WorldWideScience

Sample records for satellite communication links

  1. Estimating Rain Attenuation In Satellite Communication Links

    Science.gov (United States)

    Manning, R. M.

    1991-01-01

    Attenuation computed with help of statistical model and meteorological data. NASA Lewis Research Center Satellite Link Attenuation Model (SLAM) program QuickBASIC computer program evaluating static and dynamic statistical assessment of impact of rain attenuation on communication link established between Earth terminal and geosynchronous satellite. Application in specification, design, and assessment of satellite communication links for any terminal location in continental United States. Written in Microsoft QuickBASIC.

  2. Modeling and Performance Analysis of 10 Gbps Inter-satellite Optical Wireless Communication Link

    Science.gov (United States)

    Singh, Mehtab

    2017-12-01

    Free-space optical (FSO) communication has the advantages of two of the most predominant data transmission technologies - optical fiber communication and wireless communication. Most of the technical aspects of FSO are similar to that of optical fiber communication, with major difference in the information signal propagation medium which is free space in case of FSO rather than silica glass in optical fiber communication. One of the most important applications of FSO is inter-satellite optical wireless communication (IsOWC) links which will be deployed in the future in space. The IsOWC links have many advantages over the previously existing microwave satellite communication technologies such as higher bandwidth, lower power consumption, low cost of implementation, light size, and weight. In this paper, modeling and performance analysis of a 10-Gbps inter-satellite communication link with two satellites separated at a distance of 1,200 km has been done using OPTISYSTEM simulation software. Performance has been analyzed on the basis of quality factor, signal to noise ratio (SNR), and total power of the received signal.

  3. Intersatellite link application to commercial communications satellites

    Science.gov (United States)

    Lee, Young S.; Atia, Ali E.; Ponchak, Denise S.

    1988-01-01

    The fundamental characteristics of intersatellite link (ISL) systems, and their application to domestic, regional, and global satellite communications, are described. The quantitative advantages of using ISLs to improve orbit utilization, spectrum occupancy, transmission delay (compared to multi-hop links), coverage, and connectivity, and to reduce the number of earth station antennas, are also presented. Cost-effectiveness and other systems benefits of using ISLs are identified, and the technical and systems planning aspects of ISL systems implementation are addressed.

  4. Effect of digital scrambling on satellite communication links

    Science.gov (United States)

    Dessouky, K.

    1985-01-01

    Digital data scrambling has been considered for communication systems using NRZ symbol formats. The purpose is to increase the number of transitions in the data to improve the performance of the symbol synchronizer. This is accomplished without expanding the bandwidth but at the expense of increasing the data bit error rate (BER). Models for the scramblers/descramblers of practical interest are presented together with the appropriate link model. The effects of scrambling on the performance of coded and uncoded links are studied. The results are illustrated by application to the Tracking and Data Relay Satellite System (TDRSS) links. Conclusions regarding the usefulness of scrambling are also given.

  5. An up-link power control for demand assignment International Business Satellite Communications Network

    Science.gov (United States)

    Nohara, Mitsuo; Takeuchi, Yoshio; Takahata, Fumio

    Up-link power control (UPC) is one of the essential technologies to provide efficient satellite communication systems operated at frequency bands above 10 GHz. A simple and cost-effective UPC scheme applicable to a demand assignment international business satellite communications system has been developed. This paper presents the UPC scheme, including the hardware implementation and its performance.

  6. Intersatellite Link (ISL) application to commercial communications satellites. Volume 1: Executive summary

    Science.gov (United States)

    Young, S. Lee

    1987-01-01

    Based on a comprehensive evaluation of the fundamental Intersatellite Link (ISL) systems characteristics, potential applications of ISLs to domestic, regional, and global commercial satellite communications were identified, and their cost-effectiveness and other systems benefits quantified wherever possible. Implementation scenarios for the cost-effective communications satellite systems employing ISLs were developed for the first launch in 1993 to 1994 and widespread use of ISLs in the early 2000's. Critical technology requirements for both the microwave (60 GHz) and optical (0.85 micron) ISL implementations were identified, and their technology development programs, including schedule and cost estimates, were derived.

  7. Study of LEO-SAT microwave link for broad-band mobile satellite communication system

    Science.gov (United States)

    Fujise, Masayuki; Chujo, Wataru; Chiba, Isamu; Furuhama, Yoji; Kawabata, Kazuaki; Konishi, Yoshihiko

    1993-01-01

    In the field of mobile satellite communications, a system based on low-earth-orbit satellites (LEO-SAT's) such as the Iridium system has been proposed. The LEO-SAT system is able to offer mobile telecommunication services in high-latitude areas. Rain degradation, fading and shadowing are also expected to be decreased when the system is operated at a high elevation angle. Furthermore, the propagation delay generated in the LEO-SAT system is less pronounced than that in the geostationary orbit satellite (GEO-SAT) system and, in voice services, the effect of the delay is almost negligible. We proposed a concept of a broad-band mobile satellite communication system with LEO-SAT's and Optical ISL. In that system, a fixed L-band (1.6/1.5 GHz) multibeam is used to offer narrow band service to the mobile terminals in the entire area covered by a LEO-SAT and steerable Ka-band (30/20 GHz) spot beams are used for the wide band service. In this paper, we present results of a study of LEO-SAT microwave link between a satellite and a mobile terminal for a broad-band mobile satellite communication system. First, the results of link budget calculations are presented and the antennas mounted on satellites are shown. For a future mobile antenna technology, we also show digital beamforming (DBF) techniques. DBF, together with modulation and/or demodulation, is becoming a key technique for mobile antennas with advanced functions such as antenna pattern calibration, correction, and radio interference suppression. In this paper, efficient DBF techniques for transmitting and receiving are presented. Furthermore, an adaptive array antenna system suitable for this LEO-SAT is presented.

  8. Optical intersatellite links - Application to commercial satellite communications

    Science.gov (United States)

    Paul, D.; Faris, F.; Garlow, R.; Inukai, T.; Pontano, B.; Razdan, R.; Ganz, Aura; Caudill, L.

    1992-01-01

    Application of optical intersatellite links for commercial satellite communications services is addressed in this paper. The feasibility of commercialization centers around basic issues such as the need and derived benefits, implementation complexity and overall cost. In this paper, commercialization of optical ISLs is assessed in terms of the services provided, systems requirements and feasibility of appropriate technology. Both long- and short-range ISLs for GEO-GEO, GEO-LEO and LEO applications are considered. Impact of systems requirements on the payload design and use of advanced technology in reducing its mass, power, and volume requirements are discussed.

  9. Networks systems and operations. [wideband communication techniques for data links with satellites

    Science.gov (United States)

    1975-01-01

    The application of wideband communication techniques for data links with satellites is discussed. A diagram of the demand assigned voice communications system is provided. The development of prototype integrated spacecraft paramps at S- and C-bands is described and the performance of space-qualified paramps is tabulated. The characteristics of a dual parabolic cylinder monopulse zoom antenna for use with the tracking and data relay satellite system (TDRSS) are analyzed. The development of a universally applicable transponder at S-band is reported. A block diagram of the major subassemblies of the S-band transponder is included. The technology aspects of network timing and synchronization of communication systems are to show the use of the Omega navigation system. The telemetry data compression system used during the Skylab program is evaluated.

  10. Encryption protection for communication satellites

    Science.gov (United States)

    Sood, D. R.; Hoernig, O. W., Jr.

    In connection with the growing importance of the commercial communication satellite systems and the introduction of new technological developments, users and operators of these systems become increasingly concerned with aspects of security. The user community is concerned with maintaining confidentiality and integrity of the information being transmitted over the satellite links, while the satellite operators are concerned about the safety of their assets in space. In response to these concerns, the commercial satellite operators are now taking steps to protect the communication information and the satellites. Thus, communication information is being protected by end-to-end encryption of the customer communication traffic. Attention is given to the selection of the NBS DES algorithm, the command protection systems, and the communication protection systems.

  11. Intersatellite Link (ISL) application to commercial communications satellites. Volume 2: Technical final report

    Science.gov (United States)

    Young, S. Lee

    1987-01-01

    Intersatellite Link (ISL) applications can improve and expand communication satellite services in a number of ways. As the demand for orbital slots within prime regions of the geostationary arc increases, attention is being focused on ISLs as a method to utilize this resource more efficiently and circumvent saturation. Various GEO-to-GEO applications were determined that provide potential benefits over existing communication systems. A set of criteria was developed to assess the potential applications. Intersatellite link models, network system architectures, and payload configurations were developed. For each of the chosen ISL applications, ISL versus non-ISL satellite systems architectures were derived. Both microwave and optical ISL implementation approaches were evaluated for payload sizing and cost analysis. The technological availability for ISL implementations was assessed. Critical subsystems technology areas were identified, and an estamate of the schedule and cost to advance the technology to the requiered state of readiness was made.

  12. Link establishment criterion and topology optimization for hybrid GPS satellite communications with laser crosslinks

    Science.gov (United States)

    Li, Lun; Wei, Sixiao; Tian, Xin; Hsieh, Li-Tse; Chen, Zhijiang; Pham, Khanh; Lyke, James; Chen, Genshe

    2018-05-01

    In the current global positioning system (GPS), the reliability of information transmissions can be enhanced with the aid of inter-satellite links (ISLs) or crosslinks between satellites. Instead of only using conventional radio frequency (RF) crosslinks, the laser crosslinks provide an option to significantly increase the data throughput. The connectivity and robustness of ISL are needed for analysis, especially for GPS constellations with laser crosslinks. In this paper, we first propose a hybrid GPS communication architecture in which uplinks and downlinks are established via RF signals and crosslinks are established via laser links. Then, we design an optical crosslink assignment criteria considering the practical optical communication factors such as optical line- of-sight (LOS) range, link distance, and angular velocity, etc. After that, to further improve the rationality of establishing crosslinks, a topology control algorithm is formulated to optimize GPS crosslink networks at both physical and network layers. The RF transmission features for uplink and downlink and optical transmission features for crosslinks are taken into account as constraints for the optimization problem. Finally, the proposed link establishment criteria are implemented for GPS communication with optical crosslinks. The designs of this paper provide a potential crosslink establishment and topology control algorithm for the next generation GPS.

  13. Crosstalk cancellation on linearly and circularly polarized communications satellite links

    Science.gov (United States)

    Overstreet, W. P.; Bostian, C. W.

    1979-01-01

    The paper discusses the cancellation network approach for reducing crosstalk caused by depolarization on a dual-polarized communications satellite link. If the characteristics of rain depolarization are sufficiently well known, the cancellation network can be designed in a way that reduces system complexity, the most important parameter being the phase of the cross-polarized signal. Relevant theoretical calculations and experimental data are presented. The simplicity of the cancellation system proposed makes it ideal for use with small domestic or private earth terminals.

  14. Trends in mobile satellite communication

    Science.gov (United States)

    Johannsen, Klaus G.; Bowles, Mike W.; Milliken, Samuel; Cherrette, Alan R.; Busche, Gregory C.

    1993-01-01

    Ever since the U.S. Federal Communication Commission opened the discussion on spectrum usage for personal handheld communication, the community of satellite manufacturers has been searching for an economically viable and technically feasible satellite mobile communication system. Hughes Aircraft Company and others have joined in providing proposals for such systems, ranging from low to medium to geosynchronous orbits. These proposals make it clear that the trend in mobile satellite communication is toward more sophisticated satellites with a large number of spot beams and onboard processing, providing worldwide interconnectivity. Recent Hughes studies indicate that from a cost standpoint the geosynchronous satellite (GEOS) is most economical, followed by the medium earth orbit satellite (MEOS) and then by the low earth orbit satellite (LEOS). From a system performance standpoint, this evaluation may be in reverse order, depending on how the public will react to speech delay and collision. This paper discusses the trends and various mobile satellite constellations in satellite communication under investigation. It considers the effect of orbital altitude and modulation/multiple access on the link and spacecraft design.

  15. Satellite Communications Using Commercial Protocols

    Science.gov (United States)

    Ivancic, William D.; Griner, James H.; Dimond, Robert; Frantz, Brian D.; Kachmar, Brian; Shell, Dan

    2000-01-01

    NASA Glenn Research Center has been working with industry, academia, and other government agencies in assessing commercial communications protocols for satellite and space-based applications. In addition, NASA Glenn has been developing and advocating new satellite-friendly modifications to existing communications protocol standards. This paper summarizes recent research into the applicability of various commercial standard protocols for use over satellite and space- based communications networks as well as expectations for future protocol development. It serves as a reference point from which the detailed work can be readily accessed. Areas that will be addressed include asynchronous-transfer-mode quality of service; completed and ongoing work of the Internet Engineering Task Force; data-link-layer protocol development for unidirectional link routing; and protocols for aeronautical applications, including mobile Internet protocol routing for wireless/mobile hosts and the aeronautical telecommunications network protocol.

  16. Radiation-hard mid-power booster optical fiber amplifiers for high-speed digital and analogue satellite laser communication links

    Science.gov (United States)

    Stampoulidis, L.; Kehayas, E.; Stevens, G.; Henwood-Moroney, L.; Hosking, P.; Robertson, A.

    2017-11-01

    Optical laser communications (OLC) has been identified as the technology to enable high-data rate, secure links between and within satellites, as well as between satellites and ground stations with decreased mass, size, and electrical power compared to traditional RF technology.

  17. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    Science.gov (United States)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  18. DUBNA-GRAN SASSO: Satellite computer link

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In April a 64 kbit/s computer communication link was set up between the Joint Institute for Nuclear Research (JINR), Dubna (Russia) and Gran Sasso (Italy) Laboratories via nearby ground satellite stations using the INTELSAT V satellite. Previously the international community of Dubna's experimentalists and theorists (high energy physics, condensed matter physics, low energy nuclear and neutron physics, accelerator and applied nuclear physics) had no effective computer links with scientific centres worldwide

  19. Soviet satellite communications science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Birch, J.N.; Campanella, S.J.; Gordon, G.D.; McElroy, D.R.; Pritchard, W.L.; Stamminger, R.

    1991-08-01

    This is a report by six US scientists and engineers concerning the current state of the art and projections of future Soviet satellite communications technologies. The panel members are experts in satellite stabilization, spacecraft environments, space power generation, launch systems, spacecraft communications sciences and technologies, onboard processing, ground stations, and other technologies that impact communications. The panel assessed the Soviet ability to support high-data-rate space missions at 128 Mbps by evaluating current and projected Soviet satellite communications technologies. A variety of space missions were considered, including Earth-to-Earth communications via satellites in geostationary or highly elliptical orbits, those missions that require space-to-Earth communications via a direct path and those missions that require space-to-Earth communications via a relay satellite. Soviet satellite communications capability, in most cases, is 10 years behind that of the United States and other industrialized nations. However, based upon an analysis of communications links needed to support these missions using current Soviet capabilities, it is well within the current Soviet technology to support certain space missions outlined above at rates of 128 Mbps or higher, although published literature clearly shows that the Soviet Union has not exceeded 60 Mbps in its current space system. These analyses are necessary but not sufficient to determine mission data rates, and other technologies such as onboard processing and storage could limit the mission data rate well below that which could actually be supported via the communications links. Presently, the Soviet Union appears to be content with data rates in the low-Earth-orbit relay via geostationary mode of 12 Mbps. This limit is a direct result of power amplifier limits, spacecraft antenna size, and the utilization of K{sub u}-band frequencies. 91 refs., 16 figs., 15 tabs.

  20. Activities of Canadian Satellite Communications, Inc.

    Science.gov (United States)

    1992-12-01

    Canadian Satellite Communications (Cancom) has as its core business the provision of television and radio signals to cable systems in Canada, with the objective of making affordable broadcast signals available to remote and/or small communities. Cancom also provides direct-to-home services to backyard receiving dishes, as well as satellite digital data business communications services, satellite business television, and satellite network services. Its business communication services range from satellite links for big-city businesses with small branch operations located far from major centers, to a mobile messaging and tracking system for the trucking industry. Revenues in 1992 totalled $48,212,000 and net income was just over $7 million. Cancom bought 10 percent interest in Leosat Corp. of Washington, DC, who are seeking approval to operate a position locator network from low-orbit satellites. Cancom has also become a partner in SovCan Star Satellite Communications Inc., which will build an international satellite system in partnership with Russia. The first satellite in this east-west business network will be placed in a Russian orbital slot over the Atlantic by 1996, and a second satellite will follow for the Pacific region. This annual report of Cancom's activities for 1992 includes financial statements and a six year financial review.

  1. Deep space optical communication via relay satellite

    Science.gov (United States)

    Dolinar, S.; Vilnrotter, V.; Gagliardi, R.

    1981-01-01

    The application of optical communications for a deep space link via an earth-orbiting relay satellite is discussed. The system uses optical frequencies for the free-space channel and RF links for atmospheric transmission. The relay satellite is in geostationary orbit and contains the optics necessary for data processing and formatting. It returns the data to earth through the RF terrestrial link and also transmits an optical beacon to the satellite for spacecraft return pointing and for the alignment of the transmitting optics. Future work will turn to modulation and coding, pointing and tracking, and optical-RF interfacing.

  2. A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks

    Science.gov (United States)

    Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.

    2000-01-01

    Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.

  3. Estimating Effects Of Rain On Ground/Satellite Communication

    Science.gov (United States)

    Manning, R. M.

    1992-01-01

    LeRC-SLAM provides static and dynamic statistical assessment of impact of attenuation by rain on communication link established between Earth terminal and geosynchronous satellite. Program designed for use in specification, design, and assessment of satellite link for any terminal location in continental United States. IBM PC version written in Microsoft QuickBASIC, and Macintosh version written in Microsoft Basic.

  4. Satellite communications: possibilities and problems

    International Nuclear Information System (INIS)

    Hine, M.

    1986-01-01

    Communication links via satellites are becoming available in Europe, both as part of the development of the telephone system and as special services aimed at data traffic. They offer the possibility of speeds between 50 kb/s and 2 Mb/s, without the problems and long term commitments of long distance land lines. Such links are provided by the PTT's as circuits which can be booked for variable periods, and have error rates which can be very low and well controlled. Problems in networking can arise from the satellite delay, particularly if errors occur in the local connections, and from the leased circuit and tariff philosophies of the PTT's. (Auth.)

  5. CAMAC based computer--computer communications via microprocessor data links

    International Nuclear Information System (INIS)

    Potter, J.M.; Machen, D.R.; Naivar, F.J.; Elkins, E.P.; Simmonds, D.D.

    1976-01-01

    Communications between the central control computer and remote, satellite data acquisition/control stations at The Clinton P. Anderson Meson Physics Facility (LAMPF) is presently accomplished through the use of CAMAC based Data Link Modules. With the advent of the microprocessor, a new philosophy for digital data communications has evolved. Data Link modules containing microprocessor controllers provide link management and communication network protocol through algorithms executed in the Data Link microprocessor

  6. Relative tracking control of constellation satellites considering inter-satellite link

    Science.gov (United States)

    Fakoor, M.; Amozegary, F.; Bakhtiari, M.; Daneshjou, K.

    2017-11-01

    In this article, two main issues related to the large-scale relative motion of satellites in the constellation are investigated to establish the Inter Satellite Link (ISL) which means the dynamic and control problems. In the section related to dynamic problems, a detailed and effective analytical solution is initially provided for the problem of satellite relative motion considering perturbations. The direct geometric method utilizing spherical coordinates is employed to achieve this solution. The evaluation of simulation shows that the solution obtained from the geometric method calculates the relative motion of the satellite with high accuracy. Thus, the proposed analytical solution will be applicable and effective. In the section related to control problems, the relative tracking control system between two satellites will be designed in order to establish a communication link between the satellites utilizing analytical solution for relative motion of satellites with respect to the reference trajectory. Sliding mode control approach is employed to develop the relative tracking control system for body to body and payload to payload tracking control. Efficiency of sliding mode control approach is compared with PID and LQR controllers. Two types of payload to payload tracking control considering with and without payload degree of freedom are designed and suitable one for practical ISL applications is introduced. Also, Fuzzy controller is utilized to eliminate the control input in the sliding mode controller.

  7. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  8. Satellite Communications

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Satellite Communications. Arthur C Clarke wrote a seminal paper in 1945 in wireless world. Use three satellites in geo-synchronous orbit to enable intercontinental communications. System could be realised in '50 to 100 years'

  9. INVESTIGATION OF ADS-B MESSAGES TRAFFIC VIA SATELLITE COMMUNICATION CHANNEL

    OpenAIRE

    Volodymyr Kharchenko; Wang Bo; Andrii Grekhov; Marina Kovalenko

    2014-01-01

    For modelling of ADS-B messages transmition with the help of low-orbit satellite complex Іrіdіumdifferent models of communication channel "Aircraft-to-Satellites-to-Ground Stations" were built using NetCrackerProfessіonal 4.1 software. Influence of aircraft and satellites amount on average link utilization and message travellingtime was studied for telecommunication channels with intersatellite link and bent-pipe architecture. The effect ofcommunication channel "saturation" during simultaneou...

  10. Network design consideration of a satellite-based mobile communications system

    Science.gov (United States)

    Yan, T.-Y.

    1986-01-01

    Technical considerations for the Mobile Satellite Experiment (MSAT-X), the ground segment testbed for the low-cost spectral efficient satellite-based mobile communications technologies being developed for the 1990's, are discussed. The Network Management Center contains a flexible resource sharing algorithm, the Demand Assigned Multiple Access scheme, which partitions the satellite transponder bandwidth among voice, data, and request channels. Satellite use of multiple UHF beams permits frequency reuse. The backhaul communications and the Telemetry, Tracking and Control traffic are provided through a single full-coverage SHF beam. Mobile Terminals communicate with the satellite using UHF. All communications including SHF-SHF between Base Stations and/or Gateways, are routed through the satellite. Because MSAT-X is an experimental network, higher level network protocols (which are service-specific) will be developed only to test the operation of the lowest three levels, the physical, data link, and network layers.

  11. Communication satellite applications

    Science.gov (United States)

    Pelton, Joseph N.

    The status and future of the technologies, numbers and services provided by communications satellites worldwide are explored. The evolution of Intelsat satellites and the associated earth terminals toward high-rate all-digital telephony, data, facsimile, videophone, videoconferencing and DBS capabilities are described. The capabilities, services and usage of the Intersputnik, Eutelsat, Arabsat and Palapa systems are also outlined. Domestic satellite communications by means of the Molniya, ANIK, Olympus, Intelsat and Palapa spacecraft are outlined, noting the fast growth of the market and the growing number of different satellite manufacturers. The technical, economic and service definition issues surrounding DBS systems are discussed, along with presently operating and planned maritime and aeronautical communications and positioning systems. Features of search and rescue and tracking, data, and relay satellite systems are summarized, and services offered or which will be offered by every existing or planned communication satellite worldwide are tabulated.

  12. Scaling of Airborne Ad-hoc Network Metrics with Link Range and Satellite Connectivity

    Directory of Open Access Journals (Sweden)

    Kai-Daniel BÜCHTER

    2018-06-01

    Full Text Available In this contribution, large-scale commercial aeronautical ad-hoc networks are evaluated. The investigation is based on a simulation environment with input from 2016 flight schedule and aircraft performance databases for flight movement modelling, along with a defined infrastructure of ground gateways and communication satellites. A cluster-based algorithm is used to build the communication network topology between aircraft. Cloud top pressure data can be considered to estimate cloud height and evaluate the impact of link obscuration on network availability, assuming a free-space optics-based communication network. The effects of communication range, satellite availability, fleet equipage ratio and clouds are discussed. It is shown how network reach and performance can be enhanced by adding taps to the network in the form of high-speed satellite links. The effect of adding these is two-fold: firstly, network reach can be increased by connecting remote aircraft clusters. Secondly, larger clusters can effectively be split into smaller ones in order to increase performance especially with regard to hop count and available overall capacity. In a realistic scenario concerning communication range and with moderate numbers of high-speed satellite terminals, on average, 78% of all widebody aircraft can be reached. With clouds considered (assuming laser links, this number reduces by 10%.

  13. Simulative Analysis of Inter-Satellite Optical Wireless Communication (IsOWC) Link with EDFA

    Science.gov (United States)

    Singh, Mehtab; Singh, Navpreet

    2018-04-01

    In this paper, simulative analysis and performance comparison of different EDFA (Erbium-doped fiber amplifier) configurations in a 10 Gbps inter-satellite optical wireless communication (IsOWC) link have been reported for a 5,000 km long link and 1,550 nm operating wavelength. The results show that system in which both pre-amplifier and booster amplifier stages are implemented simultaneously outperforms systems with only pre-amplifier and booster amplifier stage. From the results, it can be seen that by deploying a transmission power level of 15 dBm, a link distance of 9,600 km can be achieved with a quality factor of 6.01 dB and BER (Bit error rate) of 1.07×10-9. Also, in this paper, the performance of an 8×7 Gbps WDM-IsOWC link has been reported. The results show that by using both EDFA pre-amplifier and booster amplifier stages, a link distance of 8,000 km for each channel is achievable with desired performance levels (Q≥6 and BER≤10-9). Also, the effect of channel spacing on the performance of WDM-IsOWC link is investigated. The results show that the received signal has acceptable performance levels when the channel spacing is 100 GHz but when the channel spacing is reduced to 80 GHz, the quality of the received signal degrades and link distance decreases.

  14. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  15. INVESTIGATION OF ADS-B MESSAGES TRAFFIC VIA SATELLITE COMMUNICATION CHANNEL

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2014-12-01

    Full Text Available For modelling of ADS-B messages transmition with the help of low-orbit satellite complex Іrіdіumdifferent models of communication channel "Aircraft-to-Satellites-to-Ground Stations" were built using NetCrackerProfessіonal 4.1 software. Influence of aircraft and satellites amount on average link utilization and message travellingtime was studied for telecommunication channels with intersatellite link and bent-pipe architecture. The effect ofcommunication channel "saturation" during simultaneous data transmission through a satellite communicationchannel from many planes was investigated.

  16. Space Link Extension (SLE) Emulation for High-Throughput Network Communication

    Science.gov (United States)

    Murawski, Robert W.; Tchorowski, Nicole; Golden, Bert

    2014-01-01

    As the data rate requirements for space communications increases, significant stress is placed not only on the wireless satellite communication links, but also on the ground networks which forward data from end-users to remote ground stations. These wide area network (WAN) connections add delay and jitter to the end-to-end satellite communication link, effects which can have significant impacts on the wireless communication link. It is imperative that any ground communication protocol can react to these effects such that the ground network does not become a bottleneck in the communication path to the satellite. In this paper, we present our SCENIC Emulation Lab testbed which was developed to test the CCSDS SLE protocol implementations proposed for use on future NASA communication networks. Our results show that in the presence of realistic levels of network delay, high-throughput SLE communication links can experience significant data rate throttling. Based on our observations, we present some insight into why this data throttling happens, and trace the probable issue back to non-optimal blocking communication which is sup-ported by the CCSDS SLE API recommended practices. These issues were presented as well to the SLE implementation developers which, based on our reports, developed a new release for SLE which we show fixes the SLE blocking issue and greatly improves the protocol throughput. In this paper, we also discuss future developments for our end-to-end emulation lab and how these improvements can be used to develop and test future space communication technologies.

  17. Advanced domestic digital satellite communications systems experiments

    Science.gov (United States)

    Iso, A.; Izumisawa, T.; Ishida, N.

    1984-02-01

    The characteristics of advanced digital transmission systems were measured, using newly developed small earth stations and a K-band and C-band communication satellite. Satellite link performance for data, facsimile, video and packet switching information transmission at bit rates ranging from 6.4 kbit/s to 6.3 Mbit/s have been confirmed, using a small K-band earth station and a demand-assignment time division multiple access system. A low-capacity omni-use C-band terminal experiment has verified a telephone channel transmission performance by spread-spectrum multiple access. Single point to multipoint transmission characteristics of the 64 kbit/s data signals from the computer center were tested, using a receive-only 4 GHz earth terminal. Basic satellite link performance was confirmed under clear-sky conditions. Precise satellite orbit and attitude keeping experiments were carried out to obtain precise satellite antenna pointing accuracy for development of K-band earth stations that do not require satellite tracking equipment. Precise station keeping accuracy of 0.02 degrees was obtained.

  18. Design and Evaluation of 10-Gbps Inter-satellite Optical Wireless Communication Link for Improved Performance

    Science.gov (United States)

    Gupta, Amit; Nagpal, Shaina

    2017-05-01

    Inter-satellite optical wireless communication (IsOWC) systems can be chosen over existing microwave satellite systems for deploying in space in the future due to their high bandwidth, small size, light weight, low power and low cost. However, the IsOWC system suffers from various attenuations due to weather conditions, turbulence or scintillations which limit its performance and decreases its availability. So, in order to improve the performance, IsOWC system using directly modulated laser source is proposed in this work. The system is designed and evaluated to be suitable for high data rate transmissions up to 10 Gbps. The performance of the system is investigated in order to reduce the cost and complexity of link and improving the quality of information signal. Further the proposed IsOWC system is analysed using BER analyser, power meter and oscilloscope Visualizer.

  19. Composeable Chat over Low-Bandwidth Intermittent Communication Links

    National Research Council Canada - National Science Library

    Wilcox, D. R

    2007-01-01

    Intermittent low-bandwidth communication environments, such as those encountered in U.S. Navy tactical radio and satellite links, have special requirements that do not pertain to commercial applications...

  20. Satellite Communications for ATM

    Science.gov (United States)

    Shamma, Mohammed A.

    2003-01-01

    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  1. Accurate beacon positioning method for satellite-to-ground optical communication.

    Science.gov (United States)

    Wang, Qiang; Tong, Ling; Yu, Siyuan; Tan, Liying; Ma, Jing

    2017-12-11

    In satellite laser communication systems, accurate positioning of the beacon is essential for establishing a steady laser communication link. For satellite-to-ground optical communication, the main influencing factors on the acquisition of the beacon are background noise and atmospheric turbulence. In this paper, we consider the influence of background noise and atmospheric turbulence on the beacon in satellite-to-ground optical communication, and propose a new locating algorithm for the beacon, which takes the correlation coefficient obtained by curve fitting for image data as weights. By performing a long distance laser communication experiment (11.16 km), we verified the feasibility of this method. Both simulation and experiment showed that the new algorithm can accurately obtain the position of the centroid of beacon. Furthermore, for the distortion of the light spot through atmospheric turbulence, the locating accuracy of the new algorithm was 50% higher than that of the conventional gray centroid algorithm. This new approach will be beneficial for the design of satellite-to ground optical communication systems.

  2. Modulation/demodulation techniques for satellite communications. Part 1: Background

    Science.gov (United States)

    Omura, J. K.; Simon, M. K.

    1981-01-01

    Basic characteristics of digital data transmission systems described include the physical communication links, the notion of bandwidth, FCC regulations, and performance measurements such as bit rates, bit error probabilities, throughputs, and delays. The error probability performance and spectral characteristics of various modulation/demodulation techniques commonly used or proposed for use in radio and satellite communication links are summarized. Forward error correction with block or convolutional codes is also discussed along with the important coding parameter, channel cutoff rate.

  3. Prediction Method for Rain Rate and Rain Propagation Attenuation for K-Band Satellite Communications Links in Tropical Areas

    Directory of Open Access Journals (Sweden)

    Baso Maruddani

    2015-01-01

    Full Text Available This paper deals with the prediction method using hidden Markov model (HMM for rain rate and rain propagation attenuation for K-band satellite communication link at tropical area. As is well known, the K-band frequency is susceptible of being affected by atmospheric condition, especially in rainy condition. The wavelength of K-band frequency which approaches to the size of rain droplet causes the signal strength is easily attenuated and absorbed by the rain droplet. In order to keep the quality of system performance for K-band satellite communication link, therefore a special attention has to be paid for rain rate and rain propagation attenuation. Thus, a prediction method for rain rate and rain propagation attenuation based on HMM is developed to process the measurement data. The measured and predicted data are then compared with the ITU-R recommendation. From the result, it is shown that the measured and predicted data show similarity with the model of ITU-R P.837-5 recommendation for rain rate and the model of ITU-R P.618-10 recommendation for rain propagation attenuation. Meanwhile, statistical data for measured and predicted data such as fade duration and interfade duration have insignificant discrepancy with the model of ITU-R P.1623-1 recommendation.

  4. Key issues of multiple access technique for LEO satellite communication systems

    Institute of Scientific and Technical Information of China (English)

    温萍萍; 顾学迈

    2004-01-01

    The large carrier frequency shift caused by the high-speed movement of satellite (Doppler effects) and the propagation delay on the up-down link are very critical issues in an LEO satellite communication system, which affects both the selection and the implementation of a suitable access method. A Doppler based multiple access technique is used here to control the flow and an MPRMA-HS protocol is proposed for the application in LEO satellite communication systems. The extended simulation trials prove that the proposed scheme seems to be a very promising access method.

  5. Satellite communications principles and applications

    CERN Document Server

    Calcutt, David

    1994-01-01

    Satellites are increasingly used for global communications, as well as for radio and television transmissions. With the growth of mobile communications, and of digital technology, the use of satellite systems is set to expand substantially and already all students of electronics or communications engineering must study the subject.This book steers a middle path between offering a basic understanding of the process of communication by satellite and the methodology used; and the extensive mathematical analysis normally adopted in similar texts. It presents the basic concepts, using as mu

  6. A communication protocol for mobile satellite systems affected by rain attenuation

    Science.gov (United States)

    Lay, Norman; Dessouky, Khaled

    1992-01-01

    A communication protocol is described that has been developed as part of a K/Ka-band mobile terminal breadboard system to be demonstrated through NASA's Advanced Communications Technology Satellite (ACTS) in 1993. The protocol is aimed at providing the means for enhancing link availability and continuity by supporting real-time data rate selection and changes during rain events. Particular attention is given to the system architecture; types of links, connections, and packets; the protocol procedures; and design rationales.

  7. Air traffic management system design using satellite based geo-positioning and communications assets

    Science.gov (United States)

    Horkin, Phil

    1995-01-01

    The current FAA and ICAO FANS vision of Air Traffic Management will transition the functions of Communications, Navigation, and Surveillance to satellite based assets in the 21st century. Fundamental to widespread acceptance of this vision is a geo-positioning system that can provide worldwide access with best case differential GPS performance, but without the associated problems. A robust communications capability linking-up aircraft and towers to meet the voice and data requirements is also essential. The current GPS constellation does not provide continuous global coverage with a sufficient number of satellites to meet the precision landing requirements as set by the world community. Periodic loss of the minimum number of satellites in view creates an integrity problem, which prevents GPS from becoming the primary system for navigation. Furthermore, there is reluctance on the part of many countries to depend on assets like GPS and GLONASS which are controlled by military communities. This paper addresses these concerns and provides a system solving the key issues associated with navigation, automatic dependent surveillance, and flexible communications. It contains an independent GPS-like navigation system with 27 satellites providing global coverage with a minimum of six in view at all times. Robust communications is provided by a network of TDMA/FDMA communications payloads contained on these satellites. This network can support simultaneous communications for up to 30,000 links, nearly enough to simultaneously support three times the current global fleet of jumbo air passenger aircraft. All of the required hardware is directly traceable to existing designs.

  8. Intuitive Tools for the Design and Analysis of Communication Payloads for Satellites

    Science.gov (United States)

    Culver, Michael R.; Soong, Christine; Warner, Joseph D.

    2014-01-01

    In an effort to make future communications satellite payload design more efficient and accessible, two tools were created with intuitive graphical user interfaces (GUIs). The first tool allows payload designers to graphically design their payload by using simple drag and drop of payload components onto a design area within the program. Information about each picked component is pulled from a database of common space-qualified communication components sold by commerical companies. Once a design is completed, various reports can be generated, such as the Master Equipment List. The second tool is a link budget calculator designed specifically for ease of use. Other features of this tool include being able to access a database of NASA ground based apertures for near Earth and Deep Space communication, the Tracking and Data Relay Satellite System (TDRSS) base apertures, and information about the solar system relevant to link budget calculations. The link budget tool allows for over 50 different combinations of user inputs, eliminating the need for multiple spreadsheets and the user errors associated with using them. Both of the aforementioned tools increase the productivity of space communication systems designers, and have the colloquial latitude to allow non-communication experts to design preliminary communication payloads.

  9. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication sa...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  10. Personal communications via ACTS satellite HBR transponders

    Science.gov (United States)

    Fang, Russell J. F.

    1991-01-01

    The concept of a fully meshed network of briefcase-sized terminals is presented for personal communications over Ka-band satellite transponders. In this concept, undesirable double-hop delays are avoided for voice communications. The bandwidth and power resources of the transponder are efficiently shared by users in a simple demand-assigned manner via code-division multiple access (CDMA). Voice, data, and facsimile are statistically multiplexed at each terminal. In order to minimize terminal costs, frequency-precorrected, and level-preadjusted continuous-wave tones are sent from the central network control station in each beam so that the terminals in each down-link beam can use these pilots as references for antenna acquisition and tracking, as reliable frequency sources, and as indicators of signal fade for up-link power control (ULPC). The potential CDMA 'near-far' problem due to up-link fades is mitigated by using ULPC. Quasi-burst mode transmission is employed to minimize the potential clock and pseudorandom number code synchronization.

  11. Leveraging the NPS Femto Satellite for Alternative Satellite Communication Networks

    Science.gov (United States)

    2017-09-01

    programmed for eventual integration with the Iridium Network , which is then tested. C. THESIS ORGANIZATION The thesis addresses these questions...NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS by Faisal S. Alshaya September 2017 Co-Advisors: Steven J. Iatrou...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE LEVERAGING THE NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS 5

  12. Space industrialization - Education. [via communication satellites

    Science.gov (United States)

    Joels, K. M.

    1978-01-01

    The components of an educational system based on, and perhaps enhanced by, space industrialization communications technology are considered. Satellite technology has introduced a synoptic distribution system for various transmittable educational media. The cost of communications satellite distribution for educational programming has been high. It has, therefore, been proposed to utilize Space Shuttle related technology and Large Space Structures (LSS) to construct a system with a quantum advancement in communication capability and a quantum reduction in user cost. LSS for communications purposes have three basic advantages for both developed and emerging nations, including the ability to distribute signals over wide geographic areas, the reduced cost of satellite communications systems versus installation of land based systems, and the ability of a communication satellite system to create instant educational networks.

  13. NASA/DARPA advanced communications technology satellite project for evaluation of telemedicine outreach using next-generation communications satellite technology: Mayo Foundation participation.

    Science.gov (United States)

    Gilbert, B K; Mitchell, M P; Bengali, A R; Khandheria, B K

    1999-08-01

    To describe the development of telemedicine capabilities-application of remote consultation and diagnostic techniques-and to evaluate the feasibility and practicality of such clinical outreach to rural and underserved communities with limited telecommunications infrastructures. In 1992, Mayo Foundation (Rochester, Minn, Jacksonville, Fla, and Scottsdale, Ariz), the National Aeronautics and Space Administration, and the Defense Advanced Research Projects Agency collaborated to create a complex network of fiberoptic landlines, video recording systems, satellite terminals, and specially developed data translators linking Mayo sites with other locations in the continental United States on an on-demand basis. The purpose was to transmit data via the asynchronous transfer mode (ATM) digital communications protocol over the Advanced Communications Technology Satellite. The links were intended to provide a conduit for transmission of data for patient-specific consultations between physicians, evaluation of medical imagery, and medical education for clinical staffs at remote sites. Low-data-rate (LDR) experiments went live late in 1993. Mayo Clinic Rochester successfully provided medical consultation and services to 2 small regional medical facilities. High-data-rate (HDR) experiments included studies of remote digital echocardiography, store-and-forward telemedicine, cardiac catheterization, and teleconsultation for congenital heart disease. These studies combined landline data transmission with use of the satellite. The complexity of the routing paths and network components, immaturity of available software, and inexperience with existing telecommunications caused significant study delays. These experiments demonstrated that next-generation satellite technology can provide batch and real-time imagery for telemedicine. The first-generation of the ATM and satellite network technology used in these experiments created several technical problems and inconveniences that should

  14. Comparison of TCeMA and TDMA for Inter-Satellite Communications using OPNET Simulation

    Science.gov (United States)

    Hain, Regina Rosales; Ramanathan, Ram; Bergamo, Marcos; Wallett, Thomas M.

    2003-01-01

    A robust data link protocol, enabling unique physical and MAC layer technologies and sub-network level protocols, is needed in order to take advantage of the full potential of using both TDMA and CDMA in a satellite communication network. A novel MAC layer protocol, TDMA with CDMA-encoding multiple access (TCeMA) integrated with null-steered digital beam-forming spatial multiplexing, is investigated to support flexible spacecraft communications. Abstract models of the TCeMA and TDMA processes are developed in OPNFiT and a comparison of the performances of TCeMA and TDMA in a satellite network simulation are made. TCeMA provides the better connectivity and capacity with respect to TDMA for satellite communication traffic.

  15. Impact of Various Parameters on the Performance of Inter-aircraft Optical Wireless Communication Link

    Science.gov (United States)

    Singh, Mehtab

    2017-12-01

    Optical wireless communication (OWC) systems also known as Free space optics (FSO) are capable of providing high channel bandwidth, high data transmission rates, low power consumption, and high security. OWC links are being considered in different applications such as inter-satellite links, terrestrial links, and inter-aircraft communication links. This paper investigates the impact of different system parameters such as transmission power level, operating wavelength, transmitter pointing error angle, bit transmission rate, atmospheric attenuation, antenna aperture diameter, geometric losses, the responsivity of the photodetector, and link range on the performance of inter-aircraft optical wireless communication link.

  16. The Emerging Trends in Satellite and Wireless Communications ...

    Indian Academy of Sciences (India)

    Table of contents. The Emerging Trends in Satellite and Wireless Communications Technologies · Satellite Communications · Communications Satellites for Global Coverage · Satellite Transponders · The Four Generations Of Commercial Communication Geo-Sat · PowerPoint Presentation · An Indian Scenario INSAT ...

  17. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 3: A stochastic rain fade control algorithm for satellite link power via non linear Markow filtering theory

    Science.gov (United States)

    Manning, Robert M.

    1991-01-01

    The dynamic and composite nature of propagation impairments that are incurred on Earth-space communications links at frequencies in and above 30/20 GHz Ka band, i.e., rain attenuation, cloud and/or clear air scintillation, etc., combined with the need to counter such degradations after the small link margins have been exceeded, necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) Project by the implementation of optimal processing schemes derived through the use of the Rain Attenuation Prediction Model and nonlinear Markov filtering theory.

  18. Experiment In Aeronautical-Mobile/Satellite Communication

    Science.gov (United States)

    Jedrey, Thomas C.; Lay, Norman E.; Dessouky, Khaled

    1992-01-01

    Report describes study of performance of digital mobile/satellite communication terminals of advanced design intended for use in ground stations and airplanes in aeronautical-mobile service. Study was collaboration of NASA, Federal Aviation Administration (FAA), Communications Satellite Corp. (COMSAT), and International Maritime Satellite System (INMARSAT).

  19. Modular approach for satellite communication ground terminals

    Science.gov (United States)

    Gould, G. R.

    1984-01-01

    The trend in satellite communications is toward completely digital, time division multiple access (TDMA) systems with uplink and downlink data rates dictated by the type of service offered. Trunking terminals will operate in the 550 MBPS (megabit per second) region uplink and downlink, whereas customer premise service (CPS) terminals will operate in the 25 to 10 MBPS region uplink and in the 200 MBPS region downlink. Additional criteria for the ground terminals will be to maintain clock sychronization with the system and burst time integrity to within a matter of nanoseconds, to process required order-fire information, to provide adaptive data scrambing, and to compensate for variations in the user input output data rates, and for changes in range in the satellite communications links resulting from satellite perturbations in orbit. To achieve the required adaptability of a ground terminal to the above mentioned variables, programmable building blocks can be developed that will meet all of these requirements. To maintain system synchronization, i.e., all bursted data arriving at the satellite within assigned TDMA windows, ground terminal transmit data rates and burst timing must be maintained within tight tolerances. With a programmable synchronizer as the heart of the terminal timing generation, variable data rates and burst timing tolerances are achievable. In essence, the unit inputs microprocessor generated timing words and outputs discrete timing pulses.

  20. Mobile satellite service communications tests using a NASA satellite

    Science.gov (United States)

    Chambers, Katherine H.; Koschmeder, Louis A.; Hollansworth, James E.; ONeill, Jack; Jones, Robert E.; Gibbons, Richard C.

    1995-01-01

    Emerging applications of commercial mobile satellite communications include satellite delivery of compact disc (CD) quality radio to car drivers who can select their favorite programming as they drive any distance; transmission of current air traffic data to aircraft; and handheld communication of data and images from any remote corner of the world. Experiments with the enabling technologies and tests and demonstrations of these concepts are being conducted before the first satellite is launched by utilizing an existing NASA spacecraft.

  1. Effectiveness evaluation of double-layered satellite network with laser and microwave hybrid links based on fuzzy analytic hierarchy process

    Science.gov (United States)

    Zhang, Wei; Rao, Qiaomeng

    2018-01-01

    In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.

  2. Local network interconnection through a satellite point-to-multipoint link. Ph.D. Thesis - Ecole Nationale Superieure des Telecommunications, 6 Jul. 1985

    Science.gov (United States)

    Duarte, O. Muniz Bandeira

    1986-01-01

    Four architectures to implement a point to multipoint satellite link protocol for communication services offered by the Telecom 1 satellite network are presented. A safe communication service with error correction and flow control facilities is described. It is shown that a time transparent communication system combines simplicity and cost advantages.

  3. A description of QUALCOMM Automatic Satellite Position Reporting (QASPR(R)) for mobile communications

    Science.gov (United States)

    Ames, William G.

    1990-01-01

    Two satellite position reporting has been introduced into the OmniTRACS mobile satellite communication system. This system significantly improves position reporting reliability and accuracy while simplifying the terminal's hardware. The positioning technique uses the original OmniTRACS TDMA timing signal formats in the forward and return link directions plus an auxiliary, low power forward link signal through a second satellite to derive distance values. The distances are then converted into the mobile terminal's latitude and longitude in real time. A minor augmentation of the spread spectrum profile of the return link allowed the resolution of periodic ambiguities. The system also locates the two satellites in real time with fixed platforms in known locations using identical mobile terminal hardware. Initial accuracies of 1/4 mile have been realized uniformly throughout the USA using a satellite separation of 22 degrees and there are no dead zones, skywaves, or cycle slips as found in terrestrial systems like LORAN-C.

  4. An overview of Space Communication Artificial Intelligence for Link Evaluation Terminal (SCAILET) Project

    Science.gov (United States)

    Shahidi, Anoosh K.; Schlegelmilch, Richard F.; Petrik, Edward J.; Walters, Jerry L.

    1991-11-01

    A software application to assist end-users of the link evaluation terminal (LET) for satellite communications is being developed. This software application incorporates artificial intelligence (AI) techniques and will be deployed as an interface to LET. The high burst rate (HBR) LET provides 30 GHz transmitting/20 GHz receiving (220/110 Mbps) capability for wideband communications technology experiments with the Advanced Communications Technology Satellite (ACTS). The HBR LET can monitor and evaluate the integrity of the HBR communications uplink and downlink to the ACTS satellite. The uplink HBR transmission is performed by bursting the bit-pattern as a modulated signal to the satellite. The HBR LET can determine the bit error rate (BER) under various atmospheric conditions by comparing the transmitted bit pattern with the received bit pattern. An algorithm for power augmentation will be applied to enhance the system's BER performance at reduced signal strength caused by adverse conditions.

  5. A Survey of Congestion Control Techniques and Data Link Protocols in Satellite Networks

    OpenAIRE

    Fahmy, Sonia; Jain, Raj; Lu, Fang; Kalyanaraman, Shivkumar

    1998-01-01

    Satellite communication systems are the means of realizing a global broadband integrated services digital network. Due to the statistical nature of the integrated services traffic, the resulting rate fluctuations and burstiness render congestion control a complicated, yet indispensable function. The long propagation delay of the earth-satellite link further imposes severe demands and constraints on the congestion control schemes, as well as the media access control techniques and retransmissi...

  6. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (MACINTOSH VERSION)

    Science.gov (United States)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  7. Do future commercial broadband communication satellites really need laser-communication intersatellite links (ISLs)?

    Science.gov (United States)

    Freidell, James E.

    1997-04-01

    Large commercial satellite programs requiring ISLs are growing in number and maturing. An important segment of the commercial satellite market, and its ISL needs, is discussed in the paper. ISL value will increase as long-haul terrestrial backbones become increasingly congested. Providing interregional and intercontinental connectivity via ISL presents far lower cost and fewer problems than relying on terrestrial fiber-optic networks. To demonstrate this, a new metric is proposed which allows 'apples-to- apples' cost/performance comparisons between laser communications in GEO, LEO, and terrestrial fiber-optics. ISL requirements in to the next decade are predicted >= 50-100 Gb/s full duplex. Many attitudinal changes must be embraced among those who choose to focus on this new commercial business. Foremost among these is a preponderance to delivering fully acceptable hardware fast and at low cost, as opposed to merely designing such. Considerable attention must be given business considerations foreign to professionals who have spent time in the government or government contracting sectors. Successful ISL customers will come to recognize that ISLs are not commodity products. Failure to embrace these attitudes will nonetheless constitute decision to which the commercial market, and particularly the financial market, will appropriately respond.

  8. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Optical and Microwave Communications

    Science.gov (United States)

    Israel, David J.; Shaw, Harry

    2018-01-01

    NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available.In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the

  9. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Microwave and Optical Communications

    Science.gov (United States)

    Israel, David J.

