WorldWideScience

Sample records for satellite cloudsat captured

  1. Evaluation of clouds and precipitation in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data

    OpenAIRE

    Nam, Christine C. W.; Quaas, Johannes

    2015-01-01

    Observations from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and CloudSat satellites are used to evaluate clouds and precipitation in the ECHAM5 general circulation model. Active lidar and radar instruments on board CALIPSO and CloudSat allow the vertical distribution of clouds and their optical properties to be studied on a global scale. To evaluate the clouds modeled by ECHAM5 with CALIPSO and CloudSat, the lidar and radar satellite simulators of the Cloud ...

  2. CloudSat Profiles Tropical Storm Andrea

    Science.gov (United States)

    2007-01-01

    CloudSat's Cloud Profiling Radar captured a profile across Tropical Storm Andrea on Wednesday, May 9, 2007, near the South Carolina/Georgia/Florida Atlantic coast. The upper image shows an infrared view of Tropical Storm Andrea from the Moderate Resolution Imaging Spectroradiometer instrument on NASA's Aqua satellite, with CloudSat's ground track shown as a red line. The lower image is the vertical cross section of radar reflectivity along this path, where the colors indicate the intensity of the reflected radar energy. CloudSat orbits approximately one minute behind Aqua in a satellite formation known as the A-Train.

  3. Dust aerosol impact on the retrieval of cloud top height from satellite observations of CALIPSO, CloudSat and MODIS

    Science.gov (United States)

    Wang, Wencai; Sheng, Lifang; Dong, Xu; Qu, Wenjun; Sun, Jilin; Jin, Hongchun; Logan, Timothy

    2017-02-01

    Dust aerosol effect on the retrievals of dusty cloud top height (DCTH) are analyzed over Northwest China using cloud products from MODerate Resolution Imaging Spectroradiometer (MODIS) on Aqua, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat for the Spring season of March-May over the years 2007-2011. An excellent agreement is found between CloudSat and CALIPSO derived DCTHs for all cloud types, suggesting that the effect of dust aerosols plays a small role in DCTHs determination for lidar and radar measurements. However, the presence of dust aerosols greatly affects the retrievals of DCTHs for MODIS compared with pure clouds and the active sensors derived results. The differences of DCTHs retrieving from CloudSat and MODIS range from -2.30 to 6.8 km. Likewise, the differences of DCTHs retrieving from CALIPSO and MODIS range from -2.66 to 6.78 km. In addition, the results show that the differences in DCTHs for active and passive sensors are dependent on cloud type. On the whole, dust aerosols have the largest effect on cloud top heights (CTH) retrieved of nimbostratus (Ns), followed by altocumulus (Ac) and altostratus (As), the last is cirrus (Ci) over Northwest China. Our results also indicate that the accuracy of MODIS-derived retrievals reduces accompanied with a decrease of height.

  4. Validation of Satellite-Based Objective Overshooting Cloud-Top Detection Methods Using CloudSat Cloud Profiling Radar Observations

    Science.gov (United States)

    Bedka, Kristopher M.; Dworak, Richard; Brunner, Jason; Feltz, Wayne

    2012-01-01

    Two satellite infrared-based overshooting convective cloud-top (OT) detection methods have recently been described in the literature: 1) the 11-mm infrared window channel texture (IRW texture) method, which uses IRW channel brightness temperature (BT) spatial gradients and thresholds, and 2) the water vapor minus IRW BT difference (WV-IRW BTD). While both methods show good performance in published case study examples, it is important to quantitatively validate these methods relative to overshooting top events across the globe. Unfortunately, no overshooting top database currently exists that could be used in such study. This study examines National Aeronautics and Space Administration CloudSat Cloud Profiling Radar data to develop an OT detection validation database that is used to evaluate the IRW-texture and WV-IRW BTD OT detection methods. CloudSat data were manually examined over a 1.5-yr period to identify cases in which the cloud top penetrates above the tropopause height defined by a numerical weather prediction model and the surrounding cirrus anvil cloud top, producing 111 confirmed overshooting top events. When applied to Moderate Resolution Imaging Spectroradiometer (MODIS)-based Geostationary Operational Environmental Satellite-R Series (GOES-R) Advanced Baseline Imager proxy data, the IRW-texture (WV-IRW BTD) method offered a 76% (96%) probability of OT detection (POD) and 16% (81%) false-alarm ratio. Case study examples show that WV-IRW BTD.0 K identifies much of the deep convective cloud top, while the IRW-texture method focuses only on regions with a spatial scale near that of commonly observed OTs. The POD decreases by 20% when IRW-texture is applied to current geostationary imager data, highlighting the importance of imager spatial resolution for observing and detecting OT regions.

  5. Capture of Irregular Satellites at Jupiter

    CERN Document Server

    Nesvorny, D; Deienno, R

    2014-01-01

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early Solar System instability when encounters between the outer planets occurred (Nesvorny, Vokrouhlicky & Morbidelli 2007, AJ 133; hereafter NVM07). NVM07 already showed that the irregular satellites of Saturn, Uranus and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary d...

  6. Capture of irregular satellites at Jupiter

    Energy Technology Data Exchange (ETDEWEB)

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio [Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2014-03-20

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10{sup –8}. This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.

  7. Irregular satellite capture during planetary resonance passage

    Science.gov (United States)

    Ćuk, Matija; Gladman, Brett J.

    2006-08-01

    The passage of Jupiter and Saturn through mutual 1:2 mean-motion resonance has recently been put forward as explanation for their relatively high eccentricities [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461] and the origin of Jupiter's Trojans [Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465]. Additional constraints on this event based on other small-body populations would be highly desirable. Since some outer satellite orbits are known to be strongly affected by the near-resonance of Jupiter and Saturn ("the Great Inequality"; Ćuk, M., Burns, J.A., 2004b. Astron. J. 128, 2518-2541), the irregular satellites are natural candidates for such a connection. In order to explore this scenario, we have integrated 9200 test particles around both Jupiter and Saturn while they went through a resonance-crossing event similar to that described by Tsiganis et al. [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461]. The test particles were positioned on a grid in semimajor axes and inclinations, while their initial pericenters were put at just 0.01 AU from their parent planets. The goal of the experiment was to find out if short-lived bodies, spiraling into the planet due to gas drag (or alternatively on orbits crossing those of the regular satellites), could have their pericenters raised by the resonant perturbations. We found that about 3% of the particles had their pericenters raised above 0.03 AU (i.e. beyond Iapetus) at Saturn, but the same happened for only 0.1% of the particles at Jupiter. The distribution of surviving particles at Saturn has strong similarities to that of the known irregular satellites. If saturnian irregular satellites had their origin during the 1:2 resonance crossing, they present an excellent probe into the early Solar System's evolution. We also explore the applicability of this mechanism for Uranus, and find that only some of the uranian

  8. Identification of precipitation onset based on Cloudsat observations

    Science.gov (United States)

    Wang, Yu; Chen, Yujue; Fu, Yunfei; Liu, Guosheng

    2017-02-01

    Observations of cloud vertical structure by Cloud Profiling Radar on CloudSat satellite provide a unique opportunity to globally identify the onset of precipitation. In this study, based on a conceptual model for an adiabatic cloud, a new method to determine the onset of precipitation in marine warm clouds is developed. The new method uses the slope of radar reflectivities near the cloud top, which gradually reverses its signs as drizzle occurs. By analyzing multiyear CloudSat data, it is found that globally the radar reflectivity threshold for precipitation onset varies from -18 to -13 dBZ with an average value of -16 dBZ. The corresponding liquid water path threshold for precipitation onset is also studied by analyzing satellite microwave observations collocated with CloudSat data. Results show that the liquid water path threshold is 190 g m-2 as a global mean, varying from 150 to over 300 g m-2 depending on regions.

  9. Impact detections of temporarily captured natural satellites

    Science.gov (United States)

    Clark, David; Spurný, Pavel; Wiegert, Paul; Brown, Peter G.; Borovicha, Jiri; Tagliaferri, Ed; Shrbeny, Lukas

    2016-10-01

    Temporarily Captured Orbiters (TCOs) are Near-Earth Objects (NEOs) which make a few orbits of Earth before returning to heliocentric orbits. Only one TCO has been observed to date, 2006 RH120, captured by Earth for one year before escaping. Detailed modeling predicts capture should occur from the NEO population predominantly through the Sun-Earth L1 and L2 points, with 1% of TCOs impacting Earth and approximately 0.1% of meteoroids being TCOs. Although thousands of meteoroid orbits have been measured, none until now have conclusively exhibited TCO behaviour, largely due to difficulties in measuring initial meteoroid speed with sufficient precision. We report on a precise meteor observation of January 13, 2014 by a new generation of all-sky fireball digital camera systems operated in the Czech Republic as part of the European Fireball Network, providing the lowest natural object entry speed observed in decades long monitoring by networks world-wide. Modeling atmospheric deceleration and fragmentation yields an initial mass of ~5 kg and diameter of 15 cm, with a maximum Earth-relative velocity just over 11.0 km/s. Spectral observations prove its natural origin. Back-integration across observational uncertainties yields a 92 - 98% probability of TCO behaviour, with close lunar dynamical interaction. The capture duration varies across observational uncertainties from 48 days to 5+ years. We also report on two low-speed impacts recorded by US Government sensors, and we examine Prairie Network event PN39078 from 1965 having an extremely low entry speed of 10.9 km/s. In these cases uncertainties in measurement and origin make TCO designation uncertain.

  10. Impact detections of temporarily captured natural satellites

    CERN Document Server

    Clark, David L; Wiegert, Paul; Brown, Peter; Borovička, Jiří; Tagliaferri, Ed; Shrbený, Lukáš

    2016-01-01

    Temporarily Captured Orbiters (TCOs) are Near-Earth Objects (NEOs) which make a few orbits of Earth before returning to heliocentric orbits. Only one TCO has been observed to date, 2006 RH120, captured by Earth for one year before escaping. Detailed modeling predicts capture should occur from the NEO population predominantly through the Sun-Earth L1 and L2 points, with 1% of TCOs impacting Earth and approximately 0.1% of meteoroids being TCOs. Although thousands of meteoroid orbits have been measured, none until now have conclusively exhibited TCO behaviour, largely due to difficulties in measuring initial meteoroid speed with sufficient precision. We report on a precise meteor observation of January 13, 2014 by a new generation of all-sky fireball digital camera systems operated in the Czech Republic as part of the European Fireball Network, providing the lowest natural object entry speed observed in decades long monitoring by networks world-wide. Modeling atmospheric deceleration and fragmentation yields an...

  11. CloudSat Education Network: Partnerships for Outreach

    Science.gov (United States)

    TeBockhorst, D.

    2014-12-01

    CloudSat Education Network (CEN): Partnerships to improve the understanding of clouds in formal and informal settings. Since The CloudSat satellite launched in 2006 the Formal and Informal education programs for the mission have been focused on bringing an understanding about the mission science and the importance of clouds, climate & weather science. This has been done by creating and strengthening partnership and collaboration within scientific and educational communities around the country and the world. Because CloudSat was formally recognized as a Earth System Science Pathfinder campaign with the GLOBE program, the CEN developed a set of field protocols for student observations that augmented the GLOBE atmosphere protocols when there was a satellite overpass. This shared process between GLOBE & CloudSat resulted in the training & creation of CEN schools that are both GLOBE schools and CloudSat schools, and also produced three GLOBE partnerships that specialize in cloud science education and outreach. In addition, the CEN has developed productive relationships with other NASA missions and EPO teams. Specifically, in collaboration with the NASA CERES mission projects S'Cool and MyNASAData, we have co-presented at NSTA conferences and with schools participating in a NASA EPOESS-funded formal education project. This collaborative work has been a very real benefit to a wide variety of audiences needing to strengthen their understanding of clouds and their roles in the earth system, and we hope will serve as a model to future missions looking to involve the public in mission science.

  12. Evaluation of radar multiple scattering effects in Cloudsat configuration

    Directory of Open Access Journals (Sweden)

    A. Battaglia

    2007-01-01

    Full Text Available MonteCarlo simulations have been performed to evaluate the importance of multiple scattering effects in co- and cross-polar radar returns for 94 GHz radars in Cloudsat and airborne configurations. Thousands of vertically structured profiles derived from some different cloud resolving models are used as a test-bed. Mie theory is used to derive the single scattering properties of the atmospheric hydrometeors. Multiple scattering effects in the co-polar channel (reflectivity enhancement are particularly elusive, especially in airborne configuration. They can be quite consistent in satellite configurations, like CloudSat, especially in regions of high attenuation and in the presence of highly forward scattering layers associated with snow and graupel particles. When the cross polar returns are analysed [but note that CloudSat does not measure any linear depolarization ratio (LDR hereafter], high LDR values appear both in space and in airborne configurations. The LDR signatures are footprints of multiple scattering effects; although depolarization values as high as −5 dB can be generated including non-spherical particles in single scattering modelling, multiple scattering computations can produce values close to complete depolarization (i.e. LDR=0 dB. Our simulated LDR profiles from an air-borne platform well reproduce, in a simple frame, some experimental observations collected during the Wakasa Bay experiment. Since LDR instrumental uncertainties were not positively accounted for during that experiment, more focused campaigns with air-borne polarimetric radar are recommended. Multiple scattering effects can be important for CloudSat applications like rainfall and snowfall retrievals since single scattering based algorithms will be otherwise burdened by positive biases.

  13. NASA 3D Models: CloudSat

    Data.gov (United States)

    National Aeronautics and Space Administration — Launched in April 2006, CloudSat monitors the state of the Earth’s atmosphere and weather with a sophisticated radar system. The instrument, jointly developed with...

  14. Dynamical modelling and control of a spacecraft-mounted manipulator capturing a spinning satellite

    Science.gov (United States)

    Cyril, Xavier; Jaar, Gilbert J.; Misra, Arun K.

    1995-01-01

    Issues associated with the modelling and control of a spacecraft-mounted manipulator capturing a spinning satellite are presented. The Lagrangian formulation is used to derive the dynamical equations of the system immediately following the capture. The formulation is carried out by writing Lagrange's equations for the individual bodies, and then assembling them to obtain the constrained dynamical equations of the system. The non-working constraint forces/torques are then eliminated by using the natural orthogonal complement which produces a set of independent dynamical equations. A control algorithm whose objective is to produce a set of feedback-linearized, homogeneous and uncoupled equations is designed and implemented. The initial conditions of the state variables needed to achieve smooth berthing of the satellite are computed, and the dynamics simulation of both the controlled and uncontrolled systems is carried out. The manipulator's structural flexibility is included in the dynamics simulation model.

  15. Method and associated apparatus for capturing, servicing, and de-orbiting earth satellites using robotics

    Science.gov (United States)

    Cepollina, Frank J. (Inventor); Burns, Richard D. (Inventor); Holz, Jill M. (Inventor); Corbo, James E. (Inventor); Jedhrich, Nicholas M. (Inventor)

    2009-01-01

    This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR; and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time, as well as the ability to intervene using manual override to teleoperate the robot.In one embodiment, a vehicle used for carrying out the method of this invention comprises an ejection module, which includes the robot, and a de-orbit module. Once servicing is completed by the robot, the ejection module separates from the de-orbit module, leaving the de-orbit module attached to the satellite for de-orbiting the same at a future time. Upon separation, the ejection module can either de-orbit itself or rendezvous with another satellite for servicing. The ability to de-orbit a spacecraft further allows the opportunity to direct the landing of the spent satellite in a safe location away from population centers, such as the ocean.

  16. Adventures in Private Cloud: Balancing Cost and Capability at the CloudSat Data Processing Center

    Science.gov (United States)

    Partain, P.; Finley, S.; Fluke, J.; Haynes, J. M.; Cronk, H. Q.; Miller, S. D.

    2016-12-01

    Since the beginning of the CloudSat Mission in 2006, The CloudSat Data Processing Center (DPC) at the Cooperative Institute for Research in the Atmosphere (CIRA) has been ingesting data from the satellite and other A-Train sensors, producing data products, and distributing them to researchers around the world. The computing infrastructure was specifically designed to fulfill the requirements as specified at the beginning of what nominally was a two-year mission. The environment consisted of servers dedicated to specific processing tasks in a rigid workflow to generate the required products. To the benefit of science and with credit to the mission engineers, CloudSat has lasted well beyond its planned lifetime and is still collecting data ten years later. Over that period requirements of the data processing system have greatly expanded and opportunities for providing value-added services have presented themselves. But while demands on the system have increased, the initial design allowed for very little expansion in terms of scalability and flexibility. The design did change to include virtual machine processing nodes and distributed workflows but infrastructure management was still a time consuming task when system modification was required to run new tests or implement new processes. To address the scalability, flexibility, and manageability of the system Cloud computing methods and technologies are now being employed. The use of a public cloud like Amazon Elastic Compute Cloud or Google Compute Engine was considered but, among other issues, data transfer and storage cost becomes a problem especially when demand fluctuates as a result of reprocessing and the introduction of new products and services. Instead, the existing system was converted to an on premises private Cloud using the OpenStack computing platform and Ceph software defined storage to reap the benefits of the Cloud computing paradigm. This work details the decisions that were made, the benefits that

  17. CloudSat Reflectivity Data Visualization Inside Hurricanes

    Science.gov (United States)

    Suzuki, Shigeru; Wright, John R.; Falcon, Pedro C.

    2011-01-01

    We have presented methods to rapidly produce visualization and outreach products from CloudSat data for science and the media These methods combine data from several sources in the product generation process In general, the process can be completely automatic, producing products and notifying potential users

  18. Comparison of CloudSat and TRMM radar reflectivities

    Indian Academy of Sciences (India)

    K D Sindhu; G S Bhat

    2013-08-01

    Comparison of reflectivity data of radars onboard CloudSat and TRMM is performed using coincident overpasses. The contoured frequency by altitude diagrams (CFADs) are constructed for two cases: (a) only include collocated vertical profiles that are most likely to be raining and (b) include all collocated profiles along with cloudy pixels falling within a distance of about 50 km from the centre point of coincidence. Our analysis shows that for both cases, CloudSat underestimates the radar reflectivity by about 10 dBZ compared to that of TRMM radar below 15 km altitude. The difference is well outside the uncertainty value of ∼2 dBZ of each radar. Further, CloudSat reflectivity shows a decreasing trend while that of TRMM radar an increasing trend below 4 km height. Basically W-band radar that CloudSat flies suffers strong attenuation in precipitating clouds and its reflectivity value rarely exceeds 20 dBZ though its technical specification indicates the upper measurement limit to be 40 dBZ. TRMM radar, on the other hand, cannot measure values below 17 dBZ. In fact combining data from these two radars seems to give a better overall spatial structure of convective clouds.

  19. Intercomparison of snowfall estimates derived from the CloudSat Cloud Profiling Radar and the ground-based weather radar network over Sweden

    Directory of Open Access Journals (Sweden)

    L. Norin

    2015-12-01

    Full Text Available Accurate snowfall estimates are important for both weather and climate applications. Ground-based weather radars and space-based satellite sensors are often used as viable alternatives to rain gauges to estimate precipitation in this context. In particular, the Cloud Profiling Radar (CPR on board CloudSat is proving to be a useful tool to map snowfall globally, in part due to its high sensitivity to light precipitation and its ability to provide near-global vertical structure. CloudSat snowfall estimates play a particularly important role in the high-latitude regions as other ground-based observations become sparse and passive satellite sensors suffer from inherent limitations. In this paper, snowfall estimates from two observing systems – Swerad, the Swedish national weather radar network, and CloudSat – are compared. Swerad offers a well-calibrated data set of precipitation rates with high spatial and temporal resolution, at very high latitudes. The measurements are anchored to rain gauges and provide valuable insights into the usefulness of CloudSat CPR's snowfall estimates in the polar regions. In total, 7.2 × 105 matchups of CloudSat and Swerad observations from 2008 through 2010 were intercompared, covering all but the summer months (June to September. The intercomparison shows encouraging agreement between the two observing systems despite their different sensitivities and user applications. The best agreement is observed when CloudSat passes close to a Swerad station (46–82 km, where the observational conditions for both systems are comparable. Larger disagreements outside this range suggest that both platforms have difficulty with shallow snow but for different reasons. The correlation between Swerad and CloudSat degrades with increasing distance from the nearest Swerad station, as Swerad's sensitivity decreases as a function of distance. Swerad also tends to overshoot low-level precipitating systems further away from the station

  20. Comparison between the first Odin-SMR, Aura MLS and CloudSat retrievals of cloud ice mass in the upper tropical troposphere

    Science.gov (United States)

    Eriksson, P.; Ekström, M.; Rydberg, B.; Wu, D. L.; Austin, R. T.; Murtagh, D. P.

    2007-08-01

    Emerging microwave satellite techniques are expected to provide improved global measurements of cloud ice mass. CloudSat, Aura MLS and Odin-SMR fall into this category and first cloud ice retrievals from these instruments are compared. The comparison is made for partial ice water columns above 12 km, following the SMR retrieval product. None of the instruments shows significant false cloud detections and a consistent view of the geographical distribution of cloud ice is obtained, but differences on the absolute levels exist. CloudSat gives the lowest values, with an overall mean of 2.12 g/m2. A comparable mean for MLS is 4.30 g/m2. This relatively high mean can be an indication of overestimation of the vertical altitude of cloud ice by the MLS retrievals. The vertical response of SMR has also some uncertainty, but this does not affect the comparison between MLS and CloudSat. SMR observations are sensitive to cloud inhomogeneities inside the footprint and some compensation is required. Results in good agreement with CloudSat, both in regard of the mean and probability density functions, are obtained for a weak compensation, while a simple characterisation of the effect indicates the need for stronger compensation. The SMR mean was found to be 1.89/2.62/4.10 g/m2 for no/selected/strongest compensation, respectively. Assumptions about the particle size distribution are a consideration for all three instruments, and constitute the dominating retrieval uncertainty for CloudSat. The comparison indicates a retrieval accuracy of about 40% (3.1±1.2 g/m2). This number is already very small compared to uncertainties of cloud ice parametrisation in atmospheric models, but can be decreased further through a better understanding of main retrieval error sources.

  1. CloudSat Image of Tropical Thunderstorms Over Africa

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1 CloudSat image of a horizontal cross-section of tropical clouds and thunderstorms over east Africa. The red colors are indicative of highly reflective particles such as water (rain) or ice crystals, which the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudS at Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The brown line below the image indicates the relative elevation of the land surface. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) visible image taken at nearly the same time.

  2. Towards improved understanding of cloud influence on polar surface energy budgets using CloudSat and CALIPSO observations

    Science.gov (United States)

    Kay, J. E.; L'Ecuyer, T. S.; McIlhattan, E.; Chepfer, H.; Morrison, A.

    2015-12-01

    The spaceborne radar CloudSat and the spaceborne lidar platform Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) have provided nearly a decade of groundbreaking observations of polar cloud and precipitation processes. Specifically relevant to this AGU session, the CloudSat 2B-FLXHR-LIDAR product (hereafter, 2BFLX) is an observationally constrained radiative flux and heating rate calculation that leverages constraints from A-train observations, including CloudSat+CALIPSO. The surface radiative fluxes calculated within 2BFLX represent an important advance because unlike top-of-atmosphere (TOA) fluxes, surface radiative fluxes cannot be directly measured by satellite, yet directly impact surface heating, sea ice melt, and ice sheet mass balance. In this presentation, we will highlight the influence of supercooled liquid on polar surface radiation budgets constrained within 2BFLX data. We will also use 2BFLX data in concert with the fully attenuated signal and cloud phase information from CALIPSO as an observational constraint on polar cloud-climate feedbacks in the Community Earth System Model (CESM).

  3. Aerosol-Precipitation Responses Deduced from Ship tracks as Observed by CloudSat

    Science.gov (United States)

    Christensen, M.; Stephens, G. L.

    2011-12-01

    Ship tracks, produced from the exhaust plumes of ocean going vessels were analyzed using the 94-GHZ cloud profiling radar on the CloudSat satellite to examine the precipitation response of marine stratocumulus to changes in aerosol concentration. Ship tracks provide an ideal laboratory to study this response because the regions of clouds that are heavily contaminated by pollution can be separated from adjacent regions of clouds formed in the clean marine boundary layer. Several hundred ship tracks, coinciding with the radar and lidar observations from CloudSat and Calipso, were identified in MODIS imagery. The results demonstrate that, aerosol plumes from ships tend to decrease the spatial extent of rainfall (rain cover fraction) and intensity compared to the nearby pristine clouds. However, there were a substantial fraction of cases (30%), which exhibited increased rainfall. The sign and strength of the precipitation response was strongly tied to the mesoscale structure of the clouds. When the clouds exhibited closed cellular structures, liquid water amount, rainfall (-63%), and rain cover fraction significantly decreased (-55%). These reductions in rainfall were primarily associated with the decrease in rain cover fraction over the ship track domain. The opposite occurred in the open cell regime. Ship plumes ingested into this regime resulted in deeper, wetter, rainier, and brighter clouds, where rainfall increased by 88% primarily due to changes in intensity and to a lesser extent rain cover fraction. Microphysical changes almost always led to significantly smaller droplet radii in ship tracks, even when precipitation was increased. On the other hand, macrophysical changes (liquid water path) varied in magnitude and sign, and typically followed the direction of the precipitation response. The results presented here underline the need to consider the mesoscale structure of stratocumulus when examining the cloud dynamic response to changes in aerosol concentration.

  4. Using CloudSat and MODIS for exploring a hurricane intensity estimation technique

    Science.gov (United States)

    Alexander, R. J.

    2012-12-01

    Observing Tropical Cyclones (TC) using satellites is a common and successful endeavor. However, using satellites to accurately measure storm intensity is a more difficult and involved task. Our research aim to accurately measure hurricane intensity using only satellite obtained data. Modeling a hurricane as a balanced convectively neutral vortex, along with assumptions on the contributing factors to moist static energy, we explore techniques for estimating hurricane intensity. We used maximum sustained wind to characterize hurricane intensity. We calculated maximum sustained wind using the Wong and Emanuel expression for peak wind speed in a storm. CloudSat cloud profiling radar was used for obtaining cloud-top height and cloud composition information, and the MODIS instrument on-board Aqua was used to obtain cloud-top temperature. This technique requires eye or near eye overpass and simultaneous data collection and as a result have a limited sample size. We compare our results to the best track database and analyze the validity of our estimations.

  5. Comparison of CloudSat Cloud Liquid Water Paths in Arctic Summer Using Ground-Based Microwave Radiometer

    Institute of Scientific and Technical Information of China (English)

    LIU Shuang; Georg Heygster; ZHANG Suping

    2010-01-01

    Arctic clouds strongly influence the regional radiation balance,temperature,melting of sea ice,and freezing of sea water.Despite their importance,there is a lack of systematic and reliable observations of Arctic clouds.The CloudSat satellite launched in 2006 with a 94 GHz Cloud Profiling Radar(CPR)may contribute to close this gap.Here we compare one of the key parameters,the cloud liquid water path(LWP)retrieved from CloudSat observations and from microwave radiometer(MWR)data taken during the ASCOS(Arctic Summer Cloud Ocean Study)cruise of the research vessel Oden from August to September 2008.Over the 45 days of the ASCOS cruise,collocations closer than 3 h and 100 km were found in only 9 d,and collocations closer than 1 h and 30 km in only 2 d.The poor correlations in the scatter plots of the two LWP retrievals can be explained by the patchiness of the cloud cover in these two days(August 5th and September 7th),as confirmed by coincident MODIS(Moderate-resolution Imaging Spectroradiometer)images.The averages of Oden-observed LWP values are systematically higher(40-70 g m-2)than the corresponding CloudSat observations(0-50 g m-2).These are cases of generally low LWP with presumably small droplets,and may be explained by the little sensitivity of the CPR to small droplets or by the surface clutter.

  6. Vertical Structure of Ice Cloud Layers From CloudSat and CALIPSO Measurements and Comparison to NICAM Simulations

    Science.gov (United States)

    Ham, Seung-Hee; Sohn, Byung-Ju; Kato, Seiji; Satoh, Masaki

    2013-01-01

    The shape of the vertical profile of ice cloud layers is examined using 4 months of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) global measurements taken on January, April, July, and October 2007. Ice clouds are selected using temperature profiles when the cloud base is located above the 253K temperature level. The obtained ice water content (IWC), effective radius, or extinction coefficient profiles are normalized by their layer mean values and are expressed in the normalized vertical coordinate, which is defined as 0 and 1 at the cloud base and top heights, respectively. Both CloudSat and CALIPSO observations show that the maximum in the IWC and extinction profiles shifts toward the cloud bottom, as the cloud depth increases. In addition, clouds with a base reaching the surface in a high-latitude region show that the maximum peak of the IWC and extinction profiles occurs near the surface, which is presumably due to snow precipitation. CloudSat measurements show that the seasonal difference in normalized cloud vertical profiles is not significant, whereas the normalized cloud vertical profile significantly varies depending on the cloud type and the presence of precipitation. It is further examined if the 7 day Nonhydrostatic Icosahedral Atmospheric Model (NICAM) simulation results from 25 December 2006 to 1 January 2007 generate similar cloud profile shapes. NICAM IWC profiles also show maximum peaks near the cloud bottom for thick cloud layers and maximum peaks at the cloud bottom for low-level clouds near the surface. It is inferred that oversized snow particles in the NICAM cloud scheme produce a more vertically inhomogeneous IWC profile than observations due to quick sedimentation.

  7. Probability of Capture of Irregular Satellites via Collisions Around the Gas Giant Planets as a Function of the Solar Nebula

    CERN Document Server

    Koch, F Elliott

    2011-01-01

    We investigated the probability that an inelastic collision of planetesimals within the Hill sphere of the Jovian planets could explain the presence and orbits of observed irregular satel- lites. Capture of satellites via this mechanism is highly dependent on not only the mass of the protoplanetary disk, but also the shape of the planetesimal size distribution. We performed 2000 simulations for integrated time intervals ~ 2 Myr and found that, given the currently ac- cepted value for the minimum mass solar nebula and planetesimal number density based upon the Bottke et al. (2010b) size distribution dN ~ D-1.8dD, the collision rates for the different Jovian planets range between ~ 60 and >~ 103 Myr-1 Additionally, we found that the prob- ability that these collisions remove enough orbital energy to yield a bound orbit was ~ 103 times the gravitational binding energy for objects with radii ~ 100 km. We find that, capturing irregular satellites via collisions between unbound objects can only account for ~ 0.1% o...

  8. Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence

    Science.gov (United States)

    Luus, K. A.; Commane, R.; Parazoo, N. C.; Benmergui, J.; Euskirchen, E. S.; Frankenberg, C.; Joiner, J.; Lindaas, J.; Miller, C. E.; Oechel, W. C.; Zona, D.; Wofsy, S.; Lin, J. C.

    2017-02-01

    Accurately quantifying the timing and magnitude of respiration and photosynthesis by high-latitude ecosystems is important for understanding how a warming climate influences global carbon cycling. Data-driven estimates of photosynthesis across Arctic regions often rely on satellite-derived enhanced vegetation index (EVI); we find that satellite observations of solar-induced chlorophyll fluorescence (SIF) provide a more direct proxy for photosynthesis. We model Alaskan tundra CO2 cycling (2012-2014) according to temperature and shortwave radiation and alternately input EVI or SIF to prescribe the annual seasonal cycle of photosynthesis. We find that EVI-based seasonality indicates spring "green-up" to occur 9 days prior to SIF-based estimates, and that SIF-based estimates agree with aircraft and tower measurements of CO2. Adopting SIF, instead of EVI, for modeling the seasonal cycle of tundra photosynthesis can result in more accurate estimates of growing season duration and net carbon uptake by arctic vegetation.

  9. Capturing the fingerprint of Etna volcano activity in gravity and satellite radar data.

    Science.gov (United States)

    Del Negro, Ciro; Currenti, Gilda; Solaro, Giuseppe; Greco, Filippo; Pepe, Antonio; Napoli, Rosalba; Pepe, Susi; Casu, Francesco; Sansosti, Eugenio

    2013-10-30

    Long-term and high temporal resolution gravity and deformation data move us toward a better understanding of the behavior of Mt Etna during the June 1995 - December 2011 period in which the volcano exhibited magma charging phases, flank eruptions and summit crater activity. Monthly repeated gravity measurements were coupled with deformation time series using the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique on two sequences of interferograms from ERS/ENVISAT and COSMO-SkyMed satellites. Combining spatiotemporal gravity and DInSAR observations provides the signature of three underlying processes at Etna: (i) magma accumulation in intermediate storage zones, (ii) magmatic intrusions at shallow depth in the South Rift area, and (iii) the seaward sliding of the volcano's eastern flank. Here we demonstrate the strength of the complementary gravity and DInSAR analysis in discerning among different processes and, thus, in detecting deep magma uprising in months to years before the onset of a new Etna eruption.

