. In case of occurrence of tectonic compression of an earth's crust there are "LEC ", tracer intensive movements of air upwards and downwards above negative and positive anomalies of the form of a terrestrial surface, accordingly. Such meteorological situations are dangerous to flights of aircraft, the fast gravitational anomalies influencing into orbits of movement of satellites trace. The situation above equatorial Atlantic 26.03.2003 years is considered. At tectonic compression of continental scale overcast covers the whole continents for more

  4. A design proposal of a certain missile tactical command system based on Beidou satellite communication and GPS positioning techniques

    Science.gov (United States)

    Ma, Jian; Hao, Yongsheng; Miao, Jian; Zhang, Jianmao

    2007-11-01

    This paper introduced a design proposal of tactical command system that applied to a kind of anti-tank missile carriers. The tactical command system was made up of embedded computer system based on PC104 bus, Linux operating system, digital military map, Beidou satellite communication equipments and GPS positioning equipments. The geographic coordinates was measured by the GPS receiver, the positioning data, commands and information were transmitted real-time between tactical command systems, tactical command systems and command center, by the Beidou satellite communication systems. The Beidou satellite communication equipments and GPS positioning equipments were integrated to an independent module, exchanging data with embedded computer through RS232 serial ports and USB ports. The decision support system software based on information fusion, calculates positioning data, geography information and battle field information synthetically, shows the position of allies and the position of enemy on the military map, and assesses the various threats of different enemy objects, educes a situation assessment and threat assessment.

  5. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite service. 25.143 Section 25.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses...

  6. Izviđanje satelitskih komunikacija u funkciji savremenih operacija / Reconnaissance of satellite communications in contemporary operations

    Directory of Open Access Journals (Sweden)

    Slaviša Đukanović

    2004-05-01

    Full Text Available Raspoloživi vojni resursi u bilo kojoj kategoriji nisu kritični u mirnodopskom periodu, jer se dimenzionišu za ratno naprezanje određenog nivoa. Međutim, u uslovima izvođenja borbenih dejstava postoje ekstremi u zahtevima za angažovanjem, koje sistemi ne mogu da izdrže. Takav slučaj je kod satelitskih komunikacija. U radu su prezentovane taktičko-tehničke i dinamičke osobine komercijalnih (INMARSAT, INTELSAT, IRIDIJUM.. i vojnih (DSCS, FLEET-SATCOM, NATO, SKYNET.. satelitskih sistema, koje su bitne za uspešno vođenje elektronskog rata. Takođe, dat je pregled raspoloživih korisničkih servisa savremenih satelitskih sistema (Internet provajding video-konferencije, prenos multimedija uživo, fax, e-mail, voice. Nova generacija širokopojasnih satelita, koja se pušta u rad tokom ove godine omogućiće globalni roming navedenih servisa INMARSAT satelitskom sistemu koji se sve češće koristi u vojne svrhe. U perspektivi je da se usluge koje pružaju satelitski sistemi (komunikacioni, navigacioni, izviđački meteorološki.. stave na raspolaganje nižim taktičkim jedinicama vazduhoplovima, pa čak i svakom vojniku ponaosob. Poznavanje satelitskih sistema potencijalnog agresora pruža mogućnost da se odrede ranjive tačke samog sistema sa aspekta izviđanja i ometanja. / Available military resources in any category are not critical in peace since they are tailored for military use under extreme conditions. However, some systems such as satellite communications, cannot meet extreme requirements during combat actions. The paper presents tactical and technical specifications and dynamic characteristics of commercial (INMARSAT. INTELSAT, IRIDIJUM,.. and military (DSCS, FLEET-SATCOM, NATO, SKYNET,.. satellite systems which are important for electronic warfare. The paper also gives available user services of contemporary satellite systems (Internet providing, videoconferences, live multi-media, fax, e-mail, voice. A new generation of

  7. Study of Education Satellite Communication Demonstration. Third Quarterly Progress Report. Report of Activities and Accomplishments January 11, 1975 to April 10, 1975.

    Science.gov (United States)

    Syracuse Univ. Research Corp., NY. Educational Policy Research Center.

    A report on the Education Satellite Communication Demonstration (ESCD) describes activities of the evaluators during the first quarter of 1975, including staff trips and site visits and activities of various staff members. A calendar of future events in satellites, telecommunications, and education is included, with revision on dates and new…

  8. Radiation-hard mid-power booster optical fiber amplifiers for high-speed digital and analogue satellite laser communication links

    Science.gov (United States)

    Stampoulidis, L.; Kehayas, E.; Stevens, G.; Henwood-Moroney, L.; Hosking, P.; Robertson, A.

    2017-11-01

    Optical laser communications (OLC) has been identified as the technology to enable high-data rate, secure links between and within satellites, as well as between satellites and ground stations with decreased mass, size, and electrical power compared to traditional RF technology.

  9. 2014 International Conference on Wireless Communications, Networking and Applications

    CERN Document Server

    2016-01-01

    This book is based on a series of conferences on Wireless Communications, Networking and Applications that have been held on December 27-28, 2014 in Shenzhen, China. The meetings themselves were a response to technological developments in the areas of wireless communications, networking and applications and facilitate researchers, engineers and students to share the latest research results and the advanced research methods of the field. The broad variety of disciplines involved in this research and the differences in approaching the basic problems are probably typical of a developing field of interdisciplinary research. However, some main areas of research and development in the emerging areas of wireless communication technology can now be identified. The contributions to this book are mainly selected from the papers of the conference on wireless communications, networking and applications and reflect the main areas of interest: Section 1 - Emerging Topics in Wireless and Mobile Computing and Communications...

  10. Implementation of a light-route TDMA communications satellite system for advanced business networks

    Science.gov (United States)

    Hanson, B.; Smalley, A.; Zuliani, M.

    The application of Light Route TDMA systems to various business communication requirements is discussed. It is noted that full development of this technology for use in advanced business networks will be guided by considerations of flexibility, reliability, security, and cost. The implementation of the TDMA system for demonstrating these advantages to a wide range of public and private organizations is described in detail. Among the advantages offered by this system are point-to-point and point-to-multipoint (broadcast) capability; the ability to vary the mix and quantity of services between destinations in a fully connected mesh network on an almost instantaneous basis through software control; and enhanced reliability with centralized monitor, alarm and control functions by virtue of an overhead channel.

  11. [Mobile hospital -real time mobile telehealthcare system with ultrasound and CT van using high-speed satellite communication-].

    Science.gov (United States)

    Takizawa, Masaomi; Miyashita, Toyohisa; Murase, Sumio; Kanda, Hirohito; Karaki, Yoshiaki; Yagi, Kazuo; Ohue, Toru

    2003-01-01

    A real-time telescreening system is developed to detect early diseases for rural area residents using two types of mobile vans with a portable satellite station. The system consists of a satellite communication system with 1.5Mbps of the JCSAT-1B satellite, a spiral CT van, an ultrasound imaging van with two video conference system, a DICOM server and a multicast communication unit. The video image and examination image data are transmitted from the van to hospitals and the university simultaneously. Physician in the hospital observes and interprets exam images from the van and watches the video images of the position of ultrasound transducer on screenee in the van. After the observation images, physician explains a results of the examination by the video conference system. Seventy lung CT screening and 203 ultrasound screening were done from March to June 2002. The trial of this real time screening suggested that rural residents are given better healthcare without visit to the hospital. And it will open the gateway to reduce the medical cost and medical divide between city area and rural area.

  12. Measurement-based perturbation theory and differential equation parameter estimation with applications to satellite gravimetry

    Science.gov (United States)

    Xu, Peiliang

    2018-06-01

    The numerical integration method has been routinely used by major institutions worldwide, for example, NASA Goddard Space Flight Center and German Research Center for Geosciences (GFZ), to produce global gravitational models from satellite tracking measurements of CHAMP and/or GRACE types. Such Earth's gravitational products have found widest possible multidisciplinary applications in Earth Sciences. The method is essentially implemented by solving the differential equations of the partial derivatives of the orbit of a satellite with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical and statistical point of view, satellite gravimetry from satellite tracking is essentially the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in mathematics and statistics, chemistry and physics, and satellite gravimetry, is groundless, mathematically and physically. Given the Newton's nonlinear governing differential equations of satellite motion with unknown equation parameters and unknown initial conditions, we develop three methods to derive new local solutions around a nominal reference orbit, which are linked to measurements to estimate the unknown corrections to approximate values of the unknown parameters and the unknown initial conditions. Bearing in mind that satellite orbits can now be tracked almost continuously at unprecedented accuracy, we propose the measurement-based perturbation theory and derive global uniformly convergent solutions to the Newton's nonlinear governing differential equations of satellite motion for the next generation of global gravitational models. Since the solutions are global uniformly convergent, theoretically speaking

  13. SCARF - The Swarm Satellite Constellation Application and Research Facility

    DEFF Research Database (Denmark)

    Olsen, Nils

    2014-01-01

    Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, has been launched in November 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, which...... conductivity, thermospheric mass density and winds, field-aligned currents, an ionospheric plasma bubble index, the ionospheric total electron content and the dayside equatorial zonal electrical field will be calculated. This service is expected to be operational for a period of at least 5 years. The present...

  14. Integration between terrestrial-based and satellite-based land mobile communications systems

    Science.gov (United States)

    Arcidiancono, Antonio

    1990-01-01

    A survey is given of several approaches to improving the performance and marketability of mobile satellite systems (MSS). The provision of voice/data services in the future regional European Land Mobile Satellite System (LMSS), network integration between the Digital Cellular Mobile System (GSM) and LMSS, the identification of critical areas for the implementation of integrated GSM/LMSS areas, space segment scenarios, LMSS for digital trunked private mobile radio (PMR) services, and code division multiple access (CDMA) techniques for a terrestrial/satellite system are covered.

  15. A proposed architecture for a satellite-based mobile communications network - The lowest three layers

    Science.gov (United States)

    Yan, T. Y.; Naderi, F. M.

    1986-01-01

    Architecture for a commercial mobile satellite network is proposed. The mobile satellite system (MSS) is composed of a network management center, mobile terminals, base stations, and gateways; the functions of each component are described. The satellite is a 'bent pipe' that performs frequency translations, and it has multiple UHF beams. The development of the MSS design based on the seven-layer open system interconnection model is examined. Consideration is given to the functions of the physical, data link, and network layers and the integrated adaptive mobile access protocol.

  16. 47 CFR 25.157 - Consideration of NGSO-like satellite applications.

    Science.gov (United States)

    2010-10-01

    ...-directional antennas. (b) Each NGSO-like satellite system application will be reviewed to determine whether it... licensee's bandwidth selection in both the uplink and downlink band shall not preclude other licensees from... to make another selection. (g)(1) In the event that an applicants' license is cancelled for any...

  17. Power Line Communications for Smart Grid Applications

    Directory of Open Access Journals (Sweden)

    Lars Torsten Berger

    2013-01-01

    Full Text Available Power line communication, that is, using the electricity infrastructure for data transmission, is experiencing a renaissance in the context of Smart Grid. Smart Grid objectives include the integration of intermittent renewable energy sources into the electricity supply chain, securing reliable electricity delivery, and using the existing electrical infrastructure more efficiently. This paper surveys power line communications (PLCs in the context of Smart Grid. The specifications G3-PLC, PRIME, HomePlug Green PHY, and HomePlug AV2, and the standards IEEE 1901/1901.2 and ITU-T G.hn/G.hnem are discussed.

  18. Fiber optic communications fundamentals and applications

    CERN Document Server

    Kumar, Shiva

    2014-01-01

    Fiber-optic communication systems have advanced dramatically over the last four decades, since the era of copper cables, resulting in low-cost and high-bandwidth transmission. Fiber optics is now the backbone of the internet and long-distance telecommunication. Without it we would not enjoy the benefits of high-speed internet, or low-rate international telephone calls. This book introduces the basic concepts of fiber-optic communication in a pedagogical way. The important mathematical results are derived by first principles rather than citing research articles. In addition, physical interpre

  19. Application of information and communication technology facilities in ...

    African Journals Online (AJOL)

    ... technology facilities in technical services operations at Bayero University library, Nigeria. ... Victoria Sokari, Umar Garba Gama, Zanaib Abba Haliru, Kemi J. Olayemi, ... This paper examines the application of Information and Communication ...

  20. Impact of the application of Information and Communication ...

    African Journals Online (AJOL)

    Impact of the application of Information and Communication Technology (ICT) in ... Consequently, it was recommended that, the government, the management of ... Provision of alternative sources of power for the use of equipment and other ...

  1. Linking satellite ICT application businesses with regional innovation centers and investors: The EC “INVESaT” project

    Science.gov (United States)

    Ghiron, Florence; Kreisel, Joerg

    2009-09-01

    In the sector of information and communication technologies (ICT), whether in the USA, Japan, or Europe, innovative services are already in use, based on large-scale space-based infrastructure investments. Such systems are e.g. earth observation, telecommunication, and navigation, timing and positioning satellites. In combination with the advent of powerful handheld terminals and the demand for ubiquitous services, it is expected that info-mobility applications will reveal new sources of business in the years ahead, using in particular the Earth observation and future GALILEO systems to position any feature or user anywhere in the world within a few meter accuracy. Hence, satellite-based capabilities provide new and unique opportunities for economic stimulation and development. Many incubators and innovation centers in Europe have already grasped this growth potential. Yet, for many European players business growth appears below expectations compared to developments in the USA following the launch of GPS (Global Positioning System). Europe still has to overcome intrinsic barriers to seize these new business opportunities faster and with more visible economic impact by leveraging on SMEs and regional innovation centers to expand the commercial utilization of satellite capabilities and mobilization of appropriate financial resources. The paper elaborates on the INVESat project (funded by the EuropeInnova—European Commission), which aims at bridging the gap between Innovative enterprises and financial In VEstors in the emerging markets of SaTellite applications. The critical success factors required to stimulate and support more efficiently investments in this bread of innovative services will also be highlighted.

  2. Application of Beyond Bound Decoding for High Speed Optical Communications

    DEFF Research Database (Denmark)

    Li, Bomin; Larsen, Knud J.; Vegas Olmos, Juan José

    2013-01-01

    This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB.......This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB....

  3. Mapping reference evapotranspiration from meteorological satellite data and applications

    Directory of Open Access Journals (Sweden)

    Ming-Hwi Yao

    2017-01-01

    Full Text Available Reference evapotranspiration (ETo is an agrometeorological variable widely used in hydrology and agriculture. The FAO-56 Penman-Monteith combination method (PM method is a standard for computing ETo for water management. However, this scheme is limited to areas where climatic data with good quality are available. Maps of 10-day averaged ETo at 5 km × 5 km grid spacing for the Taiwan region were produced by multiplying pan evaporation (Epan, derived from ground solar radiation (GSR retrieved from satellite images using the Heliosat-3 method, by a fixed pan coefficient (Kp. Validation results indicated that the overall mean absolute percentage error (MAPE and normalized root-mean-square deviation (NRMSD were 6.2 and 7.7%, respectively, when compared with ETo computed by the PM method using spatially interpolated 10-day averaged daily maximum and minimum temperature datasets and GSR derived from satellite inputs. Land coefficient (KL values based on the derived ETo estimates and long term latent heat flux measurements, were determined for the following landscapes: Paddy rice (Oryza sativa, subtropical cypress forest (Chamaecyparis obtusa var. formosana and Chamaecyparis formosensis, warm-to-temperate mixed rainforest (Cryptocarya chinensis, Engelhardtia roxburghiana, Tutcheria shinkoensis, and Helicia formosana, and grass marsh (Brachiaria mutica and Phragmites australis. The determined land coefficients are indispensable to scale ETo in estimating regional evapotranspiration.