    2018-01-01

    NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available. In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the

  10. Communication schemes for olfar's inter-satellite links

    NARCIS (Netherlands)

    Budianu, A.; Willink-Castro, T.J.; Meijerink, Arjan; Bentum, Marinus Jan

    2012-01-01

    The Orbiting Low Frequency Array for Radio astronomy(OLFAR) project is aimed at developing a radio telescope in space sensitive for the 0.3–30 MHz range by using a swarm of more than 50 identical nano-satellites. The satellites will form a very large aperture, capable of capturing very weak

  11. Ground test of satellite constellation based quantum communication

    OpenAIRE

    Liao, Sheng-Kai; Yong, Hai-Lin; Liu, Chang; Shentu, Guo-Liang; Li, Dong-Dong; Lin, Jin; Dai, Hui; Zhao, Shuang-Qiang; Li, Bo; Guan, Jian-Yu; Chen, Wei; Gong, Yun-Hong; Li, Yang; Lin, Ze-Hong; Pan, Ge-Sheng

    2016-01-01

    Satellite based quantum communication has been proven as a feasible way to achieve global scale quantum communication network. Very recently, a low-Earth-orbit (LEO) satellite has been launched for this purpose. However, with a single satellite, it takes an inefficient 3-day period to provide the worldwide connectivity. On the other hand, similar to how the Iridium system functions in classic communication, satellite constellation (SC) composed of many quantum satellites, could provide global...

  12. Protected transitional solution to transformational satellite communications

    Science.gov (United States)

    Brand, Jerry C.

    2005-06-01

    As the Warfighter progresses into the next generation battlefield, transformational communications become evident as an enabling technology. Satellite communications become even more vital as the battles range over greater non-contiguous spaces. While current satellite communications provide suitable beyond line-of-sight communications and the Transformational Communications Architecture (TCA) sets the stage for sound information exchange, a realizable transition must occur to ensure successful succession to this higher level. This paper addresses the need for a planned escalation to the next generation satellite communications architecture and offers near-term alternatives. Commercial satellite systems continue to enable the Warfighter to reach back to needed information resources, providing a large majority of available bandwidth. Four areas of concentration for transition include encrypted Telemetry, Tracking and Control (or Command) (TT&C), encrypted and covered data, satellite attack detection and protection, and operational mobility. Solution methodologies include directly embedding COMSEC devices in the satellites and terminals, and supplementing existing terminals with suitable equipment and software. Future satellites planned for near-term launches can be adapted to include commercial grade and higher-level secure equipment. Alternately, the expected use of programmable modems (Software Defined Radios (SDR)) enables incorporation of powerful cipher methods approaching military standards as well as waveforms suitable for on-the-move operation. Minimal equipment and software additions on the satellites can provide reasonable attack detection and protection methods in concert with the planned satellite usage. Network management suite modifications enable cohesive incorporation of these protection schemes. Such transitional ideas offer a smooth and planned transition as the TCA takes life.

  13. Optimal optical communication terminal structure for maximizing the link budget

    Science.gov (United States)

    Huang, Jian; Jiang, Dagang; Deng, Ke; Zhang, Peng

    2015-02-01

    Ordinary inter-satellite optical includes at least three optical paths for acquisition, tracking and communication, the three optical paths work simultaneously and share the received power. An optimal structure of inter-satellite optical communication terminal with single working optical path at each of working stages of acquisition and communication is introduced. A space optical switch based on frustrated total internal reflection effect is applied to switch the received laser power between the acquisition sensor and the communication sensor between the stages of acquisition and communication, this is named as power fusion which means power is transferred for shutting down unused optical path. For the stages of tracking and communication, a multiple cells sensor is used to accomplish the operation of tracking while communication, this is named as function fusion which means accomplishing multiple functions by one device to reduce the redundant optical paths. For optical communication terminal with single working path structure, the total received laser power would be detected by one sensor for each different stages of acquisition, tracking and communication, the link budget would be maximized, and this design would help to enlarge the system tolerance and reduce the acquisition time.

  14. High power communication satellites power systems study

    International Nuclear Information System (INIS)

    Josloff, A.T.; Peterson, J.R.

    1994-01-01

    This paper discusses a DOE-funded study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. This study brings together a preeminent US Industry/Russian team to cooperate on the role of high power communication satellites in the rapidly expanding communications revolution. These high power satellites play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities will be significant

  15. Satellite Communication and Long Distance Education

    OpenAIRE

    Hafied Cangara

    2016-01-01

    Since Indonesia introduced communication satellite for telecommunication network, the satellite has brought a number of advantages for national development in various areas, such as telephone network, mass media development, business, education, politics, security and national defence as well as regional and International cooperation. In education, satellite communication could be used for long-distance learning as implemented by 13 state universities in eastern parts of Indonesia. It is also...

  16. Millimeter wave propagation modeling of inhomogeneous rain media for satellite communications systems

    Science.gov (United States)

    Persinger, R. R.; Stutzman, W. L.

    1978-01-01

    A theoretical propagation model that represents the scattering properties of an inhomogeneous rain often found on a satellite communications link is presented. The model includes the scattering effects of an arbitrary distribution of particle type (rain or ice), particle shape, particle size, and particle orientation within a given rain cell. An associated rain propagation prediction program predicts attenuation, isolation and phase shift as a function of ground rain rate. A frequency independent synthetic storm algorithm is presented that models nonuniform rain rates present on a satellite link. Antenna effects are included along with a discussion of rain reciprocity. The model is verified using the latest available multiple frequency data from the CTS and COMSTAR satellites. The data covers a wide range of frequencies, elevation angles, and ground site locations.

  17. ESA's satellite communications programme

    Science.gov (United States)

    Bartholome, P.

    1985-02-01

    The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.

  18. Apple - Indian experimental geostationary communication satellite

    Science.gov (United States)

    Rao, U. R.; Vasagam, R. M.

    Developmental steps, responsibilities, design goals, performance characteristics, and support systems for the ISRO Ariane Passenger Payload Experiment (APPLE) experimental GEO communication satellite are described. The spacecraft underwent structural, thermal, engineering, prototype, and flight qualification tests in India before being shipped to Guyana for launch on the third Ariane test flight. APPLE carries a redundant C-band communication transponder fed by a 900 mm diam parabolic reflector. A 6 GHz uplink and 4 GHz downlink are processed through a diplexer, with the receiver employing a low noise GaAs FET amplifier. In-orbit telemetry is provided by a 4095 MHz beacon with a data rate of 64 bits/sec. Two solar panels supply 210 W of power, while an on-board Ni-Cd storage battery stores 240 Wh for the ascent and during eclipse. Teleconferencing has been successfully performed using the spacecraft link.

  19. Taking the Politics Out of Satellite and Space-Based Communications Protocols

    Science.gov (United States)

    Ivancic, William D.

    2006-01-01

    After many years of studies, experimentation, and deployment, large amounts of misinformation and misconceptions remain regarding applicability of various communications protocols for use in satellite and space-based networks. This paper attempts to remove much of the politics, misconceptions, and misinformation that have plagued spacebased communications protocol development and deployment. This paper provides a common vocabulary for communications; a general discussion of the requirements for various communication environments; an evaluation of tradeoffs between circuit and packet-switching technologies, and the pros and cons of various link, network, transport, application, and security protocols. Included is the applicability of protocol enhancing proxies to NASA, Department of Defense (DOD), and commercial space communication systems.

  20. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (IBM PC VERSION)

    Science.gov (United States)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  1. Security Concepts for Satellite Links

    Science.gov (United States)

    Tobehn, C.; Penné, B.; Rathje, R.; Weigl, A.; Gorecki, Ch.; Michalik, H.

    2008-08-01

    The high costs to develop, launch and maintain a satellite network makes protecting the assets imperative. Attacks may be passive such as eavesdropping on the payload data. More serious threat are active attacks that try to gain control of the satellite, which may lead to the total lost of the satellite asset. To counter these threats, new satellite and ground systems are using cryptographic technologies to provide a range of services: confidentiality, entity & message authentication, and data integrity. Additionally, key management cryptographic services are required to support these services. This paper describes the key points of current satellite control and operations, that are authentication of the access to the satellite TMTC link and encryption of security relevant TM/TC data. For payload data management the key points are multi-user ground station access and high data rates both requiring frequent updates and uploads of keys with the corresponding key management methods. For secure satellite management authentication & key negotiation algorithms as HMAC-RIPEMD160, EC- DSA and EC-DH are used. Encryption of data uses algorithms as IDEA, AES, Triple-DES, or other. A channel coding and encryption unit for payload data provides download data rates up to Nx250 Mbps. The presented concepts are based on our experience and heritage of the security systems for all German MOD satellite projects (SATCOMBw2, SAR-Lupe multi- satellite system and German-French SAR-Lupe-Helios- II systems inter-operability) as well as for further international (KOMPSAT-II Payload data link system) and ESA activities (TMTC security and GMES).

  2. Domestic Communication Satellites

    Science.gov (United States)

    Horowitz, Andrew

    1974-01-01

    A discussion of the Federal Communications Commission's new policy on domestic satellites in light of our 1) military and economic history; 2) corporate interests; 3) citizen surveillance; and 4) media control. (HB)

  3. Clock Management Data Analysis for Satellite Communications

    National Research Council Canada - National Science Library

    Gross, Rachel; Melkers, Raimond

    2005-01-01

    The U.S. Naval Research Laboratory has installed GPS-based timing systems in several Defense Satellite Communication System "DSCS-III" satellite communication facilities to support the Single Channel Transponder "SCT" program...

  4. Satellite communication system for emergency monitoring within the Chernobyl exclusion zone

    International Nuclear Information System (INIS)

    Franchini, C.; Mensa, M.; Kanevsky, V.A.

    1997-01-01

    A Satellite Emergency Monitoring system of the Chernobyl Exclusive Zone (SEM CEZ) was designed to provide the Ukraine authorities and the neighbouring countries with updated information when an emergency situation occurs in the Exclusion Zone. This is of particular importance when environment contamination has transboundary effect. SEM system consists of mobile and fixed sensors reporting data via a dedicated satellite communications link. Mobile sensors are fitted with Global Positioning System (GPS) receivers that determine current coordinates of the sensor. Sensors data are transmitted to the Emergency Monitoring Centre equipped with PC and a satellite terminal. Both sensors data and the current position are visualized on digital maps

  5. Optimization of Power Allocation for Multiusers in Multi-Spot-Beam Satellite Communication Systems

    Directory of Open Access Journals (Sweden)

    Heng Wang

    2014-01-01

    Full Text Available In recent years, multi-spot-beam satellite communication systems have played a key role in global seamless communication. However, satellite power resources are scarce and expensive, due to the limitations of satellite platform. Therefore, this paper proposes optimizing the power allocation of each user in order to improve the power utilization efficiency. Initially the capacity allocated to each user is calculated according to the satellite link budget equations, which can be achieved in the practical satellite communication systems. The problem of power allocation is then formulated as a convex optimization, taking account of a trade-off between the maximization of the total system capacity and the fairness of power allocation amongst the users. Finally, an iterative algorithm based on the duality theory is proposed to obtain the optimal solution to the optimization. Compared with the traditional uniform resource allocation or proportional resource allocation algorithms, the proposed optimal power allocation algorithm improves the fairness of power allocation amongst the users. Moreover, the computational complexity of the proposed algorithm is linear with both the numbers of the spot beams and users. As a result, the proposed power allocation algorithm is easy to be implemented in practice.

  6. Advanced mobile satellite communications using COMETS satellite in MM-wave and Ka-band

    Science.gov (United States)

    Ohmori, Shingo; Isobe, Shunkichi; Takeuchi, Makoto; Naito, Hideyuki

    1993-01-01

    Early in the 21st century, the demand for personal communications using mobile, hand-held, and VSAT terminals will rapidly increase. In a future system, many different types of services should be provided with one-hop connection. The Communications Research Laboratory (CRL) has studied a future advanced mobile satellite communications system using millimeter wave and Ka band. In 1990, CRL started the Communications and Broadcasting Engineering Test Satellite (COMETS) project. The satellite has been developed in conjunction with NASDA and will be launched in 1997. This paper describes the COMETS payload configuration and the experimental system for the advanced mobile communications mission.

  7. Optimization of communication network topology for navigation sharing among distributed satellites

    Science.gov (United States)

    Dang, Zhaohui; Zhang, Yulin

    2013-01-01

    Navigation sharing among distributed satellites is quite important for coordinated motion and collision avoidance. This paper proposes optimization methods of the communication network topology to achieve navigation sharing. The whole communication network constructing by inter-satellite links are considered as a topology graph. The aim of this paper is to find the communication network topology with minimum communication connections' number (MCCN) in different conditions. It has found that the communication capacity and the number of channels are two key parameters affecting the results. The model of MCCN topology for navigation sharing is established and corresponding method is designed. Two main scenarios, viz., homogeneous case and heterogeneous case, are considered. For the homogeneous case where each member has the same communication capacity, it designs a construction method (Algorithm 1) to find the MCCN topology. For the heterogeneous case, it introduces a modified genetic algorithm (Algorithm 2) to find the MCCN topology. When considering the fact that the number of channels is limited, the Algorithm 2 is further modified by adding a penalized term in the fitness function. The effectiveness of these algorithms is all proved in theoretical. Three examples are further tested to illustrate the methods developed in this paper.

  8. Satellite Communication and Long Distance Education

    Directory of Open Access Journals (Sweden)

    Hafied Cangara

    2016-02-01

    Full Text Available Since Indonesia introduced communication satellite for telecommunication network, the satellite has brought a number of advantages for national development in various areas, such as telephone network, mass media development, business, education, politics, security and national defence as well as regional and international cooperation. In education, satellite communication could be used for long-distance learning as implemented by 13 state universities in eastern parts of Indonesia. It is also possible to develop the Open University System in teaching and learning process, particularly since the internet technology has been intensively used

  9. Recent Korean R&D in Satellite Communications

    Science.gov (United States)

    Lee, Ho-Jin; Kim, Jae Moung; Lee, Byung-Seub; Lee, Han; Ryoo, Jang-Soo

    The R&D in satellite communications in Korea has been driven mainly by KCC (Korea Communications Commission) but in a small scale compared to Korea space development program organized by MEST (Ministry of Education, Science and Technology). Public and civilian satcom sector R&D has been led mainly by ETRI with small/medium companies contrary to rare investment in private sector while military sector R&D has been orchestrated by ADD with defense industry. By the COMS (Communication, Ocean and Meteorological Satellite) experimental Ka-band payload, Korea pursues a space qualification of own technology for national infrastructure evolution as well as industrialization of space R&D results. Once COMS launched and space qualified in 2009, subsequent application experiments and new technology R&D like UHDTV will entail service and industry promotion. The payload technology is expected for the next Korean commercial satellites or for new OBP satellites. The COMS ground control system and GNSS ground station technologies are under development for COMS operation and enhanced GNSS services along with advent of Galileo respectively. Satellite broadband mobile VSAT based on DVB-S2/RCS (+M) and low profile tracking antennas have been developed for trains, ships, and planes. While APSI is developing GMR-1 based Thuraya handset functions, ETRI is designing IMT-Advanced satellite radio interface for satellite and terrestrial dual-mode handheld communication system like Japanese STICS, with universities' satellite OFDM researches. A 21GHz Ka-band higher-availability scalable HD broadcasting technology and SkyLife's hybrid satellite IPTV technology are being developed. In near term Korea will extend R&D programs to upgrade the space communication infrastructure for universal access to digital opportunity and safer daily life from disaster, and to promote space green IT industrialization, national security, and space resources sovereign. Japanese stakeholders are invited to establish

  10. Software defined radio (SDR) architecture for concurrent multi-satellite communications

    Science.gov (United States)

    Maheshwarappa, Mamatha R.

    SDRs have emerged as a viable approach for space communications over the last decade by delivering low-cost hardware and flexible software solutions. The flexibility introduced by the SDR concept not only allows the realisation of concurrent multiple standards on one platform, but also promises to ease the implementation of one communication standard on differing SDR platforms by signal porting. This technology would facilitate implementing reconfigurable nodes for parallel satellite reception in Mobile/Deployable Ground Segments and Distributed Satellite Systems (DSS) for amateur radio/university satellite operations. This work outlines the recent advances in embedded technologies that can enable new communication architectures for concurrent multi-satellite or satellite-to-ground missions where multi-link challenges are associated. This research proposes a novel concept to run advanced parallelised SDR back-end technologies in a Commercial-Off-The-Shelf (COTS) embedded system that can support multi-signal processing for multi-satellite scenarios simultaneously. The initial SDR implementation could support only one receiver chain due to system saturation. However, the design was optimised to facilitate multiple signals within the limited resources available on an embedded system at any given time. This was achieved by providing a VHDL solution to the existing Python and C/C++ programming languages along with parallelisation so as to accelerate performance whilst maintaining the flexibility. The improvement in the performance was validated at every stage through profiling. Various cases of concurrent multiple signals with different standards such as frequency (with Doppler effect) and symbol rates were simulated in order to validate the novel architecture proposed in this research. Also, the architecture allows the system to be reconfigurable by providing the opportunity to change the communication standards in soft real-time. The chosen COTS solution provides a

  11. Digital, Satellite-Based Aeronautical Communication

    Science.gov (United States)

    Davarian, F.

    1989-01-01

    Satellite system relays communication between aircraft and stations on ground. System offers better coverage with direct communication between air and ground, costs less and makes possible new communication services. Carries both voice and data. Because many data exchanged between aircraft and ground contain safety-related information, probability of bit errors essential.

  12. A New Era Begins: Satellite Communications and Development.

    Science.gov (United States)

    Pelton, Joseph N.

    This overview of changes in the field of telecommunications development produced by satellite communications over the last 15 years focuses on applications of satellite systems for educational and health purposes in developing countries. Satellite communications development from 1974 to 1986 is identified as the first stage of telecommunications…

  13. R&D of a Next Generation LEO System for Global Multimedia Mobile Satellite Communications

    Science.gov (United States)

    Morikawa, E.; Motoyoshi, S.; Koyama, Y.; Suzuki, R.; Yasuda, Y.

    2002-01-01

    Next-generation LEO System Research Center (NeLS) was formed in the end of 1997 as a research group under the Telecommunications Advancement Organization of Japan, in cooperation with the telecommunications operators, manufacturers, universities and governmental research organization. The aim of this project is to develop new technology for global multimedia mobile satellite communications services with a user data rate around 2Mbps for handy terminals. component of the IMT-2000, and the second generation of the big-LEO systems. In prosecuting this project, two-phase approach, phase 1 and phase 2, is considered. Phase 1 is the system definition and development of key technologies. In Phase 2, we plan to verify the developed technology in Phase 1 on space. From this year we shifted the stage to Phase 2, and are now developing the prototype of on-board communication systems for flight tests, which will be planed at around 2006. The satellite altitude is assumed to be 1200 km in order to reduce the number of satellites, to avoid the Van Allen radiation belts and to increase the minimum elevation angle. Ten of the circular orbits with 55 degree of inclination are selected to cover the earth surface from -70 to 70 degree in latitude. 12 satellites are positioned at regular intervals in each orbit. In this case, the minimum elevation angle from the user terminal can be keep more than 20 degree for the visibility of the satellite, and 15 degree for simultaneous visibility of two satellites. Then, NeLS Research Center was focusing on the development of key technologies as the phase 1 project. Four kinds of key technologies; DBF satellite antenna, optical inter-satellite link system, satellite network technology with on-board ATM switch and variable rate modulation were selected. Satellite Antenna Technology: Development of on-board direct radiating active phased array antenna with digital beam forming technology would be one of the most important breakthroughs for the

  14. Satellite communications - Intelsat and global patterns

    Science.gov (United States)

    Astrain, S.

    1983-10-01

    The global pattern of mankind's population growth is examined, taking into account the exponential increase in population which began only in the 17th century. As world population has grown, trade has increased, and transportation and communications have become vitally important. A revolution in global communications was initiated when Intelsat launched the first international communications satellite, 'Early Bird', in April 1965. Since April 1965, a tremendous development in global communications by means of satellites has taken place. The Intelsat VI satellite will have a capacity of 36,000 telephone circuits plus 2 TV channels, while the capacity of Early Bird was only 240 telephone circuits. Today, Intelsat is truly an international organization which includes 108 member countries. Attention is given to the particular importance of the Intelsat services to the developing countries, the exploration of new technologies and system concepts, and the extension of services to those portions of the global village which have remained electronically isolated.

  15. Anti-jamming Technology in Small Satellite Communication

    Science.gov (United States)

    Jia, Zixiang

    2018-01-01

    Small satellite communication has an increasingly important position among the wireless communications due to the advantages of low cost and high technology. However, in view of the case that its relay station stays outside the earth, its uplink may face interference from malicious signal frequently. Here this paper classified enumerates existing interferences, and proposes channel signals as main interference by comparison. Based on a basic digital communication process, then this paper discusses the possible anti - jamming techniques that commonly be realized at all stages in diverse processes, and comes to the conclusion that regarding the spread spectrum technology and antenna anti-jamming technology as fundamental direction of future development. This work provides possible thought for the design of new small satellite communication system with the coexistence of multi - technologies. This basic popular science can be consulted for people interested in small satellite communication.

  16. Technical comparison of several global mobile satellite communications systems

    Science.gov (United States)

    Comparetto, Gary M.

    The era of satellite-based mobile satellite communications (MSC) systems started with the first MARISAT satellite which was launched into a geostationary orbit over the Pacific Ocean in 1976 to provide communications between ships and shore stations. The combination of high cost and unacceptably large equipment has kept the space-based MSC systems from appealing to the wider market of personal mobile communications. The progress made over the last ten years, however, in digital voice processing, satellite technology, and component miniaturization has resulted in the viability of satellite-based mobile satellite communications systems to meet the growing market in personal mobile communications using handsets similar to those currently in use with land-based cellular systems. Three of the more mature LEO/MEO satellite systems are addressed in this paper including GLOBALSTAR, Iridium, and Odyssey. The system architectures of each system are presented along with a description of the satellite and user handset designs and the multiaccess techniques employed. It will be shown that, although a number of similarities exist among the system addressed, each system is unique in a variety of significant design areas. It is concluded that the technical feasibility of satellite-based mobile satellite communications systems seems to be secure. It will be challenging, however, for the vendors to actually develop and deploy these systems in a cost effective, timely, and reliable way that meets a continually evolving set of requirements based upon a rapidly changing technology base.

  17. High power communication satellites power systems study

    Science.gov (United States)

    Josloff, Allan T.; Peterson, Jerry R.

    1995-01-01

    This paper discusses a planned study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. These high power satellites can play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities can be significant.

  18. Digital scrambling for shuttle communication links: Do drawbacks outweigh advantages?

    Science.gov (United States)

    Dessouky, K.

    1985-01-01

    Digital data scrambling has been considered for communication systems using NRZ (non-return to zero) symbol formats. The purpose is to increase the number of transitions in the data to improve the performance of the symbol synchronizer. This is accomplished without expanding the bandwidth but at the expense of increasing the data bit error rate (BER). Models for the scramblers/descramblers of practical interest are presented together with the appropriate link model. The effects of scrambling on the performance of coded and uncoded links are studied. The results are illustrated by application to the Tracking and Data Relay Satellite System links. Conclusions regarding the usefulness of scrambling are also given.

  19. Odyssey, an optimized personal communications satellite system

    Science.gov (United States)

    Rusch, Roger J.

    Personal communications places severe demands on service providers and transmission facilities. Customers are not satisfied with the current levels of service and want improvements. Among the characteristics that users seek are: lower service rates, hand held convenience, acceptable time delays, ubiquitous service, high availability, reliability, and high quality. The space industry is developing commercial space systems for providing mobile communications to personal telephones. Provision of land mobile satellite service is fundamentally different from the fixed satellite service provided by geostationary satellites. In fixed service, the earth based antennas can depend on a clear path from user to satellite. Mobile users in a terrestrial environment commonly encounter blockage due to vegetation, terrain or buildings. Consequently, high elevation angles are of premium value. TRW studied the issues and concluded that a Medium Earth Orbit constellation is the best solution for Personal Communications Satellite Service. TRW has developed Odyssey, which uses twelve satellites in medium altitude orbit to provide personal communications satellite service. The Odyssey communications system projects a multibeam antenna pattern to the Earth. The attitude control system orients the satellites to ensure constant coverage of land mass and coastal areas. Pointing can be reprogrammed by ground control to ensure optimized coverage of the desired service areas. The payload architecture features non-processing, "bent pipe" transponders and matrix amplifiers to ensure dynamic power delivery to high demand areas. Circuit capacity is 3000 circuits per satellite. Each satellite weighs 1917 kg (4226 pounds) at launch and the solar arrays provide 3126 Watts of power. Satellites are launched in pairs on Ariane, Atlas, or other vehicles. Each satellite is placed in a circular orbit at an altitude of 10,354 km. There are three orbit planes inclined at 55° to the equatorial plane

  20. Space Communications Artificial Intelligence for Link Evaluation Terminal (SCAILET)

    Science.gov (United States)

    Shahidi, Anoosh

    1991-01-01

    A software application to assis end-users of the Link Evaluation Terminal (LET) for satellite communication is being developed. This software application incorporates artificial intelligence (AI) techniques and will be deployed as an interface to LET. The high burst rate (HBR) LET provides 30 GHz transmitting/20 GHz receiving, 220/110 Mbps capability for wideband communications technology experiments with the Advanced Communications Technology Satellite (ACTS). The HBR LET and ACTS are being developed at the NASA Lewis Research Center. The HBR LET can monitor and evaluate the integrity of the HBR communications uplink and downlink to the ACTS satellite. The uplink HBR transmission is performed by bursting the bit-pattern as a modulated signal to the satellite. By comparing the transmitted bit pattern with the received bit pattern, HBR LET can determine the bit error rate BER) under various atmospheric conditions. An algorithm for power augmentation is applied to enhance the system's BER performance at reduced signal strength caused by adverse conditions. Programming scripts, defined by the design engineer, set up the HBR LET terminal by programming subsystem devices through IEEE488 interfaces. However, the scripts are difficult to use, require a steep learning curve, are cryptic, and are hard to maintain. The combination of the learning curve and the complexities involved with editing the script files may discourage end-users from utilizing the full capabilities of the HBR LET system. An intelligent assistant component of SCAILET that addresses critical end-user needs in the programming of the HBR LET system as anticipated by its developers is described. A close look is taken at the various steps involved in writing ECM software for a C&P, computer and at how the intelligent assistant improves the HBR LET system and enhances the end-user's ability to perform the experiments.

  1. Research of the key technology in satellite communication networks

    Science.gov (United States)

    Zeng, Yuan

    2018-02-01

    According to the prediction, in the next 10 years the wireless data traffic will be increased by 500-1000 times. Not only the wireless data traffic will be increased exponentially, and the demand for diversified traffic will be increased. Higher requirements for future mobile wireless communication system had brought huge market space for satellite communication system. At the same time, the space information networks had been greatly developed with the depth of human exploration of space activities, the development of space application, the expansion of military and civilian application. The core of spatial information networks is the satellite communication. The dissertation presented the communication system architecture, the communication protocol, the routing strategy, switch scheduling algorithm and the handoff strategy based on the satellite communication system. We built the simulation platform of the LEO satellites networks and simulated the key technology using OPNET.

  2. Satellite communications network design and analysis

    CERN Document Server

    Jo, Kenneth Y

    2011-01-01

    This authoritative book provides a thorough understanding of the fundamental concepts of satellite communications (SATCOM) network design and performance assessments. You find discussions on a wide class of SATCOM networks using satellites as core components, as well as coverage key applications in the field. This in-depth resource presents a broad range of critical topics, from geosynchronous Earth orbiting (GEO) satellites and direct broadcast satellite systems, to low Earth orbiting (LEO) satellites, radio standards and protocols.This invaluable reference explains the many specific uses of

  3. Satellite communication from user to user

    Science.gov (United States)

    Gern, Manfred

    Satellite communication systems which allow a multitude of user-to-user, point-to-point, and multipoint connections, are presented. The bit rates are 64 kbit/sec and multiples, up to 1.92 Mbit/sec. If required, the ground-stations are installed at the customer's site or at suitable locations in order to serve several customers. However, technical requirements for station location have also to be fulfulled, in order to avoid interference with terrestrial radio services. The increasing number of participants to Satellite Multi Service and INTELSAT Business Services imposes the solution of the problem of communication using cheap techniques. The changes of the German Federal Post Office also permit the economic use of satellite radio techniques for short distances.

  4. Communication Satellite: Nigeria's Efforts at Bridging Digital Divide ...

    African Journals Online (AJOL)

    Communication Satellite in the wireless age has the potentials of bridging the digital gulf that exists between civilized and developing nation. If well used, communication Satellite is a potent infrastructure of addressing technology convergence for holistic national development. This paper examines Nigeria's technological ...

  5. Potential markets for advanced satellite communications

    Science.gov (United States)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-09-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  6. Potential markets for advanced satellite communications

    Science.gov (United States)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-01-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  7. Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network

    NARCIS (Netherlands)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2016-01-01

    Microwave links in commercial cellular communication networks hold a promise for areal rainfall monitoring and could complement rainfall estimates from ground-based weather radars, rain gauges, and satellites. It has been shown that country-wide (≈ 35 500 km2) 15 min rainfall maps can

  8. Use of Advanced Solar Cells for Commercial Communication Satellites

    Science.gov (United States)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  9. Satellite Communication and Development: A Reassessment.

    Science.gov (United States)

    Hudson, Heather E.

    The potential benefits of satellite communications development have been recognized since the notion of a geostationary "space platform" was proposed by Arthur C. Clarke in 1945. Although there have been examples of developmental applications of satellite technology, the promise has been slow in being fulfilled. The history of the…

  10. DS-CDMA satellite diversity reception for personal satellite communication: Downlink performance analysis

    Science.gov (United States)

    DeGaudenzi, Riccardo; Giannetti, Filippo

    1995-01-01

    The downlink of a satellite-mobile personal communication system employing power-controlled Direct Sequence Code Division Multiple Access (DS-CDMA) and exploiting satellite-diversity is analyzed and its performance compared with a more traditional communication system utilizing single satellite reception. The analytical model developed has been thoroughly validated by means of extensive Monte Carlo computer simulations. It is shown how the capacity gain provided by diversity reception shrinks considerably in the presence of increasing traffic or in the case of light shadowing conditions. Moreover, the quantitative results tend to indicate that to combat system capacity reduction due to intra-system interference, no more than two satellites shall be active over the same region. To achieve higher system capacity, differently from terrestrial cellular systems, Multi-User Detection (MUD) techniques are likely to be required in the mobile user terminal, thus considerably increasing its complexity.

  11. Implementation of Multiple Access Techniques Applicable for Maritime Satellite Communications

    OpenAIRE

    Stojce Dimov Ilcev

    2013-01-01

    In this paper are introduced fundamentals, characteristics, advantages and disadvantages of Multiple Access (MA) employed as transmission techniques in the Maritime Mobile Satellite Communications (MMSC) between ships and Coast Earth Station (CES) via Geostationary Earth Orbit (GEO) or Not-GEO satellite constellations. In fixed satellite communication, as a rule, especially in MMSC many users are active at the same time. The problem of simultaneous communications between many single or multip...

  12. A Survey of Satellite Communications System Vulnerabilities

    National Research Council Canada - National Science Library

    Steinberger, Jessica A

    2008-01-01

    The U.S. military's increasing reliance on commercial and military communications satellites to enable widely-dispersed, mobile forces to communicate makes these space assets increasingly vulnerable to attack by adversaries...

  13. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    Science.gov (United States)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial

  14. Advanced mobile satellite communications system using Ka and MM-wave bands in Japan's R and D satellite project

    Science.gov (United States)

    Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru

    1991-01-01

    Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.

  15. DAS photonics developments for analogue and digital photonic links for intra-satellite communications

    Science.gov (United States)

    Blasco, Julián.; Rico, Eloy; Genovard, Pablo; Sáez, Cristina; Navasquillo, Olga; Martí, Javier

    2017-11-01

    During past years, special efforts have been invested to develop optical links, both digital and analogue, for space applications, such as reference signal distribution or digital communication cables. The aim of this paper is to present the current DAS developments for these applications as well as future work to increase TRL levels and flight opportunities.

  16. SDR Implementation for Satellite Communication

    OpenAIRE

    Jakobsson, Carin; Sjödin, Olof

    2017-01-01

    SDR (Software Defined Radio) is a radio communicationsystem that has been of great interest and developmentover the last 20 years. It decreases communication costs significantlyas it replaces expensive analogue system components withcheap and flexible digital ones. In this article we describe anSDR implementation for communication with the SEAM (SmallExplorer for Advances Missions) satellite, a CubeSat satellitethat will perform high quality magnetic measurements in theEarth orbit. The projec...

  17. Communication satellites to enter a new age of flexibility

    Science.gov (United States)

    Balty, Cédric; Gayrard, Jean-Didier; Agnieray, Patrick

    2009-07-01

    To cope with the economical and technical evolutions of the communication market and to better compete with or complement terrestrial networks, satellite operators are requiring more flexible satellites. It allows a better fleet planning potential and back-up policy, a more standardized and efficient procurement process, mission adaptation to market evolution and the possibility of early entry in new markets. New technologies that are developed either for terrestrial networks or for space defense applications would become soon available to satellite and equipment manufacturers. A skilful mix of these new technologies with the older and more mature ones should boost satellite performances and bring flexibility to the new generation of communication satellites. This paper reviews the economical and technical environment of the space communication business for the next decade. It identifies the needs and levels of flexibility that are required by the market but also allowed by technologies, in both a top-down and bottom-up approach.

  18. Uses of communication satellites in water utility operations

    Science.gov (United States)

    Tighe, W. S.

    This paper proposes a system to serve the communications needs of the operating side of a water utility and estimates the requirements and capabilities of the equipment needed. The system requires the shared use of a satellite transponder with 100% backup. Messages consist of data packets containing data and control information, plus voice transmission. Satellite communication may have a price advantage in some instances over wire line or VHF radio and have greater survivability in case of a natural disaster. Water and other utilities represent a significant market for low cost mass produced satellite earth terminals.

  19. Integrating small satellite communication in an autonomous vehicle network: A case for oceanography

    Science.gov (United States)

    Guerra, André G. C.; Ferreira, António Sérgio; Costa, Maria; Nodar-López, Diego; Aguado Agelet, Fernando

    2018-04-01

    Small satellites and autonomous vehicles have greatly evolved in the last few decades. Hundreds of small satellites have been launched with increasing functionalities, in the last few years. Likewise, numerous autonomous vehicles have been built, with decreasing costs and form-factor payloads. Here we focus on combining these two multifaceted assets in an incremental way, with an ultimate goal of alleviating the logistical expenses in remote oceanographic operations. The first goal is to create a highly reliable and constantly available communication link for a network of autonomous vehicles, taking advantage of the small satellite lower cost, with respect to conventional spacecraft, and its higher flexibility. We have developed a test platform as a proving ground for this network, by integrating a satellite software defined radio on an unmanned air vehicle, creating a system of systems, and several tests have been run successfully, over land. As soon as the satellite is fully operational, we will start to move towards a cooperative network of autonomous vehicles and small satellites, with application in maritime operations, both in-situ and remote sensing.

  20. Advanced technologies for encryption of satellite links

    Science.gov (United States)

    McMahan, Sherry S.

    The use of encryption on satellite links is discussed. Advanced technology exists to provide transmission security for large earth station with data rates up to 50 megabits per second. One of the major concerns in the use of encryption equipment with very small aperture terminals (VSAT) is the key management issue and the related operational costs. The low cost requirement and the lack of physical protection of remote VSATs place severe constraints on the design of encryption equipment. Encryption may be accomplished by embedding a tamper proof encryption module into the baseband unit of each VSAT. VSAT networks are usually star networks where there is a single large earth station that serves as a hub and all satellite communications takes place between each VSAT and the hub earth station. The hub earth station has the secret master key of each VSAT. These master keys are used to downline load encrypted session keys to each VSAT. A more secure alternative is to use public key techniques where each embedded VSAT encryption module internally generates its own secret and public numbers. The secret number never leaves the module while the public number is sent to the hub at the time of initialization of the encryption module into the VSAT. Physical access control to encryption modules of VSAT systems can be implemented using passwords, smart cards or biometrics.

  1. Development of Mission and Spacecraft Dynamics Analysis System for Geostationary Communication Satellite

    Directory of Open Access Journals (Sweden)

    Hyeon Cheol Gong

    1998-06-01

    Full Text Available We consider the motion of the subsystems as separate bodies as well as the entire satellite for the attitude and orbit control of a communication satellite by multi-body modeling technique. Thus, the system can be applied to a general communication satellite as well as a specific communication satellite, i.e. Koreasat I, II. The simulation results can be viewed by two-dimensional graphics and three-dimensional animation. The graphical user interface (GUI makes its usage much simpler. We have simulated a couple of scenarios for Koreasat I, II which are being operated as geostationary communication satellites to verify the system performance.

  2. Some design considerations for planetary relay communications satellites.

    Science.gov (United States)

    Barber, T. A.; Bourke, R. D.

    1966-01-01

    Items affecting information transmitted from payload landed on remote planet to Earth via communications satellite including orbit, transmission policy and orbit injection error effect on communication capability

  3. Relativistic Time Transfer for Inter-satellite Links

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yi, E-mail: yixie@nju.edu.cn [Department of Astronomy, School of Astronomy and Space Sciences, Nanjing University, Nanjing (China); Shanghai Key Laboratory of Space Navigation and Position Techniques, Shanghai (China); Key Laboratory of Modern Astronomy and Astrophysics, Nanjing University, Ministry of Education, Nanjing (China)

    2016-04-26

    Inter-Satellite links (ISLs) will be an important technique for a global navigation satellite system (GNSS) in the future. Based on the principles of general relativity, the time transfer in an ISL is modeled and the algorithm for onboard computation is described. It is found, in general, satellites with circular orbits and identical semi-major axes can benefit inter-satellite time transfer by canceling out terms associated with the transformations between the proper times and the Geocentric Coordinate Time. For a GPS-like GNSS, the Shapiro delay is as large as 0.1 ns when the ISL passes at the limb of the Earth. However, in more realistic cases, this value will decrease to about 50 ps.

  4. Advanced Communications Technology Satellite (ACTS) and potential system applications

    Science.gov (United States)

    Wright, David L.; Balombin, Joseph R.; Sohn, Philip Y.

    1990-01-01

    A description of the advanced communications technology satellite (ACTS) system is given with special emphasis on the communication characteristics. Potential satellite communications scenarios, including future operational ACTS-like satellite systems, are discussed. The description of the ACTS system updates previously published ACTS system references. Detailed information on items such as experimental ground stations is presented. The potential services can be generically described as voice, video, and data services. The implementation of these services on future operational ACTS-like systems can lead to unique quality, flexibility, and capacity characteristics at lower service costs. The specific service applications that could be supported range from low to high data rates and include both domestic and international applications.

  5. Conceptual design of a synchronous Mars telecommunications satellite

    Science.gov (United States)

    Badi, Deborah M.; Farmer, Jeffrey T.; Garn, Paul A.; Martin, Gary L.

    1989-01-01

    Future missions to Mars will require a communications system to link activities on the Martian surface with each other and with mission controllers on Earth. A conceptual design is presented for an aerosynchronous communications satellite to provide these links. The satellite provides the capability for voice, data/command, and video transmissions. The mission scenario assumed for the design is described, and a description of a single aerosynchronous satellite is explained. A viable spacecraft design is then presented. Communication band selection and channel allocation are discussed. The communications system conceptual design is presented along with the trades used in sizing each of the required antennas. Also, the analyses used to develop the supporting subsystem designs are described as is the communications impact on each subsystem design.

  6. Next generation satellite communications networks

    Science.gov (United States)

    Garland, P. J.; Osborne, F. J.; Streibl, I.

    The paper introduces two potential uses for new space hardware to permit enhanced levels of signal handling and switching in satellite communication service for Canada. One application involves increased private-sector services in the Ku band; the second supports new personal/mobile services by employing higher levels of handling and switching in the Ka band. First-generation satellite regeneration and switching experiments involving the NASA/ACTS spacecraft are described, where the Ka band and switching satellite network problems are emphasized. Second-generation satellite development is outlined based on demand trends for more packet-based switching, low-cost earth stations, and closed user groups. A demonstration mission for new Ka- and Ku-band technologies is proposed, including the payload configuration. The half ANIK E payload is shown to meet the demonstration objectives, and projected to maintain a fully operational payload for at least 10 years.

  7. Scheduling algorithm for data relay satellite optical communication based on artificial intelligent optimization

    Science.gov (United States)

    Zhao, Wei-hu; Zhao, Jing; Zhao, Shang-hong; Li, Yong-jun; Wang, Xiang; Dong, Yi; Dong, Chen

    2013-08-01

    Optical satellite communication with the advantages of broadband, large capacity and low power consuming broke the bottleneck of the traditional microwave satellite communication. The formation of the Space-based Information System with the technology of high performance optical inter-satellite communication and the realization of global seamless coverage and mobile terminal accessing are the necessary trend of the development of optical satellite communication. Considering the resources, missions and restraints of Data Relay Satellite Optical Communication System, a model of optical communication resources scheduling is established and a scheduling algorithm based on artificial intelligent optimization is put forwarded. According to the multi-relay-satellite, multi-user-satellite, multi-optical-antenna and multi-mission with several priority weights, the resources are scheduled reasonable by the operation: "Ascertain Current Mission Scheduling Time" and "Refresh Latter Mission Time-Window". The priority weight is considered as the parameter of the fitness function and the scheduling project is optimized by the Genetic Algorithm. The simulation scenarios including 3 relay satellites with 6 optical antennas, 12 user satellites and 30 missions, the simulation result reveals that the algorithm obtain satisfactory results in both efficiency and performance and resources scheduling model and the optimization algorithm are suitable in multi-relay-satellite, multi-user-satellite, and multi-optical-antenna recourses scheduling problem.

  8. Satellite switching concepts for European business services in the nineties

    Science.gov (United States)

    Lombard, D.; Rouffet, D.

    A first generation of business communication satellites are now operational or to be launched. Increased demands for communication satellite facilities will develop, if special services, such as videoconferencing, can be provided at a reasonable cost. For such developments, it will be necessary to define a second generation of business communication satellites. The present investigation evaluates briefly the size of the expected European market for 1995. A study is conducted of the payload structure for the required satellite system, and aspects related to link budgets and power consumption are explored. It is found that system dimensioning is determined by the up-link and by technology. Critical factors are related to the output and input multiplexors for the link budget, the switching matrix, and implications for the mass budget. The best trade-off between technological, mass, and link budget limitations is achieved in connection with the employment of a hinged antennas satellite, using an intermediate number of spot beams and associated earth stations of reasonable size.

  9. Reusable Communication Infrastructure for Small Satellites

    Data.gov (United States)

    National Aeronautics and Space Administration — The research goal of this project is to develop a comprehensive communications reference architecture that is applicable to a wide variety of small satellite...

  10. Effect of Ionosphere on Geostationary Communication Satellite Signals

    Science.gov (United States)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    Geostationary orbit (GEO) communications satellites allow radio, television, and telephone transmissions to be sent live anywhere in the world. They are extremely important in daily life and also for military applications. Since, satellite communication is an expensive technology addressing crowd of people, it is critical to improve the performance of this technology. GEO satellites are at 35,786 kilometres from Earth's surface situated directly over the equator. A satellite in a geostationary orbit (GEO) appears to stand still in the sky, in a fixed position with respect to an observer on the earth, because the satellite's orbital period is the same as the rotation rate of the Earth. The advantage of this orbit is that ground antennas can be fixed to point towards to satellite without their having to track the satellite's motion. Radio frequency ranges used in satellite communications are C, X, Ku, Ka and even EHG and V-band. Satellite signals are disturbed by atmospheric effects on the path between the satellite and the receiver antenna. These effects are mostly rain, cloud and gaseous attenuation. It is expected that ionosphere has a minor effect on the satellite signals when the ionosphere is quiet. But there are anomalies and perturbations on the structure of ionosphere with respect to geomagnetic field and solar activity and these conditions may cause further affects on the satellite signals. In this study IONOLAB-RAY algorithm is adopted to examine the effect of ionosphere on satellite signals. IONOLAB-RAY is developed to calculate propagation path and characteristics of high frequency signals. The algorithm does not have any frequency limitation and models the plasmasphere up to 20,200 km altitude, so that propagation between a GEO satellite and antenna on Earth can be simulated. The algorithm models inhomogeneous, anisotropic and time dependent structure of the ionosphere with a 3-D spherical grid geometry and calculates physical parameters of the

  11. New Channel Coding Methods for Satellite Communication

    Directory of Open Access Journals (Sweden)

    J. Sebesta

    2010-04-01

    Full Text Available This paper deals with the new progressive channel coding methods for short message transmission via satellite transponder using predetermined length of frame. The key benefits of this contribution are modification and implementation of a new turbo code and utilization of unique features with applications of methods for bit error rate estimation and algorithm for output message reconstruction. The mentioned methods allow an error free communication with very low Eb/N0 ratio and they have been adopted for satellite communication, however they can be applied for other systems working with very low Eb/N0 ratio.

  12. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    Science.gov (United States)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  13. COMMUNICATION SATELLITES FOR EDUCATION, SCIENCE AND CULTURE. REPORTS AND PAPERS ON MASS COMMUNICATION, NO. 53.

    Science.gov (United States)

    SCHRAMM, WILBUR

    THE TECHNOLOGY OF COMMUNICATION SATELLITES IS SUFFICIENTLY ADVANCED THAT CONCERNED AGENCIES, SUCH AS UNESCO, SHOULD BEGIN TO PLAN FOR THEIR USE IN EXCHANGE OF DATA, NEWS TRANSMISSION, CULTURAL EXCHANGE, AND EDUCATION. GROUNDWORK IN TECHNOLOGY, IN THE DESIGN OF A SATELLITE COMMUNICATION SYSTEM, IN VALUE JUDGMENTS, IN AGREEMENTS OF COOPERATION AND…

  14. Advanced Communications Technology Satellite (ACTS): Four-Year System Performance

    Science.gov (United States)

    Acosta, Roberto J.; Bauer, Robert; Krawczyk, Richard J.; Reinhart, Richard C.; Zernic, Michael J.; Gargione, Frank

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) was conceived at the National Aeronautics and Space Administration (NASA) in the late 1970's as a follow-on program to ATS and CTS to continue NASA's long history of satellite communications projects. The ACTS project set the stage for the C-band satellites that started the industry, and later the ACTS project established the use of Ku-band for video distribution and direct-to-home broadcasting. ACTS, launched in September 1993 from the space shuttle, created a revolution in satellite system architecture by using digital communications techniques employing key technologies such as a fast hopping multibeam antenna, an on-board baseband processor, a wide-band microwave switch matrix, adaptive rain fade compensation, and the use of 900 MHz transponders operating at Ka-band frequencies. This paper describes the lessons learned in each of the key ACTS technology areas, as well as in the propagation investigations.

  15. DOA estimation for attitude determination on communication satellites

    Directory of Open Access Journals (Sweden)

    Yang Bin

    2014-06-01

    Full Text Available In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA estimation of a ground signal source. It differs from optical measurement, magnetic field measurement, inertial measurement, and global positioning system (GPS attitude determination. The proposed method is characterized by taking the ground signal source as the attitude reference and acquiring attitude information from DOA estimation. Firstly, an attitude measurement equation with DOA estimation is derived in detail. Then, the error of the measurement equation is analyzed. Finally, an attitude determination algorithm is presented using a dynamic model, the attitude measurement equation, and measurement errors. A developing low Earth orbit (LEO satellite which tests mobile communication technology with smart antennas can be stabilized in three axes by corporately using a magnetometer, reaction wheels, and three-axis magnetorquer rods. Based on the communication satellite, simulation results demonstrate the effectiveness of the method. The method could be a backup of attitude determination to prevent a system failure on the satellite. Its precision depends on the number of snapshots and the input signal-to-noise ratio (SNR with DOA estimation.

  16. Digital optical feeder links system for broadband geostationary satellite

    Science.gov (United States)

    Poulenard, Sylvain; Mège, Alexandre; Fuchs, Christian; Perlot, Nicolas; Riedi, Jerome; Perdigues, Josep

    2017-02-01

    An optical link based on a multiplex of wavelengths at 1.55μm is foreseen to be a valuable solution for the feeder link of the next generation of high-throughput geostationary satellite. The main satellite operator specifications for such link are an availability of 99.9% over the year, a capacity around 500Gbit/s and to be bent-pipe. Optical ground station networks connected to Terabit/s terrestrial fibers are proposed. The availability of the optical feeder link is simulated over 5 years based on a state-of-the-art cloud mask data bank and an atmospheric turbulence strength model. Yearly and seasonal optical feeder link availabilities are derived and discussed. On-ground and on-board terminals are designed to be compliant with 10Gbit/s per optical channel data rate taking into account adaptive optic systems to mitigate the impact of atmospheric turbulences on single-mode optical fiber receivers. The forward and return transmission chains, concept and implementation, are described. These are based on a digital transparent on-off keying optical link with digitalization of the DVB-S2 and DVB-RCS signals prior to the transmission, and a forward error correcting code. In addition, the satellite architecture is described taking into account optical and radiofrequency payloads as well as their interfaces.

  17. Spread spectrum mobile communication experiment using ETS-V satellite

    Science.gov (United States)

    Ikegami, Tetsushi; Suzuki, Ryutaro; Kadowaki, Naoto; Taira, Shinichi; Sato, Nobuyasu

    1990-01-01

    The spread spectrum technique is attractive for application to mobile satellite communications, because of its random access capability, immunity to inter-system interference, and robustness to overloading. A novel direct sequence spread spectrum communication equipment is developed for land mobile satellite applications. The equipment is developed based on a matched filter technique to improve the initial acquisition performance. The data rate is 2.4 kilobits per sec. and the PN clock rate is 2.4552 mega-Hz. This equipment also has a function of measuring the multipath delay profile of land mobile satellite channel, making use of a correlation property of a PN code. This paper gives an outline of the equipment and the field test results with ETS-V satellite.

  18. TETRA Backhauling via Satellite: Improving Call Setup Times and Saving Bandwidth

    Directory of Open Access Journals (Sweden)

    Anton Donner

    2014-01-01

    Full Text Available In disaster management scenarios with seriously damaged, not existing, or saturated communication infrastructures satellite communications can be an ideal means to provide connectivity with unaffected remote terrestrial trunked radio (TETRA core networks. However, the propagation delay imposed by the satellite link affects the signalling protocols. This paper discusses the suitability of using a satellite link for TETRA backhauling, introducing two different architectures. In order to cope with the signal delay of the satellite link, the paper proposes and analyzes a suitable solution based on the use of a performance enhancing proxy (PEP. Additionally, robust header compression (ROHC is discussed as suitable technology to transmit TETRA voice via IP-based satellite networks.