  10. Capturing the fingerprint of Etna volcano activity in gravity and satellite radar data

    Science.gov (United States)

    Negro, Ciro Del; Currenti, Gilda; Solaro, Giuseppe; Greco, Filippo; Pepe, Antonio; Napoli, Rosalba; Pepe, Susi; Casu, Francesco; Sansosti, Eugenio

    2013-01-01

    Long-term and high temporal resolution gravity and deformation data move us toward a better understanding of the behavior of Mt Etna during the June 1995 – December 2011 period in which the volcano exhibited magma charging phases, flank eruptions and summit crater activity. Monthly repeated gravity measurements were coupled with deformation time series using the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique on two sequences of interferograms from ERS/ENVISAT and COSMO-SkyMed satellites. Combining spatiotemporal gravity and DInSAR observations provides the signature of three underlying processes at Etna: (i) magma accumulation in intermediate storage zones, (ii) magmatic intrusions at shallow depth in the South Rift area, and (iii) the seaward sliding of the volcano's eastern flank. Here we demonstrate the strength of the complementary gravity and DInSAR analysis in discerning among different processes and, thus, in detecting deep magma uprising in months to years before the onset of a new Etna eruption. PMID:24169569

  11. Evaluation of tropical cloud and precipitation statistics of CAM3 using CloudSat and CALIPSO data

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Klein, S; Boyle, J; Mace, G G

    2008-11-20

    The combined CloudSat and CALIPSO satellite observations provide the first simultaneous measurements of cloud and precipitation vertical structure, and are used to examine the representation of tropical clouds and precipitation in the Community Atmosphere Model Version 3 (CAM3). A simulator package utilizing a model-to-satellite approach facilitates comparison of model simulations to observations, and a revised clustering method is used to sort the subgrid-scale patterns of clouds and precipitation into principal cloud regimes. Results from weather forecasts performed with CAM3 suggest that the model underestimates the horizontal extent of low and mid-level clouds in subsidence regions, but overestimates that of high clouds in ascending regions. CAM3 strongly overestimates the frequency of occurrence of the deep convection with heavy precipitation regime, but underestimates the horizontal extent of clouds and precipitation at low and middle levels when this regime occurs. This suggests that the model overestimates convective precipitation and underestimates stratiform precipitation consistent with a previous study that used only precipitation observations. Tropical cloud regimes are also evaluated in a different version of the model, CAM3.5, which uses a highly entraining plume in the parameterization of deep convection. While the frequency of occurrence of the deep convection with heavy precipitation regime from CAM3.5 forecasts decreases, the incidence of the low clouds with precipitation and congestus regimes increases. As a result, the parameterization change does not reduce the frequency of precipitating convection that is far too high relative to observations. For both versions of CAM, clouds and precipitation are overly reflective at the frequency of the CloudSat radar and thin clouds that could be detected by the lidar only are underestimated.

  12. Detecting snowfall over land by satellite high-frequency microwave observations: The lack of scattering signature and a statistical approach

    Science.gov (United States)

    Liu, Guosheng; Seo, Eun-Kyoung

    2013-02-01

    has been long believed that the dominant microwave signature of snowfall over land is the brightness temperature decrease caused by ice scattering. However, our analysis of multiyear satellite data revealed that on most of occasions, brightness temperatures are rather higher under snowfall than nonsnowfall conditions, likely due to the emission by cloud liquid water. This brightness temperature increase masks the scattering signature and complicates the snowfall detection problem. In this study, we propose a statistical method for snowfall detection, which is developed by using CloudSat radar to train high-frequency passive microwave observations. To capture the major variations of the brightness temperatures and reduce the dimensionality of independent variables, the detection algorithm is designed to use the information contained in the first three principal components resulted from Empirical Orthogonal Function (EOF) analysis, which capture ~99% of the total variances of brightness temperatures. Given a multichannel microwave observation, the algorithm first transforms the brightness temperature vector into EOF space and then retrieves a probability of snowfall by using the CloudSat radar-trained look-up table. Validation has been carried out by case studies and averaged horizontal snowfall fraction maps. The result indicated that the algorithm has clear skills in identifying snowfall areas even over mountainous regions.

  13. On collisional capture rates of irregular satellites around the gas-giant planets and the minimum mass of the solar nebula

    Science.gov (United States)

    Koch, F. Elliott; Hansen, Bradley M. S.

    2011-09-01

    We investigate the probability that an inelastic collision of planetesimals within the Hill sphere of the Jovian planets could explain the presence and orbits of observed irregular satellites. Capture of satellites via this mechanism is highly dependent on not only the mass of the protoplanetary disc, but also the shape of the planetesimal size distribution. We performed 2000 simulations for integrated time intervals ˜2 Myr and found that, given the currently accepted value for the minimum mass solar nebula and planetesimal number density based upon the Nesvorný et al. and Charnoz & Morbidelli size distribution dN˜D-3.5dD, the collision rates for the different Jovian planets range between ˜0.6 and ≳170 Myr-1 for objects with radii 1 km ≤r≤ 10 km. Additionally, we found that the probability that these collisions remove enough orbital energy to yield a bound orbit was ≲10-5 and had very little dependence on the relative size of the planetesimals. Of these collisions, the collision energy between two objects was ≳103 times the gravitational binding energy for objects with radii ˜100 km. We find that capturing irregular satellites via collisions between unbound objects can only account for ˜0.1 per cent of the observed population, hence this cannot be the sole method of producing irregular satellites.

  14. New insights about cloud vertical structure from CloudSat and CALIPSO observations

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin

    2017-09-01

    Active cloud observations from A-Train's CloudSat and CALIPSO satellites offer new opportunities to examine the vertical structure of hydrometeor layers. We use the 2B-CLDCLASS-LIDAR merged CloudSat-CALIPSO product to examine global aspects of hydrometeor vertical stratification. We group the data into major cloud vertical structure (CVS) classes based on our interpretation of how clouds in three standard atmospheric layers overlap and provide their global frequency of occurrence. The two most frequent CVS classes are single-layer (per our definition) low and high clouds that represent 53% of cloudy skies, followed by high clouds overlying low clouds, and vertically extensive clouds that occupy near-contiguously a large portion of the troposphere. The prevalence of these configurations changes seasonally and geographically, between daytime and nighttime, and between continents and oceans. The radiative effects of the CVS classes reveal the major radiative warmers and coolers from the perspective of the planet as a whole, the surface, and the atmosphere. Single-layer low clouds dominate planetary and atmospheric cooling and thermal infrared surface warming. We also investigate the consistency between passive and active views of clouds by providing the CVS breakdowns of Moderate Resolution Imaging Spectroradiometer cloud regimes for spatiotemporally coincident MODIS-Aqua (also on the A-Train) and CloudSat-CALIPSO daytime observations. When the analysis is expanded for a more in-depth look at the most heterogeneous of the MODIS cloud regimes, it ultimately confirms previous interpretations of their makeup that did not have the benefit of collocated active observations.

  15. Begomovirus-Associated Satellite DNA Diversity Captured Through Vector-Enabled Metagenomic (VEM Surveys Using Whiteflies (Aleyrodidae

    Directory of Open Access Journals (Sweden)

    Karyna Rosario

    2016-02-01

    Full Text Available Monopartite begomoviruses (Geminiviridae, which are whitefly-transmitted single-stranded DNA viruses known for causing devastating crop diseases, are often associated with satellite DNAs. Since begomovirus acquisition or exchange of satellite DNAs may lead to adaptation to new plant hosts and emergence of new disease complexes, it is important to investigate the diversity and distribution of these molecules. This study reports begomovirus-associated satellite DNAs identified during a vector-enabled metagenomic (VEM survey of begomoviruses using whiteflies collected in various locations (California (USA, Guatemala, Israel, Puerto Rico, and Spain. Protein-encoding satellite DNAs, including alphasatellites and betasatellites, were identified in Israel, Puerto Rico, and Guatemala. Novel alphasatellites were detected in samples from Guatemala and Puerto Rico, resulting in the description of a phylogenetic clade (DNA-3-type alphasatellites dominated by New World sequences. In addition, a diversity of small (~640–750 nucleotides satellite DNAs similar to satellites associated with begomoviruses infecting Ipomoea spp. were detected in Puerto Rico and Spain. A third class of satellite molecules, named gammasatellites, is proposed to encompass the increasing number of reported small (<1 kilobase, non-coding begomovirus-associated satellite DNAs. This VEM-based survey indicates that, although recently recovered begomovirus genomes are variations of known genetic themes, satellite DNAs hold unexplored genetic diversity.

  16. Underestimation of Oceanic Warm Cloud Occurrences by the Cloud Profiling Radar Aboard CloudSat

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The Cloud Profi ling Radar (CPR) onboard CloudSat is an active sensor specifi cally dedicated to cloud detection. Compared to passive remote sensors, CPR plays a unique role in investigating the occurrence of multi-layer clouds and depicting the internal vertical structure of clouds. However, owing to contamination from ground clutter, CPR refl ectivity signals are invalid in the lowest 1 km above the surface, leading to numerous missed detections of warm clouds. In this study, by using 1-yr CPR and MODIS (Moderate Resolution Imaging Spectroradiometer) synchronous data, those CPR-missed oceanic warm clouds that are identifi ed as cloudy by MODIS are examined. It is demonstrated that CPR severely underestimates the occurrence of oceanic warm clouds, with a global-average miss rate of about 0.43. Over the tropical and subtropical oceans, the CPR-missed clouds tend to occur in regions with relatively low sea surface temperature. CPR misses almost all warm clouds with cloud tops lower than 1 km, and the miss rate reduces with increasing cloud top. As for clouds with cloud tops higher than 2 km, the negative bias of CPR-captured warm cloud occurrence falls below 3%. The cloud top height of CPR-missed warm clouds ranges from 0.6 to 1.2 km, and these clouds mostly have evidently small optical depths and droplet eff ective radii. The vertically integrated cloud liquid water content of CPR-missed warm clouds is smaller than 50 g m−2 . It is also revealed that CPR misses some warm clouds that have small optical depths or small droplet sizes, besides those limited in the boundary layer below about 1 km due to ground clutter.

  17. A systematic risk management approach employed on the CloudSat project

    Science.gov (United States)

    Basilio, R. R.; Plourde, K. S.; Lam, T.

    2000-01-01

    The CloudSat Project has developed a simplified approach for fault tree analysis and probabilistic risk assessment. A system-level fault tree has been constructed to identify credible fault scenarios and failure modes leading up to a potential failure to meet the nominal mission success criteria.

  18. A new retrieval method for the ice water content of cirrus using data from the CloudSat and CALIPSO

    Science.gov (United States)

    Pan, Honglin; Bu, Lingbing; Kumar, K. Raghavendra; Gao, Haiyang; Huang, Xingyou; Zhang, Wentao

    2017-08-01

    The CloudSat and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) are the members of satellite observation system of A-train to achieve the quasi-synchronization observation on the same orbit. With the help of active (CALIOP and CPR) and passive payloads from these two satellites, respectively, unprecedented detailed information of microphysical properties of ice cloud can be retrieved. The ice water content (IWC) is regarded as one of the most important microphysical characteristics of cirrus for its prominent role in cloud radiative forcing. In this paper, we proposed a new joint (Combination) retrieval method using the full advantages of different well established retrieval methods, namely the LIDAR method (for the region Lidar-only), the MWCR method (for the region Radar-only), and Wang method (for the region Lidar-Radar) proposed by Wang et al. (2002). In retrieval of cirrus IWC, empirical formulas of the exponential type were used for both thinner cirrus (detected by Lidar-only), thicker cirrus (detected by radar-only), and the part of cirrus detected by both, respectively. In the present study, the comparison of various methods verified that our proposed new joint method is more comprehensive, rational and reliable. Further, the retrieval information of cirrus is complete and accurate for the region that Lidar cannot penetrate and Radar is insensitive. On the whole, the retrieval results of IWC showed certain differences retrieved from the joint method, Ca&Cl, and ICARE which can be interpreted from the different hypothesis of microphysical characteristics and parameters used in the retrieval method. In addition, our joint method only uses the extinction coefficient and the radar reflectivity factor to calculate the IWC, which is simpler and reduces to some extent the accumulative error. In future studies, we will not only compare the value of IWC but also explore the detailed macrophysical and microphysical characteristics of

  19. Convective overshooting top detection with MSG SEVIRI, Himawari-8 AHI, and CloudSat CPR data

    Science.gov (United States)

    Im, J.; Kim, M.; Park, S.

    2015-12-01

    Overshooting Tops (OTs) are the clouds that penetrate into the tropopause and grow to the bottom of stratosphere at the top layer of cumulonimbus with very strong updraft. Severe weather conditions such as ground lightning, large hail, strong winds, and heavy rainfall can cause in the cumulonimbus clouds with OTs, with turbulence and lightning occurring very frequently in the area near OTs. In terms of aviation operations, OTs are a very important risk factor. According to Federal Aviation Administration, 509 cases of 4,326 weather-related events from 1992 to 2001were caused by turbulences. The detection of OTs is important to predict the degree and location of severe weather conditions such as turbulence, lightning, and thunderstorms. There are two methods widely used to detect OTs with multispectral images. One is the Water Vapor-InfraRed window channel Brightness Temperature Difference (WV-IRW BTD), which uses the differences in brightness temperatures at an infrared channel (about 11 ㎛). The other approach is the InfraRed Window texture (IRW-texture) method, which is based on the characteristics of OTs that appear a pixel group with low temperatures. The typical IRW-texture algorithm uses simple thresholds to detect OTs, whereas this research proposes an advanced approach based on machine learning techniques such as decision trees, random forest (RF), and support vector machines (SVM) with various variables from geostationary satellite data such as MSG SEVIRI (over Africa) and Himawari AHI (over East Asia) so as to improve the detection of OTs. OT and non-OT samples (e.g. other types of clouds such as stratus and cirrus) were extracted using the CloudSat cloud profiling radar (CPR) and SEVIRI (and Himawari) imagery. Results show that RF produced the best performance in detection of OTs yielding an overall accuracy of 98.33% and a false alarm rate of 9.01%. The user's accuracies of OT and non-OT were similar, whereas the producer's accuracy of non-OT was

  20. An Investigation of Interaction of Saharan Dust and Atlantic ITCZ Using Cloudsat-Calipso and A-Train Data

    Science.gov (United States)

    Lau, W.; Matsui, Toshi; Kim, Kyu-Myong; Reale, Oreste; Colarco, P.

    2011-01-01

    In this study, we investigate the radiative forcing of Saharan dust, its interactions with the Atlantic Intertropical Convergence Zone (ITCZ), through African easterly waves (AEW), African easterly jets (AEJ), and its impacts in short term numerical forecasts of tropical cyclogenesis using the GOCART-GEOS5 forecast system. Our approach is to develop and use an A-Train satellite simulator (ATSS) to constrain the observed aerosol index of refraction and particle size distribution by finding the values that simultaneously minimize the difference between observed CALIOP, CloudSat, OMI, and MODIS radiances and simulated radiances inverted from atmospheric model output using procedures and physical principles consistent with those used in corresponding retrieval algorithms. We use observations from the A-train and TRMM to determine relationships among the Saharan dust layer, transport by the AEW, and possible responses to dust radiative forcing in developing tropical cyclones in the A-ITCZ. Preliminary model results showing physical processes associated with the generation and transport of the Saharan dust layer, their interactions with the incipient moisture, clouds and rainfall in developing tropical cyclones will be presented. Also presented will be results of a case study of possible radiative impacts on AEW and AEJ during the NAMMA field campaign.

  1. MODELLING OF AN INEXPENSIVE 9M SATELLITE DISH FROM 3D POINT CLOUDS CAPTURED BY TERRESTRIAL LASER SCANNERS

    Directory of Open Access Journals (Sweden)

    D. Belton

    2012-09-01

    Full Text Available This paper presents the use of Terrestrial laser scanners (TLS to model the surface of satellite dish. In this case, the dish was an inexpensive 9m parabolic satellite dish with a mesh surface, and was to be utilised in radio astronomy. The aim of the modelling process was to determine the deviation of the surface away from its true parabolic shape, in order to estimate the surface efficiency with respect to its principal receiving frequency. The main mathematical problems were the optimal and unbiased estimation the orientation of the dish and the fitting of a parabola to the local orientation or coordinate system, which were done by both orthogonal and algebraic minimization using the least-squares method. Due to the mesh structure of the dish, a classification method was also applied to filter out erroneous points being influenced by the supporting structure behind the dish. Finally, a comparison is performed between the ideal parabolic shape, and the data collected from three different temporal intervals.

  2. Automatic Detection of Omega Signals Captured by the Poynting Flux Analyzer (PFX) on Board the Akebono Satellite

    CERN Document Server

    Suarjaya, I Made Agus Dwi; Goto, Yoshitaka

    2016-01-01

    The Akebono satellite was launched in 1989 to observe the Earth's magnetosphere and plasmasphere. Omega was a navigation system with 8 ground stations transmitter and had transmission pattern that repeats every 10 s. From 1989 to 1997, the PFX on board the Akebono satellite received signals at 10.2 kHz from these stations. Huge amounts of PFX data became valuable for studying the propagation characteristics of VLF waves in the ionosphere and plasmasphere. In this study, we introduce a method for automatic detection of Omega signals from the PFX data in a systematic way, it involves identifying a transmission station, calculating the delay time, and estimating the signal intensity. We show the reliability of the automatic detection system where we able to detect the omega signal and confirmed its propagation to the opposite hemisphere along the Earth's magnetic field lines. For more than three years (39 months), we detected 43,734 and 111,049 signals in the magnetic and electric field, respectively, and demons...

  3. Automatic Detection of Omega Signals Captured by the Poynting Flux Analyzer (PFX on Board the Akebono Satellite

    Directory of Open Access Journals (Sweden)

    Made Agus Dwi Suarjaya

    2016-10-01

    Full Text Available The Akebono satellite was launched in 1989 to observe the Earth’s magnetosphere and plasmasphere. Omega was a navigation system with 8 ground stations transmitter and had transmission pattern that repeats every 10 s. From 1989 to 1997, the PFX on board the Akebono satellite received signals at 10.2 kHz from these stations. Huge amounts of PFX data became valuable for studying the propagation characteristics of VLF waves in the ionosphere and plasmasphere. In this study, we introduce a method for automatic detection of Omega signals from the PFX data in a systematic way, it involves identifying a transmission station, calculating the delay time, and estimating the signal intensity. We show the reliability of the automatic detection system where we able to detect the omega signal and confirmed its propagation to the opposite hemisphere along the Earth’s magnetic field lines. For more than three years (39 months, we detected 43,734 and 111,049 signals in the magnetic and electric field, respectively, and demonstrated that the proposed method is powerful enough for the statistical analyses.

  4. CloudSat Anomaly Recovery and Operational Lessons Learned

    Science.gov (United States)

    2012-01-01

    Earth System Science Pathfinder (ESSP) program, CloudSat’s unique millimeter-wavelength radar provides scientists valuable data on the vertical...at the RSC to speak the same language and carefully coordinate actions, managing and helping mitigate the risk of game -ending commanding errors. 7...Corporation CALIPSO Cloud Aerosol LIDAR & Infrared Pathfinder Satellite Observations CIRA Cooperative Institute for Research in the Atmosphere CNES

  5. Modeling of Polar Precipitation with CloudSat, AIRS and High Frequency Microwave Radiometers

    Science.gov (United States)

    Turk, F. J.; Park, K.; Wang, N.; Haddad, Z. S.

    2009-12-01

    While measuring and monitoring precipitation in polar regions is difficult, recent studies have shown that microwave radiances measured by operational high-frequency sounders, such as the Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), are sensitive to falling snow, though the frozen surface makes it very difficult to retrieve snowfall rates from these radiometric measurements. Since the microwave sounding channels are sensitive to the variable surface emissivity, the crucial step was to classify these data according to fractional ice coverage (derived from AMSR-E) and use principal component analyses to further separate the variations due to the radiometric signatures of the precipitation from that of the surface. These results quantify the correlation between the higher principal components of the microwave radiances and the CloudSat radar reflectivity profile. Further radiative transfer modeling of the polar atmosphere is done using the AIRS temperature and moisture profiles to specify the background atmosphere. We relate the simulated microwave radiances to the near-surface precipitation itself, by considering several hydrometeor habit and size distributions and super-cooled cloud liquid fractions, performing reflectivity-to-snow-content retrievals from the CloudSat radar profiles of ice and liquid water content.. With this methodology, one can simulate polar precipitation observations systematically utilizing these time/space matched measurements from the CloudSat radar and polar-orbiting high-frequency radiometers such as MHS or the SSMIS. In turn, this will help evaluate the realism of numerical models and their microphysical assumptions, particularly as the latter appear to have significant difficulties representing Arctic clouds accurately.

  6. At-sea distribution of satellite-tracked grey-faced petrels, Pterodroma macroptera gouldi, captured on the Ruamaahua (Aldermen) Islands, New Zealand

    Science.gov (United States)

    MacLeod, Catriona; Adams, Josh; Lyver, Phil

    2008-01-01

    We used satellite telemetry to determine the at-sea distribution of 32 adult (non-breeders and failed breeders) Grey-faced Petrels, Pterodroma macroptera gouldi, during July-October in 2006 and 2007. Adults captured at breeding colonies on the Ruamaahua (Aldermen) Islands ranged across the southwestern Pacific Ocean and Tasman Sea between 20-49°S and 142°E and 1300 W Petrels were located almost exclusively over offshore waters> 1000 m depth. The extent oftheir distributions was similar across years, but petrels ranged farther south and west in 2006. Individuals displayed a high degree ofspatial overlap (48-620/0 among individuals) and area use revealed three general "hotspots" within their overall range: waters near the Ruamaahua Islands; the central Tasman Sea; and the area surrounding the Chatham Rise. In July-August 2006, most petrels congregated over the Tasman Sea, but for the same period in 2007 were predominantly associated with Chatham Rise. The home ranges of petrels tended to overlap disproportionately more than expected with the Australian Exclusive Economic Zone and less than expected with High Seas, relative to the area available in each zone, in July-August 2006. Accordingly, multiple nations are responsible for determining potential impacts resulting from fisheries bycatch and potential resource competition with Grey-faced Petrels.

  7. Precipitation in Antarctica : comparaison between Cloudsat observations and the LMDz global climate model.

    Science.gov (United States)

    Lemonnier, Florentin; Madeleine, Jean-Baptiste; Claud, Chantal; Genthon, Christophe; Krinner, Gerhard; Gallee, Hubert; Berne, Alexis; Grazioli, Jacopo; Hourdin, Frederic; Fairhead, Laurent; Mellul, Lidia; Vignon, Etienne

    2017-04-01

    The Antarctic continent is a vast desert, the coldest and the most unknown area containing the main fresh water reservoir. Current global warming could threaten this ice cap, leading to a sea level rise. A main goal of the APRES3 (Antarctic Precipitation, Remote Sensing from Surface and Space) project is to document and understand current precipitation over the south polar cap, knowing that current climate models are reaching to a over-estimation of the snowfall rate values. Remote sensing observations of the coastal regions and the continent using Cloudsat radar [Palerme et al. 2014] give a snowfall rate of 153 mm/year whereas the LMDz model gives a higher rate of 172 mm/an. A comparison between radar observations and solid precipitation modeled by LMDz could bring a better understanding of climate observations over the ice cap. Indeed, there is a fair annual-mean agreement between the model and Cloudsat observations. Nevertheless, there are serious biases concerning the seasonal variabilities, marked by a strong continental and coastal over-estimation. There is also an inverted seasonal variability on the continental plateau between observations and our model. Using a set of LMDz simulations run in different modes (forced by SST, nudged, coupled), we suggest a multi-scale exploration of the physical and dynamical processes that are the sources of these biases and propose ways to improve climate models.

  8. Characterization of fast-growing convection from synergistic observations of CloudSat, MODIS and IIR

    Science.gov (United States)

    Luo, Z. J.; Anderson, R.

    2012-12-01

    We exploit the fact that Aqua leads CloudSat/CALIPSO by 1-2 min to identify fast-growing convection, whose cloud-top temperature (CTT) shows significant decrease from MODIS (onboard Aqua) to IIR (onboard CALIPSO). Assuming adiabatic ascent of convective clouds, we estimate cloud-top vertical velocity (w) from the decrease rate of CTT. Categorizing convective towers by cloud-top height (CTH) gives a means to study the vertical profiles of w - an important parameter for understanding convective dynamics. Our initial results show that the fastest-growing convection has CTH ~ 8- 10 km. They are likely deep convection in early life stage. Finally, we analyze CloudSat cloud-profiling radar (CPR) reflectivities which provide a glimpse into the internal vertical structure of these fast-growing convective towers.

  9. Comparison of snowfall estimates from the NASA CloudSat Cloud Profiling Radar and NOAA/NSSL Multi-Radar Multi-Sensor System

    Science.gov (United States)

    Chen, Sheng; Hong, Yang; Kulie, Mark; Behrangi, Ali; Stepanian, Phillip M.; Cao, Qing; You, Yalei; Zhang, Jian; Hu, Junjun; Zhang, Xinhua

    2016-10-01

    The latest global snowfall product derived from the CloudSat Cloud Profiling Radar (2C-SNOW-PROFILE) is compared with NOAA/National Severe Storms Laboratory's Multi-Radar Multi-Sensor (MRMS/Q3) system precipitation products from 2009 through 2010. The results show that: (1) Compared to Q3, CloudSat tends to observe more extremely light snowfall events (snow and 10% as certain mixed. When possible snow, possible mixed, and certain mixed precipitation categories are assumed to be snowfall events, CloudSat has a high snowfall POD (86.10%). (3) CloudSat shows less certain snow precipitation than Q3 by 26.13% with a low correlation coefficient (0.41) with Q3 and a high RMSE (0.6 mm/h). (4) With Q3 as reference, CloudSat underestimates (overestimates) certain snowfall when the bin height of detected snowfall events are below (above) 3 km, and generally overestimates light snowfall (surface snowfall events are >1 km high above the surface, whereas 76.41% of corresponding Q3 observations are low below 1 km to the near ground surface. This analysis will provide helpful reference for CloudSat snowfall estimation algorithm developers and the Global Precipitation Measurement (GPM) snowfall product developers to understand and quantify the strengths and weaknesses of remote sensing techniques and precipitation estimation products.

  10. Capturing Thoughts, Capturing Minds?

    DEFF Research Database (Denmark)

    Nielsen, Janni

    2004-01-01

    Think Aloud is cost effective, promises access to the user's mind and is the applied usability technique. But 'keep talking' is difficult, besides, the multimodal interface is visual not verbal. Eye-tracking seems to get around the verbalisation problem. It captures the visual focus of attention...

  11. A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat

    Directory of Open Access Journals (Sweden)

    C. J. Stubenrauch

    2010-03-01

    Full Text Available We present a six-year global climatology of cloud properties, obtained from observations of the Atmospheric Infrared Sounder (AIRS onboard the NASA Aqua satellite. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO combined with CloudSat observations, both missions launched as part of the A-Train in 2006, provide a unique opportunity to evaluate the retrieved AIRS cloud properties such as cloud amount and height as well as to explore the vertical structure of different cloud types. AIRS-LMD cloud detection agrees with CALIPSO about 85% over ocean and about 75% over land. Global cloud amount has been estimated as about 66% to 74%, depending on the weighting of not cloudy AIRS footprints by partial cloud cover (0 or 0.3. 40% of all clouds are high clouds, and about 44% of all clouds are single layer low-level clouds. The "radiative" cloud height determined by the AIRS-LMD retrieval corresponds well to the height of the maximum backscatter signal and of the "apparent middle" of the cloud. Whereas the real cloud thickness of high opaque clouds often fills the whole troposphere, their "apparent" cloud thickness (at which optical depth reaches about 5 is on average only 2.5 km. The real geometrical thickness of optically thin cirrus as identified by AIRS-LMD is identical to the "apparent" cloud thickness with an average of about 2.5 km in the tropics and midlatitudes. High clouds in the tropics have slightly more diffusive cloud tops than at higher latitudes. In general, the depth of the maximum backscatter signal increases nearly linearly with increasing "apparent" cloud thickness. For the same "apparent" cloud thickness optically thin cirrus show a maximum backscatter about 10% deeper inside the cloud than optically thicker clouds. We also show that only the geometrically thickest opaque clouds and (the probably surrounding anvil cirrus penetrate the stratosphere in the tropics.

  12. A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat

    Directory of Open Access Journals (Sweden)

    S. Cros

    2010-08-01

    Full Text Available We present a six-year global climatology of cloud properties, obtained from observations of the Atmospheric Infrared Sounder (AIRS onboard the NASA Aqua satellite. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO combined with CloudSat observations, both missions launched as part of the A-Train in 2006, provide a unique opportunity to evaluate the retrieved AIRS cloud properties such as cloud amount and height. In addition, they permit to explore the vertical structure of different cloud types. AIRS-LMD cloud detection agrees with CALIPSO about 85% over ocean and about 75% over land. Global cloud amount has been estimated from 66% to 74%, depending on the weighting of not cloudy AIRS footprints by partial cloud cover from 0 to 0.3. 42% of all clouds are high clouds, and about 42% of all clouds are single layer low-level clouds. The "radiative" cloud height determined by the AIRS-LMD retrieval corresponds well to the height of the maximum backscatter signal and of the "apparent middle" of the cloud. Whereas the real cloud thickness of high opaque clouds often fills the whole troposphere, their "apparent" cloud thickness (at which optical depth reaches about 5 is on average only 2.5 km. The real geometrical thickness of optically thin cirrus as identified by AIRS-LMD is identical to the "apparent" cloud thickness with an average of about 2.5 km in the tropics and midlatitudes. High clouds in the tropics have slightly more diffusive cloud tops than at higher latitudes. In general, the depth of the maximum backscatter signal increases nearly linearly with increasing "apparent" cloud thickness. For the same "apparent" cloud thickness optically thin cirrus show a maximum backscatter about 10% deeper inside the cloud than optically thicker clouds. We also show that only the geometrically thickest opaque clouds and (the probably surrounding anvil cirrus penetrate the stratosphere in the tropics.

  13. Multi-year analysis of ice microphysics derived from CloudSat and CALIPSO

    Science.gov (United States)

    Okamoto, H.; Sato, K.; Hagihara, Y.

    2012-12-01

    We conducted multi-year analys of ice microphysics using CloudSat and CALIPSO data. Inter-annual variability, land-ocean differences and seasonal changes of ice microphysical properties were reported for the observation periods from 2006 to 2009. CALIPSO changed the laser tilt angle from 0.3 degrees to 3 degrees off nadir direction on November 2007 and the zonal mean properties of backscattering coefficient and depolarization ratio were significantly decreased and increased, respectively, for low altitude after November 2007. This could be explained by the different backscattering behavior of horizontally oriented ice crystals for the different laser tilt angles. On the other hand, inter-annual variability of zonal mean properties of reflectivity factor observed by CloudSat showed the very similar characteristics during the four years. In addition, the lidar observables were similar when the monthly mean properties were compared for different years before November 2007 and also the same was true for the comparisons after November 2007. These analyses of observables suggested that the inter-annual variability of zonal mean properties of ice microphysics could be considered to be similar. Application of the radar-lidar algorithm showed that the change of the laser tilt angle introduced the large gap between the ice microphysical properties before and after November 2007, if the proper treatment of the oriented ice crystals were not conducted in the retrievals. Global analysis of cloud particle types showed that the frequent occurrence of oriented ice crystals were identified in the temperature range between -10 to -20 degrees C. It is also noted that the significant overestimation of ice water content and significant underestimation of ice effective radius were found if the scattering properties of the horizontally oriented ice particles were not considered. Therefore it is highly demanded that the realistic ice orientation model is implemented in the look up tables

  14. Capture Scheme of the Antenna in Ka-band for Launch Vehicle Based on Tracking and Data Relay Satellite%运载火箭Ka频段天基测控的天线捕获方法

    Institute of Scientific and Technical Information of China (English)

    宫长辉; 曾贵明; 张恒

    2011-01-01

    In order to transmit the space-based signal, the capture and track between the tracking and data relay satellite(TDRS) antenna and the user's aerocraft antenna should be completed firstly. In this paper, the uncertain area of the antenna scan is analyzed, adopting antenna-scan capture scheme for capturing the antenna on TORS by the phased-array antenna on launch vehicle. The values of the antenna array and EIRP are conformed and the capture time is given by computer simulation.%为实现天基信息的传输,首先要完成中继卫星天线与用户飞行器天线之间的捕获与跟踪.针对箭载相控阵天线对中继卫星的捕获,采用Ka频段相控阵天线扫描捕获策略,分析了天线扫描的不确定区域,确定了天线阵元数及EIRP值,给出了捕获时间的仿真结果,为工程应用提供参考.