  4. Seven-core active fibre for application in telecommunication satellites

    Science.gov (United States)

    Filipowicz, Marta; Napierała, Marek; Murawski, Michał; Ostrowski, Łukasz; Szostkiewicz, Łukasz; Szymański, Michał; Tenderenda, Tadeusz; Anders, Krzysztof; Piramidowicz, Ryszard; Wójcik, Grzegorz; Makara, Mariusz; Poturaj, Krzysztof; Mergo, Paweł; Nasiłowski, Tomasz

    2015-12-01

    The use of optical elements and other photonic components makes it possible to overcome telecommunication satellite's bottleneck problems such as size and weight reduction. Despite the unquestionable potential of such elements, nowadays they are not widely used in systems operating in space. This is due to many factors, including the fact that space radiation has disruptive influence on optical fibre. Namely it introduces additional radiation induced attenuation (RIA) that significantly lowers efficiency of optical fibre based systems. However, there is a possibility to produce radiation-hardened (rad-hard) components. One of them is seven core erbium-doped active fibre (MC-EDF) for fibre amplifiers in satellites that we have been developing. In this paper we present a detailed description of seven core structure design as well as experimental results. We report that average gain of 20 dB in C-band with noise figure of 5.8 dB was obtained. We also confirmed that low crosstalk value for a multicore fibre amplifier based on our fibre can be achieved.

  5. Cognitive Communications Protocols for SATCOM

    Science.gov (United States)

    2017-10-20

    communications protocols for satellite and space communications with possible broad applications in defense, homeland-security as well as consumer ...communications with possible broad applications in defense, homeland-security, and civilian as well as consumer telecommunications. Such cognitive...vulnerable against smart jammers that may attempt to learn the cognitive radios own behavior . In response, our second class of proposed algorithms

  6. Visible light communication: Applications, architecture, standardization and research challenges

    Directory of Open Access Journals (Sweden)

    Latif Ullah Khan

    2017-05-01

    Full Text Available The Radio Frequency (RF communication suffers from interference and high latency issues. Along with this, RF communication requires a separate setup for transmission and reception of RF waves. Overcoming the above limitations, Visible Light Communication (VLC is a preferred communication technique because of its high bandwidth and immunity to interference from electromagnetic sources. The revolution in the field of solid state lighting leads to the replacement of florescent lamps by Light Emitting Diodes (LEDs which further motivates the usage of VLC. This paper presents a survey of the potential applications, architecture, modulation techniques, standardization and research challenges in VLC.

  7. Applications of Coding in Network Communications

    Science.gov (United States)

    Chang, Christopher SungWook

    2012-01-01

    This thesis uses the tool of network coding to investigate fast peer-to-peer file distribution, anonymous communication, robust network construction under uncertainty, and prioritized transmission. In a peer-to-peer file distribution system, we use a linear optimization approach to show that the network coding framework significantly simplifies…

  8. Neural network based satellite tracking for deep space applications

    Science.gov (United States)

    Amoozegar, F.; Ruggier, C.

    2003-01-01

    The objective of this paper is to provide a survey of neural network trends as applied to the tracking of spacecrafts in deep space at Ka-band under various weather conditions and examine the trade-off between tracing accuracy and communication link performance.

  9. The application of "integrated marketing communications" to social marketing and health communication: organizational challenges and implications.

    Science.gov (United States)

    Nowak, G; Cole, G; Kirby, S; Freimuth, V; Caywood, C

    1998-01-01

    Influencing consumer behavior is a difficult and often resource-intensive undertaking, with success usually requiring identifying, describing, and understanding target audiences; solid product and/or service positioning relative to competitors; and significant media and communication resources. Integrated marketing communication (IMC) is a new way of organizing and managing persuasive communication tools and functions which involves realigning communications to consider the flow of information from an organization from the viewpoint of end consumers. Although the application of IMC to social marketing remains relatively unexplored, the IMC literature and recent efforts by the US Centers for Disease Prevention and Control suggest that integrated communication approaches have much to offer social marketing and health communication efforts. IMC, IMC and social marketing, and implications of IMC for public and private sector social marketing programs are discussed.

  10. Lightning-generated whistler waves observed by probes on the Communication/Navigation Outage Forecast System satellite at low latitudes

    Science.gov (United States)

    Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.

    2011-06-01

    Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning-related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401-867 km). Lightning-generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.

  11. Electromagnetic Modeling of the Propagation Characteristics of Satellite Communications Through Composite Precipitation Layers, Part1: Mathematical Formulation

    Directory of Open Access Journals (Sweden)

    H.M. Al-Rizzo

    2000-12-01

    Full Text Available A systematic and general formulation of a Propagation Simulation Program (PSP is developed for the coherent field of microwave and millimeter wave carrier signals traversing intermediate layered precipitation media, taking into account the random behavior of particle size, orientation, shape and concentration distributions.  Based on a rigorous solution of the volumetric multiple-scattering integral equations, the formalism offers the capability of treating the potential transmission impairments on satellite-earth links and radar remote sensing generated by composite atmospheric layers of precipitation in conjunction with the finite polarization isolation of dual-polarized transmitting and receiving antennas. A multi-layered formulation is employed which encompasses an ensemble of discrete particles comprising an arbitrary mixture of ice crystals, melting snow and raindrops that may exist simultaneously along satellite-earth communication paths.

  12. Multi-Satellite Orbit Determination Using Interferometric Observables with RF Localization Applications

    Science.gov (United States)

    Geeraert, Jeroen L.

    Very long baseline interferometry (VLBI) specifically same-beam interferometry (SBI), and dual-satellite geolocation are two fields of research not previously connected. This is due to the different application of each field, SBI is used for relative interplanetary navigation of two satellites while dual-satellite geolocation is used to locate the source of a radio frequency (RF) signal. In this dissertation however, we leverage both fields to create a novel method for multi-satellite orbit determination (OD) using time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements. The measurements are double differenced between the satellites and the stations, in so doing, many of the common errors are canceled which can significantly improve measurement precision. Provided with this novel OD technique, the observability is first analyzed to determine the benefits and limitations of this method. In all but a few scenarios the measurements successfully reduce the covariance when examining the Cramer-Rao Lower Bound (CRLB). Reduced observability is encountered with geostationary satellites as their motion with respect to the stations is limited, especially when only one baseline is used. However, when using satellite pairs with greater relative motion with respect to the stations, even satellites that are close to, but not exactly in a geostationary orbit can be estimated accurately. We find that in a strong majority of cases the OD technique provides lower uncertainties and solutions far more accurate than using conventional OD observables such as range and range-rate while also not being affected by common errors and biases. We specifically examine GEO-GEO, GEO-MEO, and GEO-LEO dual-satellite estimation cases. The work is further extended by developing a relative navigation scenario where the chief satellite is assumed to have perfect knowledge, or some small amount of uncertainty considered but not estimated, while estimating the deputy

  13. New Satellite Estimates of Mixed-Phase Cloud Properties: A Synergistic Approach for Application to Global Satellite Imager Data

    Science.gov (United States)

    Smith, W. L., Jr.; Spangenberg, D.; Fleeger, C.; Sun-Mack, S.; Chen, Y.; Minnis, P.

    2016-12-01

    Determining accurate cloud properties horizontally and vertically over a full range of time and space scales is currently next to impossible using data from either active or passive remote sensors or from modeling systems. Passive satellite imagers provide horizontal and temporal resolution of clouds, but little direct information on vertical structure. Active sensors provide vertical resolution but limited spatial and temporal coverage. Cloud models embedded in NWP can produce realistic clouds but often not at the right time or location. Thus, empirical techniques that integrate information from multiple observing and modeling systems are needed to more accurately characterize clouds and their impacts. Such a strategy is employed here in a new cloud water content profiling technique developed for application to satellite imager cloud retrievals based on VIS, IR and NIR radiances. Parameterizations are developed to relate imager retrievals of cloud top phase, optical depth, effective radius and temperature to ice and liquid water content profiles. The vertical structure information contained in the parameterizations is characterized climatologically from cloud model analyses, aircraft observations, ground-based remote sensing data, and from CloudSat and CALIPSO. Thus, realistic cloud-type dependent vertical structure information (including guidance on cloud phase partitioning) circumvents poor assumptions regarding vertical homogeneity that plague current passive satellite retrievals. This paper addresses mixed phase cloud conditions for clouds with glaciated tops including those associated with convection and mid-latitude storm systems. Novel outcomes of our approach include (1) simultaneous retrievals of ice and liquid water content and path, which are validated with active sensor, microwave and in-situ data, and yield improved global cloud climatologies, and (2) new estimates of super-cooled LWC, which are demonstrated in aviation safety applications and

  14. Design Requirements for Communication-Intensive Interactive Applications

    Science.gov (United States)

    Bolchini, Davide; Garzotto, Franca; Paolini, Paolo

    Online interactive applications call for new requirements paradigms to capture the growing complexity of computer-mediated communication. Crafting successful interactive applications (such as websites and multimedia) involves modeling the requirements for the user experience, including those leading to content design, usable information architecture and interaction, in profound coordination with the communication goals of all stakeholders involved, ranging from persuasion to social engagement, to call for action. To face this grand challenge, we propose a methodology for modeling communication requirements and provide a set of operational conceptual tools to be used in complex projects with multiple stakeholders. Through examples from real-life projects and lessons-learned from direct experience, we draw on the concepts of brand, value, communication goals, information and persuasion requirements to systematically guide analysts to master the multifaceted connections of these elements as drivers to inform successful communication designs.

  15. Satellite Climate Data Records: Development, Applications, and Societal Benefits

    Directory of Open Access Journals (Sweden)

    Wenze Yang

    2016-04-01

    Full Text Available This review paper discusses how to develop, produce, sustain, and serve satellite climate data records (CDRs in the context of transitioning research to operation (R2O. Requirements and critical procedures of producing various CDRs, including Fundamental CDRs (FCDRs, Thematic CDRs (TCDRs, Interim CDRs (ICDRs, and climate information records (CIRs are discussed in detail, including radiance/reflectance and the essential climate variables (ECVs of land, ocean, and atmosphere. Major international CDR initiatives, programs, and projects are summarized. Societal benefits of CDRs in various user sectors, including Agriculture, Forestry, Fisheries, Energy, Heath, Water, Transportation, and Tourism are also briefly discussed. The challenges and opportunities for CDR development, production and service are also addressed. It is essential to maintain credible CDR products by allowing free access to products and keeping the production process transparent by making source code and documentation available with the dataset.

  16. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX 20) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nasser (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom) industry, academia, and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at these meetings by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satcom industry.

  17. Dental student attitudes towards communication skills instruction and clinical application.

    Science.gov (United States)

    McKenzie, Carly T

    2014-10-01

    This study investigated dental students' attitudes towards communication skills instruction and clinical application and explored the impact of a one-semester course and year in school on students' attitudes, measured by the Communication Skills Attitude Scale. Demographic characteristics and self-assessment of communication skills were also analyzed. The study employed a pretest-posttest survey design combined with cross-sectional data. Participants were first- and fourth-year students at a U.S. dental school. Out of a possible 120 students, 106 (fifty-seven D1 and forty-nine D4) participated in the pretest, an 88 percent response rate; out of a possible 121 students, 115 (fifty-seven D1 and fifty-eight D4) participated in the posttest, a 95 percent response rate. In the results, D4 students consistently demonstrated less positive attitudes towards communication skills instruction and more negative attitudes regarding the importance of interpersonal skills in clinical encounters than did their D1 counterparts. A single communications course had no discernible effect on attitudes or self-assessments for either cohort. Females reported more positive attitudes towards clinical application of interpersonal skills than did males. Gender significantly interacted with two demographic variables: primary language and parent as health care professional. Female children of health care professionals reported poorer attitudes towards clinical communication skills training and application than did their male counterparts. Generally, parental occupation in health care moderated the decrease in positive attitudes over time towards clinical usefulness of communication skills. The D4 students rated their communication skills higher than did the D1 students. Students who demonstrated more positive attitudes towards communication skills training and application were more likely to say their own skills needed improvement.

  18. Green communications theoretical fundamentals, algorithms and applications

    CERN Document Server

    Wu, Jinsong; Zhang, Honggang

    2012-01-01

    Nowadays energy crisis and global warming problems are hanging over everyone's head, urging much research work on energy saving. In the ICT industry, which is becoming a major consumer of global energy triggered by the telecommunication network operators experiencing energy cost as a significant factor in profit calculations, researchers have started to investigate various approaches for power consumption reduction. Standards bodies are already developing standards for energy-efficient protocols. However, research in green communications is still at an early stage, and the space of potential s

  19. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    Science.gov (United States)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  20. Application Of Information And Communication Technology (Ict) In ...

    African Journals Online (AJOL)

    While the digital divide between the developed and the developing world continues to widen, health and HIV prevention projects could prioritise ICT applications throughout the developing world. Keywords: Applications, information and communication technology (ICT), human immunodeficiency virus (HIV), acquired ...

  1. Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project

    Science.gov (United States)

    Tower, L. K.; Kaufman, W. B.

    1977-01-01

    A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.

  2. Visible light communication applications in healthcare.

    Science.gov (United States)

    Muhammad, Shoaib; Qasid, Syed Hussain Ahmed; Rehman, Shafia; Rai, Aitzaz Bin Sulltan

    2016-01-01

    With the development in science, methods of communication are also improved, replacing old ones with new advanced ways in an attempt to make data transfer more secure, safer for health, and time as well as cost efficient. One of such methods is Visible Light Communication, as the name implies data is transferred through a light equipment such as incandescent or florescent bulb having speed of 10 Kb/s or LEDs approaching speed of 500 Mb/s [1]. VLC uses visible light between 384 and 789 THz [2,3]. Though range is limitation of VLC, however data transfer up-to distance of 1 to 2 km although at lower transfer rate has been reached.The VLC system comprises of light source like LED and receiver equipment, however, with advancement, now LEDs are used for both sending and receiving data. LED remains on all the time, and there is no change in brightness level during the whole process, making it safe for eyes. Currently, VLC system is facing some serious technical challenges before it could be applied in daily life.

  3. Satellite and Ground Communication Systems: Space and Electronic Warfare Threats to the United States Army

    Science.gov (United States)

    2017-02-01

    as if SATCOM is guaranteed. This complacency is accompanied by the procurement of high-data communication and mission command systems that deny...threat. To overcome these significant vulnerabilities, the US Army must procure communications systems that maintain the information high ground, but...precious gift of our freedom.”1 A key element of remaining strong on the ground is maintaining the capability to effectively communicate on the ground. If

  4. An Analysis of Marine Corps Beyond Line of Sight Wideband Satellite Communications Requirements

    Science.gov (United States)

    2010-09-01

    Tactical SHF Satellite Terminal UFO ... what made it bearable. Stephen Musick: Thanks are due to my family and friends for their support and encouragement. I want to especially thank... what beyond LOS WB SATCOM capabilities the USMC requires in order to prepare for the future. A clear understanding of desired capabilities allows for

  5. 78 FR 14920 - Earth Stations Aboard Aircraft Communicating With Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-08

    ... Consumer and Governmental Affairs Bureau, Reference Information Center shall send a copy of this Report and... ground, ESAAs shall not be authorized for transmission at angles less than 5[deg] measured from the plane..., in the plane of the geostationary satellite orbit (GSO) as it appears at the particular earth station...