  19. Computer-Aided Communication Satellite System Analysis and Optimization.

    Science.gov (United States)

    Stagl, Thomas W.; And Others

    Various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. The rationale for selecting General Dynamics/Convair's Satellite Telecommunication Analysis and Modeling Program (STAMP) in modified form to aid in the system costing and sensitivity analysis work in the Program on…

  20. Multiquantum well beam-steering device for laser satellite communication

    Science.gov (United States)

    Lahat, Roee; Levy, Itamar; Shlomi, Arnon

    2002-01-01

    With the increasing interest in laser satellite communications, new methods are sought to solve the existing problems of accurate and rapid laser beam deflection. Current solutions in the form of galvanometers or piezo fast steering mirrors with one or two degrees of freedom are bulky, power-consuming and slow. The Multi-Quantum Well (MQW) is a semiconductor device with unique potential to steer laser beams without any moving parts. We have conducted a preliminary evaluation of the potential application of the MQW as a laser beam-steering device for laser satellite communication, examining the performance of critical parameters for this type of communications.

  1. Vibration noise control in laser satellite communication

    Science.gov (United States)

    Saksonov, Avigdor; Shlomi, Arnon; Kopeika, Norman S.

    2001-08-01

    Laser satellite communication has become especially attractive in recent years. Because the laser beam width is narrow than in the RF or microwave range, the transmitted optical power may be significantly reduced. This leads to development of miniature communication systems with extremely low power consumption. On the other hand, the laser communication channel is very sensitive to vibrations of the optical platform. These vibrations cause angular noise in laser beam pointing, comparable to the laser beam width. As result, as significant portion of the optical power between transmitter and receiver is lost and the bit error rate is increased. Consequently, vibration noise control is a critical problem in laser satellite communication. The direction of the laser beam is corrected with a fast steering mirror (FSM). In this paper are presented two approaches for the FSM control. One is the feedback control that uses an LQG algorithm. The second is the direct feed- forward control when vibration noise is measured by three orthogonal accelerometers and drives directly the F SM. The performances of each approach are evaluated using MATLAB simulations.

  2. 78 FR 31576 - Enforcement Proceeding; Certain Two-Way Global Satellite Communication Devices, System and...

    Science.gov (United States)

    2013-05-24

    ...-Way Global Satellite Communication Devices, System and Components Thereof; Notice of Institution of... importation of certain two-way global satellite communication devices, system and components thereof by reason... importation any two-way global satellite communication devices, system, and components thereof that infringe...

  3. Economic benefits of the Space Station to commercial communication satellite operators

    Science.gov (United States)

    Price, Kent M.; Dixson, John E.; Weyandt, Charles J.

    1987-01-01

    The economic and financial aspects of newly defined space-based activities, procedures, and operations (APOs) and associated satellite system designs are presented that have the potential to improve economic performance of future geostationary communications satellites. Launch insurance, launch costs, and the economics of APOs are examined. Retrieval missions and various Space Station scenarios are addressed. The potential benefits of the new APOs to the commercial communications satellite system operator are quantified.

  4. Laser experiments in light cloudiness with the geostationary satellite ARTEMIS

    Science.gov (United States)

    Kuzkov, V.; Kuzkov, S.; Sodnik, Z.

    2016-08-01

    The geostationary satellite ARTEMIS was launched in July 2001. The satellite is equipped with a laser communication terminal, which was used for the world's first inter-satellite laser communication link between ARTEMIS and the low earth orbit satellite SPOT-4. Ground-to-space laser communication experiments were also conducted under various atmospheric conditions involving ESA's optical ground station. With a rapidly increasing volume of information transferred by geostationary satellites, there is a rising demand for high-speed data links between ground stations and satellites. For ground-to-space laser communications there are a number of important design parameters that need to be addressed, among them, the influence of atmospheric turbulence in different atmospheric conditions and link geometries. The Main Astronomical Observatory of NAS of Ukraine developed a precise computer tracking system for its 0.7 m AZT-2 telescope and a compact laser communication package LACES (Laser Atmosphere and Communication experiments with Satellites) for laser communication experiments with geostationary satellites. The specially developed software allows computerized tracking of the satellites using their orbital data. A number of laser experiments between MAO and ARTEMIS were conducted in partial cloudiness with some amount of laser light observed through clouds. Such conditions caused high break-up (splitting) of images from the laser beacon of ARTEMIS. One possible explanation is Raman scattering of photons on molecules of a water vapor in the atmosphere. Raman scattering causes a shift in a wavelength of the photons.In addition, a different value for the refraction index appears in the direction of the meridian for the wavelength-shifted photons. This is similar to the anomalous atmospheric refraction that appears at low angular altitudes above the horizon. We have also estimated the atmospheric attenuation and the influence of atmospheric turbulence on observed results

  5. Microprocessor-controlled CAMAC data link module

    International Nuclear Information System (INIS)

    Potter, J.M.

    1978-05-01

    Communication between the central control computer and remote, satellite data-acquisition/control stations at the Clinton P. Anderson Meson Physics Facility (LAMPF) is presently accomplished through the use of CAMAC-based Data Link modules. With the advent of the microprocessor, a new philosophy for digital data communications has evolved. Data Link modules containing microprocessor controllers provide link management and communication network protocol through algorithms executed in the Data Link microprocessor. 13 figures

  6. TYCHO: Demonstrator and operational satellite mission to Earth-Moon-Libration point EML-4 for communication relay provision as a service

    Science.gov (United States)

    Hornig, Andreas; Homeister, Maren

    2015-03-01

    In the current wake of mission plans to the Moon and to Earth-Moon Libration points (EML) by several agencies and organizations, TYCHO identifies the key role of telecommunication provision for the future path of lunar exploration. It demonstrates an interesting extension to existing communication methods to the Moon and beyond by combining innovative technology with a next frontier location and the commercial space communication sector. It is evident that all communication systems will rely on direct communication to Earth ground stations. In case of EML-2 missions around HALO orbits or bases on the far side of the Moon, it has to be extended by communication links via relay stations. The innovative approach is that TYCHO provides this relay communication to those out-of-sight lunar missions as a service. TYCHO will establish a new infrastructure for future missions and even create a new market for add-on relay services. The TMA-0 satellite is TYCHO's first phase and a proposed demonstrator mission to the Earth-Moon Libration point EML-4. It demonstrates relay services needed for automated exploratory and manned missions (Moon bases) on the rim (>90°E and >90°W) and far side surface, to lunar orbits and even to EML-2 halo orbits (satellites and space stations). Its main advantage is the permanent availability of communication coverage. This will provide full access to scientific and telemetry data and furthermore to crucial medical monitoring and safety. The communication subsystem is a platform for conventional communication but also a test-bed for optical communication with high data-rate LASER links to serve the future needs of manned bases and periodic burst data-transfer from lunar poles. The operational TMA-1 satellite is a stand-alone mission integrated into existing space communication networks to provide open communication service to external lunar missions. Therefore the long-time stable libration points EML-4 and -5 are selected to guarantee an

  7. Hybrid Maritime Satellite Communication Antenna

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst

    Hybrid antennas for a maritime satellite communication terminal with simultaneous operation at L- and Ka-band have been investigated. The frequency bands of interest are 1; 525:0 1; 660:5 MHz (RX+TX, RHCP), 19:7 20:2 (RX, LHCP) and 29:5 30:0 GHz (TX, RHCP), which are all part of the Inmarsat BGAN...

  8. UAS CNPC Satellite Link Performance - Sharing Spectrum with Terrestrial Systems

    Science.gov (United States)

    Kerczewski, Robert J.; Wilson, Jeffrey D.; Bishop, William D.

    2016-01-01

    In order to provide for the safe integration of unmanned aircraft systems into the National Airspace System, the control and non-payload communications (CNPC) link connecting the ground-based pilot with the unmanned aircraft must be highly reliable. A specific requirement is that it must operate using aviation safety radiofrequency spectrum. The 2012 World Radiocommunication Conference (WRC-12) provided a potentially suitable allocation for radio line-of-sight (LOS), terrestrial based CNPC link at 5030-5091 MHz. For a beyond radio line-of-sight (BLOS), satellite-based CNPC link, aviation safety spectrum allocations are currently inadequate. Therefore, the 2015 WRC will consider the use of Fixed Satellite Service (FSS) bands to provide BLOS CNPC under Agenda Item 1.5. This agenda item requires studies to be conducted to allow for the consideration of how unmanned aircraft can employ FSS for BLOS CNPC while maintaining existing systems. Since there are terrestrial Fixed Service systems also using the same frequency bands under consideration in Agenda Item 1.5 one of the studies required considered spectrum sharing between earth stations on-board unmanned aircraft and Fixed Service station receivers. Studies carried out by NASA have concluded that such sharing is possible under parameters previously established by the International Telecommunications Union. As the preparation for WRC-15 has progressed, additional study parameters Agenda Item 1.5 have been proposed, and some studies using these parameters have been added. This paper examines the study results for the original parameters as well as results considering some of the more recently proposed parameters to provide insight into the complicated process of resolving WRC-15 Agenda Item 1.5 and achieving a solution for BLOS CNPC for unmanned aircraft.

  9. Satellite switched FDMA advanced communication technology satellite program

    Science.gov (United States)

    Atwood, S.; Higton, G. H.; Wood, K.; Kline, A.; Furiga, A.; Rausch, M.; Jan, Y.

    1982-01-01

    The satellite switched frequency division multiple access system provided a detailed system architecture that supports a point to point communication system for long haul voice, video and data traffic between small Earth terminals at Ka band frequencies at 30/20 GHz. A detailed system design is presented for the space segment, small terminal/trunking segment at network control segment for domestic traffic model A or B, each totaling 3.8 Gb/s of small terminal traffic and 6.2 Gb/s trunk traffic. The small terminal traffic (3.8 Gb/s) is emphasized, for the satellite router portion of the system design, which is a composite of thousands of Earth stations with digital traffic ranging from a single 32 Kb/s CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as 33 Mb/s. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both traffic models A and B with minimum reorganization of the satellite payload transponder subsystem hardware design. The unique zoning concept allows multiple beam antennas while maximizing multiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicate a weight and dc power budget of 353 lbs, 195 watts for traffic model A and 498 lbs, 244 watts for traffic model B.

  10. Mission studies on constellation of LEO satellites with remote-sensing and communication payloads

    Science.gov (United States)

    Chen, Chia-Ray; Hwang, Feng-Tai; Hsueh, Chuang-Wei

    2017-09-01

    Revisiting time and global coverage are two major requirements for most of the remote sensing satellites. Constellation of satellites can get the benefit of short revisit time and global coverage. Typically, remote sensing satellites prefer to choose Sun Synchronous Orbit (SSO) because of fixed revisiting time and Sun beta angle. The system design and mission operation will be simple and straightforward. However, if we focus on providing remote sensing and store-and-forward communication services for low latitude countries, Sun Synchronous Orbit will not be the best choice because we need more satellites to cover the communication service gap in low latitude region. Sometimes the design drivers for remote sensing payloads are conflicted with the communication payloads. For example, lower orbit altitude is better for remote sensing payload performance, but the communication service zone will be smaller and we need more satellites to provide all time communication service. The current studies focus on how to provide remote sensing and communication services for low latitude countries. A cost effective approach for the mission, i.e. constellation of microsatellites, will be evaluated in this paper.

  11. Medical image transmission via communication satellite. Evaluation of bone scintigraphy

    International Nuclear Information System (INIS)

    Suzuki, Hideki; Inoue, Tomio; Endo, Keigo; Shimamoto, Shigeru.

    1995-01-01

    As compared with terrestrial circuits, the communication satellite possesses superior characteristics such as wide area coverage, broadcasting, high capacity, and robustness to disasters. Utilizing the narrow band channel (64 kbps) of the geostationary satellite JCSAT 1 located at the altitude of 36,000 km above the equator, the authors investigated satellite-relayed medical imagings by video signals, with bone scintigraphy as a model. Each bone scintigraphy was taken by a handy-video camera, digitalized and transmitted from faculty of technology located at 25 kilometers apart from our department. Clear bone scintigraphy was obtained via satellite, as seen on the view box. Eight nuclear physicians evaluated 20 cases of bone scintigraphy. ROC (Receiver Operating Characteristic) analysis was performed between the scintigraphies on view box and via satellite by the rating method. The area under the ROC curve was 91.6±2.6% via satellite, and 93.2±2.4% on the view box and there was no significant difference between them. These results suggest that the satellite communication is very useful and effective system to send nuclear imagings to distant institutes. (author)

  12. [Medical image transmission via communication satellite: evaluation of bone scintigraphy].

    Science.gov (United States)

    Suzuki, H; Inoue, T; Endo, K; Shimamoto, S

    1995-10-01

    As compared with terrestrial circuits, the communication satellite possesses superior characteristics such as wide area coverage, broadcasting, high capacity, and robustness to disasters. Utilizing the narrow band channel (64 kbps) of the geostationary satellite JCSAT1 located at the altitude of 36,000 km above the equator, the authors investigated satellite-relayed medical images by video signals, with bone scintigraphy as a model. Each bone scintigraphy was taken by a handy-video camera, digitalized and transmitted from faculty of technology located at 25 kilometers apart from our department. Clear bone scintigraphy was obtained via satellite, as seen on the view box. Eight nuclear physicians evaluated 20 cases of bone scintigraphy. ROC (Receiver Operating Characteristic) analysis was performed between the scintigraphies on view box and via satellite by the rating method. The area under the ROC curve was 91.6 +/- 2.6% via satellite, and 93.2 +/- 2.4% on the view box and there was no significant difference between them. These results suggest that the satellite communication is very useful and effective system to send nuclear imagings to distant institutes.

  13. Satellite outreach in Asia and the Pacific.

    Science.gov (United States)

    1977-01-01

    Communication by satellite is rapidly changing information exchange in Asia, especially for rural areas. The integrated education planned for satellite networks includes family planning as part of general development. A series of conferences has already been held successfully via satellite for family planning associations who are members of the East and Southeast Asia and Oceania Region of the International Planned Parenthood Federation. These included a conference on nursing training. In India the Satellite Instructional Television Experiment (SITE) made history during its 1-year trial. By 1981 the entire nation is to be linked by satellite. The question is whether the television education will truly change rural life or whether it will become merely a diversion. In Indonesia, satellites were chosen as the fastest way to obtain interisland communication. The Domsat system links the entire 13,000-island archipelago and is already being used for emergency communications. The system, which was developed in 1 1/2 years by the Hughes Aircraft Corporation will be used for teaching basic health, hygiene, and family planning. It will be several years before Domsat is fully operational, but it bears watching.

  14. College curriculum-sharing via CTS. [Communications Technology Satellite

    Science.gov (United States)

    Hudson, H. E.; Guild, P. D.; Coll, D. C.; Lumb, D. R.

    1975-01-01

    Domestic communication satellites and video compression techniques will increase communication channel capacity and reduce cost of video transmission. NASA Ames Research Center, Stanford University and Carleton University are participants in an experiment to develop, demonstrate, and evaluate college course sharing techniques via satellite using video compression. The universities will exchange televised seminar and lecture courses via CTS. The experiment features real-time video compression with channel coding and quadra-phase modulation for reducing transmission bandwidth and power requirements. Evaluation plans and preliminary results of Carleton surveys on student attitudes to televised teaching are presented. Policy implications for the U.S. and Canada are outlined.

  15. Advanced Communication Technology Satellite (ACTS) multibeam antenna technology verification experiments

    Science.gov (United States)

    Acosta, Roberto J.; Larko, Jeffrey M.; Lagin, Alan R.

    1992-01-01

    The Advanced Communication Technology Satellite (ACTS) is a key to reaching NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams, and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna with rapidly reconfigurable hopping and fixed spot beam to serve users equipped with small-aperature terminals within the coverage areas. The proposed antenna technology experiments are designed to evaluate in-orbit ACTS multibeam antenna performance (radiation pattern, gain, cross pol levels, etc.).

  16. The ACTS Flight System - Cost-Effective Advanced Communications Technology. [Advanced Communication Technology Satellite

    Science.gov (United States)

    Holmes, W. M., Jr.; Beck, G. A.

    1984-01-01

    The multibeam communications package (MCP) for the Advanced Communications Technology Satellite (ACTS) to be STS-launched by NASA in 1988 for experimental demonstration of satellite-switched TDMA (at 220 Mbit/sec) and baseband-processor signal routing (at 110 or 27.5 Mbit/sec) is characterized. The developmental history of the ACTS, the program definition, and the spacecraft-bus and MCP parameters are reviewed and illustrated with drawings, block diagrams, and maps of the coverage plan. Advanced features of the MPC include 4.5-dB-noise-figure 30-GHz FET amplifiers and 20-GHz TWTA transmitters which provide either 40-W or 8-W RF output, depending on rain conditions. The technologies being tested in ACTS can give frequency-reuse factors as high as 20, thus greatly expanding the orbit/spectrum resources available for U.S. communications use.

  17. Study to forecast and determine characteristics of world satellite communications market

    Science.gov (United States)

    Filep, R. T.; Schnapf, A.; Fordyce, S. W.

    1983-01-01

    The world commercial communications satellite market during the spring and summer of 1983 was examined and characteristics and forecasts of the market extending to the year 2000 were developed. Past, present and planned satellites were documented in relation to frequencies, procurement and launch dates, costs, transponders, and prime contractor. Characteristics of the market are outlined for the periods 1965 - 1985, 1986 - 1989, and 1990 - 2000. Market share forecasts, discussions of potential competitors in various world markets, and profiles of major communication satellite manufacturing and user countries are documented.

  18. Space Communication Artificial Intelligence for Link Evaluation Terminal (SCAILET)

    Science.gov (United States)

    Shahidi, Anoosh K.; Schlegelmilch, Richard F.; Petrik, Edward J.; Walters, Jerry L.

    1992-01-01

    A software application to assist end-users of the high burst rate (HBR) link evaluation terminal (LET) for satellite communications is being developed. The HBR LET system developed at NASA Lewis Research Center is an element of the Advanced Communications Technology Satellite (ACTS) Project. The HBR LET is divided into seven major subsystems, each with its own expert. Programming scripts, test procedures defined by design engineers, set up the HBR LET system. These programming scripts are cryptic, hard to maintain and require a steep learning curve. These scripts were developed by the system engineers who will not be available for the end-users of the system. To increase end-user productivity a friendly interface needs to be added to the system. One possible solution is to provide the user with adequate documentation to perform the needed tasks. With the complexity of this system the vast amount of documentation needed would be overwhelming and the information would be hard to retrieve. With limited resources, maintenance is another reason for not using this form of documentation. An advanced form of interaction is being explored using current computer techniques. This application, which incorporates a combination of multimedia and artificial intelligence (AI) techniques to provided end-users with an intelligent interface to the HBR LET system, is comprised of an intelligent assistant, intelligent tutoring, and hypermedia documentation. The intelligent assistant and tutoring systems address the critical programming needs of the end-user.

  19. TWT design requirements for 30/20 GHz digital communications' satellite

    Science.gov (United States)

    Stankiewicz, N.; Anzic, G.

    1979-01-01

    The rapid growth of communication traffic (voice, data, and video) requires the development of additional frequency bands before the 1990's. The frequencies currently in use for satellite communications at 6/4 GHz are crowded and demands for 14/12 GHz systems are increasing. Projections are that these bands will be filled to capacity by the late 1980's. The next higher frequency band allocated for satellite communications is at 30/20 GHz. For interrelated reasons of efficiency, power level, and system reliability criteria, a candidate for the downlink amplifier in a 30/20 GHz communications' satellite is a dual mode traveling wave tube (TWT) equipped with a highly efficient depressed collector. A summary is given of the analyses which determine the TWT design requirements. The overall efficiency of such a tube is then inferred from a parametric study and from experimental data on multistaged depressed collectors. The expected TWT efficiency at 4 dB below output saturation is 24 percent in the high mode and 22 percent in the low mode.

  20. Antennas for mobile satellite communications

    Science.gov (United States)

    Huang, John

    1991-12-01

    A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.

  1. A demand assignment control in international business satellite communications network

    Science.gov (United States)

    Nohara, Mitsuo; Takeuchi, Yoshio; Takahata, Fumio; Hirata, Yasuo

    An experimental system is being developed for use in an international business satellite (IBS) communications network based on demand-assignment (DA) and TDMA techniques. This paper discusses its system design, in particular from the viewpoints of a network configuration, a DA control, and a satellite channel-assignment algorithm. A satellite channel configuration is also presented along with a tradeoff study on transmission rate, HPA output power, satellite resource efficiency, service quality, and so on.

  2. A digital simulation of message traffic for natural disaster warning communications satellite

    Science.gov (United States)

    Hein, G. F.; Stevenson, S. M.

    1972-01-01

    Various types of weather communications are required to alert industries and the general public about the impending occurrence of tornados, hurricanes, snowstorms, floods, etc. A natural disaster warning satellite system has been proposed for meeting the communications requirements of the National Oceanic and Atmospheric Administration. Message traffic for a communications satellite was simulated with a digital computer in order to determine the number of communications channels to meet system requirements. Poisson inputs are used for arrivals and an exponential distribution is used for service.

  3. Implementation of Multiple Access Techniques Applicable for Maritime Satellite Communications

    Directory of Open Access Journals (Sweden)

    Stojce Dimov Ilcev

    2013-12-01

    Full Text Available In this paper are introduced fundamentals, characteristics, advantages and disadvantages of Multiple Access (MA employed as transmission techniques in the Maritime Mobile Satellite Communications (MMSC between ships and Coast Earth Station (CES via Geostationary Earth Orbit (GEO or Not-GEO satellite constellations. In fixed satellite communication, as a rule, especially in MMSC many users are active at the same time. The problem of simultaneous communications between many single or multipoint mobile satellite users can be solved by using MA technique, such as Frequency Division Multiple Access (FDMA, Time Division Multiple Access (TDMA, Code Division Multiple Access (CDMA, Space Division Multiple Access (SDMA and Random (Packet Division Multiple Access (RDMA. Since the resources of the systems such as the transmitting power and the bandwidth are limited, it is advisable to use the channels with complete charge and to create a different MA to the channel. This generates a problem of summation and separation of signals in the transmission and reception parts, respectively. Deciding this problem consists in the development of orthogonal channels of transmission in order to divide signals from various users unambiguously on the reception part.

  4. ESA personal communications and digital audio broadcasting systems based on non-geostationary satellites

    Science.gov (United States)

    Logalbo, P.; Benedicto, J.; Viola, R.

    1993-01-01

    Personal Communications and Digital Audio Broadcasting are two new services that the European Space Agency (ESA) is investigating for future European and Global Mobile Satellite systems. ESA is active in promoting these services in their various mission options including non-geostationary and geostationary satellite systems. A Medium Altitude Global Satellite System (MAGSS) for global personal communications at L and S-band, and a Multiregional Highly inclined Elliptical Orbit (M-HEO) system for multiregional digital audio broadcasting at L-band are described. Both systems are being investigated by ESA in the context of future programs, such as Archimedes, which are intended to demonstrate the new services and to develop the technology for future non-geostationary mobile communication and broadcasting satellites.

  5. 77 FR 58579 - Certain Two-Way Global Satellite Communication Devices, System and Components Thereof...

    Science.gov (United States)

    2012-09-21

    ... Communication Devices, System and Components Thereof; Institution of Investigation Pursuant to 19 U.S.C. 1337... certain two-way global satellite communication devices, system and components thereof that infringe one or... within the United States after importation of certain two-way global satellite communication devices...

  6. Communications Satellite Systems Conference, 9th, San Diego, CA, March 7-11, 1982, Collection of Technical Papers

    Science.gov (United States)

    The Shuttle-to-Geostationary Orbital Transfer by mid-level thrust is considered along with multibeam antenna concepts for global communications, the antenna pointing systems for large communication satellites, the connection phase of multidestination protocols for broadcast satellites, and an experiment in high-speed international packet switching. Attention is given to a dynamic switch matrix for the TDMA satellite switching system, the characterization of 16 bit microprocessors for space use, in-orbit operation and test of Intelsat V satellites, the first operational communications system via satellite in Europe, the Arab satellite communications systems, second generation business satellite systems for Europe, and a high performance Ku-band satellite for the 1980's. Other topics investigated are related to Ku-band terminal design tradeoffs, progress in the definition of the Italian satellite for domestic telecommunications, future global satellite systems for Intelsat, and satellite refuelling in orbit.

  7. The Use of a Satellite Communications System for Command and Control of the National Aeronautics and Space Administration Surrogate Unmanned Aerial System Research Aircraft

    Science.gov (United States)

    Howell, Charles T.; Jones, Frank; Hutchinson, Brian; Joyce, Claude; Nelson, Skip; Melum, Mike

    2017-01-01

    The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into an Unmanned Aerial Systems (UAS) Surrogate research aircraft which has served for several years as a platform for unmanned systems research and development. The aircraft is manned with a Safety Pilot and a Research Systems Operator (RSO) that allows for flight operations almost any-where in the national airspace system (NAS) without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be remotely controlled from a modular, transportable ground control station (GCS) like a true UAS. Ground control of the aircraft is accomplished by the use of data links that allow the two-way passage of the required data to control the aircraft and provide the GCS with situational awareness. The original UAS Surrogate data-link system was composed of redundant very high frequency (VHF) data radio modems with a maximum range of approximately 40 nautical miles. A new requirement was developed to extend this range beyond visual range (BVR). This new requirement led to the development of a satellite communications system that provided the means to command and control the UAS Surrogate at ranges beyond the limits of the VHF data links. The system makes use of the Globalstar low earth orbit (LEO) satellite communications system. This paper will provide details of the development, implementation, and flight testing of the satellite data communications system on the UAS Surrogate research aircraft.

  8. Communication Media and Educational Technology: An Overview and Assessment with Reference to Communication Satellites.

    Science.gov (United States)

    Ohlman, Herbert

    In this survey and analysis of the present state and future trends of communication media and educational technology, particular emphasis is placed on the potential uses of communication satellites and the substitution of electronic transmission for physical distribution of educational materials. The author analyzes in detail the characteristics…

  9. Investigation of multipactor breakdown in communication satellite

    Indian Academy of Sciences (India)

    Multipactor breakdown or multipactor discharge is a form of high frequency discharge that may occur in microwave components operating at very low pressures. Some RF components of multi-channel communication satellites have co-axial geometry and handle high RF power under near-vacuum conditions.

  10. Japan's telecommunications - New initiatives in space communications

    Science.gov (United States)

    Iida, T.

    1992-04-01

    Despite recent advances in optical transmission technology, intensive R&D work in the field of satellite communications is now being undertaken in Japan. It is believed that satellites offer advantages in several important areas, including wide coverage broadcasting, immediacy of service, suitability for the implementation of HDTV, and advantages in disaster communications and other social services. Here, some experimental projects in the field of satellite communications planned in Japan for the 1990s are summarized. In particular, attention is given to broadcast satellite development, intersatellite links, advanced mobile communication concepts, large antenna assembly experiment, small satellite R&D, and Pan-Pacific information network experiment.

  11. Simulation and Analysis of Autonomous Time Synchronization Based on Asynchronism Two-way Inter-satellite Link

    Science.gov (United States)

    Fang, L.; Yang, X. H.; Sun, B. Q.; Qin, W. J.; Kong, Y.

    2013-09-01

    The measurement of the inter-satellite link is one of the key techniques in the autonomous operation of satellite navigation system. Based on the asynchronism inter-satellite two-way measurement mode in GPS constellation, the reduction formula of the inter-satellite time synchronization is built in this paper. Moreover, the corrective method of main systematic errors is proposed. Inter-satellite two-way time synchronization is simulated on the basis of IGS (International GNSS Service) precise ephemeris. The impacts of the epoch domestication of asynchronism inter-satellite link pseudo-range, the initial orbit, and the main systematic errors on satellite time synchronization are analyzed. Furthermore, the broadcast clock error of each satellite is calculated by the ``centralized'' inter-satellite autonomous time synchronization. Simulation results show that the epoch domestication of asynchronism inter-satellite link pseudo-range and the initial orbit have little impact on the satellite clock errors, and thus they needn't be taken into account. The errors caused by the relativistic effect and the asymmetry of path travel have large impact on the satellite clock errors. These should be corrected with theoretical formula. Compared with the IGS precise clock error, the root mean square of the broadcast clock error of each satellite is about 0.4 ns.

  12. A Study on Fuel Estimation Algorithms for a Geostationary Communication & Broadcasting Satellite

    Directory of Open Access Journals (Sweden)

    Jong Won Eun

    2000-12-01

    Full Text Available It has been developed to calculate fuel budget for a geostationary communication and broadcasting satellite. It is quite essential that the pre-launch fuel budget estimation must account for the deterministic transfer and drift orbit maneuver requirements. After on-station, the calculation of satellite lifetime should be based on the estimation of remaining fuel and assessment of actual performance. These estimations step from the proper algorithms to produce the prediction of satellite lifetime. This paper concentrates on the fuel estimation method that was studied for calculation of the propellant budget by using the given algorithms. Applications of this method are discussed for a communication and broadcasting satellite.

  13. Spectrum and power allocation in cognitive multi-beam satellite communications with flexible satellite payloads

    Science.gov (United States)

    Liu, Zhihui; Wang, Haitao; Dong, Tao; Yin, Jie; Zhang, Tingting; Guo, Hui; Li, Dequan

    2018-02-01

    In this paper, the cognitive multi-beam satellite system, i.e., two satellite networks coexist through underlay spectrum sharing, is studied, and the power and spectrum allocation method is employed for interference control and throughput maximization. Specifically, the multi-beam satellite with flexible payload reuses the authorized spectrum of the primary satellite, adjusting its transmission band as well as power for each beam to limit its interference on the primary satellite below the prescribed threshold and maximize its own achievable rate. This power and spectrum allocation problem is formulated as a mixed nonconvex programming. For effective solving, we first introduce the concept of signal to leakage plus noise ratio (SLNR) to decouple multiple transmit power variables in the both objective and constraint, and then propose a heuristic algorithm to assign spectrum sub-bands. After that, a stepwise plus slice-wise algorithm is proposed to implement the discrete power allocation. Finally, simulation results show that adopting cognitive technology can improve spectrum efficiency of the satellite communication.

  14. Worldwide satellite communications for the energy utility industry. Final report

    International Nuclear Information System (INIS)

    Skelton, R.L.

    1998-07-01

    Recent and future generations of low earth orbiting (LEO) satellites are promising new possibilities for using space communications to achieve operational improvements and business expansion in energy supply and delivery industries. The ability to reach remote locations with relatively inexpensive devices and infrastructure is a unique property of satellites. Applications include remote monitoring and control of distributed resources and emergency and personal communication. Satellite systems are emerging as a significant opportunity for investment minded utilities. Over a dozen groups are planning to launch a total of 1200 LEOs in the period from 1996 to 2006, at a probable cost of over $20 Billion. This large number of systems can provide a worldwide mix of narrow band and wideband services including data, voice, video and Internet access. This paper examines the two primary factors which have limited applications in the energy industry: cost and propagation delay. The former has so far limited the technology to fixed communications with a few important sites such as remote substations. The latter has rendered the technology unsuitable for applications where critical protection mechanisms are involved. These constraints are effectively countered by the emerging LEO systems. Big LEOs will be used for voice service, little LEOs will be the systems of choice for most utility data applications. The author concludes that there are good technical and business reasons to reconsider future satellite communications as an option for meeting certain strategic business objectives in power system management and customer oriented information services

  15. Global mobile satellite communications theory for maritime, land and aeronautical applications

    CERN Document Server

    Ilčev, Stojče Dimov

    2017-01-01

    This book discusses current theory regarding global mobile satellite communications (GMSC) for maritime, land (road and rail), and aeronautical applications. It covers how these can enable connections between moving objects such as ships, road and rail vehicles and aircrafts on one hand, and on the other ground telecommunications subscribers through the medium of communications satellites, ground earth stations, Terrestrial Telecommunication Networks (TTN), Internet Service Providers (ISP) and other wireless and landline telecommunications providers. This new edition covers new developments and initiatives that have resulted in land and aeronautical applications and the introduction of new satellite constellations in non-geostationary orbits and projects of new hybrid satellite constellations. The book presents current GMSC trends, mobile system concepts and network architecture using a simple mode of style with understandable technical information, characteristics, graphics, illustrations and mathematics equ...

  16. 22 CFR 123.27 - Special licensing regime for export to U.S. allies of commercial communications satellite...

    Science.gov (United States)

    2010-04-01

    .... allies of commercial communications satellite components, systems, parts, accessories, attachments and... export to U.S. allies of commercial communications satellite components, systems, parts, accessories... associated technical data for commercial communications satellites, and who are so registered with the...

  17. LEOPACK The integrated services communications system based on LEO satellites

    Science.gov (United States)

    Negoda, A.; Bunin, S.; Bushuev, E.; Dranovsky, V.

    LEOPACK is yet another LEO satellite project which provides global integrated services for 'business' communications. It utilizes packet rather then circuit switching in both terrestrial and satellite chains as well as cellular approach for frequencies use. Original multiple access protocols and decentralized network control make it possible to organize regionally or logically independent and world-wide networks. Relatively small number of satellites (28) provides virtually global network coverage.

  18. Development of a demand assignment/TDMA system for international business satellite communications

    Science.gov (United States)

    Nohara, Mitsuo; Takeuchi, Yoshio; Takahata, Fumio; Hirata, Yasuo; Yamazaki, Yoshiharu

    An experimental IBS (international business satellite) communications system based on a demand assignment and TDMA (time-division multiple-access) operation has been developed. The system utilizes a limited satellite resource efficiently and provides various kinds of ISDN services totally. A discussion is presented of the IBS network configurations suitable to international communications and describes the developed communications system from the viewpoint of the hardware and software implementation. The performance in terms of the transmission quality and call processing is also demonstrated.

  19. IMT-2000 Satellite Standards with Applications to Mobile Air Traffic Communications Networks

    Science.gov (United States)

    Shamma, Mohammed A.

    2004-01-01

    The International Mobile Telecommunications - 2000 (IMT-2000) standard and more specifically the Satellite component of it, is investigated as a potential alternative for communications to aircraft mobile users en-route and in terminal area. Its application to Air Traffic Management (ATM) communication needs is considered. A summary of the specifications of IMT-2000 satellite standards are outlined. It is shown via a system research analysis that it is possible to support most air traffic communication needs via an IMT-2000 infrastructure. This technology can compliment existing, or future digital aeronautical communications technologies such as VDL2, VDL3, Mode S, and UAT.

  20. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    Science.gov (United States)

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  1. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 1

    Science.gov (United States)

    Greenburg, J. S.; Gaelick, C.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-01-01

    Commercial organizations as well as government agencies invest in spacecraft (S/C) technology programs that are aimed at increasing the performance of communications satellites. The value of these programs must be measured in terms of their impacts on the financial performane of the business ventures that may ultimately utilize the communications satellites. An economic evaluation and planning capability was developed and used to assess the impact of NASA on-orbit propulsion and space power programs on typical fixed satellite service (FSS) and direct broadcast service (DBS) communications satellite business ventures. Typical FSS and DBS spin and three-axis stabilized spacecraft were configured in the absence of NASA technology programs. These spacecraft were reconfigured taking into account the anticipated results of NASA specified on-orbit propulsion and space power programs. In general, the NASA technology programs resulted in spacecraft with increased capability. The developed methodology for assessing the value of spacecraft technology programs in terms of their impact on the financial performance of communication satellite business ventures is described. Results of the assessment of NASA specified on-orbit propulsion and space power technology programs are presented for typical FSS and DBS business ventures.

  2. Satellite communication transponders and their reliability; Eisei tosai tsushin kiki oyobi shinraisei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, H [NTT Wireless System Laboratories, Kanagawa (Japan)

    1994-11-01

    The Engineering Test Satellite-VI is a large composite test satellite weighing two tons to perform different communication experiments. Adoption of the multi-beam satellite communication system has made possible to increase the transmission capacity, reduce the sizes of earth stations, and utilize frequencies more effectively. This paper describes the configuration of the relaying devices mounted thereon, the newly developed circuit technologies, and their reliability. The multi-beam satellite communication system mounts a number of transponders, with the frequency bands used divided into the 2.6/2.5 GHz band between the moving body and the satellite, the 6/4 GHz band for the channels between the earth stations and the satellite, and the 30/20 GHz band for the fixed communications. These arrangements were intended to achieve large size reduction as a result of applying the integrated circuit technology. The transmitters and the receivers corresponding to each beam are connected by using the satellite switches (16 inputs {times} 12 outputs). The parts used were general purpose ones rather than those specified in the MIL standards because of their number having reached so huge. Their reliability was ensured by long-term burn-in operations. 5 refs., 6 figs., 1 tab.

  3. Cross-polarisation discrimination-induced interference in dual-polarised high-capacity satellite communication systems

    Directory of Open Access Journals (Sweden)

    Abdulkareem Sarki Karasuwa

    2016-05-01

    Full Text Available The design of spectrally-efficient, high-throughput satellite (HTS systems with capacity approaching one terabit per second requires operating at Ka-band frequencies and above, where there are several gigahertz of allocated radio spectrum, using multiple spot beams with dual orthogonal polarisation mode. At these high frequencies, rain attenuation poses a major obstacle to the design of high-availability satellite links which are needed for the realisation of ubiquitous broadband multimedia communication services including high-speed Internet access at rural and remote locations. Furthermore, depolarisation-induced interference in such systems could have a performance-limiting impact if a co-channel cross-polar signal combines with system noise to drive the carrier-to-noise-plus-interference ratio (CNIR below an acceptable threshold. This paper employs real measurement data to investigate the impact of depolarisation-induced interference on dual-polarised HTS systems for temperate and tropical climatic regions. Scenarios that cause significant system performance degradation are analysed, including the effects of signal frequency, antenna size, and regional rainfall rate. The impact of depolarisation on system performance is quantified by the reductions in the CNIR and link availability of a dual-polarised system when compared with those of a similarly-dimensioned single-polarised system.

  4. First satellite mobile communication trials using BLQS-CDMA

    Science.gov (United States)

    Luzdemateo, Maria; Johns, Simon; Dothey, Michel; Vanhimbeeck, Carl; Deman, Ivan; Wery, Bruno

    1993-01-01

    In this paper, technical results obtained in the first MSBN Land mobile technical trial are reported. MSBN (Mobile Satellite Business Network) is a new program undertaken by the European Space Agency (ESA) to promote mobile satellite communication in Europe, in particular voice capability. The first phase of the MSBN system implementation plan is an experimental phase. Its purpose is to evaluate through field experiments the performance of the MSBN system prior to finalization of its specifications. Particularly, the objective is to verify in the field and possibly improve the performance of the novel satellite access technique BLQS-CDMA (Band Limited Quasi-Synchronous-Code Division Multiple Access), which is proposed as baseline for the MSBN.

  5. Application of communications satellites to educational development. [technology utilization/information systems - bibliographies

    Science.gov (United States)

    Morgan, R. P.

    1975-01-01

    A summary of research is presented. The broad objectives of this interdisciplinary research effort were: (1) to assess the role of satellite communications as a means of improving education in the United States, as well as in less-developed areas of the world; (2) to generate basic knowledge which will aid in making rational decisions about satellite application in the field of education in the years ahead; (3) to devise systems and strategies for improving education; and (4) to educate individuals who will be knowledgeable about aspects of satellite communications policy which transcend any single discipline.

  6. Satellite communications for the next generation telecommunication services and networks

    Science.gov (United States)

    Chitre, D. M.

    1991-01-01

    Satellite communications can play an important role in provisioning the next-generation telecommunication services and networks, provided the protocols specifying these services and networks are satellite-compatible and the satellite subnetworks, consisting of earth stations interconnected by the processor and the switch on board the satellite, interwork effectively with the terrestrial networks. The specific parameters and procedures of frame relay and broadband integrated services digital network (B-ISDN) protocols which are impacted by a satellite delay. Congestion and resource management functions for frame relay and B-ISDN are discussed in detail, describing the division of these functions between earth stations and on board the satellite. Specific onboard and ground functions are identified as potential candidates for their implementation via neural network technology.

  7. Multi-Satellite MIMO Communications at Ku-Band and Above: Investigations on Spatial Multiplexing for Capacity Improvement and Selection Diversity for Interference Mitigation

    Directory of Open Access Journals (Sweden)

    Liolis Konstantinos P

    2007-01-01

    Full Text Available This paper investigates the applicability of multiple-input multiple-output (MIMO technology to satellite communications at the Ku-band and above. After introducing the possible diversity sources to form a MIMO matrix channel in a satellite environment, particular emphasis is put on satellite diversity. Two specific different topics from the field of MIMO technology applications to satellite communications at these frequencies are further analyzed: (i capacity improvement achieved by MIMO spatial multiplexing systems and (ii interference mitigation achieved by MIMO diversity systems employing receive antenna selection. In the first case, a single-user capacity analysis of a satellite MIMO spatial multiplexing system is presented and a useful analytical closed form expression is derived for the outage capacity achieved. In the second case, a satellite MIMO diversity system with receive antenna selection is considered, adjacent satellite cochannel interference on its forward link is studied and an analytical model predicting the interference mitigation achieved is presented. In both cases, an appropriate physical MIMO channel model is assumed which takes into account the propagation phenomena related to the frequencies of interest, such as clear line-of-sight operation, high antenna directivity, the effect of rain fading, and the slant path lengths difference. Useful numerical results obtained through the analytical expressions derived are presented to compare the performance of multi-satellite MIMO systems to relevant single-input single-output (SISO ones.

  8. High Bandwidth Optical Links for Micro-Satellite Support

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)

    2016-01-01

    A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.

  9. The C3PO project: a laser communication system concept for small satellites

    Science.gov (United States)

    d'Humières, Benoît; Esmiller, Bruno; Gouy, Yann; Steck, Emilie; Quintana, Crisanto; Faulkner, Graham; O'Brien, Dominic; Sproll, Fabian; Wagner, Paul; Hampf, Daniel; Riede, Wolfgang; Salter, Michael; Wang, Qin; Platt, Duncan; Jakonis, Darius; Piao, Xiaoyu; Karlsson, Mikael; Oberg, Olof; Petermann, Ingemar; Michalkiewicz, Aneta; Krezel, Jerzy; Debowska, Anna; Thueux, Yoann

    2017-02-01

    The satellite market is shifting towards smaller (micro and nanosatellites), lowered mass and increased performance platforms. Nanosatellites and picosatellites have been used for a number of new, innovative and unique payloads and missions. This trend requires new concepts for a reduced size, a better performance/weight ratio and a reduction of onboard power consumption. In this context, disruptive technologies, such as laser-optical communication systems, are opening new possibilities. This paper presents the C3PO1 system, "advanced Concept for laser uplink/ downlink CommuniCation with sPace Objects", and the first results of the development of its key technologies. This project targets the design of a communications system that uses a ground-based laser to illuminate a satellite, and a Modulating Retro-Reflector (MRR) to return a beam of light modulated by data to the ground. This enables a downlink, without a laser source on the satellite. This architecture suits well to small satellite applications so as high data rates are potentially provided with very low board mass. C3PO project aims to achieve data rates of 1Gbit/s between LEO satellites and Earth with a communication payload mass of less than 1kilogram. In this paper, results of the initial experiments and demonstration of the key technologies will be shown.

  10. Free-space laser communication technologies; Proceedings of the Meeting, Los Angeles, CA, Jan. 11, 12, 1988

    Science.gov (United States)

    Koepf, Gerhard A.; Begley, David L.

    1988-01-01

    The present conference discusses topics in free-space laser communications, laser link characteristics, satellite laser communication systems, optoelectronic components for laser communications, and space laser subsystem technologies. Attention is given to Space Station-based deep-space communication experiments, the application of intersatellite links to operational satellite systems, high-power 0.87 micron channel substrate planar lasers for spaceborne communications, a ground experiment using a CO2 laser transceiver for free-space communications, studies of laser ranging to the TOPEX satellite, diffraction-limited tracking for space communications, and the compact implementation of a real-time, acoustooptic SAR processor.

  11. Integration of Satellite and Terrestrial Systems in Future Multimedia Communications

    OpenAIRE

    Evans, Barry; Werner, Markus; Lutz, Erich; Bousquet, Michel; Corazza, Giovanni E; Maral, Gerard; Rumeau, Robert; Ferro, Erina

    2005-01-01

    In this article we examine the role of satellite communications in future telecommunication networks and service provision. Lessons from the past indicate that satellites are successful as a result of their wide area coverage or speed to market for new services. Niche areas such as coverage of air and sea will persist, but for land masses convergence of fixed, mobile, and broadcasting will dictate that the only way forward for satellites is in an integrated format with terrestrial systems. We...

  12. An Analysis of Military Use of Commercial Satellite Communications

    National Research Council Canada - National Science Library

    Forest, Benjamin D

    2008-01-01

    Since the Gulf War of 1991, United States military satellite communication (SATCOM) bandwidth demand has increased dramatically, as evidenced by recent usage rates in Operation Enduring Freedom and Operation Iraqi Freedom...

  13. Advanced communications technology satellite high burst rate link evaluation terminal power control and rain fade software test plan, version 1.0

    Science.gov (United States)

    Reinhart, Richard C.

    1993-01-01

    The Power Control and Rain Fade Software was developed at the NASA Lewis Research Center to support the Advanced Communications Technology Satellite High Burst Rate Link Evaluation Terminal (ACTS HBR-LET). The HBR-LET is an experimenters terminal to communicate with the ACTS for various experiments by government, university, and industry agencies. The Power Control and Rain Fade Software is one segment of the Control and Performance Monitor (C&PM) Software system of the HBR-LET. The Power Control and Rain Fade Software automatically controls the LET uplink power to compensate for signal fades. Besides power augmentation, the C&PM Software system is also responsible for instrument control during HBR-LET experiments, control of the Intermediate Frequency Switch Matrix on board the ACTS to yield a desired path through the spacecraft payload, and data display. The Power Control and Rain Fade Software User's Guide, Version 1.0 outlines the commands and procedures to install and operate the Power Control and Rain Fade Software. The Power Control and Rain Fade Software Maintenance Manual, Version 1.0 is a programmer's guide to the Power Control and Rain Fade Software. This manual details the current implementation of the software from a technical perspective. Included is an overview of the Power Control and Rain Fade Software, computer algorithms, format representations, and computer hardware configuration. The Power Control and Rain Fade Test Plan provides a step-by-step procedure to verify the operation of the software using a predetermined signal fade event. The Test Plan also provides a means to demonstrate the capability of the software.

  14. Rural applications of Advanced Traveler Information Systems : evaluation of satellite communications systems for mayday applications

    Science.gov (United States)

    This report documents the results of an evaluation of satellite communication systems for mayday applications conducted as part of the Rural Applications of Advanced Traveler Information Systems (ATIS) study. It focuses on satellite communications sy...

  15. Estimation of the demand for public services communications. [market research and economic analysis for a communications satellite system

    Science.gov (United States)

    1976-01-01

    Market analyses and economic studies are presented to support NASA planning for a communications satellite system to provide public services in health, education, mobile communications, data transfer, and teleconferencing.

  16. Integration of Commercial Mobile Satellite Services into Naval Communications

    National Research Council Canada - National Science Library

    Stone, Cary

    1997-01-01

    Mobile Satellite Services (MSS) need to be integrated into Naval Communications. DoD SATCOM military owned systems fall well short of meeting DoD SATCOM requirements in general and mobile SATCOM specifically...

  17. Application of adaptive antenna techniques to future commercial satellite communication

    Science.gov (United States)

    Ersoy, L.; Lee, E. A.; Matthews, E. W.

    1987-01-01

    The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further sub-divided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.

  18. Servicing communication satellites in geostationary orbit

    Science.gov (United States)

    Russell, Paul K.; Price, Kent M.

    1990-01-01

    The econmic benefits of a LEO space station are quantified by identifying alternative operating scenarios utilizing the space station's transportation facilities and assembly and repair facilities. Particular consideration is given to the analysis of the impact of on-orbit assembly and servicing on a typical communications satellite is analyzed. The results of this study show that on-orbit servicing can increase the internal rate of return by as much as 30 percent.

  19. Land-mobile satellite excess path loss measurements

    Science.gov (United States)

    Hess, G. C.

    1980-05-01

    An experiment conducted with the ATS-6 satellite to determine the additional path loss over free-space loss experienced by land-mobile communication links is described. This excess path loss is measured as a function of 1) local environment, 2) vehicle heading, 3) link frequency, 4) satellite elevation angle, and 5) street side. A statistical description of excess loss developed from the data shows that the first two parameters dominate. Excess path loss on the order of 25 dB is typical in urban situations, but decreases to under 10 dB in suburban/rural areas. Spaced antenna selection diversity is found to provide only a slight decrease (4 dB, typically) in the urban excess path loss observed. Level crossing rates are depressed in satellite links relative to those of Rayleigh-faded terrestrial links, but increases in average fade durations tend to offset that advantage. The measurements show that the excess path loss difference between 860-MHz links and 1550-MHz links is generally negligible.

  20. Coverage Extension via Side-Lobe Transmission in Multibeam Satellite System

    OpenAIRE

    Gharanjik, Ahmad; Kmieciak, Jarek; Shankar, Bhavani; Ottersten, Björn

    2017-01-01

    In this paper, we study feasibility of coverage extension of a multibeam satellite network by providing low-rate communications to terminals located outside the coverage of main beams. Focusing on the MEO satellite network, and using realistic link budgets from O3b networks, we investigate the performance of both forward and return-links for terminals stationed in the side lobes of the main beams. Particularly, multi-carrier transmission for forward-link and single carrier transmission for re...

  1. The Advanced Communications Technology Satellite (ACTS) capabilities for serving science

    Science.gov (United States)

    Meyer, Thomas R.