  15. Tropical cloud and precipitation regimes as seen from near-simultaneous TRMM, CloudSat, and CALIPSO observations and comparison with ISCCP

    Science.gov (United States)

    Luo, Zhengzhao Johnny; Anderson, Ricardo C.; Rossow, William B.; Takahashi, Hanii

    2017-06-01

    Although Tropical Rainfall Measuring Mission (TRMM) and CloudSat/CALIPSO fly in different orbits, they frequently cross each other so that for the period between 2006 and 2010, a total of 15,986 intersect lines occurred within 20 min of each other from 30°S to 30°N, providing a rare opportunity to study tropical cloud and precipitation regimes and their internal vertical structure from near-simultaneous measurements by these active sensors. A k-means cluster analysis of TRMM and CloudSat matchups identifies three tropical cloud and precipitation regimes: the first two regimes correspond to, respectively, organized deep convection with heavy rain and cirrus anvils with moderate rain; the third regime is a convectively suppressed regime that can be further divided into three subregimes, which correspond to, respectively, stratocumulus clouds with drizzle, cirrus overlying low clouds, and nonprecipitating cumulus. Inclusion of CALIPSO data adds to the dynamic range of cloud properties and identifies one more cluster; subcluster analysis further identifies a thin, midlevel cloud regime associated with tropical mountain ranges. The radar-lidar cloud regimes are compared with the International Satellite Cloud Climatology Project (ISCCP) weather states (WSs) for the extended tropics. Focus is placed on the four convectively active WSs, namely, WS1-WS4. ISCCP WS1 and WS2 are found to be counterparts of Regime 1 and Regime 2 in radar-lidar observations, respectively. ISCCP WS3 and WS4, which are mainly isolated convection and broken, detached cirrus, do not have a strong association with any individual radar and lidar regimes, a likely effect of the different sampling strategies between ISCCP and active sensors and patchy cloudiness of these WSs.

  16. Realtime or Delayed Tele-Echography Using (A) a Robotic Arm, ISDN or Satellite Lines, (B) a Volumic Echographic Capture Mode and Internet (Application to Abdomen and Fetus)

    Science.gov (United States)

    Arbeille, Ph.; Cloppet, F.; Boucher, A.; Capri, A.; Vincent, N.

    2008-06-01

    Objective: to test (a) the tele-echography in realtime based on the use of a robotic arm, (b) the delayed tele echography using a volumic echographic capture and delayed processing. Method: A dedicated robotic arm (ESTELE) holding a real ultrasound probe is remotely controlled from the expert site with a fictive probe, and reproduces on the real probe all the movements of the expert hand. A dedicated motorized probe holder (TILTER) was used for tilting a 2D probe from -45 to +45°. Results: During fetal robotized Tele-echography (n=50) the expert was able to visualize and measure the fetal structures in 95% of the cases, while during abdomen echography (n=87) the expert visualized the main organs and lesions in 87% of the cases. The mean duration of the robotized tele echography session for one patient was 20+/-10 min. The delayed echography using the TILTER was tested on 40 patients. The organs were adequately visualized in 85% of the cases after 3 capture per organ. The average time from the first capture until the diagnostic was delivered was 40+/-10 minutes. Conclusion: Realtime or delayed Tele-echography provide similar information as direct examination in at least 85% of the cases. No false diagnostic was reported.

  17. Investigating CloudSat Retrievals Sensitivity to Forward Iterative Algorithm Parameters in the Mixed Cloud Layers

    Science.gov (United States)

    Qiu, Yujun; Lu, Chunsong

    2016-09-01

    When millimeter-wave cloud radar data are used for the forward iterative retrieval of the liquid water content (LWC) and effective radius of cloud droplets ( R e) in a cloud layer, the prior values and tolerance ranges of the cloud droplet number density ( N t), scale parameter ( R g) and spectral width parameter ( W g) in the iterative algorithm are the main factors that affect the retrieval accuracy. In this study, we used data from stratus and convective clouds that were simultaneously observed by CloudSat and aircraft to conduct a sensitivity analysis of N t, R g, and W g for the retrieval accuracies of LWC and R e in both stratus and convective clouds. N t is the least sensitive parameter for accurately retrieving stratus LWC and R e in both stratus and convective clouds, except for retrieving the convective cloud LWC. Opposite to N t, R g is the most sensitive parameter for both LWC and R e retrievals. As to the effects of parameter tolerance ranges on the retrievals of LWC and R e, the least important parameter is the N t tolerance range; the most important one is the W g tolerance range for retrieving convective cloud LWC and R e, the R g is the important parameter for retrieving stratus LWC and R e. To obtain accurate retrieved values for clouds in a specific region, it is important to use typical values of the sensitive parameters, which could be calculated from in situ observations of cloud droplet size distributions. In addition, the sensitivities of the LWC and R e to the three parameters are stronger in convective clouds than in stratus clouds. This may be related to the melting and merging of solid cloud droplets during the convective mixing process in the convective clouds.

  18. CloudSat observations of cloud-type distribution over the Indian summer monsoon region

    Directory of Open Access Journals (Sweden)

    K. V. Subrahmanyam

    2013-07-01

    Full Text Available The three-dimensional distribution of various cloud types over the Indian summer monsoon (ISM region using five years (2006–2010 of CloudSat observations during June-July-August-September months is discussed for the first time. As the radiative properties, latent heat released and microphysical properties of clouds differ largely depending on the cloud type, it becomes important to know what types of clouds occur over which region. In this regard, the present analysis establishes the three-dimensional distribution of frequency of occurrence of stratus (St, stratocumulus (Sc, nimbostratus (Ns, cumulus (Cu, altocumulus (Ac, altostratus (As, cirrus (Ci and deep convective (DC clouds over the ISM region. The results show that the various cloud types preferentially occur over some regions of the ISM, which are consistent during all the years of observations. It is found that the DC clouds frequently occur over northeast of Bay of Bengal (BoB, Ci clouds over a wide region of south BoB–Indian peninsula–equatorial Indian Ocean, and Sc clouds over the north Arabian Sea. Ac clouds preferentially occur over land, and a large amount of As clouds are found over BoB. The occurrence of both St and Ns clouds over the study region is much lower than all other cloud types.The interannual variability of all these clouds including their vertical distribution is discussed. It is envisaged that the present study opens up possibilities to quantify the feedback of individual cloud type in the maintenance of the ISM through radiative forcing and latent heat release.

  19. CloudSat observations of multi layered clouds across the globe

    Science.gov (United States)

    Subrahmanyam, K. Venkata; Kumar, Karanam Kishore

    2017-07-01

    Vertically resolved multi-layer cloud distributions over the globe using 4 years of CloudSat/CALIPSO observations during 2007-2010 are discussed. The quantitative information on the frequency of occurrence of one- to five-layered clouds across the globe is established, which are of immense importance from the global climate standpoint. After segregating the CloudSat observations into different seasons, the 4 years of mean global maps of frequency of occurrence of one to five-layered clouds are discussed in details. These global maps provide much needed quantification of vertically resolved multi-layer clouds by revealing when and where the frequency of occurrence of multi-layer clouds are maximum including the number of layers. On an average, it is observed that over the globe one-, two-, three-, four- and five-layer clouds occur 53, 20, 3.5, 0.4 and 0.04 % of the time respectively. High fraction of single layer clouds is observed over the descending limbs of Hadley cell where relatively large lower tropospheric stability is found. The regions where multi-layer clouds are more frequent are identified and discussed along with large scale circulation. Apart from quantifying the frequency of occurrence of multi-layer clouds, the latitudinal distribution of zonal mean occurrence of cloud base and top altitudes of each cloud layer is constructed for boreal winter and summer. These analyses provide the cloud base and top altitudes of one to five-layered clouds, which are important to understand the vertical structure of the multi-layered clouds. The significance of the present study lies in establishing the global distribution of vertically resolved multi-layer clouds and the role of large-scale dynamics in controlling their distribution for the first time.

  20. Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat

    Science.gov (United States)

    Yuan, J.; Houze, R. A., Jr.; Heymsfield, A.

    2011-01-01

    A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6--8 and 1--3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.

  1. Small Earth Observing Satellites Flying with Large Satellites in the A-Train

    Science.gov (United States)

    Kelly, Angelita C.; Loverro, Adam; Case, Warren F.; Queruel, Nadege; Marechal, Chistophe; Barroso, Therese

    2009-01-01

    This paper/poster presents a real-life example of the benefits of flying small satellites with other satellites, large or small, and vice versa. Typically, most small satellites fly payloads consisting of one or two instruments and fly in orbits that are independent from that of other satellites. The science data from these satellites are either used in isolation or correlated with instrument data from other satellites. Data correlation with other satellites is greatly improved when the measurements of the same point or air mass are taken at approximately the same time. Scientists worldwide are beginning to take advantage of the opportunities for improved data correlation, or coincidental science, offered by the international Earth Observing Constellation known as the A-Train (sometimes referred to as the Afternoon Constellation). Most of the A-Train satellites are small - the A-Train is anchored by two large NASA satellites (EOS-Aqua and EOS-Aura), but consists also of 5 small satellites (CloudSat, CALIPSO, PARASOL, OCO and Glory these last two will join in 2009). By flying in a constellation, each mission benefits from coincidental observations from instruments on the other satellites in the constellation. Essentially, from a data point of view, the A-Train can be envisioned as a single, virtual science platform with multiple instruments. Satellites in the A-Train fly at 705 km in sun-synchronous orbits. Their mean local times at the equator are within seconds to a few minutes of each other. This paper describes the challenges of operating an international constellation of independent satellites from the U.S. and Europe to maximize the coincidental science opportunities while at the same time minimizing the level of operational interactions required between team members. The A-Train mission teams have been able to demonstrate that flying as members of an international constellation does not take away the flexibility to accommodate new requirements. Specific

  2. Documenting trans-Himalayan migration through satellite telemetry: A report on capture, deployment, and tracking of bar-headed goose (Anser indicus)

    Science.gov (United States)

    Javed, Sàlim; Takekawa, John Y.; Douglas, David C.; Rahmani, Asad R.; Choudhury, Binod C.; Landfried, Steven L.; Sharma, Shruti

    2000-01-01

    Animal movement and migration studies have made significant progress with the use of telemetry. Conventional radio telemetry has been used in numerous studies in different regions. However, the use of this technology is restricted to species with limited range of movement. Applying this tool for long distance migrants is usually unsatisfactory. Other challenges such as hilly terrain or dense vegetation, where getting signals and following animals often become major constraints. These problems and the need to track long distance migrants, particularly birds, led to the development of other technologies with greater spatial coverage, accuracy and ease of tracking. Satellite telemetry technology has overcome many of these problems and has become a very useful tool. There is a greater recognition of the use and benefits of this technology among biologists, managers, and various conservation organizations.Satellite tracking technology has been used extensively in the Western Hemisphere. However until recently, in the Indian sub-continent the use of this technology was limited to one study in 1994 when three Eurasian cranes (Grus grus) were fitted with Platform Terminal Transmitter (PTTs) in Keoladco national Park, Bharatpur and tracked to their Siberian breeding grounds (Higuchi et al., 1994). It took almost six more years for the next international collaborative project to emerge within India. This project, started in winter 1998-99, was the first long-term project using satellite tracking in India (Higuchi et al., 1999). Other than these two studies, no effort has been made previously to demonstrate the use of this technology and its application in the Indian subcontinent.

  3. MECHANICAL ANALYSIS AND CALM CONTROL OF DUAL-ARM SPACE ROBOT FOR CAPTURING A SATELLITE%空间机器人双臂捕获卫星力学分析及镇定控制

    Institute of Scientific and Technical Information of China (English)

    程靖; 陈力

    2016-01-01

    As the technology of space science develops rapidly, space robot system is expected to capture the non-cooperative satellite on-orbit. Space robot with dual-arm obviously has more comparative advantage in this respect com-pared with the one with single arm. Because of the complicated condition in outer space it makes the dynamics and control problems related to satellite-capturing operation by space robot system with dual-arm to be extremely complicated, and there are some unique characteristics, such as, nonholonomic dynamics restriction, change of system configuration, trans-fer of linear momentum, angular momentum and energy, topology transfer from open to closed loop system, and the constraints of closed-loop geometry and kinematics during satellite-capturing operation. In this paper, the dynamic evolu-tion for space robot with dual-arm capturing a spin satellite and calm control for unstable closed chain composite system are discussed. At first, with the Lagrangian approach, the dynamic model of open chain space robot with dual-arm before capture operation is established, and dynamic model of satellite is derived by Newton-Euler method. On that basis, based on the law of conservation of momentum and the law of force transfer, the impact effect after collision of space robot with dual-arm to capture the target is analyzed and solved by the process of integration and simplification, and the suitable cap-ture operation strategy is given. Closed chain constraint equations are obtained by the constraints of closed-loop geometry and kinematics of closed chain system. With the closed chain constraint equations, the composite system dynamic model is derived. For the unstable closed chain composite system after the capture, the fuzzy H∞control scheme for calm motion is designed. The fuzzy logic system is applied to overcome the influence of uncertainty part and the robust H∞ control item is used to eliminate the approximate error, to guarantee the tracking

  4. Broad search for trajectories from Earth to Callisto-Ganymede-JOI double-satellite-aided capture at Jupiter from 2020 to 2060

    Science.gov (United States)

    Lynam, Alfred E.

    2016-01-01

    Employing multiple gravity-assist flybys of Jupiter's Galilean moons can save a substantial amount of \\varDelta V when capturing into orbit about Jupiter. Using Callisto and Ganymede, the most massive and distant of the Galilean moons, as gravity-assist bodies reduces the Jupiter orbit insertion \\varDelta V cost, while allowing the spacecraft to remain above the worst of Jupiter's radiation belts. A phase-angle approach is used to find initial guesses for a Lambert targeter to find patched-conic Callisto-Ganymede transfers. A B-plane targeter using grid search methodology is used to backward target Earth to find launch conditions. Twenty-nine distinct patched-conic trajectories were found from Earth to Callisto-Ganymede-JOI capture throughout the search space from 2020-2060. Five promising trajectories were found that launch from Earth between July 11, 2023 and July 20, 2023, and arrive at Jupiter between February and September 2026. These trajectories were numerically integrated using GMAT and, in the author's opinion, are excellent candidates for use on NASA's planned Europa Clipper mission.

  5. Comparison of the MODIS Multilayer Cloud Detection and Thermodynamic Phase Products with CALIPSO and CloudSat

    Science.gov (United States)

    Platnick, Steven; King, Michael D.; Wind, Gala; Holz, Robert E.; Ackerman, Steven A.; Nagle, Fred W.

    2008-01-01

    CALIPSO and CloudSat, launched in June 2006, provide global active remote sensing measurements of clouds and aerosols that can be used for validation of a variety of passive imager retrievals derived from instruments flying on the Aqua spacecraft and other A-Train platforms. The most recent processing effort for the MODIS Atmosphere Team, referred to as the "Collection 5" stream, includes a research-level multilayer cloud detection algorithm that uses both thermodynamic phase information derived from a combination of solar and thermal emission bands to discriminate layers of different phases, as well as true layer separation discrimination using a moderately absorbing water vapor band. The multilayer detection algorithm is designed to provide a means of assessing the applicability of 1D cloud models used in the MODIS cloud optical and microphysical product retrieval, which are generated at a 1 h resolution. Using pixel-level collocations of MODIS Aqua, CALIOP, and CloudSat radar measurements, we investigate the global performance of the thermodynamic phase and multilayer cloud detection algorithms.

  6. An Attempt to Improve Kessler-Type Parameterization of Warm Cloud Microphysical Conversion Processes Using CloudSat Observations

    Institute of Scientific and Technical Information of China (English)

    尹金方; 王东海; 翟国庆

    2015-01-01

    Improvements to the Kessler-type parameterization of warm cloud microphysical conversion processes (also called autoconversion) are proposed based on a large number of CloudSat observations between June 2006 and April 2011 over Asian land areas. The emphasis is given to the vertical distribution of liquid water content (LWC), particularly, the threshold values of LWC for autoconversion. The results warrant a new approach to the numerical parameterization of autoconversion in warm clouds. One feature of this new approach is that the autoconversion threshold, which has been treated as a constant in previous parameter-ization schemes, is diagnosed as a function of altitude by using a relationship between LWC and height (H) derived from CloudSat observations: LWCdig = −500.0 ln ?H 9492.2 ? . Under this framework, the threshold LWC decreases with increasing H, allowing autoconversion to occur in clouds with low LWC (approximately 0.3 g m−3) at levels above 5.5 km. Autoconversion rates calculated based on the new parameterization are compared to those calculated based on several commonly used parameterization schemes over a range of LWCs from 0.01 to 1.0 g m−3. The new scheme provides reasonable simulations of autoconversion at various vertical levels.

  7. Capture reactions

    NARCIS (Netherlands)

    Endt, P.M.

    1956-01-01

    Capture reactions will be considered here from the viewpoint of the nuclear spectroscopist. Especially important to him are the capture of neutrons, protons, and alpha particles, which may proceed through narrow resonances, offering a well defined initial state for the subsequent deexcitation proces

  8. Evaluating CloudSat Ice Water Retrievals Using a Cloud Resolving Model: Sensitivities to Frozen Particle Properties and Implications for Model-Data Comparisons

    Science.gov (United States)

    Woods, C. P.; Waliser, D.; Li, F.; Austin, R.; Stephens, G.; Vane, D.; Tao, W.; Tompkins, A.

    2007-12-01

    The sensitivities of CloudSat ice water content retrievals to frozen particle characteristics are tested by generating CloudSat-like retrievals from profiles of known ice water content. First, `truth' values of total ice water content are generated by a cloud-resolving model (MM5). The MM5 model profiles are generated using the Reisner- Thompson microphysical parameterization scheme, which allows for the existence of multiple types of frozen particles (cloud ice, snow and graupel). Next, a 94-GHz reflectivity simulator, called QuickBeam, is used to generate a CloudSat-like view of the model generated profiles. Since reflectivity is highly dependent on the characteristics of the scattering particles (e.g., density, size distribution), a set of tests are performed to determine the sensitivity of the reflectivity to the assumed properties of cloud ice and snow particles. Finally, the CloudSat ice water content retrieval algorithm is applied to the profiles of 94-GHz reflectivity, producing 'simulated retrieved' values of ice water content, which can be compared to the `truth' values. The comparisons suggest that CloudSat ice water content retrievals are sensitive to the frozen particle properties often parameterized in models (e.g., particle density, particle size distributions). The sensitivity tests provide a better understanding of how the different components of the frozen water mass impact the ice water content retrieved by CloudSat. Such information is important when comparing the measurements to modeled frozen water mass quantities, including those from various levels of sophistication in global climate models. Additionally, we demonstrate how information gained in this study may be used for improving the retrieval system. A simple height-based retrieval correction that effectively corrects for the vertically varying characteristics of frozen particles is examined.

  9. Capturing appearance

    Science.gov (United States)

    Rushmeier, Holly E.

    2005-01-01

    For computer graphics applications, capturing the appearance parameters of objects (reflectance, transmittance and small scale surface structures), is as important as capturing the overall shape. We briefly review recent approaches developed by the computer graphics community to solve this problem. Excellent results have been obtained by various researchers measuring spatially varying reflectance functions for some classes of objects. We will consider some challenges from two of the remaining problematic classes of objects. First we will describe our experience scanning and modeling the throne of Tutankhamen. The major difficulties in this case were that the base shape was a highly detailed non-convex geometry with complex topology, and the shape was covered by optically uncooperative gold and silver. Then we will discuss some observations from our ongoing project to scan and model historic buildings on the Yale campus. The major difficulties in this second case are quantity of data and the lack of control over acquisition conditions.

  10. Gravitational Capture of Asteroids by Gas Drag

    Directory of Open Access Journals (Sweden)

    E. Vieira Neto

    2009-01-01

    captured by the planet got its velocity reduced and could been trapped as an irregular satellite. It is well known that, depending on the time scale of the gas envelope, an asteroid will spiral and collide with the planet. So, we simulate the passage of the asteroid in the gas envelope with its density decreasing along the time. Using this approach, we found effective captures, and have a better understanding of the whole process. Finally, we conclude that the origin of the irregular satellites cannot be attributed to the gas drag capture mechanism alone.

  11. Simulation of Atmospheric Clouds and Aerosols in the Context of CloudSat and EarthCARE

    Science.gov (United States)

    Blanchet, J.-P.; Szyrmer, W.; Beaulne, A.; Donovan, D.; Schutgen, N.; Barker, H.; Testud, J.; Quante, M.

    2003-04-01

    Aerosols and clouds play crucial roles in the atmospheric-surface heat balance. Currently, they are the main source of uncertainties in predicting climate change. The reason is that they are strong modulators of the Earth radiation balance. The problem stems from the fact that every leading physical process in the atmosphere alters the radiative properties of clouds. To address the question, a strategy had been proposed by the scientific community in Granada-I with the aim to link measurements and modeling of the physical processes involved. The new missions are said to be “process oriented”. In preparation for CloudSat and EarthCARE missions, we are actively involved into simulations of both, processes and instruments. Using cloud resolving and regional climate models, together with explicit microphysics, detailed optics and 3D Monte Carlo radiative transfer codes, we are attempting to produce realistic simulations of the active and passive instruments in an “end-to-end experiment”. Starting from detailed scenes, we attempt to simulate the forward and backward radiative transfer of instruments to retrieve and to evaluate the products. In return, the exercise provides us guidance on the application of the future measurements to improve climate models and to reduce the current uncertainties in climate change.

  12. Quantifying uncertainties in radar forward models through a comparison between CloudSat and SPartICus reflectivity factors

    Science.gov (United States)

    Mascio, Jeana; Mace, Gerald G.

    2017-02-01

    Interpretations of remote sensing measurements collected in sample volumes containing ice-phase hydrometeors are very sensitive to assumptions regarding the distributions of mass with ice crystal dimension, otherwise known as mass-dimensional or m-D relationships. How these microphysical characteristics vary in nature is highly uncertain, resulting in significant uncertainty in algorithms that attempt to derive bulk microphysical properties from remote sensing measurements. This uncertainty extends to radar reflectivity factors forward calculated from model output because the statistics of the actual m-D in nature is not known. To investigate the variability in m-D relationships in cirrus clouds, reflectivity factors measured by CloudSat are combined with particle size distributions (PSDs) collected by coincident in situ aircraft by using an optimal estimation-based (OE) retrieval of the m-D power law. The PSDs were collected by 12 flights of the Stratton Park Engineering Company Learjet during the Small Particles in Cirrus campaign. We find that no specific habit emerges as preferred, and instead, we find that the microphysical characteristics of ice crystal populations tend to be distributed over a continuum-defying simple categorization. With the uncertainties derived from the OE algorithm, the uncertainties in forward-modeled backscatter cross section and, in turn, radar reflectivity is calculated by using a bootstrapping technique, allowing us to infer the uncertainties in forward-modeled radar reflectivity that would be appropriately applied to remote sensing simulator algorithms.

  13. Comparison Between CCCM and CloudSat Radar-Lidar (RL) Cloud and Radiation Products

    Science.gov (United States)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny

    2015-01-01

    To enhance cloud properties, LaRC and CIRA developed each combination algorithm for obtained properties from passive, active and imager in A-satellite constellation. When comparing global cloud fraction each other, LaRC-produced CERES-CALIPSO-CloudSat-MODIS (CCCM) products larger low-level cloud fraction over tropic ocean, while CIRA-produced Radar-Lidar (RL) shows larger mid-level cloud fraction for high latitude region. The reason for different low-level cloud fraction is due to different filtering method of lidar-detected cloud layers. Meanwhile difference in mid-level clouds is occurred due to different priority of cloud boundaries from lidar and radar.

  14. Satellite Communication.

    Science.gov (United States)

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  15. Computation of Solar Radiative Fluxes by 1D and 3D Methods Using Cloudy Atmospheres Inferred from A-train Satellite Data

    Science.gov (United States)

    Barker, Howard W.; Kato, Serji; Wehr, T.

    2012-01-01

    The main point of this study was to use realistic representations of cloudy atmospheres to assess errors in solar flux estimates associated with 1D radiative transfer models. A scene construction algorithm, developed for the EarthCARE satellite mission, was applied to CloudSat, CALIPSO, and MODIS satellite data thus producing 3D cloudy atmospheres measuring 60 km wide by 13,000 km long at 1 km grid-spacing. Broadband solar fluxes and radiances for each (1 km)2 column where then produced by a Monte Carlo photon transfer model run in both full 3D and independent column approximation mode (i.e., a 1D model).

  16. Fast Simulators for Satellite Cloud Optical Centroid Pressure Retrievals, 1. Evaluation of OMI Cloud Retrievals

    Science.gov (United States)

    Joiner, J.; Vasilkov, A.; Gupta, P.; Bhartia, P. K.; Veefkind, P.; Sneep, M.; de Haan, J.; Polonsky, I.; Spurr, R.

    2012-01-01

    The cloud Optical Centroid Pressure (OCP), also known as the effective cloud pressure, is a satellite-derived parameter that is commonly used in trace-gas retrievals to account for the effects of clouds on near-infrared through ultraviolet radiance measurements. Fast simulators are desirable to further expand the use of cloud OCP retrievals into the operational and climate communities for applications such as data assimilation and evaluation of cloud vertical structure in general circulation models. In this paper, we develop and validate fast simulators that provide estimates of the cloud OCP given a vertical profile of optical extinction. We use a pressure-weighting scheme where the weights depend upon optical parameters of clouds and/or aerosol. A cloud weighting function is easily extracted using this formulation. We then use fast simulators to compare two different satellite cloud OCP retrievals from the Ozone Monitoring Instrument (OMI) with estimates based on collocated cloud extinction profiles from a combination of CloudS at radar and MODIS visible radiance data. These comparisons are made over a wide range of conditions to provide a comprehensive validation of the OMI cloud OCP retrievals. We find generally good agreement between OMI cloud OCPs and those predicted by CloudSat. However, the OMI cloud OCPs from the two independent algorithms agree better with each other than either does with the estimates from CloudSat/MODIS. Differences between OMI cloud OCPs and those based on CloudSat/MODIS may result from undetected snow/ice at the surface, cloud 3-D effects, low altitude clouds missed by CloudSat, and the fact that CloudSat only observes a relatively small fraction of an OMI field-of-view.

  17. Fast simulators for satellite cloud optical centroid pressure retrievals; evaluation of OMI cloud retrievals

    Directory of Open Access Journals (Sweden)

    J. Joiner

    2012-03-01

    Full Text Available The cloud Optical Centroid Pressure (OCP is a satellite-derived parameter that is commonly used in trace-gas retrievals to account for the effects of clouds on near-infrared through ultraviolet radiance measurements. Fast simulators are desirable to further expand the use of cloud OCP retrievals into the operational and climate communities for applications such as data assimilation and evaluation of cloud vertical structure in general circulation models. In this paper, we develop and validate fast simulators that provide estimates of the cloud OCP given a vertical profile of optical extinction. We use a pressure-weighting scheme where the weights depend upon optical parameters of clouds and/or aerosols. A cloud weighting function is easily extracted using this formulation. We then use fast simulators to compare two different satellite cloud OCP retrievals, from the Ozone Monitoring Instrument (OMI, with estimates based on collocated cloud extinction profiles from a combination of CloudSat radar and MODIS visible radiance data. These comparisons are made over a wide range of conditions to provide a comprehensive validation of the OMI cloud OCP retrievals. We find generally good agreement between OMI cloud OCPs and those predicted by CloudSat. However, the OMI cloud OCPs from the two independent algorithms agree better with each other than either does with the estimates from CloudSat/MODIS. Differences between OMI cloud OCPs and those based on CloudSat/MODIS may result from undetected snow/ice at the surface, cloud 3-D effects, cases of low clouds obscurred by ground-clutter in CloudSat observations and by opaque high clouds in CALIPSO lidar observations, and the fact that CloudSat/CALIPSO only observes a relatively small fraction of an OMI field-of-view.

  18. The Capture of Jupiter Trojans

    Science.gov (United States)

    Morbidelli, A.; Nesvorny, D.; Vokrouhlicky, D.

    2013-09-01

    The origin of Jupiter Trojans remained mysterious for decades. Particularly, it was difficult to explain the excitation of the inclinations of the Trojan population [1]. In 2005, Morbidelli et al. [2] proposed a scenario of capture from the trans-Neptunian disk, in the framework of the so-called "Nice model" [3,4]. This scenario explained in a natural way the observed orbital distribution of Trojans. The Nice model, however, evolved in the years, in order to satisfy an increasingly large number of constraints. It now appears that the dynamical evolution of the giant planets was different from that envisioned in [2]. Here, we assess again the process of capture of Trojans within this new evolution. We show that (6-8)×10 - 7 of the original trans-Neptunian planetesimals are captured in the Trojan region, with an orbital distribution consistent with the one observed. Relative to [2], the new capture mechanism has the potential of explaining the asymmetry between the L4 and L5 populations. Moreover, the resulting population of Trojans is consistent with that of the Irregular Satellites of Jupiter, which are captured in the same process; a few bodies from the main asteroid belt could also be captured in the Trojan cloud.

  19. Collision Avoidance: Coordination of Predicted Conjunctions between NASA Satellites and Satellites of other Countries

    Science.gov (United States)

    Kelly, A.; Watson, W.

    2014-09-01

    This paper describes one of the challenges facing the flight operations teams of the International Earth Observing constellation satellites at the 705 km orbit, including NASAs satellites. The NASA Earth Science Mission Operations (ESMO) Project has been dealing with predicted conjunctions (close approach) between operational/non-operational space objects and the satellites in the International Earth observing constellations for several years. Constellation satellites include: NASAs Earth Observing System (EOS) Terra, Aqua, and Aura, CloudSat, the joint NASA/CNES CALIPSO mission, Earth Observing 1 (EO-1), the Japan Aerospace and Exploration Agency (JAXA) Global Change Observation Mission-Water 1 (GCOM-W1) mission, the United States Geological Survey (USGS) Landsat 7 and Landsat 8, and until 2013, Argentinas SAC-C mission and the CNES PARASOL mission. The NASA Conjunction Analysis and Risk Assessment (CARA) team provides daily reports to the ESMO Project regarding any high interest close approach events (HIEs) involving the constellation satellites. The daily CARA reports provide risk assessment results that help the operations teams to determine if there is a need to perform a risk mitigation action. If the conjuncting space object is an operational satellite that is capable of maneuvering, the affected satellite team needs to coordinate their action plan with the owner operator of the conjuncting satellite. It is absolutely critical for the two teams to communicate as soon as possible. The goal is to minimize the collision risk; this can happen if both satellite operators do not coordinate their maneuver plans. The constellation teams have established guidelines for coordinating HIEs. This coordination process has worked successfully for several years for satellites that are operated by other organizations in the United States and by NASAs international partners, all with whom NASA has a cooperative agreement. However, the situation is different for HIEs with

  20. Data capture and processing. [for Space Station

    Science.gov (United States)

    Lyon, John; Smith, Gene; Carper, Richard

    1987-01-01

    A systems concept developed in response to the specific requirements imposed by the Space Station and affiliated instrumentation is described. Particular attention is given to those subsystems associated with initial data capture, handling, routing, and distribution control for return link data via the Tracking and Data Relay Satellite System. The conceived approach, designated the Customer Data and Operations System, includes a data interface facility and a data handling center whose functions are data capture, demultiplexing and routing, early preprocessing, and ancillary data handling.

  1. What do satellite backscatter ultraviolet and visible spectrometers see over snow and ice? A study of clouds and ozone using the A-train

    Directory of Open Access Journals (Sweden)

    A. P. Vasilkov

    2010-01-01

    Full Text Available In this paper, we examine how clouds over snow and ice affect ozone absorption and how these effects may be accounted for in satellite retrieval algorithms. Over snow and ice, the Aura Ozone Monitoring Instrument (OMI Raman cloud pressure algorithm derives an effective scene pressure. When this scene pressure differs appreciably from the surface pressure, the difference is assumed to be caused by a cloud that is shielding atmospheric absorption and scattering below cloud-top from satellite view. A pressure difference of 100 hPa is used as a crude threshold for the detection of clouds that significantly shield tropospheric ozone absorption. Combining the OMI effective scene pressure and the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS cloud top pressure, we can distinguish between shielding and non-shielding clouds.

    To evaluate this approach, we performed radiative transfer simulations under various observing conditions. Using cloud vertical extinction profiles from the CloudSat Cloud Profiling Radar (CPR, we find that clouds over a bright surface can produce significant shielding (i.e., a reduction in the sensitivity of the top-of-the-atmosphere radiance to ozone absorption below the clouds. The amount of shielding provided by clouds depends upon the geometry (solar and satellite zenith angles and the surface albedo as well as cloud optical thickness. We also use CloudSat observations to qualitatively evaluate our approach. The CloudSat, Aqua, and Aura satellites fly in an afternoon polar orbit constellation with ground overpass times within 15 min of each other.