  6. Improved Coast Guard Communications Using Commercial Satellites and WWW Technology: Slide Presentation

    Science.gov (United States)

    1997-06-18

    The slides in this file amplify a paper that was presented at International Mobile Satellite Conference, (IMSC-97), Pasadena CA on 18 June 1997. The text of that presentation can be found at http://www.bts.gov/NTL/data/imsc.pdf.

  7. The performance evaluation of a new neural network based traffic management scheme for a satellite communication network

    Science.gov (United States)

    Ansari, Nirwan; Liu, Dequan

    1991-01-01

    A neural-network-based traffic management scheme for a satellite communication network is described. The scheme consists of two levels of management. The front end of the scheme is a derivation of Kohonen's self-organization model to configure maps for the satellite communication network dynamically. The model consists of three stages. The first stage is the pattern recognition task, in which an exemplar map that best meets the current network requirements is selected. The second stage is the analysis of the discrepancy between the chosen exemplar map and the state of the network, and the adaptive modification of the chosen exemplar map to conform closely to the network requirement (input data pattern) by means of Kohonen's self-organization. On the basis of certain performance criteria, whether a new map is generated to replace the original chosen map is decided in the third stage. A state-dependent routing algorithm, which arranges the incoming call to some proper path, is used to make the network more efficient and to lower the call block rate. Simulation results demonstrate that the scheme, which combines self-organization and the state-dependent routing mechanism, provides better performance in terms of call block rate than schemes that only have either the self-organization mechanism or the routing mechanism.

  8. Prediction Method for Rain Rate and Rain Propagation Attenuation for K-Band Satellite Communications Links in Tropical Areas

    Directory of Open Access Journals (Sweden)

    Baso Maruddani

    2015-01-01

    Full Text Available This paper deals with the prediction method using hidden Markov model (HMM for rain rate and rain propagation attenuation for K-band satellite communication link at tropical area. As is well known, the K-band frequency is susceptible of being affected by atmospheric condition, especially in rainy condition. The wavelength of K-band frequency which approaches to the size of rain droplet causes the signal strength is easily attenuated and absorbed by the rain droplet. In order to keep the quality of system performance for K-band satellite communication link, therefore a special attention has to be paid for rain rate and rain propagation attenuation. Thus, a prediction method for rain rate and rain propagation attenuation based on HMM is developed to process the measurement data. The measured and predicted data are then compared with the ITU-R recommendation. From the result, it is shown that the measured and predicted data show similarity with the model of ITU-R P.837-5 recommendation for rain rate and the model of ITU-R P.618-10 recommendation for rain propagation attenuation. Meanwhile, statistical data for measured and predicted data such as fade duration and interfade duration have insignificant discrepancy with the model of ITU-R P.1623-1 recommendation.

  9. A Novel Location-Awareness Method Using CubeSats for Locating the Spot Beam Emitters of Geostationary Communications Satellites

    Directory of Open Access Journals (Sweden)

    Weicai Yang

    2018-01-01

    Full Text Available As more spacecraft are launched into the Geostationary Earth Orbit (GEO belt, the possibility of fatal collisions or unnecessary interference between spacecraft increases. In this paper, a new location-awareness method that uses CubeSats is proposed to assist with radiofrequency (RF domain verification by means of awareness and identification of the positions of the spot beam emitters of communications satellites in geostationary orbit. By flying a CubeSat (or a constellation of CubeSats through the coverage area of a spot beam, the spot beam emitter’s position is identified and the spot beam’s pattern knowledge is characterized. The geometry, the equations of motion of the spacecraft, the measurement process, and the filtering equations in a location system are addressed with respect to the location methods investigated in this study. A realistic scenario in which a CubeSat receives signals from GEO communications satellites is simulated using the Systems Tool Kit (STK. The results of the simulation and the analysis presented in this study provide a thorough verification of the performance of the location-awareness method.

  10. Analytical solution of perturbed relative motion: an application of satellite formations to geodesy

    Science.gov (United States)

    Wnuk, Edwin

    In the upcoming years, several space missions will be operated using a number of spacecraft flying in formation. Clusters of spacecraft with a carefully designed orbits and optimal formation geometry enable a wide variety of applications ranging from remote sensing to astronomy, geodesy and basic physics. Many of the applications require precise relative navigation and autonomous orbit control of satellites moving in a formation. For many missions a centimeter level of orbit control accuracy is required. The GRACE mission, since its launch in 2002, has been improving the Earth's gravity field model to a very high level of accuracy. This mission is a formation flying one consisting of two satellites moving in coplanar orbits and provides range and range-rate measurements between the satellites in the along-track direction. Future geodetic missions probably will employ alternative architectures using additional satellites and/or performing out-of-plane motion, e.g cartwheel orbits. The paper presents an analytical model of a satellite formation motion that enables propagation of the relative spacecraft motion. The model is based on the analytical theory of satellite relative motion that was presented in the previous our papers (Wnuk and Golebiewska, 2005, 2006). This theory takes into account the influence of the following gravitational perturbation effects: 1) zonal and tesseral harmonic geopotential coefficients up to arbitrary degree and order, 2) Lunar gravity, 3) Sun gravity. Formulas for differential perturbations were derived with any restriction concerning a plane of satellite orbits. They can be applied in both: in plane and out of plane cases. Using this propagator we calculated relative orbits and future relative satellite positions for different types of formations: in plane, out of plane, cartwheel and others. We analyzed the influence of particular parts of perturbation effects and estimated the accuracy of predicted relative spacecrafts positions

  11. Thermal IR satellite data application for earthquake research in Pakistan

    Science.gov (United States)

    Barkat, Adnan; Ali, Aamir; Rehman, Khaista; Awais, Muhammad; Riaz, Muhammad Shahid; Iqbal, Talat

    2018-05-01

    The scientific progress in space research indicates earthquake-related processes of surface temperature growth, gas/aerosol exhalation and electromagnetic disturbances in the ionosphere prior to seismic activity. Among them surface temperature growth calculated using the satellite thermal infrared images carries valuable earthquake precursory information for near/distant earthquakes. Previous studies have concluded that such information can appear few days before the occurrence of an earthquake. The objective of this study is to use MODIS thermal imagery data for precursory analysis of Kashmir (Oct 8, 2005; Mw 7.6; 26 km), Ziarat (Oct 28, 2008; Mw 6.4; 13 km) and Dalbandin (Jan 18, 2011; Mw 7.2; 69 km) earthquakes. Our results suggest that there exists an evident correlation of Land Surface Temperature (thermal; LST) anomalies with seismic activity. In particular, a rise of 3-10 °C in LST is observed 6, 4 and 14 days prior to Kashmir, Ziarat and Dalbandin earthquakes. In order to further elaborate our findings, we have presented a comparative and percentile analysis of daily and five years averaged LST for a selected time window with respect to the month of earthquake occurrence. Our comparative analyses of daily and five years averaged LST show a significant change of 6.5-7.9 °C for Kashmir, 8.0-8.1 °C for Ziarat and 2.7-5.4 °C for Dalbandin earthquakes. This significant change has high percentile values for the selected events i.e. 70-100% for Kashmir, 87-100% for Ziarat and 84-100% for Dalbandin earthquakes. We expect that such consistent results may help in devising an optimal earthquake forecasting strategy and to mitigate the effect of associated seismic hazards.

  12. Synchronization of switched system and application in communication

    International Nuclear Information System (INIS)

    Yu Wenwu; Cao Jinde; Yuan Kun

    2008-01-01

    In this Letter, synchronization of switched system is investigated based on Lyapunov method. A sufficient condition is derived to ensure the synchronization between two switched systems, and a new communication scheme is also proposed based on this. Furthermore, some secure analysis works, such as return map attack and moving average error attack, are also given to show the security of the proposed scheme. Finally, simulation examples are constructed to verify the theoretical analysis and its application for communication

  13. Applications of expectation maximization algorithm for coherent optical communication

    DEFF Research Database (Denmark)

    Carvalho, L.; Oliveira, J.; Zibar, Darko

    2014-01-01

    In this invited paper, we present powerful statistical signal processing methods, used by machine learning community, and link them to current problems in optical communication. In particular, we will look into iterative maximum likelihood parameter estimation based on expectation maximization...... algorithm and its application in coherent optical communication systems for linear and nonlinear impairment mitigation. Furthermore, the estimated parameters are used to build the probabilistic model of the system for the synthetic impairment generation....

  14. Artificial intelligence applications in information and communication technologies

    CERN Document Server

    Bouguila, Nizar

    2015-01-01

    This book presents various recent applications of Artificial Intelligence in Information and Communication Technologies such as Search and Optimization methods, Machine Learning, Data Representation and Ontologies, and Multi-agent Systems. The main aim of this book is to help Information and Communication Technologies (ICT) practitioners in managing efficiently their platforms using AI tools and methods and to provide them with sufficient Artificial Intelligence background to deal with real-life problems.  .

  15. ESPACE - a geodetic Master's program for the education of Satellite Application Engineers

    Science.gov (United States)

    Hedman, K.; Kirschner, S.; Seitz, F.

    2012-04-01

    In the last decades there has been a rapid development of new geodetic and other Earth observation satellites. Applications of these satellites such as car navigation systems, weather predictions, and, digital maps (such as Google Earth or Google Maps) play a more and more important role in our daily life. For geosciences, satellite applications such as remote sensing and precise positioning/navigation have turned out to be extremely useful and are meanwhile indispensable. Today, researchers within geodesy, climatology, oceanography, meteorology as well as within Earth system science are all dependent on up-to-date satellite data. Design, development and handling of these missions require experts with knowledge not only in space engineering, but also in the specific applications. That gives rise to a new kind of engineers - satellite application engineers. The study program for these engineers combines parts of different classical disciplines such as geodesy, aerospace engineering or electronic engineering. The satellite application engineering program Earth Oriented Space Science and Technology (ESPACE) was founded in 2005 at the Technische Universität München, mainly from institutions involved in geodesy and aerospace engineering. It is an international, interdisciplinary Master's program, and is open to students with a BSc in both Science (e.g. Geodesy, Mathematics, Informatics, Geophysics) and Engineering (e.g. Aerospace, Electronical and Mechanical Engineering). The program is completely conducted in English. ESPACE benefits from and utilizes its location in Munich with its unique concentration of expertise related to space science and technology. Teaching staff from 3 universities (Technische Universität München, Ludwig-Maximilian University, University of the Federal Armed Forces), research institutions (such as the German Aerospace Center, DLR and the German Geodetic Research Institute, DGFI) and space industry (such as EADS or Kayser-Threde) are

  16. UHF coplanar-slot antenna for aircraft-to-satellite data communications

    Science.gov (United States)

    Myhre, R. W.

    1979-01-01

    The initiative for starting the Aircraft-to-Satellite Data Relay (ASDAR) Program came from a recognition that much of the world's weather originates in the data sparse area of the tropics which are primarily ocean. The ASDAR system consists of (1) a data acquisition and control unit to acquire, store and format these data; (2) a clock to time the data sampling and transmission periods; and (3) a transmitter and low-profile upper hemisphere coverage antenna to relay the formatted data via satellite to the National Weather Service ground stations, as shown schematically. The low-profile antenna is a conformal antenna based on the coplanar-slot approach. The antenna is circular polarized and has an on-axis gain of nearly 2.5 dB and a HPBW greater than 90 deg. The discussion covers antenna design, radiation characteristics, flight testing, and system performance.

  17. Evolution of the Orbital Elements for Geosynchronous Orbit of Communications Satellite, II

    Directory of Open Access Journals (Sweden)

    Kyu-Hong Choi

    1987-06-01

    Full Text Available For a geostationary satellite north-south station keeping maneuver must control the inclination elements. The effects on the orbit plane of maneuvers and natural perturbations may be represented by a plane plot of Wc versus Ws, since these inclination elements represent the projection of the unit orbit normal onto the equatorial plane. The evolution of the semi-major axis and the inclination elements are obtained.

  18. Optical rangefinding applications using communications modulation technique

    Science.gov (United States)

    Caplan, William D.; Morcom, Christopher John

    2010-10-01

    A novel range detection technique combines optical pulse modulation patterns with signal cross-correlation to produce an accurate range estimate from low power signals. The cross-correlation peak is analyzed by a post-processing algorithm such that the phase delay is proportional to the range to target. This technique produces a stable range estimate from noisy signals. The advantage is higher accuracy obtained with relatively low optical power transmitted. The technique is useful for low cost, low power and low mass sensors suitable for tactical use. The signal coding technique allows applications including IFF and battlefield identification systems.

  19. Defining a Communications Satellite Policy System for the 21st Century: A Model for a International Legal Framework and A New _Code of Conduct_

    Science.gov (United States)

    Pelton, Joseph N.

    1996-02-01

    This paper addresses the changing international communications environment and explores the key elements of a new policy framework for the 21st Century. It addresses the issues related to changing markets, trade considerations, standards, regulatory changes and international institutions and law. The most important aspects will related to new international policy and regulatory frameworks and in particular to a new international code of ethics and behavior in the field of satellite communications. A new communications satellite policy framework requires systematically addressing the following points: • Multi-lateral agreements at the nation state and the operating entity level • Systematic means to access both private and public capital • Meshing ITU regulations with regional and national policy guidelines including • landing rights" and national allocation procedures. • Systematic approach to local partnerships • Resolving the issue of the relative standing of various satellite systems (i.e. GEO, MEO, and LEO systems) • Resolving the rights, duties, and priorities of satellite facility providers versus types of service prviders. Beyond this policy framework and generalized legal infrastructure there is also another need. This is a need that arises from both increased globalism and competitive international markets. This is what might quite simply be called a "code of reasonable conduct:" To provide global and international communications services effectively and well in the 21st Century will require more than meeting minimum international legal requirements. A new "code of conduct" for global satellite communications will thus likely need to address: • Privacy and surveillance • Ethics of transborder data flow • Censorship and moral values • Cultural and linguistic sensitivity • Freedom of the press and respect for journalistic standards As expanding global information and telecommunications systems grow and impact every aspect of modern

  20. Enhancing usability using Near Field Communication for mobile application

    Directory of Open Access Journals (Sweden)

    Wihidayat Endar

    2018-01-01

    Full Text Available Near Field Communication (NFC as relatively new wireless communication technology pushes new challenges to application developers to make their applications easier to use and simpler to operate. This point of view known as usability element. Usability is one of the elements for creating good quality applications. This study aims to analyse the usability of mobile-based application embeds with NFC. We also try to evaluate usability in applications used by children. We developed an application called Receptionist which has a primary function as a communication tool between students, teachers and parents at a middle school. To know the impact of the NFC, the Receptionist input system is designed with two methods, via conventional navigation (using buttons and via NFC. To understand the usability of each method, we do user testing and questioners on students. The results show, using the NFC there is a significant increase in usability attributes: efficiency, effectiveness, and learnability. On the other hand, there is decreases of user satisfaction comparing to conventional method. In general, this study demonstrates the potential of new input device technologies that can improve the usability of mobile-based applications.

  1. Proceedings of the Twenty-First NASA Propagation Experimenters Meeting (NAPEX XXI) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nasser (Editor)

    1997-01-01

    The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry.