    1990-01-01

    Results of research on potential science applications of the NASA Advanced Communications Technology Satellite (ACTS) are presented. Discussed here are: (1) general research on communications related issues; (2) a survey of science-related activities and programs in the local area; (3) interviews of selected scientists and associated telecommunications support personnel whose projects have communications requirements; (4) analysis of linkages between ACTS functionality and science user communications activities and modes of operation; and (5) an analysis of survey results and the projection of conclusions to a national scale.

  2. Medical image transmission via communication satellite: evaluation of ultrasonographic images.

    Science.gov (United States)

    Suzuki, H; Horikoshi, H; Shiba, H; Shimamoto, S

    1996-01-01

    As compared with terrestrial circuits, communication satellites possess superior characteristics such as wide area coverage, broadcasting functions, high capacity, and resistance to disasters. Utilizing the narrow band channel (64 kbps) of the stationary communication satellite JCSAT1 located at an altitude of 36,000 km above the equator, we investigated satelliterelayed dynamic medical images transmitted by video signals, using hepatic ultrasonography as a model. We conclude that the "variable playing speed transmission scheme" proposed by us is effective for the transmission of dynamic images in the narrow band channel. This promises to permit diverse utilization and applications for purposes such as the transmission of other types of ultrasonic images as well as remotely directed medical diagnosis and treatment.

  3. Causal relationships between solar proton events and single event upsets for communication satellites

    Science.gov (United States)

    Lohmeyer, W. Q.; Cahoy, K.; Liu, Shiyang

    In this work, we analyze a historical archive of single event upsets (SEUs) maintained by Inmarsat, one of the world's leading providers of global mobile satellite communications services. Inmarsat has operated its geostationary communication satellites and collected extensive satellite anomaly and telemetry data since 1990. Over the course of the past twenty years, the satellites have experienced more than 226 single event upsets (SEUs), a catch-all term for anomalies that occur in a satellite's electronics such as bit-flips, trips in power supplies, and memory changes in attitude control systems. While SEUs are seemingly random and difficult to predict, we correlate their occurrences to space weather phenomena, and specifically show correlations between SEUs and solar proton events (SPEs). SPEs are highly energetic protons that originate from solar coronal mass ejections (CMEs). It is thought that when these particles impact geostationary (GEO) satellites they can cause SEUs as well as solar array degradation. We calculate the associated statistical correlations that each SEU occurs within one day, one week, two weeks, and one month of 10 MeV SPEs between 10 - 10,000 particle flux units (pfu). However, we find that SPEs are most prevalent at solar maximum and that the SEUs on Inmarsat's satellites occur out of phase with the solar maximum. Ultimately, this suggests that SPEs are not the primary cause of the Inmarsat SEUs. A better understanding of the causal relationship between SPEs and SEUs will help the satellite communications industry develop component and operational space weather mitigation techniques as well as help the space weather community to refine radiation models.

  4. Broadband and scalable mobile satellite communication system for future access networks

    Science.gov (United States)

    Ohata, Kohei; Kobayashi, Kiyoshi; Nakahira, Katsuya; Ueba, Masazumi

    2005-07-01

    Due to the recent market trends, NTT has begun research into next generation satellite communication systems, such as broadband and scalable mobile communication systems. One service application objective is to provide broadband Internet access for transportation systems, temporal broadband access networks and telemetries to remote areas. While these are niche markets the total amount of capacity should be significant. We set a 1-Gb/s total transmission capacity as our goal. Our key concern is the system cost, which means that the system should be unified system with diversified services and not tailored for each application. As satellites account for a large portion of the total system cost, we set the target satellite size as a small, one-ton class dry mass with a 2-kW class payload power. In addition to the payload power and weight, the mobile satellite's frequency band is extremely limited. Therefore, we need to develop innovative technologies that will reduce the weight and maximize spectrum and power efficiency. Another challenge is the need for the system to handle up to 50 dB and a wide data rate range of other applications. This paper describes the key communication system technologies; the frequency reuse strategy, multiplexing scheme, resource allocation scheme, and QoS management algorithm to ensure excellent spectrum efficiency and support a variety of services and quality requirements in the mobile environment.

  5. Small Satellite Transceiver for Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NAL Research Corporation proposes to develop a small, light-weight, low-cost transceivers capable of establishing satellite communications links for telemetry and...

  6. Electromagnetic Modeling of the Propagation Characteristics of Satellite Communications Through Composite Precipitation Layers, Part1: Mathematical Formulation

    Directory of Open Access Journals (Sweden)

    H.M. Al-Rizzo

    2000-12-01

    Full Text Available A systematic and general formulation of a Propagation Simulation Program (PSP is developed for the coherent field of microwave and millimeter wave carrier signals traversing intermediate layered precipitation media, taking into account the random behavior of particle size, orientation, shape and concentration distributions.  Based on a rigorous solution of the volumetric multiple-scattering integral equations, the formalism offers the capability of treating the potential transmission impairments on satellite-earth links and radar remote sensing generated by composite atmospheric layers of precipitation in conjunction with the finite polarization isolation of dual-polarized transmitting and receiving antennas. A multi-layered formulation is employed which encompasses an ensemble of discrete particles comprising an arbitrary mixture of ice crystals, melting snow and raindrops that may exist simultaneously along satellite-earth communication paths.

  7. Texas Telecommunication Satellite Demonstration Project. Planning Effort for Application of Communication Satellites in Education.

    Science.gov (United States)

    Education Service Center Region 4, Houston, TX.

    The primary goal of the Texas Telecommunication Satellite Demonstration consortium is to install, operate, and evaluate a comprehensive communication service delivery system which would provide the citizens of Texas with greater opportunity for equal access to education and information. The four major objectives of the demonstration are (1) to…

  8. Military Dependence on Commercial Satellite Communications Systems - Strength or Vulnerability

    National Research Council Canada - National Science Library

    Hook, Jack

    1999-01-01

    The military's growing dependence on commercial satellite communications systems will become a strength or vulnerability based on how well the right balance is achieved between commercial and military systems...

  9. Integration of an ion engine on the Communications Technology Satellite.

    Science.gov (United States)

    Payne, W. F.; Finke, R. C.

    1972-01-01

    An ion engine subsystem intended for satellite stationkeeping tasks is described. Ion thrusters are chosen to perform the task because the specific impulse is at least an order of magnitude higher than the commonly used reaction control jets. The higher the value of specific impulse, the greater the total impulse that can be attained for a given weight of propellant, hence cost benefits result. The integration, subsystem testing, and the operating plans for the ion engine experiment to be flown in 1975 on the Canadian Communications Technology Satellite (CTS) are described. The subsystem is designed to demonstrate north-south stationkeeping, attitude control by means of thrust vectoring, long-term space storage and restart capability, and compatibility with a high powered communications transponder.

  10. Australia's Domestic Communication Satellite and Education: Has Education Missed the Boat?

    Science.gov (United States)

    White, Peter B.

    Educators have been critized for being unable to develop any firm plans for the use of Australia's Domestic Communications Satellite (AUSSAT). However, conferences, talks, and papers have resulted in some significant achievements. First, it is now possible to raise issues of communications and telecommunications planning at the very highest…

  11. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 1: Theoretical development and application to yearly predictions for selected cities in the United States

    Science.gov (United States)

    Manning, Robert M.

    1986-01-01

    A rain attenuation prediction model is described for use in calculating satellite communication link availability for any specific location in the world that is characterized by an extended record of rainfall. Such a formalism is necessary for the accurate assessment of such availability predictions in the case of the small user-terminal concept of the Advanced Communication Technology Satellite (ACTS) Project. The model employs the theory of extreme value statistics to generate the necessary statistical rainrate parameters from rain data in the form compiled by the National Weather Service. These location dependent rain statistics are then applied to a rain attenuation model to obtain a yearly prediction of the occurrence of attenuation on any satellite link at that location. The predictions of this model are compared to those of the Crane Two-Component Rain Model and some empirical data and found to be very good. The model is then used to calculate rain attenuation statistics at 59 locations in the United States (including Alaska and Hawaii) for the 20 GHz downlinks and 30 GHz uplinks of the proposed ACTS system. The flexibility of this modeling formalism is such that it allows a complete and unified treatment of the temporal aspects of rain attenuation that leads to the design of an optimum stochastic power control algorithm, the purpose of which is to efficiently counter such rain fades on a satellite link.

  12. A network architecture for International Business Satellite communications

    Science.gov (United States)

    Takahata, Fumio; Nohara, Mitsuo; Takeuchi, Yoshio

    Demand Assignment (DA) control is expected to be introduced in the International Business Satellte communications (IBS) network in order to cope with a growing international business traffic. The paper discusses the DA/IBS network from the viewpoints of network configuration, satellite channel configuration and DA control. The network configuration proposed here consists of one Central Station with network management function and several Network Coordination Stations with user management function. A satellite channel configuration is also presented along with a tradeoff study on transmission bit rate, high power amplifier output power requirement, and service quality. The DA control flow and protocol based on CCITT Signalling System No. 7 are also proposed.

  13. ACTS TDMA network control. [Advanced Communication Technology Satellite

    Science.gov (United States)

    Inukai, T.; Campanella, S. J.

    1984-01-01

    This paper presents basic network control concepts for the Advanced Communications Technology Satellite (ACTS) System. Two experimental systems, called the low-burst-rate and high-burst-rate systems, along with ACTS ground system features, are described. The network control issues addressed include frame structures, acquisition and synchronization procedures, coordinated station burst-time plan and satellite-time plan changes, on-board clock control based on ground drift measurements, rain fade control by means of adaptive forward-error-correction (FEC) coding and transmit power augmentation, and reassignment of channel capacities on demand. The NASA ground system, which includes a primary station, diversity station, and master control station, is also described.

  14. 77 FR 51045 - Certain Two-Way Global Satellite Communication Devices, System and Components Thereof; Notice of...

    Science.gov (United States)

    2012-08-23

    ... Certain Two-Way Global Satellite Communication Devices, System and Components Thereof, DN 2907; the... INTERNATIONAL TRADE COMMISSION [Docket No. 2907] Certain Two-Way Global Satellite Communication Devices, System and Components Thereof; Notice of Receipt of Complaint; Solicitation of Comments Relating...

  15. The 30/20 GHz communications satellite trunking network study

    Science.gov (United States)

    Kolb, W.

    1981-01-01

    Alternative transmission media for a CONUS-wide trunking network in the years 1990 and 2000 are examined. The alternative technologies comprised fiber optic cable, conventional C- and Ku-band satellites, and 30/20 GHz satellites. Three levels of implementation were considered - a 10-city network, a 20-city network, and a 40-city network. The cities selected were the major metropolitan areas with the greatest communications demand. All intercity voice, data, and video traffic carried more than 40 miles was included in the analysis. In the optimized network, traffic transmitted less than 500 miles was found to be better served by fiber optic cable in 1990. By the year 2000, the crossover point would be down to 200 miles, assuming availability of 30/20 GHz satellites.

  16. Utilization of photovoltaic for broadband satellite communications in rural area of Thailand

    Science.gov (United States)

    Jinayim, Theerawut; Mungkung, Narong; Kasayapanand, Nat

    2013-06-01

    Electricity, Information and Communication Technologies (ICTs) are very important not only in urban areas but also in rural areas. To provide ICTs service in rural areas, sources of electricity and communication infrastructures must be implemented. Electricity is a major condition due to the fact that all electronic devices needed it in order to power on, so that it is impossible to operate any forms of ICTs in areas where the main national grid line is unavailable. Almost rural areas of Thailand where the main national grid line is unavailable have very good sunlight intensity. Photovoltaic is the most effective renewable energy technologies in those areas for meeting electricity needed in areas that are not connected to the main national grid line. In this paper, the efficiency utilization of photovoltaic as source of electricity for broadband satellite communication systems as well as social and economic impact and quality of life of people in rural areas of Thailand are presented. The results show that most rural communities would be able to universally access to the basic telecommunications services such as internet access and public telephone via satellite communication systems. However, in some field case study, broadband internet access via satellite communication may be unnecessary for some rural communities and the most exactly rural communities needed are electricity for household usage and battery charger.

  17. The Future of Satellite Communications. Resource Management and the Needs of Nations.

    Science.gov (United States)

    Hinchman, Walter R.; Dunn, D. A.

    Recent events suggest that Intelsat (the 68-nation International Telecommunications Satellite Consortium) will coordinate a number of domestic and regional systems that provide satellite communications services, some of which will be maintained by Intelsat and some of which will be independent. This report addresses the problems of conflict in…

  18. Teleoperation over low bandwidth communication links

    International Nuclear Information System (INIS)

    Fryer, R.J.; Mair, G.M.; Clark, N.; Heng, J.

    1996-01-01

    Teleoperation is well established for many areas of hazardous environment working. Where such environments are well structured and contained, such as within a working plant, communications bandwidths need not be a constraining factor. However where the worksite is remote, large, poorly structured or damaged communications rapidly become a critical factor in the efficient deployment and use of teleoperation equipment. The paper justifies and describes means which we are exploring to reduce the required communications bandwidth for teleoperation whist retaining full functionality. Techniques involved include incorporation of local intelligence at the worksite, with bandwidth devoted to high-level up-link control signals and down-link feedback, and the use of highly compressed video feeding 'virtual reality type' HMDs to provide maximum system transparency for the operator. The work is drawing on previous experience with an 'anthropomorphic robot heat' for telepresence work, and proprietary algorithms capable of compressing full colour video to standard telephone modem data rates. (Author)

  19. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    Science.gov (United States)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    Analyzed optical DTE (direct to earth) and lunar relay satellite link analyses, greater than 200 Mbps downlink to 1-m Earth receiver and greater than 1 Mbps uplink achieved with mobile 5-cm lunar transceiver, greater than 1Gbps downlink and greater than 10 Mpbs uplink achieved with 10-cm stationary lunar transceiver, MITLL (MIT Lincoln Laboratory) 2013 LLCD (Lunar Laser Communications Demonstration) plans to demonstrate 622 Mbps downlink with 20 Mbps uplink between lunar orbiter and ground station; Identified top five technology challenges to deploying lunar optical network, Performed preliminary experiments on two of challenges: (i) lunar dust removal and (ii)DTN over optical carrier, Exploring opportunities to evaluate DTN (delay-tolerant networking) over optical link in a multi-node network e.g. Desert RATS.

  20. High-speed optical feeder-link system using adaptive optics

    Science.gov (United States)

    Arimoto, Yoshinori; Hayano, Yutaka; Klaus, Werner

    1997-05-01

    We propose a satellite laser communication system between a ground station and a geostationary satellite, named high- speed optical feeder link system. It is based on the application of (a) high-speed optical devices, which have been developed for ground-based high-speed fiber-optic communications, and (b) the adaptive optics which compensates wavefront distortions due to atmospheric turbulences using a real time feedback control. A link budget study shows that a system with 10-Gbps bit-rate are available assuming the state-of-the-art device performance of the Er-doped fiber amplifier. We further discuss preliminary measurement results of the atmospheric turbulence at the telescope site in Tokyo, and present current study on the design of the key components for the feeder-link laser transceiver.

  1. A Study on Fuel Estimation Algorithms for a Geostationary Communication & Broadcasting Satellite

    OpenAIRE

    Jong Won Eun

    2000-01-01

    It has been developed to calculate fuel budget for a geostationary communication and broadcasting satellite. It is quite essential that the pre-launch fuel budget estimation must account for the deterministic transfer and drift orbit maneuver requirements. After on-station, the calculation of satellite lifetime should be based on the estimation of remaining fuel and assessment of actual performance. These estimations step from the proper algorithms to produce the prediction of satellite lifet...

  2. Development and field testing of satellite-linked fluorometers for marine mammals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset includes telemetry data related to the development and testing of an animal-borne satellite-linked fluorometer tag, used on northern fur seals and...

  3. Tracking and Data Relay Satellite System user impact and network compatibility study. [antenna design and telecommunication links

    Science.gov (United States)

    1973-01-01

    The report contains data on antenna configurations for the low data rate users of the Tracking and Data Relay Satellite System (TDRSS). It treats the coverage and mutual visibility considerations between the user satellites and the relay satellites and relates these considerations to requirements of antenna beamwidth and fractional user orbital coverage. A final section includes user/TDRS telecommunication link budgets and forward and return link data rate tradeoffs.

  4. DOD Use of Commercial Wideband Satellite Communications Systems: How Much is Needed, and How Do We Get It?

    National Research Council Canada - National Science Library

    Hutchens, Robert

    2001-01-01

    ..., A key enabler to this end is sufficient wideband satellite communications connectivity DoD's organic wideband satellite communications capabilities are inadequate, so commercial services must be used...

  5. Feasibility assessment of optical technologies for reliable high capacity feeder links

    Science.gov (United States)

    Witternigg, Norbert; Schönhuber, Michael; Leitgeb, Erich; Plank, Thomas

    2013-08-01

    Space telecom scenarios like data relay satellite and broadband/broadcast service providers require reliable feeder links with high bandwidth/data rate for the communication between ground station and satellite. Free space optical communication (FSOC) is an attractive alternative to microwave links, improving performance by offering abundant bandwidth at small apertures of the optical terminals. At the same time Near-Earth communication by FSOC avoids interference with other services and is free of regulatory issues. The drawback however is the impairment by the laser propagation through the atmosphere at optical wavelengths. Also to be considered are questions of eye safety for ground personnel and aviation. In this paper we assess the user requirements for typical space telecom scenarios and compare these requirements with solutions using optical data links through the atmosphere. We suggest a site diversity scheme with a number of ground stations and a switching scheme using two optical terminals on-board the satellite. Considering the technology trade-offs between four different optical wavelengths we recommend the future use of 1.5 μm laser technology and calculate a link budget for an atmospheric condition of light haze on the optical path. By comparing link budgets we show an outlook to the future potential use of 10 μm laser technology.

  6. Simulation of Controller Pilot Data Link Communications over VHF Digital Link Mode 3

    Science.gov (United States)

    Bretmersky, Steven C.; Murawski, Robert; Nguyen, Thanh C.; Raghavan, Rajesh S.

    2004-01-01

    The Federal Aviation Administration (FAA) has established an operational plan for the future Air Traffic Management (ATM) system, in which the Controller Pilot Data Link Communications (CPDLC) is envisioned to evolve into digital messaging that will take on an ever increasing role in controller to pilot communications, significantly changing the way the National Airspace System (NAS) is operating. According to FAA, CPDLC represents the first phase of the transition from the current analog voice system to an International Civil Aviation Organization (ICAO) compliant system in which digital communication becomes the alternate and perhaps primary method of routine communication. The CPDLC application is an Air Traffic Service (ATS) application in which pilots and controllers exchange messages via an addressed data link. CPDLC includes a set of clearance, information, and request message elements that correspond to existing phraseology employed by current Air Traffic Control (ATC) procedures. These message elements encompass altitude assignments, crossing constraints, lateral deviations, route changes and clearances, speed assignments, radio frequency assignments, and various requests for information. The pilot is provided with the capability to respond to messages, to request clearances and information, to report information, and to declare/rescind an emergency. A 'free text' capability is also provided to exchange information not conforming to defined formats. This paper presents simulated results of the aeronautical telecommunication application Controller Pilot Data Link Communications over VHF Digital Link Mode 3 (VDL Mode 3). The objective of this simulation study was to determine the impact of CPDLC traffic loads, in terms of timely message delivery and capacity of the VDL Mode 3 subnetwork. The traffic model is based on and is used for generating air/ground messages with different priorities. Communication is modeled for the en route domain of the Cleveland

  7. Coded throughput performance simulations for the time-varying satellite channel. M.S. Thesis

    Science.gov (United States)

    Han, LI

    1995-01-01

    The design of a reliable satellite communication link involving the data transfer from a small, low-orbit satellite to a ground station, but through a geostationary satellite, was examined. In such a scenario, the received signal power to noise density ratio increases as the transmitting low-orbit satellite comes into view, and then decreases as it then departs, resulting in a short-duration, time-varying communication link. The optimal values of the small satellite antenna beamwidth, signaling rate, modulation scheme and the theoretical link throughput (in bits per day) have been determined. The goal of this thesis is to choose a practical coding scheme which maximizes the daily link throughput while satisfying a prescribed probability of error requirement. We examine the throughput of both fixed rate and variable rate concatenated forward error correction (FEC) coding schemes for the additive white Gaussian noise (AWGN) channel, and then examine the effect of radio frequency interference (RFI) on the best coding scheme among them. Interleaving is used to mitigate degradation due to RFI. It was found that the variable rate concatenated coding scheme could achieve 74 percent of the theoretical throughput, equivalent to 1.11 Gbits/day based on the cutoff rate R(sub 0). For comparison, 87 percent is achievable for AWGN-only case.

  8. Performance Analysis of Space Information Networks with Backbone Satellite Relaying for Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Jian Jiao

    2017-01-01

    Full Text Available Space Information Network (SIN with backbone satellites relaying for vehicular network (VN communications is regarded as an effective strategy to provide diverse vehicular services in a seamless, efficient, and cost-effective manner in rural areas and highways. In this paper, we investigate the performance of SIN return channel cooperative communications via an amplify-and-forward (AF backbone satellite relaying for VN communications, where we assume that both of the source-destination and relay-destination links undergo Shadowed-Rician fading and the source-relay link follows Rician fading, respectively. In this SIN-assisted VN communication scenario, we first obtain the approximate statistical distributions of the equivalent end-to-end signal-to-noise ratio (SNR of the system. Then, we derive the closed-form expressions to efficiently evaluate the average symbol error rate (ASER of the system. Furthermore, the ASER expressions are taking into account the effect of satellite perturbation of the backbone relaying satellite, which reveal the accumulated error of the antenna pointing error. Finally, simulation results are provided to verify the accuracy of our theoretical analysis and show the impact of various parameters on the system performance.

  9. Cybersecurity threats to satellite communications: Towards a typology of state actor responses

    Science.gov (United States)

    Housen-Couriel, Deborah

    2016-11-01

    Cybersecurity threats to satellite communications are a relatively new phenomenon, yet have quickly come to the forefront of concern for the sustainability of satellite systems due to the vulnerabilities that such threats may exploit and negatively impact. These vulnerabilities are mission-critical: they include launch systems, communications, telemetry, tracking and command, and mission completion. They and other aspects of satellite communications depend heavily on secure and resilient cyber capabilities for all stages of the satellite's lifespan. Because of the inherently global nature of both satellite and cyberspace activities, these capabilities rely significantly on international cooperation for setting a baseline of agreed legal norms that protect satellites and satellite communications. This critical cooperation is relevant during all mission phases, from planning to final wrap-up. Under optimal circumstances, the norms and standards protecting satellites and satellite transmissions are developed and enforced by those nation-state actors that are committed to system operability and overall mission sustainability for those satellites launched under their aegis and responsibility. However, when breaches of international law do occur in the form of hostile cyber events that cause damage to satellite communications, a range of measures should be available to the victim state, provided by the appropriate legal regime or regimes. This article proposes that a comprehensive and integrative multi-stakeholder review be undertaken in the near future of the measures available under international law for responding to hostile acts directed at satellite systems and communications, in a manner that takes into account both existing regimes of international law reviewed herein, as well as considerations of cybersecurity. These measures will depend upon the characterization of hostile interference with satellite transmissions in accordance with a proposed typology of

  10. Controller–Pilot Data Link Communication Security

    Science.gov (United States)

    Polishchuk, Tatiana; Wernberg, Max

    2018-01-01

    The increased utilization of the new types of cockpit communications, including controller–pilot data link communications (CPDLC), puts the airplane at higher risk of hacking or interference than ever before. We review the technological characteristics and properties of the CPDLC and construct the corresponding threat model. Based on the limitations imposed by the system parameters, we propose several solutions for the improved security of the data messaging communication used in air traffic management (ATM). We discuss the applicability of elliptical curve cryptography (ECC), protected aircraft communications addressing and reporting systems (PACARs) and the Host Identity Protocol (HIP) as possible countermeasures to the identified security threats. In addition, we consider identity-defined networking (IDN) as an example of a genuine security solution which implies global changes in the whole air traffic communication system. PMID:29783791

  11. An assessment of the status and trends in satellite communications 1986-2000: An information document prepared for the Communications Subcommittee of the Space Applications Advisory Committee

    Science.gov (United States)

    Poley, W. A.; Stevens, G. H.; Stevenson, S. M.; Lekan, J.; Arth, C. H.; Hollansworth, J. E.; Miller, E. F.

    1986-01-01

    This is a response to a Space Applications Advisory Committee (SAAC) request for information about the status and trends in satellite communications, to be used to support efforts to conceive and recommend long range goals for NASA communications activities. Included in this document are assessments of: (1) the outlook for satellite communications, including current applications, potential future applications, and impact of the changing environment such as optical fiber networks, the Integrated Services Digital Network (ISDN) standard, and the rapidly growing market for Very Small Aperture Terminals (VSAT); (2) the restrictions imposed by our limited spectrum resource; and (3) technology needs indicated by future trends. Potential future systems discussed include: large powerful satellites for providing personal communications; VSAT compatible satellites with onboard switching and having voice capability; large satellites which offer a pervasive T1 network service (primarily for video-phone); and large geostationary communications facilities which support common use by several carriers. Also, discussion is included of NASA particular needs and possible future systems. Based on the mentioned system concepts, specific technology recommendations are provided for the time frames of now - 1993, 1994 - 2000, and 2000 - 2010.

  12. Leo Satellite Communication through a LEO Constellation using TCP/IP Over ATM

    Science.gov (United States)

    Foore, Lawrence R.; Konangi, Vijay K.; Wallett, Thomas M.

    1999-01-01

    The simulated performance characteristics for communication between a terrestrial client and a Low Earth Orbit (LEO) satellite server are presented. The client and server nodes consist of a Transmission Control Protocol /Internet Protocol (TCP/IP) over ATM configuration. The ATM cells from the client or the server are transmitted to a gateway, packaged with some header information and transferred to a commercial LEO satellite constellation. These cells are then routed through the constellation to a gateway on the globe that allows the client/server communication to take place. Unspecified Bit Rate (UBR) is specified as the quality of service (QoS). Various data rates are considered.

  13. Technology programs and related policies - Impacts on communications satellite business ventures

    Science.gov (United States)

    Greenberg, J. S.

    1985-01-01

    The DOMSAT II stochastic communication satellite business venture financial planning simulation model is described. The specification of business scenarios and the results of several analyses are presented. In particular, the impacts of NASA on-orbit propulsion and power technology programs are described. The effects of insurance rates and self-insurance and of the use of the Space Shuttle and Ariane transportation systems on a typical fixed satellite service business venture are discussed.

  14. Design and Realization of FIR Filter for Inter Satellite Link at 50-90 MHZ Frequency using FPGA

    Directory of Open Access Journals (Sweden)

    Yuyu Wahyu

    2016-12-01

    Full Text Available In this paper, design and realization of FIR filter with a bandwidth of 40 MHz at 50-90 MHz frequency has been proposed. The design was destined to be implemented on the Inter Satellite Links (ISL. This kind of filter had been selected due to a need in linear phase responseon the ISL data communication. Equiripple method was used to design the filter becauseof its reliability in minimizing the magnitude errors. The design of this FIR filter was conducted with theoretical calculation and simulation using the R2012b Matlab. For the implementation, FPGA was used with a VHDL as the programming language with a help of Xilinx ISE Design Suite 14.5. Simulation results in Matlab and Simulink indicated that the filter design could be well implemented on ISL at frequency of 50 MHz - 90 MHz with stopband of 60 db. The phase responseresult of the realized design is quite linear so that the filter is suitable for data communication on the ISL.

  15. Expert communication link management: overview and progress

    Science.gov (United States)

    Dunkelberger, Kirk A.

    1998-08-01

    Consider the downsizing of our forces, the increasing complexity of our tactical platforms, and the ever widening array of communication options and the conclusion is inevitable. The need for automated support to reduce communication-related workload is critical to continued task force effectiveness. In a previous era, communication management expertise resided solely in the form of human experts. These experts flew with the pilots, providing the most effective means of communication in real time; they have since been removed from a great number of platforms due to force downsizing and real estate value in the cockpit. This burden has typically been shifted to the pilot, providing another set of tasks in an environment which is already far too taxing. An Expert Communication Link Manger (ECLM) is required -- a trusted, reliable assistant which can determine optimal link, channel, and waveform data for the communication requirements at hand and translate those requirements transparently into communication device control. Technologies are at hand which make ECLM possible; the mixture of these elements in the correct proportions can provide a capable, deployable, and cost effective ECLM in the near term. This paper describes specific applied ECLM research work in progress funded by the USAF under a four year effort. Operational objectives, technical objectives, a reference design, and technical excursions within the broad ECLM scope will be discussed in detail. Results of prototypes built to date in the area of communication inference from speech understanding, dynamic adaptive routing, and packet switching networks in the tactical environment will be presented.

  16. An approach to effective UHF (S/L band) data communications for satellite Personal Communication Service (PCS)

    Science.gov (United States)

    Hayase, Joshua Y.

    1995-01-01

    Reliable signaling information transfer is fundamental in supporting the needs of data communication PCS via LMS (Land Mobile Service) SSs (satellite systems). The needs of the system designer can be satisfied only through the collection of media information that can be brought to bear on the pertinent design issues. We at ISI hope to continue our dialogue with fading media experts to address the unique data communications needs of PCS via LMS SSs.

  17. Trellis-coded CPM for satellite-based mobile communications

    Science.gov (United States)

    Abrishamkar, Farrokh; Biglieri, Ezio

    1988-01-01

    Digital transmission for satellite-based land mobile communications is discussed. To satisfy the power and bandwidth limitations imposed on such systems, a combination of trellis coding and continuous-phase modulated signals are considered. Some schemes based on this idea are presented, and their performance is analyzed by computer simulation. The results obtained show that a scheme based on directional detection and Viterbi decoding appears promising for practical applications.

  18. Link Adaptation for Mitigating Earth-To-Space Propagation Effects on the NASA SCaN Testbed

    Science.gov (United States)

    Kilcoyne, Deirdre K.; Headley, William C.; Leffke, Zach J.; Rowe, Sonya A.; Mortensen, Dale J.; Reinhart, Richard C.; McGwier, Robert W.

    2016-01-01

    In Earth-to-Space communications, well-known propagation effects such as path loss and atmospheric loss can lead to fluctuations in the strength of the communications link between a satellite and its ground station. Additionally, the typically unconsidered effect of shadowing due to the geometry of the satellite and its solar panels can also lead to link degradation. As a result of these anticipated channel impairments, NASA's communication links have been traditionally designed to handle the worst-case impact of these effects through high link margins and static, lower rate, modulation formats. The work presented in this paper aims to relax these constraints by providing an improved trade-off between data rate and link margin through utilizing link adaptation. More specifically, this work provides a simulation study on the propagation effects impacting NASA's SCaN Testbed flight software-defined radio (SDR) as well as proposes a link adaptation algorithm that varies the modulation format of a communications link as its signal-to-noise ratio fluctuates. Ultimately, the models developed in this work will be utilized to conduct real-time flight experiments on-board the NASA SCaN Testbed.

  19. Forecast of space shuttle flight requirements for launch of commercial communications satellites

    Science.gov (United States)

    1977-01-01

    The number of communication satellites required over the next 25 years to support domestic and regional communication systems for telephony, telegraphy and other low speed data; video teleconferencing, new data services, direct TV broadcasting; INTELSAT; and maritime and aeronautical services was estimated to determine the number of space shuttle flights necessary for orbital launching.

  20. Conceptual design of emergency communication system to cope with severe accidents in NPPs and its performance evaluation

    International Nuclear Information System (INIS)

    Son, Kwang Seop; Kim, Chang Hwoi; Kang, Hyun Gook

    2015-01-01

    Highlights: • The emergency communication system requires the performances of the throughput of 1 Mbps, BER of 10 −6 and network configuration of 1:12 communication. • The emergency communication system consists of the terrestrial communication and satellite communication system. • In the terrestrial communication system, at least two wireless repeaters are needed to secure LOS and the throughput and delay time are 16 Mbps and 16 ms, respectively. • In the satellite communication system, DSSS and FDMA are used and the fade margin range is from 1.3 to 16 dB. - Abstract: The Fukushima accident induced by the great earthquake and tsunami reveals the vulnerability of I and C System. In the severe environment, the normal I and C system did not work properly and results in false information about the internal situation in NPP. Eventually the accident was not properly handled at the early stage. Therefore advanced emergency response system using a wireless channel is necessary to cope with the severe accident. In this paper, we introduce the ERS consisting of the HMS and MCS the ECS linking the HMS with MCS and the performance requirement of the ECS is analyzed. The ECS satisfying the requirement is designed conceptually and the performance of the ECS is evaluated through analysis and simulator. To secure a reliable and diverse configuration, the ECS is configured as the dual system which consists of the terrestrial communication and satellite communication. The terrestrial communication system is designed based on the IEEE 802.11. Analyzed performance results prove that the performance requirement can be sufficiently achieved. But if the scalability of data capacity is considered later, use of the advanced 802.11 standard such as 802.11n and multiple signal paths between the HMS and MCS are necessary. In the satellite communication system, the FDMA is used in the status link and the DSSS is used in the control link. The network supporting various data rates is

  1. A design of 30/20 GHz flight communications experiment for NASA. [satellite and earth segments for high data rate commercial service

    Science.gov (United States)

    Kawamoto, Y.

    1982-01-01

    The objective of the 30/20 GHz Flight Experiment System is to develop the required technology and to experiment with the communication technique for an operational communication satellite system. The system uses polarization, spatial, and frequency isolations to maximize the spectrum utilization. The key spacecraft technologies required for the concept are the scan beam antenna, the baseband processor, the IF switch matrix, TWTA, SSPA, and LNA. The spacecraft communication payload information will be telemetered and monitored closely so that these technologies and performances can be verified. Two types of services, a trunk service and a customer premise service, are demonstrated in the system. Many experiments associated with these services, such as synchronization, demand assignment, link control, and network control will be performed to provide important information on the operational aspect of the system.

  2. R and D limited partnerships (possible applications in advanced communications satellite technology experiment program)

    Science.gov (United States)

    1985-01-01

    Typical R&D limited partnership arrangements, advantages and disadvantages of R&D limited partnership (RDLPs) and antitrust and tax implications are described. A number of typical forms of RDLPs are described that may be applicable for use in stimulating R&D and experimental programs using the advanced communications technology satellite. The ultimate goal is to increase the rate of market penetration of goods and/or services based upon advanced satellite communications technology. The conditions necessary for these RDLP forms to be advantageous are outlined.

  3. Proportional fair scheduling algorithm based on traffic in satellite communication system

    Science.gov (United States)

    Pan, Cheng-Sheng; Sui, Shi-Long; Liu, Chun-ling; Shi, Yu-Xin

    2018-02-01

    In the satellite communication network system, in order to solve the problem of low system capacity and user fairness in multi-user access to satellite communication network in the downlink, combined with the characteristics of user data service, an algorithm study on throughput capacity and user fairness scheduling is proposed - Proportional Fairness Algorithm Based on Traffic(B-PF). The algorithm is improved on the basis of the proportional fairness algorithm in the wireless communication system, taking into account the user channel condition and caching traffic information. The user outgoing traffic is considered as the adjustment factor of the scheduling priority and presents the concept of traffic satisfaction. Firstly,the algorithm calculates the priority of the user according to the scheduling algorithm and dispatches the users with the highest priority. Secondly, when a scheduled user is the business satisfied user, the system dispatches the next priority user. The simulation results show that compared with the PF algorithm, B-PF can improve the system throughput, the business satisfaction and fairness.

  4. OWLS as platform technology in OPTOS satellite

    Science.gov (United States)

    Rivas Abalo, J.; Martínez Oter, J.; Arruego Rodríguez, I.; Martín-Ortega Rico, A.; de Mingo Martín, J. R.; Jiménez Martín, J. J.; Martín Vodopivec, B.; Rodríguez Bustabad, S.; Guerrero Padrón, H.

    2017-12-01

    The aim of this work is to show the Optical Wireless Link to intraSpacecraft Communications (OWLS) technology as a platform technology for space missions, and more specifically its use within the On-Board Communication system of OPTOS satellite. OWLS technology was proposed by Instituto Nacional de Técnica Aeroespacial (INTA) at the end of the 1990s and developed along 10 years through a number of ground demonstrations, technological developments and in-orbit experiments. Its main benefits are: mass reduction, flexibility, and simplification of the Assembly, Integration and Tests phases. The final step was to go from an experimental technology to a platform one. This step was carried out in the OPTOS satellite, which makes use of optical wireless links in a distributed network based on an OLWS implementation of the CAN bus. OPTOS is the first fully wireless satellite. It is based on the triple configuration (3U) of the popular Cubesat standard, and was completely built at INTA. It was conceived to procure a fast development, low cost, and yet reliable platform to the Spanish scientific community, acting as a test bed for space born science and technology. OPTOS presents a distributed OBDH architecture in which all satellite's subsystems and payloads incorporate a small Distributed On-Board Computer (OBC) Terminal (DOT). All DOTs (7 in total) communicate between them by means of the OWLS-CAN that enables full data sharing capabilities. This collaboration allows them to perform all tasks that would normally be carried out by a centralized On-Board Computer.

  5. Research of remote control for Chinese Antarctica Telescope based on iridium satellite communication

    Science.gov (United States)

    Xu, Lingzhe; Yang, Shihai

    2010-07-01

    Astronomers are ever dreaming of sites with best seeing on the Earth surface for celestial observation, and the Antarctica is one of a few such sites only left owing to the global air pollution. However, Antarctica region is largely unaccessible for human being due to lacking of fundamental living conditions, travel facilities and effective ways of communication. Worst of all, the popular internet source as a general way of communication scarcely exists there. Facing such a dilemma and as a solution remote control and data transmission for telescopes through iridium satellite communication has been put forward for the Chinese network Antarctic Schmidt Telescopes 3 (AST3), which is currently under all round research and development. This paper presents iridium satellite-based remote control application adapted to telescope control. The pioneer work in China involves hardware and software configuration utilizing techniques for reliable and secure communication, which is outlined in the paper too.

  6. CMOS serial link for fully duplexed data communication

    Science.gov (United States)

    Lee, Kyeongho; Kim, Sungjoon; Ahn, Gijung; Jeong, Deog-Kyoon

    1995-04-01

    This paper describes a CMOS serial link allowing fully duplexed 500 Mbaud serial data communication. The CMOS serial link is a robust and low-cost solution to high data rate requirements. A central charge pump PLL for generating multiphase clocks for oversampling is shared by several serial link channels. Fully duplexed serial data communication is realized in the bidirectional bridge by separating incoming data from the mixed signal on the cable end. The digital PLL accomplishes process-independent data recovery by using a low-ratio oversampling, a majority voting, and a parallel data recovery scheme. Mostly, digital approach could extend its bandwidth further with scaled CMOS technology. A single channel serial link and a charge pump PLL are integrated in a test chip using 1.2 micron CMOS process technology. The test chip confirms upto 500 Mbaud unidirectional mode operation and 320 Mbaud fully duplexed mode operation with pseudo random data patterns.

  7. Probing the earth's gravity field by means of satellite-to-satellite tracking

    Science.gov (United States)

    Vonbun, F. O.

    1977-01-01

    Two satellite-to-satellite tracking (sst) tests are described in detail: (1) the ATS-6/Geos-3 and (2) the ATS-6/Apollo-Soyuz experiment. The main purpose of these two experiments was to track via ATS-6 the Geos-3, as well as the Apollo-Soyuz and to use these tracking data to determine both of the orbits at the same time, each of the orbits alone, and to test the two sst links to study local gravity anomalies. A second purpose was to test communications, command and data transmission from the ground via ATS-6 to these spacecraft and back again to the ground.

  8. Utilizing the ISS Mission as a Testbed to Develop Cognitive Communications Systems

    Science.gov (United States)

    Jackson, Dan

    2016-01-01

    The ISS provides an excellent opportunity for pioneering artificial intelligence software to meet the challenges of real-time communications (comm) link management. This opportunity empowers the ISS Program to forge a testbed for developing cognitive communications systems for the benefit of the ISS mission, manned Low Earth Orbit (LEO) science programs and future planetary exploration programs. In November, 1998, the Flight Operations Directorate (FOD) started the ISS Antenna Manager (IAM) project to develop a single processor supporting multiple comm satellite tracking for two different antenna systems. Further, the processor was developed to be highly adaptable as it supported the ISS mission through all assembly stages. The ISS mission mandated communications specialists with complete knowledge of when the ISS was about to lose or gain comm link service. The current specialty mandated cognizance of large sun-tracking solar arrays and thermal management panels in addition to the highly-dynamic satellite service schedules and rise/set tables. This mission requirement makes the ISS the ideal communications management analogue for future LEO space station and long-duration planetary exploration missions. Future missions, with their precision-pointed, dynamic, laser-based comm links, require complete autonomy for managing high-data rate communications systems. Development of cognitive communications management systems that permit any crew member or payload science specialist, regardless of experience level, to control communications is one of the greater benefits the ISS can offer new space exploration programs. The IAM project met a new mission requirement never previously levied against US space-born communications systems management: process and display the orientation of large solar arrays and thermal control panels based on real-time joint angle telemetry. However, IAM leaves the actual communications availability assessment to human judgement, which introduces

  9. Satellite Communications Industry

    Science.gov (United States)

    1993-04-01

    Ariane $loom SAJAC 1 Hughes Satellite Japan 06/94 $150m SAJAC 2 Hughes Satellite Japan -- (spare) $150m SatcomHl GE GE Americom /95 $50m SOLIDARIDAD ...1 Hughes SCT (Mexico) 11/93 Ariane $loom SOLIDARIDAD 2 Hughes SCT (Mexico) /94 $loom Superbird Al Loral Space Com Gp (Jap) 11/92 Ariane $175m

  10. Mechanical Design of Military Communication Satellite X-band PCM

    Directory of Open Access Journals (Sweden)

    Hyung Je Woo

    1998-12-01

    Full Text Available Before an actual military communications satellite is designed and constructed, a feasibility study should take place. The basic functions of such system can be observed and demonstrated in an X-Band payload simulator. For this purpose a Payload Concept Model (PCM for X-Band payload subsystem has been developed to simulate the workings of an actual military communications payload. This paper explains and illustrates the mechanical design, manufacture, and integration of the PCM. Basic RF tests also have been performed in order to verify the design requirement of the system. The results demonstrate successful development of the PCM and operation without RF losses.

  11. Emerging markets for satellite data communications in the public service

    Science.gov (United States)

    Potter, J. G.

    1978-01-01

    The paper discusses some of the current and potential markets for satellite data communications as projected by the Public Service Satellite Consortium (PSSC). Organizations in the public service sector are divided into three categories, depending on their expected benefits and organizational changes due to increased satellite telecommunications use: A - modest institutional adjustments are necessary and significant productivity gains are likely; B - institutional requirements picture is promising, but more information is needed to assess benefits and risk; and C - major institutional adjustments are needed, risks are high but possible benefits are high. These criteria are applied to the U.S. health care system, continuing education, equipment maintenance, libraries, environmental monitoring, and other potential markets. The potential revenues are seen to be significant, but what is needed is a cooperative effort by common carriers and major public service institutions to aggregate the market.

  12. Optimizing communication satellites payload configuration with exact approaches

    Science.gov (United States)

    Stathakis, Apostolos; Danoy, Grégoire; Bouvry, Pascal; Talbi, El-Ghazali; Morelli, Gianluigi

    2015-12-01

    The satellite communications market is competitive and rapidly evolving. The payload, which is in charge of applying frequency conversion and amplification to the signals received from Earth before their retransmission, is made of various components. These include reconfigurable switches that permit the re-routing of signals based on market demand or because of some hardware failure. In order to meet modern requirements, the size and the complexity of current communication payloads are increasing significantly. Consequently, the optimal payload configuration, which was previously done manually by the engineers with the use of computerized schematics, is now becoming a difficult and time consuming task. Efficient optimization techniques are therefore required to find the optimal set(s) of switch positions to optimize some operational objective(s). In order to tackle this challenging problem for the satellite industry, this work proposes two Integer Linear Programming (ILP) models. The first one is single-objective and focuses on the minimization of the length of the longest channel path, while the second one is bi-objective and additionally aims at minimizing the number of switch changes in the payload switch matrix. Experiments are conducted on a large set of instances of realistic payload sizes using the CPLEX® solver and two well-known exact multi-objective algorithms. Numerical results demonstrate the efficiency and limitations of the ILP approach on this real-world problem.

  13. A new antenna concept for satellite communications

    Science.gov (United States)

    Skahill, G.; Ciccolella, D.

    1982-01-01

    A novel antenna configuration of two reflecting surfaces and a phased array is examined for application to satellite communications and shown to be superior in every respect to earlier designs for service to the continental United States from synchronous orbit. The vignetting that afflicts other two reflector optical systems is eliminated by use of a reflecting field element. The remaining aberrations, predominantly coma, are isolated in the time delay distribution at the surface of the array and can be compensated by ordinary array techniques. The optics exhibits infinite bandwidth and the frequency range is limited only by the design of the array.

  14. Satellite-based quantum communication terminal employing state-of-the-art technology

    Science.gov (United States)

    Pfennigbauer, Martin; Aspelmeyer, Markus; Leeb, Walter R.; Baister, Guy; Dreischer, Thomas; Jennewein, Thomas; Neckamm, Gregor; Perdigues, Josep M.; Weinfurter, Harald; Zeilinger, Anton

    2005-09-01

    Feature Issue on Optical Wireless Communications (OWC) We investigate the design and the accommodation of a quantum communication transceiver in an existing classical optical communication terminal on board a satellite. Operation from a low earth orbit (LEO) platform (e.g., the International Space Station) would allow transmission of single photons and pairs of entangled photons to ground stations and hence permit quantum communication applications such as quantum cryptography on a global scale. Integration of a source generating entangled photon pairs and single-photon detection into existing optical terminal designs is feasible. Even more, major subunits of the classical terminals such as those for pointing, acquisition, and tracking as well as those providing the required electronic, thermal, and structural backbone can be adapted so as to meet the quantum communication terminal needs.

  15. Bit Error Rate Due to Misalignment of Earth Station Antenna Pointing to Satellite

    Directory of Open Access Journals (Sweden)

    Wahyu Pamungkas

    2010-04-01

    Full Text Available One problem causing reduction of energy in satellite communications system is the misalignment of earth station antenna pointing to satellite. Error in pointing would affect the quality of information signal to energy bit in earth station. In this research, error in pointing angle occurred only at receiver (Rx antenna, while the transmitter (Tx antennas precisely point to satellite. The research was conducted towards two satellites, namely TELKOM-1 and TELKOM-2. At first, measurement was made by directing Tx antenna precisely to satellite, resulting in an antenna pattern shown by spectrum analyzer. The output from spectrum analyzers is drawn with the right scale to describe swift of azimuth and elevation pointing angle towards satellite. Due to drifting from the precise pointing, it influenced the received link budget indicated by pattern antenna. This antenna pattern shows reduction of power level received as a result of pointing misalignment. As a conclusion, the increasing misalignment of pointing to satellite would affect in the reduction of received signal parameters link budget of down-link traffic.

  16. Design of an anti-Rician-fading modem for mobile satellite communication systems

    Science.gov (United States)

    Kojima, Toshiharu; Ishizu, Fumio; Miyake, Makoto; Murakami, Keishi; Fujino, Tadashi

    1995-01-01

    To design a demodulator applicable to mobile satellite communication systems using differential phase shift keying modulation, we have developed key technologies including an anti-Rician-fading demodulation scheme, an initial acquisition scheme, automatic gain control (AGC), automatic frequency control (AFC), and bit timing recovery (BTR). Using these technologies, we have developed one-chip digital signal processor (DSP) modem for mobile terminal, which is compact, of light weight, and of low power consumption. Results of performance test show that the developed DSP modem achieves good performance in terms of bit error ratio in mobile satellite communication environment, i.e., Rician fading channel. It is also shown that the initial acquisition scheme acquires received signal rapidly even if the carrier-to-noise power ratio (CNR) of the received signal is considerably low.

  17. 6/4 GHz band small capacity omni-use terminal satellite system

    Science.gov (United States)

    Masamura, T.; Inoue, T.

    1983-03-01

    This paper presents system outline and multiple access techniques for a domestic satellite communication system accommodating numerous small earth stations. Two kinds of earth stations are employed in this system, a small earth terminal (SET) and a master earth station (MES). There are 48 both way satellite channels using a 6/4 GHz band transponder whose e.i.r.p is about 62 dBm. The TDM (Time Division Multiplex) method is employed in the MES to SET link, and the SSMA (Spread Spectrum Multiple Access) method is used in the SET to MES link.

  18. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 2

    Science.gov (United States)

    Greenburg, J. S.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-01-01

    The computational procedures used in the evaluation of spacecraft technology programs that impact upon commercial communication satellite operations are discussed. Computer programs and data bases are described.

  19. NASA satellite communications application research. Phase 2: Efficient high power, solid state amplifier for EFH communications

    Science.gov (United States)

    Benet, James

    1993-01-01

    The final report describes the work performed from 9 Jun. 1992 to 31 Jul. 1993 on the NASA Satellite Communications Application Research (SCAR) Phase 2 program, Efficient High Power, Solid State Amplifier for EHF Communications. The purpose of the program was to demonstrate the feasibility of high-efficiency, high-power, EHF solid state amplifiers that are smaller, lighter, more efficient, and less costly than existing traveling wave tube (TWT) amplifiers by combining the output power from up to several hundred solid state amplifiers using a unique orthomode spatial power combiner (OSPC).

  20. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-29

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 2 and 25 [IB Docket No. 12-376; FCC 12-161] Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit Space Stations... the Federal Register of March 8, 2013. The document proposed rules for Earth Stations Aboard Aircraft...

  1. Telemedicine in rural areas. Experience with medical desktop-conferencing via satellite.

    Science.gov (United States)

    Ricke, J; Kleinholz, L; Hosten, N; Zendel, W; Lemke, A; Wielgus, W; Vöge, K H; Fleck, E; Marciniak, R; Felix, R

    1995-01-01

    Cooperation between physicians in hospitals in rural areas can be assisted by desktop-conferencing using a satellite link. For six weeks, medical desktop-conferencing was tested during daily clinical conferences between the Virchow-Klinikum, Berlin, and the Medical Academy, Wroclaw. The communications link was provided by the German Telekom satellite system MCS, which allowed temporary connections to be established on demand by manual dialling. Standard hardware and software were used for videoconferencing, as well as software for medical communication developed in the BERMED project. Digital data, such as computed tomography or magnetic resonance images, were transmitted by a digital data channel in parallel to the transmission of analogue video and audio signals. For conferences involving large groups of people, hardware modifications were required. These included the installation of a video projector, adaptation of the audio system with improved echo cancellation, and installation of extra microphones. Learning to use an unfamiliar communication medium proved to be uncomplicated for the participating physicians.