    The current Total Ozone Mapping Spectrometer (TOMS total column ozone algorithm (that has also been applied to the OMI assumes no clouds over snow and ice. This assumption leads to errors in the retrieved ozone column. We show that the use of OMI effective scene pressures over snow and ice reduces these errors and leads to a more homogeneous spatial

  2. Arctic clouds and surface radiation – a critical comparison of satellite retrievals and the ERA-interim reanalysis

    Directory of Open Access Journals (Sweden)

    M. Zygmuntowska

    2011-12-01

    Full Text Available Clouds regulate Earth's radiation budget, both by reflecting part of the incoming sunlight leading to cooling and by absorbing and emitting infrared radiation which tends to have a warming effect. Globally averaged, at the top of the atmosphere the cloud radiative effect is to cool the climate, while at the Arctic surface, clouds are thought to be warming. Ground-based observations of central Arctic Ocean cloudiness are limited to sporadic field campaigns. Therefore many studies rely on satellite- or reanalysis data. Here we compare a passive instrument, the AVHRR-based retrieval from CM-SAF, with recently launched active instruments onboard CloudSat and CALIPSO and the widely used ERA-Interim reanalysis. We find that the three data sets differ significantly. In summer, the two satellite products agree having monthly means of 70–80 percent, but the reanalysis are approximately ten percent higher. In winter passive satellite instruments have serious difficulties, detecting only half the cloudiness of the reanalysis, active instruments being in between. The monthly mean long- and shortwave components of the surface cloud radiative effect obtained from the ERA-Interim reanalysis are about twice that calculated on the basis of CloudSat retrievals. We discuss these discrepancies in terms of instrument-, retrieval- and reanalysis characteristics.

  3. Reducing Errors in Satellite Simulated Views of Clouds with an Improved Parameterization of Unresolved Scales

    Science.gov (United States)

    Hillman, B. R.; Marchand, R.; Ackerman, T. P.

    2016-12-01

    Satellite instrument simulators have emerged as a means to reduce errors in model evaluation by producing simulated or psuedo-retrievals from model fields, which account for limitations in the satellite retrieval process. Because of the mismatch in resolved scales between satellite retrievals and large-scale models, model cloud fields must first be downscaled to scales consistent with satellite retrievals. This downscaling is analogous to that required for model radiative transfer calculations. The assumption is often made in both model radiative transfer codes and satellite simulators that the unresolved clouds follow maximum-random overlap with horizontally homogeneous cloud condensate amounts. We examine errors in simulated MISR and CloudSat retrievals that arise due to these assumptions by applying the MISR and CloudSat simulators to cloud resolving model (CRM) output generated by the Super-parameterized Community Atmosphere Model (SP-CAM). Errors are quantified by comparing simulated retrievals performed directly on the CRM fields with those simulated by first averaging the CRM fields to approximately 2-degree resolution, applying a "subcolumn generator" to regenerate psuedo-resolved cloud and precipitation condensate fields, and then applying the MISR and CloudSat simulators on the regenerated condensate fields. We show that errors due to both assumptions of maximum-random overlap and homogeneous condensate are significant (relative to uncertainties in the observations and other simulator limitations). The treatment of precipitation is particularly problematic for CloudSat-simulated radar reflectivity. We introduce an improved subcolumn generator for use with the simulators, and show that these errors can be greatly reduced by replacing the maximum-random overlap assumption with the more realistic generalized overlap and incorporating a simple parameterization of subgrid-scale cloud and precipitation condensate heterogeneity. Sandia National Laboratories is a

  4. Modulation of radiative heating by the Madden-Julian Oscillation and convectively coupled Kelvin waves as observed by CloudSat

    Science.gov (United States)

    Ma, Ding; Kuang, Zhiming

    2011-11-01

    The vertical distribution of radiative heating affects the moist static energy budget and potentially the maintenance and propagation of the Madden-Julian Oscillation (MJO). This paper uses CloudSat data to examine the radiative heating climatology in the tropics and the vertical structure of its modulation by the MJO and convectively coupled Kelvin Waves (KWs). Composites of active regions of the MJO and KW both show positive radiative heating anomaly in the middle and lower troposphere and slightly negative radiative heating anomaly in upper troposphere. Such bottom-heavy profiles can help to strengthen the MJO while weaken the KWs. Another finding is that cloud condensate anomalies associated with the MJO are significantly more bottom-heavy than those of the KWs, while the radiative heating anomalies associated with the MJO are only very slightly more bottom-heavy.

  5. Satellite RNAs and Satellite Viruses.

    Science.gov (United States)

    Palukaitis, Peter

    2016-03-01

    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.

  6. Comparison of different cloud types from surface and satellite cloud classification products over China

    Science.gov (United States)

    Wang, Minyan; Zeng, Le; Wang, Shengjie; Gu, Junxia; Yang, Runzhi

    2016-04-01

    Different cloud types usually have different cloud dynamic process and micro-physical characteristics, and the relative cloud radiation forcing effects vary much. In recent years, the focus of cloud classification is the algorithm development, as well as the analysis on total cloud amount, high/middle/low cloud amount. While, research on the different cloud types (like cirrus, stratus, and cumulonimbus) is not enough. In this research, we use multi-resources cloud classification products including FY-2, Cloudsat and surface observation to obtain the temporal-spatial distribution characteristics and evolvement of different cloud types in different regions of China, analyze the quantitative difference of multi-source products and the reasons. According to the temporal and spatial scales of cloud, and temporal-spatial representation of cloud classification products based on CloudSat, etc, the scaling is necessary to explore in temporal-spatial matching/validation research. This research have important scientific significances on understanding the regional characteristics of different cloud types in China, improving the remote sensing retrieve algorithms on cloud classification, temporal-spatial matching/validation techniques of satellite data, and cloud vertical structure parameterized methods in numerical models.

  7. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  8. Satellite theory

    Science.gov (United States)

    Kozai, Y.

    1981-04-01

    The dynamical characteristics of the natural satellite of Mars, Jupiter, Saturn, Uranus and Neptune are analyzed on the basis of the solar tidal perturbation factor and the oblateness factor of the primary planet for each satellite. For the inner satellites, for which the value of the solar tidal factor is much smaller than the planetary oblateness factor, it is shown that the eccentricity and inclination of satellite orbits are generally very small and almost constant; several pairs of inner satellites are also found to exhibit commensurable mean motions, or secular accelerations in mean longitude. In the case of the outer satellites, for which solar perturbations are dominant, secular perturbations and long-period perturbations may be derived by the solution of equations of motion reduced to one degree of freedom. The existence of a few satellites, termed intermediary satellites, for which the solar tidal perturbation is on the order of the planetary oblateness factor, is also observed, and the pole of the orbital plane of the satellite is noted to execute a complex motion around the pole of the planet or the orbital plane of the planet.

  9. Video Screen Capture Basics

    Science.gov (United States)

    Dunbar, Laura

    2014-01-01

    This article is an introduction to video screen capture. Basic information of two software programs, QuickTime for Mac and BlueBerry Flashback Express for PC, are also discussed. Practical applications for video screen capture are given.

  10. Color Survey of the Irregular Planetary Satellites

    Science.gov (United States)

    Graykowski, Ariel; Jewitt, David

    2016-10-01

    Irregular satellites are characterized by their larger orbital distance from their planet, their high eccentricity and their high inclination, all indicating that they were captured. However, the mechanism of capture and the location of origin of the satellites remain unknown. We are conducting a photometric survey of the irregular satellites of the giant planets using the LRIS instrument on the 10-meter telescope at the Keck Observatory in Hawaii. The measured colors will be compared to other planetary bodies in search for similarities and differences that may reflect upon the origin of the satellites. For example, if irregular satellites were captured from the Kuiper Belt then some should contain the ultrared material that is common in the trans-Neptunian and Centaur populations. If the irregular satellites of Jupiter were captured from the same source population as the Jovian Trojans, then it is natural to expect that the surface properties of satellites and Trojans should be the same. We will present initial results of this work.

  11. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  12. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites........ The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...

  13. Satellite (Natural)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    In its most general sense, any celestial object in orbit around a similar larger object. Thus, for example, the Magellanic Clouds are satellite galaxies of our own Milky Way galaxy. Without qualification, the term is used to mean a body in orbit around a planet; an alternative term is moon. The term natural satellite distinguishes these bodies from artificial satellites—spacecraft placed in orbi...

  14. Temporary Capture of Asteroids by a Planet: Dependence of Prograde/Retrograde Capture on Asteroids' Semimajor Axes

    CERN Document Server

    Higuchi, Arika

    2015-01-01

    We have investigated the dependence of the prograde/retrograde temporary capture of asteroids by a planet on their original heliocentric semimajor axes through analytical arguments and numerical orbital integrations in order to discuss the origins of irregular satellites of giant planets. We found that capture is mostly retrograde for the asteroids near the planetary orbit and is prograde for those from further orbits. An analytical investigation reveals the intrinsic dynamics of these dependences and gives boundary semimajor axes for the change in prograde/retrograde capture. The numerical calculations support the idea of deriving the analytical formulae and confirm their dependence. Our numerical results show that the capture probability is much higher for bodies from the inner region than for outer ones. These results imply that retrograde irregular satellites of Jupiter are most likely to be captured bodies from the nearby orbits of Jupiter that may have the same origin as Trojan asteroids, while prograde...

  15. Asymptotic behavior of an elastic satellite with internal friction

    OpenAIRE

    Haus, Emanuele; Bambusi, Dario

    2012-01-01

    We study the dynamics of an elastic body whose shape and position evolve due to the gravitational forces exerted by a pointlike planet. The main result is that, if all the deformations of the satellite dissipate some energy, then under a suitable nondegeneracy condition there are only three possible outcomes for the dynamics: (i) the orbit of the satellite is unbounded, (ii) the satellite falls on the planet, (iii) the satellite is captured in synchronous resonance i.e. its orbit is asymptoti...

  16. Neutron Capture Nucleosynthesis

    CERN Document Server

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these results most of the nuclei can formed at medium neutron capture density environment e.g. in some kind of AGB stars. Besides these observations our model is capable to use educational purpose.

  17. Evaluating Cloud and Precipitation Processes in Numerical Models using Current and Potential Future Satellite Missions

    Science.gov (United States)

    van den Heever, S. C.; Tao, W. K.; Skofronick Jackson, G.; Tanelli, S.; L'Ecuyer, T. S.; Petersen, W. A.; Kummerow, C. D.

    2015-12-01

    Cloud, aerosol and precipitation processes play a fundamental role in the water and energy cycle. It is critical to accurately represent these microphysical processes in numerical models if we are to better predict cloud and precipitation properties on weather through climate timescales. Much has been learned about cloud properties and precipitation characteristics from NASA satellite missions such as TRMM, CloudSat, and more recently GPM. Furthermore, data from these missions have been successfully utilized in evaluating the microphysical schemes in cloud-resolving models (CRMs) and global models. However, there are still many uncertainties associated with these microphysics schemes. These uncertainties can be attributed, at least in part, to the fact that microphysical processes cannot be directly observed or measured, but instead have to be inferred from those cloud properties that can be measured. Evaluation of microphysical parameterizations are becoming increasingly important as enhanced computational capabilities are facilitating the use of more sophisticated schemes in CRMs, and as future global models are being run on what has traditionally been regarded as cloud-resolving scales using CRM microphysical schemes. In this talk we will demonstrate how TRMM, CloudSat and GPM data have been used to evaluate different aspects of current CRM microphysical schemes, providing examples of where these approaches have been successful. We will also highlight CRM microphysical processes that have not been well evaluated and suggest approaches for addressing such issues. Finally, we will introduce a potential NASA satellite mission, the Cloud and Precipitation Processes Mission (CAPPM), which would facilitate the development and evaluation of different microphysical-dynamical feedbacks in numerical models.

  18. Capture ready study

    Energy Technology Data Exchange (ETDEWEB)

    Minchener, A.

    2007-07-15

    There are a large number of ways in which the capture of carbon as carbon dioxide (CO{sub 2}) can be integrated into fossil fuel power stations, most being applicable for both gas and coal feedstocks. To add to the choice of technology is the question of whether an existing plant should be retrofitted for capture, or whether it is more attractive to build totally new. This miscellany of choices adds considerably to the commercial risk of investing in a large power station. An intermediate stage between the non-capture and full capture state would be advantageous in helping to determine the best way forward and hence reduce those risks. In recent years the term 'carbon capture ready' or 'capture ready' has been coined to describe such an intermediate stage plant and is now widely used. However a detailed and all-encompassing definition of this term has never been published. All fossil fuel consuming plant produce a carbon dioxide gas byproduct. There is a possibility of scrubbing it with an appropriate CO{sub 2} solvent. Hence it could be said that all fossil fuel plant is in a condition for removal of its CO{sub 2} effluent and therefore already in a 'capture ready' state. Evidently, the practical reality of solvent scrubbing could cost more than the rewards offered by such as the ETS (European Trading Scheme). In which case, it can be said that although the possibility exists of capturing CO{sub 2}, it is not a commercially viable option and therefore the plant could not be described as ready for CO{sub 2} capture. The boundary between a capture ready and a non-capture ready condition using this definition cannot be determined in an objective and therefore universally acceptable way and criteria must be found which are less onerous and less potentially contentious to assess. 16 refs., 2 annexes.

  19. 柔性空间机械臂捕获卫星过程的鲁棒镇定与自适应抑振复合控制%Composite Control of Robust Stabilization and Adaptive Vibration Suppression of Flexible Space Manipulator Capturing a Satellite

    Institute of Scientific and Technical Information of China (English)

    董楸煌; 陈力

    2014-01-01

    分析漂浮基柔性空间机械臂捕获运动卫星过程的碰撞动力学,及受碰撞冲击后的不稳定空间机械臂系统的控制。首先,利用假设模态法近似描述柔性杆的弹性变形,并结合第二类拉格朗日方程建立柔性空间机械臂多体系统动力学模型。而后,基于动量守恒原理,利用动量冲量法分析空间机械臂捕获卫星的碰撞动力学。针对受碰撞冲击后不稳定运动空间机械臂,设计鲁棒镇定与自适应抑振复合控制以维持空间机械臂与被捕获卫星组合体系统稳定。最后,数值仿真揭示了碰撞冲击影响效应,并验证了上述控制算法的有效性。%The impact dynamics of a free-floating flexible space manipulator capturing a moving satellite, and unstable space manipulator control after impact are analyzed. Firstly, the elastic deformation of flexible link is described approxi-mately with assumed mode method, and a dynamic model of the flexible space manipulator multi-body system is derived by combining the second Lagrange equation. Based on the momentum conservation theory, the impact dynamics between the space manipulator and satellite is analyzed with momentum-impulse method. For the unstable space manipulator system after impact, a composite control of robust stabilization and adaptive vibration suppression is designed to stabilize the combined space manipulator and satellite system. Finally, the simulation results reveal the impact effect and validate the proposed control algorithm.

  20. CAPTURED India Country Evaluation

    NARCIS (Netherlands)

    O'Donoghue, R.; Brouwers, J.H.A.M.

    2012-01-01

    This report provides the findings of the India Country Evaluation and is produced as part of the overall CAPTURED End Evaluation. After five years of support by the CAPTURED project the End Evaluation has assessed that results are commendable. I-AIM was able to design an approach in which health fol

  1. Carbon Capture and Storage

    NARCIS (Netherlands)

    Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.

    2012-01-01

    Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2

  2. Carbon Capture and Storage

    NARCIS (Netherlands)

    Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.

    2012-01-01

    Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2

  3. CAPTURED India Country Evaluation

    NARCIS (Netherlands)

    O'Donoghue, R.; Brouwers, J.H.A.M.

    2012-01-01

    This report provides the findings of the India Country Evaluation and is produced as part of the overall CAPTURED End Evaluation. After five years of support by the CAPTURED project the End Evaluation has assessed that results are commendable. I-AIM was able to design an approach in which health

  4. Scientific Satellites

    Science.gov (United States)

    1967-01-01

    followed Hale’s into orbit. In 1879, Jules Verne wrote about launching small satellites with a gun possessing a muzzle velocity of 10 000 m/sec (ref. 3...was activated in 1950.11 It was located only a few tens of miles from the spot where Jules Verne had his Baltimore Gun Club fire a manned projectile to...principle, satellites can be launched by a single impulse applied at the Earth’s surface-say, with a large cannon, & la Jules Verne (sec. 8-3). In

  5. Control and stability problems of remote orbital capture

    Science.gov (United States)

    Kaplan, M. H.; Nadkarni, A. A.

    1977-01-01

    Certain space shuttle missions may require retrieval of passive spinning and precessing satellites. One proposed means of retrieval utilizes a free-flying teleoperator launched from the shuttle. A study of misalignment, stability, and certain control aspects during capture of an object is reported here. The approach used is to model the dynamics by a Lagrangian formulation and apply torque components to dissipate motion. Differential angular rates between teleoperator and object are assumed, and control responses after capture are reviewed.

  6. Dynamics of capture in the restricted three-body problem

    CERN Document Server

    Astakhov, S A; Farrelly, S W D; Burbanks, Andrew D.; Farrelly, Stephen Wiggins & David

    2003-01-01

    We propose a new dynamical model for capture of irregular moons which identifies chaos as the essential feature responsible for initial temporary gravitational trapping within a planet's Hill sphere. The key point is that incoming potential satellites get trapped in chaotic orbits close to "sticky" KAM tori in the neighbourhood of the planet, possibly for very long times, so that the chaotic layer largely dictates the final orbital properties of captured moons.

  7. Marine turtle capture data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To estimate abundance, growth, and survival rate and to collect tissue samples, marine turtles are captured at nesting beaches and foraging grounds through various...

  8. Preparing to Capture Carbon

    National Research Council Canada - National Science Library

    Daniel P. Schrag

    2007-01-01

    .... Scientific and economic challenges still exist, but none are serious enough to suggest that carbon capture and storage will not work at the scale required to offset trillions of tons of carbon...

  9. Capturing complete spatial context in satellite observations of greenhouse gases

    Science.gov (United States)

    Miller, Charles E.; Frankenberg, Christian; Kuhnert, Andreas C.; Spiers, Gary D.; Eldering, Annmarie; Rud, Mayer; Pagano, Thomas S.; Wilson, Daniel W.; Brooks, Cynthia; Jaffe, Daniel T.

    2016-09-01

    Scientific consensus from a 2015 pre-Decadal Survey workshop highlighted the essential need for a wide-swath (mapping) low earth orbit (LEO) instrument delivering carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) measurements with global coverage. OCO-2 pioneered space-based CO2 remote sensing, but lacks the CH4, CO and mapping capabilities required for an improved understanding of the global carbon cycle. The Carbon Balance Observatory (CARBO) advances key technologies to enable high-performance, cost-effective solutions for a space-based carbon-climate observing system. CARBO is a compact, modular, 15-30° field of view spectrometer that delivers high-precision CO2, CH4, CO and solar induced chlorophyll fluorescence (SIF) data with weekly global coverage from LEO. CARBO employs innovative immersion grating technologies to achieve diffraction-limited performance with OCO-like spatial (2x2 km2) and spectral (λ/Δλ ≍ 20,000) resolution in a package that is >50% smaller, lighter and more cost-effective. CARBO delivers a 25- to 50-fold increase in spatial coverage compared to OCO-2 with no loss of detection sensitivity. Individual CARBO modules weigh < 20 kg, opening diverse new space-based platform opportunities.

  10. Muon capture at PSI

    CERN Document Server

    Winter, Peter

    2010-01-01

    Measuring the rate of muon capture in hydrogen provides one of the most direct ways to study the axial current of the nucleon. The MuCap experiment uses a negative muon beam stopped in a time projection chamber operated with ultra-pure hydrogen gas. Surrounded by a decay electron detector, the lifetime of muons in hydrogen can be measured to determine the singlet capture rate Lambda_s to a final precision of 1%. The capture rate determines the nucleon's pseudoscalar form factor g_p. A first result, g_p = 7.3 +- 1.1, has been published and the final analysis of the full statistics will reduce the error by a factor of up to 3. Muon capture on the deuteron probes the weak axial current in the two-nucleon system. Within the framework of effective field theories the calculation of such two-nucleon processes involving the axial current requires the knowledge of one additional low energy constant which can be extracted from the doublet capture rate Lambda_d. The same constant then allows to model-independently calcu...

  11. Muon capture in deuterium

    Science.gov (United States)

    Ricci, P.; Truhlík, E.; Mosconi, B.; Smejkal, J.

    2010-06-01

    Model dependence of the capture rates of the negative muon capture in deuterium is studied starting from potential models and the weak two-body meson exchange currents constructed in the tree approximation and also from an effective field theory. The tree one-boson exchange currents are derived from the hard pion chiral Lagrangians of the NΔπρωa system. If constructed in conjunction with the one-boson exchange potentials, the capture rates can be calculated consistently. On the other hand, the effective field theory currents, constructed within the heavy baryon chiral perturbation theory, contain a low energy constant d that cannot be extracted from data at the one-particle level nor determined from the first principles. Comparative analysis of the results for the doublet transition rate allows us to extract the constant d.

  12. Global Variability of Mesoscale Convective System Anvil Structure from A-Train Satellite Data

    Science.gov (United States)

    Yuan, Jian; Houze, Robert A.

    2010-01-01

    Mesoscale convective systems (MCSs) in the tropics produce extensive anvil clouds, which significantly affect the transfer of radiation. This study develops an objective method to identify MCSs and their anvils by combining data from three A-train satellite instruments: Moderate Resolution Imaging Spectroradiometer (MODIS) for cloud-top size and coldness, Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) for rain area size and intensity, and CloudSat for horizontal and vertical dimensions of anvils. The authors distinguish three types of MCSs: small and large separated MCSs and connected MCSs. The latter are MCSs sharing a contiguous rain area. Mapping of the objectively identified MCSs shows patterns of MCSs that are consistent with previous studies of tropical convection, with separated MCSs dominant over Africa and the Amazon regions and connected MCSs favored over the warm pool of the Indian and west Pacific Oceans. By separating the anvil from the raining regions of MCSs, this study leads to quantitative global maps of anvil coverage. These maps are consistent with the MCS analysis, and they lay the foundation for estimating the global radiative effects of anvil clouds. CloudSat radar data show that the modal thickness of MCS anvils is about 4-5 km. Anvils are mostly confined to within 1.5-2 times the equivalent radii of the primary rain areas of the MCSs. Over the warm pool, they may extend out to about 5 times the rain area radii. The warm ocean MCSs tend to have thicker non-raining and lightly raining anvils near the edges

  13. Global Variability of Mesoscale Convective System Anvil Structure from A-Train Satellite Data

    Science.gov (United States)

    Yuan, Jian; Houze, Robert A.

    2010-01-01

    Mesoscale convective systems (MCSs) in the tropics produce extensive anvil clouds, which significantly affect the transfer of radiation. This study develops an objective method to identify MCSs and their anvils by combining data from three A-train satellite instruments: Moderate Resolution Imaging Spectroradiometer (MODIS) for cloud-top size and coldness, Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) for rain area size and intensity, and CloudSat for horizontal and vertical dimensions of anvils. The authors distinguish three types of MCSs: small and large separated MCSs and connected MCSs. The latter are MCSs sharing a contiguous rain area. Mapping of the objectively identified MCSs shows patterns of MCSs that are consistent with previous studies of tropical convection, with separated MCSs dominant over Africa and the Amazon regions and connected MCSs favored over the warm pool of the Indian and west Pacific Oceans. By separating the anvil from the raining regions of MCSs, this study leads to quantitative global maps of anvil coverage. These maps are consistent with the MCS analysis, and they lay the foundation for estimating the global radiative effects of anvil clouds. CloudSat radar data show that the modal thickness of MCS anvils is about 4-5 km. Anvils are mostly confined to within 1.5-2 times the equivalent radii of the primary rain areas of the MCSs. Over the warm pool, they may extend out to about 5 times the rain area radii. The warm ocean MCSs tend to have thicker non-raining and lightly raining anvils near the edges

  14. US Spacesuit Knowledge Capture

    Science.gov (United States)

    Chullen, Cinda; Thomas, Ken; McMann, Joe; Dolan, Kristi; Bitterly, Rose; Lewis, Cathleen

    2011-01-01

    The ability to learn from both the mistakes and successes of the past is vital to assuring success in the future. Due to the close physical interaction between spacesuit systems and human beings as users, spacesuit technology and usage lends itself rather uniquely to the benefits realized from the skillful organization of historical information; its dissemination; the collection and identification of artifacts; and the education of those in the field. The National Aeronautics and Space Administration (NASA), other organizations and individuals have been performing United States (U.S.) Spacesuit Knowledge Capture since the beginning of space exploration. Avenues used to capture the knowledge have included publication of reports; conference presentations; specialized seminars; and classes usually given by veterans in the field. More recently the effort has been more concentrated and formalized whereby a new avenue of spacesuit knowledge capture has been added to the archives in which videotaping occurs engaging both current and retired specialists in the field presenting technical scope specifically for education and preservation of knowledge. With video archiving, all these avenues of learning can now be brought to life with the real experts presenting their wealth of knowledge on screen for future learners to enjoy. Scope and topics of U.S. spacesuit knowledge capture have included lessons learned in spacesuit technology, experience from the Gemini, Apollo, Skylab and Shuttle programs, hardware certification, design, development and other program components, spacesuit evolution and experience, failure analysis and resolution, and aspects of program management. Concurrently, U.S. spacesuit knowledge capture activities have progressed to a level where NASA, the National Air and Space Museum (NASM), Hamilton Sundstrand (HS) and the spacesuit community are now working together to provide a comprehensive closed-looped spacesuit knowledge capture system which includes

  15. Engineer Calvin H. Seaman demonstrates STS-49 INTELSAT capture bar at JSC

    Science.gov (United States)

    1992-01-01

    Project Engineer Calvin H. Seaman (center) briefs news media representatives on the grapple fixture (capture bar) expected to be instrumental in the capture of the International Telecommunications Satellite Organization (INTELSAT) VI satellite in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9. Seaman is a JSC engineer who designed the capture bar. After Endeavour, Orbiter Vehicle (OV) 105, is maneuvered into a tight proximity operations configuration with the errant satellite, two STS-49 crewmembers will attach the grapple device to the aft side of INTELSAT, as demonstrated with this full-scale mockup. The communications satellite will then be mated with a perigee stage, which the crewmembers will carry with them on their May launch, and released into space. Its motor will be fired many hours afterward, sending it on its way to a higher, geosynchronous orbit. The Errant Satellite Simulator is set up on the Air Bearing Floor for the demonstration. Photo taken by NASA JSC contract

  16. Capturing the Market

    Science.gov (United States)

    Ramaswami, Rama

    2009-01-01

    Digital lecture capture and broadcast solutions have been around for only about 10 years, but are poised for healthy growth. Frost & Sullivan research analysts estimate that the market (which amounts to $25 million currently) will quadruple by 2013. It's still dominated by a few key players, however: Sonic Foundry holds a hefty 40 percent-plus…

  17. Neutron capture therapies

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  18. Neutron capture therapies

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.

    1999-11-02

    In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  19. Air Quality Study Using Satellites - Current Capability and Future Plans

    Science.gov (United States)

    Bhartia, Pawan K.; Joiner, Joanna; Gleason, James; Liu, Xiong; Torres, Omar; Krotkov, Nickolay; Ziemke, Jerry; Chandra, Sushil

    2008-01-01

    Satellite instruments have had great success in monitoring the stratospheric ozone and in understanding the processes that control its daily to decadal scale variations. This field is now reaching its zenith with a number of satellite instruments from the US, Europe and Canada capping several decades of active research in this field. The primary public policy imperative of this research was to make reliable prediction of increases in biologically active surface UV radiation due to human activity. By contrast retrieval from satellite data of atmospheric constituents and photo-chemically active radiation that affect air quality is a new and growing field that is presenting us with unique challenges in measurement and data interpretation. A key distinction compared to stratospheric sensors is the greatly enhanced role of clouds, aerosols, and surfaces (CAS) in determining the quality and quantity of useful data that is available for air quality research. In our presentation we will use data from several sensors that are currently flying on the A-train satellite constellation, including OMI, MODIS, CLOUDSAT, and CALIPSO, to highlight that CAS can have both positive and negative effects on the information content of satellite measurements. This is in sharp contrast to other fields of remote sensing where CAS are usually considered an interference except in those cases when they are the primary subject of study. Our analysis has revealed that in the reflected wavelengths one often sees much further down into the atmosphere, through most cirrus, than one does in the emitted wavelengths. The lower level clouds provide a nice background against which one can track long-range transport of trace gases and aerosols. In addition, differences in trace gas columns estimated over cloudy and adjacent clear pixels can be used to measure boundary layer trace gases. However, in order to take full advantage of these features it will be necessary to greatly advance our understanding of

  20. CAPTURED End Evaluation Synthesis Report

    NARCIS (Netherlands)

    Brouwers, J.H.A.M.

    2012-01-01

    This report provides the findings of the Synthesis Study of the CAPTURED Evaluation and is produced as part of the overall CAPTURED End Evaluation. After five years of support by the CAPTURED project the three CAPTURED partners have achieved commendable results. Ten lessons learned are formulated th

  1. Several thoughts for using new satellite remote sensing and global modeling for aerosol and cloud climate studies

    Science.gov (United States)

    Nakajima, Teruyuki; Hashimoto, Makiko; Takenaka, Hideaki; Goto, Daisuke; Oikawa, Eiji; Suzuki, Kentaroh; Uchida, Junya; Dai, Tie; Shi, Chong

    2017-04-01

    The rapid growth of satellite remote sensing technologies in the last two decades widened the utility of satellite data for understanding climate impacts of aerosols and clouds. The climate modeling community also has received the benefit of the earth observation and nowadays closed-collaboration of the two communities make us possible to challenge various applications for societal problems, such as for global warming and global-scale air pollution and others. I like to give several thoughts of new algorithm developments, model use of satellite data for climate impact studies and societal applications related with aerosols and clouds. Important issues are 1) Better aerosol detection and solar energy application using expanded observation ability of the third generation geostationary satellites, i.e. Himawari-8, GOES-R and future MTG, 2) Various observation functions by directional, polarimetric, and high resolution near-UV band by MISR, POLDER&PARASOL, GOSAT/CAI and future GOSAT2/CAI2, 3) Various applications of general purpose-imagers, MODIS, VIIRS and future GCOM-C/SGLI, and 4) Climate studies of aerosol and cloud stratification and convection with active and passive sensors, especially climate impact of BC aerosols using CLOUDSAT&CALIPSO and future Earth Explorer/EarthCARE.

  2. View of a pallet configured to support 51-A satellite-retrieval mission

    Science.gov (United States)

    1984-01-01

    A high angle view of a Spacelab type pallet configured to support NASA's 51-A satellite-retrieval mission. At left are two capture devices called 'stingers' used to enter the communications satellites at the nozzle of the spent engine. Center are circular areas for clamping down and securing the satellites for the remainder of the trip.

  3. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  4. Supernova electron capture rates

    CERN Document Server

    Martínez-Pinedo, G

    1999-01-01

    We have calculated the Gamow-Teller strength distributions for the ground states and low lying states of several nuclei that play an important role in the precollapse evolution of supernova. The calculations reproduce the experimental GT distributions nicely. The GT distribution are used to calculate electron capture rates for typical presupernova conditions. The computed rates are noticeably smaller than the presently adopted rates. The possible implications for the supernova evolution are discussed.

  5. Neptune's small satellites

    Science.gov (United States)

    Thomas, P.

    1992-04-01

    The small satellites of Neptune and other planets discovered during the Voyager 2 mission are discussed in terms of their composition and relationship to the planetary systems. The satellite Proteus is described in terms of its orbit, five other satellites are described, and they are compared to ther small satellites and systems. Neptune's satellites are hypothesized to be related to the ring system, and the satellite Galatea is related to the confinement of the rings.

  6. Lopsided Collections of Satellite Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    satellites are located at an angle of degrees from the direction pointing toward the other galaxy in the pair. There are more satellites found in the space between the pair than predicted by a uniform distribution. [Libeskind et al. 2016]What might cause this asymmetric distribution? The authors suggest the primary cause is that galaxies in pairs are not necessarily relaxed halos in equilibrium a case in which spherical symmetry would apply. Instead, these are likely merging, dynamically active pairs of galaxies, so we cannot assume that they have axially symmetric halos.Simulations of Local-Group-like pairs of galaxies will be the next step needed to understand how such asymmetries in the distribution of satellites form and evolve. Meanwhile, the results presented here suggest that the commonly adopted axially symmetric models of the Milky Way (and other galaxies in pairs) should be used with caution, as they may not be capturing the true shape of the halo.CitationNoam I. Libeskind et al 2016 ApJ 830 121. doi:10.3847/0004-637X/830/2/121

  7. BVR Color Survey of the Jovian Irregular Satellites

    Science.gov (United States)

    Rettig, T. W.; Walsh, K.