  2. A Hierarchical Communication Architecture for Oceanic Surveillance Applications

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Chiti, Francesco; Sacco, Andrea; Fantacci, Romano

    2011-01-01

    The interest in monitoring applications using underwater sensor networks has been growing in recent years. The severe communication restrictions imposed by underwater channels make that efficient monitoring be a challenging task. Though a lot of research has been conducted on underwater sensor networks, there are only few concrete applications to a real-world case study. In this work, hence, we propose a general three tier architecture leveraging low cost wireless technologies for acoustic communications between underwater sensors and standard technologies, Zigbee and Wireless Fidelity (WiFi), for water surface communications. We have selected a suitable Medium Access Control (MAC) layer, after making a comparison with some common MAC protocols. Thus the performance of the overall system in terms of Signals Discarding Rate (SDR), signalling delay at the surface gateway as well as the percentage of true detection have been evaluated by simulation, pointing out good results which give evidence in applicability’s favour. PMID:22247669

  3. Natural disaster reduction applications of the Chinese small satellite constellation for environment and disaster monitoring and forecasting

    Science.gov (United States)

    Liu, Sanchao; Fan, Yida; Gao, Maofang

    2013-10-01

    The Small Satellite Constellation for Environment and Disaster Monitoring and Forecasting (SSCEDMF) is an important component of Chinese satellites earth observation system. The first stage of SSCEDMF is composed by "2+1" satellites. The 2 optical satellites (HJ-1-A and HJ-1-B) and 1 S band microwave satellite (HJ-1-C) were successful launched on September 6, 2008 and November 19, 2012 respectively. This article introduced SSCEDMF characteristic and the disaster reduction application system and satellites on-orbit test works, and also analyzed the application capacity in natural disasters included flood, ice flooding, wild fire, severely drought, snow disasters, large area landslide and debris flow, sea ice, earthquake recovering, desertification and plant diseases and insect pests. Furthermore, we show some cases of China's and other countries' new natural disasters forecasting, monitoring, assessment and recovery construction.

  4. Digital Communication Applications in the Online Learning Environment

    Science.gov (United States)

    Lambeth, Krista Jill

    2011-01-01

    Scope and method of study. The purpose of this study was for the researcher to obtain a better understanding of the online learning environment, to explore the various ways online class instructors have incorporated digital communication applications to try and provide learner-centered online learning environments, and to examine students'…

  5. Application of Information and Communication Technology (ICT) in ...

    African Journals Online (AJOL)

    This is a survey research design which investigated the application of Information and Communication Technology in teaching and learning process of students with disabilities in secondary schools of Anambra State; Nigeria.. Three research questions guided the study. The population comprised five thousand five hundred ...

  6. Discrete mode lasers for communications applications

    Science.gov (United States)

    Barry, L. P.; Herbert, C.; Jones, D.; Kaszubowska-Anandarajah, A.; Kelly, B.; O'Carroll, J.; Phelan, R.; Anandarajah, P.; Shi, K.; O'Gorman, J.

    2009-02-01

    The wavelength spectra of ridge waveguide Fabry Perot lasers can be modified by perturbing the effective refractive index of the guided mode along very small sections of the laser cavity. One way of locally perturbing the effective index of the lasing mode is by etching features into the ridge waveguide such that each feature has a small overlap with the transverse field profile of the unperturbed mode, consequently most of the light in the laser cavity is unaffected by these perturbations. A proportion of the propagating light is however reflected at the boundaries between the perturbed and the unperturbed sections. Suitable positioning of these interfaces allows the mirror loss spectrum of a Fabry Perot laser to be manipulated. In order to achieve single longitudinal mode emission, the mirror loss of a specified mode must be reduced below that of the other cavity modes. Here we review the latest results obtained from devices containing such features. These results clearly demonstrate that these devices exceed the specifications required for a number of FTTH and Datacomms applications, such as GEPON, LX4 and CWDM. As well as this we will also present initial results on the linewidth of these devices.

  7. Design challenges of a tunable laser interrogator for geo-stationary communication satellites

    Science.gov (United States)

    Ibrahim, Selwan K.; Honniball, Arthur; McCue, Raymond; Todd, Michael; O'Dowd, John A.; Sheils, David; Voudouris, Liberis; Farnan, Martin; Hurni, Andreas; Putzer, Philipp; Lemke, Norbert; Roner, Markus

    2017-09-01

    Recently optical sensing solutions based on fiber Bragg grating (FBG) technology have been proposed for temperature monitoring in telecommunication satellite platforms with an operational life time beyond 15 years in geo-stationary orbit. Developing radiation hardened optical interrogators designed to be used with FBG sensors inscribed in radiation tolerant fibers offer the capabilities of multiplexing multiple sensors on the same fiber and reducing the overall weight by removing the copper wiring harnesses associated with electrical sensors. Here we propose the use of a tunable laser based optical interrogator that uses a semiconductor MG-Y type laser that has no moving parts and sweeps across the C-band wavelength range providing optical power to FBG sensors and optical wavelength references such as athermal Etalons and Gas Cells to guarantee stable operation of the interrogator over its targeted life time in radiation exposed environments. The MG-Y laser was calibrated so it remains in a stable operation mode which ensures that no mode hops occur due to aging of the laser, and/or thermal or radiation effects. The key optical components including tunable laser, references and FBGs were tested for radiation tolerances by emulating the conditions on a geo-stationary satellite including a Total Ionizing Dose (TID) radiation level of up to 100 krad for interrogator components and 25 Mrad for FBGs. Different tunable laser control, and signal processing algorithms have been designed and developed to fit within specific available radiation hardened FPGAs to guarantee operation of a single interrogator module providing at least 1 sample per second measurement capability across engineering model system developed in the frame of an ESA-ARTES program and is planned to be deployed as a flight demonstrator on-board the German Heinrich Hertz geo-stationary satellite.

  8. An introduction to optimal satellite range scheduling

    CERN Document Server

    Vázquez Álvarez, Antonio José

    2015-01-01

    The satellite range scheduling (SRS) problem, an important operations research problem in the aerospace industry consisting of allocating tasks among satellites and Earth-bound objects, is examined in this book. SRS principles and solutions are applicable to many areas, including: Satellite communications, where tasks are communication intervals between sets of satellites and ground stations Earth observation, where tasks are observations of spots on the Earth by satellites Sensor scheduling, where tasks are observations of satellites by sensors on the Earth. This self-contained monograph begins with a structured compendium of the problem and moves on to explain the optimal approach to the solution, which includes aspects from graph theory, set theory, game theory and belief networks. This book is accessible to students, professionals and researchers in a variety of fields, including: operations research, optimization, scheduling theory, dynamic programming and game theory. Taking account of the distributed, ...

  9. A Novel Efficient Cluster-Based MLSE Equalizer for Satellite Communication Channels with -QAM Signaling

    Directory of Open Access Journals (Sweden)

    Dalakas Vassilis

    2006-01-01

    Full Text Available In satellites, nonlinear amplifiers used near saturation severely distort the transmitted signal and cause difficulties in its reception. Nevertheless, the nonlinearities introduced by memoryless bandpass amplifiers preserve the symmetries of the -ary quadrature amplitude modulation ( -QAM constellation. In this paper, a cluster-based sequence equalizer (CBSE that takes advantage of these symmetries is presented. The proposed equalizer exhibits enhanced performance compared to other techniques, including the conventional linear transversal equalizer, Volterra equalizers, and RBF network equalizers. Moreover, this gain in performance is obtained at a substantially lower computational cost.

  10. Burst Format Design for Optimum Joint Estimation of Doppler-Shift and Doppler-Rate in Packet Satellite Communications

    Directory of Open Access Journals (Sweden)

    Luca Giugno

    2007-05-01

    Full Text Available This paper considers the problem of optimizing the burst format of packet transmission to perform enhanced-accuracy estimation of Doppler-shift and Doppler-rate of the carrier of the received signal, due to relative motion between the transmitter and the receiver. Two novel burst formats that minimize the Doppler-shift and the Doppler-rate Cramér-Rao bounds (CRBs for the joint estimation of carrier phase/Doppler-shift and of the Doppler-rate are derived, and a data-aided (DA estimation algorithm suitable for each optimal burst format is presented. Performance of the newly derived estimators is evaluated by analysis and by simulation, showing that such algorithms attain their relevant CRBs with very low complexity, so that they can be directly embedded into new-generation digital modems for satellite communications at low SNR.

  11. Applications of plastic optical fiber in communication

    Science.gov (United States)

    Tayahi, Moncef Ben

    In this thesis, we report the results of our theoretical and experimental studies of large core polymer fibers. This relatively low loss and high bandwidth plastic optical fiber (POF) potentially have important applications in LAN. We measured the power penalty due to modal noise. We also developed a model to calculate the signal to noise ratio (SNR) and the bit error rate (BER) floor just by knowing the coupling coefficient in the mode selective loss being considered. The calculated bandwidth using the WKB approximation was found to be 0.44 GHz per 100 m, which is much lower than the measured bandwidth of 3 GHz per 100 m. This discrepancy was explained by the presence of strong mode coupling in POFs. We studied distortions products in CATV systems. Composite second order (CSO) and composite triple beat (CTB) for different channels were measured using a spectrum analyzer and adjustable band pass filter. Since the CSO and the CTB did not meet the CATV standard, a predistortion circuit was used to minimize CSO and CTB products produced by the laser. The predistortion circuit provides a signal comprising multiple subcarrier signals substantially equal in magnitude and opposite in phase to those associated with the nonlinear transfer function of the laser being deployed. The RF signal is split into a primary branch that has a time delayed portion (80% of the RF signal), the secondary branch (10% of the RF signal) is where the second order products are generated with a 180 °phase shift from the fundamental, and the last remaining 10% of the RF signal is where the third order distortion products are generated with a 180 °phase shift from the fundamental. The output signal is taken as the summation of three signals processed by the branch circuits and coupled to the directly to the laser to be linearized. Finally, using cyclic transparent optical polymer (CYTOP), a perfluorinated graded index fiber, different transmission characteristics were investigated. CYTOP fiber

  12. Cross-polarisation discrimination-induced interference in dual-polarised high-capacity satellite communication systems

    Directory of Open Access Journals (Sweden)

    Abdulkareem Sarki Karasuwa

    2016-05-01

    Full Text Available The design of spectrally-efficient, high-throughput satellite (HTS systems with capacity approaching one terabit per second requires operating at Ka-band frequencies and above, where there are several gigahertz of allocated radio spectrum, using multiple spot beams with dual orthogonal polarisation mode. At these high frequencies, rain attenuation poses a major obstacle to the design of high-availability satellite links which are needed for the realisation of ubiquitous broadband multimedia communication services including high-speed Internet access at rural and remote locations. Furthermore, depolarisation-induced interference in such systems could have a performance-limiting impact if a co-channel cross-polar signal combines with system noise to drive the carrier-to-noise-plus-interference ratio (CNIR below an acceptable threshold. This paper employs real measurement data to investigate the impact of depolarisation-induced interference on dual-polarised HTS systems for temperate and tropical climatic regions. Scenarios that cause significant system performance degradation are analysed, including the effects of signal frequency, antenna size, and regional rainfall rate. The impact of depolarisation on system performance is quantified by the reductions in the CNIR and link availability of a dual-polarised system when compared with those of a similarly-dimensioned single-polarised system.

  13. The HSBQ Algorithm with Triple-play Services for Broadband Hybrid Satellite Constellation Communication System

    Directory of Open Access Journals (Sweden)

    Anupon Boriboon

    2016-07-01

    Full Text Available The HSBQ algorithm is the one of active queue management algorithms, which orders to avoid high packet loss rates and control stable stream queue. That is the problem of calculation of the drop probability for both queue length stability and bandwidth fairness. This paper proposes the HSBQ, which drop the packets before the queues overflow at the gateways, so that the end nodes can respond to the congestion before queue overflow. This algorithm uses the change of the average queue length to adjust the amount by which the mark (or drop probability is changed. Moreover it adjusts the queue weight, which is used to estimate the average queue length, based on the rate. The results show that HSBQ algorithm could maintain control stable stream queue better than group of congestion metric without flow information algorithm as the rate of hybrid satellite network changing dramatically, as well as the presented empiric evidences demonstrate that the use of HSBQ algorithm offers a better quality of service than the traditionally queue control mechanisms used in hybrid satellite network.

  14. Improving information dissemination in sparse vehicular networks by adding satellite communication

    NARCIS (Netherlands)

    Kloiber, Bernhard; Strang, Thomas; Spijker, Hanno; Heijenk, Geert

    Information dissemination in pure Vehicular Ad Hoc NETworks (VANETs) such as ITS-G5 becomes problematic when the network is sparse. In situations where the number of vehicles, that can act as a communication node, is insufficiently low, e.g. in rural areas, during night-time or because of a low

  15. 78 FR 14952 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-08

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 2 [IB Docket No. 12-376; FCC 12-161] Earth Stations... (NPRM) seeks comment on a proposal to elevate the allocation status of Earth Stations Aboard Aircraft... with GSO space stations of the FSS on a primary basis in the 11.7-12.2 GHz band (space-to-Earth), on an...

  16. Proceedings of the Fifth International Mobile Satellite Conference 1997

    Science.gov (United States)

    Jedrey, T. (Compiler); Rigley, J. (Compiler); Anderson, Louise (Editor)

    1997-01-01

    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments.

  17. TYCHO: Demonstrator and operational satellite mission to Earth-Moon-Libration point EML-4 for communication relay provision as a service

    Science.gov (United States)

    Hornig, Andreas; Homeister, Maren

    2015-03-01

    In the current wake of mission plans to the Moon and to Earth-Moon Libration points (EML) by several agencies and organizations, TYCHO identifies the key role of telecommunication provision for the future path of lunar exploration. It demonstrates an interesting extension to existing communication methods to the Moon and beyond by combining innovative technology with a next frontier location and the commercial space communication sector. It is evident that all communication systems will rely on direct communication to Earth ground stations. In case of EML-2 missions around HALO orbits or bases on the far side of the Moon, it has to be extended by communication links via relay stations. The innovative approach is that TYCHO provides this relay communication to those out-of-sight lunar missions as a service. TYCHO will establish a new infrastructure for future missions and even create a new market for add-on relay services. The TMA-0 satellite is TYCHO's first phase and a proposed demonstrator mission to the Earth-Moon Libration point EML-4. It demonstrates relay services needed for automated exploratory and manned missions (Moon bases) on the rim (>90°E and >90°W) and far side surface, to lunar orbits and even to EML-2 halo orbits (satellites and space stations). Its main advantage is the permanent availability of communication coverage. This will provide full access to scientific and telemetry data and furthermore to crucial medical monitoring and safety. The communication subsystem is a platform for conventional communication but also a test-bed for optical communication with high data-rate LASER links to serve the future needs of manned bases and periodic burst data-transfer from lunar poles. The operational TMA-1 satellite is a stand-alone mission integrated into existing space communication networks to provide open communication service to external lunar missions. Therefore the long-time stable libration points EML-4 and -5 are selected to guarantee an

  18. Experiments on the quick-relief medical communications via the Japan's domestic communication satellite CS-2 for the case of disasters and emergencies.