  2. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  3. Exploring the boundaries of quantum mechanics: advances in satellite quantum communications.

    Science.gov (United States)

    Agnesi, Costantino; Vedovato, Francesco; Schiavon, Matteo; Dequal, Daniele; Calderaro, Luca; Tomasin, Marco; Marangon, Davide G; Stanco, Andrea; Luceri, Vincenza; Bianco, Giuseppe; Vallone, Giuseppe; Villoresi, Paolo

    2018-07-13

    Recent interest in quantum communications has stimulated great technological progress in satellite quantum technologies. These advances have rendered the aforesaid technologies mature enough to support the realization of experiments that test the foundations of quantum theory at unprecedented scales and in the unexplored space environment. Such experiments, in fact, could explore the boundaries of quantum theory and may provide new insights to investigate phenomena where gravity affects quantum objects. Here, we review recent results in satellite quantum communications and discuss possible phenomena that could be observable with current technologies. Furthermore, stressing the fact that space represents an incredible resource to realize new experiments aimed at highlighting some physical effects, we challenge the community to propose new experiments that unveil the interplay between quantum mechanics and gravity that could be realizable in the near future.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  4. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements

    Science.gov (United States)

    Tang, Chengpan; Hu, Xiaogong; Zhou, Shanshi; Liu, Li; Pan, Junyang; Chen, Liucheng; Guo, Rui; Zhu, Lingfeng; Hu, Guangming; Li, Xiaojie; He, Feng; Chang, Zhiqiao

    2018-01-01

    Autonomous orbit determination is the ability of navigation satellites to estimate the orbit parameters on-board using inter-satellite link (ISL) measurements. This study mainly focuses on data processing of the ISL measurements as a new measurement type and its application on the centralized autonomous orbit determination of the new-generation Beidou navigation satellite system satellites for the first time. The ISL measurements are dual one-way measurements that follow a time division multiple access (TDMA) structure. The ranging error of the ISL measurements is less than 0.25 ns. This paper proposes a derivation approach to the satellite clock offsets and the geometric distances from TDMA dual one-way measurements without a loss of accuracy. The derived clock offsets are used for time synchronization, and the derived geometry distances are used for autonomous orbit determination. The clock offsets from the ISL measurements are consistent with the L-band two-way satellite, and time-frequency transfer clock measurements and the detrended residuals vary within 0.5 ns. The centralized autonomous orbit determination is conducted in a batch mode on a ground-capable server for the feasibility study. Constant hardware delays are present in the geometric distances and become the largest source of error in the autonomous orbit determination. Therefore, the hardware delays are estimated simultaneously with the satellite orbits. To avoid uncertainties in the constellation orientation, a ground anchor station that "observes" the satellites with on-board ISL payloads is introduced into the orbit determination. The root-mean-square values of orbit determination residuals are within 10.0 cm, and the standard deviation of the estimated ISL hardware delays is within 0.2 ns. The accuracy of the autonomous orbits is evaluated by analysis of overlap comparison and the satellite laser ranging (SLR) residuals and is compared with the accuracy of the L-band orbits. The results indicate

  5. The 30/20 GHz experimental communications satellite system

    Science.gov (United States)

    Sivo, J. N.

    NASA is continuing to pursue an agressive satellite communications technology development program focused on the 30/20 GHz frequency band. A review of the program progress to date is presented. Included is a discussion of the technology program status as well as a description of the experimental system concept under study. Expected system performance characteristics together with spacecraft and payload configuration details including weight and power budget is presented. Overall program schedules of both the technology development and the flight system development are included.

  6. Vibration monitoring of large vertical pumps via a remote satellite station

    International Nuclear Information System (INIS)

    Cook, S.A.; Crowe, R.D.; Roblyer, S.P.; Toffer, H.

    1985-01-01

    The Hanford N Reactor is operated by UNC Nuclear Industries for the Department of Energy for the production of special isotopes and electric energy. The reactor has a unique design in which the equipment such as pumps, turbines, generators and diesel engines are located in separate buildings. This equipment arrangement has led to the conclusion that the most cost-effective implementation of a dedicated vibration monitoring system would be to install a computerized network system in lieu of a single analyzing station. In this approach, semi-autonomous micro processor based data collection stations referred to as satellite stations are located near each concentration of machinery to be monitored. The satellite stations provide near continuous monitoring of the machinery. They are linked to a minicomputer using voice grade telephone circuits and hardware and software specifically designed for network communications. The communications link between the satellite stations and the minicomputer permits data and programs to be transmitted between the units. This paper will describe the satellite station associated with large vertical pumps vibration monitoring. The reactor has four of these pumps to supply tertiary cooling to reactor systems. 4 figs

  7. Communications satellite business ventures - Measuring the impact of technology programmes and related policies

    Science.gov (United States)

    Greenberg, J. S.

    1986-01-01

    An economic evaluation and planning procedure which assesses the effects of various policies on fixed satellite business ventures is described. The procedure is based on a stochastic financial simulation model, the Domsat II, which evaluates spacecraft reliability, market performance, and cost uncertainties. The application of the Domsat II model to the assessment of NASA's ion thrusters for on-orbit propulsion and GaAs solar cell technology is discussed. The effects of insurance rates and the self-insurance option on the financial performance of communication satellite business ventures are investigated. The selection of a transportation system for placing the satellites into GEO is analyzed.

  8. Issues for the integration of satellite and terrestrial cellular networks for mobile communications

    Science.gov (United States)

    Delre, Enrico; Mistretta, Ignazio; Dellipriscoli, Francesco; Settimo, Franco

    1991-01-01

    Satellite and terrestrial cellular systems naturally complement each other for land mobile communications, even though present systems have been developed independently. The main advantages of the integrated system are a faster wide area coverage, a better management of overloading traffic conditions, an extension to geographical areas not covered by the terrestrial network and, in perspective, the provision of only one integrated system for all mobile communications (land, aeronautical, and maritime). To achieve these goals, as far as possible the same protocols of the terrestrial network should be used also for the satellite network. Discussed here are the main issues arising from the requirements of the main integrated system. Some results are illustrated, and possible future improvements due to technical solutions are presented.

  9. A modified error correction protocol for CCITT signalling system no. 7 on satellite links

    Science.gov (United States)

    Kreuer, Dieter; Quernheim, Ulrich

    1991-10-01

    Comite Consultatif International des Telegraphe et Telephone (CCITT) Signalling System No. 7 (SS7) provides a level 2 error correction protocol particularly suited for links with propagation delays higher than 15 ms. Not being originally designed for satellite links, however, the so called Preventive Cyclic Retransmission (PCR) Method only performs well on satellite channels when traffic is low. A modified level 2 error control protocol, termed Fix Delay Retransmission (FDR) method is suggested which performs better at high loads, thus providing a more efficient use of the limited carrier capacity. Both the PCR and the FDR methods are investigated by means of simulation and results concerning throughput, queueing delay, and system delay, respectively. The FDR method exhibits higher capacity and shorter delay than the PCR method.

  10. Not Your Daddy's Data Link: Musings on Datalink Communications

    Science.gov (United States)

    Branstetter, James

    2004-01-01

    Viewgraphs about musings on Datalink Communications are presented. Some of the topics include: 1) Keen Eye for a Straight Proposal (Next Gen Data Link); 2) So many datalinks so little funding!!!; 3) Brave New World; 4) Time marches on!; 5) Through the Looking Glass; 6) Dollars & Sense Cooking; 7) Economics 101; 8) The Missing Link(s); 9) Straight Shooting; and 10) All is not lost.

  11. More About Lens Antenna For Mobile/Satellite Communication

    Science.gov (United States)

    Rahmat-Samii, Y.; Bodnar, D. G.; Rainer, B. K.

    1990-01-01

    Report presents additional details of design of proposed phased-array antenna described in "Lens Antenna for Mobile/Satellite Communication" (NPO-16948). Intended to be compact and to lie flat on top of vehicle on ground. Transmits and receives circularly polarized radiation in frequency ranges of 821 to 825 MHz and 860 to 870 MHz. Transmitting and receiving beams electronically steerable to any of 48 evenly spaced directions to provide complete azimuth coverage, and would be fixed, but wide, in elevation, to provide coverage at elevation angles from 20 degrees to 60 degrees.

  12. Dialing long distance : communications to northern operations like the MGP require sophisticated satellite networks for voice, data

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D.

    2006-04-15

    Telecommunications will play a major role in the construction of the Mackenzie Gas Project due to the remoteness of its location and the volume of communication data required to support the number of people involved and the amount of construction activity. While suppliers for communications tools have not yet been identified, initial telecommunications plans call for the installation of communication equipment at all camps, major facility sites and construction locations. Equipment will be housed in self-contained, climate-controlled buildings called telecommunication service modules (TSMs), which will be connected to each other as well as to existing public communications networks. The infrastructure will support telephone and fax systems; Internet and electronic mail services; multiple channel very high frequency radios; air-to-ground communication at airstrips and helipads; ship-to-shore at barge landings; closed circuit television; satellite community antenna television; CBC radio broadcast; public address systems; security systems; and supervisory control and data acquisition (SCADA) systems. An Internet Protocol (IP) network with a voice telephone system will be implemented along with a geostationary orbit satellite network. Satellite servers and real-time data services will be used. Car kits that allow call and battery-operated self-contained telemetry devices designed to communicate via a satellite system have been commissioned for the project that are capable of providing cost-efficient and reliable asset tracking and fleet management in remote regions and assisting in deployment requirements. It was concluded that many of today's mega-projects are the driving factors behind new telecommunications solutions in remote areas. 1 fig.

  13. Experiments of 10 Gbit/sec quantum stream cipher applicable to optical Ethernet and optical satellite link

    Science.gov (United States)

    Hirota, Osamu; Ohhata, Kenichi; Honda, Makoto; Akutsu, Shigeto; Doi, Yoshifumi; Harasawa, Katsuyoshi; Yamashita, Kiichi

    2009-08-01

    The security issue for the next generation optical network which realizes Cloud Computing System Service with data center" is urgent problem. In such a network, the encryption by physical layer which provide super security and small delay should be employed. It must provide, however, very high speed encryption because the basic link is operated at 2.5 Gbit/sec or 10 Gbit/sec. The quantum stream cipher by Yuen-2000 protocol (Y-00) is a completely new type random cipher so called Gauss-Yuen random cipher, which can break the Shannon limit for the symmetric key cipher. We develop such a cipher which has good balance of the security, speed and cost performance. In SPIE conference on quantum communication and quantum imaging V, we reported a demonstration of 2.5 Gbit/sec system for the commercial link and proposed how to improve it to 10 Gbit/sec. This paper reports a demonstration of the Y-00 cipher system which works at 10 Gbit/sec. A transmission test in a laboratory is tried to get the basic data on what parameters are important to operate in the real commercial networks. In addition, we give some theoretical results on the security. It is clarified that the necessary condition to break the Shannon limit requires indeed the quantum phenomenon, and that the full information theoretically secure system is available in the satellite link application.

  14. Introducing you to satellite operated data collection platforms (DCP).

    CSIR Research Space (South Africa)

    Stavropoulos, CC

    1977-09-01

    Full Text Available and operate in the VHF, UHF or microwave bands. By using a satellite as a repeater, large distances over land and sea can be covered with a single repeater in the sky. Trans-continental links for communication purposes have been operational for many years...

  15. Equalization and detection for digital communication over nonlinear bandlimited satellite communication channels. Ph.D. Thesis

    Science.gov (United States)

    Gutierrez, Alberto, Jr.

    1995-01-01

    This dissertation evaluates receiver-based methods for mitigating the effects due to nonlinear bandlimited signal distortion present in high data rate satellite channels. The effects of the nonlinear bandlimited distortion is illustrated for digitally modulated signals. A lucid development of the low-pass Volterra discrete time model for a nonlinear communication channel is presented. In addition, finite-state machine models are explicitly developed for a nonlinear bandlimited satellite channel. A nonlinear fixed equalizer based on Volterra series has previously been studied for compensation of noiseless signal distortion due to a nonlinear satellite channel. This dissertation studies adaptive Volterra equalizers on a downlink-limited nonlinear bandlimited satellite channel. We employ as figure of merits performance in the mean-square error and probability of error senses. In addition, a receiver consisting of a fractionally-spaced equalizer (FSE) followed by a Volterra equalizer (FSE-Volterra) is found to give improvement beyond that gained by the Volterra equalizer. Significant probability of error performance improvement is found for multilevel modulation schemes. Also, it is found that probability of error improvement is more significant for modulation schemes, constant amplitude and multilevel, which require higher signal to noise ratios (i.e., higher modulation orders) for reliable operation. The maximum likelihood sequence detection (MLSD) receiver for a nonlinear satellite channel, a bank of matched filters followed by a Viterbi detector, serves as a probability of error lower bound for the Volterra and FSE-Volterra equalizers. However, this receiver has not been evaluated for a specific satellite channel. In this work, an MLSD receiver is evaluated for a specific downlink-limited satellite channel. Because of the bank of matched filters, the MLSD receiver may be high in complexity. Consequently, the probability of error performance of a more practical

  16. Modeling and simulation of satellite subsystems for end-to-end spacecraft modeling

    Science.gov (United States)

    Schum, William K.; Doolittle, Christina M.; Boyarko, George A.

    2006-05-01

    During the past ten years, the Air Force Research Laboratory (AFRL) has been simultaneously developing high-fidelity spacecraft payload models as well as a robust distributed simulation environment for modeling spacecraft subsystems. Much of this research has occurred in the Distributed Architecture Simulation Laboratory (DASL). AFRL developers working in the DASL have effectively combined satellite power, attitude pointing, and communication link analysis subsystem models with robust satellite sensor models to create a first-order end-to-end satellite simulation capability. The merging of these two simulation areas has advanced the field of spacecraft simulation, design, and analysis, and enabled more in-depth mission and satellite utility analyses. A core capability of the DASL is the support of a variety of modeling and analysis efforts, ranging from physics and engineering-level modeling to mission and campaign-level analysis. The flexibility and agility of this simulation architecture will be used to support space mission analysis, military utility analysis, and various integrated exercises with other military and space organizations via direct integration, or through DOD standards such as Distributed Interaction Simulation. This paper discusses the results and lessons learned in modeling satellite communication link analysis, power, and attitude control subsystems for an end-to-end satellite simulation. It also discusses how these spacecraft subsystem simulations feed into and support military utility and space mission analyses.

  17. NASA satellite communications application research, phase 2 addendum. Efficient high power, solid state amplifier for EHF communications

    Science.gov (United States)

    Benet, James

    1994-01-01

    This document is an addendum to the NASA Satellite Communications Application Research (SCAR) Phase 2 Final Report, 'Efficient High Power, Solid State Amplifier for EHF Communications.' This report describes the work performed from 1 August 1993 to 11 March 1994, under contract number NASW-4513. During this reporting period an array of transistor amplifiers was repaired by replacing all MMIC amplifier chips. The amplifier array was then tested using three different feedhorn configurations. Descriptions, procedures, and results of this testing are presented in this report, and conclusions are drawn based on the test results obtained.

  18. Attitude Control Subsystem for the Advanced Communications Technology Satellite

    Science.gov (United States)

    Hewston, Alan W.; Mitchell, Kent A.; Sawicki, Jerzy T.

    1996-01-01

    This paper provides an overview of the on-orbit operation of the Attitude Control Subsystem (ACS) for the Advanced Communications Technology Satellite (ACTS). The three ACTS control axes are defined, including the means for sensing attitude and determining the pointing errors. The desired pointing requirements for various modes of control as well as the disturbance torques that oppose the control are identified. Finally, the hardware actuators and control loops utilized to reduce the attitude error are described.

  19. The impact of customer-contractor interactions on spacecraft innovation: Insights from communication satellite history

    Science.gov (United States)

    Szajnfarber, Zoe; Stringfellow, Margaret V.; Weigel, Annalisa L.

    2010-11-01

    This paper captures a first detailed attempt to quantitatively analyze the innovation history of the space sector. Building on a communication satellite innovation metric and a spacecraft innovation framework developed as part of an ongoing project, this paper presents a preliminary model of global communication satellite innovation. In addition to innovation being a function of the rate of performance normalized by price, innovation was found to be strongly influenced by characteristics of the customer-contractor contractual relationship. Specifically, Department of Defense contracts tend to result in a lower level of innovation on average as compared to other customers. Also, particular customer-contractor pairs perform differently and exhibit a second order relationship in time.

  20. Design Concepts for a Small Space-Based GEO Relay Satellite for Missions Between Low Earth and near Earth Orbits

    Science.gov (United States)

    Bhasin, Kul B.; Warner, Joseph D.; Oleson, Steven; Schier, James

    2014-01-01

    The main purpose of the Small Space-Based Geosynchronous Earth orbiting (GEO) satellite is to provide a space link to the user mission spacecraft for relaying data through ground networks to user Mission Control Centers. The Small Space Based Satellite (SSBS) will provide services comparable to those of a NASA Tracking Data Relay Satellite (TDRS) for the same type of links. The SSBS services will keep the user burden the same or lower than for TDRS and will support the same or higher data rates than those currently supported by TDRS. At present, TDRSS provides links and coverage below GEO; however, SSBS links and coverage capability to above GEO missions are being considered for the future, especially for Human Space Flight Missions (HSF). There is also a rising need for the capability to support high data rate links (exceeding 1 Gbps) for imaging applications. The communication payload on the SSBS will provide S/Ka-band single access links to the mission and a Ku-band link to the ground, with an optical communication payload as an option. To design the communication payload, various link budgets were analyzed and many possible operational scenarios examined. To reduce user burden, using a larger-sized antenna than is currently in use by TDRS was considered. Because of the SSBS design size, it was found that a SpaceX Falcon 9 rocket could deliver three SSBSs to GEO. This will greatly reduce the launch costs per satellite. Using electric propulsion was also evaluated versus using chemical propulsion; the power system size and time to orbit for various power systems were also considered. This paper will describe how the SSBS will meet future service requirements, concept of operations, and the design to meet NASA users' needs for below and above GEO missions. These users' needs not only address the observational mission requirements but also possible HSF missions to the year 2030. We will provide the trade-off analysis of the communication payload design in terms of

  1. Mitigating Aviation Communication and Satellite Orbit Operations Surprises from Adverse Space Weather

    Science.gov (United States)

    Tobiska, W. Kent

    2008-01-01

    Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.

  2. Directional antenna array (DAA) for communications, control, and data link protection

    Science.gov (United States)

    Molchanov, Pavlo A.; Contarino, Vincent M.

    2013-06-01

    A next generation of Smart antennas with point-to-point communication and jam, spoof protection capability by verification of spatial position is offered. A directional antenna array (DAA) with narrow irradiation beam provides counter terrorism protection for communications, data link, control and GPS. Communications are "invisible" to guided missiles because of 20 dB smaller irradiation outside the beam and spatial separation. This solution can be implemented with current technology. Directional antennas have higher gain and can be multi-frequency or have wide frequency band in contrast to phase antenna arrays. This multi-directional antenna array provides a multi-functional communication network and simultaneously can be used for command control, data link and GPS.

  3. The Future of Satellite Communications Technology.

    Science.gov (United States)

    Nowland, Wayne

    1985-01-01

    Discusses technical advances in satellite technology since the 1960s, and the International Telecommunications Satellite Organization's role in these developments; describes how AUSSAT, Australia's domestic satellite system, exemplifies the latest developments in satellite technology; and reviews satellite system features, possible future…

  4. Intelligent Media Access Protocol for SDR-Based Satellite Communications

    Data.gov (United States)

    National Aeronautics and Space Administration — In a communications channel, the space environment between a spacecraft and an Earth ground station can potentially cause the loss of a data link or at least degrade...

  5. Study on networking issues of medium earth orbit satellite communications systems

    Science.gov (United States)

    Araki, Noriyuki; Shinonaga, Hideyuki; Ito, Yasuhiko

    1993-01-01

    Two networking issues of communications systems with medium earth orbit (MEO) satellites, namely network architectures and location determination and registration methods for hand-held terminals, are investigated in this paper. For network architecture, five candidate architectures are considered and evaluated in terms of signaling traffic. For location determination and registration, two methods are discussed and evaluated.

  6. Challenges in sending large radiology images over military communications channels

    Science.gov (United States)

    Cleary, Kevin R.; Levine, Betty A.; Norton, Gary S.; Mundur, Padmavathi V.

    1997-05-01

    In cooperation with the US Army, Georgetown University Medical Center (GUMC) deployed a teleradiology network to sites in Bosnia-Herzegovina, Hungary, and Germany in early 1996. This deployment was part of Operation Primetime III, a military project to provide state-of-the-art medical care to the 20,000 US troops stationed in Bosnia-Herzegovina.In a three-month time frame from January to April 1996, the Imaging Sciences and Information Systems (ISIS) Center at GUMC worked with the Army to design, develop, and deploy a teleradiology network for the digital storage and transmission of radiology images. This paper will discuss some of the problems associated with sending large files over communications networks with significant delays such as those introduced by satellite transmissions.Radiology images of up to 10 megabytes are acquired, stored, and transmitted over the wide area network (WAN). The WAN included leased lines from Germany to Hungary and a satellite link form Germany to Bosnia-Herzegovina. The communications links provided at least a T-1 bandwidth. The satellite link introduces a round-trip delay of approximately 500 milliseconds. This type of high bandwidth, high delay network is called a long fat network. The images are transferred across this network using the Transmission Control Protocol (TCP/IP). By modifying the TCP/IP software to increase the window size, the throughput of the satellite link can be greatly improved.

  7. A proposed architecture for a satellite-based mobile communications network - The lowest three layers

    Science.gov (United States)

    Yan, T. Y.; Naderi, F. M.

    1986-01-01

    Architecture for a commercial mobile satellite network is proposed. The mobile satellite system (MSS) is composed of a network management center, mobile terminals, base stations, and gateways; the functions of each component are described. The satellite is a 'bent pipe' that performs frequency translations, and it has multiple UHF beams. The development of the MSS design based on the seven-layer open system interconnection model is examined. Consideration is given to the functions of the physical, data link, and network layers and the integrated adaptive mobile access protocol.

  8. Quantum communication for satellite-to-ground networks with partially entangled states

    International Nuclear Information System (INIS)

    Chen Na; Quan Dong-Xiao; Pei Chang-Xing; Yang-Hong

    2015-01-01

    To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. (paper)

  9. Cost and Performance Comparison of an Earth-Orbiting Optical Communication Relay Transceiver and a Ground-Based Optical Receiver Subnet

    Science.gov (United States)

    Wilson, K. E.; Wright, M.; Cesarone, R.; Ceniceros, J.; Shea, K.

    2003-01-01

    Optical communications can provide high-data-rate telemetry from deep-space probes with subsystems that have lower mass, consume less power, and are smaller than their radio frequency (RF) counterparts. However, because optical communication is more affected by weather than is RF communication, it requires ground station site diversity to mitigate the adverse effects of inclement weather on the link. An optical relay satellite is not affected by weather and can provide 24-hour coverage of deep-space probes. Using such a relay satellite for the deep-space link and an 8.4-GHz (X-band) link to a ground station would support high-data-rate links from small deep-space probes with very little link loss due to inclement weather. We have reviewed past JPL-funded work on RF and optical relay satellites, and on proposed clustered and linearly dispersed optical subnets. Cost comparisons show that the life cycle costs of a 7-m optical relay station based on the heritage of the Next Generation Space Telescope is comparable to that of an 8-station subnet of 10-m optical ground stations. This makes the relay link an attractive option vis-a-vis a ground station network.

  10. Application of the advanced communications technology satellite for teleradiology and telemedicine

    Science.gov (United States)

    Stewart, Brent K.; Carter, Stephen J.; Rowberg, Alan H.

    1995-05-01

    The authors have an in-kind grant from NASA to investigate the application of the Advanced Communications Technology Satellite (ACTS) to teleradiology and telemedicine using the JPL developed ACTS Mobile Terminal (AMT) uplink. This experiment involves the transmission of medical imagery (CT, MR, CR, US and digitized radiographs including mammograms), between the ACTS/AMT and the University of Washington. This is accomplished by locating the AMT experiment van in various locations throughout Washington state, Idaho, Montana, Oregon and Hawaii. The medical images are transmitted from the ACTS to the downlink at the NASA Lewis Research Center (LeRC) in Cleveland, Ohio, consisting of AMT equipment and the high burst rate-link evaluation terminal (HBR-LET). These images are then routed from LeRC to the University of Washington School of Medicine (UWSoM) through the Internet and public switched Integrated Serviced Digital Network (ISDN). Once images arrive in the UW Radiology Department, they are reviewed using both video monitor softcopy and laser-printed hardcopy. Compressed video teleconferencing and transmission of real-time ultrasound video between the AMT van and the UWSoM are also tested. Image quality comparisons are made using both subjective diagnostic criteria and quantitative engineering analysis. Evaluation is performed during various weather conditions (including rain to assess rain fade compensation algorithms). Compression techniques also are tested to evaluate their effects on image quality, allowing further evaluation of portable teleradiology/telemedicine at lower data rates and providing useful information for additional applications (e.g., smaller remote units, shipboard, emergency disaster, etc.). The medical images received at the UWSoM over the ACTS are directly evaluated against the original digital images. The project demonstrates that a portable satellite-land connection can provide subspecialty consultation and education for rural and remote

  11. Economics of satellite communications systems

    Science.gov (United States)

    Pritchard, Wilbur L.

    This paper is partly a tutorial, telling systematically how one goes about calculating the total annual costs of a satellite communications system, and partly the expression of some original ideas on the choice of parameters so as to minimize these costs. The calculation of costs can be divided into two broad categories. The first is technical and is concerned with estimating what particular equipment will cost and what will be the annual expense to maintain and operate it. One starts in the estimation of any new system by listing the principal items of equipment, such as satellites, earth stations of various sizes and functions, telemetry and tracking equipment and terrestrial interfaces, and then estimating how much each item will cost. Methods are presented for generating such estimates, based on a knowledge of the gross parameters, such as antenna size, coverage area, transmitter power and information rate. These parameters determine the system performance and it is usually possible, knowing them, to estimate the costs of the equipment rather well. Some formulae based on regression analyses are presented. Methods are then given for estimating closely related expenses, such as maintenance and operation, and then an approximate method is developed for estimating terrestrial interconnection costs. It is pointed out that in specific cases when tariff and geographical information are available, it is usually better to work with specific data, but nonetheless it is often desirable, especially in global system estimating, to approximate these interconnect costs without recourse to individual tariffs. The procedure results in a set of costs for the purchase of equipment and its maintenance, and a schedule of payments. Some payments will be incurred during the manufacture of the satellite and before any systems operation, but many will not be incurred until the system is no longer in use, e.g. incentives. In any case, with the methods presented in the first section, one

  12. Communication and Control in the Canadian North: The Role of Interactive Satellites.

    Science.gov (United States)

    Valaskakis, Gail G.

    In 1972 the Canadian government launched its first domestic communications satellite, Anik A, which relays direct broadcast television and telephone messages to northern communities. The impact of television on Inuit life has raised issues and concerns pertaining to native language broadcasting, media access and control, and cultural identity…

  13. Reverse Link CDMA System Capacity Evaluation for Stratospheric Platform Mobile Communications

    Directory of Open Access Journals (Sweden)

    Iskandar Iskandar

    2010-10-01

    Full Text Available We propose an analysis of reverse link CDMA multispot beam stratospheric platforms (SPF in this paper. The SPF is currently proposed as a novel wireless technology for the development of the next generation fixed and mobile communications. The geometry of this technology is different from that of the terrestrial but rather similar to the satellite based cellular system. However, evaluation on the CDMA system capacity of this technology has not been much reported. This paper addresses all possible multiple access interference analyses including the effects of channel fading and shadowing in order to evaluate the system capacity. Single SPF and multiple SPF model are evaluated under perfect power control and imperfect power control. The results indicate that in SPF systems the reverse link CDMA capacity is significantly reduced because of the power control imperfections. Moreover, in multiple SPF model the interference caused by the users in overlapped region is not trivial. We found that because of this problem the capacity is reduced for both speech and real-time data applications compared with the single SPF model even though the assumption of perfect power control can be made. In order to improve the system capacity we proposed two methods, first is to increase the minimum elevation angle definition for each platform and the second is to employ an adaptive antenna.

  14. Optimization of Joint Power and Bandwidth Allocation in Multi-Spot-Beam Satellite Communication Systems

    Directory of Open Access Journals (Sweden)

    Heng Wang

    2014-01-01

    Full Text Available Multi-spot-beam technique has been widely applied in modern satellite communication systems. However, the satellite power and bandwidth resources in a multi-spot-beam satellite communication system are scarce and expensive; it is urgent to utilize the resources efficiently. To this end, dynamically allocating the power and bandwidth is an available way. This paper initially formulates the problem of resource joint allocation as a convex optimization problem, taking into account a compromise between the maximum total system capacity and the fairness among the spot beams. A joint bandwidth and power allocation iterative algorithm based on duality theory is then proposed to obtain the optimal solution of this optimization problem. Compared with the existing separate bandwidth or power optimal allocation algorithms, it is shown that the joint allocation algorithm improves both the total system capacity and the fairness among spot beams. Moreover, it is easy to be implemented in practice, as the computational complexity of the proposed algorithm is linear with the number of spot beams.

  15. Propagation Engineering in Wireless Communications

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2012-01-01

    Wireless communications has seen explosive growth in recent decades, in a realm that is both broad and rapidly expanding to include satellite services, navigational aids, remote sensing, telemetering, audio and video broadcasting, high-speed data communications, mobile radio systems and much more. Propagation Engineering in Wireless Communications deals with the basic principles of radiowaves propagation for frequency bands used in radio-communications, offering descriptions of new achievements and newly developed propagation models. The book bridges the gap between theoretical calculations and approaches, and applied procedures needed for advanced radio links design. The primary objective of this two-volume set is to demonstrate the fundamentals, and to introduce propagation phenomena and mechanisms that engineers are likely to encounter in the design and evaluation of radio links of a given type and operating frequency. Volume one covers basic principles, along with tropospheric and ionospheric propagation,...

  16. Mass and power modeling of communication satellites

    Science.gov (United States)

    Price, Kent M.; Pidgeon, David; Tsao, Alex

    1991-01-01

    Analytic estimating relationships for the mass and power requirements for major satellite subsystems are described. The model for each subsystem is keyed to the performance drivers and system requirements that influence their selection and use. Guidelines are also given for choosing among alternative technologies which accounts for other significant variables such as cost, risk, schedule, operations, heritage, and life requirements. These models are intended for application to first order systems analyses, where resources do not warrant detailed development of a communications system scenario. Given this ground rule, the models are simplified to 'smoothed' representation of reality. Therefore, the user is cautioned that cost, schedule, and risk may be significantly impacted where interpolations are sufficiently different from existing hardware as to warrant development of new devices.

  17. Plastic optical fiber serial communications link for distributed control system

    Science.gov (United States)

    Saxena, Piyush; Sharangpani, K. K.; Vora, H. S.; Nakhe, S. V.; Jain, R.; Shenoy, N. M.; Bhatnagar, R.; Shirke, N. D.

    2001-09-01

    One of the most common interface for communications specified is RS 232C standard. Though widely accepted, RS232 has limited transmission speed, range and networking capabilities. RS 422 standard overcomes limitations by using differential signal lines. In automation of the operation of gas discharge lasers, multiple processors are used for control of lasers, cooling system, vacuum system etc. High EMI generated by lasers interfere through galvanic transmission or by radiation over the length of cables, and hang up operation of processors or control PC. A serial communications link was designed eliminating copper transmission media, using plastic optical fiber cables and components, to connect local controllers with the master PC working on RS232 protocols. The paper discusses the design and implementation of a high ly reliable EMI harden serial communications link.

  18. A New Remote Communications Link to Reduce Residential PV Solar Costs

    Energy Technology Data Exchange (ETDEWEB)

    King, Randy [Operant Solar Corporation,CA (United States); Sugiyama, Rod [Operant Solar Corporation,CA (United States)

    2017-12-11

    Monitoring of PV/DER site production is expensive to install and unreliable. Among third party systems providers, lost communications links are a growing concern. Nearly 20% of links are failing, provisioning is complex, recovery is expensive, production data is lost, and access is fragmented. FleetLink is a new concept in DER system communications, purpose built for lowering the cost of maintaining active contact with residential end user sites and ensuring that production data is reliably available to third party systems providers. Systems providers require accurate, secure system monitoring and reporting of production data and system faults while driving down overall costs to compete effectively. This plug and play, independently operating communications solution lowers the cost of fleet contact from typically .08 dollars-$.12/W down to .02 dollars -.03/W including installation and maintenance expenses. FleetLink establishes a breakthrough in simplicity that facilitates rapid expansion of residential solar by reducing initial capital outlay and lowering installation labor time and skill levels. The solution also facilitates higher DER installation growth rates by driving down maintenance costs and eliminating communications trouble calls. This is accomplished by the FleetLink’s unique network technology that enables dynamic network configuration for fast changes, and active, self-healing DER site contact for uptime assurance. Using an open source network framework with proprietary, application specific enhancements, FleetLink independently manages connectivity, security, recovery, grid control communications, and fleet expansion while presenting a compliant SunSpec interface to the third party operations centers. The net system cost savings of at least .05 dollars/W supports the SunShot cost goals and the flexibility and scalability of the solution accelerates the velocity and ubiquitous adoption of solar.

  19. Defense Science Board Task Force on Military Satellite Communication and Tactical Networking. Executive Summary

    Science.gov (United States)

    2017-03-01

    Interface Processor BCT Brigade Combat Team BFT Blue Force Tracking BLOS Beyond Line-of-Sight C2 Command And Control C2E Communications in...Satellite Communications and Tactical Networking Appendix D-2 GIG Global Information Grid GMR Ground Mobile Radio GPS Global Positioning System...System SIPRNet Secret Internet Protocol Router Network SITREPS Situational Reports SMART -T Secure Mobile Anti-Jam Reliable Tactical Terminal SMC Space

  20. Prediction of Communication Outage Period between Satellite and Earth station Due to Sun Interference

    Directory of Open Access Journals (Sweden)

    Yongjun Song

    2010-03-01

    Full Text Available We developed a computer program to predict solar interference period. To calculate Sun‘s position, we used DE406 ephemerides and Earth ellipsoid model. The Sun‘s position error is smaller than 10arcsec. For the verification of the calculation, we used TU media ground station on Seongsu-dong, and MBSAT geostationary communication satellite. We analysis errors, due to satellite perturbation and antenna align. The time error due to antenna align has -35 to +16 seconds at 0.1 degree, and -27 to +41 seconds at 0.25 degree. The time errors derived by satellite perturbation has 30 to 60 seconds.

  1. Earth-Space Links and Fade-Duration Statistics

    Science.gov (United States)

    Davarian, Faramaz

    1996-01-01

    In recent years, fade-duration statistics have been the subject of several experimental investigations. A good knowledge of the fade-duration distribution is important for the assessment of a satellite communication system's channel dynamics: What is a typical link outage duration? How often do link outages exceeding a given duration occur? Unfortunately there is yet no model that can universally answer the above questions. The available field measurements mainly come from temperate climatic zones and only from a few sites. Furthermore, the available statistics are also limited in the choice of frequency and path elevation angle. Yet, much can be learned from the available information. For example, we now know that the fade-duration distribution is approximately lognormal. Under certain conditions, we can even determine the median and other percentiles of the distribution. This paper reviews the available data obtained by several experimenters in different parts of the world. Areas of emphasis are mobile and fixed satellite links. Fades in mobile links are due to roadside-tree shadowing, whereas fades in fixed links are due to rain attenuation.

  2. Probing the earth's gravity field using Satellite-to-Satellite Tracking (SST)

    Science.gov (United States)

    Vonbun, F. O.

    1976-01-01

    Satellite-to-Satellite (SST) tests, namely: (a) the ATS-6/GEOS-3 and (b) the ATS-6/Apollo-Soyuz experiment and some of the results obtained are described. The main purpose of these two experiments was first to track via ATS-6 the GEOS-3 as well as the Apollo-Soyuz and to use these tracking data to determine (a) both orbits, that is, ATS-6, GEOS-3 and/or the Apollo-Soyuz orbits at the same time; (b) each of these orbits alone; and (c) test the ATS-6/GEOS-3 and/or Apollo-Soyuz SST link to study local gravity anomalies; and, second, to test communications, command, and data transmission from the ground via ATS-6 to these spacecraft and back again to the ground. The Apollo-Soyuz Geodynamics Experiment is discussed in some detail.

  3. Why is CDMA the solution for mobile satellite communication

    Science.gov (United States)

    Gilhousen, Klein S.; Jacobs, Irwin M.; Padovani, Roberto; Weaver, Lindsay A.

    1989-01-01

    It is demonstrated that spread spectrum Code Division Multiple Access (CDMA) systems provide an economically superior solution to satellite mobile communications by increasing the system maximum capacity with respect to single channel per carrier Frequency Division Multiple Access (FDMA) systems. Following the comparative analysis of CDMA and FDMA systems, the design of a model that was developed to test the feasibility of the approach and the performance of a spread spectrum system in a mobile environment. Results of extensive computer simulations as well as laboratory and field tests results are presented.

  4. A Software Implementation of a Satellite Interface Message Processor.

    Science.gov (United States)

    Eastwood, Margaret A.; Eastwood, Lester F., Jr.

    A design for network control software for a computer network is described in which some nodes are linked by a communications satellite channel. It is assumed that the network has an ARPANET-like configuration; that is, that specialized processors at each node are responsible for message switching and network control. The purpose of the control…

  5. Networked Airborne Communications Using Adaptive Multi Beam Directional Links

    Science.gov (United States)

    2016-03-05

    Networked Airborne Communications Using Adaptive Multi-Beam Directional Links R. Bruce MacLeod Member, IEEE, and Adam Margetts Member, IEEE MIT...provide new techniques for increasing throughput in airborne adaptive directional net- works. By adaptive directional linking, we mean systems that can...techniques can dramatically increase the capacity in airborne networks. Advances in digital array technology are beginning to put these gains within reach

  6. Improvement of Ka-band satellite link availability for real-time IP-based video contribution

    Directory of Open Access Journals (Sweden)

    G. Berretta

    2017-09-01

    Full Text Available New High Throughput Satellite (HTS systems allow high throughput IP uplinks/contribution at Ka-band frequencies for relatively lower costs when compared to broadcasting satellite uplinks at Ku band. This technology offers an advantage for live video contribution from remote areas, where the terrestrial infrastructure may not be adequate. On the other hand, the Ka-band is more subject to impairments due to rain or bad weather. This paper addresses the target system specification and provides an optimized approach for the transmission of IP-based video flows through HTS commercial services operating at Ka-band frequencies. In particular, the focus of this study is on the service requirements and the propagation analysis that provide a reference architecture to improve the overall link availability. The approach proposed herein leads to the introduction of a new concept of live service contribution using pairs of small satellite antennas and cheap satellite terminals.

  7. Facility for the evaluation of space communications and related systems

    Science.gov (United States)

    Kerczewski, Robert J.; Svoboda, James S.; Kachmar, Brian A.

    1995-01-01

    NASA Lewis Research Center's Communications Projects Branch has developed a facility for the evaluation of space communications systems and related types of systems, called the Advanced Space Communications (ASC) Laboratory. The ASC Lab includes instrumentation, testbed hardware, and experiment control and monitor software for the evaluation of components, subsystems, systems, and networks. The ASC lab has capabilities to perform radiofrequency (RF), microwave, and millimeter-wave characterizations as well as measurements using low, medium, or high data rate digital signals. In addition to laboratory measurements, the ASC Lab also includes integrated satellite ground terminals allowing experimentation and measurements accessing operational satellites through real space links.

  8. Microwave Photonics Techniques Supporting Flexible Wireless Communications Links

    DEFF Research Database (Denmark)

    Rommel, Simon; Cavalcante, Lucas Costa Pereira; Vegas Olmos, Juan José

    Wireless data communication links supporting the next generation 5G and beyond mobile networking face a set of engineering challenges related to the mandatory operation at mmw and higher frequency bands, provide capacities above 10 Gb/s, satisfy latency, robustness, flexibility and low complexity...

  9. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  10. 47 CFR 25.279 - Inter-satellite service.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Inter-satellite service. 25.279 Section 25.279 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.279 Inter-satellite service. (a) Any satellite communicating with other space...

  11. Communications satellites in the national and global health care information infrastructure: their role, impact, and issues

    Science.gov (United States)

    Zuzek, J. E.; Bhasin, K. B.

    1996-01-01

    Health care services delivered from a distance, known collectively as telemedicine, are being increasingly demonstrated on various transmission media. Telemedicine activities have included diagnosis by a doctor at a remote location, emergency and disaster medical assistance, medical education, and medical informatics. The ability of communications satellites to offer communication channels and bandwidth on demand, connectivity to mobile, remote and under served regions, and global access will afford them a critical role for telemedicine applications within the National and Global Information Infrastructure (NII/GII). The importance that communications satellites will have in telemedicine applications within the NII/GII the differences in requirements for NII vs. GII, the major issues such as interoperability, confidentiality, quality, availability, and costs, and preliminary conclusions for future usability based on the review of several recent trails at national and global levels are presented.

  12. The Advanced Communication Technology Satellite and ISDN

    Science.gov (United States)

    Lowry, Peter A.

    1996-01-01

    This paper depicts the Advanced Communication Technology Satellite (ACTS) system as a global central office switch. The ground portion of the system is the collection of earth stations or T1-VSAT's (T1 very small aperture terminals). The control software for the T1-VSAT's resides in a single CPU. The software consists of two modules, the modem manager and the call manager. The modem manager (MM) controls the RF modem portion of the T1-VSAT. It processes the orderwires from the satellite or from signaling generated by the call manager (CM). The CM controls the Recom Laboratories MSPs by receiving signaling messages from the stacked MSP shelves ro units and sending appropriate setup commands to them. There are two methods used to setup and process calls in the CM; first by dialing up a circuit using a standard telephone handset or, secondly by using an external processor connected to the CPU's second COM port, by sending and receiving signaling orderwires. It is the use of the external processor which permits the ISDN (Integrated Services Digital Network) Signaling Processor to implement ISDN calls. In August 1993, the initial testing of the ISDN Signaling Processor was carried out at ACTS System Test at Lockheed Marietta, Princeton, NJ using the spacecraft in its test configuration on the ground.

  13. Hybrid Polling Method for Direct Link Communication for IEEE 802.11 Wireless LANs

    Directory of Open Access Journals (Sweden)

    Woo-Yong Choi

    2008-10-01

    Full Text Available The direct link communication between STAtions (STAs is one of the techniques to improve the MAC performance of IEEE 802.11 infrastructure networks. For the efficient direct link communication, in the literature, the simultaneous polling method was proposed to allow the multiple direct data communication to be performed simultaneously. However, the efficiency of the simultaneous polling method is affected by the interference condition. To alleviate the problem of the lower polling efficiency with the larger interference range, the hybrid polling method is proposed for the direct link communication between STAs in IEEE 802.11 infrastructure networks. By the proposed polling method, we can integrate the sequential and simultaneous polling methods properly according to the interference condition. Numerical examples are also presented to show the medium access control (MAC performance improvement by the proposed polling method.

  14. Bit-error-rate testing of fiber optic data links for MMIC-based phased array antennas

    Science.gov (United States)

    Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.

    1990-01-01

    The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.

  15. Bit error rate testing of fiber optic data links for MMIC-based phased array antennas

    Science.gov (United States)

    Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.

    1990-01-01

    The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.

  16. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    Science.gov (United States)

    Downey, Joseph; Downey, James; Reinhart, Richard C.; Evans, Michael Alan; Mortensen, Dale John

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 248-phase shift keying (PSK) and 1632- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 bsHz) modulation combined with various LDPC encoding rates to maximize throughput. With a symbol rate of 200 Mbaud, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results, compensation

  17. Toward Continental-scale Rainfall Monitoring Using Commercial Microwave Links From Cellular Communication Networks

    Science.gov (United States)

    Uijlenhoet, R.; Leijnse, H.; Overeem, A.

    2017-12-01

    Accurate and timely surface precipitation measurements are crucial for water resources management, agriculture, weather prediction, climate research, as well as ground validation of satellite-based precipitation estimates. However, the majority of the land surface of the earth lacks such data, and in many parts of the world the density of surface precipitation gauging networks is even rapidly declining. This development can potentially be counteracted by using received signal level data from the enormous number of microwave links used worldwide in commercial cellular communication networks. Along such links, radio signals propagate from a transmitting antenna at one base station to a receiving antenna at another base station. Rain-induced attenuation and, subsequently, path-averaged rainfall intensity can be retrieved from the signal's attenuation between transmitter and receiver. We have previously shown how one such a network can be used to retrieve the space-time dynamics of rainfall for an entire country (The Netherlands, ˜35,500 km2), based on an unprecedented number of links (˜2,400) and a rainfall retrieval algorithm that can be applied in real time. This demonstrated the potential of such networks for real-time rainfall monitoring, in particular in those parts of the world where networks of dedicated ground-based rainfall sensors are often virtually absent. The presentation will focus on the potential for upscaling this technique to continental-scale rainfall monitoring in Europe. In addition, several examples of recent applications of this technique on other continents (South America, Africa, Asia and Australia) will be given.

  18. SURVEY OF COMMUNICATION LINKS FOR ATCA IN PHYSICS

    CERN Document Server

    Makowski, D; Piotrowski, A; Cichalewski, W; Jalmuzna, W; Koprek, W; Simrock, S

    2009-01-01

    Modern machines used in high energy physics require sophisticated and complex control systems. The complex systems are usually built as distributed systems. Therefore, the connectivity and communication links between distributed subsystems play a crucial role in the control system. The Advanced TelecommunicationComputingArchitecture (ATCA) and Advanced Mezzanine Card (AMC) standards have attracted the attention of physics community because they offer various types of data communication channels with high bandwidth, redundancy, high reliability and availability. The standards allow using different types of communication interfaces like PCIe, Gigabit Ethernet, RapidIO. In real-time systems the data transmission latency is also important. The acquisition of real-time data from hundreds of analogue channels is required for the Low Level Radio Frequency (LLRF) controller of XFEL (X-ray Free Electron Laser) accelerator. The paper presents survey of the communication interfaces of the LLRF controller for XFEL. The d...

  19. A high-speed 0.35μm CMOS optical communication link

    Science.gov (United States)

    Goosen, Marius E.; Venter, Petrus J.; du Plessis, Monuko; Bogalecki, Alfons W.; Alberts, Antonie C.; Rademeyer, Pieter

    2012-01-01

    The idea of integrating a light emitter and detector in the cost effective and mature technology which is CMOS remains an attractive one. Silicon light emitters, used in avalanche breakdown, are demonstrated to switch at frequencies above 1 GHz whilst still being electrically detected, a three-fold increase on previous reported results. Utilizing novel BEOLstack reflectors and increased array sizes have resulted in an increased power efficiency allowing multi-Mb/s data rates. In this paper we present an all-silicon optical communication link with data rates exceeding 10 Mb/s at a bit error rate of less than 10-12, representing a ten-fold increase over the previous fastest demonstrated silicon data link. Data rates exceeding 40 Mb/s are also presented and evaluated. The quality of the optical link is established using both eye diagram measurements as well as a digital communication system setup. The digital communication system setup comprises the generation of 232-1 random data, 8B/10B encoding and decoding, data recovery and the subsequent bit error counting.

  20. Positional stabilization of communications satellites - The RITA ion propulsion system is ready for commercial use

    Science.gov (United States)

    The radiofrequency ion thruster assembly (RITA) intended for service aboard the new Artemis communications satellite will operate for three hours twice a day, in order to furnish orbital position adjustments that keep antennas accurately pointed toward the earth. These engines are, despite such frequent and sustained use, projected to eject no more than 30 kG of Xe over the course of a decade. RITA operation is also extremely reliable and, due to its very low propellant consumption, is the basis of a long satellite service life. RITA will be among the 15 experiments that are to be performed by ESA's Eureca research satellite.

  1. Virtual target tracking (VTT) as applied to mobile satellite communication networks

    Science.gov (United States)

    Amoozegar, Farid

    1999-08-01

    Traditionally, target tracking has been used for aerospace applications, such as, tracking highly maneuvering targets in a cluttered environment for missile-to-target intercept scenarios. Although the speed and maneuvering capability of current aerospace targets demand more efficient algorithms, many complex techniques have already been proposed in the literature, which primarily cover the defense applications of tracking methods. On the other hand, the rapid growth of Global Communication Systems, Global Information Systems (GIS), and Global Positioning Systems (GPS) is creating new and more diverse challenges for multi-target tracking applications. Mobile communication and computing can very well appreciate a huge market for Cellular Communication and Tracking Devices (CCTD), which will be tracking networked devices at the cellular level. The objective of this paper is to introduce a new concept, i.e., Virtual Target Tracking (VTT) for commercial applications of multi-target tracking algorithms and techniques as applied to mobile satellite communication networks. It would be discussed how Virtual Target Tracking would bring more diversity to target tracking research.

  2. SAW based systems for mobile communications satellites

    Science.gov (United States)

    Peach, R. C.; Miller, N.; Lee, M.

    1993-01-01

    Modern mobile communications satellites, such as INMARSAT 3, EMS, and ARTEMIS, use advanced onboard processing to make efficient use of the available L-band spectrum. In all of these cases, high performance surface acoustic wave (SAW) devices are used. SAW filters can provide high selectivity (100-200 kHz transition widths), combined with flat amplitude and linear phase characteristics; their simple construction and radiation hardness also makes them especially suitable for space applications. An overview of the architectures used in the above systems, describing the technologies employed, and the use of bandwidth switchable SAW filtering (BSSF) is given. The tradeoffs to be considered when specifying a SAW based system are analyzed, using both theoretical and experimental data. Empirical rules for estimating SAW filter performance are given. Achievable performance is illustrated using data from the INMARSAT 3 engineering model (EM) processors.