    2002-09-01

    BVR colors and magnitudes are presented for four Jovian irregular prograde satellites (Himalia J6, Elara J7, Lysithea J10 and Leda J13) and four irregular retrograde satellites (Pasiphae J8, Sinope J9, Carme J11 and Ananke J12). All eight have generally `solar' colors but the retrograde group has slightly redder and more diverse colors. The strikingly similar colors of the four prograde satellites suggests the parent planetesimal was likely very homogeneous. The four retrograde satellites show diversity in color that suggests a heterogeneous progenitor and thus, variations in pre-capture formation history. The absolute magnitudes and revised diameters are presented. We also report new colors and diameters for two Uranian irregular satellites (Caliban (S/1997 U1) and Sycorax (S/1997 U2)). The Uranian satellite colors are slightly redder than the eight Jovian satellites studied.

  8. Capturing the Future: Direct and Indirect Probes of Neutron Capture

    Energy Technology Data Exchange (ETDEWEB)

    Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    This report documents aspects of direct and indirect neutron capture. The importance of neutron capture rates and methods to determine them are presented. The following conclusions are drawn: direct neutron capture measurements remain a backbone of experimental study; work is being done to take increased advantage of indirect methods for neutron capture; both instrumentation and facilities are making new measurements possible; more work is needed on the nuclear theory side to understand what is needed furthest from stability.

  9. An Evaluation of Satellite Retrievals of Snowfall in Regions of Complex Terrain

    Science.gov (United States)

    Reed, K. A.; Nesbitt, S. W.; Kulie, M.; L'Ecuyer, T. S.; Wood, N.

    2013-12-01

    Snowfall in regions of complex terrain plays an important role in the global hydrologic cycle, and can have major physical and social implications ranging from water resource management, to flash flooding, to climate change impacts. Due to the diversity of impacts that can result from snowfall, the ability to directly observe and measure snowfall in real-time is of great importance. However, the physical limitations of ground-based radars particularly in complex terrain and the lack of spatially complete measurement networks in mountainous regions make high-resolution ground-based snowfall observations a challenging task. Spaceborne satellite retrievals of snowfall such as those that will be made possible by the Global Precipitation Measurement (GPM) mission offer the ability to make high spatial and temporal resolution measurements that are otherwise not possible using traditional ground-based methods. This study seeks to investigate the skill level of current spaceborne snowfall products over the complex terrain of the Rocky Mountains in the western United States. Satellite derived snowfall products from measurements obtained via instruments including the CloudSat Cloud Profiling Radar (CPR), EOS Aqua Advanced Microwave Scanning Radiometer for EOS (AMSR-E), and GCOM-W1 Advanced Microwave Scanning Radiometer 2 (AMSR2) are evaluated using ground-based observations such as the Natural Resources Conservation Service Snow Telemetry (SNOTEL) data and the NCEP Stage IV data. Satellite derived snowfall variables including snowfall rate and snow water equivalent are compared to ground-based observations to determine the overall accuracy and skill level of current satellite derived snowfall products in the region of interest. An analysis is also done to determine how the accuracy and skill level change based on varying snowfall regimes such as light, moderate, and heavy snowfall events. The knowledge gained will be used to determine how satellite derived snowfall

  10. Capturing Near Earth Objects

    OpenAIRE

    Baoyin, Hexi; CHEN Yang; Li, Junfeng

    2011-01-01

    Recently, Near Earth Objects (NEOs) have been attracting great attention, and thousands of NEOs have been found to date. This paper examines the NEOs' orbital dynamics using the framework of an accurate solar system model and a Sun-Earth-NEO three-body system when the NEOs are close to Earth to search for NEOs with low-energy orbits. It is possible for such an NEO to be temporarily captured by Earth; its orbit would thereby be changed and it would become an Earth-orbiting object after a small...

  11. Lunar Sulfur Capture System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to capture greater than 90 percent of sulfur gases evolved during thermal treatment of lunar soils....

  12. Satellite medical centers project

    Science.gov (United States)

    Aggarwal, Arvind

    2002-08-01

    World class health care for common man at low affordable cost: anywhere, anytime The project envisages to set up a national network of satellite Medical centers. Each SMC would be manned by doctors, nurses and technicians, six doctors, six nurses, six technicians would be required to provide 24 hour cover, each SMC would operate 24 hours x 7 days. It would be equipped with the Digital telemedicine devices for capturing clinical patient information and investigations in the form of voice, images and data and create an audiovisual text file - a virtual Digital patient. Through the broad band connectivity the virtual patient can be sent to the central hub, manned by specialists, specialists from several specialists sitting together can view the virtual patient and provide a specialized opinion, they can see the virtual patient, see the examination on line through video conference or even PCs, talk to the patient and the doctor at the SMC and controlle capturing of information during examination and investigations of the patient at the SMC - thus creating a virtual Digital consultant at the SMC. Central hub shall be connected to the doctors and consultants in remote locations or tertiary care hospitals any where in the world, thus creating a virtual hub the hierarchical system shall provide upgradation of knowledge to thedoctors in central hub and smc and thus continued medical education and benefit the patient thru the world class treatment in the smc located at his door step. SMC shall be set up by franchisee who shall get safe business opportunity with high returns, patients shall get Low cost user friendly worldclass health care anywhere anytime, Doctors can get better meaningful selfemplyment with better earnings, flexibility of working time and place. SMC shall provide a wide variety of services from primary care to world class Global consultation for difficult patients.

  13. Constraining cloud lifetime effects of aerosols using A-Train satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Minghuai; Ghan, Steven J.; Liu, Xiaohong; Ecuyer, Tristan L.; Zhang, Kai; Morrison, H.; Ovchinnikov, Mikhail; Easter, Richard C.; Marchand, Roger; Chand, Duli; Qian, Yun; Penner, Joyce E.

    2012-08-15

    Aerosol indirect effects have remained the largest uncertainty in estimates of the radiative forcing of past and future climate change. Observational constraints on cloud lifetime effects are particularly challenging since it is difficult to separate aerosol effects from meteorological influences. Here we use three global climate models, including a multi-scale aerosol-climate model PNNL-MMF, to show that the dependence of the probability of precipitation on aerosol loading, termed the precipitation frequency susceptibility (S{sub pop}), is a good measure of the liquid water path response to aerosol perturbation ({lambda}), as both Spop and {lambda} strongly depend on the magnitude of autoconversion, a model representation of precipitation formation via collisions among cloud droplets. This provides a method to use satellite observations to constrain cloud lifetime effects in global climate models. S{sub pop} in marine clouds estimated from CloudSat, MODIS and AMSR-E observations is substantially lower than that from global climate models and suggests a liquid water path increase of less than 5% from doubled cloud condensation nuclei concentrations. This implies a substantially smaller impact on shortwave cloud radiative forcing (SWCF) over ocean due to aerosol indirect effects than simulated by current global climate models (a reduction by one-third for one of the conventional aerosol-climate models). Further work is needed to quantify the uncertainties in satellite-derived estimates of S{sub pop} and to examine S{sub pop} in high-resolution models.

  14. Satellite data compression

    CERN Document Server

    Huang, Bormin

    2011-01-01

    Satellite Data Compression covers recent progress in compression techniques for multispectral, hyperspectral and ultra spectral data. A survey of recent advances in the fields of satellite communications, remote sensing and geographical information systems is included. Satellite Data Compression, contributed by leaders in this field, is the first book available on satellite data compression. It covers onboard compression methodology and hardware developments in several space agencies. Case studies are presented on recent advances in satellite data compression techniques via various prediction-

  15. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  16. Neutron capture reactions at DANCE

    Science.gov (United States)

    Bredeweg, T. A.

    2008-05-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4π BaF2 array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (>~100 μg) and/or radioactive (DANCE we have performed neutron capture cross section measurements on a wide array of medium to heavy mass nuclides. Measurements to date include neutron capture cross sections on 241,243Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio (α = σγ/σf) for 235U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data.

  17. Robust automated knowledge capture.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt

    2011-10-01

    This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

  18. Capturing the uncultivated majority

    Energy Technology Data Exchange (ETDEWEB)

    Green, Brian D.; Keller, Martin

    2007-04-02

    The metagenomic analysis of environmental microbialcommunities continues to be a rapidly developing area of study. DNAisolation, the first step in capturing the uncultivated majority, hasseen many advances in recent years. Protocols have been developed todistinguish DNA from live versus dead cells and to separate extracellularfrom intracellular DNA. Looking to increase our understanding of the rolethat members of a microbial community play in ecological processes,several techniques have been developed that are enabling greater indepthanalysis of environmental metagenomes. These include the development ofenvironmental gene tags and the serial analysis of 16S rRNA gene sequencetags. In addition, new screening methods have been designed to select forspecific functional genes within metagenomic libraries. Finally, newcultivation methods continue to be developed to improve our ability tocapture a greater diversity of microorganisms within theenvironment.

  19. Capturing the Daylight Dividend

    Energy Technology Data Exchange (ETDEWEB)

    Peter Boyce; Claudia Hunter; Owen Howlett

    2006-04-30

    Capturing the Daylight Dividend conducted activities to build market demand for daylight as a means of improving indoor environmental quality, overcoming technological barriers to effective daylighting, and informing and assisting state and regional market transformation and resource acquisition program implementation efforts. The program clarified the benefits of daylight by examining whole building systems energy interactions between windows, lighting, heating, and air conditioning in daylit buildings, and daylighting's effect on the human circadian system and productivity. The project undertook work to advance photosensors, dimming systems, and ballasts, and provided technical training in specifying and operating daylighting controls in buildings. Future daylighting work is recommended in metric development, technology development, testing, training, education, and outreach.

  20. Possible origin of the Saturn satellite, Phoebe

    Science.gov (United States)

    Di Sisto, R. P.; Brunini, A.

    The orbit of the outermost Saturn's irregular moon, Phoebe, suggests that it was captured by Saturn rather than formed in situ. The Cassini-Huygens mission results allowed to find that Phoebe's composition is similar to that derived for the outer solar system bodies and very different from the composition of the Saturn regular satellites. In this paper we present new results suggesting that Phoebe could be a component of a binary centaur captured by Saturn during a three-body gravitational encounter. FULL TEXT IN SPANISH

  1. Bristle-thighed Curlew Capture Data from James Campbell National Wildlife Refuge, O'ahu, Hawaii, 2012-2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set contains banding, morphology, and satellite telemetry information for Bristle-thighed curlews (Numenius tahitiensis) that were captured between 2012...

  2. A BVR Colors of Eight Jovian Irregular Satellites -- Evolutionary Implications

    Science.gov (United States)

    Rettig, T. W.; Walsh, K.

    2001-11-01

    We present BVR colors and magnitudes for four Jovian irregular prograde satellites (Himalia J6, Elara J7, Lysithea J10 and Leda J13) and four irregular retrograde satellites (Pasiphae J8, Sinope J9, Carme J11 and Ananke J12). All eight have generally `solar' colors but the retrograde group has slightly redder and more diverse colors. The strikingly similar colors of the four prograde satellites suggests the parent planetesimal was likely very homogeneous. The four retrograde satellites show diversity in color that suggests a heterogeneous progenitor and thus, variations in pre-capture formation history. The absolute magnitudes and revised diameters are presented. We also report new colors and diameters for two Uranian irregular satellites (Caliban (S/1997 U1) and Sycorax (S/1997 U2)) that are slightly redder than any of these Jovian satellites.

  3. Xichang Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    Xichang Satellite Launch Center(XSLC) is mainly for geosynchronous orbit launches. The main purpose of XSLC is to launch spacecraft, such as broadcasting,communications and meteorological satellites, into geo-stationary orbit.Most of the commercial satellite launches of Long March vehicles have been from Xichang Satellite Launch Center. With 20 years' development,XSLC can launch 5 kinds of launch vehicles and send satellites into geostationary orbit and polar orbit. In the future, moon exploration satellites will also be launched from XSLC.

  4. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  5. Trojan capture by terrestrial planets

    CERN Document Server

    Schwarz, Richard

    2016-01-01

    The paper is devoted to investigate the capture of asteroids by Venus, Earth and Mars into the 1:1 mean motion resonance especially into Trojan orbits. Current theoretical studies predict that Trojan asteroids are a frequent by-product of the planet formation. This is not only the case for the outer giant planets, but also for the terrestrial planets in the inner Solar System. By using numerical integrations, we investigated the capture efficiency and the stability of the captured objects. We found out that the capture efficiency is larger for the planets in the inner Solar System compared to the outer ones, but most of the captured Trojan asteroids are not long term stable. This temporary captures caused by chaotic behaviour of the objects were investigated without any dissipative forces. They show an interesting dynamical behaviour of mixing like jumping from one Lagrange point to the other one.

  6. Captured by Aliens

    Science.gov (United States)

    Achenbach, Joel

    2000-03-01

    Captured by Aliens is a long and twisted voyage from science to the supernatural and back again. I hung out in Roswell, N.M., spent time with the Mars Society, met a guy who was figuring out the best way to build a spaceship to go to Alpha Centauri. I visited the set of the X-Files and talked to Mulder and Scully. One day over breakfast I was told by NASA administrator Dan Goldin, We live in a fog, man! He wants the big answers to the big questions. I spent a night in the base of a huge radio telescope in the boondocks of West Virginia, awaiting the signal from the aliens. I was hypnotized in a hotel room by someone who suspected that I'd been abducted by aliens and that this had triggered my interest in the topic. In the last months of his life, I talked to Carl Sagan, who believed that the galaxy riots with intelligent civilizations. He's my hero, for his steadfast adherence to the scientific method. What I found in all this is that the big question that needs immediate attention is not what's out THERE, but what's going on HERE, on Earth, and why we think the way we do, and how we came to be here in the first place.

  7. Inland capture fisheries.

    Science.gov (United States)

    Welcomme, Robin L; Cowx, Ian G; Coates, David; Béné, Christophe; Funge-Smith, Simon; Halls, Ashley; Lorenzen, Kai

    2010-09-27

    The reported annual yield from inland capture fisheries in 2008 was over 10 million tonnes, although real catches are probably considerably higher than this. Inland fisheries are extremely complex, and in many cases poorly understood. The numerous water bodies and small rivers are inhabited by a wide range of species and several types of fisher community with diversified livelihood strategies for whom inland fisheries are extremely important. Many drivers affect the fisheries, including internal fisheries management practices. There are also many drivers from outside the fishery that influence the state and functioning of the environment as well as the social and economic framework within which the fishery is pursued. The drivers affecting the various types of inland water, rivers, lakes, reservoirs and wetlands may differ, particularly with regard to ecosystem function. Many of these depend on land-use practices and demand for water which conflict with the sustainability of the fishery. Climate change is also exacerbating many of these factors. The future of inland fisheries varies between continents. In Asia and Africa the resources are very intensely exploited and there is probably little room for expansion; it is here that resources are most at risk. Inland fisheries are less heavily exploited in South and Central America, and in the North and South temperate zones inland fisheries are mostly oriented to recreation rather than food production.

  8. Capture-recapture methodology

    Science.gov (United States)

    Gould, William R.; Kendall, William L.

    2013-01-01

    Capture-recapture methods were initially developed to estimate human population abundance, but since that time have seen widespread use for fish and wildlife populations to estimate and model various parameters of population, metapopulation, and disease dynamics. Repeated sampling of marked animals provides information for estimating abundance and tracking the fate of individuals in the face of imperfect detection. Mark types have evolved from clipping or tagging to use of noninvasive methods such as photography of natural markings and DNA collection from feces. Survival estimation has been emphasized more recently as have transition probabilities between life history states and/or geographical locations, even where some states are unobservable or uncertain. Sophisticated software has been developed to handle highly parameterized models, including environmental and individual covariates, to conduct model selection, and to employ various estimation approaches such as maximum likelihood and Bayesian approaches. With these user-friendly tools, complex statistical models for studying population dynamics have been made available to ecologists. The future will include a continuing trend toward integrating data types, both for tagged and untagged individuals, to produce more precise and robust population models.

  9. Galileo satellite antenna modeling

    Science.gov (United States)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  10. The Generic Data Capture Facility

    Science.gov (United States)

    Connell, Edward B.; Barnes, William P.; Stallings, William H.

    The Generic Data Capture Facility, which can provide data capture support for a variety of different types of spacecraft while enabling operations costs to be carefully controlled, is discussed. The data capture functions, data protection, isolation of users from data acquisition problems, data reconstruction, and quality and accounting are addressed. The TDM and packet data formats utilized by the system are described, and the development of generic facilities is considered.

  11. Resource capture by single leaves

    Energy Technology Data Exchange (ETDEWEB)

    Long, S.P.

    1992-05-01

    Leaves show a variety of strategies for maximizing CO{sub 2} and light capture. These are more meaningfully explained if they are considered in the context of maximizing capture relative to the utilization of water, nutrients and carbohydrates reserves. There is considerable variation between crops in their efficiency of CO{sub 2} and light capture at the leaf level. Understanding of these mechanisms indicate some ways in which efficiency of resource capture could be level cannot be meaningfully considered without simultaneous understanding of implications at the canopy level. 36 refs., 5 figs., 1 tab.

  12. Satellite-Delivered Learning.

    Science.gov (United States)

    Arnall, Gail C.

    1987-01-01

    Discusses the application of satellite information delivery to training. Describes a new trend, horizontal programming. Also discusses vertical programming and in-house production of training materials. Lists vendors of satellite-based training. (CH)

  13. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  14. China's Recoverable Satellites

    Institute of Scientific and Technical Information of China (English)

    Tang Boehang

    2008-01-01

    @@ By the end of 2006, China had launched 24 recoverable satellites (FSW) in total. Among them, 23 were launched successfully, of which all but one were successfully recovered. Recoverable satellites launched by China are listed in Table 1.

  15. Satellite Tags- Hawaii EEZ

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite tagging was implemented in 2013. Satellite tagging is conducted using a Dan Inject air rifle and deployment arrows designed by Wildlife Computers. Two...

  16. Orbital characteristics of planetesimals captured by circumplanetary gas disks

    CERN Document Server

    Suetsugu, Ryo; Fujita, Tetsuya

    2016-01-01

    Sufficiently massive growing giant planets have circumplanetary disks, and the capture of solid bodies by the disks would likely influence the growth of the planets and formation of satellite systems around them. In addition to dust particles that are supplied to the disk with inflowing gas, recent studies suggest the importance of capture of planetesimals whose motion is decoupled from the gas, but orbital evolution of captured bodies in circumplanetary gas disks has not been studied in detail. In the present work, using three-body orbital integration and analytic calculations, we examine orbital characteristics and subsequent dynamical evolution of planetesimals captured by gas drag from circumplanetary gas disks. We find that the semi-major axes of the planet-centered orbits of planetesimals at the time of permanent capture are smaller than about one third of the planet's Hill radius in most cases. Typically, captured bodies rapidly spiral into the planet, and the rate of the orbital decay is faster for th...

  17. Imaging artificial satellites: An observational challenge

    Science.gov (United States)

    Smith, D. A.; Hill, D. C.

    2016-10-01

    According to the Union of Concerned Scientists, as of the beginning of 2016 there are 1381 active satellites orbiting the Earth, and the United States' Space Surveillance Network tracks about 8000 manmade orbiting objects of baseball-size and larger. NASA estimates debris larger than 1 cm to number more than half a million. The largest ones can be seen by eye—unresolved dots of light that move across the sky in minutes. For most astrophotographers, satellites are annoying streaks that can ruin hours of work. However, capturing a resolved image of an artificial satellite can pose an interesting challenge for a student, and such a project can provide connections between objects in the sky and commercial and political activities here on Earth.

  18. Measuring radiative capture rates at DRAGON

    Science.gov (United States)

    Hager, U.; Davids, B.; Fallis, J.; Greife, U.; Hutcheon, D. A.; Rojas, A.; Ruiz, C.

    2013-04-01

    The DRAGON recoil separator facility is located at the ISAC facility at TRIUMF, Vancouver. It is designed to measure radiative alpha and proton capture reactions of astrophysical importance in inverse kinematics. The Supernanogan ion source at ISAC provides stable beams of high intensities. The DRAGON collaboration has taken advantage of this over the last years by measuring several reactions requiring high-intensity stable oxygen beams. In particular,the ^17O(p,γ) and ^16O(α,γ) reaction rates were recently measured. The former reaction is part of the hot CNO cycle, and strongly influences the abundance of ^18F in classical novae. Because of its relatively long lifetime, ^18F is a possible target for satellite-based gamma-ray spectroscopy. The ^16O(α,γ) reaction plays a role in steady-state helium burning in massive stars, where it follows the ^12C(α,γ) reaction. At astrophysically relevant energies, the reaction proceeds exclusively via direct capture, resulting in a low rate. In both cases, the unique capabilities of DRAGON enabled determination not only of the total reaction rates, but also of decay branching ratios. Results from both experiments will be presented.

  19. Satellite communication engineering

    CERN Document Server

    Kolawole, Michael Olorunfunmi

    2013-01-01

    An undeniably rich and thorough guide to satellite communication engineering, Satellite Communication Engineering, Second Edition presents the fundamentals of information communications systems in a simple and succinct way. This book considers both the engineering aspects of satellite systems as well as the practical issues in the broad field of information transmission. Implementing concepts developed on an intuitive, physical basis and utilizing a combination of applications and performance curves, this book starts off with a progressive foundation in satellite technology, and then moves on

  20. Taiyuan Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    There are three major space launch bases in China, the Jiuquan Satellite Launch Center,the Taiyuan Satellite Launch Center and the Xichang Satellite Launch Center. All the three launch centers are located in sparsely populated areas where the terrain is even and the field of vision is broad. Security, transport conditions and the influence of the axial rotation

  1. Geodetic Secor Satellite

    Science.gov (United States)

    1974-06-01

    simple, and had low-power lem. 17 14. Satellite Orientation . The satellite was designed to maintain a constant relationship between the antenna...the same satellite orientation . Further considerations were Th oscillations, however, when higher orbital ranges (500-2500 nautical miles) -, 3 a

  2. TC-2 Satellite Delivered

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    On April 18, 2005, TC-2, the second satellite of Double Star Program (DSP), which was jointly developed by CNSA and ESA, was approved to be delivered to the user after the on-board test and trial operation. The satellite is working well and the performance can meet the user's need. The satellite has collected large amount of valuable scientific data

  3. On neutrinoless double electron capture

    CERN Document Server

    Drukarev, E G

    2016-01-01

    We found the probability for the neutrinoless double electron capture in the case of $KK$ capture. We clarified the mechanism of the energy transfer from the nucleus to the bound electrons. This enabled us to obtain the equations for the probability of the $2EC0\

  4. Muon capture on Chlorine-35

    CERN Document Server

    Arole, S; Gorringe, T P; Hasinoff, M D; Kovash, M A; Kuzmin, V; Moftah, B A; Sedlar, R; Stocki, T J; Tetereva, T

    2002-01-01

    We report measurements of $\\gamma$--ray spectra from muon capture on $^{35}$Cl. For the allowed Gamow--Teller transitions to the $^{35}$S$(2939, 3/2^+)$ state and the $^{35}$S$(3421, 5/2^+)$ state we obtained their capture rates, hyperfine dependences and $\\gamma$--$\

  5. Iodine neutron capture therapy

    Science.gov (United States)

    Ahmed, Kazi Fariduddin

    A new technique, Iodine Neutron Capture Therapy (INCT) is proposed to treat hyperthyroidism in people. Present thyroid therapies, surgical removal and 131I treatment, result in hypothyroidism and, for 131I, involve protracted treatment times and excessive whole-body radiation doses. The new technique involves using a low energy neutron beam to convert a fraction of the natural iodine stored in the thyroid to radioactive 128I, which has a 24-minute half-life and decays by emitting 2.12-MeV beta particles. The beta particles are absorbed in and damage some thyroid tissue cells and consequently reduce the production and release of thyroid hormones to the blood stream. Treatment times and whole-body radiation doses are thus reduced substantially. This dissertation addresses the first of the several steps needed to obtain medical profession acceptance and regulatory approval to implement this therapy. As with other such programs, initial feasibility is established by performing experiments on suitable small mammals. Laboratory rats were used and their thyroids were exposed to the beta particles coming from small encapsulated amounts of 128I. Masses of 89.0 mg reagent-grade elemental iodine crystals have been activated in the ISU AGN-201 reactor to provide 0.033 mBq of 128I. This activity delivers 0.2 Gy to the thyroid gland of 300-g male rats having fresh thyroid tissue masses of ˜20 mg. Larger iodine masses are used to provide greater doses. The activated iodine is encapsulated to form a thin (0.16 cm 2/mg) patch that is then applied directly to the surgically exposed thyroid of an anesthetized rat. Direct neutron irradiation of a rat's thyroid was not possible due to its small size. Direct in-vivo exposure of the thyroid of the rat to the emitted radiation from 128I is allowed to continue for 2.5 hours (6 half-lives). Pre- and post-exposure blood samples are taken to quantify thyroid hormone levels. The serum T4 concentration is measured by radioimmunoassay at

  6. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  7. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  8. Materials For Gas Capture, Methods Of Making Materials For Gas Capture, And Methods Of Capturing Gas

    KAUST Repository

    Polshettiwar, Vivek

    2013-06-20

    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to materials that can be used for gas (e.g., CO.sub.2) capture, methods of making materials, methods of capturing gas (e.g., CO.sub.2), and the like, and the like.

  9. Asymptotic Behavior of an Elastic Satellite with Internal Friction

    Energy Technology Data Exchange (ETDEWEB)

    Haus, E., E-mail: emanuele.haus@unina.it [Università di Napoli Federico II Via Cintia, Dipartimento di Matematica e Applicazioni R. Caccioppoli (Italy); Bambusi, D., E-mail: dario.bambusi@unimi.it [Università degli Studi di Milano, DIpartimento di Matematica F. Enriques (Italy)

    2015-12-15

    We study the dynamics of an elastic body whose shape and position evolve due to the gravitational forces exerted by a pointlike planet. The main result is that, if all the deformations of the satellite dissipate some energy, then under a suitable nondegeneracy condition there are only three possible outcomes for the dynamics: (i) the orbit of the satellite is unbounded, (ii) the satellite falls on the planet, (iii) the satellite is captured in synchronous resonance i.e. its orbit is asymptotic to a motion in which the barycenter moves on a circular orbit, and the satellite moves rigidly, always showing the same face to the planet. The result is obtained by making use of LaSalle’s invariance principle and by a careful kinematic analysis showing that energy stops dissipating only on synchronous orbits. We also use in quite an extensive way the fact that conservative elastodynamics is a Hamiltonian system invariant under the action of the rotation group.

  10. Asymptotic Behavior of an Elastic Satellite with Internal Friction

    Science.gov (United States)

    Haus, E.; Bambusi, D.

    2015-12-01

    We study the dynamics of an elastic body whose shape and position evolve due to the gravitational forces exerted by a pointlike planet. The main result is that, if all the deformations of the satellite dissipate some energy, then under a suitable nondegeneracy condition there are only three possible outcomes for the dynamics: (i) the orbit of the satellite is unbounded, (ii) the satellite falls on the planet, (iii) the satellite is captured in synchronous resonance i.e. its orbit is asymptotic to a motion in which the barycenter moves on a circular orbit, and the satellite moves rigidly, always showing the same face to the planet. The result is obtained by making use of LaSalle's invariance principle and by a careful kinematic analysis showing that energy stops dissipating only on synchronous orbits. We also use in quite an extensive way the fact that conservative elastodynamics is a Hamiltonian system invariant under the action of the rotation group.

  11. Provenance Datasets Highlighting Capture Disparities

    Science.gov (United States)

    2014-01-01

    the Web pages of the universities and institutes.1 Notes are made and links pasted in a variety of formats. Files are saved on a shared drive. When...institutions/ 3. Capture Methods There are several capture methods that are available for use [4]: • Manual capture. • Scraping of logs or...the high-level user desktop. Save links App: Word, SharePoint User: Alice Web Data Web Data Web Data Web Data Web Data Web Data Notes.txt Create

  12. Potential markets for advanced satellite communications

    Science.gov (United States)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-09-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  13. Potential markets for advanced satellite communications

    Science.gov (United States)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-01-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  14. Validation of VIIRS Cloud Base Heights at Night Using Ground and Satellite Measurements over Alaska

    Science.gov (United States)

    NOH, Y. J.; Miller, S. D.; Seaman, C.; Forsythe, J. M.; Brummer, R.; Lindsey, D. T.; Walther, A.; Heidinger, A. K.; Li, Y.

    2016-12-01

    Knowledge of Cloud Base Height (CBH) is critical to describing cloud radiative feedbacks in numerical models and is of practical significance to aviation communities. We have developed a new CBH algorithm constrained by Cloud Top Height (CTH) and Cloud Water Path (CWP) by performing a statistical analysis of A-Train satellite data. It includes an extinction-based method for thin cirrus. In the algorithm, cloud geometric thickness is derived with upstream CTH and CWP input and subtracted from CTH to generate the topmost layer CBH. The CBH information is a key parameter for an improved Cloud Cover/Layers product. The algorithm has been applied to the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi NPP spacecraft. Nighttime cloud optical properties for CWP are retrieved from the nighttime lunar cloud optical and microphysical properties (NLCOMP) algorithm based on a lunar reflectance model for the VIIRS Day/Night Band (DNB) measuring nighttime visible light such as moonlight. The DNB has innovative capabilities to fill the polar winter and nighttime gap of cloud observations which has been an important shortfall from conventional radiometers. The CBH products have been intensively evaluated against CloudSat data. The results showed the new algorithm yields significantly improved performance over the original VIIRS CBH algorithm. However, since CloudSat is now operational during daytime only due to a battery anomaly, the nighttime performance has not been fully assessed. This presentation will show our approach to assess the performance of the CBH algorithm at night. VIIRS CBHs are retrieved over the Alaska region from October 2015 to April 2016 using the Clouds from AVHRR Extended (CLAVR-x) processing system. Ground-based measurements from ceilometer and micropulse lidar at the Atmospheric Radiation Measurement (ARM) site on the North Slope of Alaska are used for the analysis. Local weather conditions are checked using temperature and precipitation

  15. Distributions and radiative forcings of various cloud types based on active and passive satellite datasets – Part 1: Geographical distributions and overlap of cloud types

    Directory of Open Access Journals (Sweden)

    J. Li

    2014-04-01

    Full Text Available Based on four year' 2B-CLDCLASS-Lidar (Radar-Lidar cloud classification product from CloudSat, we analyze the geographical distributions of different cloud types and their co-occurrence frequency across different seasons, moreover, utilize the vertical distributions of cloud type to further evaluate the cloud overlap assumptions. The statistical results show that more high clouds, altocumulus, stratocumulus or stratus and cumulus are identified in the Radar-Lidar cloud classification product compared to previous results from Radar-only cloud classification (2B-CLDCLASS product from CloudSat. In particularly, high clouds and cumulus cloud fractions increased by factors 2.5 and 4–7, respectively. The new results are in more reasonable agreement with other datasets (typically the International Satellite Cloud Climatology Project (ISCCP and surface observer reports. Among the cloud types, altostratus and altocumulus are more popular over the arid/semi-arid land areas of the Northern and Southern Hemispheres, respectively. These features weren't observed by using the ISCCP D1 dataset. For co-occurrence of cloud types, high cloud, altostratus, altocumulus and cumulus are much more likely to co-exist with other cloud types. However, stratus/stratocumulus, nimbostratus and convective clouds are much more likely to exhibit individual features. After considering the co-occurrence of cloud types, the cloud fraction based on the random overlap assumption is underestimated over the vast ocean except in the west-central Pacific Ocean warm pool. Obvious overestimations are mainly occurring over land areas in the tropics and subtropics. The investigation therefore indicates that incorporate co-occurrence information of cloud types based on Radar-Lidar cloud classification into the overlap assumption schemes used in the current GCMs possible be able to provide an better predictions for vertically projected total cloud fraction.

  16. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim......The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  17. Lunar Sulfur Capture System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to recover sulfur compounds from lunar soil using sorbents derived primarily from in-situ resources....

  18. Methane capture from livestock manure.

    Science.gov (United States)

    Tauseef, S M; Premalatha, M; Abbasi, Tasneem; Abbasi, S A

    2013-03-15

    It has been estimated that livestock manure contributes about 240 million metric tons of carbon dioxide equivalent of methane to the atmosphere and represents one of the biggest anthropogenic sources of methane. Considering that methane is the second biggest contributor to global warming after carbon dioxide, it is imperative that ways and means are developed to capture as much of the anthropogenic methane as possible. There is a major associated advantage of methane capture: its use as a source of energy which is comparable in 'cleanness' to natural gas. The present review dwells upon the traditional ways of methane capture used in India, China, and other developing countries for providing energy to the rural poor. It then reviews the present status of methane capture from livestock manure in developed countries and touches upon the prevalent trends.