    Science.gov (United States)

    Otsu, Y; Choh, T; Yamazaki, I; Kosaka, K; Iguchi, M; Nakajima, I

    1986-01-01

    Experiments on the quick-relief medical communications via the CS-2 satellite were carried out by using two types of 30/20 GHz small transportable earth stations whose antenna diameters are 1 and 2 m. As the terminal equipments, FM-SCPC systems with a one-telephone-equivalent channel were prepared for the transmission of voice, color freezed picture (9.6 kbps), supersonic echo signal and heart sound from a electrocardiograph. Signals from various medical equipments were transmitted by an FM-SCPC system from Simizu harbour (1 m station) to Tokyo transportable station (2 m), assuming that a person was injured in the ship and the ship came alongside the pier. Transmitted materials are mainly various kinds of pictures of affected parts, X-ray films and electrocardiograph with breathing sounds. It was found possible to send various medical information mentioned above via CS-2 by the 30/20 GHz simple communication systems with one-telephone-equivalent channel. Doctors suggested it would be possible to judge very well about the patients' emergency conditions and to give quick consult with inevitable treatment procedures for them. However, a few problems were found in the Hi-Fi reproduction of original colors and in the transmission of heart sounds in the very low frequency band less than 300 Hz.

  19. Impact of wireless communication on multimedia application performance

    Science.gov (United States)

    Brown, Kevin A.

    1999-01-01

    Multimedia applications and specifically voice and video conferencing tools are widely used in business communications, and are quickly being discovered by the consumer market as well. At the same time, wireless communication services such as PCS voice and cellular data are becoming very popular, leading to the desire to deploy multimedia applications in the wireless environment. Wireless links, however, exhibit several characteristics which are different from traditional wired networks. These include: dynamically changing bandwidth due to mobile host movement in and out of cell where bandwidth is shared, high rates of packet corruption and subsequent loss, and frequent are lengthy disconnections due to obstacles, fading, and movement between cells. In addition, these effects are short-lived and difficult to reproduce, leading to a lack of adequate testing and analysis for applications used in wireless environments.

  20. Preface to the Special Issue on Satellite Altimetry over Land and Coastal Zones: Applications and Challenges

    Directory of Open Access Journals (Sweden)

    Cheinway Hwang

    2008-01-01

    Full Text Available This special issue publishes peer reviewed papers stemming from the International Workshop on Coast and Land applications of satellite altimetry, held 21 -22 July 2006, Beijing, China. This workshop is financially supported by the Chinese Academy of Surveying and Mapping, National Chiao Tung University, Asia GIS and GPS Co., Chung-Hsing Surv. Co., Huanyu Surv. Eng. Cons. Inc., and Real-World Eng. Cons. Inc. Twenty-two papers were submitted to this issue for review, and 16 papers were accepted following an iterative peer-review process. The accepted papers cover subjects on: ICESat coastal altimetry (1, satellite altimetry applications in solid earth sciences (2, hydrology (4, land/coast gravity field modeling (4, and coastal oceanography (5.

  1. Methods of Celestial Mechanics Volume II: Application to Planetary System, Geodynamics and Satellite Geodesy

    CERN Document Server

    Beutler, Gerhard

    2005-01-01

    G. Beutler's Methods of Celestial Mechanics is a coherent textbook for students as well as an excellent reference for practitioners. Volume II is devoted to the applications and to the presentation of the program system CelestialMechanics. Three major areas of applications are covered: (1) Orbital and rotational motion of extended celestial bodies. The properties of the Earth-Moon system are developed from the simplest case (rigid bodies) to more general cases, including the rotation of an elastic Earth, the rotation of an Earth partly covered by oceans and surrounded by an atmosphere, and the rotation of an Earth composed of a liquid core and a rigid shell (Poincaré model). (2) Artificial Earth Satellites. The oblateness perturbation acting on a satellite and the exploitation of its properties in practice is discussed using simulation methods (CelestialMechanics) and (simplified) first order perturbation methods. The perturbations due to the higher-order terms of the Earth's gravitational potential and reso...

  2. An Embedded System Dedicated to Intervehicle Communication Applications

    Directory of Open Access Journals (Sweden)

    Zhou Haiying

    2010-01-01

    Full Text Available To overcome system latency and network delay is essential for intervehicle communication (IVC applications such as hazard alarming and cooperative driving. This paper proposes a low-cost embedded software system dedicated to such applications. It consists of two basic component layers: an operating system, named HEROS (hybrid event-driven and real-time multitasking operating system, and a communication protocol, named CIVIC (Communication Inter Véhicule Intelligente et Coopérative. HEROS is originally designed for wireless sensor networks (WSNs. It contains a component-based resource-aware kernel and a low-latency tuple-based communication system. Moreover, it provides a configurable event-driven and/or real-time multitasking mechanism for various embedded applications. The CIVIC is an autoconfiguration cooperative IVC protocol. It merges proactive and reactive approaches to speed up and optimize location-based routing discovery with high-mobility nodes. Currently, this embedded system has been implemented and tested. The experiment results show that the new embedded system has low system latency and network delay under the principle of small resource consumption.

  3. Application of information and communication technology in process reengineering

    Directory of Open Access Journals (Sweden)

    Đurović Aleksandar M.

    2014-01-01

    Full Text Available This paper examines the role of information communication technologies in reengineering processes. General analysis of a process will show that information communication technologies improve their efficiency. Reengineering model based on the BPMN 2.0 standard will be applied to the process of seeking internship/job by students from Faculty of Transport and Traffic Engineering. In the paper, after defining the technical characteristics and required functionalities, web / mobile application is proposed, enabling better visibility of traffic engineers to companies seeking that education profile.

  4. The Application of Visual Illusion in the Visual Communication Design

    Science.gov (United States)

    Xin, Tao; You Ye, Han

    2018-03-01

    With the development of our national reform, opening up and modernization, the science and technology has also been well developed and it has been applied in every wall of life, the development of visual illusion industry is represented in the widespread use of advanced technology in it. Ultimately, the visual illusion is a phenomenon, it should be analyzed from the angles of physics and philosophy. The widespread application of visual illusion not only can improve the picture quality, but also could maximize peoples’ sense degree through the visual communication design works, expand people’s horizons and promote the diversity of visual communication design works.

  5. Ultra-wideband and 60 GHz communications for biomedical applications

    CERN Document Server

    Yuce, Mehmet R

    2013-01-01

    This book investigates the design of devices, systems, and circuits for medical applications using the two recently established frequency bands: ultra-wideband (3.1-10.6 GHz) and 60 GHz ISM band. These two bands provide the largest bandwidths available for communication technologies and present many attractive opportunities for medical applications. The applications of these bands in healthcare are wireless body area network (WBAN), medical imaging, biomedical sensing, wearable and implantable devices, fast medical device connectivity, video data transmission, and vital signs monitoring. The r

  6. Circularly Polarized Transparent Microstrip Patch Reflectarray Integrated with Solar Cell for Satellite Applications

    OpenAIRE

    Zainud-Deen, S. H.; El-Shalaby, N. A.; Gaber, S. M.; Malhat, H. A.

    2016-01-01

    Circularly polarized (CP) transparent microstrip reflectarray antenna is integrated with solar cell for small satellite applications at 10 GHz. The reflectarray unit cell consists of a perfect electric conductor (PEC) square patch printed on an optically transparent substrate with the PEC ground plane. A comparison between using transparent conducting polymers and using the PEC in unit-cell construction has been introduced. The waveguide simulator is used to calculate the required compensatio...

  7. Retrieving the polarization information for satellite-to-ground light communication

    International Nuclear Information System (INIS)

    Tao, Qiangqiang; Guo, Zhongyi; Xu, Qiang; Gao, Jun; Jiao, Weiyan; Wang, Xinshun; Qu, Shiliang

    2015-01-01

    In this paper, we have investigated the reconstruction of the polarization states (degree of polarization (DoP) and angle of polarization (AoP)) of the incident light which passed through a 10 km atmospheric medium between the satellite and the Earth. Here, we proposed a more practical atmospheric model in which the 10 km atmospheric medium is divided into ten layers to be appropriate for the Monte Carlo simulation algorithm. Based on this model, the polarization retrieve (PR) method can be used for reconstructing the initial polarization information effectively, and the simulated results demonstrate that the mean errors of the retrieved DoP and AoP are very close to zero. Moreover, the results also show that although the atmospheric medium system is fixed, the Mueller matrices for the downlink and uplink are completely different, which shows that the light transmissions in the two links are irreversible in the layered atmospheric medium system. (paper)

  8. Technical and cost advantages of silicon carbide telescopes for small-satellite imaging applications

    Science.gov (United States)

    Kasunic, Keith J.; Aikens, Dave; Szwabowski, Dean; Ragan, Chip; Tinker, Flemming

    2017-09-01

    Small satellites ("SmallSats") are a growing segment of the Earth imaging and remote sensing market. Designed to be relatively low cost and with performance tailored to specific end-use applications, they are driving changes in optical telescope assembly (OTA) requirements. OTAs implemented in silicon carbide (SiC) provide performance advantages for space applications but have been predominately limited to large programs. A new generation of lightweight and thermally-stable designs is becoming commercially available, expanding the application of SiC to small satellites. This paper reviews the cost and technical advantages of an OTA designed using SiC for small satellite platforms. Taking into account faceplate fabrication quilting and surface distortion after gravity release, an optimized open-back SiC design with a lightweighting of 70% for a 125-mm SmallSat-class primary mirror has an estimated mass area density of 2.8 kg/m2 and an aspect ratio of 40:1. In addition, the thermally-induced surface error of such optimized designs is estimated at λ/150 RMS per watt of absorbed power. Cost advantages of SiC include reductions in launch mass, thermal-management infrastructure, and manufacturing time based on allowable assembly tolerances.

  9. Next Generation Satellite Communications: Automated Doppler Shift Compensation of PSK-31 Via Software-Defined Radio

    Science.gov (United States)

    2014-05-09

    of wireless communications. One such development was the superheterodyne principle, which was discovered by amateur radio operator Edwin Armstrong in...synchronous: the same number of samples that enter the block will leave the block. Examples include filters, math operators and phase- locked loops...phase- locked loop (PLL) was used to determine the subcarrier frequency. The PLL tracks the error between the incoming frequency and the output

  10. All-optical signal processing data communication and storage applications

    CERN Document Server

    Eggleton, Benjamin

    2015-01-01

    This book provides a comprehensive review of the state-of-the art of optical signal processing technologies and devices. It presents breakthrough solutions for enabling a pervasive use of optics in data communication and signal storage applications. It presents presents optical signal processing as solution to overcome the capacity crunch in communication networks. The book content ranges from the development of innovative materials and devices, such as graphene and slow light structures, to the use of nonlinear optics for secure quantum information processing and overcoming the classical Shannon limit on channel capacity and microwave signal processing. Although it holds the promise for a substantial speed improvement, today’s communication infrastructure optics remains largely confined to the signal transport layer, as it lags behind electronics as far as signal processing is concerned. This situation will change in the near future as the tremendous growth of data traffic requires energy efficient and ful...

  11. Application of Soft Computing in Coherent Communications Phase Synchronization

    Science.gov (United States)

    Drake, Jeffrey T.; Prasad, Nadipuram R.

    2000-01-01

    The use of soft computing techniques in coherent communications phase synchronization provides an alternative to analytical or hard computing methods. This paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for phase synchronization in coherent communications systems utilizing Multiple Phase Shift Keying (MPSK) modulation. A brief overview of the M-PSK digital communications bandpass modulation technique is presented and it's requisite need for phase synchronization is discussed. We briefly describe the hybrid platform developed by Jang that incorporates fuzzy/neural structures namely the, Adaptive Neuro-Fuzzy Interference Systems (ANFIS). We then discuss application of ANFIS to phase estimation for M-PSK. The modeling of both explicit, and implicit phase estimation schemes for M-PSK symbols with unknown structure are discussed. Performance results from simulation of the above scheme is presented.

  12. Communicating Health Risks under Pressure: Homeland Security Applications

    International Nuclear Information System (INIS)

    Garrahan, K.G.; Collie, S.L.

    2006-01-01

    The U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) Threat and Consequence Assessment Division (TCAD) within the National Homeland Security Research Center (NHSRC) has developed a tool for rapid communication of health risks and likelihood of exposure in preparation for terrorist incidents. The Emergency Consequence Assessment Tool (ECAT) is a secure web-based tool designed to make risk assessment and consequence management faster and easier for high priority terrorist threat scenarios. ECAT has been designed to function as 'defensive play-book' for health advisors, first responders, and decision-makers by presenting a series of evaluation templates for priority scenarios that can be modified for site-specific applications. Perhaps most importantly, the risk communication aspect is considered prior to an actual release event, so that management or legal advisors can concur on general risk communication content in preparation for press releases that can be anticipated in case of an actual emergency. ECAT serves as a one-stop source of information for retrieving toxicological properties for agents of concern, estimating exposure to these agents, characterizing health risks, and determining what actions need to be undertaken to mitigate the risks. ECAT has the capability to be used at a command post where inputs can be checked and communicated while the response continues in real time. This front-end planning is intended to fill the gap most commonly identified during tabletop exercises: a need for concise, timely, and informative risk communication to all parties. Training and customization of existing chemical and biological release scenarios with modeling of exposure to air and water, along with custom risk communication 'messages' intended for public, press, shareholders, and other partners enable more effective communication during times of crisis. For DOE, the ECAT could serve as a prototype that would be amenable to

  13. Global-scale Observations of the Limb and Disk (GOLD) Mission: Science from Geostationary Orbit on-board a Commercial Communications Satellite

    Science.gov (United States)

    Eastes, R.; Deaver, T.; Krywonos, A.; Lankton, M. R.; McClintock, W. E.; Pang, R.

    2011-12-01

    Geostationary orbits are ideal for many science investigations of the Earth system on global scales. These orbits allow continuous observations of the same geographic region, enabling spatial and temporal changes to be distinguished and eliminating the ambiguity inherent to observations from low Earth orbit (LEO). Just as observations from geostationary orbit have revolutionized our understanding of changes in the troposphere, they will dramatically improve our understanding of the space environment at higher altitudes. However, geostationary orbits are infrequently used for science missions because of high costs. Geostationary satellites are large, typically weighing tons. Consequently, devoting an entire satellite to a science mission requires a large financial commitment, both for the spacecraft itself and for sufficient science instrumentation to justify a dedicated spacecraft. Furthermore, the small number of geostationary satellites produced for scientific missions increases the costs of each satellite. For these reasons, it is attractive to consider flying scientific instruments on satellites operated by commercial companies, some of whom have fleets of ~40 satellites. However, scientists' lack of understanding of the capabilities of commercial spacecraft as well as commercial companies' concerns about risks to their primary mission have impeded the cooperation necessary for the shared use of a spacecraft. Working with a commercial partner, the GOLD mission has successfully overcome these issues. Our experience indicates that there are numerous benefits to flying on commercial communications satellites (e.g., it is possible to downlink large amounts of data) and the costs are low if the experimental requirements adequately match the capabilities and available resources of the host spacecraft. Consequently, affordable access to geostationary orbit aboard a communications satellite now appears possible for science payloads.

  14. Machine-to-machine communications architectures, technology, standards, and applications

    CERN Document Server

    Misic, Vojislav B

    2014-01-01

    With the number of machine-to-machine (M2M)-enabled devices projected to reach 20 to 50 billion by 2020, there is a critical need to understand the demands imposed by such systems. Machine-to-Machine Communications: Architectures, Technology, Standards, and Applications offers rigorous treatment of the many facets of M2M communication, including its integration with current technology.Presenting the work of a different group of international experts in each chapter, the book begins by supplying an overview of M2M technology. It considers proposed standards, cutting-edge applications, architectures, and traffic modeling and includes case studies that highlight the differences between traditional and M2M communications technology.Details a practical scheme for the forward error correction code designInvestigates the effectiveness of the IEEE 802.15.4 low data rate wireless personal area network standard for use in M2M communicationsIdentifies algorithms that will ensure functionality, performance, reliability, ...