  3. Mobile Router Testing with Diverse RF Communications Links

    Science.gov (United States)

    Brooks, David; Hoder, Doug; Wilkins, Ryan

    2004-01-01

    This is a short report on demonstrations using Mobile IP and several diverse physical communications links to connect a mobile network to a fixed IPv4 internet. The first section is a description of the equipment used, followed by descriptions of the tests, the theoretical results, and finally conclusions and the actual data.

  4. Experimental study of the helicopter-mobile radioelectrical channel and possible extension to the satellite-mobile channel

    Science.gov (United States)

    Blanchetiere-Ciarletti, V.; Sylvain, M.; Lemenn, P.

    1994-07-01

    The use of satellite seems to be an answer to the radioelectrical covering problem for the mobile communications, particularly in the low populated areas. Frequency bands at 1.5 and 2.5 GHz have been dedicated to these future services. Satellite-mobile links will be much more affected by propagation phenomena than the existing links between satellites and fixed stations. The reasons for that are twofold: The probable use of LEO (Low-Earth-Orbit) satellites instead of GEO; such satellites will have to be received at relatively low elevation to limit their number; the use of mobile communication terminals with small and non directive antennas that must work in various environments instead of terrestrian stations located at carefully chosen places and equipped with large diameter paraboloids. These propagation phenomena mainly consist in the fading of the signal level (shadowing of the link), and a frequency selective fading due to multipath propagation. The experience run by C.R.P.E. is aimed at a better understanding of the satellite-mobile propagation channel at fixed frequency as well as on a large band. In this paper, we discuss preliminary results from a series of propagation measurements performed (by lack of any experimental satellite) on an experimental radio link at 1.45 GHz on a of 20 MHz bandwidth between a helicopter flying at a height of 2 km and a mobile receiver. The whole experiment has been run in a rural environment in Brittany (France). In a first part, we illustrate the quality of the data collected during the experiment on a typical case study and give a possible physical interpretation of the observed phenomena. Then we present statistical results concerning the various characteristics (attenuation and delay spreads) of the propagation channel. Finally, we discuss the problem of using a helicopter (flying at a height of 2 km) as a substitute for a satellite at about 1000 km and try to estimate to what extent it is possible to use the data

  5. High-Efficiency, High-Power Laser Transmitter for Deep-Space Communication, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — There is demand for vastly improved deep space satellite communications links. As data rates dramatically increase due to new sensor technologies and the desire to...

  6. A design proposal of a certain missile tactical command system based on Beidou satellite communication and GPS positioning techniques

    Science.gov (United States)

    Ma, Jian; Hao, Yongsheng; Miao, Jian; Zhang, Jianmao

    2007-11-01

    This paper introduced a design proposal of tactical command system that applied to a kind of anti-tank missile carriers. The tactical command system was made up of embedded computer system based on PC104 bus, Linux operating system, digital military map, Beidou satellite communication equipments and GPS positioning equipments. The geographic coordinates was measured by the GPS receiver, the positioning data, commands and information were transmitted real-time between tactical command systems, tactical command systems and command center, by the Beidou satellite communication systems. The Beidou satellite communication equipments and GPS positioning equipments were integrated to an independent module, exchanging data with embedded computer through RS232 serial ports and USB ports. The decision support system software based on information fusion, calculates positioning data, geography information and battle field information synthetically, shows the position of allies and the position of enemy on the military map, and assesses the various threats of different enemy objects, educes a situation assessment and threat assessment.

  7. Satellite teleradiology test bed for digital mammography

    Science.gov (United States)

    Barnett, Bruce G.; Dudding, Kathryn E.; Abdel-Malek, Aiman A.; Mitchell, Robert J.

    1996-05-01

    Teleradiology offers significant improvement in efficiency and patient compliance over current practices in traditional film/screen-based diagnosis. The increasing number of women who need to be screened for breast cancer, including those in remote rural regions, make the advantages of teleradiology especially attractive for digital mammography. At the same time, the size and resolution of digital mammograms are among the most challenging to support in a cost effective teleradiology system. This paper will describe a teleradiology architecture developed for use with digital mammography by GE Corporate Research and Development in collaboration with Massachusetts General Hospital under National Cancer Institute (NCI/NIH) grant number R01 CA60246-01. The testbed architecture is based on the Digital Imaging and Communications in Medicine (DICOM) standard, created by the American College of Radiology and National Electrical Manufacturers Association. The testbed uses several Sun workstations running SunOS, which emulate a rural examination facility connected to a central diagnostic facility, and uses a TCP-based DICOM application to transfer images over a satellite link. Network performance depends on the product of the bandwidth times the round- trip time. A satellite link has a round trip of 513 milliseconds, making the bandwidth-delay a significant problem. This type of high bandwidth, high delay network is called a Long Fat Network, or LFN. The goal of this project was to quantify the performance of the satellite link, and evaluate the effectiveness of TCP over an LFN. Four workstations have Sun's HSI/S (High Speed Interface) option. Two are connected by a cable, and two are connected through a satellite link. Both interfaces have the same T1 bandwidth (1.544 Megabits per second). The only difference was the round trip time. Even with large window buffers, the time to transfer a file over the satellite link was significantly longer, due to the bandwidth-delay. To

  8. Analysis of fog effects on terrestrial Free Space optical communication links

    KAUST Repository

    Esmail, Maged Abdullah

    2016-07-26

    In this paper, we consider and examine fog measurement data, coming from several locations in Europe and USA, and attempt to derive a unified model for fog attenuation in free space optics (FSO) communication links. We evaluate and compare the performance of our proposed model to that of many well-known alternative models. We found that our proposed model, achieves an average RMSE that outperforms them by more than 9 dB. Furthermore, we have studied the performance of the FSO system using different performance metrics such as signal-to-noise (SNR) ratio, bit error rate (BER), and channel capacity. Our results show that FSO is a short range technology. Therefore, FSO is expected to find its place in future networks that will have small cell size, i.e., <1 km diameter. Moreover, our investigation shows that under dense fog, it is difficult to maintain a communications link because of the high signal attenuation, which requires switching the communications to RF backup. Our results show that increasing the transmitted power will improve the system performance under light fog. However, under heavy fog, the effect is minor. To enhance the system performance under low visibility range, multi-hop link is used which can enhance the power budget by using short segments links. Using 22 dBm transmitted power, we obtained BER=10-3 over 1 km link length with 600 m visibility range which corresponds to light fog. However, under lower visibility range equals 40 m that corresponds to dense fog, we obtained the same BER but over 200 m link length. © 2016 IEEE.

  9. Link Analysis of High Throughput Spacecraft Communication Systems for Future Science Missions

    Science.gov (United States)

    Simons, Rainee N.

    2015-01-01

    NASA's plan to launch several spacecrafts into low Earth Orbit (LEO) to support science missions in the next ten years and beyond requires down link throughput on the order of several terabits per day. The ability to handle such a large volume of data far exceeds the capabilities of current systems. This paper proposes two solutions, first, a high data rate link between the LEO spacecraft and ground via relay satellites in geostationary orbit (GEO). Second, a high data rate direct to ground link from LEO. Next, the paper presents results from computer simulations carried out for both types of links taking into consideration spacecraft transmitter frequency, EIRP, and waveform; elevation angle dependent path loss through Earths atmosphere, and ground station receiver GT.

  10. Emergency Communications Network for Disasters Management in Venezuela

    Science.gov (United States)

    Burguillos, C.; Deng, H.

    2018-04-01

    The integration and use of different space technology applications for disasters management, play an important role at the time of prevents the causes and mitigates the effects of the natural disasters. Nevertheless, the space technology counts with the appropriate technological resources to provide the accurate and timely information required to support in the decision making in case of disasters. Considering the aforementioned aspects, in this research is presented the design and implementation of an Emergency Communications Network for Disasters Management in Venezuela. Network based on the design of a topology that integrates the satellites platforms in orbit operation under administration of Venezuelan state, such as: the communications satellite VENESAT-1 and the remote sensing satellites VRSS-1 and VRSS-2; as well as their ground stations with the aim to implement an emergency communications network to be activated in case of disasters which affect the public and private communications infrastructures in Venezuela. In this regard, to design the network several technical and operational specifications were formulated, between them: Emergency Strategies to Maneuver the VRSS-1 and VRSS-2 satellites for optimal images capture and processing, characterization of the VENESAT-1 transponders and radiofrequencies for emergency communications services, technologies solutions formulation and communications links design for disaster management. As result, the emergency network designed allows to put in practice diverse communications technologies solutions and different scheme or media for images exchange between the areas affected for disasters and the entities involved in the disasters management tasks, providing useful data for emergency response and infrastructures recovery.

  11. IO-Link Wireless enhanced factory automation communication for Industry 4.0 applications

    Directory of Open Access Journals (Sweden)

    R. Heynicke

    2018-03-01

    Full Text Available In the context of the Industry 4.0 initiative, Cyber-Physical Production Systems (CPPS or Cyber Manufacturing Systems (CMS can be characterized as advanced networked mechatronic production systems gaining their added value by interaction with the ambient Industrial Internet of Things (IIoT. In this context appropriate communication technologies and standards play a vital role to realize the manifold potential improvements in the production process. One of these standards is IO-Link. In 2016 more than 5 million IO-Link nodes have been produced and delivered, still gaining increasing acceptance for the communication between sensors, actuators and the control level. The steadily increasing demand for more flexibility in automation solutions can be fulfilled using wireless technologies. With the wireless extension for the IO-Link standard, which will be presented in this article, maximum cycle times of 5 ms can be achieved with a probability that this limit will be exceeded to be at maximum one part per billion. Also roaming capabilities, wireless coexistence mechanisms and the possibility to include battery-powered or energy-harvesting sensors with very limited energy resources in the realtime network were defined. For system planning, setup, operation and maintenance, the standard engineering tools of IO-Link can be employed so that the backward compatibility with wired IO-Link solutions can be guaranteed. Interoperability between manufacturers is a key requirement for any communication standard, thus a procedure for IO-Link Wireless testing is also suggested.

  12. Multiple wavelength spectral system simulating background light noise environment in satellite laser communications

    Science.gov (United States)

    Lu, Wei; Sun, Jianfeng; Hou, Peipei; Xu, Qian; Xi, Yueli; Zhou, Yu; Zhu, Funan; Liu, Liren

    2017-08-01

    Performance of satellite laser communications between GEO and LEO satellites can be influenced by background light noise appeared in the field of view due to sunlight or planets and some comets. Such influences should be studied on the ground testing platform before the space application. In this paper, we introduce a simulator that can simulate the real case of background light noise in space environment during the data talking via laser beam between two lonely satellites. This simulator can not only simulate the effect of multi-wavelength spectrum, but also the effects of adjustable angles of field-of-view, large range of adjustable optical power and adjustable deflection speeds of light noise in space environment. We integrate these functions into a device with small and compact size for easily mobile use. Software control function is also achieved via personal computer to adjust these functions arbitrarily. Keywords:

  13. Mobile satellite communications in the 1990's

    Science.gov (United States)

    Singh, Jai

    1992-07-01

    The evolution of Inmarsat global services from a single market and single service of the 1980's to all of the key mobile markets and a wide range of new terminals and services in the 1990's is described. An overview of existing mobile satellite services, as well as new services under implementation for introduction in the near and longer term, including a handheld satellite phone (Inmarsat-P), is provided. The initiative taken by Inmarsat in the integration of its global mobile satellite services with global navigation capability derived from GPS (Global Positioning System) and the GLONASS (Russian GPS) navigation satellite systems and the provision of an international civil overlay for GPS/GLONASS integrity and augmentation is highlighted. To complete the overview of the development of mobile satellite services in the 1990's, the known national and regional mobile satellite system plans and the various recent proposals for both orbiting and geostationary satellite systems for proving handheld satellite phone and/or data messaging services are described.

  14. Modulation Classification of Satellite Communication Signals Using Cumulants and Neural Networks

    Science.gov (United States)

    Smith, Aaron; Evans, Michael; Downey, Joseph

    2017-01-01

    National Aeronautics and Space Administration (NASA)'s future communication architecture is evaluating cognitive technologies and increased system intelligence. These technologies are expected to reduce the operational complexity of the network, increase science data return, and reduce interference to self and others. In order to increase situational awareness, signal classification algorithms could be applied to identify users and distinguish sources of interference. A significant amount of previous work has been done in the area of automatic signal classification for military and commercial applications. As a preliminary step, we seek to develop a system with the ability to discern signals typically encountered in satellite communication. Proposed is an automatic modulation classifier which utilizes higher order statistics (cumulants) and an estimate of the signal-to-noise ratio. These features are extracted from baseband symbols and then processed by a neural network for classification. The modulation types considered are phase-shift keying (PSK), amplitude and phase-shift keying (APSK),and quadrature amplitude modulation (QAM). Physical layer properties specific to the Digital Video Broadcasting - Satellite- Second Generation (DVB-S2) standard, such as pilots and variable ring ratios, are also considered. This paper will provide simulation results of a candidate modulation classifier, and performance will be evaluated over a range of signal-to-noise ratios, frequency offsets, and nonlinear amplifier distortions.

  15. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    Science.gov (United States)

    Downey, Joseph A.; Downey, James M.; Reinhart, Richard C.; Evans, Michael A.; Mortensen, Dale J.

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 2/4/8-phase shift keying (PSK) and 16/32- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 b/s/Hz) modulation combined with various LDPC encoding rates to maximize through- put. With a symbol rate of 200 M-band, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results

  16. Power attenuation characteristics as switch-over criterion in personal satellite mobile communications

    Science.gov (United States)

    Castro, Jonathan P.

    1993-01-01

    A third generation mobile system intends to support communications in all environments (i.e., outdoors, indoors at home or office and when moving). This system will integrate services that are now available in architectures such as cellular, cordless, mobile data networks, paging, including satellite services to rural areas. One way through which service integration will be made possible is by supporting a hierarchical cellular structure based on umbrella cells, macro cells, micro and pico cells. In this type of structure, satellites are part of the giant umbrella cells allowing continuous global coverage, the other cells belong to cities, neighborhoods, and buildings respectively. This does not necessarily imply that network operation of terrestrial and satellite segments interconnect to enable roaming and spectrum sharing. However, the cell concept does imply hand-off between different cell types, which may involve change of frequency. Within this propsective, the present work uses power attenuation characteristics to determine a dynamic criterion that allows smooth transition from space to terrestrial networks. The analysis includes a hybrid channel that combines Rician, Raleigh and Log Normal fading characteristics.

  17. Advanced architectures and the required technologies for next-generation communications satellite systems

    Science.gov (United States)

    Arnold, Ray; Naderi, F. Michael

    1988-01-01

    The hardware requirements for multibeam operation and onboard data processing and switching on future communication satellites are reviewed. Topics addressed include multiple-beam antennas, frequency-addressable beams, baseband vs IF switching, FDM/TDMA systems, and bulk demodulators. The proposed use of these technologies in the NASA ACTS, Italsat, and the Japanese ETS-VI is discussed in detail and illustrated with extensive diagrams, maps, drawings, and tables of projected performance data.

  18. Early Communication System (ECOMM) for ISS

    Science.gov (United States)

    Gaylor, Kent; Tu, Kwei

    1999-01-01

    The International Space Station (ISS) Early Communications System (ECOMM) was a Johnson Space Center (JSC) Avionic Systems Division (ASD) in-house developed communication system to provide early communications between the ISS and the Mission Control Center-Houston (MCC-H). This system allows for low rate commands (link rate of 6 kbps) to be transmitted through the Tracking and Data Relay Satellite System (TDRSS) from MCC-H to the ISS using TDRSS's S-band Single Access Forward (SSA/) link service. This system also allows for low rate telemetry (link rate of 20.48 kbps) to be transmitted from ISS to MCC-H through the TDRSS using TDRSS's S-band Single Access Return (SSAR) link service. In addition this system supports a JSC developed Onboard Communications Adapter (OCA) that allows for a two-way data exchange of 128 kbps between MCC-H and the ISS through TDRSS. This OCA data can be digital video/audio (two-way videoconference), and/or file transfers, and/or "white board". The key components of the system, the data formats used by the system to insure compatibility with the future ISS S-Band System, as well as how other vehicles may be able to use this system for their needs are discussed in this paper.

  19. Prediction of the Sun-Glint Locations for the Communication, Ocean and Meteorological Satellite

    Directory of Open Access Journals (Sweden)

    Jae-Ik Park

    2005-09-01

    Full Text Available For the Communication, Ocean and Meteorological Satellite (COMS which will be launched in 2008, an algorithm for finding the precise location of the sun-glint point on the ocean surface is studied. The precise locations of the sun-glint are estimated by considering azimuth and elevation angles of Sun-satellite-Earth geometric position and the law of reflection. The obtained nonlinear equations are solved by using the Newton-Raphson method. As a result, when COMS is located at 116.2°E or 128.2°E longitude, the sun-glint covers region of ±10° (N-S latitude and 80-150° (E-W longitude. The diurnal path of the sun-glint in the southern hemisphere is curved towards the North Pole, and the path in the northern hemisphere is forwards the south pole. The algorithm presented in this paper can be applied to predict the precise location of sun-glint region in any other geostationary satellites.

  20. Nonlinear degradation of a visible-light communication link: A Volterra-series approach

    Science.gov (United States)

    Kamalakis, Thomas; Dede, Georgia

    2018-06-01

    Visible light communications can be used to provide illumination and data communication at the same time. In this paper, a reverse-engineering approach is presented for assessing the impact of nonlinear signal distortion in visible light communication links. The approach is based on the Volterra series expansion and has the advantage of accurately accounting for memory effects in contrast to the static nonlinear models that are popular in the literature. Volterra kernels describe the end-to-end system response and can be inferred from measurements. Consequently, this approach does not rely on any particular physical models and assumptions regarding the individual link components. We provide the necessary framework for estimating the nonlinear distortion on the symbol estimates of a discrete multitone modulated link. Various design aspects such as waveform clipping and predistortion are also incorporated in the analysis. Using this framework, the nonlinear signal-to-interference is calculated for the system at hand. It is shown that at high signal amplitudes, the nonlinear signal-to-interference can be less than 25 dB.

  1. 71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation.

    Science.gov (United States)

    Sun, Xiaobin; Zhang, Zhenyu; Chaaban, Anas; Ng, Tien Khee; Shen, Chao; Chen, Rui; Yan, Jianchang; Sun, Haiding; Li, Xiaohang; Wang, Junxi; Li, Jinmin; Alouini, Mohamed-Slim; Ooi, Boon S

    2017-09-18

    A demonstration of ultraviolet-B (UVB) communication link is implemented utilizing quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM). The demonstration is based on a 294-nm UVB-light-emitting-diode (UVB-LED) with a full-width at half-maximum (FWHM) of 9 nm and light output power of 190 μW, at 7 V, with a special silica gel lens on top of it. A -3-dB bandwidth of 29 MHz was measured and a high-speed near-solar-blind communication link with a data rate of 71 Mbit/s was achieved using 8-QAM-OFDM at perfect alignment. 23.6 Mbit/s using 2-QAM-OFDM when the angle subtended by the pointing directions of the UVB-LED and photodetector (PD) is 12 degrees, thus establishing a diffuse-line-of-sight (LOS) link. The measured bit-error rate (BER) of 2.8 ×10 -4 and 2.4 ×10 -4 , respectively, are well below the forward error correction (FEC) criterion of 3.8 ×10 -3 . The demonstrated high data-rate OFDM-based UVB communication link paves the way for realizing high-speed non-line-of-sight free-space optical communications.

  2. Physical and data-link security techniques for future communication systems

    CERN Document Server

    Tomasin, Stefano

    2016-01-01

     This book focuses on techniques that can be applied at the physical and data-link layers of communication systems in order to secure transmissions against eavesdroppers. Topics ranging from information theory-based security to coding for security and cryptography are discussed, with presentation of cutting-edge research and innovative results from leading researchers. The characteristic feature of all the contributions is their relevance for practical embodiments: detailed consideration is given to applications of security principles to a variety of widely used communication techniques such as multiantenna systems, ultra-wide band communication systems, power line communications, and quantum key distribution techniques. A further distinctive aspect is the attention paid to both unconditional and computational security techniques, providing a bridge between two usually distinct worlds. The book comprises extended versions of contributions delivered at the Workshop on Communication Security, held in Ancona, I...

  3. High Data Rate Satellite Communications for Environmental Remote Sensing

    Science.gov (United States)

    Jackson, J. M.; Munger, J.; Emch, P. G.; Sen, B.; Gu, D.

    2014-12-01

    Satellite to ground communication bandwidth limitations place constraints on current earth remote sensing instruments which limit the spatial and spectral resolution of data transmitted to the ground for processing. Instruments such as VIIRS, CrIS and OMPS on the Soumi-NPP spacecraft must aggregate data both spatially and spectrally in order to fit inside current data rate constraints limiting the optimal use of the as-built sensors. Future planned missions such as HyspIRI, SLI, PACE, and NISAR will have to trade spatial and spectral resolution if increased communication band width is not made available. A number of high-impact, environmental remote sensing disciplines such as hurricane observation, mega-city air quality, wild fire detection and monitoring, and monitoring of coastal oceans would benefit dramatically from enabling the downlinking of sensor data at higher spatial and spectral resolutions. The enabling technologies of multi-Gbps Ka-Band communication, flexible high speed on-board processing, and multi-Terabit SSRs are currently available with high technological maturity enabling high data volume mission requirements to be met with minimal mission constraints while utilizing a limited set of ground sites from NASA's Near Earth Network (NEN) or TDRSS. These enabling technologies will be described in detail with emphasis on benefits to future remote sensing missions currently under consideration by government agencies.

  4. A Mobile Satellite Experiment (MSAT-X) network definition

    Science.gov (United States)

    Wang, Charles C.; Yan, Tsun-Yee

    1990-01-01

    The network architecture development of the Mobile Satellite Experiment (MSAT-X) project for the past few years is described. The results and findings of the network research activities carried out under the MSAT-X project are summarized. A framework is presented upon which the Mobile Satellite Systems (MSSs) operator can design a commercial network. A sample network configuration and its capability are also included under the projected scenario. The Communication Interconnection aspect of the MSAT-X network is discussed. In the MSAT-X network structure two basic protocols are presented: the channel access protocol, and the link connection protocol. The error-control techniques used in the MSAT-X project and the packet structure are also discussed. A description of two testbeds developed for experimentally simulating the channel access protocol and link control protocol, respectively, is presented. A sample network configuration and some future network activities of the MSAT-X project are also presented.

  5. A systems approach to the commercialization of space communications technology - The NASA/JPL Mobile Satellite Program

    Science.gov (United States)

    Weber, William J., III; Gray, Valerie W.; Jackson, Byron; Steele, Laura C.

    1991-10-01

    This paper discusss the systems approach taken by NASA and the Jet Propulsion Laboratory in the commercialization of land-mobile satellite services (LMSS) in the United States. As the lead center for NASA's Mobile Satellite Program, JPL was involved in identifying and addressing many of the key barriers to commercialization of mobile satellite communications, including technical, economic, regulatory and institutional risks, or uncertainties. The systems engineering approach described here was used to mitigate these risks. The result was the development and implementation of the JPL Mobile Satellite Experiment Project. This Project included not only technology development, but also studies to support NASA in the definition of the regulatory, market, and investment environments within which LMSS would evolve and eventually operate, as well as initiatives to mitigate their associated commercialization risks. The end result of these government-led endeavors was the acceleration of the introduction of commercial mobile satellite services, both nationally and internationally.

  6. Wireless Communications in Smart Rail Transportation Systems

    Directory of Open Access Journals (Sweden)

    César Briso-Rodríguez

    2017-01-01

    Full Text Available Railway, subway, airplane, and other transportation systems have drawn an increasing interest on the use of wireless communications for critical and noncritical services to improve performance, reliability, and passengers experience. Smart transportation systems require the use of critical communications for operation and control, and wideband services can be provided using noncritical communications. High speed train (HST is one of the best test cases for the analysis of communication links and specification of the general requirements for train control and supervision, passenger communications, and onboard and infrastructure wireless sensors. In this paper, we analyze in detail critical and noncritical networks mainly using the HST as a test case. First, the different types of links for smart rail transportation are described, specifying the main requirements of the transportation systems, communications, and their applications for different services. Then, we propose a network architecture and requirements of the communication technologies for critical and noncritical data. Finally, an analysis is made for the future technologies, including the fifth-generation (5G communications, millimeter wave (mmWave, terahertz (THz, and satellites for critical and high-capacity communications in transportation.

  7. Deviations in CBERS-4 Satellite Direction Components From The Electromagnetic Disturbance of Communication Antennas

    Science.gov (United States)

    Heilmann, A.; Fernandes, C.

    2017-10-01

    The CBERS-4 is a low Earth orbit satellite, with a set of antennas S-band/UHF for communication almost omni-direcional. For the electromagnetic radiation from transmission antennas, was developed a model of electromagnetic disturbance considering the antennas theory and the laws of the conservation energy-momentum. Was propagated the orbit of the CBERS-4 satellite considering your state vector from the March 14, 2016, at 11h 14m 15.23s using the equation of motion in the form of cartesian components. From the state vector of the CBERS-4 satellite was possible to propagate the orbit for different periods, without disturbance (considering just the problem of two bodies) and with a disturbance of electromagnetic origin. The model of reaction of electromagnetic acceleration on the satellite depends on only the type of antenna. Quadrifilar and parabolic propeller antennas were considered in this paper. Using the equation of motion of the satellite based on the method of Runge-Kutta of fourth and fifth degree, the effect disturber this modeling was applied on the CBERS-4 considering the mass of satellite, characteristics of antenna, power irradiated and gain maximum of antenna. The final analysis discusses the values of components in the direction (radial, cross and normal) and the coordinates X-Y-Z considering the case disturbed to both antennas.

  8. Radio-wave propagation for space communications systems

    Science.gov (United States)

    Ippolito, L. J.

    1981-01-01

    The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations.

  9. An analysis of the low-earth-orbit communications environment

    Science.gov (United States)

    Diersing, Robert Joseph

    Advances in microprocessor technology and availability of launch opportunities have caused interest in low-earth-orbit satellite based communications systems to increase dramatically during the past several years. In this research the capabilities of two low-cost, store-and-forward LEO communications satellites operating in the public domain are examined--PACSAT-1 (operated by the Radio Amateur Satellite Corporation) and UoSAT-3 (operated by the University of Surrey, England, Electrical Engineering Department). The file broadcasting and file transfer facilities are examined in detail and a simulation model of the downlink traffic pattern is developed. The simulator will aid the assessment of changes in design and implementation for other systems. The development of the downlink traffic simulator is based on three major parts. First, is a characterization of the low-earth-orbit operating environment along with preliminary measurements of the PACSAT-1 and UoSAT-3 systems including: satellite visibility constraints on communications, monitoring equipment configuration, link margin computations, determination of block and bit error rates, and establishing typical data capture rates for ground stations using computer-pointed directional antennas and fixed omni-directional antennas. Second, arrival rates for successful and unsuccessful file server connections are established along with transaction service times. Downlink traffic has been further characterized by measuring: frame and byte counts for all data-link layer traffic; 30-second interval average response time for all traffic and for file server traffic only; file server response time on a per-connection basis; and retry rates for information and supervisory frames. Finally, the model is verified by comparison with measurements of actual traffic not previously used in the model building process. The simulator is then used to predict operation of the PACSAT-1 satellite with modifications to the original design.

  10. A Strategic Analysis of Commercial Satellite communications Enterprises and their Role for the Warfighter of the Future

    National Research Council Canada - National Science Library

    Gonder, Richard

    1998-01-01

    .... After initially setting the baseline, the paper will discuss the ability of the exploding commercial satellite communications market to meet some, if not most of the uniquely military requirements (the pros...

  11. High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link

    Science.gov (United States)

    Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli

    2016-01-01

    We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.

  12. Infrared Free Space Communication - The Autonomous Testing of Free Space Infrared Communication

    Science.gov (United States)

    Heldman, Christopher

    2017-01-01

    Fiber optics has been a winning player in the game of high-speed communication and data transfer in cable connections. Yet, in free space RF has been the repeated choice of communication medium of the space industry. Investigating the benefits of free space optical communication over radio frequency is worthwhile. An increase in science data rate return capabilities could occur if optical communication is implemented. Optical communication systems also provide efficiencies in power, mass, and volume over RF systems1. Optical communication systems have been demonstrated from a satellite in orbit with the moon to earth, and resulted in the highest data rates ever seen through space (622Mbps)2. Because of these benefits, optical communication is far superior to RF. The HiDRA (High Data Rate Architecture) project is researching Passive Misalignment Mitigation of Dynamic Free Apace Optical Communication Links. The goal of this effort is to enable gigabit per second transmission of data in short range dynamic links (less than 100 meters). In practice this would enhance data rates between sites on the International Space Station with minimal size, weight, and power requirements. This paper will focus on an autonomous code and a hardware setup that will be used to fulfill the next step in the research being conducted. The free space optical communications pointing downfalls will be investigated. This was achieved by creating 5 python programs and a top-level code to automate this test.

  13. Summary of the CTS Transient Event Counter data after one year of operation. [Communication Technology Satellite

    Science.gov (United States)

    Stevens, N. J.; Klinect, V. W.; Gore, J. V.

    1977-01-01

    The environmental charging of satellite surfaces during geomagnetic substorms is the apparent cause of a significant number of anomalous events occurring on geosynchronous satellites since the early 1970's. Electromagnetic pulses produced in connection with the differential charging of insulators can couple into the spacecraft harness and cause electronic switching anomalies. An investigation conducted to determine the response of the spacecraft surfaces to substorm particle fluxes makes use of a harness transient detector. The harness transient detector, called the Transient Event Counter (TEC) was built and integrated into the Canadian-American Communications Technology Satellite (CTS). A description of the TEC and its operational characteristics is given and the obtained data are discussed. The data show that the satellite surfaces appear to be charged to the point that discharges occur and that the discharge-induced transients couple into the wire harnesses.

  14. The design of a linear L-band high power amplifier for mobile communication satellites

    Science.gov (United States)

    Whittaker, N.; Brassard, G.; Li, E.; Goux, P.

    1990-01-01

    A linear L-band solid state high power amplifier designed for the space segment of the Mobile Satellite (MSAT) mobile communication system is described. The amplifier is capable of producing 35 watts of RF power with multitone signal at an efficiency of 25 percent and with intermodulation products better than 16 dB below carrier.

  15. [Mobile hospital -real time mobile telehealthcare system with ultrasound and CT van using high-speed satellite communication-].

    Science.gov (United States)

    Takizawa, Masaomi; Miyashita, Toyohisa; Murase, Sumio; Kanda, Hirohito; Karaki, Yoshiaki; Yagi, Kazuo; Ohue, Toru

    2003-01-01

    A real-time telescreening system is developed to detect early diseases for rural area residents using two types of mobile vans with a portable satellite station. The system consists of a satellite communication system with 1.5Mbps of the JCSAT-1B satellite, a spiral CT van, an ultrasound imaging van with two video conference system, a DICOM server and a multicast communication unit. The video image and examination image data are transmitted from the van to hospitals and the university simultaneously. Physician in the hospital observes and interprets exam images from the van and watches the video images of the position of ultrasound transducer on screenee in the van. After the observation images, physician explains a results of the examination by the video conference system. Seventy lung CT screening and 203 ultrasound screening were done from March to June 2002. The trial of this real time screening suggested that rural residents are given better healthcare without visit to the hospital. And it will open the gateway to reduce the medical cost and medical divide between city area and rural area.

  16. Adaptive laser link reconfiguration using constraint propagation

    Science.gov (United States)

    Crone, M. S.; Julich, P. M.; Cook, L. M.

    1993-01-01

    This paper describes Harris AI research performed on the Adaptive Link Reconfiguration (ALR) study for Rome Lab, and focuses on the application of constraint propagation to the problem of link reconfiguration for the proposed space based Strategic Defense System (SDS) Brilliant Pebbles (BP) communications system. According to the concept of operations at the time of the study, laser communications will exist between BP's and to ground entry points. Long-term links typical of RF transmission will not exist. This study addressed an initial implementation of BP's based on the Global Protection Against Limited Strikes (GPALS) SDI mission. The number of satellites and rings studied was representative of this problem. An orbital dynamics program was used to generate line-of-site data for the modeled architecture. This was input into a discrete event simulation implemented in the Harris developed COnstraint Propagation Expert System (COPES) Shell, developed initially on the Rome Lab BM/C3 study. Using a model of the network and several heuristics, the COPES shell was used to develop the Heuristic Adaptive Link Ordering (HALO) Algorithm to rank and order potential laser links according to probability of communication. A reduced set of links based on this ranking would then be used by a routing algorithm to select the next hop. This paper includes an overview of Constraint Propagation as an Artificial Intelligence technique and its embodiment in the COPES shell. It describes the design and implementation of both the simulation of the GPALS BP network and the HALO algorithm in COPES. This is described using a 59 Data Flow Diagram, State Transition Diagrams, and Structured English PDL. It describes a laser communications model and the heuristics involved in rank-ordering the potential communication links. The generation of simulation data is described along with its interface via COPES to the Harris developed View Net graphical tool for visual analysis of communications

  17. Spacecraft design project: Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  18. 71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation

    KAUST Repository

    Sun, Xiaobin

    2017-09-14

    A demonstration of ultraviolet-B (UVB) communication link is implemented utilizing quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM). The demonstration is based on a 294-nm UVB-light-emitting-diode (UVB-LED) with a full-width at half-maximum (FWHM) of 9 nm and light output power of 190 μW, at 7 V, with a special silica gel lens on top of it. A −3-dB bandwidth of 29 MHz was measured and a high-speed near-solar-blind communication link with a data rate of 71 Mbit/s was achieved using 8-QAM-OFDM at perfect alignment. 23.6 Mbit/s using 2-QAM-OFDM when the angle subtended by the pointing directions of the UVB-LED and photodetector (PD) is 12 degrees, thus establishing a diffuse-line-of-sight (LOS) link. The measured bit-error rate (BER) of 2.8 × 10−4 and 2.4 × 10−4, respectively, are well below the forward error correction (FEC) criterion of 3.8 × 10−3. The demonstrated high data-rate OFDM-based UVB communication link paves the way for realizing high-speed non-line-of-sight free-space optical communications.

  19. 71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation

    KAUST Repository

    Sun, Xiaobin; Zhang, Zhenyu; Chaaban, Anas; Ng, Tien Khee; Shen, Chao; Chen, Rui; Yan, Jianchang; Sun, Haiding; Li, Xiaohang; Wang, Junxi; Li, Jinmin; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    A demonstration of ultraviolet-B (UVB) communication link is implemented utilizing quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM). The demonstration is based on a 294-nm UVB-light-emitting-diode (UVB-LED) with a full-width at half-maximum (FWHM) of 9 nm and light output power of 190 μW, at 7 V, with a special silica gel lens on top of it. A −3-dB bandwidth of 29 MHz was measured and a high-speed near-solar-blind communication link with a data rate of 71 Mbit/s was achieved using 8-QAM-OFDM at perfect alignment. 23.6 Mbit/s using 2-QAM-OFDM when the angle subtended by the pointing directions of the UVB-LED and photodetector (PD) is 12 degrees, thus establishing a diffuse-line-of-sight (LOS) link. The measured bit-error rate (BER) of 2.8 × 10−4 and 2.4 × 10−4, respectively, are well below the forward error correction (FEC) criterion of 3.8 × 10−3. The demonstrated high data-rate OFDM-based UVB communication link paves the way for realizing high-speed non-line-of-sight free-space optical communications.

  20. 47 CFR 25.223 - Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS. 25.223 Section 25.223 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25...

  1. A new way to improve the robustness of complex communication networks by allocating redundancy links

    International Nuclear Information System (INIS)

    Shi Chunhui; Zhuo Yue; Tang Jieying; Long Keping; Peng Yunfeng

    2012-01-01

    We investigate the robustness of complex communication networks on allocating redundancy links. The protecting key nodes (PKN) strategy is proposed to improve the robustness of complex communication networks against intentional attack. Our numerical simulations show that allocating a few redundant links among key nodes using the PKN strategy will significantly increase the robustness of scale-free complex networks. We have also theoretically proved and demonstrated the effectiveness of the PKN strategy. We expect that our work will help achieve a better understanding of communication networks. (paper)

  2. The American Satellite Company (ASC) satellite deployed from payload bay

    Science.gov (United States)

    1985-01-01

    The American Satellite Company (ASC) communications satellite is deployed from the payload bay of the Shuttle Discovery. A portion of the cloudy surface of the earth can be seen to the left of the frame.

  3. Trellis coding with Continuous Phase Modulation (CPM) for satellite-based land-mobile communications

    Science.gov (United States)

    1989-01-01

    This volume of the final report summarizes the results of our studies on the satellite-based mobile communications project. It includes: a detailed analysis, design, and simulations of trellis coded, full/partial response CPM signals with/without interleaving over various Rician fading channels; analysis and simulation of computational cutoff rates for coherent, noncoherent, and differential detection of CPM signals; optimization of the complete transmission system; analysis and simulation of power spectrum of the CPM signals; design and development of a class of Doppler frequency shift estimators; design and development of a symbol timing recovery circuit; and breadboard implementation of the transmission system. Studies prove the suitability of the CPM system for mobile communications.

  4. Understanding How Mindful Parenting May Be Linked to Mother-Adolescent Communication.

    Science.gov (United States)

    Lippold, Melissa A; Duncan, Larissa G; Coatsworth, J Douglas; Nix, Robert L; Greenberg, Mark T

    2015-09-01

    Researchers have sought to understand the processes that may promote effective parent-adolescent communication because of the strong links to adolescent adjustment. Mindfulness, a relatively new construct in Western psychology that derives from ancient Eastern traditions, has been shown to facilitate communication and to be beneficial when applied in the parenting context. In this article, we tested if and how mindful parenting was linked to routine adolescent disclosure and parental solicitation within a longitudinal sample of rural and suburban, early adolescents and their mothers (n = 432; mean adolescent age = 12.14, 46 % male, 72 % Caucasian). We found that three factors-negative parental reactions to disclosure, adolescent feelings of parental over-control, and the affective quality of the parent-adolescent relationship-mediated the association between mindful parenting and adolescent disclosure and parental solicitation. Results suggest that mindful parenting may improve mother-adolescent communication by reducing parental negative reactions to information, adolescent perceptions of over-control, and by improving the affective quality of the parent-adolescent relationship. The discussion highlights intervention implications and future directions for research.

  5. Description and Simulation of a Fast Packet Switch Architecture for Communication Satellites

    Science.gov (United States)

    Quintana, Jorge A.; Lizanich, Paul J.

    1995-01-01

    The NASA Lewis Research Center has been developing the architecture for a multichannel communications signal processing satellite (MCSPS) as part of a flexible, low-cost meshed-VSAT (very small aperture terminal) network. The MCSPS architecture is based on a multifrequency, time-division-multiple-access (MF-TDMA) uplink and a time-division multiplex (TDM) downlink. There are eight uplink MF-TDMA beams, and eight downlink TDM beams, with eight downlink dwells per beam. The information-switching processor, which decodes, stores, and transmits each packet of user data to the appropriate downlink dwell onboard the satellite, has been fully described by using VHSIC (Very High Speed Integrated-Circuit) Hardware Description Language (VHDL). This VHDL code, which was developed in-house to simulate the information switching processor, showed that the architecture is both feasible and viable. This paper describes a shared-memory-per-beam architecture, its VHDL implementation, and the simulation efforts.

  6. High-Capacity Hybrid Optical Fiber-Wireless Communications Links in Access Networks

    DEFF Research Database (Denmark)

    Pang, Xiaodan

    of broadband services access. To realize the seamless convergence between the two network segments, the lower capacity of wireless systems need to be increased to match the continuously increasing bandwidth of fiber-optic systems. The research works included in this thesis are devoted to experimental...... investigations of photonic-wireless links with record high capacities to fulfill the requirements of next generation hybrid optical fiber-wireless access networks. The main contributions of this thesis have expanded the state-of-the-art in two main areas: high speed millimeter-wave (mm-wave) communication links......Integration between fiber-optic and wireless communications systems in the "last mile" access networks is currently considered as a promising solution for both service providers and users, in terms of minimizing deployment cost, shortening upgrading period and increasing mobility and flexibility...

  7. Data manage and communication of lunar orbital X-ray imaging analyzer in CE-1 satellite

    International Nuclear Information System (INIS)

    Wang Jinzhou; Wang Huanyu; Zhang Chengmo; Liang Xiaohua; Gao Min; CaoXuelei; Zhang Jiayu; Peng Wenxi; Cui Xingzhu; Xu Yupeng; Zhang Yongjie

    2006-01-01

    We present the software design for data management and communication software designed for the Lunar Orbital X-ray Imaging Analyzer in CE-1 Satellite. The software uses the appropriate format to assemble science data package and appropriate command respond mode, realizes the data transferring tasks through the 1553B bus on time, event though the channel bandwidth is under the limited. Also, the memory distribution and management of LOXIA (remote terminal) that fitted the communication with BC(Bus Controller) was introduced. Furthermore, for the spatial application, the security and reliability of software are emphasized. (authors)

  8. Proceedings of the Twenty-First NASA Propagation Experimenters Meeting (NAPEX XXI) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nasser (Editor)

    1997-01-01

    The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry.

  9. A mars communication constellation for human exploration and network science

    Science.gov (United States)

    Castellini, Francesco; Simonetto, Andrea; Martini, Roberto; Lavagna, Michèle

    2010-01-01

    This paper analyses the possibility of exploiting a small spacecrafts constellation around Mars to ensure a complete and continuous coverage of the planet, for the purpose of supporting future human and robotic operations and taking advantage of optical transmission techniques. The study foresees such a communications mission to be implemented at least after 2020 and a high data-rate requirement is imposed for the return of huge scientific data from massive robotic exploration or to allow video transmissions from a possible human outpost. In addition, the set-up of a communication constellation around Mars would give the opportunity of exploiting this multi-platform infrastructure to perform network science, that would largely increase our knowledge of the planet. The paper covers all technical aspects of a feasibility study performed for the primary communications mission. Results are presented for the system trade-offs, including communication architecture, constellation configuration and transfer strategy, and the mission analysis optimization, performed through the application of a multi-objective genetic algorithm to two models of increasing difficulty for the low-thrust trajectory definition. The resulting communication architecture is quite complex and includes six 530 kg spacecrafts on two different orbital planes, plus one redundant unit per plane, that ensure complete coverage of the planet’s surface; communications between the satellites and Earth are achieved through optical links, that allow lower mass and power consumption with respect to traditional radio-frequency technology, while inter-satellite links and spacecrafts-to-Mars connections are ensured by radio transmissions. The resulting data-rates for Earth-Mars uplink and downlink, satellite-to-satellite and satellite-to-surface are respectively 13.7 Mbps, 10.2 Mbps, 4.8 Mbps and 4.3 Mbps, in worst-case. Two electric propulsion modules are foreseen, to be placed on a C3˜0 escape orbit with two

  10. Using satellite communications for a mobile computer network

    Science.gov (United States)

    Wyman, Douglas J.

    1993-01-01

    The topics discussed include the following: patrol car automation, mobile computer network, network requirements, network design overview, MCN mobile network software, MCN hub operation, mobile satellite software, hub satellite software, the benefits of patrol car automation, the benefits of satellite mobile computing, and national law enforcement satellite.

  11. Distribution of high-dimensional entanglement via an intra-city free-space link.

    Science.gov (United States)

    Steinlechner, Fabian; Ecker, Sebastian; Fink, Matthias; Liu, Bo; Bavaresco, Jessica; Huber, Marcus; Scheidl, Thomas; Ursin, Rupert

    2017-07-24

    Quantum entanglement is a fundamental resource in quantum information processing and its distribution between distant parties is a key challenge in quantum communications. Increasing the dimensionality of entanglement has been shown to improve robustness and channel capacities in secure quantum communications. Here we report on the distribution of genuine high-dimensional entanglement via a 1.2-km-long free-space link across Vienna. We exploit hyperentanglement, that is, simultaneous entanglement in polarization and energy-time bases, to encode quantum information, and observe high-visibility interference for successive correlation measurements in each degree of freedom. These visibilities impose lower bounds on entanglement in each subspace individually and certify four-dimensional entanglement for the hyperentangled system. The high-fidelity transmission of high-dimensional entanglement under real-world atmospheric link conditions represents an important step towards long-distance quantum communications with more complex quantum systems and the implementation of advanced quantum experiments with satellite links.

  12. Defining a Communications Satellite Policy System for the 21st Century: A Model for a International Legal Framework and A New _Code of Conduct_

    Science.gov (United States)

    Pelton, Joseph N.

    1996-02-01

    This paper addresses the changing international communications environment and explores the key elements of a new policy framework for the 21st Century. It addresses the issues related to changing markets, trade considerations, standards, regulatory changes and international institutions and law. The most important aspects will related to new international policy and regulatory frameworks and in particular to a new international code of ethics and behavior in the field of satellite communications. A new communications satellite policy framework requires systematically addressing the following points: • Multi-lateral agreements at the nation state and the operating entity level • Systematic means to access both private and public capital • Meshing ITU regulations with regional and national policy guidelines including • landing rights" and national allocation procedures. • Systematic approach to local partnerships • Resolving the issue of the relative standing of various satellite systems (i.e. GEO, MEO, and LEO systems) • Resolving the rights, duties, and priorities of satellite facility providers versus types of service prviders. Beyond this policy framework and generalized legal infrastructure there is also another need. This is a need that arises from both increased globalism and competitive international markets. This is what might quite simply be called a "code of reasonable conduct:" To provide global and international communications services effectively and well in the 21st Century will require more than meeting minimum international legal requirements. A new "code of conduct" for global satellite communications will thus likely need to address: • Privacy and surveillance • Ethics of transborder data flow • Censorship and moral values • Cultural and linguistic sensitivity • Freedom of the press and respect for journalistic standards As expanding global information and telecommunications systems grow and impact every aspect of modern

  13. Advanced Communication Technology Satellite (ACTS) Very Small Aperture Terminal (VSAT) Network Control Performance

    Science.gov (United States)

    Coney, T. A.

    1996-01-01

    This paper discusses the performance of the network control function for the Advanced Communications Technology Satellite (ACTS) very small aperture terminal (VSAT) full mesh network. This includes control of all operational activities such as acquisition, synchronization, timing and rain fade compensation as well as control of all communications activities such as on-demand integrated services (voice, video, and date) connects and disconnects Operations control is provided by an in-band orderwire carried in the baseboard processor (BBP) control burst, the orderwire burst, the reference burst, and the uplink traffic burst. Communication services are provided by demand assigned multiple access (DAMA) protocols. The ACTS implementation of DAMA protocols ensures both on-demand and integrated voice, video and data services. Communications services control is also provided by the in-band orderwire but uses only the reference burst and the uplink traffic burst. The performance of the ACTS network control functions have been successfully tested during on-orbit checkout and in various VSAT networks in day to day operations. This paper discusses the network operations and services control performance.

  14. A Dual-Channel Acquisition Method Based on Extended Replica Folding Algorithm for Long Pseudo-Noise Code in Inter-Satellite Links.

    Science.gov (United States)

    Zhao, Hongbo; Chen, Yuying; Feng, Wenquan; Zhuang, Chen

    2018-05-25

    Inter-satellite links are an important component of the new generation of satellite navigation systems, characterized by low signal-to-noise ratio (SNR), complex electromagnetic interference and the short time slot of each satellite, which brings difficulties to the acquisition stage. The inter-satellite link in both Global Positioning System (GPS) and BeiDou Navigation Satellite System (BDS) adopt the long code spread spectrum system. However, long code acquisition is a difficult and time-consuming task due to the long code period. Traditional folding methods such as extended replica folding acquisition search technique (XFAST) and direct average are largely restricted because of code Doppler and additional SNR loss caused by replica folding. The dual folding method (DF-XFAST) and dual-channel method have been proposed to achieve long code acquisition in low SNR and high dynamic situations, respectively, but the former is easily affected by code Doppler and the latter is not fast enough. Considering the environment of inter-satellite links and the problems of existing algorithms, this paper proposes a new long code acquisition algorithm named dual-channel acquisition method based on the extended replica folding algorithm (DC-XFAST). This method employs dual channels for verification. Each channel contains an incoming signal block. Local code samples are folded and zero-padded to the length of the incoming signal block. After a circular FFT operation, the correlation results contain two peaks of the same magnitude and specified relative position. The detection process is eased through finding the two largest values. The verification takes all the full and partial peaks into account. Numerical results reveal that the DC-XFAST method can improve acquisition performance while acquisition speed is guaranteed. The method has a significantly higher acquisition probability than folding methods XFAST and DF-XFAST. Moreover, with the advantage of higher detection

  15. A Dual-Channel Acquisition Method Based on Extended Replica Folding Algorithm for Long Pseudo-Noise Code in Inter-Satellite Links

    Directory of Open Access Journals (Sweden)

    Hongbo Zhao

    2018-05-01

    Full Text Available Inter-satellite links are an important component of the new generation of satellite navigation systems, characterized by low signal-to-noise ratio (SNR, complex electromagnetic interference and the short time slot of each satellite, which brings difficulties to the acquisition stage. The inter-satellite link in both Global Positioning System (GPS and BeiDou Navigation Satellite System (BDS adopt the long code spread spectrum system. However, long code acquisition is a difficult and time-consuming task due to the long code period. Traditional folding methods such as extended replica folding acquisition search technique (XFAST and direct average are largely restricted because of code Doppler and additional SNR loss caused by replica folding. The dual folding method (DF-XFAST and dual-channel method have been proposed to achieve long code acquisition in low SNR and high dynamic situations, respectively, but the former is easily affected by code Doppler and the latter is not fast enough. Considering the environment of inter-satellite links and the problems of existing algorithms, this paper proposes a new long code acquisition algorithm named dual-channel acquisition method based on the extended replica folding algorithm (DC-XFAST. This method employs dual channels for verification. Each channel contains an incoming signal block. Local code samples are folded and zero-padded to the length of the incoming signal block. After a circular FFT operation, the correlation results contain two peaks of the same magnitude and specified relative position. The detection process is eased through finding the two largest values. The verification takes all the full and partial peaks into account. Numerical results reveal that the DC-XFAST method can improve acquisition performance while acquisition speed is guaranteed. The method has a significantly higher acquisition probability than folding methods XFAST and DF-XFAST. Moreover, with the advantage of higher

  16. Evolving earth-based and in-situ satellite network architectures for Mars communications and navigation support

    Science.gov (United States)

    Hastrup, Rolf; Weinberg, Aaron; McOmber, Robert

    1991-09-01

    Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.