  19. Toward transformational carbon capture systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C. [National Energy Technology Laboratory, U.S. Dept. of Energy, Pittsburgh PA (United States); Litynski, John T. [Office of Fossil Energy, U.S. Dept. of Energy, Washington DC (United States); Brickett, Lynn A. [National Energy Technology Laboratory, U.S. Dept. of Energy, Pittsburgh PA (United States); Morreale, Bryan D. [National Energy Technology Laboratory, U.S. Dept. of Energy, Pittsburgh PA (United States)

    2015-10-28

    This paper will briefly review the history and current state of Carbon Capture and Storage (CCS) research and development and describe the technical barriers to carbon capture. it will argue forcefully for a new approach to R&D, which leverages both simulation and physical systems at the laboratory and pilot scales to more rapidly move the best technoogies forward, prune less advantageous approaches, and simultaneously develop materials and processes.

  20. Radiative muon capture on hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bertl, W. (Paul Scherrer Inst. (PSI), Villigen (Switzerland)); Ahmad, S.; Chen, C.Q.; Gumplinger, P.; Hasinoff, M.D.; Larabee, A.J.; Sample, D.G.; Schott, W.; Wright, D.H. (British Columbia Univ., Vancouver (Canada)); Armstrong, D.S.; Blecher, M. (Virginia Polytechnic Inst., Blacksburg, VA (United States) Virginia State Univ., Blacksburg, VA (United States)); Azuelos, G. (British Columbia Univ., Vancouver (Canada). TRIUMF Facility Montreal Univ., Quebec (Canada)); Depommier, P.; Jonkmans, G. (Montreal Univ., Quebec (Canada)); Gorringe, T.P. (Kentucky Univ., Lexington, KY (United States)); Henderson, R. (British Columbia Univ., Vancouver (Canada). TRIUMF Facility Melbourne Univ., Parkville (Australia)); Macdonald, J.A.; Poutissou, J.M.; Poutissou, R.; Von Egidy, T.; Zhang, N.S. (British Columbia Univ., Vancouver (Canada). TRIUMF Facility); McDonald, S.C.; Taylor, G.N. (Melbourne Univ., Parkville (Australia)); Robertson, B.D. (Queen' s Univ., Kingston, Ontario (Canada))

    1992-01-01

    The radiative capture of negative muons by protons can be used to measure the weak induced pseudoscalar form factor. Brief arguments why this method is preferable to ordinary muon capture are given followed by a discussion of the experimental difficulties. The solution to these problems as attempted by experiment no. 452 at TRIUMF is presented together with preliminary results from the first run in August 1990. An outlook on the expected final precision and the experimental schedule is also given. (orig.).

  1. Alignment in double capture processes

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P.; Benhenni, M.; Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A. (IRSAMC, URA CNRS 770, Univ. Paul Sabatier, 118 rte de Narbonne, 31062 Toulouse Cedex (France))

    1993-06-05

    The electron spectra emitted when a double capture occurs in N[sup 7+]+He and Ne[sup 8+]+He systems at 10 qkeV collisional energy, allow us to determine the angular distributions of the 3[ell]3[ell] [prime] lines through a special spectra fitting procedure which includes interferences between neighbouring states. It is found that the doubly excited states populated in double capture processes are generally aligned.

  2. Using satellite altimetry and tide gauges for storm surge warning

    DEFF Research Database (Denmark)

    Andersen, O. B.; Cheng, Yongcun; Deng, X.

    2014-01-01

    and found that in the presence of two or more satellites we could capture more than 90% of the high water sea level events. In the Great Barrier Reef section of the northeast Australian coast, we have investigated several large tropical cyclones; one of these being Cyclone Larry, which hit the Queensland...

  3. Capture by colour: evidence for dimension-specific singleton capture.

    Science.gov (United States)

    Harris, Anthony M; Becker, Stefanie I; Remington, Roger W

    2015-10-01

    Previous work on attentional capture has shown the attentional system to be quite flexible in the stimulus properties it can be set to respond to. Several different attentional "modes" have been identified. Feature search mode allows attention to be set for specific features of a target (e.g., red). Singleton detection mode sets attention to respond to any discrepant item ("singleton") in the display. Relational search sets attention for the relative properties of the target in relation to the distractors (e.g., redder, larger). Recently, a new attentional mode was proposed that sets attention to respond to any singleton within a particular feature dimension (e.g., colour; Folk & Anderson, 2010). We tested this proposal against the predictions of previously established attentional modes. In a spatial cueing paradigm, participants searched for a colour target that was randomly either red or green. The nature of the attentional control setting was probed by presenting an irrelevant singleton cue prior to the target display and assessing whether it attracted attention. In all experiments, the cues were red, green, blue, or a white stimulus rapidly rotated (motion cue). The results of three experiments support the existence of a "colour singleton set," finding that all colour cues captured attention strongly, while motion cues captured attention only weakly or not at all. Notably, we also found that capture by motion cues in search for colour targets was moderated by their frequency; rare motion cues captured attention (weakly), while frequent motion cues did not.

  4. Mobile satellite communications handbook

    CERN Document Server

    Cochetti, Roger

    2014-01-01

    With a Preface by noted satellite scientist Dr. Ahmad Ghais, the Second Edition reflects the expanded user base for this technology by updating information on historic, current, and planned commercial and military satellite systems and by expanding sections that explain the technology for non-technical professionals.   The book begins with an introduction to satellite communications and goes on to provide an overview of the technologies involved in mobile satellite communications, providing basic introductions to RF Issues, power Issues, link issues and system issues. It describes

  5. Satellite communication antenna technology

    Science.gov (United States)

    Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)

    1983-01-01

    A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.

  6. Methods of satellite oceanography

    Science.gov (United States)

    Stewart, R. H.

    1985-01-01

    The theoretical basis for remote sensing measurements of climate and ocean dynamics is examined. Consideration is given to: the absorption of electromagnetic radiation in the atmosphere; scattering in the atmosphere; and satellite observations using visible light. Consideration is also given to: the theory of radio scatter from the sea; scatter of centimeter waves from the sea; and the theory of operation of synthetic aperture radars. Additional topics include: the coordinate systems of satellite orbits for oceanographic remote sensing applications; the operating features of the major U.S. satellite systems for viewing the ocean; and satellite altimetry.

  7. Using satellite altimetry and tide gauges for storm surge warning

    Science.gov (United States)

    Andersen, O. B.; Cheng, Y.; Deng, X.; Steward, M.; Gharineiat, Z.

    2015-03-01

    The combination of the coarse temporal sampling by satellite altimeters in the deep ocean with the high temporal sampling at sparsely located tide gauges along the coast has been used to improve the forecast of high water for the North Sea along the Danish Coast and for the northeast coast of Australia. For both locations we have tried to investigate the possibilities and limitations of the use of satellite altimetry to capture high frequency signals (surges) using data from the past 20 years. The two regions are chosen to represent extra-tropical and tropical storm surge conditions. We have selected several representative high water events on the two continents based on tide gauge recordings and investigated the capability of satellite altimetry to capture these events in the sea surface height data. Due to the lack of recent surges in the North Sea we focused on general high water level and found that in the presence of two or more satellites we could capture more than 90% of the high water sea level events. In the Great Barrier Reef section of the northeast Australian coast, we have investigated several large tropical cyclones; one of these being Cyclone Larry, which hit the Queensland coast in March 2006 and caused both loss of lives as well as huge devastation. Here we demonstrate the importance of integrating tide gauges with satellite altimetry for forecasting high water at the city of Townsville in northeast Australia.

  8. Validation of Cloud Parameters Derived from Geostationary Satellites, AVHRR, MODIS, and VIIRS Using SatCORPS Algorithms

    Science.gov (United States)

    Minnis, P.; Sun-Mack, S.; Bedka, K. M.; Yost, C. R.; Trepte, Q. Z.; Smith, W. L., Jr.; Painemal, D.; Chen, Y.; Palikonda, R.; Dong, X.; Xi, B.

    2016-01-01

    Validation is a key component of remote sensing that can take many different forms. The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) is applied to many different imager datasets including those from the geostationary satellites, Meteosat, Himiwari-8, INSAT-3D, GOES, and MTSAT, as well as from the low-Earth orbiting satellite imagers, MODIS, AVHRR, and VIIRS. While each of these imagers have similar sets of channels with wavelengths near 0.65, 3.7, 11, and 12 micrometers, many differences among them can lead to discrepancies in the retrievals. These differences include spatial resolution, spectral response functions, viewing conditions, and calibrations, among others. Even when analyzed with nearly identical algorithms, it is necessary, because of those discrepancies, to validate the results from each imager separately in order to assess the uncertainties in the individual parameters. This paper presents comparisons of various SatCORPS-retrieved cloud parameters with independent measurements and retrievals from a variety of instruments. These include surface and space-based lidar and radar data from CALIPSO and CloudSat, respectively, to assess the cloud fraction, height, base, optical depth, and ice water path; satellite and surface microwave radiometers to evaluate cloud liquid water path; surface-based radiometers to evaluate optical depth and effective particle size; and airborne in-situ data to evaluate ice water content, effective particle size, and other parameters. The results of comparisons are compared and contrasted and the factors influencing the differences are discussed.

  9. A new perspective on the irregular satellites of Saturn - II Dynamical and physical origin

    CERN Document Server

    Turrini, D; Tosi, F; 10.1111/j.1365-2966.2008.14100.x

    2010-01-01

    The origin of the irregular satellites of the giant planets has been long debated since their discovery. Their dynamical features argue against an in-situ formation suggesting they are captured bodies, yet there is no global consensus on the physical process at the basis of their capture. In this paper we explore the collisional capture scenario, where the actual satellites originated from impacts occurred within Saturn's influence sphere. By modeling the inverse capture problem, we estimated the families of orbits of the possible parent bodies and the specific impulse needed for their capture. The orbits of these putative parent bodies are compared to those of the minor bodies of the outer Solar System to outline their possible region of formation. Finally, we tested the collisional capture hypothesis on Phoebe by taking advantage of the data supplied by Cassini on its major crater, Jason. Our results presented a realistic range of solutions matching the observational and dynamical data.

  10. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    Science.gov (United States)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  11. Satellites of spiral galaxies

    Science.gov (United States)

    Zaritsky, Dennis; Smith, Rodney; Frenk, Carlos; White, Simon D. M.

    1993-01-01

    We present a survey of satellites around a homogeneous set of late-type spirals with luminosity similar to that of the Milky Way. On average, we find fewer than 1.5 satellites per primary, but we argue that we can treat the survey as an ensemble and so derive the properties of the halo of a 'typical' isolated spiral. The projected density profile of the ensemble falls off approximately as 1/r. Within 50 kpc the azimuthal distribution of satellites shows some evidence for the 'Holmberg effect', an excess near the minor axis of the primary; however, at larger projected distances, the distribution appears isotropic. There is a weak but significant correlation between the size of a satellite and its distance from its primary, as expected if satellites are tidally truncated. Neither Hubble type nor spectral characteristics correlate with apparent separation. The ensemble of satellites appears to be rotating at about 30 km/s in the same direction as the galactic disk. Satellites on prograde orbits tend to be brighter than those on retrograde orbits. The typical velocity difference between a satellite and its primary shows no clear dependence either on apparent separation, or on the rotation speed of the primary. Thus our survey demonstrates that isolated spiral galaxies have massive halos that extend to many optical radii.

  12. Communication satellite technology trends

    Science.gov (United States)

    Cuccia, Louis

    1986-01-01

    A chronology of space-Earth interconnectivity is presented. The Advanced Communications Technology Satellite (ACTS) system, Land Mobile Satellite, space-Earth antennas, impact of antenna size on coverage, intersatellite links are outlined. This presentation is represented by graphs and charts only.

  13. Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model

    Directory of Open Access Journals (Sweden)

    S. Dutkiewicz

    2015-07-01

    This new model that captures bio-optical feedbacks will be important for improving our understanding of the role of light and optical constituents on ocean biogeochemistry, especially in a changing environment. Further, resolving surface upwelling irradiance will make it easier to connect to satellite-derived products in the future.

  14. Analysis of Specular Reflections Off Geostationary Satellites

    Science.gov (United States)

    Jolley, A.

    2016-09-01

    Many photometric studies of artificial satellites have attempted to define procedures that minimise the size of datasets required to infer information about satellites. However, it is unclear whether deliberately limiting the size of datasets significantly reduces the potential for information to be derived from them. In 2013 an experiment was conducted using a 14 inch Celestron CG-14 telescope to gain multiple night-long, high temporal resolution datasets of six geostationary satellites [1]. This experiment produced evidence of complex variations in the spectral energy distribution (SED) of reflections off satellite surface materials, particularly during specular reflections. Importantly, specific features relating to the SED variations could only be detected with high temporal resolution data. An update is provided regarding the nature of SED and colour variations during specular reflections, including how some of the variables involved contribute to these variations. Results show that care must be taken when comparing observed spectra to a spectral library for the purpose of material identification; a spectral library that uses wavelength as the only variable will be unable to capture changes that occur to a material's reflected spectra with changing illumination and observation geometry. Conversely, colour variations with changing illumination and observation geometry might provide an alternative means of determining material types.

  15. Optic capture pars plana lensectomy

    Directory of Open Access Journals (Sweden)

    Lee JE

    2012-10-01

    Full Text Available Joo Eun LeeDepartment of Ophthalmology, Inje University College of Medicine, Busan, South KoreaObjective: To describe an optic capture pars plana lensectomy technique.Methods: After core vitrectomy, pars plana lensectomy is performed with preservation of the anterior capsule. Capsulorhexis is performed on the preserved anterior capsule through a 2.8 mm clear corneal incision. An intraocular lens (IOL is placed in the ciliary sulcus, and then the optic of the IOL is pushed back to the vitreous cavity so that the optic is captured by the surrounding capsulorhexis margin.Results: The captured IOL-capsule diaphragm remained stable during air–fluid exchange and prevented air prolapse to the anterior chamber. IOL stability and a clear visual axis were preserved during the follow-up period.Conclusion: With this modified pars plana lensectomy technique, stable IOL position and clear visual axis can be maintained when a pars plana approach is needed during combined cataract and vitreoretinal surgery.Keywords: lensectomy, optic capture, pars plana lensectomy, vitrectomy

  16. Beginnings of Satellite Navigation

    Directory of Open Access Journals (Sweden)

    Miljenko Solarić

    2008-05-01

    Full Text Available The first satellite navigation system called the Navy Navigation Satellite System (NNSS or TRANSIT was planned in the USA in 1958. It consisted of 5-6 artificial Earth satellites, was set in motion for the USA military in 1964, and in 1967 for civilian purposes. The frequency shift of received radio waves emitted from the satellite and caused by the Doppler effect was measured. The TRANSIT satellite speed of approaching or moving away was derived from that; the TRANSIT satellites emmited also their own coordinates. Then the ship's position was determined by an intersection of three hyperboloids, which were determined from differences of distances in three time intervals. Maintenance of this navigation system was stopped in 1996, but it is still being used in the USA Navy for exploring the ionosphere. Furthermore, results of Doppler measurements in international projects at the Hvar Observatory from 1982 and 1983. This was the first time in Croatia and the former country that the coordinates of the Hvar Observatory were determined in the unique world coordinate system WGS'72. The paper ends with a brief representation of the Tsiklon Doppler navigation system produced in the former Soviet Union, and there is a list of some of numerous produced and designed satellite navigation systems.Ključne riječi

  17. 49 CFR 563.9 - Data capture.

    Science.gov (United States)

    2010-10-01

    ... frontal or side air bag deployment crash, capture and record the current deployment data, up to two events... 49 Transportation 6 2010-10-01 2010-10-01 false Data capture. 563.9 Section 563.9 Transportation..., DEPARTMENT OF TRANSPORTATION EVENT DATA RECORDERS § 563.9 Data capture. The EDR must capture and record...

  18. Trends In Satellite Communication

    Science.gov (United States)

    Poley, William A.; Stevens, Grady H.; Stevenson, Steven M.; Lekan, Jack; Arth, Clifford H.; Hollansworth, James E.; Miller, Edward F.

    1988-01-01

    Report assesses trends in satellite communication from present to year 2010. Examines restrictions imposed by limited spectrum resource and technology needs created by trends. Personal communications, orbiting switchboards, and videophones foreseen.

  19. Domestic Communication Satellites

    Science.gov (United States)

    Horowitz, Andrew

    1974-01-01

    A discussion of the Federal Communications Commission's new policy on domestic satellites in light of our 1) military and economic history; 2) corporate interests; 3) citizen surveillance; and 4) media control. (HB)

  20. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2013-01-01

    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  1. Biological satellite Kosmos-936

    Science.gov (United States)

    Vedeshin, L. A.

    1978-01-01

    A description is given of physiological experiments performed on the biological satellite Kosmos-936. Other experiments to determine the electrostatic and dielectric responses to the effects of cosmic radiation are discussed.

  2. Small Satellite Transporter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary objective is to determine whether this small satellite transporter is capable of transporting at least four 6U CubeSats is possible for a given set of...

  3. DFH-3 Satellite Platform

    Institute of Scientific and Technical Information of China (English)

    RenShufang

    2005-01-01

    The DFH-3 satellite platform is designed and developed by China Academy of Space Technology (CAST). It is a medium capability communications satellite platform. The platform adopts threeaxis attitude stabilization control system, having solar array output power of 1.7kW by the end of its design lifetime of 8 years. Its mass is 2100kg with payload capacity of 220kg.

  4. The Archimedes satellite system

    Science.gov (United States)

    Taylor, Stuart C.; Shurvinton, William D.

    1992-03-01

    Archimedes is a satellite system conceived by the European Space Agency (ESA) to effectively serve the European market for Mobile Radio Services (MRS). This paper describes the requirements and technical design of the Archimedes satellite system. The underlying assumptions and trade-offs behind the design are detailed and the design is compared and contrasted against alternative design solutions, both technically and economically. A path forward for the development of the system is indicated.

  5. ASTRID II satellit projekt

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Primdahl, Fritz

    1997-01-01

    The report describes the instruments developed for the Swedish micro satellite "ASTRID II". Specifications of the two instruments realized under this contract, a Stellar Compass and a CSC magnetometer are given follwed by a description of the project status and plan.......The report describes the instruments developed for the Swedish micro satellite "ASTRID II". Specifications of the two instruments realized under this contract, a Stellar Compass and a CSC magnetometer are given follwed by a description of the project status and plan....

  6. Satellite formation. II

    Science.gov (United States)

    Harris, A. W.

    1978-01-01

    A satellite formation model is extended to include evolution of planetary ring material and elliptic orbital motion. In this model the formation of the moon begins at a later time in the growth of the earth, and a significant fraction of the lunar material is processed through a circumterrestrial debris cloud where volatiles might have been lost. Thus, the chemical differences between the earth and moon are more plausibly accounted for. Satellites of the outer planets probably formed in large numbers throughout the growth of those planets. Because of rapid inward evolution of the orbits of small satellites, the present satellite systems represent only satellites formed in the last few percent of the growths of their primaries. The rings of Saturn and Uranus are most plausibly explained as the debris of satellites disrupted within the Roche limit. Because such a ring would collapse onto the planet in the course of any significant further accretion by the planet, the rings must have formed very near or even after the conclusion of accretion.

  7. Natural materials for carbon capture.

    Energy Technology Data Exchange (ETDEWEB)

    Myshakin, Evgeniy M. (National Energy Technology Laboratory, Pittsburgh, PA); Romanov, Vyacheslav N. (National Energy Technology Laboratory, Pittsburgh, PA); Cygan, Randall Timothy

    2010-11-01

    Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

  8. CHINA LAUNCHES NEW SCIENTIFIC SATELLITE

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China on Sept. 27, 2004 launched a scientific satellite atop a Long March 2D carrier rocket from Jiuquan Satellite Launch Center in Gansu province. 10 minutes after the launch, the satellite entered a preset orbit and is running sound at the orbit. It is the 20th recoverable satellite for scientific and technological

  9. Carbon Capture: A Technology Assessment

    Science.gov (United States)

    2013-10-21

    time. The absence of a significant market for the novel technologies put them at a further disadvantage . This is similar to the situation for CO2...the overall CCS process applied to a power plant or other industrial process. The CO2 produced from carbon in the fossil fuels or biomass feedstock...Air or Oxygen Fossil Fuels; Biomass USEFUL PRODUCTS (e.g., electricity, fuels, chemicals, hydrogen) CO2 CO2 Capture & Compress CO2 Transport CO2

  10. Carbon Capture and Sequestration (CCS)

    Science.gov (United States)

    2009-06-19

    for the pre-combustion capture of CO2 is the use of Integrated Gasification Combined-Cycle ( IGCC ) technology to generate electricity.14 There are...currently four commercial IGCC plants worldwide (two in the United States) each with a capacity of about 250 MW. The technology has yet to make a major... IGCC is an electric generating technology in which pulverized coal is not burned directly but mixed with oxygen and water in a high-pressure gasifier

  11. Satellite Communications for ATM

    Science.gov (United States)

    Shamma, Mohammed A.

    2003-01-01

    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  12. Experimental Satellite 2 Successfully Launched

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    Small satellite Experimental Satellite 2 (SY-2) was launched by LM-2C launch vehicle from Xichang Satellite Launch Center on Nov. 18, 2004. Later the satellite entered the preset sun-synchronous orbit, which is 700 kilometers above the earth. The launch was the eighthmission this year by China Aerospace Science and Technology Corporation(CASC), which aims to test the technology of the satellite, conduct survey and monitoring of the land and resources and geographical environment on a trial basis.

  13. China's Meteorological Satellite Application System

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiashen

    2008-01-01

    @@ China's meteorological satellite program consists of five systems,namely the satellite system,the launch vehicle system,the launch center system,TT&C and the ground application system.The satellite system consists of FengYun (FY) polar orbiting series and FY geostationary series,which are launched by LM launch vehicles from Taiyan Satellite Launch Center (TSLC) and Xichang Satellite Launch Center (XSLC) respectively.

  14. Flexible Electrostatic Technology for Capture and Handling Project

    Science.gov (United States)

    Keys, Andrew; Bryan, Tom; Horwitz, Chris; Rakoczy, John; Waggoner, Jason

    2015-01-01

    To NASA unfunded & planned missions: This new capability to sense proximity, flexibly align to, and attractively grip and capture practically any object in space without any pre-designed physical features or added sensors or actuators will enable or enhance many of MSFC's strategic emphasis areas in space transportation, and space systems such as: 1. A Flexible Electrostatic gripper can enable the capture, gripping and releasing of an extraterrestrial sample of different minerals or a sample canister (metallic or composite) without requiring a handle or grapple fixture.(B) 2. Flexible self-aligning in-space capture/soft docking or berthing of ISS resupply vehicles, pressurized modules, or nodes for in-space assembly and shielding, radiator, and solar Array deployment for space habitats (C) 3. The flexible electrostatic gripper when combined with a simple steerable extendible boom can grip, position, and release objects of various shapes and materials with low mass and power without any prior handles or physical accommodations or surface contamination for ISS experiment experiments and in-situ repair.(F)(G) 4. The Dexterous Docking concept previously proposed to allow simple commercial resupply ships to station-keep and capture either ISS or an Exploration vehicle for supply or fluid transfer lacked a self-sensing, compliant, soft capture gripper like FETCH that could retract and attach to a CBM. (I) 5. To enable a soft capture and de-orbit of a piece of orbital debris will require self-aligning gripping and holding an object wherever possible (thermal coverings or shields of various materials, radiators, solar arrays, antenna dishes) with little or no residual power while adding either drag or active low level thrust.(K) 6. With the scalability of the FETCH technology, small satellites can be captured and handled or can incorporate FETCH gripper to dock to and handle other small vehicles and larger objects for de-orbiting or mitigating Orbital debris (L) 7. Many of

  15. Realistic costs of carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

    2009-07-01

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS

  16. Using NASA's Giovanni Web Portal to Access and Visualize Satellite-Based Earth Science Data in the Classroom

    Science.gov (United States)

    Lloyd, S. A.; Acker, J. G.; Prados, A. I.; Leptoukh, G. G.

    2008-12-01

    One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite- based remote sensing datasets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable dataset to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface. Giovanni provides a simple way to visualize, analyze and access vast amounts of satellite-based Earth science data. Giovanni's features and practical examples of its use will be demonstrated, with an emphasis on how satellite remote sensing can help students understand recent events in the atmosphere and biosphere. Giovanni is actually a series of sixteen similar web-based data interfaces, each of which covers a single satellite dataset (such as TRMM, TOMS, OMI, AIRS, MLS, HALOE, etc.) or a group of related datasets (such as MODIS and MISR for aerosols, SeaWIFS and MODIS for ocean color, and the suite of A-Train observations co-located along the CloudSat orbital path). Recently, ground-based datasets have been included in Giovanni, including the Northern Eurasian Earth Science Partnership Initiative (NEESPI), and EPA fine particulate matter (PM2.5) for air quality. Model data such as the Goddard GOCART model and MERRA meteorological reanalyses (in process) are being increasingly incorporated into Giovanni to facilitate model- data intercomparison. A full suite of data

  17. Algal Energy Conversion and Capture

    Science.gov (United States)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  18. Automated left ventricular capture management.

    Science.gov (United States)

    Crossley, George H; Mead, Hardwin; Kleckner, Karen; Sheldon, Todd; Davenport, Lynn; Harsch, Manya R; Parikh, Purvee; Ramza, Brian; Fishel, Robert; Bailey, J Russell

    2007-10-01

    The stimulation thresholds of left ventricular (LV) leads tend to be less reliable than conventional leads. Cardiac resynchronization therapy (CRT) requires continuous capture of both ventricles. The purpose of this study is to evaluate a novel algorithm for the automatic measurement of the stimulation threshold of LV leads in cardiac resynchronization systems. We enrolled 134 patients from 18 centers who had existing CRT-D systems. Software capable of automatically executing LV threshold measurements was downloaded into the random access memory (RAM) of the device. The threshold was measured by pacing in the left ventricle and analyzing the interventricular conduction sensed in the right ventricle. Automatic LV threshold measurements were collected and compared with manual LV threshold tests at each follow-up visit and using a Holter monitor system that recorded both the surface electrocardiograph (ECG) and continuous telemetry from the device. The proportion of Left Ventricular Capture Management (LVCM) in-office threshold tests within one programming step of the manual threshold test was 99.7% (306/307) with a two-sided 95% confidence interval of (98.2%, 100.0%). The algorithm measured the threshold successfully in 96% and 97% of patients after 1 and 3 months respectively. Holter monitor analysis in a subset of patients revealed accurate performance of the algorithm. This study demonstrated that the LVCM algorithm is safe, accurate, and highly reliable. LVCM worked with different types of leads and different lead locations. LVCM was demonstrated to be clinically equivalent to the manual LV threshold test. LVCM offers automatic measurement, output adaptation, and trends of the LV threshold and should result in improved ability to maintain LV capture without sacrificing device longevity.

  19. Objects capture perceived gaze direction.

    Science.gov (United States)

    Lobmaier, Janek S; Fischer, Martin H; Schwaninger, Adrian

    2006-01-01

    The interpretation of another person's eye gaze is a key element of social cognition. Previous research has established that this ability develops early in life and is influenced by the person's head orientation, as well as local features of the person's eyes. Here we show that the presence of objects in the attended space also has an impact on gaze interpretation. Eleven normal adults identified the fixation points of photographed faces with a mouse cursor. Their responses were systematically biased toward the locations of nearby objects. This capture of perceived gaze direction probably reflects the attribution of intentionality and has methodological implications for research on gaze perception.

  20. A review of uses of satellite imagery in monitoring mangrove forests

    Science.gov (United States)

    Rhyma Purnamasayangsukasih, P.; Norizah, K.; Ismail, Adnan A. M.; Shamsudin, I.

    2016-06-01

    Satellite image could provide much information of earth surfaces in a large scale in a short time, thus saving time. With the evolution and development of sensors providing satellite image, resolution of object captured enhanced with advance image processing techniques. In forestry, satellite image has been widely used for resources management, planning, monitoring, predicting, etc. However, the uses of satellite image are reported to be moderate and sometimes poor for mangrove forests due to homogenous species existed in salty and inundation areas. Many researches had been carried out to improve the uses of satellite imagery of either optical or radar data for mangrove forests. This paper reviews the uses of satellite imagery data in mangrove with the main focus of the literature related to mangroves monitoring.

  1. Why capture CO2 from the atmosphere?

    National Research Council Canada - National Science Library

    Keith, David W

    2009-01-01

    Air capture is an industrial process for capturing CO2 from ambient air; it is one of an emerging set of technologies for CO2 removal that includes geological storage of biotic carbon and the acceleration of geochemical weathering...

  2. The Italian contribution to the CSES satellite

    Science.gov (United States)

    Conti, Livio

    2016-04-01

    parameters and stability of Van Allen belt are constantly modified by natural non-seismic and man-made processes. Therefore, in order to identify seismo-associated perturbations, it is needed to reject the "normal" background effects of the e.m. emissions due to: geomagnetic storms, tropospheric phenomena, and artificial sources (such as power lines, VLF transmitters, HF stations, etc.). Currently, the only available large database is that collected by the Demeter satellite and by rare observations made by some previous space missions, non-dedicated to this purpose. The CSES satellite aims at continuing the exploration started by Demeter with advanced multi-parametric measurements. The configuration of the CSES sensors foresees measurements of energetic particle fluxes, ionospheric plasma parameters and electromagnetic fields, in a wide range of energy and frequencies. The main sensors onboard the satellite are: the HEPD (High Energy Particle Detector) developed by the Italian participants, and the following Chinese sensors: LEPD (Low Energy Particle Detector), LP (Langmuir Probes), IDM (Ion Drift Meter), ICM (Ion Capture Meter), RPA (Retarding Potential Analyzer), EFD (Electric Field Detectors) developed in collaboration with Italian team, HPM (High Precision Magnetometer) and SCM (Search-Coil Magnetometer). The research activity is at an advanced phase, being the various payloads already built and, right now, an intense activity is going on for calibration of the various sensors. In particular, the Italian payload HEPD is under test at the laboratories of the National Institute for Nuclear Physics (INFN) and the Chinese payloads LP, IDM, ICM, RPA and EFD are tested at the INAF-IAPS "Plasma Chamber" in Rome, which is a facility where the response of the sensors, and their compatibility with ionospheric plasma, can be verified in environmental conditions very similar to those met by the satellite in orbit.

  3. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M

    2012-01-01

    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  4. Geostationary satellites collocation

    CERN Document Server

    Li, Hengnian

    2014-01-01

    Geostationary Satellites Collocation aims to find solutions for deploying a safe and reliable collocation control. Focusing on the orbital perturbation analysis, the mathematical foundations for orbit and control of the geostationary satellite are summarized. The mathematical and physical principle of orbital maneuver and collocation strategies for multi geostationary satellites sharing with the same dead band is also stressed. Moreover, the book presents some applications using the above algorithms and mathematical models to help readers master the corrective method for planning station keeping maneuvers. Engineers and scientists in the fields of aerospace technology and space science can benefit from this book. Hengnian Li is the Deputy Director of State Key Laboratory of Astronautic Dynamics, China.

  5. ESA's satellite communications programme

    Science.gov (United States)

    Bartholome, P.

    1985-02-01

    The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.

  6. AVS on satellite

    Science.gov (United States)

    Zhao, Haiwu; Wang, Guozhong; Hou, Gang

    2005-07-01

    AVS is a new digital audio-video coding standard established by China. AVS will be used in digital TV broadcasting and next general optical disk. AVS adopted many digital audio-video coding techniques developed by Chinese company and universities in recent years, it has very low complexity compared to H.264, and AVS will charge very low royalty fee through one-step license including all AVS tools. So AVS is a good and competitive candidate for Chinese DTV and next generation optical disk. In addition, Chinese government has published a plan for satellite TV signal directly to home(DTH) and a telecommunication satellite named as SINO 2 will be launched in 2006. AVS will be also one of the best hopeful candidates of audio-video coding standard on satellite signal transmission.

  7. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... is suspended on an air bearing, and rotates freely in 3 degrees of freedom. In order to avoid any influence of the gravitational force the centre of mass of the satellite is placed in the geometric centre of the air bearing by an automatic balancing system. The test spacecraft is equipped with a three......-axis magnetometer, three piezoelectric gyros, and four reaction wheels in a tetrahedron configuration. The operation of the spacecraft is fully autonomous. The data flow between the transducers and the onboard computer placed physically outside the satellite is provided by a radio link. The purpose...