  15. Advanced Deployable Structural Systems for Small Satellites

    Science.gov (United States)

    Belvin, W. Keith; Straubel, Marco; Wilkie, W. Keats; Zander, Martin E.; Fernandez, Juan M.; Hillebrandt, Martin F.

    2016-01-01

    One of the key challenges for small satellites is packaging and reliable deployment of structural booms and arrays used for power, communication, and scientific instruments. The lack of reliable and efficient boom and membrane deployment concepts for small satellites is addressed in this work through a collaborative project between NASA and DLR. The paper provides a state of the art overview on existing spacecraft deployable appendages, the special requirements for small satellites, and initial concepts for deployable booms and arrays needed for various small satellite applications. The goal is to enhance deployable boom predictability and ground testability, develop designs that are tolerant of manufacturing imperfections, and incorporate simple and reliable deployment systems.

  16. A WebGIS system on the base of satellite data processing system for marine application

    Science.gov (United States)

    Gong, Fang; Wang, Difeng; Huang, Haiqing; Chen, Jianyu

    2007-10-01

    From 2002 to 2004, a satellite data processing system for marine application had been built up in State Key Laboratory of Satellite Ocean Environment Dynamics (Second Institute of Oceanography, State Oceanic Administration). The system received satellite data from TERRA, AQUA, NOAA-12/15/16/17/18, FY-1D and automatically generated Level3 products and Level4 products(products of single orbit and merged multi-orbits products) deriving from Level0 data, which is controlled by an operational control sub-system. Currently, the products created by this system play an important role in the marine environment monitoring, disaster monitoring and researches. Now a distribution platform has been developed on this foundation, namely WebGIS system for querying and browsing of oceanic remote sensing data. This system is based upon large database system-Oracle. We made use of the space database engine of ArcSDE and other middleware to perform database operation in addition. J2EE frame was adopted as development model, and Oracle 9.2 DBMS as database background and server. Simply using standard browsers(such as IE6.0), users can visit and browse the public service information that provided by system, including browsing for oceanic remote sensing data, and enlarge, contract, move, renew, traveling, further data inquiry, attribution search and data download etc. The system is still under test now. Founding of such a system will become an important distribution platform of Chinese satellite oceanic environment products of special topic and category (including Sea surface temperature, Concentration of chlorophyll, and so on), for the exaltation of satellite products' utilization and promoting the data share and the research of the oceanic remote sensing platform.

  17. A Small Ku-Band Polarization Tracking Active Phased Array for Mobile Satellite Communications

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2013-01-01

    Full Text Available A compact polarization tracking active phased array for Ku-band mobile satellite signal reception is presented. In contrast with conventional mechanically tracking antennas, the approach presented here meets the requirements of beam tracking and polarization tracking simultaneously without any servo components. The two-layer stacked square patch fed by two probes is used as antenna element. The impedance bandwidth of 16% for the element covers the operating frequency range from 12.25 GHz to 12.75 GHz. In the presence of mutual coupling, the dimensional parameters for each element of the small 7 × 7 array are optimized during beam scanning and polarization tracking. The compact polarization tracking modules based on the low-temperature cofired ceramic (LTCC system-in-package (SiP technology are proposed. A small active phased array prototype with the size of 120 mm (length × 120 mm (width × 55 mm (height is developed. The measured polarization tracking patterns of the prototype are given. The polarization tracking beam can be steered in the elevation up to 50°. The gain of no less than 16.0 dBi and the aperture efficiency of more than 50% are obtained. The measured and simulated polarization tracking patterns agreed well.

  18. Design and implementation of the next generation Landsat satellite communications system

    Science.gov (United States)

    Mah, Grant R.; O'Brien, Michael; Garon, Howard; Mott, Claire; Ames, Alan; Dearth, Ken

    2012-01-01

    The next generation Landsat satellite, Landsat 8 (L8), also known as the Landsat Data Continuity Mission (LDCM), uses a highly spectrally efficient modulation and data formatting approach to provide large amounts of downlink (D/L) bandwidth in a limited X-Band spectrum allocation. In addition to purely data throughput and bandwidth considerations, there were a number of additional constraints based on operational considerations for prevention of interference with the NASA Deep-Space Network (DSN) band just above the L8 D/L band, minimization of jitter contributions to prevent impacts to instrument performance, and the need to provide an interface to the Landsat International Cooperator (IC) community. A series of trade studies were conducted to consider either X- or Ka-Band, modulation type, and antenna coverage type, prior to the release of the request for proposal (RFP) for the spacecraft. Through use of the spectrally efficient rate-7/8 Low-Density Parity-Check error-correction coding and novel filtering, an XBand frequency plan was developed that balances all the constraints and considerations, while providing world-class link performance, fitting 384 Mbits/sec of data into the 375 MHz X-Band allocation with bit-error rates better than 10-12 using an earth-coverage antenna.

  19. The Role of Couples’ Interactions in Application of Communication Skills

    OpenAIRE

    منصوره‌السادات صادقی; محمدعلی مظاهری; فرشته موتابی

    2014-01-01

    The aim of this research was to predict the role of couples’ interactions in application of communication skills based on observing their positive and negative interactions. A sample of 31 couples [adapted (15) and maladapted (16)] who were living in Tehran, were selected via accessible sampling. The couples’ interactions were videotaped through a designed scenario including problem solving, decision making, and reviewing conversation about a shared pleasure event. Participants also completed...

  20. A Hub Matrix Theory and Applications to Wireless Communications

    Directory of Open Access Journals (Sweden)

    Kung HT

    2007-01-01

    Full Text Available This paper considers communications and network systems whose properties are characterized by the gaps of the leading eigenvalues of for a matrix . It is shown that a sufficient and necessary condition for a large eigen-gap is that is a "hub" matrix in the sense that it has dominant columns. Some applications of this hub theory in multiple-input and multiple-output (MIMO wireless systems are presented.

  1. Definition of multipath/RFI experiments for orbital testing with a small applications technology satellite

    Science.gov (United States)

    Birch, J. N.; French, R. H.

    1972-01-01

    An investigation was made to define experiments for collection of RFI and multipath data for application to a synchronous relay satellite/low orbiting satellite configuration. A survey of analytical models of the multipath signal was conducted. Data has been gathered concerning the existing RFI and other noise sources in various bands at VHF and UHF. Additionally, designs are presented for equipment to combat the effects of RFI and multipath: an adaptive delta mod voice system, a forward error control coder/decoder, a PN transmission system, and a wideband FM system. The performance of these systems was then evaluated. Techniques are discussed for measuring multipath and RFI. Finally, recommended data collection experiments are presented. An extensive tabulation is included of theoretical predictions of the amount of signal reflected from a rough, spherical earth.

  2. A holistic approach to SIM platform and its application to early-warning satellite system

    Science.gov (United States)

    Sun, Fuyu; Zhou, Jianping; Xu, Zheyao

    2018-01-01

    This study proposes a new simulation platform named Simulation Integrated Management (SIM) for the analysis of parallel and distributed systems. The platform eases the process of designing and testing both applications and architectures. The main characteristics of SIM are flexibility, scalability, and expandability. To improve the efficiency of project development, new models of early-warning satellite system were designed based on the SIM platform. Finally, through a series of experiments, the correctness of SIM platform and the aforementioned early-warning satellite models was validated, and the systematical analyses for the orbital determination precision of the ballistic missile during its entire flight process were presented, as well as the deviation of the launch/landing point. Furthermore, the causes of deviation and prevention methods will be fully explained. The simulation platform and the models will lay the foundations for further validations of autonomy technology in space attack-defense architecture research.

  3. Detection of Convective Initiation Using Meteorological Imager Onboard Communication, Ocean, and Meteorological Satellite Based on Machine Learning Approaches

    Directory of Open Access Journals (Sweden)

    Hyangsun Han

    2015-07-01

    Full Text Available As convective clouds in Northeast Asia are accompanied by various hazards related with heavy rainfall and thunderstorms, it is very important to detect convective initiation (CI in the region in order to mitigate damage by such hazards. In this study, a novel approach for CI detection using images from Meteorological Imager (MI, a payload of the Communication, Ocean, and Meteorological Satellite (COMS, was developed by improving the criteria of the interest fields of Rapidly Developing Cumulus Areas (RDCA derivation algorithm, an official CI detection algorithm for Multi-functional Transport SATellite-2 (MTSAT-2, based on three machine learning approaches—decision trees (DT, random forest (RF, and support vector machines (SVM. CI was defined as clouds within a 16 × 16 km window with the first detection of lightning occurrence at the center. A total of nine interest fields derived from visible, water vapor, and two thermal infrared images of MI obtained 15–75 min before the lightning occurrence were used as input variables for CI detection. RF produced slightly higher performance (probability of detection (POD of 75.5% and false alarm rate (FAR of 46.2% than DT (POD of 70.7% and FAR of 46.6% for detection of CI caused by migrating frontal cyclones and unstable atmosphere. SVM resulted in relatively poor performance with very high FAR ~83.3%. The averaged lead times of CI detection based on the DT and RF models were 36.8 and 37.7 min, respectively. This implies that CI over Northeast Asia can be forecasted ~30–45 min in advance using COMS MI data.

  4. 47 CFR 25.148 - Licensing provisions for the Direct Broadcast Satellite Service.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing provisions for the Direct Broadcast Satellite Service. 25.148 Section 25.148 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.148...

  5. 47 CFR 25.140 - Qualifications of fixed-satellite space station licensees.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Qualifications of fixed-satellite space station licensees. 25.140 Section 25.140 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.140 Qualifications...

  6. Applications of Microwave Photonics in Radio Astronomy and Space Communication

    Science.gov (United States)

    D'Addario, Larry R.; Shillue, William P.

    2006-01-01

    An overview of narrow band vs wide band signals is given. Topics discussed included signal transmission, reference distribution and photonic antenna metrology. Examples of VLA, ALMA, ATA and DSN arrays are given. . Arrays of small antennas have become more cost-effective than large antennas for achieving large total aperture or gain, both for astronomy and for communication. It is concluded that emerging applications involving arrays of many antennas require low-cost optical communication of both wide bandwidth and narrow bandwidth; development of round-trip correction schemes enables timing precision; and free-space laser beams with microwave modulation allow structural metrology with approx 100 micrometer precision over distances of 200 meters.

  7. Evaluation of Satellite Precipitation Products with Rain Gauge Data at Different Scales: Implications for Hydrological Applications

    Directory of Open Access Journals (Sweden)

    Ruifang Guo

    2016-07-01

    Full Text Available Rain gauge and satellite-retrieved data have been widely used in basin-scale hydrological applications. While rain gauges provide accurate measurements that are generally unevenly distributed in space, satellites offer spatially regular observations and common error prone retrieval. Comparative evaluation of gauge-based and satellite-based data is necessary in hydrological studies, as precipitation is the most important input in basin-scale water balance. This study uses quality-controlled rain gauge data and prevailing satellite products (Tropical Rainfall Measuring Mission (TRMM 3B43, 3B42 and 3B42RT to examine the consistency and discrepancies between them at different scales. Rain gauges and TRMM products were available in the Poyang Lake Basin, China, from 1998 to 2007 (3B42RT: 2000–2007. Our results show that the performance of TRMM products generally increases with increasing spatial scale. At both the monthly and annual scales, the accuracy is highest for TRMM 3B43, with 3B42 second and 3B42RT third. TRMM products generally overestimate precipitation because of a high frequency and degree of overestimation in light and moderate rain cases. At the daily scale, the accuracy is relatively low between TRMM 3B42 and 3B42RT. Meanwhile, the performances of TRMM 3B42 and 3B42RT are highly variable in different seasons. At both the basin and pixel scales, TRMM 3B43 and 3B42 exhibit significant discrepancies from July to September, performing worst in September. For TRMM 3B42RT, all statistical indices fluctuate and are low throughout the year, performing worst in July at the pixel scale and January at the basin scale. Furthermore, the spatial distributions of the statistical indices of TRMM 3B43 and 3B42 performed well, while TRMM 3B42RT displayed a poor performance.

  8. Foodstuff Survey Around a Major Nuclear Facility with Test of Satellite Image Application

    International Nuclear Information System (INIS)

    Fledderman, P.D.

    1999-01-01

    'A foodstuff survey was performed around the Savannah River Site, Aiken SC. It included a census of buildings and fields within 5 km of the boundary and determination of the locations and amounts of crops grown within 80 km of SRS center. Recent information for this region was collected on the amounts of meat, poultry, milk, and eggs produced, of deer hunted, and of sports fish caught. The locations and areas devoted to growing each crop were determined in two ways: by the usual process of assuming uniform crop distribution in each county on the basis of agricultural statistics reported by state agencies, and by analysis of two LANDSAT TM images obtained in May and September. For use with environmental radionuclide transfer and radiation dose calculation codes, locations within 80 km were defined for 64 sections by 16 sectors centered on the Site and by 16-km distance intervals from 16 km to 80 km. Most locally-raised foodstuff was distributed regionally and not retained locally for consumption. For four food crops, the amounts per section based on county agricultural statistics prorated by area were compared with the amounts per section based on satellite image analysis. The median ratios of the former to the latter were 0.6 - 0.7, suggesting that the two approaches are comparable but that satellite image analysis gave consistently higher amounts. Use of satellite image analysis is recommended on the basis of these findings to obtain site-specific, as compared to area-averaged, information on crop locations in conjunction with radionuclide pathway modelling. Some improvements in technique are suggested for satellite image application to characterize additional crops.'

  9. MITRA Virtual laboratory for operative application of satellite time series for land degradation risk estimation

    Science.gov (United States)

    Nole, Gabriele; Scorza, Francesco; Lanorte, Antonio; Manzi, Teresa; Lasaponara, Rosa

    2015-04-01

    This paper aims to present the development of a tool to integrate time series from active and passive satellite sensors (such as of MODIS, Vegetation, Landsat, ASTER, COSMO, Sentinel) into a virtual laboratory to support studies on landscape and archaeological landscape, investigation on environmental changes, estimation and monitoring of natural and anthropogenic risks. The virtual laboratory is composed by both data and open source tools specifically developed for the above mentioned applications. Results obtained for investigations carried out using the implemented tools for monitoring land degradation issues and subtle changes ongoing on forestry and natural areas are herein presented. In detail MODIS, SPOT Vegetation and Landsat time series were analyzed comparing results of different statistical analyses and the results integrated with ancillary data and evaluated with field survey. The comparison of the outputs we obtained for the Basilicata Region from satellite data analyses and independent data sets clearly pointed out the reliability for the diverse change analyses we performed, at the pixel level, using MODIS, SPOT Vegetation and Landsat TM data. Next steps are going to be implemented to further advance the current Virtual Laboratory tools, by extending current facilities adding new computational algorithms and applying to other geographic regions. Acknowledgement This research was performed within the framework of the project PO FESR Basilicata 2007/2013 - Progetto di cooperazione internazionale MITRA "Remote Sensing tecnologies for Natural and Cultural heritage Degradation Monitoring for Preservation and valorization" funded by Basilicata Region Reference 1. A. Lanorte, R Lasaponara, M Lovallo, L Telesca 2014 Fisher-Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to characterize vegetation recovery after fire disturbance International Journal of Applied Earth Observation and

  10. Analysis of the polarization characteristic of a satellite-to-ground laser communication optical system

    Science.gov (United States)

    Wang, Chao; Jiang, Lun; An, Yan; Doug, Ke-yan; Zhang, Ya-lin

    2015-10-01

    We present three rotation symmetric planar metamaterials and consist of 3, 4 and 6 split resonant rings (SRRs) respectively, proved that they are polarization-insensitive. The modulation characters constructed by the three planar metamaterials are also studied and compared to demonstrate that the structure with more even rotation symmetry is much more beneficial to be polarization-independence. Furthermore, the influencing rules of the electrodes on the polarization character of metamaterials are obtained. The polarization character can be converted by tailoring the electrodes which provides a guide to construct and design novel terahertz polarimetirc devices for potential applications.