  17. Development of U.S. Government General Technical Requirements for UAS Flight Safety Systems Utilizing the Iridium Satellite Constellation

    Science.gov (United States)

    Murray, Jennifer; Birr, Richard

    2010-01-01

    This slide presentation reviews the development of technical requirements for Unmanned Aircraft Systems (UAS) utilization of the Iridium Satellite Constellation to provide flight safety. The Federal Aviation Authority (FAA) required an over-the-horizon communication standard to guarantee flight safety before permitting widespread UAS flights in the National Air Space (NAS). This is important to ensure reliable control of UASs during loss-link and over-the-horizon scenarios. The core requirement was to utilize a satellite system to send GPS tracking data and other telemetry from a flight vehicle down to the ground. Iridium was chosen as the system because it is one of the only true satellite systems that has world wide coverage, and the service has a highly reliable link margin. The Iridium system, the flight modems, and the test flight are described.

  18. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  19. Considerations of digital phase modulation for narrowband satellite mobile communication

    Science.gov (United States)

    Grythe, Knut

    1990-01-01

    The Inmarsat-M system for mobile satellite communication is specified as a frequency division multiple access (FDMA) system, applying Offset Quadrature Phase Shift Keying (QPSK) for transmitting 8 kbit/sec in 10 kHz user channel bandwidth. We consider Digital Phase Modulation (DPM) as an alternative modulation format for INMARSAT-M. DPM is similar to Continuous Phase Modulation (CPM) except that DPM has a finite memory in the premodular filter with a continuous varying modulation index. It is shown that DPM with 64 states in the VA obtains a lower bit error rate (BER). Results for a 5 kHz system, with the same 8 kbit/sec transmitted bitstream, is also presented.

  20. Global-scale Observations of the Limb and Disk (GOLD) Mission: Science from Geostationary Orbit on-board a Commercial Communications Satellite

    Science.gov (United States)

    Eastes, R.; Deaver, T.; Krywonos, A.; Lankton, M. R.; McClintock, W. E.; Pang, R.

    2011-12-01

    Geostationary orbits are ideal for many science investigations of the Earth system on global scales. These orbits allow continuous observations of the same geographic region, enabling spatial and temporal changes to be distinguished and eliminating the ambiguity inherent to observations from low Earth orbit (LEO). Just as observations from geostationary orbit have revolutionized our understanding of changes in the troposphere, they will dramatically improve our understanding of the space environment at higher altitudes. However, geostationary orbits are infrequently used for science missions because of high costs. Geostationary satellites are large, typically weighing tons. Consequently, devoting an entire satellite to a science mission requires a large financial commitment, both for the spacecraft itself and for sufficient science instrumentation to justify a dedicated spacecraft. Furthermore, the small number of geostationary satellites produced for scientific missions increases the costs of each satellite. For these reasons, it is attractive to consider flying scientific instruments on satellites operated by commercial companies, some of whom have fleets of ~40 satellites. However, scientists' lack of understanding of the capabilities of commercial spacecraft as well as commercial companies' concerns about risks to their primary mission have impeded the cooperation necessary for the shared use of a spacecraft. Working with a commercial partner, the GOLD mission has successfully overcome these issues. Our experience indicates that there are numerous benefits to flying on commercial communications satellites (e.g., it is possible to downlink large amounts of data) and the costs are low if the experimental requirements adequately match the capabilities and available resources of the host spacecraft. Consequently, affordable access to geostationary orbit aboard a communications satellite now appears possible for science payloads.

  1. 47 CFR 25.258 - Sharing between NGSO MSS Feeder links Stations and GSO FSS services in the 29.25-29.5 GHz Bands.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Sharing between NGSO MSS Feeder links Stations and GSO FSS services in the 29.25-29.5 GHz Bands. 25.258 Section 25.258 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25...

  2. HAPS Gateway Link in the 5850-7075 MHz and Coexistence with Fixed Satellite Service

    Directory of Open Access Journals (Sweden)

    M. Ahmed

    2013-09-01

    Full Text Available Gateway link is essential to connect HAPS platform to terrestrial based networks. This crucial link is incorporated in HAPS fixed service spectrum allocation in considerably high frequencies, renders the link for more attenuations by atmospheric gases, and rain effects, especially when the regional climate is not favorable. However, under the agenda item 1.20 of World Radio Conference-2012 (WRC-12 new HAPS allocation in the 5850-7075 MHz band is proposed. Although, spectrum features are incomparably reliable, on the contrary, Fixed Satellite Service (FSS uplink transmissions will have signal levels much higher than those in HAPS systems and have the potential for causing interference at the HAPS gateway receiver. In this article a key aspect of co-channel interference phenomena is investigated to facilitate optimum frequency sharing in the band in question. By proposing mitigation techniques and statistical method this generic prediction model enhances the capability of the HAPS spectrum sharing and provides flexibility in spectrum planning for different fixed services.

  3. Network flexibility of the IRIDIUM (R) Global Mobile Satellite System

    Science.gov (United States)

    Hutcheson, Jonathan; Laurin, Mala

    1995-01-01

    The IRIDIUM system is a global personal communications system supported by a constellation of 66 low earth orbit (LEO) satellites and a collection of earth-based 'gateway' switching installations. Like traditional wireless cellular systems, coverage is achieved by a grid of cells in which bandwidth is reused for spectral efficiency. Unlike any cellular system ever built, the moving cells can be shared by multiple switching facilities. Noteworthy features of the IRIDIUM system include inter-satellite links, a GSM-based telephony architecture, and a geographically controlled system access process. These features, working in concert, permit flexible and reliable administration of the worldwide service area by gateway operators. This paper will explore this unique concept.

  4. Energy-Efficient Optimal Power Allocation in Integrated Wireless Sensor and Cognitive Satellite Terrestrial Networks.

    Science.gov (United States)

    Shi, Shengchao; Li, Guangxia; An, Kang; Gao, Bin; Zheng, Gan

    2017-09-04

    This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach's method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint.

  5. Determining characteristics of HF communications links using SuperDARN

    Directory of Open Access Journals (Sweden)

    J. M. Hughes

    2002-07-01

    Full Text Available Space weather effects can strongly influence high-frequency (HF communications by changing the ionospheric environment through which the radio waves propagate. Since many systems utilize HF communications, the ability to make real-time assessments of propagation conditions is an important part of space weather monitoring systems. In this paper, we present new techniques for measuring high-latitude HF communications link parameters using data from SuperDARN radars. These techniques use ground-scatter returns to define the variation in skip distance with frequency. From these data, the maximum usable frequency (MUF as a function of range is determined and ionospheric critical frequencies are estimated. These calculations are made in near-real-time and the results are made available on the World Wide Web. F-region critical frequencies calculated using this method show good agreement with ionosonde data.Key words. Ionosphere (active experiments; instruments and techniques – Radio science (ionospheric propagation

  6. Determining characteristics of HF communications links using SuperDARN

    Directory of Open Access Journals (Sweden)

    J. M. Hughes

    Full Text Available Space weather effects can strongly influence high-frequency (HF communications by changing the ionospheric environment through which the radio waves propagate. Since many systems utilize HF communications, the ability to make real-time assessments of propagation conditions is an important part of space weather monitoring systems. In this paper, we present new techniques for measuring high-latitude HF communications link parameters using data from SuperDARN radars. These techniques use ground-scatter returns to define the variation in skip distance with frequency. From these data, the maximum usable frequency (MUF as a function of range is determined and ionospheric critical frequencies are estimated. These calculations are made in near-real-time and the results are made available on the World Wide Web. F-region critical frequencies calculated using this method show good agreement with ionosonde data.

    Key words. Ionosphere (active experiments; instruments and techniques – Radio science (ionospheric propagation

  7. Toward an evidence-based patient-provider communication in rehabilitation: linking communication elements to better rehabilitation outcomes.

    Science.gov (United States)

    Jesus, Tiago Silva; Silva, Isabel Lopes

    2016-04-01

    There is a growing interest in linking aspects of patient-provider communication to rehabilitation outcomes. However, the field lacks a conceptual understanding on: (a) 'how' rehabilitation outcomes can be improved by communication; and (b) through 'which' elements in particular. This article elaborates on the conceptual developments toward informing further practice and research. Existing models of communication in healthcare were adapted to rehabilitation, and its outcomes through a comprehensive literature review. After depicting mediating mechanisms and variables (e.g. therapeutic engagement, adjustment toward disability), this article presents the '4 Rehab Communication Elements' deemed likely to underpin rehabilitation outcomes. The four elements are: (a) knowing the person and building a supportive relationship; (b) effective information exchange and education; (c) shared goal-setting and action planning; and (d) fostering a more positive, yet realistic, cognitive and self-reframing. This article describes an unprecedented, outcomes-oriented approach toward the design of rehabilitation communication, which has resulted in the development of a new intervention model: the '4 Rehab Communication Elements'. Further trials are needed to evaluate the impact of this whole intervention model on rehabilitation outcomes. © The Author(s) 2015.

  8. Advanced Communication Technology Satellite (ACTS) multibeam antenna analysis and experiment

    Science.gov (United States)

    Acosta, Roberto J.; Lagin, Alan R.; Larko, Jeffrey M.; Narvaez, Adabelle

    1992-01-01

    One of the most important aspects of a satellite communication system design is the accurate estimation of antenna performance degradation. Pointing error, end coverage gain, peak gain degradation, etc. are the main concerns. The thermal or dynamic distortions of a reflector antenna structural system can affect the far-field antenna power distribution in a least four ways. (1) The antenna gain is reduced; (2) the main lobe of the antenna can be mispointed thus shifting the destination of the delivered power away from the desired locations; (3) the main lobe of the antenna pattern can be broadened, thus spreading the RF power over a larger area than desired; and (4) the antenna pattern sidelobes can increase, thus increasing the chances of interference among adjacent beams of multiple beam antenna system or with antenna beams of other satellites. The in-house developed NASA Lewis Research Center thermal/structural/RF analysis program was designed to accurately simulate the ACTS in-orbit thermal environment and predict the RF antenna performance. The program combines well establish computer programs (TRASYS, SINDA and NASTAN) with a dual reflector-physical optics RF analysis program. The ACTS multibeam antenna configuration is analyzed and several thermal cases are presented and compared with measurements (pre-flight).

  9. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    Science.gov (United States)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  10. Plan of Time Management of Satellite Positioning System using Quasi-zenith Satellite

    Science.gov (United States)

    Takahashi, Yasuhiro; Fujieda, Miho; Amagai, Jun; Yokota, Shoichiro; Kimura, Kazuhiro; Ito, Hiroyuki; Hama, Shin'ichi; Morikawa, Takao; Kawano, Isao; Kogure, Satoshi

    The Quasi-Zenith satellites System (QZSS) is developed as an integrated satellite service system of communication, broadcasting and positioning for mobile users in specified regions of Japan from high elevation angle. Purposes of the satellite positioning system using Quasi-Zenith satellite (QZS) are to complement and augment the GPS. The national institutes concerned have been developing the positioning system using QZS since 2003 and will carry out experiments and researches in three years after the launch. In this system, National Institute of Information and Communications Technology (NICT) is mainly in charge of timing system for the satellite positioning system using QZS, such as onboard hydrogen maser atomic clock and precise time management system of the QZSS. We started to develop the engineering model of the time management system for the QZSS. The time management system for the QZSS will be used to compare time differences between QZS and earth station as well as to compare between three onboard atomic clocks. This paper introduces time management of satellite positioning system using the QZSS.

  11. Multi-Band Multi-Tone Tunable Millimeter-Wave Frequency Synthesizer For Satellite Beacon Transmitter

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2016-01-01

    This paper presents the design and test results of a multi-band multi-tone tunable millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a satellite beacon transmitter for radio wave propagation studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). In addition, the architecture for a compact beacon transmitter, which includes the multi-tone synthesizer, polarizer, horn antenna, and power/control electronics, has been investigated for a notional space-to-ground radio wave propagation experiment payload on a small satellite. The above studies would enable the design of robust high throughput multi-Gbps data rate future space-to-ground satellite communication links.

  12. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite service. 25.143 Section 25.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses...

  13. Telelibrary: Library Services via Satellite.

    Science.gov (United States)

    Liu, Rosa

    1979-01-01

    Investigates the provision of library services via satellite, explains briefly the operation and advantages of communication satellites, and discusses the various telecommunications equipment and services which, when coupled with satellite transmission, will enhance library activities. Demand trend projections for telecommunications services…

  14. Cockpit weather graphics using mobile satellite communications

    Science.gov (United States)

    Seth, Shashi

    1993-01-01

    Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.

  15. Toward the Public Dividend: A Report on Satellite Telecommunications and the Public Interest Satellite Association.

    Science.gov (United States)

    McGraw, Walter

    This report points out that the communications satellite appears to be on its way to becoming one of the most dominant and controlling technologies of our time, and this requires that a new evaluation be made of our entire communications process. The first section of the report discusses many aspects of the history of satellites, including the…

  16. Study of Education Satellite Communication Demonstration. Third Quarterly Progress Report. Report of Activities and Accomplishments January 11, 1975 to April 10, 1975.

    Science.gov (United States)

    Syracuse Univ. Research Corp., NY. Educational Policy Research Center.

    A report on the Education Satellite Communication Demonstration (ESCD) describes activities of the evaluators during the first quarter of 1975, including staff trips and site visits and activities of various staff members. A calendar of future events in satellites, telecommunications, and education is included, with revision on dates and new…

  17. Particle Filtering Equalization Method for a Satellite Communication Channel

    Directory of Open Access Journals (Sweden)

    Amblard Pierre-Olivier

    2004-01-01

    Full Text Available We propose the use of particle filtering techniques and Monte Carlo methods to tackle the in-line and blind equalization of a satellite communication channel. The main difficulties encountered are the nonlinear distortions caused by the amplifier stage in the satellite. Several processing methods manage to take into account these nonlinearities but they require the knowledge of a training input sequence for updating the equalizer parameters. Blind equalization methods also exist but they require a Volterra modelization of the system which is not suited for equalization purpose for the present model. The aim of the method proposed in the paper is also to blindly restore the emitted message. To reach this goal, a Bayesian point of view is adopted. Prior knowledge of the emitted symbols and of the nonlinear amplification model, as well as the information available from the received signal, is jointly used by considering the posterior distribution of the input sequence. Such a probability distribution is very difficult to study and thus motivates the implementation of Monte Carlo simulation methods. The presentation of the equalization method is cut into two parts. The first part solves the problem for a simplified model, focusing on the nonlinearities of the model. The second part deals with the complete model, using sampling approaches previously developed. The algorithms are illustrated and their performance is evaluated using bit error rate versus signal-to-noise ratio curves.

  18. GSFC network operations with Tracking and Data Relay Satellites

    Science.gov (United States)

    Spearing, R.; Perreten, D. E.

    The Tracking and Data Relay Satellite System (TDRSS) Network (TN) has been developed to provide services to all NASA User spacecraft in near-earth orbits. Three inter-relating entities will provide these services. The TN has been transformed from a network continuously changing to meet User specific requirements to a network which is flexible to meet future needs without significant changes in operational concepts. Attention is given to the evolution of the TN network, the TN capabilities-space segment, forward link services, tracking services, return link services, the three basic capabilities, single access services, multiple access services, simulation services, the White Sands Ground Terminal, the NASA communications network, and the network control center.

  19. Experimental Evaluation of TCP-Based DTN for Cislunar Communications in Presence of Long Link Disruption

    Directory of Open Access Journals (Sweden)

    Zhang Zhensheng

    2011-01-01

    Full Text Available Delay/disruption tolerant networking (DTN technology is considered a new solution to highly stressed communications in space environments. To date, little work has been done in evaluating the effectiveness and performance of the available DTN protocols when they are applied to an interplanetary Internet, especially in presence of a long link disruption. In this paper, we present an experimental investigation of the DTN architecture with a Bundle Protocol (BP running over TCP-based convergence layer (TCPCL protocol in a simulated cislunar communication environment characterized by a long link disruption. The intent of this work is to investigate the effectiveness of the TCPCL-based DTN protocol in coping with long link disruptions, through realistic file transfer experiments using a PC-based test-bed. The experiment results show that the DTN protocol is effective in handling a long link disruption experienced in data transmission accompanied by a cislunar link delay and a high BER. The performance of the DTN is most adversely affected by link disruption time in comparison to the effect of link delay and BER. For the transmissions with a very long link disruption of hours, the variations in goodput are nominal with respect to the change in cislunar link delay.

  20. Izviđanje satelitskih komunikacija u funkciji savremenih operacija / Reconnaissance of satellite communications in contemporary operations

    Directory of Open Access Journals (Sweden)

    Slaviša Đukanović

    2004-05-01

    Full Text Available Raspoloživi vojni resursi u bilo kojoj kategoriji nisu kritični u mirnodopskom periodu, jer se dimenzionišu za ratno naprezanje određenog nivoa. Međutim, u uslovima izvođenja borbenih dejstava postoje ekstremi u zahtevima za angažovanjem, koje sistemi ne mogu da izdrže. Takav slučaj je kod satelitskih komunikacija. U radu su prezentovane taktičko-tehničke i dinamičke osobine komercijalnih (INMARSAT, INTELSAT, IRIDIJUM.. i vojnih (DSCS, FLEET-SATCOM, NATO, SKYNET.. satelitskih sistema, koje su bitne za uspešno vođenje elektronskog rata. Takođe, dat je pregled raspoloživih korisničkih servisa savremenih satelitskih sistema (Internet provajding video-konferencije, prenos multimedija uživo, fax, e-mail, voice. Nova generacija širokopojasnih satelita, koja se pušta u rad tokom ove godine omogućiće globalni roming navedenih servisa INMARSAT satelitskom sistemu koji se sve češće koristi u vojne svrhe. U perspektivi je da se usluge koje pružaju satelitski sistemi (komunikacioni, navigacioni, izviđački meteorološki.. stave na raspolaganje nižim taktičkim jedinicama vazduhoplovima, pa čak i svakom vojniku ponaosob. Poznavanje satelitskih sistema potencijalnog agresora pruža mogućnost da se odrede ranjive tačke samog sistema sa aspekta izviđanja i ometanja. / Available military resources in any category are not critical in peace since they are tailored for military use under extreme conditions. However, some systems such as satellite communications, cannot meet extreme requirements during combat actions. The paper presents tactical and technical specifications and dynamic characteristics of commercial (INMARSAT. INTELSAT, IRIDIJUM,.. and military (DSCS, FLEET-SATCOM, NATO, SKYNET,.. satellite systems which are important for electronic warfare. The paper also gives available user services of contemporary satellite systems (Internet providing, videoconferences, live multi-media, fax, e-mail, voice. A new generation of

  1. Extending the range and performance of non-line-of-sight ultraviolet communication links

    Science.gov (United States)

    Shaw, Gary A.; Siegel, Andrew M.; Model, Joshua

    2006-05-01

    This paper describes recent advances in the technology for, and implementation of, short-range non-line-of-sight (NLOS) optical communication links. The approach relies on molecular scattering of ultraviolet wavelengths by the atmosphere to achieve NLOS, omni-directional communication Links. The implementation employs commercially produced semiconductor sources emitting in the solar-blind region of the UV spectrum, around 275nm. This paper extends previously reported field measurements to longer ranges (100+m) and to a wider variety of application scenarios, including an outdoor demonstration of real-time speech at 2.4kbps in full sunlight. The paper also addresses the design trades associated with replacing photomultiplier detectors with semiconductor detectors for reasons of cost and ruggedness. Even with improvements in semiconductor materials and commensurate reduction in dark currents, the use of semiconductor detectors will require the introduction of imaging arrays. Incorporation of imaging arrays opens the possibility of adaptive links in which bandwidth and transmit power are adapted to best exploit the channel constraints.

  2. Bandwidth enhancement of wireless optical communication link using a near-infrared laser over turbid underwater channel

    KAUST Repository

    Lee, It Ee; Guo, Yujian; Ng, Tien Khee; Park, Kihong; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    Underwater wireless optical communication (UWOC) has been widely studied as a promising alternative to establish reliable short-range marine communication links. Microscopic particulates suspended in various ocean, harbor and natural waters

  3. A Brief Survey of Media Access Control, Data Link Layer, and Protocol Technologies for Lunar Surface Communications

    Science.gov (United States)

    Wallett, Thomas M.

    2009-01-01

    This paper surveys and describes some of the existing media access control and data link layer technologies for possible application in lunar surface communications and the advanced wideband Direct Sequence Code Division Multiple Access (DSCDMA) conceptual systems utilizing phased-array technology that will evolve in the next decade. Time Domain Multiple Access (TDMA) and Code Division Multiple Access (CDMA) are standard Media Access Control (MAC) techniques that can be incorporated into lunar surface communications architectures. Another novel hybrid technique that is recently being developed for use with smart antenna technology combines the advantages of CDMA with those of TDMA. The relatively new and sundry wireless LAN data link layer protocols that are continually under development offer distinct advantages for lunar surface applications over the legacy protocols which are not wireless. Also several communication transport and routing protocols can be chosen with characteristics commensurate with smart antenna systems to provide spacecraft communications for links exhibiting high capacity on the surface of the Moon. The proper choices depend on the specific communication requirements.

  4. Short-term prediction of rain attenuation level and volatility in Earth-to-Satellite links at EHF band

    Directory of Open Access Journals (Sweden)

    L. de Montera

    2008-08-01

    Full Text Available This paper shows how nonlinear models originally developed in the finance field can be used to predict rain attenuation level and volatility in Earth-to-Satellite links operating at the Extremely High Frequencies band (EHF, 20–50 GHz. A common approach to solving this problem is to consider that the prediction error corresponds only to scintillations, whose variance is assumed to be constant. Nevertheless, this assumption does not seem to be realistic because of the heteroscedasticity of error time series: the variance of the prediction error is found to be time-varying and has to be modeled. Since rain attenuation time series behave similarly to certain stocks or foreign exchange rates, a switching ARIMA/GARCH model was implemented. The originality of this model is that not only the attenuation level, but also the error conditional distribution are predicted. It allows an accurate upper-bound of the future attenuation to be estimated in real time that minimizes the cost of Fade Mitigation Techniques (FMT and therefore enables the communication system to reach a high percentage of availability. The performance of the switching ARIMA/GARCH model was estimated using a measurement database of the Olympus satellite 20/30 GHz beacons and this model is shown to outperform significantly other existing models.

    The model also includes frequency scaling from the downlink frequency to the uplink frequency. The attenuation effects (gases, clouds and rain are first separated with a neural network and then scaled using specific scaling factors. As to the resulting uplink prediction error, the error contribution of the frequency scaling step is shown to be larger than that of the downlink prediction, indicating that further study should focus on improving the accuracy of the scaling factor.

  5. Short-term prediction of rain attenuation level and volatility in Earth-to-Satellite links at EHF band

    Science.gov (United States)

    de Montera, L.; Mallet, C.; Barthès, L.; Golé, P.

    2008-08-01

    This paper shows how nonlinear models originally developed in the finance field can be used to predict rain attenuation level and volatility in Earth-to-Satellite links operating at the Extremely High Frequencies band (EHF, 20 50 GHz). A common approach to solving this problem is to consider that the prediction error corresponds only to scintillations, whose variance is assumed to be constant. Nevertheless, this assumption does not seem to be realistic because of the heteroscedasticity of error time series: the variance of the prediction error is found to be time-varying and has to be modeled. Since rain attenuation time series behave similarly to certain stocks or foreign exchange rates, a switching ARIMA/GARCH model was implemented. The originality of this model is that not only the attenuation level, but also the error conditional distribution are predicted. It allows an accurate upper-bound of the future attenuation to be estimated in real time that minimizes the cost of Fade Mitigation Techniques (FMT) and therefore enables the communication system to reach a high percentage of availability. The performance of the switching ARIMA/GARCH model was estimated using a measurement database of the Olympus satellite 20/30 GHz beacons and this model is shown to outperform significantly other existing models. The model also includes frequency scaling from the downlink frequency to the uplink frequency. The attenuation effects (gases, clouds and rain) are first separated with a neural network and then scaled using specific scaling factors. As to the resulting uplink prediction error, the error contribution of the frequency scaling step is shown to be larger than that of the downlink prediction, indicating that further study should focus on improving the accuracy of the scaling factor.

  6. 20-meter underwater wireless optical communication link with 15 Gbps data rate

    KAUST Repository

    Shen, Chao

    2016-10-24

    The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (∼10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion. © 2016 Optical Society of America.

  7. 20-meter underwater wireless optical communication link with 15 Gbps data rate

    KAUST Repository

    Shen, Chao; Guo, Yong; Oubei, Hassan M.; Ng, Tien Khee; Liu, Guangyu; Park, Kihong; Ho, Kang-Ting; Alouini, Mohamed-Slim; Ooi, Boon S.

    2016-01-01

    The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (∼10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion. © 2016 Optical Society of America.

  8. Handoff algorithm for mobile satellite systems with ancillary terrestrial component

    KAUST Repository

    Sadek, Mirette

    2012-06-01

    This paper presents a locally optimal handoff algorithm for integrated satellite/ground communication systems. We derive the handoff decision function and present the results in the form of tradeoff curves between the number of handoffs and the number of link degradation events in a given distance covered by the mobile user. This is a practical receiver-controlled handoff algorithm that optimizes the handoff process from a user perspective based on the received signal strength rather than from a network perspective. © 2012 IEEE.

  9. Satellite communication on pipeline supervision using TCP-IP Protocol; Comunicacao via satelite na supervisao de dutos usando o protocolo TCP-IP

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Agliberto Pessoa da [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Brunette, Sergio Henrique de Moraes

    2003-07-01

    Bit transparent type or X-25 protocols have been used in VSAT satellite communication by PETROBRAS pipeline Supervisory Control and Data Acquisition System (SCADA) as access protocol. Both solutions have inconveniences. By the first one, difficulties exist for analysis and diagnosis of connection flaws, and therefore, for a ready identification by the system management stations of abnormality location. On the other hand, the usage of the X-25 brings an additional over-head in the communication since this is not an available option in most of the equipment that compose the SCADA. The access to VSAT through Ethernet, in the opposite, makes available all networks management tools of the TCP/IP platform and it allows a direct connection to the field devices, since the main models of the several makers of Programmable Controllers and Remote Terminal Units have Ethernet port. An additional earnings is the possibility of standardization that this solution allows. This paper describes a series of communication tests between two Programmable Controllers communicating through the satellite, using a protocol over Ethernet/TCP/IP. (author)

  10. 47 CFR 25.250 - Sharing between NGSO MSS Feeder links Earth Stations in the 19.3-19.7 GHz and 29.1-29.5 GHz Bands.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Sharing between NGSO MSS Feeder links Earth Stations in the 19.3-19.7 GHz and 29.1-29.5 GHz Bands. 25.250 Section 25.250 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25...

  11. Local intelligent electronic device (IED) rendering templates over limited bandwidth communication link to manage remote IED

    Science.gov (United States)

    Bradetich, Ryan; Dearien, Jason A; Grussling, Barry Jakob; Remaley, Gavin

    2013-11-05

    The present disclosure provides systems and methods for remote device management. According to various embodiments, a local intelligent electronic device (IED) may be in communication with a remote IED via a limited bandwidth communication link, such as a serial link. The limited bandwidth communication link may not support traditional remote management interfaces. According to one embodiment, a local IED may present an operator with a management interface for a remote IED by rendering locally stored templates. The local IED may render the locally stored templates using sparse data obtained from the remote IED. According to various embodiments, the management interface may be a web client interface and/or an HTML interface. The bandwidth required to present a remote management interface may be significantly reduced by rendering locally stored templates rather than requesting an entire management interface from the remote IED. According to various embodiments, an IED may comprise an encryption transceiver.

  12. Full Service ISDN Satellite (FSIS) network model for advanced ISDN satellite design and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The Full Service Integrated Services Digital Network (FSIS) network model for advanced satellite designs describes a model suitable for discrete event simulations. A top down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ACTS and the Interim Service ISDN Satellite (ISIS) perform ISDN protocol analyses and switching decisions in the terrestrial domain, whereas FSIS makes all its analyses and decisions on-board the ISDN satellite.

  13. Satellite data transferring subsystem based on system 'Materik'

    International Nuclear Information System (INIS)

    Belogub, V.P.; Kal'schikov, I.B.; Kirillov, Yu.K.; Kulikov, V.N.; Shumov, A.N.

    1998-01-01

    One of the most important indicators of successful function of the International Monitoring System is existence of highly reliable communication channels providing transfer data from observation points in a real time scales. Up to present, the most communication channels were provided with existing VF-channels (Voice Frequency) that are relatively low-speedy in transfer process (4.8-9.6 kbit/sec.). In addition, reliability of the channels is insufficient because of many retransmission points. In connection with it, the special control service of MD RF decided to improve the information transfer system (ITS) installed between the observation point and National Data Center (Dubna-city). The improvement of the ITS comprises replacement of wire lines of VF-channels with satellite ones within the framework of the computer-aided satellite communication system (CASCS) M aterik . Besides it was considered to be expedient that the satellite system of data transfer from NPP to the Crisis Center of 'ROSENERGOATOM' Concern would be combined with CASCS M aterik , using the facilities of the Central Earth Station of Satellite Communication (CESSC) in Dubna. Such approach to the creation of Satellite communication has advantages in solution of radiation safety and global monitoring issues

  14. Annual view (1999) - aeronautic relation/space relation. Space relation - communication/broadcasting/engineering test satellite; Nenkan tenbo (1999) koku kankei uchu kankei. Tsushin, hoso, gijutsu shiken eisei kanren

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-05

    To cope with the increasing communication demand, the R and D of engineering test satellite V III are being conducted being aimed at developing a technology of the world's largest class geostationary satellite. As to the large developing rectenna, a model for development was manufactured and is now in test. In August and September 1999, the system combustion test of complete two-liquid chemical propulsion system was carried out at Ishikawajima-Harima Heavy Industries. The R and D of the data relay technology satellite are being conducted for the purpose of conducting orbital demonstrative tests to improve the data relay functional performance of satellite and to spread the data relay range. The engineering test satellite VII was developed to study the space rendezvous/docking technology and the basic technology of space use robot. It was launched in November 1997 and got a lot of valuable data. The operation of satellite has been continued for the acquisition of data such as secular changes of satellite equipment. About the communication broadcasting satellite, experiments and functional tests were finished, and the operation was stopped in August 1999. (NEDO)

  15. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. Part 2: Theoretical development of a dynamic model and application to rain fade durations and tolerable control delays for fade countermeasures

    Science.gov (United States)

    Manning, Robert M.

    1987-01-01

    A dynamic rain attenuation prediction model is developed for use in obtaining the temporal characteristics, on time scales of minutes or hours, of satellite communication link availability. Analagous to the associated static rain attenuation model, which yields yearly attenuation predictions, this dynamic model is applicable at any location in the world that is characterized by the static rain attenuation statistics peculiar to the geometry of the satellite link and the rain statistics of the location. Such statistics are calculated by employing the formalism of Part I of this report. In fact, the dynamic model presented here is an extension of the static model and reduces to the static model in the appropriate limit. By assuming that rain attenuation is dynamically described by a first-order stochastic differential equation in time and that this random attenuation process is a Markov process, an expression for the associated transition probability is obtained by solving the related forward Kolmogorov equation. This transition probability is then used to obtain such temporal rain attenuation statistics as attenuation durations and allowable attenuation margins versus control system delay.

  16. Satellite transmission of oceanographic data

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Desai, R.G.P.; DeSa, E.J.

    Oceanographic data collected on a research vessel has been transmitted to a shore laboratory using the INMARSAT maritime satellite The system configuration used, consisted of Satellite Communication Terminals interfaced to desk top computers...

  17. Identification of requirements for intersatellite links

    Science.gov (United States)

    Puccio, A.; Saggese, E.; Soprano, C.

    1988-06-01

    An account is given of the results of ESA studies on the concept of intersatellite links (ISLs), with a view to the formulation of a reference scenario for satellite communications in the Eutelsat III-operational period of 1996-2005. A detailed system analysis has been undertaken of selected study cases, in order to ascertain requirements for the first ISL generation and to evaluate its optical implementation and economic viability. A first-generation, mm-wave ISL would be preferable for future business systems, while a second-generation optical ISL that would become operational after 2005 could extend the field of application.

  18. Free-space laser communication technologies II; Proceedings of the Meeting, Los Angeles, CA, Jan. 15-17, 1990

    Science.gov (United States)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1990-01-01

    Various papers on free-space laser communication technologies are presented. Individual topics addressed include: optical intersatellite link experiment between the earth station and ETS-VI, the Goddard optical communications program, technologies and techniques for lasercom terminal size, weight, and cost reduction, laser beam acquisition and tracking system for ETS-VI laser communication equipment, analog dividers for acquisition and tracking signal normalization, fine pointing mechanism using multilayered piezoelectric actuator for optical ISL system, analysis of SILEX tracking sensor performance, new telescope concept for space communication, telescope considered as a very high gain antenna, design of compact transceiver optical systems for optical intersatellite links, ultralightweight optics for laser communications, highly sensitive measurement method for stray light and retroreflected light, depolarization effects on free space laser transceiver communication systems, in-orbit measurements of microaccelerations of ESA's communication satellite Olympus, high-performance laser diode transmitter for optical free space communication, diode-pumped Nd:host laser transmitter for intersatellite optical communications, single-frequency diode-pumped laser for free-space communication.

  19. Communication architecture of an early warning system

    Directory of Open Access Journals (Sweden)

    M. Angermann

    2010-11-01

    Full Text Available This article discusses aspects of communication architecture for early warning systems (EWS in general and gives details of the specific communication architecture of an early warning system against tsunamis. While its sensors are the "eyes and ears" of a warning system and enable the system to sense physical effects, its communication links and terminals are its "nerves and mouth" which transport measurements and estimates within the system and eventually warnings towards the affected population. Designing the communication architecture of an EWS against tsunamis is particularly challenging. Its sensors are typically very heterogeneous and spread several thousand kilometers apart. They are often located in remote areas and belong to different organizations. Similarly, the geographic spread of the potentially affected population is wide. Moreover, a failure to deliver a warning has fatal consequences. Yet, the communication infrastructure is likely to be affected by the disaster itself. Based on an analysis of the criticality, vulnerability and availability of communication means, we describe the design and implementation of a communication system that employs both terrestrial and satellite communication links. We believe that many of the issues we encountered during our work in the GITEWS project (German Indonesian Tsunami Early Warning System, Rudloff et al., 2009 on the design and implementation communication architecture are also relevant for other types of warning systems. With this article, we intend to share our insights and lessons learned.

  20. Challenges of communication system during emergency disaster ...

    African Journals Online (AJOL)

    pc

    2017-10-05

    Oct 5, 2017 ... 3.2.3.Satellite-Based Communication. Satellite-based communication is another alternative for communication in the event of disaster. Japan, United States of America and Russia are the countries that have utilised the system to disseminate emergency messages during previous disasters. Satellite-based.

  1. Improving the satellite communication efficiency of the accumulative acknowledgement strategies

    Science.gov (United States)

    Duarte, Otto Carlos M. B.; de Lima, Heliomar Medeiros

    The performances of two finite buffer error recovery strategies are analyzed. In both strategies the retransmission request decision between selective repeat and continuous retransmission is based on an imminent buffer overflow condition. These are accumulative acknowledgment schemes, but in the second strategy the selective-repeat control frame is uniquely an individual negative acknowledgment. The two strategies take advantage of the availability of a greater buffer capacity, making the most of the selective repeat, postponing the sending of a continuous retransmission request. Numerical results show a better performance very close to the ideal, but it does not integrally conform to the high-level data link control (HDLC) procedures. It is shown that these strategies are well suited for high-speed data transfer in the high-error-rate satellite environment.

  2. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate.

    Science.gov (United States)

    Shen, Chao; Guo, Yujian; Oubei, Hassan M; Ng, Tien Khee; Liu, Guangyu; Park, Ki-Hong; Ho, Kang-Ting; Alouini, Mohamed-Slim; Ooi, Boon S

    2016-10-31

    The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (~10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion.

  3. History of Satellite TV Broadcasting and Satellite Broadcasting Market in Turkey

    Directory of Open Access Journals (Sweden)

    Mihalis KUYUCU

    2015-09-01

    Full Text Available The present study analyses the satellite broadcasting that is the first important development that emerged as a result of digitalization in communication technologies and its reflections in Turkey. As the first milestone in the globalization of television broadcasting, satellite broadcasting provided substantial contribution towards the development of the media. Satellite bro adcasting both increased the broadcasting quality and geographical coverage of the television media. A conceptual study was carried out in the first part of the study in connection with the history of satellite broadcasting in Turkey and across the world. In the research part of the study, an analysis was performed on 160 television channels that broadcast in Turkey via Turksat Satellite. Economic structure of the television channels broadcasting in Turkey via satellite was studied and an analysis was perfo rmed on the operational structure of the channels. As a result of the study, it was emphasized that the television channels broadcasting via satellite platform also use other platforms for the purpose of spreading their broadcasts and television channel ow ners make investments in different branches of the media, too. Capital owners invest in different business areas other than the media although television channels broadcasting via Turksat mostly focus on thematic broadcasting and make effort to generate ec onomic income from advertisements. Delays are encountered in the course of the convergence between the new media and television channels that broadcast only from the satellite platform and such television channels experience more economic problems than the other channels. New media and many TV broadcasting platforms emerged as a result of the developments in the communication technologies. In television broadcasting, satellite platform is not an effective platform on its own. Channels make effort to reach t o more people by using other platforms in addition to

  4. Modelling of 10 Gbps Free Space Optics Communication Link Using Array of Receivers in Moderate and Harsh Weather Conditions

    Science.gov (United States)

    Gupta, Amit; Shaina, Nagpal

    2017-08-01

    Intersymbol interference and attenuation of signal are two major parameters affecting the quality of transmission in Free Space Optical (FSO) Communication link. In this paper, the impact of these parameters on FSO communication link is analysed for delivering high-quality data transmission. The performance of the link is investigated under the influence of amplifier in the link. The performance parameters of the link like minimum bit error rate, received signal power and Quality factor are examined by employing erbium-doped fibre amplifier in the link. The effects of amplifier are visualized with the amount of received power. Further, the link is simulated for moderate weather conditions at various attenuation levels on transmitted signal. Finally, the designed link is analysed in adverse weather conditions by using high-power laser source for optimum performance.

  5. Cooperative and cognitive satellite systems

    CERN Document Server

    Chatzinotas, Symeon; De Gaudenzi, Riccardo

    2015-01-01

    Cooperative and Cognitive Satellite Systems provides a solid overview of the current research in the field of cooperative and cognitive satellite systems, helping users understand how to incorporate state-of-the-art communication techniques in innovative satellite network architectures to enable the next generation of satellite systems. The book is edited and written by top researchers and practitioners in the field, providing a comprehensive explanation of current research that allows users to discover future technologies and their applications, integrate satellite and terrestrial systems

  6. Lewis Information Network (LINK): Background and overview

    Science.gov (United States)

    Schulte, Roger R.

    1987-01-01

    The NASA Lewis Research Center supports many research facilities with many isolated buildings, including wind tunnels, test cells, and research laboratories. These facilities are all located on a 350 acre campus adjacent to the Cleveland Hopkins Airport. The function of NASA-Lewis is to do basic and applied research in all areas of aeronautics, fluid mechanics, materials and structures, space propulsion, and energy systems. These functions require a great variety of remote high speed, high volume data communications for computing and interactive graphic capabilities. In addition, new requirements for local distribution of intercenter video teleconferencing and data communications via satellite have developed. To address these and future communications requirements for the next 15 yrs, a project team was organized to design and implement a new high speed communication system that would handle both data and video information in a common lab-wide Local Area Network. The project team selected cable television broadband coaxial cable technology as the communications medium and first installation of in-ground cable began in the summer of 1980. The Lewis Information Network (LINK) became operational in August 1982 and has become the backbone of all data communications and video.

  7. Communications systems for emergency deployment applications

    International Nuclear Information System (INIS)

    Gladden, C.A.

    1987-01-01

    The Emergency Response Team (ERT) communications system was developed by the US Department of Energy (DOE) to provide radio and telecommunications service for scientific and management elements located in, and adjacent to, an emergency area. The telephone system consists of six nodes, interconnected via microwave links that support T-1 data links and simultaneous two-way live video. The radio network is a self-contained VHF system arranged around portable and programmable repeaters. The system is comprised of approximately 183 DES voice-private radios and 168 clear text radios. Capability is available in the form of portable International Maritime Satellite (INMARSAT) terminals that allow direct dial access to coast earth stations in the US or other countries

  8. Research on formation of microsatellite communication with genetic algorithm.

    Science.gov (United States)

    Wu, Guoqiang; Bai, Yuguang; Sun, Zhaowei

    2013-01-01

    For the formation of three microsatellites which fly in the same orbit and perform three-dimensional solid mapping for terra, this paper proposes an optimizing design method of space circular formation order based on improved generic algorithm and provides an intersatellite direct spread spectrum communication system. The calculating equation of LEO formation flying satellite intersatellite links is guided by the special requirements of formation-flying microsatellite intersatellite links, and the transmitter power is also confirmed throughout the simulation. The method of space circular formation order optimizing design based on improved generic algorithm is given, and it can keep formation order steady for a long time under various absorb impetus. The intersatellite direct spread spectrum communication system is also provided. It can be found that, when the distance is 1 km and the data rate is 1 Mbps, the input wave matches preferably with the output wave. And LDPC code can improve the communication performance. The correct capability of (512, 256) LDPC code is better than (2, 1, 7) convolution code, distinctively. The design system can satisfy the communication requirements of microsatellites. So, the presented method provides a significant theory foundation for formation-flying and intersatellite communication.

  9. Tailoring in risk communication by linking risk profiles and communication preferences: The case of speeding of young car drivers.

    Science.gov (United States)

    Geber, Sarah; Baumann, Eva; Klimmt, Christoph

    2016-12-01

    Speeding is one of the most relevant risk behaviors for serious and fatal accidents, particularly among young drivers. This study presents a tailoring strategy for anti-speeding communication. By referring to their motivational dispositions toward speeding derived from motivational models of health behavior, young car drivers were segmented into different risk groups. In order to ensure that risk communication efforts would actually be capable to target these groups, the linkage between the risk profiles and communication preferences were explored. The study was conducted on the basis of survey data of 1168 German car drivers aged between 17 and 24 years. The data reveal four types of risk drivers significantly differing in their motivational profiles. Moreover, the findings show significant differences in communication habits and media use between these risk groups. By linking the risk profiles and communication preferences, implications for tailoring strategies of road safety communication campaigns are derived. Promising segmentation and targeting strategies are discussed also beyond the current case of anti-speeding campaigns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Using Satellite Technology to Increase Professional Communications Among Teachers: a Report of Experiments Conducted by the National Education Association.

    Science.gov (United States)

    National Education Association, Washington, DC. Div. of Instruction and Professional Development.

    The National Education Association (NEA) in conjunction with the National Aeronautics and Space Administration, the National Library of Medicine, The Alaska Broadcasting Commission, and the Pacific PEACESAT Network, conducted four satellite experiments designed to improve professional communication among teachers. These programs were the Satellite…

  11. COTS low-cost 622-Mb/s free-space laser communications link for short-distance commercial applications

    Science.gov (United States)

    Morrison, Kenneth A.

    2000-05-01

    The results from a low cost 622 Mb/s, free-space laser communication link operating at 850 nm for short distance commercial applications is presented. The test results demonstrate the use of a free-space laser communications transceiver for building to building applications such as LAN, WAN and ATM operations, etc. This illustrates the potential for wide-use commercial computer network applications. The transceiver is constructed of commercial off-the-shelf materials for the development of a low-cost laser communications data link. The test system configuration utilizes standard Personal Computers with network cards and signal conversion cards for the copper to optical medical conversion. These tests precede the development of an increased data rate device operating at 2.5 Gb/s.

  12. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX XX) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nassar (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting and associated Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop convene yearly to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom)industry, academia, and government with an interest in space-ground radio wave propagation have peer discussion of work in progress, disseminate propagation results, and interact with the satcom industry. NAPEX XX, in Fairbanks, Alaska, June 4-5, 1996, had three sessions: (1) "ACTS Propagation Study: Background, Objectives, and Outcomes," covered results from thirteen station-years of Ka-band experiments; (2) "Propagation Studies for Mobile and Personal Satellite Applications," provided the latest developments in measurement, modeling, and dissemination of propagation phenomena of interest to the mobile, personal, and aeronautical satcom industry; and (3)"Propagation Research Topics," covered a range of topics including space/ground optical propagation experiments, propagation databases, the NASA Propagation Web Site, and revision plans for the NASA propagation effects handbooks. The ACTS Miniworkshop, June 6, 1996, covered ACTS status, engineering support for ACTS propagation terminals, and the ACTS Propagation Data Center. A plenary session made specific recommendations for the future direction of the program.

  13. A coherent free space optical link for long distance clock comparison, navigation, and communication: The Mini-Doll project

    Science.gov (United States)

    Djerroud, K.; Samain, E.; Clairon, A.; Acef, O.; Man, N.; Lemonde, P.; Wolf, P.

    2017-11-01

    We describe the realization of a 5 km free space coherent optical link through the turbulent atmosphere between a telescope and a ground target. We present the phase noise of the link, limited mainly by atmospheric turbulence and mechanical vibrations of the telescope and the target. We discuss the implications of our results for applications, with particular emphasis on optical Doppler ranging to satellites and long distance frequency transfer.

  14. Simulating the performance of adaptive optics techniques on FSO communications through the atmosphere

    Science.gov (United States)

    Martínez, Noelia; Rodríguez Ramos, Luis Fernando; Sodnik, Zoran

    2017-08-01

    The Optical Ground Station (OGS), installed in the Teide Observatory since 1995, was built as part of ESA efforts in the research field of satellite optical communications to test laser telecommunication terminals on board of satellites in Low Earth Orbit and Geostationary Orbit. As far as one side of the link is settled on the Earth, the laser beam (either on the uplink or on the downlink) has to bear with the atmospheric turbulence. Within the framework of designing an Adaptive Optics system to improve the performance of the Free-Space Optical Communications at the OGS, turbulence conditions regarding uplink and downlink have been simulated within the OOMAO (Object-Oriented Matlab Adaptive Optics) Toolbox as well as the possible utilization of a Laser Guide Star to measure the wavefront in this context. Simulations have been carried out by reducing available atmospheric profiles regarding both night-time and day-time measurements and by having into account possible seasonal changes. An AO proposal to reduce atmospheric aberrations and, therefore, ameliorate FSO links performance is presented and analysed in this paper

  15. Proceedings of the Fifth International Mobile Satellite Conference 1997

    Science.gov (United States)

    Jedrey, T. (Compiler); Rigley, J. (Compiler); Anderson, Louise (Editor)

    1997-01-01

    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments.

  16. Investigations in Satellite MIMO Channel Modeling: Accent on Polarization

    Directory of Open Access Journals (Sweden)

    Karagiannidis George K

    2007-01-01

    Full Text Available Due to the much different environment in satellite and terrestrial links, possibilities in and design of MIMO systems are rather different as well. After pointing out these differences and problems arising from them, two MIMO designs are shown rather well adapted to satellite link characteristics. Cooperative diversity seems to be applicable; its concept is briefly presented without a detailed discussion, leaving solving particular satellite problems to later work. On the other hand, a detailed discussion of polarization time-coded diversity (PTC is given. A physical-statistical model for dual-polarized satellite links is presented together with measuring results validating the model. The concept of 3D polarization is presented as well as briefly describing compact 3D-polarized antennas known from the literature and applicable in satellite links. A synthetic satellite-to-indoor link is constructed and its electromagnetic behavior is simulated via the FDTD (finite-difference time-domain method. Previous result of the authors states that in 3D-PTC situations, MIMO capacity can be about two times higher than SIMO (single-input multiple-output capacity while a diversity gain of nearly is further verified via extensive FDTD computer simulation.

  17. Performance Analysis of an Enhanced PRMA-HS Protocol for LEO Satellite Communication

    Institute of Scientific and Technical Information of China (English)

    ZHUO Yong-ning; YAN Shao-hu; WU Shi-qi

    2005-01-01

    The packet reservation multiple access with hindering state (PRMA-HS) is a protocol suitable for LEO satellite mobile communication. Although working well with light system payload (amount of user terminals), the protocol imposes high channel congestion on system with heavy payload, thus degrades the system's quality of service. To controlling the channel congestion, a scheme of enhanced PRMA-HS protocol is proposed, which aims to reduce the collision of voice packets by adopting a mechanism of access control. Through theoretic analysis, the system's mathematic model is presented and the packet drop probability of the scheme is deduced. To testify the performance of the scheme, a simulation is performed and the results support our analysis.