  8. Orbit and size distributions for asteroids temporarily captured by the Earth-Moon system

    Science.gov (United States)

    Fedorets, Grigori; Granvik, Mikael; Jedicke, Robert

    2017-03-01

    As a continuation of the work by Granvik et al. (2012), we expand the statistical treatment of Earth's temporarily-captured natural satellites from temporarily-captured orbiters (TCOs, i.e., objects which make at least one orbit around the Earth) to the newly redefined subpopulation of temporarily-captured flybys (TCFs). TCFs are objects that while being gravitationally bound fail to make a complete orbit around the Earth while on a geocentric orbit, but nevertheless approach the Earth within its Hill radius. We follow the trajectories of massless test asteroids through the Earth-Moon system and record the orbital characteristics of those that are temporarily captured. We then carry out a steady-state analysis utilizing the novel NEO population model by Granvik et al. (2016). We also investigate how an quadratic distribution at very small values of e⊙ and i⊙ affects the predicted population statistics of Earth's temporarily-captured natural satellites. The steady-state population in both cases (constant and quadratic number distributions inside the e and i bins) is predicted to contain a slightly reduced number of meter-sized asteroids compared to the values of the previous paper. For the combined TCO/TCF population, we find the largest body constantly present on a geocentric orbit to be on the order of 80 cm in diameter. In the phase space, where the capture is possible, the capture efficiency of TCOs and TCFs is O(10-6 -10-4) . We also find that kilometer-scale asteroids are captured once every 10 Myr.

  9. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry

    2015-01-01

    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  10. Declassified intelligence satellite photographs

    Science.gov (United States)

    ,

    1998-01-01

    Recently declassified photographs from spy satellites are an important addition to the record of the Earth?s land surface held by the U.S. Geological Survey (USGS). More than 800,000 high-resolution photos taken between 1959 through 1972 were made available by Executive Order of the President. The collection is held at the USGS EROS Data Center, near Sioux Falls, S. Dak., and are offered for public sale. For some purposes in earth science studies, these photos extend the record of changes in the land surface another decade back in time from the advent of the Landsat earth-observing satellite program.

  11. Oceanography from satellites

    Science.gov (United States)

    Wilson, W. S.

    1981-01-01

    It is pointed out that oceanographers have benefited from the space program mainly through the increased efficiency it has brought to ship operations. For example, the Transit navigation system has enabled oceanographers to compile detailed maps of sea-floor properties and to more accurately locate moored subsurface instrumentation. General descriptions are given of instruments used in satellite observations (altimeter, color scanner, infrared radiometer, microwave radiometer, scatterometer, synthetic aperture radar). It is pointed out that because of the large volume of data that satellite instruments generate, the development of algorithms for converting the data into a form expressed in geophysical units has become especially important.

  12. Satellite oceanography - The instruments

    Science.gov (United States)

    Stewart, R. H.

    1981-01-01

    It is pointed out that no instrument is sensitive to only one oceanographic variable; rather, each responds to a combination of atmospheric and oceanic phenomena. This complicates data interpretation and usually requires that a number of observations, each sensitive to somewhat different phenomena, be combined to provide unambiguous information. The distinction between active and passive instruments is described. A block diagram illustrating the steps necessary to convert data from satellite instruments into oceanographic information is included, as is a diagram illustrating the operation of a radio-frequency radiometer. Attention is also given to the satellites that carry the various oceanographic instruments.

  13. Integrated Satellite-HAP Systems

    DEFF Research Database (Denmark)

    Cianca, Ernestina; De Sanctis, Mauro; De Luise, Aldo

    2005-01-01

    for an efficient hybrid terrestrial-satellite communication system. Two integrated HAP-satellite scenarios are presented, in which the HAP is used to overcome some of the shortcomings of satellite- based communications. Moreover, it is shown that the integration of HAPs with satellite systems can be used......Thus far, high-altitude platform (HAP)-based systems have been mainly conceived as an alternative to satellites for complementing the terrestrial network. This article aims to show that HAP should no longer be seen as a competitor technology by investors of satellites, but as a key element...

  14. Capturing Reality at Centre Block

    Science.gov (United States)

    Boulanger, C.; Ouimet, C.; Yeomans, N.

    2017-08-01

    The Centre Block of Canada's Parliament buildings, National Historic Site of Canada is set to undergo a major rehabilitation project that will take approximately 10 years to complete. In preparation for this work, Heritage Conservation Services (HCS) of Public Services and Procurement Canada has been completing heritage documentation of the entire site which includes laser scanning of all interior rooms and accessible confined spaces such as attics and other similar areas. Other documentation completed includes detailed photogrammetric documentation of rooms and areas of high heritage value. Some of these high heritage value spaces present certain challenges such as accessibility due to the height and the size of the spaces. Another challenge is the poor lighting conditions, requiring the use of flash or strobe lighting to either compliment or completely eliminate the available ambient lighting. All the spaces captured at this higher level of detail were also captured with laser scanning. This allowed the team to validate the information and conduct a quality review of the photogrammetric data. As a result of this exercise, the team realized that in most, if not all cases, the photogrammetric data was more detailed and at a higher quality then the terrestrial laser scanning data. The purpose and motivation of this paper is to present these findings, as well provide the advantages and disadvantages of the two methods and data sets.

  15. CAPTURING REALITY AT CENTRE BLOCK

    Directory of Open Access Journals (Sweden)

    C. Boulanger

    2017-08-01

    Full Text Available The Centre Block of Canada’s Parliament buildings, National Historic Site of Canada is set to undergo a major rehabilitation project that will take approximately 10 years to complete. In preparation for this work, Heritage Conservation Services (HCS of Public Services and Procurement Canada has been completing heritage documentation of the entire site which includes laser scanning of all interior rooms and accessible confined spaces such as attics and other similar areas. Other documentation completed includes detailed photogrammetric documentation of rooms and areas of high heritage value. Some of these high heritage value spaces present certain challenges such as accessibility due to the height and the size of the spaces. Another challenge is the poor lighting conditions, requiring the use of flash or strobe lighting to either compliment or completely eliminate the available ambient lighting. All the spaces captured at this higher level of detail were also captured with laser scanning. This allowed the team to validate the information and conduct a quality review of the photogrammetric data. As a result of this exercise, the team realized that in most, if not all cases, the photogrammetric data was more detailed and at a higher quality then the terrestrial laser scanning data. The purpose and motivation of this paper is to present these findings, as well provide the advantages and disadvantages of the two methods and data sets.

  16. The Effectiveness of Classroom Capture Technology

    Science.gov (United States)

    Ford, Maire B.; Burns, Colleen E.; Mitch, Nathan; Gomez, Melissa M.

    2012-01-01

    The use of classroom capture systems (systems that capture audio and video footage of a lecture and attempt to replicate a classroom experience) is becoming increasingly popular at the university level. However, research on the effectiveness of classroom capture systems in the university classroom has been limited due to the recent development and…

  17. The Effectiveness of Classroom Capture Technology

    Science.gov (United States)

    Ford, Maire B.; Burns, Colleen E.; Mitch, Nathan; Gomez, Melissa M.

    2012-01-01

    The use of classroom capture systems (systems that capture audio and video footage of a lecture and attempt to replicate a classroom experience) is becoming increasingly popular at the university level. However, research on the effectiveness of classroom capture systems in the university classroom has been limited due to the recent development and…

  18. Marker-Free Human Motion Capture

    DEFF Research Database (Denmark)

    Grest, Daniel

    Human Motion Capture is a widely used technique to obtain motion data for animation of virtual characters. Commercial optical motion capture systems are marker-based. This book is about marker-free motion capture and its possibilities to acquire motion from a single viewing direction. The focus...

  19. Analysis of long-term precipitation pattern over Antarctica derived from satellite-borne radar

    Science.gov (United States)

    Milani, L.; Porcù, F.; Casella, D.; Dietrich, S.; Panegrossi, G.; Petracca, M.; Sanò, P.

    2015-01-01

    Mass accumulation is a key geophysical parameter in understanding the Antarctic climate and its role in the global system. The local mass variation is driven by a number of different mechanisms: the deposition of snow and ice crystals on the surface from the atmosphere is generally modified by strong surface winds and variations in temperature and humidity at the ground, making it difficult to measure directly the accumulation by a sparse network of ground based instruments. Moreover, the low cloud total water/ice content and the varying radiative properties of the ground pose problems in the retrieval of precipitation from passive space-borne sensors at all frequencies. Finally, numerical models, despite their high spatial and temporal resolution, show discordant results and are difficult to be validated using ground-based measurements. A significant improvement in the knowledge of the atmospheric contribution to the mass balance over Antarctica is possible by using active space-borne instruments, such as the Cloud Profiling Radar (CPR) on board the low earth orbit CloudSat satellite, launched in 2006 and still operating. The radar measures the vertical profile of reflectivity at 94 GHz (sensitive to small ice particles) providing narrow vertical cross-sections of clouds along the satellite track. The aim of this work is to show that, after accounting for the characteristics of precipitation and the effect of surface on reflectivity in Antarctica, the CPR can retrieve snowfall rates on a single event temporal scale. Furthermore, the CPR, despite its limited temporal and spatial sampling capabilities, also effectively observes the annual snowfall cycle in this region. Two years of CloudSat data over Antarctica are analyzed and converted in water equivalent snowfall rate. Two different approaches for precipitation estimates are considered in this work. The results are analyzed in terms of annual and monthly averages, as well as in terms of instantaneous values. The

  20. Analysis of long-term precipitation pattern over Antarctica derived from satellite-borne radar

    Directory of Open Access Journals (Sweden)

    L. Milani

    2015-01-01

    Full Text Available Mass accumulation is a key geophysical parameter in understanding the Antarctic climate and its role in the global system. The local mass variation is driven by a number of different mechanisms: the deposition of snow and ice crystals on the surface from the atmosphere is generally modified by strong surface winds and variations in temperature and humidity at the ground, making it difficult to measure directly the accumulation by a sparse network of ground based instruments. Moreover, the low cloud total water/ice content and the varying radiative properties of the ground pose problems in the retrieval of precipitation from passive space-borne sensors at all frequencies. Finally, numerical models, despite their high spatial and temporal resolution, show discordant results and are difficult to be validated using ground-based measurements. A significant improvement in the knowledge of the atmospheric contribution to the mass balance over Antarctica is possible by using active space-borne instruments, such as the Cloud Profiling Radar (CPR on board the low earth orbit CloudSat satellite, launched in 2006 and still operating. The radar measures the vertical profile of reflectivity at 94 GHz (sensitive to small ice particles providing narrow vertical cross-sections of clouds along the satellite track. The aim of this work is to show that, after accounting for the characteristics of precipitation and the effect of surface on reflectivity in Antarctica, the CPR can retrieve snowfall rates on a single event temporal scale. Furthermore, the CPR, despite its limited temporal and spatial sampling capabilities, also effectively observes the annual snowfall cycle in this region. Two years of CloudSat data over Antarctica are analyzed and converted in water equivalent snowfall rate. Two different approaches for precipitation estimates are considered in this work. The results are analyzed in terms of annual and monthly averages, as well as in terms of

  1. Satellite orbit determination and gravity field recovery from satellite-to-satellite tracking

    Science.gov (United States)

    Wakker, K. F.; Ambrosius, B. A. C.; Leenman, H.

    1989-07-01

    Studies on satellite-to-satellite tracking (SST) with POPSAT (a geodetic satellite concept) and a ERS-class (Earth observation) satellite, a Satellite-to-Satellite Tracking (SST) gravity mission, and precise gravity field determination methods and mission requirements are reported. The first two studies primarily address the application of SST between the high altitude POPSAT and an ERS-class or GRM (Geopotential Research Mission) satellite to the orbit determination of the latter two satellites. Activities focussed on the determination of the tracking coverage of the lower altitude satellite by ground based tracking systems and by POPSAT, orbit determination error analysis and the determination of the surface forces acting on GRM. The third study surveys principles of SST, uncertainties of existing drag models, effects of direct luni-solar attraction and tides on orbit and the gravity gradient observable. Detailed ARISTOTELES (which replaced POPSAT) orbit determination error analyses were performed for various ground based tracking networks.

  2. Obliquity evolution of the minor satellites of Pluto and Charon

    Science.gov (United States)

    Quillen, Alice C.; Nichols-Fleming, Fiona; Chen, Yuan-Yuan; Noyelles, Benoît

    2017-09-01

    New Horizons mission observations show that the small satellites Styx, Nix, Kerberos and Hydra, of the Pluto-Charon system, have not tidally spun-down to near synchronous spin states and have high obliquities with respect to their orbit about the Pluto-Charon binary (Weaver, 2016). We use a damped mass-spring model within an N-body simulation to study spin and obliquity evolution for single spinning non-round bodies in circumbinary orbit. Simulations with tidal dissipation alone do not show strong obliquity variations from tidally induced spin-orbit resonance crossing and this we attribute to the high satellite spin rates and low orbital eccentricities. However, a tidally evolving Styx exhibits intermittent obliquity variations and episodes of tumbling. During a previous epoch where Charon migrated away from Pluto, the minor satellites could have been trapped in orbital mean motion inclination resonances. An outward migrating Charon induces large variations in Nix and Styx's obliquities. The cause is a commensurability between the mean motion resonance frequency and the spin precession rate of the spinning body. As the minor satellites are near mean motion resonances, this mechanism could have lifted the obliquities of all four minor satellites. The high obliquities need not be primordial if the minor satellites were at one time captured into mean motion resonances.

  3. Double K-shell vacancy production in the electron capture decay of 125I

    Science.gov (United States)

    Hindi, M. M.; Kozub, R. L.

    1992-03-01

    We have measured the probability of double K-shell vacancy production in the electron capture decay of 125I to the 35-keV level of 125Te. The probability was deduced from the number of triple coincidences between the Te hypersatellite and satellite x rays produced in filling the double vacancy, and the subsequent normal x ray accompanying the K internal conversion of the 35-keV level. The probability of double K-shell vacancy production per K-shell electron capture (PKK) was found to be (1.35+/-0.15)×10-5.

  4. Halo Effect on Direct Neutron Capture Process

    Institute of Scientific and Technical Information of China (English)

    刘祖华; 周宏余

    2004-01-01

    We calculate the capture cross sections of the 10Be(n,γ) 11 Be reaction by means of the asymptotic normalization coefficient method and demonstrate the halo effects on the capture cross sections for the direct radiative neutron capture where a p-, s- or d-wave neutron is captured into an s-orbit or p-orbit in 11 Be by emitting an E1 γ-ray,respectively. The result shows that the enormous enhancement of the capture cross section is just due to the large overlap of the incident neutron wave with the extended tail of the halo, which is clearly illustrated by the reduced transition amplitude function.

  5. CO2 Capture for Cement Technology

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar

    performed recently has focused on CO2capture from fossil fuel-based power plants. Inherently,this process is especially suitablefor cement plants, as CaO used for CO2capture is also a majoringredient for clinker production. Thus, a detailed investigation was carried outto study the applicationof......% of the inlet CO2 was captured by highly deactivated limestone, which had a maximum CO2 capture capacity of 11.5%, with an inlet Ca/C ratio of 13. So, the performance of the carbonator can be defined by the inlet Ca/C ratio, which can be estimated if the maximum capture capacity of limestone is known...

  6. Man-made Satellites

    Institute of Scientific and Technical Information of China (English)

    郝昌明

    2005-01-01

    If you watch the sky about an hour after the sun goes down, you may see some “moving stars”. But they're not real stars. They're manmade satellites (卫星). And the biggest of all is the International Space Station (ISS国际空间站).

  7. Observations of artificial satellites

    Directory of Open Access Journals (Sweden)

    A. MAMMANO

    1964-06-01

    Full Text Available The following publication gives the results of photographic
    observations of artificial satellites made at Asiago during the second
    and third year of this programme. The fixed camera technique and that
    with moving film (the latter still in its experimental stage have been used.

  8. Experimental Satellite Quantum Communications.

    Science.gov (United States)

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-24

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse μ_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.

  9. Perception via satellite

    Science.gov (United States)

    Robinove, Charles J.

    1970-01-01

    The earth resources observation satellite (EROS) program in the Department of the Interior is intended to gather and use data from satellites and aircraft on natural and man-made features of the earth's surface. Earth resources technology satellite will provide the EROS program with data for use in dealing with natural resource problems and understanding the interaction between man and the environment. Applications will include studies of tectonic features, hydrologic problems, location of fish schools, determination of the conditions of range land, mapping land use for urban planning, studies of erosion and change along coastlines and major streams, and inventories of land use and land forms. In addition, the ERTS data may be used for detecting forest and crop diseases and inventorying crops. The ERTS satellite will be in a polar, sun-synchronous orbit so that each point on the earth's surface will be sensed every 17 to 20 days, at the same time of day. Multispectral photography is being investigated for its usefulness in hydrology. Side-looking airborne radar has not yet been widely used in hydrologic studies, although it is an excellent tool for all-weather, day or night, coverage of large areas. Other techniques being investigated include passive microwave radiometry, ultraviolet and visible stimulated luminescence, and absorption spectroscopy.

  10. Satellite Photometric Error Determination

    Science.gov (United States)

    2015-10-18

    of nearly specular reflections from most solar panels. Our primary purpose in presenting these two plots is to demonstrate the usefulness of...than a transformation for stars because the spectral energy distribution of satellites can change with phase angle and is subject to specular

  11. Creating Better Satellite Conferences.

    Science.gov (United States)

    Horner, Tommy

    1998-01-01

    Presents four ways to improve broadcasts of company satellite conferences, including creative site selection (using facilities at educational institutions rather than hotel rooms); creative programming (using graphics and other interruptions to break up lectures or speeches); creative crew selection; and creative downlink site activities (to…

  12. Ocean surveillance satellites

    Science.gov (United States)

    Laurent, D.

    Soviet and U.S. programs involving satellites for surveillance of ships and submarines are discussed, considering differences in approaches. The Soviet program began with the Cosmos 198 in 1967 and the latest, the Cosmos 1400 series, 15 m long and weighing 5 tons, carry radar for monitoring ships and a nuclear reactor for a power supply. Other Soviet spacecraft carrying passive microwave sensors and ion drives powered by solar panels have recently been detonated in orbit for unknown reasons. It has also been observed that the Soviet satellites are controlled in pairs, with sequential orbital changes for one following the other, and both satellites then overflying the same points. In contrast, U.S. surveillance satellites have been placed in higher orbits, thus placing greater demands on the capabilities of the on-board radar and camera systems. Project White Cloud and the Clipper Bow program are described, noting the continued operation of the White Cloud spacecraft, which are equipped to intercept radio signals from surface ships. Currently, the integrated tactical surveillance system program has completed its study and a decision is expected soon.

  13. OMV With Satellite

    Science.gov (United States)

    1986-01-01

    This 1986 artist's concept shows the Orbital Maneuvering Vehicle (OMV) towing a satellite. As envisioned by Marshall Space Flight Center plarners, the OMV would be a remotely-controlled free-flying space tug which would place, rendezvous, dock, and retrieve orbital payloads.

  14. Advances in satellite oceanography

    Science.gov (United States)

    Brown, O. B.; Cheney, R. E.

    1983-01-01

    Technical advances and recent applications of active and passive satellite remote sensing techniques to the study of oceanic processes are summarized. The general themes include infrared and visible radiometry, active and passive microwave sensors, and buoy location systems. The surface parameters of sea surface temperature, windstream, sea state, altimetry, color, and ice are treated as applicable under each of the general methods.

  15. Satellite-based Tropical Cyclone Monitoring Capabilities

    Science.gov (United States)

    Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.

    2012-12-01

    Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.

  16. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  17. Defense Meteorological Satellite Program (DMSP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) satellites collect visible and infrared cloud imagery as well as monitoring the atmospheric, oceanographic,...

  18. Workshop on neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Bond, V.P. (eds.)

    1986-01-01

    Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.

  19. Muon capture by silicon 28

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.S. [College of William and Mary, Williamsburg, VA (United States). Dept. of Physics; Bauer, J. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics; Evans, J. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics; Gorringe, T.P. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics; Johnson, B.L. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics; Kalvoda, S. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics; Porter, R. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics; Siebels, B. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics; Gete, E. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics; Measday, D.F. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics; Moftah, B.A. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics; Stanislaus, S. [Valparaiso Univ., IN (United States). Dept. of Physics

    1996-12-01

    A measurement has been made of the angular correlation of the neutrino with the 1229 keV {gamma}-ray from the de-excitation of the 2201 keV 1{sup +} level in aluminum-28, following muon capture in silicon-28. To suppress the neutron-induced background in the HPGe detector, a coincidence in a NaI array is required with the 942 keV {gamma}-ray in the de-excitation cascade. The lifetime of the 2201 keV level is found to be 61{+-}4{+-}9 fs. The correlation coefficient {alpha} is found to be 0.36{+-}0.06 implying g{sub P}/g{sub A}=0{sup +3.5}{sub -3}. (orig.).

  20. Prey capture by harbor porpoises

    DEFF Research Database (Denmark)

    Miller, Lee

    2008-01-01

    their ultrasonic clicks as biosonar for orientation and detection of prey (mostly smaller pelagic and bottom dwelling fish), and for communication.  For studying wild animals, hydrophone arrays [Villadsgaard et al. J.Exp.Biol. 210 (2007)] and acoustic (time/depth) tags [Akamatsu et al. Deep Sea Research II 54...... (2007)] have been used.  For studying captive animals, arrays and video techniques [Verfuss et al. J.Exp.Biol. 208 (2005)] as well as miniature acoustic-behavioral tags [Deruiter et al. JASA 123 (2008)] have been used.  While searching for prey, harbor porpoises use clicks at long intervals (~50 ms......) that progressively decrease when closing on an object.  After detecting the prey, the click interval stabilizes and then becomes progressively shorter while approaching the prey.  The sequence ends in a terminal, high repetition rate buzz (~500 clicks/s) just before capturing the prey (a video will be shown...

  1. Cage-based performance capture

    CERN Document Server

    Savoye, Yann

    2014-01-01

    Nowadays, highly-detailed animations of live-actor performances are increasingly easier to acquire and 3D Video has reached considerable attentions in visual media production. In this book, we address the problem of extracting or acquiring and then reusing non-rigid parametrization for video-based animations. At first sight, a crucial challenge is to reproduce plausible boneless deformations while preserving global and local captured properties of dynamic surfaces with a limited number of controllable, flexible and reusable parameters. To solve this challenge, we directly rely on a skin-detached dimension reduction thanks to the well-known cage-based paradigm. First, we achieve Scalable Inverse Cage-based Modeling by transposing the inverse kinematics paradigm on surfaces. Thus, we introduce a cage inversion process with user-specified screen-space constraints. Secondly, we convert non-rigid animated surfaces into a sequence of optimal cage parameters via Cage-based Animation Conversion. Building upon this re...

  2. Guidance, Navigation, and Control Techniques and Technologies for Active Satellite Removal

    Science.gov (United States)

    Ortega Hernando, Guillermo; Erb, Sven; Cropp, Alexander; Voirin, Thomas; Dubois-Matra, Olivier; Rinalducci, Antonio; Visentin, Gianfranco; Innocenti, Luisa; Raposo, Ana

    2013-09-01

    This paper shows an internal feasibility analysis to de- orbit a non-functional satellite of big dimensions by the Technical Directorate of the European Space Agency ESA. The paper focuses specifically on the design of the techniques and technologies for the Guidance, Navigation, and Control (GNC) system of the spacecraft mission that will capture the satellite and ultimately will de-orbit it on a controlled re-entry.The paper explains the guidance strategies to launch, rendezvous, close-approach, and capture the target satellite. The guidance strategy uses chaser manoeuvres, hold points, and collision avoidance trajectories to ensure a safe capture. It also details the guidance profile to de-orbit it in a controlled re-entry.The paper continues with an analysis of the required sensing suite and the navigation algorithms to allow the homing, fly-around, and capture of the target satellite. The emphasis is placed around the design of a system to allow the rendezvous with an un-cooperative target, including the autonomous acquisition of both the orbital elements and the attitude of the target satellite.Analysing the capture phase, the paper provides a trade- off between two selected capture systems: the net and the tentacles. Both are studied from the point of view of the GNC system.The paper analyses as well the advanced algorithms proposed to control the final compound after the capture that will allow the controlled de-orbiting of the assembly in a safe place in the Earth.The paper ends proposing the continuation of this work with the extension to the analysis of the destruction process of the compound in consecutive segments starting from the entry gate to the rupture and break up.

  3. DFH Satellite Co.,Ltd.

    Institute of Scientific and Technical Information of China (English)

    SunQing

    2004-01-01

    DFH Satellite Co.,Ltd. is a hi-tech enterprise founded and sponsored by China Aerospace Science and Technology Corporation(CASC) and one of CASC subsidiaries,China Academy of Space Technology (CAST). The company is mainly engaged in the research and development of small satellites and micro-satellites, Osystem designs and product development for satellite application projects as well as the international exchanges and cooperation.

  4. Autonomous robotic operations for on-orbit satellite servicing

    Science.gov (United States)

    Ogilvie, Andrew; Allport, Justin; Hannah, Michael; Lymer, John

    2008-04-01

    The Orbital Express Demonstration System (OEDS) flight test successfully demonstrated technologies required to autonomously service satellites on-orbit. The mission's integrated robotics solution, the Orbital Express Demonstration Manipulator System (OEDMS) developed by MDA, performed critical flight test operations. The OEDMS comprised a six-jointed robotic manipulator arm and its avionics, non-proprietary servicing and ORU (Orbital Replacement Unit) interfaces, a vision and arm control system for autonomous satellite capture, and a suite of Ground Segment and Flight Segment software allowing script generation and execution under supervised or full autonomy. The arm was mounted on ASTRO, the servicer spacecraft developed by Boeing. The NextSat, developed by Ball Aerospace, served as the client satellite. The OEDMS demonstrated two key goals of the OEDS flight test: autonomous free-flyer capture and berthing of a client satellite, and autonomous transfer of ORUs from servicer to client and back. The paper provides a description of the OEDMS and the key operations it performed.

  5. Telelibrary: Library Services via Satellite.

    Science.gov (United States)

    Liu, Rosa

    1979-01-01

    Investigates the provision of library services via satellite, explains briefly the operation and advantages of communication satellites, and discusses the various telecommunications equipment and services which, when coupled with satellite transmission, will enhance library activities. Demand trend projections for telecommunications services…

  6. Mobile satellite service for Canada

    Science.gov (United States)

    Sward, David

    1988-05-01

    The Mobile Satellite (MSAT) system and a special program designed to provide interim mobile satellite services (IMSS) during the construction phase of MSAT are described. A mobile satellite system is a key element in extending voice and and data telecommunications to all Canadians.

  7. Satellite Aerodynamics and Density Determination from Satellite Dynamic Response

    Science.gov (United States)

    Karr, G. R.

    1972-01-01

    The aerodynamic drag and lift properties of a satellite are first expressed as a function of two parameters associated with gas-surface interaction at the satellite surface. The dynamic response of the satellite as it passes through the atmosphere is then expressed as a function of the two gas-surface interaction parameters, the atmospheric density, the satellite velocity, and the satellite orientation to the high speed flow. By proper correlation of the observed dynamic response with the changing angle of attack of the satellite, it is found that the two unknown gas-surface interaction parameters can be determined. Once the gas-surface interaction parameters are known, the aerodynamic properties of the satellite at all angles of attack are also determined.

  8. Thematic mapping from satellite imagery

    CERN Document Server

    Denègre, J

    2013-01-01

    Thematic Mapping from Satellite Imagery: A Guidebook discusses methods in producing maps using satellite images. The book is comprised of five chapters; each chapter covers one stage of the process. Chapter 1 tackles the satellite remote sensing imaging and its cartographic significance. Chapter 2 discusses the production processes for extracting information from satellite data. The next chapter covers the methods for combining satellite-derived information with that obtained from conventional sources. Chapter 4 deals with design and semiology for cartographic representation, and Chapter 5 pre

  9. Cooperative and cognitive satellite systems

    CERN Document Server

    Chatzinotas, Symeon; De Gaudenzi, Riccardo

    2015-01-01

    Cooperative and Cognitive Satellite Systems provides a solid overview of the current research in the field of cooperative and cognitive satellite systems, helping users understand how to incorporate state-of-the-art communication techniques in innovative satellite network architectures to enable the next generation of satellite systems. The book is edited and written by top researchers and practitioners in the field, providing a comprehensive explanation of current research that allows users to discover future technologies and their applications, integrate satellite and terrestrial systems

  10. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... is suspended on an air bearing, and rotates freely in 3 degrees of freedom. In order to avoid any influence of the gravitational force the centre of mass of the satellite is placed in the geometric centre of the air bearing by an automatic balancing system. The test spacecraft is equipped with a three...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...

  11. Declassified Intelligence Satellite Photographs

    Science.gov (United States)

    ,

    2008-01-01

    Declassified photographs from U.S. intelligence satellites provide an important worldwide addition to the public record of the Earth's land surface. This imagery was released to the National Archives and Records Administration (NARA) and the U.S. Geological Survey (USGS) in accordance with Executive Order 12951 on February 23, 1995. The NARA has the original declassified film and a viewing copy. The USGS has another copy of the film to complement the Landsat archive. The declassified collection involves more than 990,000 photographs taken from 1959 through 1980 and was released on two separate occasions: February 1995 (Declass 1) and September 2002 (Declass 2). The USGS copy is maintained by the Earth Resources Observation and Science (EROS) Center, near Sioux Falls, South Dakota. Both the NARA and EROS provide public access to this unique collection that extends the record of land-surface change back another decade from the advent of the Landsat program that began satellite operations in 1972.

  12. Satellites in Canadian broadcasting

    Science.gov (United States)

    Siocos, C. A.

    The involvement of Canadian broadcasting and related enterprises in satellite telecommunications is surveyed. This includes point-to-point transmissions and direct ones to the general public. The mode of such utilizations is indicated in both these cases. For the forthcoming DBS systems the many types of service offerings and utilization concepts under discussion elasewhere are presented as well as the business prospects and regulatory climate offering them.

  13. Neptune: Minor Satellites

    Science.gov (United States)

    Murdin, P.

    2003-04-01

    All but one of Neptune's minor satellites orbit within or just outside its ringsystem; the exception is the distant object Nereid. Some of them are betterdescribed as `mid-sized' rather than `minor', but are included under thisheading as little is known of them. The inner four, with approximatediameters, are Naiad (60 km), Thalassa (80 km), Despina (150 km) and Galatea(160 km). The first three lie...

  14. Satellite Surveillance: Domestic Issues

    Science.gov (United States)

    2010-02-01

    earthquake and tsunami in the Indian Ocean and Hurricane Katrina in 2005, when the NGA provided graphics for “relief efforts that depicted the locations of...that show the damage resulting from an earthquake , fire, flood, hurricane, oil spill, or volcanic eruption.8 Bush Administration Policies...Satellite information has continued to have important civil applications in such disparate areas as the movement of glaciers in Yakutat Bay in Alaska

  15. Google Earth as a Vehicle to Integrating Multiple Layers of Environmental Satellite Data for Weather and Science Applications

    Science.gov (United States)

    Turk, F. J.; Miller, S. D.

    2007-12-01

    satellite data would be utilized within a geobrowser in a near real-time setting, we present a demonstration from the 2007 hurricane season, developed within the Google Earth framework. A menu of imagery based sequential satellite overpasses (GOES and other geostationary satellites, TRMM, CloudSat, Terra, Aqua, DMSP, NOAA, QuikScat) during the storm lifecycle, are presented to the Earth client in an structured folder format. The remapping of these satellite data follows the hurricane track, enabling the user to view, animate, zoom, overlay and combine visible, infrared and passive microwave imagery and combine with other data (surface reports, forecasts, surface winds, ground and spaceborne radars, etc.) at various stages of the hurricane lifecycle. Pop-up balloons provide training that explains the properties and capabilities of the satellite datasets and what components of the underlying weather are represented. Future satellite overpass tracks are provided so that the user can anticipate imagery updates several days in advance (e.g., as a hurricane approaches landfall). This combination of geo-navigable data provides a convenient framework for efficiently demonstrating meteorological, oceanographic and weather and climate concepts to students, planners, and the public at large.

  16. Communications satellites - The experimental years

    Science.gov (United States)

    Edelson, B. I.

    1983-10-01

    Only eight years after the launc of Sputnik-1 by the Soviet Union, the first commercial satellite, 'Early Bird', entered service. In just twelve years commercial satellite service extended around the earth and became profitable. The reasons for the successful development of the communications satellite services in a comparatively short time are considered. These reasons are related to the presence of three ingredients, taking into account technology to create the system, communications requirements to form a market, and a management structure to implement the system. The formation of the concept of using earth orbiting satellites for telecommunications is discussed. It is pointed out that the years from 1958 to 1964 were the true 'experimental years' for satellite communications. The rapid development of technology during this crucial period is described, giving attention to passive satellites, active systems, and development satellites.

  17. Tethered satellite design

    Science.gov (United States)

    Manarini, G.