  11. Research of the application of the new communication technologies for distribution automation

    Science.gov (United States)

    Zhong, Guoxin; Wang, Hao

    2018-03-01

    Communication network is a key factor of distribution automation. In recent years, new communication technologies for distribution automation have a rapid development in China. This paper introduces the traditional communication technologies of distribution automation and analyse the defects of these traditional technologies. Then this paper gives a detailed analysis on some new communication technologies for distribution automation including wired communication and wireless communication and then gives an application suggestion of these new technologies.

  12. Comparative study of FDMA, TDMA and hybrid 30/20 GHz satellite communications systems for small users

    Science.gov (United States)

    Berk, G.; Jean, P. N.; Rotholz, E.

    1982-01-01

    This study compares several satellite uplink and downlink accessing schemes for a Customer Premises Service. Four conceptual system designs are presented: Satellite-Routed FDMA, Frequency-Routed TDMA, Satellite-Switched TDMA, and Processor-Routed TDMA, operating in the 30/20 GHz band. The designs are compared on the basis of estimated satellite weight, power consumption, and cost. The system capacities are analyzed for a fixed multibeam coverage of CONUS. Analysis shows that the system capacity is limited by the available satellite resources and by the terminal size and cost.

  13. Satellite Technologies and Services: Implications for International Distance Education.

    Science.gov (United States)

    Stahmer, Anna

    1987-01-01

    This examination of international distance education and open university applications of communication satellites at the postsecondary level notes activities in less developed countries (LDCs); presents potential models for cooperation; and describes technical systems for distance education, emphasizing satellite technology and possible problems…

  14. Promoting space research and applications in developing countries through small satellite missions

    Science.gov (United States)

    Sweeting, M.

    The high vantage-point of space offers very direct and tangible benefits to developing countries when carefully focused upon their real and particular communications and Earth observation needs. However, until recently, access to space has been effectively restricted to only those countries prepared to invest enormous sums in complex facilities and expensive satellites and launchers: this has placed individual participation in space beyond the sensible grasp of developing countries. However, during the last decade, highly capable and yet inexpensive small satellites have been developed which provide an opportunity for developing countries realistically to acquire and operate their own independent space assets - customized to their particular national needs. Over the last 22 years, the Surrey Space Centre has pioneered, developed and launched 23 nano-micro-minisatellite missions, and has worked in partnership with 12 developing countries to enable them to take their first independent steps into space. Surrey has developed a comprehensive and in-depth space technology know-how transfer and 'hands-on' training programme that uses a collaborative project comprising the design, construction, launch and operation of a microsatellite to acquire an indigenous space capability and create the nucleus of a national space agency and space industry. Using low cost small satellite projects as a focus, developing countries are able to initiate a long term, affordable and sustainable national space programme specifically tailored to their requirements, that is able to access the benefits derived from Earth observation for land use and national security; improved communications services; catalyzing scientific research and indigenous high-technology supporting industries. Perhaps even more important is the long-term benefit to the country provided by stimulating educational and career opportunities for your scientists and engineers and retaining them inside the country rather the

  15. A Study on the Potential Applications of Satellite Data in Air Quality Monitoring and Forecasting

    Science.gov (United States)

    Li, Can; Hsu, N. Christina; Tsay, Si-Chee

    2011-01-01

    In this study we explore the potential applications of MODIS (Moderate Resolution Imaging Spectroradiometer) -like satellite sensors in air quality research for some Asian regions. The MODIS aerosol optical thickness (AOT), NCEP global reanalysis meteorological data, and daily surface PM(sub 10) concentrations over China and Thailand from 2001 to 2009 were analyzed using simple and multiple regression models. The AOT-PM(sub 10) correlation demonstrates substantial seasonal and regional difference, likely reflecting variations in aerosol composition and atmospheric conditions, Meteorological factors, particularly relative humidity, were found to influence the AOT-PM(sub 10) relationship. Their inclusion in regression models leads to more accurate assessment of PM(sub 10) from space borne observations. We further introduced a simple method for employing the satellite data to empirically forecast surface particulate pollution, In general, AOT from the previous day (day 0) is used as a predicator variable, along with the forecasted meteorology for the following day (day 1), to predict the PM(sub 10) level for day 1. The contribution of regional transport is represented by backward trajectories combined with AOT. This method was evaluated through PM(sub 10) hindcasts for 2008-2009, using ohservations from 2005 to 2007 as a training data set to obtain model coefficients. For five big Chinese cities, over 50% of the hindcasts have percentage error less than or equal to 30%. Similar performance was achieved for cities in northern Thailand. The MODIS AOT data are responsible for at least part of the demonstrated forecasting skill. This method can be easily adapted for other regions, but is probably most useful for those having sparse ground monitoring networks or no access to sophisticated deterministic models. We also highlight several existing issues, including some inherent to a regression-based approach as exemplified by a case study for Beijing, Further studies will be

  16. Validating Satellite-Retrieved Cloud Properties for Weather and Climate Applications

    Science.gov (United States)

    Minnis, P.; Bedka, K. M.; Smith, W., Jr.; Yost, C. R.; Bedka, S. T.; Palikonda, R.; Spangenberg, D.; Sun-Mack, S.; Trepte, Q.; Dong, X.; Xi, B.

    2014-12-01

    Cloud properties determined from satellite imager radiances are increasingly used in weather and climate applications, particularly in nowcasting, model assimilation and validation, trend monitoring, and precipitation and radiation analyses. The value of using the satellite-derived cloud parameters is determined by the accuracy of the particular parameter for a given set of conditions, such as viewing and illumination angles, surface background, and cloud type and structure. Because of the great variety of those conditions and of the sensors used to monitor clouds, determining the accuracy or uncertainties in the retrieved cloud parameters is a daunting task. Sensitivity studies of the retrieved parameters to the various inputs for a particular cloud type are helpful for understanding the errors associated with the retrieval algorithm relative to the plane-parallel world assumed in most of the model clouds that serve as the basis for the retrievals. Real world clouds, however, rarely fit the plane-parallel mold and generate radiances that likely produce much greater errors in the retrieved parameter than can be inferred from sensitivity analyses. Thus, independent, empirical methods are used to provide a more reliable uncertainty analysis. At NASA Langley, cloud properties are being retrieved from both geostationary (GEO) and low-earth orbiting (LEO) satellite imagers for climate monitoring and model validation as part of the NASA CERES project since 2000 and from AVHRR data since 1978 as part of the NOAA CDR program. Cloud properties are also being retrieved in near-real time globally from both GEO and LEO satellites for weather model assimilation and nowcasting for hazards such as aircraft icing. This paper discusses the various independent datasets and approaches that are used to assessing the imager-based satellite cloud retrievals. These include, but are not limited to data from ARM sites, CloudSat, and CALIPSO. This paper discusses the use of the various

  17. Applications of Satellite Data to Support Improvements in Irrigation and Groundwater Management in California

    Science.gov (United States)

    Melton, F. S.; Huntington, J. L.; Johnson, L.; Guzman, A.; Morton, C.; Zaragoza, I.; Dexter, J.; Rosevelt, C.; Michaelis, A.; Nemani, R. R.; Cahn, M.; Temesgen, B.; Trezza, R.; Frame, K.; Eching, S.; Grimm, R.; Hall, M.

    2017-12-01

    In agricultural regions around the world, threats to water supplies from drought and groundwater depletion are driving increased demand for tools to advance agricultural water use efficiency and support sustainable groundwater management. Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide agricultural producers and water resource managers with information that can be used to both optimize ag water use and improve estimates of groundwater withdrawals for irrigation. We describe the development of two remote sensing-based tools for ET mapping in California, including important lessons in terms of system design, partnership development, and transition to operations. For irrigation management, the integration of satellite data and surface sensor networks to provide timely delivery of information on crop water requirements can make irrigation scheduling more practical, convenient, and accurate. Developed through a partnership between NASA and the CA Department of Water Resources, the Satellite Irrigation Management Support (SIMS) framework integrates satellite data with information from agricultural weather networks to map crop canopy development and crop water requirements at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based interface and web data services. SIMS also provides an API that facilitates integration with other irrigation decision support tools, such as CropManage and IrriQuest. Field trials using these integrated tools have shown that they can be used to sustain yields while improving water use efficiency and nutrient management. For sustainable groundwater management, the combination of satellite-derived estimates of ET and data on surface water deliveries for irrigation can increase the accuracy of estimates of groundwater pumping. We are developing an OpenET platform to facilitate access to ET data from multiple models and accelerate operational

  18. High Temperature Wireless Communication And Electronics For Harsh Environment Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y

    2007-01-01

    In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable

  19. The long-term Global LAnd Surface Satellite (GLASS) product suite and applications

    Science.gov (United States)

    Liang, S.

    2015-12-01

    Our Earth's environment is experiencing rapid changes due to natural variability and human activities. To monitor, understand and predict environment changes to meet the economic, social and environmental needs, use of long-term high-quality satellite data products is critical. The Global LAnd Surface Satellite (GLASS) product suite, generated at Beijing Normal University, currently includes 12 products, including leaf area index (LAI), broadband shortwave albedo, broadband longwave emissivity, downwelling shortwave radiation and photosynthetically active radiation, land surface skin temperature, longwave net radiation, daytime all-wave net radiation, fraction of absorbed photosynetically active radiation absorbed by green vegetation (FAPAR), fraction of green vegetation coverage, gross primary productivity (GPP), and evapotranspiration (ET). Most products span from 1981-2014. The algorithms for producing these products have been published in the top remote sensing related journals and books. More and more applications have being reported in the scientific literature. The GLASS products are freely available at the Center for Global Change Data Processing and Analysis of Beijing Normal University (http://www.bnu-datacenter.com/), and the University of Maryland Global Land Cover Facility (http://glcf.umd.edu). After briefly introducing the basic characteristics of GLASS products, we will present some applications on the long-term environmental changes detected from GLASS products at both global and local scales. Detailed analysis of regional hotspots, such as Greenland, Tibetan plateau, and northern China, will be emphasized, where environmental changes have been mainly associated with climate warming, drought, land-atmosphere interactions, and human activities.

  20. ISDN communication: Its workstation technology and application system

    Energy Technology Data Exchange (ETDEWEB)

    Sugimura, T; Ogiwara, Y; Saito, T [Hitachi, Ltd., Tokyo (Japan)

    1991-07-01

    This report describes technology for integrated services digital network (ISDN) which allows workstations to process multimedia data and application systems of advanced group teleworking which use such technology. Hitachi has developed workstations which are more powerful, have more functions, and have larger memory capacities. These factors allowed media which require high-speed processing of large quantities of voice and image data to be integrated into the world of conventional text data processing and communications. In addition, the application of group teleworking system has a large impact through the improvements in the office environment, the changes in the style of office work, and the appearance of new businesses. A prototype of this system was exhibited and demonstrated at TELECOM91. 1 ref., 4 figs., 2 tabs.

  1. Silicon microspheres for near-IR communication applications

    International Nuclear Information System (INIS)

    Serpengüzel, Ali; Demir, Abdullah

    2008-01-01

    We have performed transverse electric and transverse magnetic polarized elastic light scattering calculations at 90° and 0° in the o-band at 1.3 µm for a 15 µm radius silicon microsphere with a refractive index of 3.5. The quality factors are on the order of 10 7 and the mode/channel spacing is 7 nm, which correlate well with the refractive index and the optical size of the microsphere. The 90° elastic light scattering can be used to monitor a dropped channel (drop port), whereas the 0° elastic scattering can be used to monitor the transmission channel (through port). The optical resonances of the silicon microspheres provide the necessary narrow linewidths that are needed for high-resolution optical communication applications. Potential telecommunication applications include filters, modulators, switches, wavelength converters, detectors, amplifiers and light sources. Silicon microspheres show promise as potential building blocks for silicon-based electrophotonic integration

  2. The European project Hippo high-power photonics for satellite laser communications and on-board optical processing

    Science.gov (United States)

    Kehayas, E.; Stampoulidis, L.; Henderson, P.; Robertson, Andrew; Van Dijk, F.; Achouche, M.; Le Kernec, A.; Sotom, M.; Schuberts, F.; Brabant, T.

    2017-11-01

    Photonics is progressively transforming from a highly- focused technology applicable to digital communication networks into a pervasive "enabling" technology with diverse non-telecom applications. However, the centre of mass on the R&D level is still mostly driven by, and invested in, by stakeholders active in the telecoms domain. This is due to the high level of investments necessary that in turn require a large and established market for reaching break-even and generation of revenues. Photonics technology and more specifically, fibre-optic technology is moving into non-telecom business areas with great success in terms of markets captured and penetration rates. One example that cannot be overlooked is the application of fibre-optics to industrial applications, where double-digit growth rates are recorded with fibre lasers and amplifiers constantly gaining momentum. In this example, several years of R&D efforts in creating high-power amplification solutions and fibre-laser sources by the telecom sector, were piggy-backed into industrial applications and laser cutting/welding equipment that is now a strong R&D sector on its own and commercially now displacing some conventional free space laser cutting/welding.

  3. Experiments of 10 Gbit/sec quantum stream cipher applicable to optical Ethernet and optical satellite link

    Science.gov (United States)

    Hirota, Osamu; Ohhata, Kenichi; Honda, Makoto; Akutsu, Shigeto; Doi, Yoshifumi; Harasawa, Katsuyoshi; Yamashita, Kiichi

    2009-08-01

    The security issue for the next generation optical network which realizes Cloud Computing System Service with data center" is urgent problem. In such a network, the encryption by physical layer which provide super security and small delay should be employed. It must provide, however, very high speed encryption because the basic link is operated at 2.5 Gbit/sec or 10 Gbit/sec. The quantum stream cipher by Yuen-2000 protocol (Y-00) is a completely new type random cipher so called Gauss-Yuen random cipher, which can break the Shannon limit for the symmetric key cipher. We develop such a cipher which has good balance of the security, speed and cost performance. In SPIE conference on quantum communication and quantum imaging V, we reported a demonstration of 2.5 Gbit/sec system for the commercial link and proposed how to improve it to 10 Gbit/sec. This paper reports a demonstration of the Y-00 cipher system which works at 10 Gbit/sec. A transmission test in a laboratory is tried to get the basic data on what parameters are important to operate in the real commercial networks. In addition, we give some theoretical results on the security. It is clarified that the necessary condition to break the Shannon limit requires indeed the quantum phenomenon, and that the full information theoretically secure system is available in the satellite link application.