  18. Fiber-Optic Communication Links Suitable for On-Board Use in Modern Aircraft

    Science.gov (United States)

    Nguyen, Hung; Ngo, Duc; Alam, Mohammad F.; Atiquzzaman, Mohammed; Sluse, James; Slaveski, Filip

    2004-01-01

    The role of the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Centers has been focused mainly on the improvement of air transportation safety, with particular emphasis on air transportation communication systems in on-board aircraft. The conventional solutions for digital optical communications systems specifically designed for local/metro area networks are, unfortunately, not capable of transporting the microwave and millimeter RF signals used in avionics systems. Optical networks capable of transporting RF signals are substantially different from the standard digital optical communications systems. The objective of this paper is to identify a number of different communication link architectures for RF/fiber optic transmission using a single backbone fiber for carrying VHF and UHF RF signals in the aircraft. To support these architectures, two approaches derived from both hybrid RF-optical and all-optical processing methodologies are discussed with single and multiple antennas for explicitly transporting VHF and UHF signals, while the relative merits and demerits of each architecture are also addressed. Furthermore, the experimental results of wavelength division multiplexing (WDM) link architecture from our test-bed platform, configured for aircraft environment to support simultaneous transmission of multiple RF signals over a single optical fiber, exhibit no appreciable signal degradation at wavelengths of both 1330 and 1550 nm, respectively. Our measurements of signal to noise ratio carried out for the transmission of FM and AM analog modulated signals at these wavelengths indicate that WDM is a fiber optic technology which is potentially suitable for avionics applications.

  19. Particle-induced bit errors in high performance fiber optic data links for satellite data management

    International Nuclear Information System (INIS)

    Marshall, P.W.; Carts, M.A.; Dale, C.J.; LaBel, K.A.

    1994-01-01

    Experimental test methods and analysis tools are demonstrated to assess particle-induced bit errors on fiber optic link receivers for satellites. Susceptibility to direct ionization from low LET particles is quantified by analyzing proton and helium ion data as a function of particle LET. Existing single event analysis approaches are shown to apply, with appropriate modifications, to the regime of temporally (rather than spatially) distributed bits, even though the sensitivity to single events exceeds conventional memory technologies by orders of magnitude. The cross-section LET dependence follows a Weibull distribution at data rates from 200 to 1,000 Mbps and at various incident optical power levels. The LET threshold for errors is shown, through both experiment and modeling, to be 0 in all cases. The error cross-section exhibits a strong inverse dependence on received optical power in the LET range where most orbital single events would occur, thus indicating that errors can be minimized by operating links with higher incident optical power. Also, an analytic model is described which incorporates the appropriate physical characteristics of the link as well as the optical and receiver electrical characteristics. Results indicate appropriate steps to assure suitable link performance even in severe particle orbits

  20. INMARSAT's personal communicator system

    Science.gov (United States)

    Hart, Nick; Haugli, Hans-C.; Poskett, Peter; Smith, K.

    Inmarsat has been providing near global mobile satellite communications since 1982 and Inmarsat terminals are currently being used in more than 130 countries. The terminals have been reduced in size and cost over the years and new technology has enabled the recent introduction of briefcase sized personal telephony terminals (Inmarsat-M). This trend continues and we are likely to see Inmarsat handheld terminals by the end of the decade. These terminals are called Inmarsat-P and this paper focuses on the various elements required to support a high quality service to handheld terminals. The main system elements are: the handheld terminals; the space segment with the associated orbits; and the gateways to terrestrial networks. It is both likely and desirable that personal handheld satellite communications will be offered by more than one system provider and this competition will ensure strong emphasis on service quality and cost of ownership. The handheld terminals also have to be attractive to a large number of potential users, and this means that the terminals must be small enough to fit in a pocket. Battery lifetime is another important consideration, and this coupled with radiation safety requirements limits the maximum radiated EIRP. The terminal G/T is mainly constrained by the gain of the omnidirectional antenna and the noise figure of the RF front end (including input losses). Inmarsat has examined, with the support of industry, a number of Geosynchronous (GSO), Medium Earth Orbit (MEO) and Low Earth Orbit (LEO) satellite options for the provision of a handheld mobile satellite service. This paper describes the key satellite and orbit parameters and tradeoffs which affect the overall quality of service and the space segment costing. The paper also stresses not only the importance of using and sharing the available mobile frequency band allocations efficiently, but also the key considerations affecting the choice of feeder link bands. The design of the gateways

  1. Preliminary Experiments for the Assessment of VW-Band Links for Space-Earth Communications

    Science.gov (United States)

    Nessel, James A.; Acosta, Roberto J.; Miranda, Felix A.

    2013-01-01

    Since September 2012, NASA Glenn Research Center has deployed a microwave profiling radiometer at White Sands, NM, to estimate atmospheric propagation effects on communications links in the V and W bands (71-86GHz). Estimates of attenuation statistics in the millimeter wave due to gaseous and cloud components of the atmosphere show good agreement with current ITU-R models, but fail to predict link performance in the presence of moderate to heavy rain rates, due to the inherent limitations of passive radiometry. Herein, we discuss the preliminary results of these measurements and describe a design for a terrestrial link experiment to validaterefine existing rain attenuation models in the VW-bands.

  2. Handover aspects for a Low Earth Orbit (LEO) CDMA Land Mobile Satellite (LMS) system

    Science.gov (United States)

    Carter, P.; Beach, M. A.

    1993-01-01

    This paper addresses the problem of handoff in a land mobile satellite (LMS) system between adjacent satellites in a low earth orbit (LEO) constellation. In particular, emphasis is placed on the application of soft handoff in a direct sequence code division multiple access (DS-CDMA) LMS system. Soft handoff is explained in terms of terrestrial macroscopic diversity, in which signals transmitted via several independent fading paths are combined to enhance the link quality. This concept is then reconsidered in the context of a LEO LMS system. A two-state Markov channel model is used to simulate the effects of shadowing on the communications path from the mobile to each satellite during handoff. The results of the channel simulation form a platform for discussion regarding soft handoff, highlighting the potential merits of the scheme when applied in a LEO LMS environment.

  3. A Novel Location-Awareness Method Using CubeSats for Locating the Spot Beam Emitters of Geostationary Communications Satellites

    Directory of Open Access Journals (Sweden)

    Weicai Yang

    2018-01-01

    Full Text Available As more spacecraft are launched into the Geostationary Earth Orbit (GEO belt, the possibility of fatal collisions or unnecessary interference between spacecraft increases. In this paper, a new location-awareness method that uses CubeSats is proposed to assist with radiofrequency (RF domain verification by means of awareness and identification of the positions of the spot beam emitters of communications satellites in geostationary orbit. By flying a CubeSat (or a constellation of CubeSats through the coverage area of a spot beam, the spot beam emitter’s position is identified and the spot beam’s pattern knowledge is characterized. The geometry, the equations of motion of the spacecraft, the measurement process, and the filtering equations in a location system are addressed with respect to the location methods investigated in this study. A realistic scenario in which a CubeSat receives signals from GEO communications satellites is simulated using the Systems Tool Kit (STK. The results of the simulation and the analysis presented in this study provide a thorough verification of the performance of the location-awareness method.

  4. Rain Fade Compensation for Ka-Band Communications Satellites

    Science.gov (United States)

    Mitchell, W. Carl; Nguyen, Lan; Dissanayake, Asoka; Markey, Brian; Le, Anh

    1997-01-01

    This report provides a review and evaluation of rain fade measurement and compensation techniques for Ka-band satellite systems. This report includes a description of and cost estimates for performing three rain fade measurement and compensation experiments. The first experiment deals with rain fade measurement techniques while the second one covers the rain fade compensation techniques. The third experiment addresses a feedback flow control technique for the ABR service (for ATM-based traffic). The following conclusions were observed in this report; a sufficient system signal margin should be allocated for all carriers in a network, that is a fixed clear-sky margin should be typically in the range of 4-5 dB and should be more like 15 dB in the up link for moderate and heavy rain zones; to obtain a higher system margin it is desirable to combine the uplink power control technique with the technique that implements the source information rate and FEC code rate changes resulting in a 4-5 dB increase in the dynamic part of the system margin. The experiments would assess the feasibility of the fade measurements and compensation techniques, and ABR feedback control technique.

  5. Coding/modulation trade-offs for Shuttle wideband data links

    Science.gov (United States)

    Batson, B. H.; Huth, G. K.; Trumpis, B. D.

    1974-01-01

    This paper describes various modulation and coding schemes which are potentially applicable to the Shuttle wideband data relay communications link. This link will be capable of accommodating up to 50 Mbps of scientific data and will be subject to a power constraint which forces the use of channel coding. Although convolutionally encoded coherent binary PSK is the tentative signal design choice for the wideband data relay link, FM techniques are of interest because of the associated hardware simplicity and because an FM system is already planned to be available for transmission of television via relay satellite to the ground. Binary and M-ary FSK are considered as candidate modulation techniques, and both coherent and noncoherent ground station detection schemes are examined. The potential use of convolutional coding is considered in conjunction with each of the candidate modulation techniques.

  6. Education and the Satellite: Possibilities for Saudi Arabia?

    Science.gov (United States)

    Al-Sharhan, Jamal

    2000-01-01

    Discussion of developments in satellite communications and educational applications focuses on the possibilities of adapting satellite technology for instruction in developing countries. Topics include satellite use in Australia and the United States; and recommendations for the adoption of satellite technology in Saudi Arabia. (Author/LRW)

  7. An introduction to optimal satellite range scheduling

    CERN Document Server

    Vázquez Álvarez, Antonio José

    2015-01-01

    The satellite range scheduling (SRS) problem, an important operations research problem in the aerospace industry consisting of allocating tasks among satellites and Earth-bound objects, is examined in this book. SRS principles and solutions are applicable to many areas, including: Satellite communications, where tasks are communication intervals between sets of satellites and ground stations Earth observation, where tasks are observations of spots on the Earth by satellites Sensor scheduling, where tasks are observations of satellites by sensors on the Earth. This self-contained monograph begins with a structured compendium of the problem and moves on to explain the optimal approach to the solution, which includes aspects from graph theory, set theory, game theory and belief networks. This book is accessible to students, professionals and researchers in a variety of fields, including: operations research, optimization, scheduling theory, dynamic programming and game theory. Taking account of the distributed, ...

  8. The Voice/Data Communications system in the Health, Education, Telecommunications Experiments. Satellite Technology Demonstration, Technical Report No. 0417.

    Science.gov (United States)

    Janky, James M.; And Others

    The diligent use of two-way voice links via satellites substantially improves the quality and the availability of health care and educational services in remote areas. This improvement was demonstrated in several experiments that were sponsored by the Department of Health, Education, and Welfare and the National Aeronautics and Space…

  9. GAUSS Market Analysis for Integrated Satellite Communication and Navigation Location Based services

    Science.gov (United States)

    Di Fazio, Antonella; Dricot, Fabienne; Tata, Francesco

    2003-07-01

    The demand for mobile information services coupled with positioning technologies for delivering value- added services that depend on a user's location has rapidly increased during last years. In particular, services and applications related with improved mobility safety and transport efficiency look very attractive.Solutions for location services vary in respect of positioning accuracy and the technical infrastructure required, and the associated investment in terminals and networks. From the analysis of the state-of-the art, it comes that various technologies are currently available on the European market, while mobile industry is gearing up to launch a wide variety of location services like tracking, alarming and locating.Nevertheless, when addressing safety of life as well as security applications, severe hurdles have to be posed in the light of existing technologies. Existing navigation (e.g. GPS) and communication systems are not able to completely satisfy the needs and requirements of safety-of-life-critical applications. As a matter of fact, the GPS system's main weaknesses today is its lack of integrity, which means its inability to warn users of a malfunction in a reasonable time, while the other positioning techniques do not provide satisfactory accuracy as well, and terrestrial communication networks are not capable to cope with stringent requirement in terms of service reliability and coverage.In this context, GAUSS proposes an innovative satellite-based solution using novel technology and effective tools for addressing mobility challenges in a cost efficient manner, improving safety and effectiveness.GAUSS (Galileo And UMTS Synergetic System) is a Research and Technological Development project co- funded by European Commission, within the frame of the 5th IST Programme. The project lasted two years, and it was successfully completed in November 2002. GAUSS key concept is the integration of Satellite Navigation GNSS and UMTS communication technology, to

  10. Space Communications and Data Systems Technologies for Next Generation Earth Science Measurements

    Science.gov (United States)

    Bauer, Robert A.; Reinhart, Richard C.; Hilderman, Don R.; Paulsen, Phillip E.

    2003-01-01

    The next generation of Earth observing satellites and sensor networks will face challenges in supporting robust high rate communications links from the increasingly sophisticated onboard instruments. Emerging applications will need data rates forecast to be in the 100's to 1000's of Mbps. As mission designers seek smaller spacecraft, challenges exist in reducing the size and power requirements while increasing the capacity of the spacecraft's communications technologies. To meet these challenges, this work looks at three areas of selected space communications and data services technologies, specifically in the development of reflectarray antennas, demonstration of space Internet concepts, and measurement of atmospheric propagation effects on Ka-band signal transmitted from LEO.

  11. Cyber security with radio frequency interferences mitigation study for satellite systems

    Science.gov (United States)

    Wang, Gang; Wei, Sixiao; Chen, Genshe; Tian, Xin; Shen, Dan; Pham, Khanh; Nguyen, Tien M.; Blasch, Erik

    2016-05-01

    Satellite systems including the Global Navigation Satellite System (GNSS) and the satellite communications (SATCOM) system provide great convenience and utility to human life including emergency response, wide area efficient communications, and effective transportation. Elements of satellite systems incorporate technologies such as navigation with the global positioning system (GPS), satellite digital video broadcasting, and information transmission with a very small aperture terminal (VSAT), etc. The satellite systems importance is growing in prominence with end users' requirement for globally high data rate transmissions; the cost reduction of launching satellites; development of smaller sized satellites including cubesat, nanosat, picosat, and femtosat; and integrating internet services with satellite networks. However, with the promising benefits, challenges remain to fully develop secure and robust satellite systems with pervasive computing and communications. In this paper, we investigate both cyber security and radio frequency (RF) interferences mitigation for satellite systems, and demonstrate that they are not isolated. The action space for both cyber security and RF interferences are firstly summarized for satellite systems, based on which the mitigation schemes for both cyber security and RF interferences are given. A multi-layered satellite systems structure is provided with cross-layer design considering multi-path routing and channel coding, to provide great security and diversity gains for secure and robust satellite systems.

  12. Design of an Image Motion Compenstaion (IMC Algorithm for Image Registration of the Communication, Ocean, Meteorolotical Satellite (COMS-1

    Directory of Open Access Journals (Sweden)

    Taek Seo Jung

    2006-03-01

    Full Text Available This paper presents an Image Motion Compensation (IMC algorithm for the Korea's Communication, Ocean, and Meteorological Satellite (COMS-1. An IMC algorithm is a priority component of image registration in Image Navigation and Registration (INR system to locate and register radiometric image data. Due to various perturbations, a satellite has orbit and attitude errors with respect to a reference motion. These errors cause depointing of the imager aiming direction, and in consequence cause image distortions. To correct the depointing of the imager aiming direction, a compensation algorithm is designed by adapting different equations from those used for the GOES satellites. The capability of the algorithm is compared with that of existing algorithm applied to the GOES's INR system. The algorithm developed in this paper improves pointing accuracy by 40%, and efficiently compensates the depointings of the imager aiming direction.

  13. Risk assessment of safety data link and network communication in digital safety feature control system of nuclear power plant

    International Nuclear Information System (INIS)

    Lee, Sang Hun; Son, Kwang Seop; Jung, Wondea; Kang, Hyun Gook

    2017-01-01

    Highlights: • Safety data communication risk assessment framework and quantitative scheme were proposed. • Fault-tree model of ESFAS unavailability due to safety data communication failure was developed. • Safety data link and network risk were assessed based on various ESF-CCS design specifications. • The effect of fault-tolerant algorithm reliability of safety data network on ESFAS unavailability was assessed. - Abstract: As one of the safety-critical systems in nuclear power plants (NPPs), the Engineered Safety Feature-Component Control System (ESF-CCS) employs safety data link and network communication for the transmission of safety component actuation signals from the group controllers to loop controllers to effectively accommodate various safety-critical field controllers. Since data communication failure risk in the ESF-CCS has yet to be fully quantified, the ESF-CCS employing data communication systems have not been applied in NPPs. This study therefore developed a fault tree model to assess the data link and data network failure-induced unavailability of a system function used to generate an automated control signal for accident mitigation equipment. The current aim is to provide risk information regarding data communication failure in a digital safety feature control system in consideration of interconnection between controllers and the fault-tolerant algorithm implemented in the target system. Based on the developed fault tree model, case studies were performed to quantitatively assess the unavailability of ESF-CCS signal generation due to data link and network failure and its risk effect on safety signal generation failure. This study is expected to provide insight into the risk assessment of safety-critical data communication in a digitalized NPP instrumentation and control system.

  14. Satellite fixed communications service: A forecast of potential domestic demand through the year 2000. Volume 3: Appendices

    Science.gov (United States)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1983-09-01

    Voice applications, data applications, video applications, impacted baseline forecasts, market distribution model, net long haul forecasts, trunking earth station definition and costs, trunking space segment cost, trunking entrance/exit links, trunking network costs and crossover distances with terrestrial tariffs, net addressable forecasts, capacity requirements, improving spectrum utilization, satellite system market development, and the 30/20 net accessible market are considered.

  15. Real-time Identification and Control of Satellite Signal Impairments Solution and Application of the Stratonovich Equation Part 1. Theoretical Development

    Science.gov (United States)

    Manning, Robert M.

    2016-01-01

    As satellite communications systems become both more complex and reliant with respect to their operating environment, it has become imperative to be able to identify, during real-time operation, the onset of one or more impairments to the quality of overall communications system integrity. One of the most important aspects to monitor of a satellite link operating within the Earth's atmosphere is the signal fading due to the occurrence of rain and/or phase scintillations. This, of course, must be done in the presence of the associated measurement uncertainty or potentially faulty measurement equipment such as in the Advanced Communication Technology Satellite (ACTS) experiment. In the present work, an approach originally suggested in 1991, and apparently still considered iconoclastic, will be significantly developed and applied to the satellite communications link on which the deleterious composite signal fade is the result of one or many component fade mechanisms. Through the measurement (with the attendant uncertainty or 'error' in the measurement) of such a composite fading satellite signal, it is desired to extract the level of each of the individual fading mechanisms so they can be appropriately mitigated before they impact the overall performance of the communications network. Rather than employing simple-minded deterministic filtering to the real-time fading, the present approach is built around all the models and/or descriptions used to describe the individual fade components, including their dynamic evolution. The latter is usually given by a first-order Langevin equation. This circumstance allows the description of the associated temporal transition probability densities of each of the component processes. By using this description, along with the real-time measurements of the composite fade (along with the measurement errors), one can obtain statistical estimates of the levels of each of the component fading mechanisms as well as their predicted values

  16. Interim Service ISDN Satellite (ISIS) hardware experiment development for advanced ISDN satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Service Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Development for Advanced Satellite Designs describes the development of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into Time Division Multiple Access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the RS-499 interface for satellite uplink. The same ISTA converts in the opposite direction the RS-499 to U-interface data with a simple switch setting.

  17. Interim Service ISDN Satellite (ISIS) hardware experiment design for advanced ISDN satellite design and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Design for Advanced Satellite Designs describes the design of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into time division multiple access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the V.35 interface for satellite uplink. The same ISTA converts in the opposite direction the V.35 to U-interface data with a simple switch setting.

  18. Research of real-time communication software

    Science.gov (United States)

    Li, Maotang; Guo, Jingbo; Liu, Yuzhong; Li, Jiahong

    2003-11-01

    Real-time communication has been playing an increasingly important role in our work, life and ocean monitor. With the rapid progress of computer and communication technique as well as the miniaturization of communication system, it is needed to develop the adaptable and reliable real-time communication software in the ocean monitor system. This paper involves the real-time communication software research based on the point-to-point satellite intercommunication system. The object-oriented design method is adopted, which can transmit and receive video data and audio data as well as engineering data by satellite channel. In the real-time communication software, some software modules are developed, which can realize the point-to-point satellite intercommunication in the ocean monitor system. There are three advantages for the real-time communication software. One is that the real-time communication software increases the reliability of the point-to-point satellite intercommunication system working. Second is that some optional parameters are intercalated, which greatly increases the flexibility of the system working. Third is that some hardware is substituted by the real-time communication software, which not only decrease the expense of the system and promotes the miniaturization of communication system, but also aggrandizes the agility of the system.

  19. Antennas Designed for Advanced Communications for Air Traffic Management (AC/ATM) Project

    Science.gov (United States)

    Zakrajsek, Robert J.

    2000-01-01

    The goal of the Advanced Communications for Air Traffic Management (AC/ATM) Project at the NASA Glenn Research Center at Lewis Field is to enable a communications infrastructure that provides the capacity, efficiency, and flexibility necessary to realize a mature free-flight environment. The technical thrust of the AC/ATM Project is targeted at the design, development, integration, test, and demonstration of enabling technologies for global broadband aeronautical communications. Since Ku-band facilities and equipment are readily available, one of the near-term demonstrations involves a link through a Kuband communications satellite. Two conformally mounted antennas will support the initial AC/ATM communications links. Both of these are steered electronically through monolithic microwave integrated circuit (MMIC) amplifiers and phase shifters. This link will be asymmetrical with the downlink to the aircraft (mobile vehicle) at a throughput rate of greater than 1.5 megabits per second (Mbps), whereas the throughput rate of the uplink from the aircraft will be greater than 100 kilobits per second (kbps). The data on the downlink can be narrow-band, wide-band, or a combination of both, depending on the requirements of the experiment. The AC/ATM project is purchasing a phased-array Ku-band transmitting antenna for the uplink from the test vehicle. Many Ku-band receiving antennas have been built, and one will be borrowed for a short time to perform the initial experiments at the NASA Glenn Research Center at Lewis Field. The Ku-band transmitting antenna is a 254-element MMIC phased-array antenna being built by Boeing Phantom Works. Each element can radiate 100 mW. The antenna is approximately 43-cm high by 24-cm wide by 3.3-cm thick. It can be steered beyond 60 from broadside. The beamwidth varies from 6 at broadside to 12 degrees at 60 degrees, which is typical of phased-array antennas. When the antenna is steered to 60 degrees, the beamwidth will illuminate

  20. Newspaper Uses of Satellite Technology.

    Science.gov (United States)

    Johns, David

    Replacing slower mail service, satellite transmission now gives the newspaper industry a practical and almost spontaneous method for sending all kinds of information to any newspaper across the country. Unlike other communication industries, newspapers did not begin to make widespread use of satellite technology until 1979, when government…

  1. 47 CFR 25.276 - Points of communication.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Points of communication. 25.276 Section 25.276 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS... International Telecommunications Satellite Organization and Inmarsat, are subject to the policies set forth in...

  2. Performance Analysis of TCP Enhancements in Satellite Data Networks

    Science.gov (United States)

    Broyles, Ren H.

    1999-01-01

    This research examines two proposed enhancements to the well-known Transport Control Protocol (TCP) in the presence of noisy communication links. The Multiple Pipes protocol is an application-level adaptation of the standard TCP protocol, where several TCP links cooperate to transfer data. The Space Communication Protocol Standard - Transport Protocol (SCPS-TP) modifies TCP to optimize performance in a satellite environment. While SCPS-TP has inherent advantages that allow it to deliver data more rapidly than Multiple Pipes, the protocol, when optimized for operation in a high-error environment, is not compatible with legacy TCP systems, and requires changes to the TCP specification. This investigation determines the level of improvement offered by SCPS-TP's Corruption Mode, which will help determine if migration to the protocol is appropriate in different environments. As the percentage of corrupted packets approaches 5 %, Multiple Pipes can take over five times longer than SCPS-TP to deliver data. At high error rates, SCPS-TP's advantage is primarily caused by Multiple Pipes' use of congestion control algorithms. The lack of congestion control, however, limits the systems in which SCPS-TP can be effectively used.

  3. Development of a PC-based ground support system for a small satellite instrument

    Science.gov (United States)

    Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.

    1993-11-01

    The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.

  4. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios.

    Science.gov (United States)

    Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao

    2015-09-03

    A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation.

  5. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios

    Science.gov (United States)

    Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao

    2015-01-01

    A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation. PMID:26404292

  6. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios

    Directory of Open Access Journals (Sweden)

    Feihong Dong

    2015-09-01

    Full Text Available A typical application scenario of remote wireless sensor networks (WSNs is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation.

  7. Geopolitics of Baltic Sea Communication- Linking the Periphenes with the Centre

    Directory of Open Access Journals (Sweden)

    Bertil Haggman

    2012-10-01

    Full Text Available An attempt is made in this essay to explain the importanceof a new link around the Baltic Sea being constructed to thecore of Europe with a possible net of the Superspeed MaglevSystem Transrapid with a speed of 300 miles/hr.The geopolitics of Baltic Sea communication is to a greatextent based on the peripherial position of Europe's northeastemcountries. A Transrapid net around the Baltic Sea wouldlink these countries to the core of Europe. An imp01tant ingredientin the link are bridges and tunnels. The Oresund FixedLink with its fUnnel and bridge will be the first fiXed link betweenDenmark and the Scandinavian peninsula in hist01y andfully completed in the summer of 2000. A railway tunnel betweenElsinore (Denmark and Helsingborg (Sweden isneeded in the beginning of the 21st century as an additionallink. Other submarine tunnel projects of geopolitical importanceare the Fehmam Belt and Falster Belt [!X.ed links betweenGe1many and Scandinavia as well as Nontiilje (Sweden -Mariehamn (A land Islands -Abo/Turkku (Finland and Helsinki(Finland - Tallinn (Estonia tunnels.lmp01tant new possibilities exist for extending tunnel construction.The Symonds Group (an important London constructionand planning company is working on prefab submalinetunnels. These are expected to be used across the St.George Channel between Dublin and Holyhead (about 90km. The tunnel technique has been used for the Oresund FixedLink and the Danish tunnel section of the link was completedin March 1999. Sweden, Finland, Poland, Estonia, Latvia,Lithuania and n01thwestem Russia would receive a structuralboost with substantial consequences with the new TransrapidNet and its submarine and bridge links.

  8. Retrieving the polarization information for satellite-to-ground light communication

    International Nuclear Information System (INIS)

    Tao, Qiangqiang; Guo, Zhongyi; Xu, Qiang; Gao, Jun; Jiao, Weiyan; Wang, Xinshun; Qu, Shiliang

    2015-01-01

    In this paper, we have investigated the reconstruction of the polarization states (degree of polarization (DoP) and angle of polarization (AoP)) of the incident light which passed through a 10 km atmospheric medium between the satellite and the Earth. Here, we proposed a more practical atmospheric model in which the 10 km atmospheric medium is divided into ten layers to be appropriate for the Monte Carlo simulation algorithm. Based on this model, the polarization retrieve (PR) method can be used for reconstructing the initial polarization information effectively, and the simulated results demonstrate that the mean errors of the retrieved DoP and AoP are very close to zero. Moreover, the results also show that although the atmospheric medium system is fixed, the Mueller matrices for the downlink and uplink are completely different, which shows that the light transmissions in the two links are irreversible in the layered atmospheric medium system. (paper)

  9. Technique for Geolocation of EMI Emitters by O3B Satellites

    Science.gov (United States)

    2016-06-01

    Communication Systems: An Introduction to Signals and Noise in Electrical Communications , 5th edition (New York: McGraw -Hill, 2011), 4. 6 system to...the only one caused by humans , that will be our focus—the others can be thought of as the cost of doing business in satellite communications and can...SATELLITE COMMUNICATIONS OVERVIEW ...............................2  B.  EMI AND JAMMING OVERVIEW .......................................................5

  10. Communication links for fusion reactor maintenance operations

    International Nuclear Information System (INIS)

    Van Uffelen, M.

    2005-01-01

    Different architectures are envisaged for data transmission with fibre optic links in a radiation environment, as proposed in literature for both space and high energy physics applications. Their needs and constraints differ from those encountered for maintenance tasks in the future ITER environment, not only in terms of temperature and radiation levels, but also with respect to transmission speed requirements. Our approach attempts to limit the use of radiation-sensitive electronics for transmission of both digital and/or analogue data to the control room, using glass fibres as transport medium. We therefore assessed the radiation behaviour of a cost-effective fibre optic transmitter at 850 nm, consisting of a PWM (pulse width modulator), a radiation tolerant current driver (previously developed at SCK-CEN) and a VCSEL (Vertical-Cavity Surface Emitting Laser assembly, up to 10 MGy at 60 degrees Celsius. The PWM enables to transform an analogue sensor signal into a pseudo numerical signal, with a pulse width proportional to the incoming signal. The main objective of this task is to contribute to the major design of the maintenance equipment and strategy needed for the remote replacement of the divertor system in the future ITER fusion reactor, with particular attention to the implications of radiation hardening rules and recommendations. Next to the radiation assessment studies of remote handling tools, including actuators and sensors, we also develop radiation tolerant communication links with multiplexing capabilities

  11. Solar effects on communications

    International Nuclear Information System (INIS)

    Cleveland, F.; Malcolm, W.; Nordell, D.E.; Zirker, J.

    1991-01-01

    When people involved in the power industry think of Solar Magnetic Disturbances (SMD), they normally consider the potential for disrupting power transmission which results form solar-induced disturbances to the earth's magnetic field known as geomagnetic storms. However, in addition to the disruption of power transmission, solar phenomena can interfere with utility communication systems. Utilities use many different types of communication media, some of which can be affected by various solar phenomena. These include wire-based facilities (metallic cables and power line carrier), radio systems (HF, VHF, UHF mobile radio, microwave networks, and satellite transmissions), and fiber optic systems. This paper reports that the solar flares and other solar phenomena can affect these media through different mechanisms: Radio communications can be disturbed by flare-induced changes in the ionispheric layer of the atmosphere; Cable communications can be disrupted by the flare-induced changes in the magnetosphere which surrounds the earth. These changes, in turn, induce currents in the power equipment that energizes long communications cables; Satellite communications can be disrupted by the flare-induced perturbations of satellite orbits and equipment

  12. The performance evaluation of a new neural network based traffic management scheme for a satellite communication network

    Science.gov (United States)

    Ansari, Nirwan; Liu, Dequan

    1991-01-01

    A neural-network-based traffic management scheme for a satellite communication network is described. The scheme consists of two levels of management. The front end of the scheme is a derivation of Kohonen's self-organization model to configure maps for the satellite communication network dynamically. The model consists of three stages. The first stage is the pattern recognition task, in which an exemplar map that best meets the current network requirements is selected. The second stage is the analysis of the discrepancy between the chosen exemplar map and the state of the network, and the adaptive modification of the chosen exemplar map to conform closely to the network requirement (input data pattern) by means of Kohonen's self-organization. On the basis of certain performance criteria, whether a new map is generated to replace the original chosen map is decided in the third stage. A state-dependent routing algorithm, which arranges the incoming call to some proper path, is used to make the network more efficient and to lower the call block rate. Simulation results demonstrate that the scheme, which combines self-organization and the state-dependent routing mechanism, provides better performance in terms of call block rate than schemes that only have either the self-organization mechanism or the routing mechanism.

  13. Preliminary Experiments for the Assessment of V/W-band Links for Space-Earth Communications

    Science.gov (United States)

    Nessel, James A.; Acosta, Roberto J.; Miranda, Felix A.

    2013-01-01

    Since September 2012, NASA Glenn Research Center has deployed a microwave profiling radiometer at White Sands, NM, to estimate atmospheric propagation effects on communications links in the V and W bands (71-86GHz). Estimates of attenuation statistics in the millimeter wave due to gaseous and cloud components of the atmosphere show good agreement with current ITU-R models, but fail to predict link performance in the presence of moderate to heavy rain rates, due to the inherent limitations of passive radiometry. Herein, we discuss the preliminary results of these measurements and describe a design for a terrestrial link experiment to validate/refine existing rain attenuation models in the V/Wbands.

  14. Proceedings of the Twenty-First NASA Propagation Experiments Meeting (NAPEX XXI) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nasser (Editor)

    1997-01-01

    The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry. NAPEX XXI took place in El Segundo, California on June 11-12, 1997 and consisted of three sessions. Session 1, entitled "ACTS Propagation Study Results & Outcome " covered the results of 20 station-years of Ka-band radio-wave propagation experiments. Session 11, 'Ka-band Propagation Studies and Models,' provided the latest developments in modeling, and analysis of experimental results about radio wave propagation phenomena for design of Ka-band satellite communications systems. Session 111, 'Propagation Research Topics,' covered a diverse range of propagation topics of interest to the space community, including overviews of handbooks and databases on radio wave propagation. The ACTS Propagation Studies miniworkshop was held on June 13, 1997 and consisted of a technical session in the morning and a plenary session in the afternoon. The morning session covered updates on the status of the ACTS Project & Propagation Program, engineering support for ACTS Propagation Terminals, and the Data Center. The plenary session made specific recommendations for the future direction of the program.

  15. Wireless Device-to-Device (D2D) Links for Machine-to-Machine (M2M) Communication

    DEFF Research Database (Denmark)

    Pratas, Nuno; Popovski, Petar

    2017-01-01

    Device-to-Device (D2D) communications will play an important role in the fifth generation (5G) cellular networks, by increasing the spatial reuse of spectrum resources and enabling communication links with low latency. D2D is composed of two fundamental building blocks: proximity discovery...... and direct communication between nearby users. Another emerging trend in wireless cellular systems is Machine-to-Machine (M2M) communications, often characterized by fixed, low transmission rates. In this chapter we motivate the synergy between D2D and M2M, and present technologies that enable M2M-via-D2D...

  16. The large satellite program of ESA and its relevance for broadcast missions

    Science.gov (United States)

    Fromm, H.-H.; Herdan, B. L.

    1981-03-01

    In an investigation of the market prospects and payload requirements of future communications satellites, it was concluded that during the next 15 years many space missions will demand larger satellite platforms than those currently available. These platforms will be needed in connection with direct-broadcasting satellites, satellites required to enhance capacities in the case of traditional services, and satellites employed to introduce new types of satellite-based communications operating with small terminals. Most of the larger satellites would require the Ariane III capability, corresponding to about 1400 kg satellite mass in geostationary orbit. Attention is given to L-SAT platform capabilities and broadcast payload requirements, taking into account a European direct-broadcast satellite and Canadian direct-broadcast missions.

  17. Linking satellite ICT application businesses with regional innovation centers and investors: The EC “INVESaT” project

    Science.gov (United States)

    Ghiron, Florence; Kreisel, Joerg

    2009-09-01

    In the sector of information and communication technologies (ICT), whether in the USA, Japan, or Europe, innovative services are already in use, based on large-scale space-based infrastructure investments. Such systems are e.g. earth observation, telecommunication, and navigation, timing and positioning satellites. In combination with the advent of powerful handheld terminals and the demand for ubiquitous services, it is expected that info-mobility applications will reveal new sources of business in the years ahead, using in particular the Earth observation and future GALILEO systems to position any feature or user anywhere in the world within a few meter accuracy. Hence, satellite-based capabilities provide new and unique opportunities for economic stimulation and development. Many incubators and innovation centers in Europe have already grasped this growth potential. Yet, for many European players business growth appears below expectations compared to developments in the USA following the launch of GPS (Global Positioning System). Europe still has to overcome intrinsic barriers to seize these new business opportunities faster and with more visible economic impact by leveraging on SMEs and regional innovation centers to expand the commercial utilization of satellite capabilities and mobilization of appropriate financial resources. The paper elaborates on the INVESat project (funded by the EuropeInnova—European Commission), which aims at bridging the gap between Innovative enterprises and financial In VEstors in the emerging markets of SaTellite applications. The critical success factors required to stimulate and support more efficiently investments in this bread of innovative services will also be highlighted.

  18. Lightning-generated whistler waves observed by probes on the Communication/Navigation Outage Forecast System satellite at low latitudes

    Science.gov (United States)

    Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.

    2011-06-01

    Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning-related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401-867 km). Lightning-generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.

  19. Geostationary Communications Satellites as Sensors for the Space Weather Environment: Telemetry Event Identification Algorithms

    Science.gov (United States)

    Carlton, A.; Cahoy, K.

    2015-12-01

    Reliability of geostationary communication satellites (GEO ComSats) is critical to many industries worldwide. The space radiation environment poses a significant threat and manufacturers and operators expend considerable effort to maintain reliability for users. Knowledge of the space radiation environment at the orbital location of a satellite is of critical importance for diagnosing and resolving issues resulting from space weather, for optimizing cost and reliability, and for space situational awareness. For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to acquire and analyze archived data from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms, collectively called SEER (System Event Evaluation Routine), to statistically analyze power amplifier current and temperature telemetry by identifying deviations from nominal operations or other events and trends of interest. This paper focuses on our work in progress, which currently includes methods for detection of jumps ("spikes", outliers) and step changes (changes in the local mean) in the telemetry. We then examine available space weather data from the NOAA GOES and the NOAA-computed Kp index and sunspot numbers to see what role, if any, it might have played. By combining the results of the algorithm for many components, the spacecraft can be used as a "sensor" for the space radiation environment. Similar events occurring at one time across many component telemetry streams may be indicative of a space radiation event or system-wide health and safety concern. Using SEER on representative datasets of telemetry from Inmarsat and Intelsat, we find events that occur across all or many of

  20. Surface Map Traffic Intent Displays and Net-Centric Data-link Communications for NextGen

    Science.gov (United States)

    Shelton, Kevin J.; Prinzel, Lawrence J., III; Jones, Denise R.; Allamandola, Angela S.; Arthur, Jarvis J., III; Bailey, Randall E.

    2009-01-01

    By 2025, U.S. air traffic is predicted to increase three fold and may strain the current air traffic management system, which may not be able to accommodate this growth. In response to this challenge, a revolutionary new concept has been proposed for U.S. aviation operations, termed the Next Generation Air Transportation System or "NextGen". Many key capabilities are being identified to enable NextGen, including the use of data-link communications. Because NextGen represents a radically different approach to air traffic management and requires a dramatic shift in the tasks, roles, and responsibilities for the flight deck, there are numerous research issues and challenges that must be overcome to ensure a safe, sustainable air transportation system. Flight deck display and crew-vehicle interaction concepts are being developed that proactively investigate and overcome potential technology and safety barriers that might otherwise constrain the full realization of NextGen. The paper describes simulation research, conducted at National Aeronautics and Space Administration (NASA) Langley Research Center, examining data-link communications and traffic intent data during envisioned four-dimensional trajectory (4DT)-based and equivalent visual (EV) surface operations. Overall, the results suggest that controller pilot data-link communications (CPDLC) with the use of mandatory pilot read-back of all clearances significantly enhanced situation awareness for 4DT and EV surface operations. The depiction of graphical traffic state and intent information on the surface map display further enhanced off-nominal detection and pilot qualitative reports of safety and awareness.

  1. A Framework for Developing Artificial Intelligence for Autonomous Satellite Operations

    Science.gov (United States)

    Anderson, Jason L.; Kurfess, Franz J.; Puig-Suari, Jordi

    2009-09-01

    In the world of educational satellites, student teams manually conduct operations daily. Educational satellites typically travel in a Low Earth Orbit allowing communication for approximately thirty minutes each day. Manual operations during these times is manageable for student teams as the required manpower is minimal. The international Global Educational Network for Satellite Operations (GENSO), however, promises satellite contact upwards of sixteen hours per day by connecting earth stations globally through the Internet. This large increase in satellite communication time makes manual student operations unreasonable and alternatives must be explored. This paper introduces a framework to conduct autonomous satellite operations using different AI methodologies. This paper additionally demonstrates the framework's usability by introducing a sample rule-based implementation for Cal Poly's CubeSat, CP3.

  2. On the Impacts and Benefits of Implementing Full-Duplex Communications Links in an Underwater Acoustic Network

    National Research Council Canada - National Science Library

    Gibson, J; Larraza, A; Rice, J; Smith, K; Xie, G

    2002-01-01

    .... These networks may provide command and control for autonomous underwater vehicles, forward reporting by arrays of sensor grids, ad hoc communications links to covert forces, or positive control...

  3. MARAD maritime experiments using the NASA ATS-6 satellite

    Science.gov (United States)

    Brandel, D. L.; Kaminsky, Y.

    1975-01-01

    The objectives of the MARAD maritime experiments (conducted in the L-band fan beam mode) using the ATS-6 satellite are detailed. They include the following: (1) to evaluate the economic benefits of fleet operators through the use of satellite communications, (2) to evaluate performance criteria for shipboard terminal equipment needed to establish various grades of fleet operations services using commercial satellite systems, (3) to determine the effects of signal propagation, ship radio frequency noise, and ship antenna pointing on the maritime communications and navigation channel, and (4) to evaluate various modems for the transmission and reception of voice, data and position location signals via satellite systems.

  4. Satellite Antenna Pointing Procedure Driven by the Ground Service Quality

    Science.gov (United States)

    Yasui, Yoshitsugu

    A satellite antenna alignment technique is proposed to ensure terrestrial service quality for users. The antenna bore sight orientation is calculated directly from measured data acquired from general ground receivers, which intercept the communication radio waves from any position on the earth's surface. The method coordinates the satellite pointing parameters with signal strength at the receivers while considering location-specific geographical and antenna radiation characteristics and control accuracy. The theoretical development and its validity are examined in the course of equation derivation. Actual measured data of an existing satellite at the maneuver was applied to the method, and the capability was demonstrated and verified. With the wide diversity of satellite usage, such as for mobile communications, temporary network deployment or post-launch positioning accommodations, the proposed method provides a direct evaluation of satellite communication performance at the service level, in conjunction with using high frequency spot beam antennas, which are highly susceptible to pointing gain. This can facilitate swift and flexible satellite service planning and deployment for operators.

  5. 47 CFR 25.401 - Satellite DARS applications subject to competitive bidding.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Satellite DARS applications subject to competitive bidding. 25.401 Section 25.401 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Competitive Bidding Procedures for DARS § 25.401...

  6. 47 CFR 25.140 - Qualifications of fixed-satellite space station licensees.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Qualifications of fixed-satellite space station licensees. 25.140 Section 25.140 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.140 Qualifications...

  7. Optical Phase Recovery and Locking in a PPM Laser Communication Link

    Science.gov (United States)

    Aveline, David C.; Yu, Nan; Farr, William H.

    2012-01-01

    maintains the phase lock between the two laser sources. The novelty and key significance of this work is that the carrier phase information can be harnessed within an optical communication link based on PPM-PCD architecture. This technology development could lead to quantum-limited efficient performance within the communication link itself, as well as enable high-resolution optical tracking capabilities for planetary science and spacecraft navigation.

  8. Data-linked pilot reply time on controller workload and communication in a simulated terminal option

    Science.gov (United States)

    2001-05-01

    This report describes an analysis of air traffic control communication and workload in a simulated terminal radar approach : control environment. The objective of this study was to investigate how pilot-to-controller data-link acknowledgment time : m...

  9. Satellite Demonstration: The Videodisc Technology.

    Science.gov (United States)

    Propp, George; And Others

    1979-01-01

    Originally part of a symposium on educational media for the deaf, the paper describes a satellite demonstration of video disc materials. It is explained that a panel of deaf individuals in Washington, D.C. and another in Nebraska came into direct two-way communication for the first time, and video disc materials were broadcast via the satellite.…

  10. Live Satellite Communications... An Exciting Teaching Aid

    Science.gov (United States)

    Journal of Aerospace Education, 1976

    1976-01-01

    Describes ways that orbiting satellites carrying amateur radios can be used in the classroom at various grade levels to supplement physics, mathematics, electronics, and social science curricula. (MLH)

  11. Quantum communication with coherent states of light

    Science.gov (United States)

    Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd

    2017-06-01

    Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links. This article is part of the themed issue 'Quantum technology for the 21st century'.

  12. Propagation Measurement on Earth-Sky Signal Effects for High Speed Train Satellite Channel in Tropical Region at Ku-Band

    Directory of Open Access Journals (Sweden)

    Abdulmajeed H. J. Al-Jumaily

    2015-01-01

    Full Text Available Recent advances in satellite communication technologies in the tropical regions have led to significant increase in the demand for services and applications that require high channel quality for mobile satellite terminals. Determination and quantification of these requirements are important to optimize service quality, particularly in the Malaysian region. Moreover, the tests on current satellite propagation models were carried out at temperate regions whose environmental characteristics are much different from those in Malaysia. This difference renders these propagation models inapplicable and irrelevant to tropical regions in general. This paper presents the link characteristics observations and performance analysis with propagation measurements done in tropical region to provide an accurate database regarding rain and power arches supply (PAs attenuations in the tropics for mobile scenarios. Hence, an extension for improving the performance assessment and analysis of satellite/transmission has been achieved. The Malaysia propagation measurement for mobile scenario (Malaysia-PMMS enables first-hand coarse estimation and attenuation analysis, because the attenuation resulting from rain and PAs becomes easily amenable for measurement. Parallel to that, the measured attenuation has been compared with that of the simulated output at noise floor level. The underlying analytical tool is validated by measurements specific at tropical region, for dynamic model of mobile satellite links operating at higher than 10 GHz.

  13. 80 Gbit/s 16-QAM Multicarrier THz Wireless Communication Link in the 400 GHz Band

    DEFF Research Database (Denmark)

    Jia, Shi; Yu, Xianbin; Hu, Hao

    2016-01-01

    We experimentally demonstrate a high-speed multicarrier THz wireless communication system operating in the 400 GHz band. The use of spectrally efficient 16-QAM modulation and broadband THz transceivers enable link data rates up to 80 Gbit/s....

  14. Fiber-coupling efficiency of Gaussian-Schell model beams through an ocean to fiber optical communication link

    Science.gov (United States)

    Hu, Beibei; Shi, Haifeng; Zhang, Yixin

    2018-06-01

    We theoretically study the fiber-coupling efficiency of Gaussian-Schell model beams propagating through oceanic turbulence. The expression of the fiber-coupling efficiency is derived based on the spatial power spectrum of oceanic turbulence and the cross-spectral density function. Our work shows that the salinity fluctuation has a greater impact on the fiber-coupling efficiency than temperature fluctuation does. We can select longer λ in the "ocean window" and higher spatial coherence of light source to improve the fiber-coupling efficiency of the communication link. We also can achieve the maximum fiber-coupling efficiency by choosing design parameter according specific oceanic turbulence condition. Our results are able to help the design of optical communication link for oceanic turbulence to fiber sensor.

  15. An integrated development framework for rapid development of platform-independent and reusable satellite on-board software

    Science.gov (United States)

    Ziemke, Claas; Kuwahara, Toshinori; Kossev, Ivan

    2011-09-01

    Even in the field of small satellites, the on-board data handling subsystem has become complex and powerful. With the introduction of powerful CPUs and the availability of considerable amounts of memory on-board a small satellite it has become possible to utilize the flexibility and power of contemporary platform-independent real-time operating systems. Especially the non-commercial sector such like university institutes and community projects such as AMSAT or SSETI are characterized by the inherent lack of financial as well as manpower resources. The opportunity to utilize such real-time operating systems will contribute significantly to achieve a successful mission. Nevertheless the on-board software of a satellite is much more than just an operating system. It has to fulfill a multitude of functional requirements such as: Telecommand interpretation and execution, execution of control loops, generation of telemetry data and frames, failure detection isolation and recovery, the communication with peripherals and so on. Most of the aforementioned tasks are of generic nature and have to be conducted on any satellite with only minor modifications. A general set of functional requirements as well as a protocol for communication is defined in the SA ECSS-E-70-41A standard "Telemetry and telecommand packet utilization". This standard not only defines the communication protocol of the satellite-ground link but also defines a set of so called services which have to be available on-board of every compliant satellite and which are of generic nature. In this paper, a platform-independent and reusable framework is described which is implementing not only the ECSS-E-70-41A standard but also functionalities for interprocess communication, scheduling and a multitude of tasks commonly performed on-board of a satellite. By making use of the capabilities of the high-level programming language C/C++, the powerful open source library BOOST, the real-time operating system RTEMS and

  16. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M

    2012-01-01

    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  17. Gaussian entanglement distribution via satellite

    Science.gov (United States)

    Hosseinidehaj, Nedasadat; Malaney, Robert

    2015-02-01

    In this work we analyze three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme, the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the tradeoff between space-based engineering complexity and the rate of ground-station entanglement generation.

  18. Cross-correlation interference effects in multiaccess optical communications

    Science.gov (United States)

    Peterson, G. D.; Gardner, C. S.

    1981-03-01

    An analysis is presented of the cross correlation between user codes in an optical code-division multiple-access communication system. The system model is a multiaccess satellite repeater, where the uplink and downlink channels are direct-detection optical-polarization modulation links. The error probability is obtained in terms of the cross correlation between the intended and interfering user codes. It is demonstrated that the system error rate can be minimized by the use of code sequences in which the normalized second moment of the cross correlation between codes is small.

  19. Agent control of cooperating satellites

    OpenAIRE

    Lincoln, N.K.; Veres, S.M.; Dennis, Louise; Fisher, Michael; Lisitsa, Alexei

    2011-01-01

    A novel, hybrid, agent architecture for (small)swarms of satellites has been developed. The software architecture for each satellite comprises ahigh-level rational agent linked to a low-level control system. The rational agent forms dynamicgoals, decides how to tackle them and passes theactual implementation of these plans to the control layer. The rational agent also has access to aMatLabmodel of the satellite dynamics, thus allowing it to carry out selective hypothetical reasoningabout pote...

  20. Europe at the crossroads: The future of its satellite communications industry

    Science.gov (United States)

    Bartholome, Pierre; Battrick, B.

    1993-11-01

    Ways of adapting the European Space Agency's role to the new industrial environment of satellite communications, which is characterized by the disappearance of traditional monopolies and the introduction of competition, are presented. As far as ESA is concerned, it is found that a general consensus exists to recommend that the agency should take a much wider view of its role as a research and development (R&D) organization. It should no longer restrict its field of activity to space technology only, but should take a more global approach. More emphasis should be placed on the development of complete communications systems and of commercial applications. European industry indeed feels very strongly that it is not getting from ESA the support it needs to match the performance of its foreign competitors on the world markets. It can only succeed commercially in the fierce competition with the U.S. and Japan if a substantial R&D program is defined and funded at European level, as required by the magnitude of the financial effort necessary. It is concluded that anything the agency untertakes in the future to redress the situation would produce much greater dividends if it were part of a coherent plan where all the European partners play their role in a cooperative spirit. It is recommended that the European Commission should, as a matter of urgency, take steps to institute a concertation mechanism involving all major players with a view to defining and developing a coherent strategy for Europe.