  4. The Use of a Satellite Communications System for Command and Control of the National Aeronautics and Space Administration Surrogate Unmanned Aerial System Research Aircraft

    Science.gov (United States)

    Howell, Charles T.; Jones, Frank; Hutchinson, Brian; Joyce, Claude; Nelson, Skip; Melum, Mike

    2017-01-01

    The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into an Unmanned Aerial Systems (UAS) Surrogate research aircraft which has served for several years as a platform for unmanned systems research and development. The aircraft is manned with a Safety Pilot and a Research Systems Operator (RSO) that allows for flight operations almost any-where in the national airspace system (NAS) without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be remotely controlled from a modular, transportable ground control station (GCS) like a true UAS. Ground control of the aircraft is accomplished by the use of data links that allow the two-way passage of the required data to control the aircraft and provide the GCS with situational awareness. The original UAS Surrogate data-link system was composed of redundant very high frequency (VHF) data radio modems with a maximum range of approximately 40 nautical miles. A new requirement was developed to extend this range beyond visual range (BVR). This new requirement led to the development of a satellite communications system that provided the means to command and control the UAS Surrogate at ranges beyond the limits of the VHF data links. The system makes use of the Globalstar low earth orbit (LEO) satellite communications system. This paper will provide details of the development, implementation, and flight testing of the satellite data communications system on the UAS Surrogate research aircraft.

  5. Operational Estimation of Accumulated Precipitation using Satellite Observation, by Eumetsat Satellite Application facility in Support to Hydrology (H-SAF Consortium).

    Science.gov (United States)

    di Diodato, A.; de Leonibus, L.; Zauli, F.; Biron, D.; Melfi, D.

    2009-04-01

    Operational Estimation of Accumulated Precipitation using Satellite Observation, by Eumetsat Satellite Application facility in Support to Hydrology (H-SAF Consortium). Cap. Attilio DI DIODATO(*), T.Col. Luigi DE LEONIBUS(*), T.Col Francesco ZAULI(*), Cap. Daniele BIRON(*), Ten. Davide Melfi(*) Satellite Application Facilities (SAFs) are specialised development and processing centres of the EUMETSAT Distributed Ground Segment. SAFs process level 1b data from meteorological satellites (geostationary and polar ones) in conjunction with all other relevant sources of data and appropriate models to generate services and level 2 products. Each SAF is a consortium of EUMETSAT European partners lead by a host institute responsible for the management of the complete SAF project. The Meteorological Service of Italian Air Force is the host Institute for the Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF). HSAF has the commitment to develop and to provide, operationally after 2010, products regarding precipitation, soil moisture and snow. HSAF is going to provide information on error structure of its products and validation of the products via their impacts into Hydrological models. To that purpose it has been structured a specific subgroups. Accumulated precipitation is computed by temporal integration of the instantaneous rain rate achieved by the blended LEO/MW and GEO/IR precipitation rate products generated by Rapid Update method available every 15 minutes. The algorithm provides four outputs, consisting in accumulated precipitation in 3, 6, 12 and 24 hours, delivered every 3 hours at the synoptic hours. These outputs are our precipitation background fields. Satellite estimates can cover most of the globe, however, they suffer from errors due to lack of a direct relationship between observation parameters and precipitation, the poor sampling and algorithm imperfections. For this reason the 3 hours accumulated precipitation is

  6. Application of SVM on satellite images to detect hotspots in Jharia coal field region of India

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, R.S.; Singh, D.; Mittal, A.; Sajin, P. [Indian Institute for Technology, Roorkee (India)

    2008-07-01

    The present paper deals with the application of Support Vector Machine (SVM) and image analysis techniques on NOAA/AVHRR satellite image to detect hotspots on the Jharia coal field region of India. One of the major advantages of using these satellite data is that the data are free with very good temporal resolution; while, one drawback is that these have low spatial resolution (i.e., approximately 1.1 km at nadir). Therefore, it is important to do research by applying some efficient optimization techniques along with the image analysis techniques to rectify these drawbacks and use satellite images for efficient hotspot detection and monitoring. For this purpose, SVM and multi-threshold techniques are explored for hotspot detection. The multi-threshold algorithm is developed to remove the cloud coverage from the land coverage. This algorithm also highlights the hotspots or fire spots in the suspected regions. SVM has the advantage over multi-thresholding technique that it can learn patterns from the examples and therefore is used to optimize the performance by removing the false points which are highlighted in the threshold technique. Both approaches can be used separately or in combination depending on the size of the image. The RBF (Radial Basis Function) kernel is used in training of three sets of inputs: brightness temperature of channel 3, Normalized Difference Vegetation Index (NDVI) and Global Environment Monitoring Index (GEMI), respectively. This makes a classified image in the output that highlights the hotspot and non-hotspot pixels. The performance of the SVM is also compared with the performance obtained from the neural networks and SVM appears to detect hotspots more accurately (greater than 91% classification accuracy) with lesser false alarm rate. The results obtained are found to be in good agreement with the ground based observations of the hotspots.

  7. Application of Satellite Data for Early Season Assessment of Fallowed Agricultural Lands for Drought Impact Reporting

    Science.gov (United States)

    Rosevelt, C.; Melton, F. S.; Johnson, L.; Verdin, J. P.; Thenkabail, P. S.; mueller, R.; Zakzeski, A.; Jones, J.

    2013-12-01

    Rapid assessment of drought impacts can aid water managers in assessing mitigation options, and guide decision making with respect to requests for local water transfers, county drought disaster designations, or state emergency proclamations. Satellite remote sensing offers an efficient way to provide quantitative assessments of drought impacts on agricultural production and land fallowing associated with reductions in water supply. A key advantage of satellite-based assessments is that they can provide a measure of land fallowing that is consistent across both space and time. Here we describe an approach for monthly mapping of land fallowing developed as part of a joint effort by USGS, USDA, and NASA to provide timely assessments of land fallowing during drought events. This effort has used the Central Valley of California as a pilot region for development and testing of an operational approach. To provide quantitative measures of fallowed land from satellite data early in the season, we developed a decision tree algorithm and applied it to timeseries of normalized difference vegetation index (NDVI) data from Landsat TM, ETM+, and MODIS. Our effort has been focused on development of leading indicators of drought impacts in the March - June timeframe based on measures of crop development patterns relative to a reference period with average or above average rainfall. This capability complements ongoing work by USDA to produce and publicly release within-season estimates of fallowed acreage from the USDA Cropland Data Layer. To assess the accuracy of the algorithms, monthly ground validation surveys were conducted along transects across the Central Valley at more than 200 fields per month from March - June, 2013. Here we present the algorithm for mapping fallowed acreage early in the season along with results from the accuracy assessment, and discuss potential applications to other regions.

  8. A Tool and Application Programming Interface for Browsing Historical Geostationary Satellite Data

    Science.gov (United States)

    Chee, T.; Nguyen, L.; Minnis, P.; Spangenberg, D.; Ayers, J.

    2013-12-01

    Providing access to information is a key concern for NASA Langley Research Center. We describe a tool and method that allows end users to easily browse and access information that is otherwise difficult to acquire and manipulate. The tool described has as its core the application-programming interface that is made available to the public. One goal of the tool is to provide a demonstration to end users so that they can use the enhanced imagery as an input into their own work flows. This project builds upon NASA Langley Cloud and Radiation Group's experience with making real-time and historical satellite imagery accessible and easily searchable. As we see the increasing use of virtual supply chains that provide additional value at each link there is value in making satellite imagery available through a simple access method as well as allowing users to browse and view that imagery as they need rather than in a manner most convenient for the data provider.

  9. Satellite communication on pipeline supervision using TCP-IP Protocol; Comunicacao via satelite na supervisao de dutos usando o protocolo TCP-IP

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Agliberto Pessoa da [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Brunette, Sergio Henrique de Moraes

    2003-07-01

    Bit transparent type or X-25 protocols have been used in VSAT satellite communication by PETROBRAS pipeline Supervisory Control and Data Acquisition System (SCADA) as access protocol. Both solutions have inconveniences. By the first one, difficulties exist for analysis and diagnosis of connection flaws, and therefore, for a ready identification by the system management stations of abnormality location. On the other hand, the usage of the X-25 brings an additional over-head in the communication since this is not an available option in most of the equipment that compose the SCADA. The access to VSAT through Ethernet, in the opposite, makes available all networks management tools of the TCP/IP platform and it allows a direct connection to the field devices, since the main models of the several makers of Programmable Controllers and Remote Terminal Units have Ethernet port. An additional earnings is the possibility of standardization that this solution allows. This paper describes a series of communication tests between two Programmable Controllers communicating through the satellite, using a protocol over Ethernet/TCP/IP. (author)

  10. Introduction to Satellite Communications.

    Science.gov (United States)

    1974-04-15

    center of the earth) the attr o, f B1 - ,ri 1he center of the earth and the repulsion of A’ from the cerier uf ci- ear- .suihs in a torque being applied...April 1974 CCP 105-5 Table 8- 1. L f and v/f frequency and time standards Station WWVB WWVL NBA GBR MSF Location Boulder, Sunset, Summit, R ugby, Rugby

  11. First International Conference Multimedia Processing, Communication and Computing Applications

    CERN Document Server

    Guru, Devanur

    2013-01-01

    ICMCCA 2012 is the first International Conference on Multimedia Processing, Communication and Computing Applications and the theme of the Conference is chosen as ‘Multimedia Processing and its Applications’. Multimedia processing has been an active research area contributing in many frontiers of today’s science and technology. This book presents peer-reviewed quality papers on multimedia processing, which covers a very broad area of science and technology. The prime objective of the book is to familiarize readers with the latest scientific developments that are taking place in various fields of multimedia processing and is widely used in many disciplines such as Medical Diagnosis, Digital Forensic, Object Recognition, Image and Video Analysis, Robotics, Military, Automotive Industries, Surveillance and Security, Quality Inspection, etc. The book will assist the research community to get the insight of the overlapping works which are being carried out across the globe at many medical hospitals and instit...

  12. Isolated and coupled superquadric loop antennas for mobile communications applications

    Science.gov (United States)

    Jensen, Michael A.; Rahmat-Samii, Yahya

    1993-01-01

    This work provides an investigation of the performance of loop antennas for use in mobile communications applications. The analysis tools developed allow for high flexibility by representing the loop antenna as a superquadric curve, which includes the case of circular, elliptical, and rectangular loops. The antenna may be in an isolated environment, located above an infinite ground plane, or placed near a finite conducting plate or box. In cases where coupled loops are used, the two loops may have arbitrary relative positions and orientations. Several design examples are included to illustrate the versatility of the analysis capabilities. The performance of coupled loops arranged in a diversity scheme is also evaluated, and it is found that high diversity gain can be achieved even when the antennas are closely spaced.

  13. Aggregative Learning Method and Its Application for Communication Quality Evaluation

    Science.gov (United States)

    Akhmetov, Dauren F.; Kotaki, Minoru

    2007-12-01

    In this paper, so-called Aggregative Learning Method (ALM) is proposed to improve and simplify the learning and classification abilities of different data processing systems. It provides a universal basis for design and analysis of mathematical models of wide class. A procedure was elaborated for time series model reconstruction and analysis for linear and nonlinear cases. Data approximation accuracy (during learning phase) and data classification quality (during recall phase) are estimated from introduced statistic parameters. The validity and efficiency of the proposed approach have been demonstrated through its application for monitoring of wireless communication quality, namely, for Fixed Wireless Access (FWA) system. Low memory and computation resources were shown to be needed for the procedure realization, especially for data classification (recall) stage. Characterized with high computational efficiency and simple decision making procedure, the derived approaches can be useful for simple and reliable real-time surveillance and control system design.

  14. A design of 30/20 GHz flight communications experiment for NASA. [satellite and earth segments for high data rate commercial service

    Science.gov (United States)

    Kawamoto, Y.

    1982-01-01

    The objective of the 30/20 GHz Flight Experiment System is to develop the required technology and to experiment with the communication technique for an operational communication satellite system. The system uses polarization, spatial, and frequency isolations to maximize the spectrum utilization. The key spacecraft technologies required for the concept are the scan beam antenna, the baseband processor, the IF switch matrix, TWTA, SSPA, and LNA. The spacecraft communication payload information will be telemetered and monitored closely so that these technologies and performances can be verified. Two types of services, a trunk service and a customer premise service, are demonstrated in the system. Many experiments associated with these services, such as synchronization, demand assignment, link control, and network control will be performed to provide important information on the operational aspect of the system.

  15. 47 CFR 25.144 - Licensing provisions for the 2.3 GHz satellite digital audio radio service.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing provisions for the 2.3 GHz satellite digital audio radio service. 25.144 Section 25.144 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25...

  16. 47 CFR 25.142 - Licensing provisions for the non-voice, non-geostationary mobile-satellite service.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing provisions for the non-voice, non-geostationary mobile-satellite service. 25.142 Section 25.142 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space...

  17. 47 CFR 25.145 - Licensing conditions for the Fixed-Satellite Service in the 20/30 GHz bands.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing conditions for the Fixed-Satellite Service in the 20/30 GHz bands. 25.145 Section 25.145 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25...

  18. Viscosity of rock-ice mixtures and applications to the evolution of icy satellites

    Science.gov (United States)

    Friedson, A. J.; Stevenson, D. J.

    1983-01-01

    Theory and experiments are used to establish lower and upper bounds on the ratio of actual viscosity to pure ice viscosity for a suspension of rock particles in a water ice matrix. A rheological model for rock-ice mixtures is described, establishing bounds for the range of possible viscosity enhancements provided by a suspension of silicate spheres in an ice matrix. A parametrized thermal convection model is described and used to determine a criterion for criticality, defined as the heat flow and/or silicate volume fraction for which the satellite temperature profile intercepts the melting curve of water ice. The consequences of achieving this critical state are examined, and it is shown that under certain circumstances a 'runaway' differentiation can occur in which the silicates settle to form a core and extensive melting of water ice takes place, the latent heat being supplied by the gravitational energy of differentiation. A possible application of these results to Ganymede and Callisto is described.

  19. Conditions and requirements for a potential application of solar power satellites /SPS/ for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Westphal, W. (Berlin, Technische Universitaet, Berlin, West Germany); Ruth, J. (ESA, European Space Research and Technology Centre, Noordwijk, Netherlands)

    1980-12-01

    The potential problems of a future introduction of Solar Power Satellites (SPS) as baseload power plants for Western European countries are considered, emphasizing the differences of SPS utilization in Europe compared with that in the USA as a result of geographical, orbital organizational, and industrial conditions. If estimated SPS safety zone areas are required, then the SPS system incorporating the 2.45 GHz microwave power transmission appears crucial for utilization in Western Europe in order to eliminate the large rectenna area requirements of an SPS 5 GW power system. A frequency variation of up to 5 or 10 GHz, and the application of either laser power transmission or solid state devices which could alleviate rectenna siting problems and restrictions on the use of the geosynchronous orbit are discussed.

  20. Assessment of space plasma effectsfor satellite applications:Working Group 2 overview

    Directory of Open Access Journals (Sweden)

    N. Jakowski

    2004-06-01

    Full Text Available An important part of the tasks of Working Group 2 of the COST Action 271 «Assessment of space plasma effect for satellites applications» is the assessment of novel data sources for information about the state of ionisation of the ionosphere. This report deals with those aspects which are not represented adequately in the scientific papers in this issue. Here emphasis is given to the product aspect (data and model collections, descriptions of methods and algorithms, availability of products, expected future developments and the links between the past COST Actions 238 and 251 with the present Action 271 and with possible future cooperations. Working Group 2 was leading in the transionospheric propagation aspects of possible products for the International Telecommunication Union?s Radiocommunication (ITU-R Study Group 3. This report gives a short overview emphasizing future developments.