    1986-01-01

    The capability of the satellite to perform a variety of space operations to be accomplished from the shuttle is reviewed considering use of the satellite with man-in-loop and closed loop modes and deployment (toward or away from Earth, up to 100 km), stationkeeping, retrieval and control of the satellite. Scientific payloads are to be used to perform experiments and scientific investigation for applications such as magnetometry, electrodynamics, atmospheric science, chemical release, communications, plasmaphysics, dynamic environment, and power and thrust generation. The TSS-S will be reused for at least 3 missions after reconfiguration and refurbishment by changing the peculiar mission items such as thermal control, fixed boom for experiments, aerodynamic tail for yaw attitude control, external skin, experiments, and any other feature. The TSS-S is to be composed of three modules in order to allow independent integration of a single module and to facilitate the refurbishment and reconfiguration between flights. The three modules are service, auxiliary propulsion, and payload modules.

  18. Heart Monitoring By Satellite

    Science.gov (United States)

    1978-01-01

    The ambulance antenna shown is a specially designed system that allows satellite-relayed two-way communications between a moving emergency vehicle and a hospital emergency room. It is a key component of a demonstration program aimed at showing how emergency medical service can be provided to people in remote rural areas. Satellite communication permits immediate, hospital- guided treatment of heart attacks or other emergencies by ambulance personnel, saving vital time when the scene of the emergency is remote from the hospital. If widely adopted, the system could save tens of thousands of lives annually in the U.S. alone, medical experts say. The problem in conventional communication with rural areas is the fact that radio signals travel in line of sight. They may be blocked by tall buildings, hills and mountains, or even by the curvature of the Earth, so signal range is sharply limited. Microwave relay towers could solve the problem, but a complete network of repeater towers would be extremely expensive. The satellite provides an obstruction-free relay station in space.

  19. Tactical Satellite 3

    Science.gov (United States)

    Davis, T. M.; Straight, S. D.; Lockwook, R. B.

    2008-08-01

    Tactical Satellite 3 is an Air Force Research Laboratory Science and Technology (S&T) initiative that explores the capability and technological maturity of small, low-cost satellites. It features a low cost "plug and play" modular bus and low cost militarily significant payloads - a Raytheon developed Hyperspectral imager and secondary payload data exfiltration provided by the Office of Naval Research. In addition to providing for ongoing innovation and demonstration in this important technology area, these S&T efforts also help mitigate technology risk and establish a potential concept of operations for future acquisitions. The key objectives are rapid launch and on-orbit checkout, theater commanding, and near-real time theater data integration. It will also feature a rapid development of the space vehicle and integrated payload and spacecraft bus by using components and processes developed by the satellite modular bus initiative. Planned for a late summer 2008 launch, the TacSat-3 spacecraft will collect and process images and then downlink processed data using a Common Data Link. An in-theater tactical ground station will have the capability to uplink tasking to spacecraft and will receive full data image. An international program, the United Kingdom Defence Science and Technology Laboratory (DSTL) and Australian Defence Science and Technology Organisation (DSTO) plan to participate in TacSat-3 experiments.

  20. A satellite anemometer

    Science.gov (United States)

    Hanson, W. B.; Heelis, R. A.

    1995-01-01

    This report describes the design, development, and testing of components of a satellite anemometer, an instrument for measuring neutral winds in the upper atmosphere from a satellite platform. The device, which uses four nearly identical pressure sensors, measures the angle of arrival of the bulk neutral flow in the satellite frame of reference. It could also be used in a feedback loop to control spacecraft attitude with respect to the ram velocity direction. We have now developed miniaturized ionization pressure gauges that will work well from the slip flow region near 115 km up to the base of the exosphere, which covers the entire altitude range currently being considered for Tether. Laboratory tests have demonstrated a very linear response to changes in ram angle out to +/- 20 deg. (transverse wind component of 2.7 km s(exp -1)) from the ram, and a monotonic response to out beyond 45 deg. Pitch (vertical wind) and yaw (horizontal wind) can be sampled simultaneously and meaningfully up to 10 Hz. Angular sensitivity of 30 arc seconds (approximately 1 ms(exp -1) is readily attainable, but absolute accuracy for winds will be approximately 1 deg (130 m/s) unless independent attitude knowledge is available. The critical elements of the design have all been tested in the laboratory.

  1. Binary Satellite Galaxies

    CERN Document Server

    Evslin, Jarah

    2013-01-01

    Suggestions have appeared in the literature that the following five pairs of Milky Way and Andromeda satellite galaxies are gravitationally bound: Draco and Ursa Minor, Leo IV and V, Andromeda I and III, NGC 147 and 185, and the Magellanic clouds. Under the assumption that a given pair is gravitationally bound, the Virial theorem provides an estimate of its total mass and so its instantaneous tidal radius. For all of these pairs except for the Magellanic clouds the resulting total mass is 2 to 4 orders of magnitude higher than that within the half light radius. Furthermore in the case of each pair except for Leo IV and Leo V, the estimated tidal radius is inferior to the separation between the two satellites. Therefore all or almost all of these systems are not gravitationally bound. We note several possible explanations for the proximities and similar radial velocities of the satellites in each pair, for example they may have condensed from the same infalling structure or they may be bound by a nongravitatio...

  2. Techniques for capturing bighorn sheep lambs

    Science.gov (United States)

    Smith, Joshua B.; Walsh, Daniel P.; Goldstein, Elise J.; Parsons, Zachary D.; Karsch, Rebekah C.; Stiver, Julie R.; Cain, James W.; Raedeke, Kenneth J.; Jenks, Jonathan A.

    2014-01-01

    Low lamb recruitment is a major challenge facing managers attempting to mitigate the decline of bighorn sheep (Ovis canadensis), and investigations into the underlying mechanisms are limited because of the inability to readily capture and monitor bighorn sheep lambs. We evaluated 4 capture techniques for bighorn sheep lambs: 1) hand-capture of lambs from radiocollared adult females fitted with vaginal implant transmitters (VITs), 2) hand-capture of lambs of intensively monitored radiocollared adult females, 3) helicopter net-gunning, and 4) hand-capture of lambs from helicopters. During 2010–2012, we successfully captured 90% of lambs from females that retained VITs to ≤1 day of parturition, although we noted differences in capture rates between an area of high road density in the Black Hills (92–100%) of South Dakota, USA, and less accessible areas of New Mexico (71%), USA. Retention of VITs was 78% with pre-partum expulsion the main cause of failure. We were less likely to capture lambs from females that expelled VITs ≥1 day of parturition (range = 80–83%) or females that were collared without VITs (range = 60–78%). We used helicopter net-gunning at several sites in 1999, 2001–2002, and 2011, and it proved a useful technique; however, at one site, attempts to capture lambs led to lamb predation by golden eagles (Aquila chrysaetos). We attempted helicopter hand-captures at one site in 1999, and they also were successful in certain circumstances and avoided risk of physical trauma from net-gunning; however, application was limited. In areas of low accessibility or if personnel lack the ability to monitor females and/or VITs for extended periods, helicopter capture may provide a viable option for lamb capture.

  3. Radioactive proton capture on {sup 6}He

    Energy Technology Data Exchange (ETDEWEB)

    Sauvan, E.; Marques, F.M. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Wilschut, H.W. [Kernfysich Versneller Instituut, Groningen (Netherlands)

    2001-03-01

    Radiative capture of protons is investigated as a probe of clustering in nuclei far from stability. The first such measurement on a halo nucleus is reported here for the reaction {sup 6}He(p,{gamma}) at 40 MeV. Capture into {sup 7}Li is observed as the strongest channel. In addition, events have been recorded that may be described by quasi-free capture on halo neutron, the {alpha} core and {sup 5}He. The possibility of describing such events by capture into the continuum of {sup 7}Li is also discussed. (authors)

  4. Several methods of smoothing motion capture data

    Science.gov (United States)

    Qi, Jingjing; Miao, Zhenjiang; Wang, Zhifei; Zhang, Shujun

    2011-06-01

    Human motion capture and editing technologies are widely used in computer animation production. We can acquire original motion data by human motion capture system, and then process it by motion editing system. However, noise embed in original motion data maybe introduced by extracting the target, three-dimensional reconstruction process, optimizing algorithm and devices itself in human motion capture system. The motion data must be modified before used to make videos, otherwise the animation figures will be jerky and their behavior is unnatural. Therefore, motion smoothing is essential. In this paper, we compare and summarize three methods of smoothing original motion capture data.

  5. Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-11-01

    Full Text Available This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN.

  6. Predictions of Stellar Occultations by Irregular Satellites up to 2020

    Science.gov (United States)

    Ramos Gomes, Altair; Assafin, Marcelo; Beauvalet, Laurene; Desmars, Josselin; Vieira-Martins, Roberto; Camargo, Julio I.; Morgado, Bruno Eduardo; Braga Ribas, Felipe

    2017-06-01

    Due to their orbital configurations, it is believed the irregular satellites of the Giant Planets were captured by their host planets during the Solar System evolution. It is important to know their physical parameters such as size, shape, albedo and composition in an attempt to access their origin. The best ground-based technique to do so is by stellar occultations.With the release of the GAIA catalog and the publication of a large database of positions of irregular satellites (Gomes-Júnior et al., 2015), the position of the stars and the ephemeris of the satellites are improved to better predict stellar occultation.The present work predicts such events for the 8 largest irregular satellites of Jupiter and the largest irregular satellite of Saturn, Phoebe, up to 2020. Another motivation is the passage of Jupiter in front of the Galatic Plane in 2019-2020 increasing a lot the number of stars to be occulted. The same happens with Saturn in 2018.

  7. Optimal capture occasion determination and trajectory generation for space robots grasping tumbling objects

    Science.gov (United States)

    Luo, Jianjun; Zong, Lijun; Wang, Mingming; Yuan, Jianping

    2017-07-01

    This paper presents an optimal trajectory planning scheme for robotic capturing of a tumbling object. Motion planning of a space robot is much more complex than that of a fixed-based robot, due to the dynamic coupling between the manipulator and its base. In this work, the Path Independent Workspace (PIW), in which no dynamic singularity occurs, and Path Dependent Workspace (PDW) of the space robot are first calculated by the proposed algorithm. The motion equations of the tumbling object are formulated based on the Euler dynamics equations and the quaternion, which are used to predict the long-term motion of a grasping point on the tumbling object. Subsequently, the obtained PIW workspace and predicted motion trajectories are used to plan the trajectory of the end-effector to intercept the grasping point with zero relative velocity (to avoid impact) in an optimal way. In order to avoid dynamic singularity occurring at the capture moment, the optimal capture occasion is first determined by three proposed criterions guaranteeing the capture can be safely, reliably and rapidly performed, then the optimal trajectory of the end-effector is generated minimizing a cost function which acts as a constraint on acceleration magnitude. Simulations are presented to demonstrate the trajectory planning scheme for a space robot with a 3-degree of freedom (DOF) manipulator grasping a tumbling satellite, the results show that the manipulator end-effector can smoothly intercept the grasping point on the tumbling satellite with zero relative velocity.

  8. Satellite Docking Simulator with Generic Contact Dynamics Capabilities

    Science.gov (United States)

    Ma, O.; Crabtree, D.; Carr, R.; Gonthier, Y.; Martin, E.; Piedboeuf, J.-C.

    2002-01-01

    Satellite docking (and capture) systems are critical for the servicing or salvage of satellites. Satellite servicing has comparatively recently become a realistic and promising space operation/mission. Satellite servicing includes several of the following operations: rendezvous; docking (capturing); inspection; towing (transporting); refueling; refurbishing (replacement of faulty or "used-up" modules/boxes); and un-docking (releasing). Because spacecraft servicing has been, until recently non-feasible or non-economical, spacecraft servicing technology has been neglected. Accordingly, spacecraft designs have featured self- contained systems without consideration for operational servicing. Consistent with this view, most spacecrafts were designed and built without docking interfaces. If, through some mishap, a spacecraft was rendered non-operational, it was simply considered expendable. Several feasibility studies are in progress on salvaging stranded satellites (which, in fact had led to this project). The task of the designer of the docking system for a salvaging task is difficult. He/she has to work with whatever it is on orbit, and this excludes any special docking interfaces, which might have made his/her task easier. As satellite servicing becomes an accepted design requirement, many future satellites will be equipped with appropriate docking interfaces. The designer of docking systems will be faced with slightly different challenges: reliable, cost-effective, docking (and re-supply) systems. Thus, the role of designers of docking systems will increase from one of a kind, ad-hoc interfaces intended for salvaging operations, to docking systems for satellites and "caretaker" spacecraft which are meant for servicing and are produced in larger numbers. As in any space system (for which full and representative ground hardware test-beds are very expensive and often impossible to develop), simulations are mandatory for the development of systems and operations for

  9. Double K-shell vacancy production in the electron capture decay of 139Ce

    Science.gov (United States)

    Hindi, M. M.; Kozub, R. L.

    1991-02-01

    The probability of double K-shell vacancy production in the electron capture decay of 139Ce to the 166-keV level of 139La has been investigated. Triple coincidences between the 166-keV gamma ray, the La satellite Kα x ray, and the La hypersatellite Kα x ray were measured using two intrinsic Ge detectors. We looked for the sum of two of the three radiations in one detector in coincidence with the third radiation in the other detector. The probability of double K-shell vacancy production per K-shell electron capture (PKK) was found to be (2.0+/-1.6)×10-6. From this and the known PKK for 131Cs we estimate a probability for zero K-shell vacancy production (shakedown) per K-shell electron capture of <~2.4×10-5 for 139Ce.

  10. Satellite Upper Air Network (SUAN)

    Science.gov (United States)

    Reale, Tony L.; Thorne, Peter

    2004-10-01

    During the past 20 years of NOAA operational polar satellites, it has become evident that a growing problem concerning their utilization in Climate and also Numerical Weather Prediction (NWP) applications are the systematic errors and uncertainties inherent in the satellite measurements. Similar arguments can be made for global radiosonde observations. These uncertainties are often larger than the sensitive signals and processes, that satellite and radiosonde measurements are designed to reveal, particularly in the realm of climate. Possible strategies to quantify and compensate for these problems include the analysis of satellite overlap data and/or available collocations of satellite and ground truth (radiosonde) observations. However, overlap observations are typically not available except in extreme polar regions and current sampling strategies for compiling collocated radiosonde and satellite observations are insufficient, further compounding the inherent uncertainties in the ground-truth radiosonde data. A Satellite Upper Air Network is proposed to provide reference radiosonde launches coincident with operational polar satellite(s) overpass. The SUAN consist of 36 global radiosonde stations sub-sampled from the Global Upper Air Network (GUAN), and is designed to provide a robust, global sample of collocated radiosonde and satellite observations conducive to the monitoring and validation of satellite and radiosonde observations. The routine operation of such a network in conjunction with operational polar satellites would provide a long-term of performance for critical observations of particular importance for climate. The following report presents a candidate network of 36 upper-air sites that could comprise a SUAN. Their selection along with the mutual benefit across the satellite, radiosonde, climate, numerical weather prediction (NWP) and radiative transfer (RT) model areas are discussed.

  11. Radiative proton capture on He-6

    NARCIS (Netherlands)

    Sauvan, E; Marques, FM; Wilschut, HW; Orr, NA; Angelique, JC; Borcea, C; Catford, WN; Clarke, NM; Descouvemont, P; Diaz, J; Grevy, S; Kugler, A; Kravchuk, [No Value; Labiche, M; Le Brun, C; Lienard, E; Lohner, H; Mittig, W; Ostendorf, RW; Pietri, S; Roussel-Chomaz, P; Saint Laurent, MG; Savajols, H; Wagner, [No Value; Yahlali, N

    2001-01-01

    Radiative capture of protons is investigated as a probe of clustering in nuclei far from stability. The first such measurement on a halo nucleus is reported here for the reaction He-6(p, gamma) at 40 MeV. Capture into Li-7 is observed as the strongest channel. In addition, events have been recorded

  12. Experience machines : Capturing and retrieving personal content

    NARCIS (Netherlands)

    Werkhoven, P.

    2005-01-01

    Fundamental to human existence is the ability to capture, memorise and retrieve personal experiences and to share them with others. Can systems help us to capture and retrieve experiences? After motors have supplemented our muscles and sensors have supplemented our senses, emerging computer systems

  13. Visual Field Asymmetry in Attentional Capture

    Science.gov (United States)

    Du, Feng; Abrams, Richard A.

    2010-01-01

    The present study examined the spatial distribution of involuntary attentional capture over the two visual hemi-fields. A new experiment, and an analysis of three previous experiments showed that distractors in the left visual field that matched a sought-for target in color produced a much larger capture effect than identical distractors in the…

  14. Capturing Value from Public-Private Collaborations

    NARCIS (Netherlands)

    Reypens, C.; Lievens, A.; Blazevic, V.

    2016-01-01

    Although public-private collaborations offer opportunities to create unique value for a wide range of stakeholders, participating organizations often struggle to capture value from them. We focus on this challenge using a practice perspective and aim to understand how organizations attempt to captur

  15. Experience machines : Capturing and retrieving personal content

    NARCIS (Netherlands)

    Werkhoven, P.

    2005-01-01

    Fundamental to human existence is the ability to capture, memorise and retrieve personal experiences and to share them with others. Can systems help us to capture and retrieve experiences? After motors have supplemented our muscles and sensors have supplemented our senses, emerging computer systems

  16. Screen captures to support switching attention

    NARCIS (Netherlands)

    Gellevij, Mark; Meij, van der Hans

    2002-01-01

    The study set out to validate the supportive role of screen captures for switching attention. Forty-two participants learned how to work with Microsoft Excel with a paper manual. There were three types of manuals: a textual manual, a visual manual with full-screen captures, and a visual manual with

  17. Radio broadcasting via satellite

    Science.gov (United States)

    Helm, Neil R.; Pritchard, Wilbur L.

    1990-10-01

    Market areas offering potential for future narrowband broadcast satellites are examined, including international public diplomacy, government- and advertising-supported, and business-application usages. Technical issues such as frequency allocation, spacecraft types, transmission parameters, and radio receiver characteristics are outlined. Service and system requirements, advertising revenue, and business communications services are among the economic issues discussed. The institutional framework required to provide an operational radio broadcast service is studied, and new initiatives in direct broadcast audio radio systems, encompassing studies, tests, in-orbit demonstrations of, and proposals for national and international commercial broadcast services are considered.

  18. Understanding satellite navigation

    CERN Document Server

    Acharya, Rajat

    2014-01-01

    This book explains the basic principles of satellite navigation technology with the bare minimum of mathematics and without complex equations. It helps you to conceptualize the underlying theory from first principles, building up your knowledge gradually using practical demonstrations and worked examples. A full range of MATLAB simulations is used to visualize concepts and solve problems, allowing you to see what happens to signals and systems with different configurations. Implementation and applications are discussed, along with some special topics such as Kalman Filter and Ionosphere. W

  19. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Fan, Shiwei; Wang, Feixue

    2016-01-01

    These Proceedings present selected research papers from CSNC2016, held during 18th-20th May in Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart Perception. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2016, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  20. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Yang, Yuanxi; Fan, Shiwei; Yu, Wenxian

    2017-01-01

    These proceedings present selected research papers from CSNC2017, held during 23th-25th May in Shanghai, China. The theme of CSNC2017 is Positioning, Connecting All. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2017, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  1. The Galilean Satellites

    Science.gov (United States)

    1998-01-01

    This composite includes the four largest moons of Jupiter which are known as the Galilean satellites. The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. Shown from left to right in order of increasing distance from Jupiter, Io is closest, followed by Europa, Ganymede, and Callisto.The order of these satellites from the planet Jupiter helps to explain some of the visible differences among the moons. Io is subject to the strongest tidal stresses from the massive planet. These stresses generate internal heating which is released at the surface and makes Io the most volcanically active body in our solar system. Europa appears to be strongly differentiated with a rock/iron core, an ice layer at its surface, and the potential for local or global zones of water between these layers. Tectonic resurfacing brightens terrain on the less active and partially differentiated moon Ganymede. Callisto, furthest from Jupiter, appears heavily cratered at low resolutions and shows no evidence of internal activity.North is to the top of this composite picture in which these satellites have all been scaled to a common factor of 10 kilometers (6 miles) per picture element.The Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft acquired the Io and Ganymede images in June 1996, the Europa images in September 1996, and the Callisto images in November 1997.Launched in October 1989, the spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission

  2. Future communications satellite applications

    Science.gov (United States)

    Bagwell, James W.

    1992-01-01

    The point of view of the research is made through the use of viewgraphs. It is suggested that future communications satellite applications will be made through switched point to point narrowband communications. Some characteristics of which are as follows: small/low cost terminals; single hop communications; voice compatible; full mesh networking; ISDN compatible; and possible limited use of full motion video. Some target applications are as follows: voice/data networks between plants and offices in a corporation; data base networking for commercial and science users; and cellular radio internodal voice/data networking.

  3. HETE Satellite Power Subsystem

    OpenAIRE

    1993-01-01

    The HETE (High-Energy Transient Experiment) satellite a joint project between MIT's Center for Space Research and AeroAstro. is a high-energy gamma-ray burst/X-Ray/UV observatory platform. HETE will be launched into a 550 km circular orbit with an inclination of 37.7°, and has a design lifetime of 18 months. This paper presents a description of the spacecraft's power subsystem, which collects, regulates, and distributes power to the experiment payload modules and to the various spacecraft sub...

  4. Encapsulated liquid sorbents for carbon dioxide capture.

    Science.gov (United States)

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-02-05

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  5. Capture of Trojans by Jumping Jupiter

    CERN Document Server

    Nesvorny, David; Morbidelli, Alessandro

    2013-01-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to ~5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the ...

  6. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone....... The CO2 capture capacity of limestone in the raw meal is lower than for pure limestone. The difference in the CO2 capture capacity decreases with an increase in cycle number. The calcination conditions and composition are major factors that influence the CO2 capture capacity of limestone. At 850 °C in N2...

  7. Seamless presentation capture, indexing, and management

    Science.gov (United States)

    Hilbert, David M.; Cooper, Matthew; Denoue, Laurent; Adcock, John; Billsus, Daniel

    2005-10-01

    Technology abounds for capturing presentations. However, no simple solution exists that is completely automatic. ProjectorBox is a "zero user interaction" appliance that automatically captures, indexes, and manages presentation multimedia. It operates continuously to record the RGB information sent from presentation devices, such as a presenter's laptop, to display devices, such as a projector. It seamlessly captures high-resolution slide images, text and audio. It requires no operator, specialized software, or changes to current presentation practice. Automatic media analysis is used to detect presentation content and segment presentations. The analysis substantially enhances the web-based user interface for browsing, searching, and exporting captured presentations. ProjectorBox has been in use for over a year in our corporate conference room, and has been deployed in two universities. Our goal is to develop automatic capture services that address both corporate and educational needs.

  8. The TAOS/STEP Satellite

    OpenAIRE

    Edwards, David; Hosken, Robert

    1995-01-01

    The Technology for Autonomous Operational Survivability / Space Test Experiments Platform (TAOS/STEP) satellite was launched on a Taurus booster from Vandenberg Air Force Base into a nearly circular, 105 degree inclined orbit on March 13, 1994. The purpose of this satellite is twofold: 1) to test a new concept in multiple procurements of fast-track modular satellites and 2) to test a suite of Air Force Phillips Laboratory payloads in space. The TAOS payloads include the Microcosm Autonomous N...

  9. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  10. The Sentinel satellites revolutionise environmental observation; Los satelites Sentinel revolucionan la observacion medioambiental

    Energy Technology Data Exchange (ETDEWEB)

    River, A.

    2016-08-01

    Europe has in orbit three Sentinel satellites that are the backbone of the ambitious Copernicus system. Aimed at revolutionising environmental observation from both the scientific and commercial points of view, their objective is to capture massive volumes of data on the Earth with a view to ensuring progress in research into climate change, the oceans and the evolution of ice formations. (Author)

  11. Implementation of a satellite data based permafrost information system - the DUE permafrost project

    NARCIS (Netherlands)

    Bartsch, A.; Wiesmann, A.; Strozzi, T.; Schmullius, C.; Hese, S.; Duguay, C.; Heim, B.; Boike, J.; Herold, M.

    2010-01-01

    directly measured with remotely sensed data. However, many parameters which influence the ground thermal regime and surface indicators can be captured with satellite data in an operational manner. Those are e.g. land surface temperature, land cover and snow parameters, soil moisture and terrain chan

  12. Trends in mobile satellite communication

    Science.gov (United States)

    Johannsen, Klaus G.; Bowles, Mike W.; Milliken, Samuel; Cherrette, Alan R.; Busche, Gregory C.

    1993-01-01

    Ever since the U.S. Federal Communication Commission opened the discussion on spectrum usage for personal handheld communication, the community of satellite manufacturers has been searching for an economically viable and technically feasible satellite mobile communication system. Hughes Aircraft Company and others have joined in providing proposals for such systems, ranging from low to medium to geosynchronous orbits. These proposals make it clear that the trend in mobile satellite communication is toward more sophisticated satellites with a large number of spot beams and onboard processing, providing worldwide interconnectivity. Recent Hughes studies indicate that from a cost standpoint the geosynchronous satellite (GEOS) is most economical, followed by the medium earth orbit satellite (MEOS) and then by the low earth orbit satellite (LEOS). From a system performance standpoint, this evaluation may be in reverse order, depending on how the public will react to speech delay and collision. This paper discusses the trends and various mobile satellite constellations in satellite communication under investigation. It considers the effect of orbital altitude and modulation/multiple access on the link and spacecraft design.

  13. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros

    2011-01-01

    Although the first satellite observations of the Earth’s magnetic field were already taken more than 50 years ago, continuous geomagnetic measurements from space are only available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities...... for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...... exploration of Earth’s magnetic field with satellites....

  14. Satellite Communications: The Indian Scenario

    Directory of Open Access Journals (Sweden)

    Dr. Ranjit Singh

    2014-05-01

    Full Text Available India has launched as many as 73 Indian satellites as of today since its first attempt in 1975. Besides serving traditional markets of telephony and broadcasting, satellites are on the frontiers of advanced applications as telemedicine, distance learning, environment monitoring, remote sensing, and so on. Satellite systems are optimized for services such as Internet access, virtual private networks and personal access. Costs have been coming down in recent years to the point where satellite broadband is becoming competitive. This article is an attempt to view this important topic from Indian perspective. India’s Project GAGAN, GPS Aided Geo Augmented Navigation is discussed.

  15. Business Use of Satellite Communications.

    Science.gov (United States)

    Edelson, Burton I.; Cooper, Robert S.

    1982-01-01

    Reviews business communications development and discusses business applications of satellite communications, system technology, and prospects for future developments in digital transmission systems. (JN)

  16. Declassified Intelligence Satellite Photographs

    Science.gov (United States)

    ,

    2008-01-01

    Declassified photographs from U.S. intelligence satellites provide an important worldwide addition to the public record of the Earth’s land surface. This imagery was released to the National Archives and Records Administration (NARA) and the U.S. Geological Survey (USGS) in accordance with Executive Order 12951 on February 23, 1995. The NARA has the original declassified film and a viewing copy. The USGS has another copy of the film to complement the Landsat archive.The declassified collection involves more than 990,000 photographs taken from 1959 through 1980 and was released on two separate occasions: February 1995 (Declass 1) and September 2002 (Declass 2). The USGS copy is maintained by the Earth Resources Observation and Science (EROS) Center, near Sioux Falls, South Dakota. Both the NARA and EROS provide public access to this unique collection that extends the record of land-surface change back another decade from the advent of the Landsat program that began satellite operations in 1972.

  17. The power relay satellite

    Science.gov (United States)

    Glaser, Peter E.

    The availability and use of renewable energy sources compatible with reducing risks to the global environment are key to sustainable development. Large-scale, renewable energy resources at undeveloped or underutilized sites are potentially available on several continents. The Power Relay Satellite (PRS) concept has the potential to access these remote energy resources by coupling primary electricity generation from terrestrial transmission lines. A global PRS network can be envisioned to provide a high degree of flexibility for supplying energy demands worldwide with wireless power transmitted from sites on Earth to geosynchronous orbit and then reflected to receivers interfacing with terrestrial power transmision networks. Past developments in wireless power transmission (WPT) are reviewed and recent successful results are noted. The origins of the PRS concept, and a possible configuration are discussed, principles of WPT at microwave frequencies, functional requirements, and system design contraints are outlined, and space transportation concepts presented. PRS assessments including applicable technologies, economic projections, and societal issues are highlighted. It is concluded that the PRS provides a promising option to access renewable resources at great distances from major markets, and represents an important stage in the future development in the future of solar power satellites.

  18. On the Origin of Pluto's Small Satellites by Resonant Transport

    CERN Document Server

    Cheng, W H; Lee, Man Hoi

    2014-01-01

    The orbits of Pluto's four small satellites (Styx, Nix, Kerberos, and Hydra) are nearly circular and coplanar with the orbit of the large satellite Charon, with orbital periods nearly in the ratios 3:1, 4:1, 5:1, and 6:1 with Charon's orbital period. These properties suggest that the small satellites were created during the same impact event that placed Charon in orbit and had been pushed to their current positions by being locked in mean-motion resonances with Charon as Charon's orbit was expanded by tidal interactions with Pluto. Using the Pluto-Charon tidal evolution models developed by Cheng et al. (2014), we show that stable capture and transport of a test particle in multiple resonances at the same mean-motion commensurability is possible at the 5:1, 6:1, and 7:1 commensurabilities, if Pluto's zonal harmonic $J_{2P} = 0$. However, the test particle has significant orbital eccentricity at the end of the tidal evolution of Pluto-Charon in almost all cases, and there are no stable captures and transports a...

  19. Inter-satellite links for satellite autonomous integrity monitoring

    Science.gov (United States)

    Rodríguez-Pérez, Irma; García-Serrano, Cristina; Catalán Catalán, Carlos; García, Alvaro Mozo; Tavella, Patrizia; Galleani, Lorenzo; Amarillo, Francisco

    2011-01-01

    A new integrity monitoring mechanisms to be implemented on-board on a GNSS taking advantage of inter-satellite links has been introduced. This is based on accurate range and Doppler measurements not affected neither by atmospheric delays nor ground local degradation (multipath and interference). By a linear combination of the Inter-Satellite Links Observables, appropriate observables for both satellite orbits and clock monitoring are obtained and by the proposed algorithms it is possible to reduce the time-to-alarm and the probability of undetected satellite anomalies.Several test cases have been run to assess the performances of the new orbit and clock monitoring algorithms in front of a complete scenario (satellite-to-satellite and satellite-to-ground links) and in a satellite-only scenario. The results of this experimentation campaign demonstrate that the Orbit Monitoring Algorithm is able to detect orbital feared events when the position error at the worst user location is still under acceptable limits. For instance, an unplanned manoeuvre in the along-track direction is detected (with a probability of false alarm equals to 5 × 10-9) when the position error at the worst user location is 18 cm. The experimentation also reveals that the clock monitoring algorithm is able to detect phase jumps, frequency jumps and instability degradation on the clocks but the latency of detection as well as the detection performances strongly depends on the noise added by the clock measurement system.

  20. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    Science.gov (United States)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  1. Capturing Trojans and Irregular Satellites - the key required to unlock planetary migration

    CERN Document Server

    Horner, Jonathan; Lykawka, Patryk Sofia

    2013-01-01

    It is now accepted that the Solar system's youth was a dynamic and chaotic time. The giant planets migrated significant distances to reach their current locations, and evidence of that migration's influence on the Solar system abounds. That migration's pace, and the distance over which it occurred, is still heavily debated. Some models feature systems in which the giant planets were initially in an extremely compact configuration, in which Uranus and Neptune are chaotically scattered into the outer Solar system. Others feature architectures that were initially more relaxed, and smoother, more sedate migration. To determine which of these scenarios best represents the formation of our Solar system, we must turn to the structure of the system's small body populations, in which the scars of that migration are still clearly visible. We present the first results of a program investigating the effect of giant planet migration on the reservoirs of small bodies that existed at that time. As the planets migrate, they ...

  2. Covalent Organic Frameworks for CO2 Capture.

    Science.gov (United States)

    Zeng, Yongfei; Zou, Ruqiang; Zhao, Yanli

    2016-04-20

    As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low- and high-pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed.

  3. Astrometric positions for 18 irregular satellites of giant planets from 23 years of observations

    CERN Document Server

    Gomes-Júnior, A R; Vieira-Martins, R; Arlot, J -E; Camargo, J I B; Braga-Ribas, F; Neto, D N da Silva; Andrei, A H; Dias-Oliveira, A; Morgado, B E; Benedetti-Rossi, G; Duchemin, Y; Desmars, J; Lainey, V; Thuillot, W

    2015-01-01

    The irregular satellites of the giant planets are believed to have been captured during the evolution of the solar system. Knowing their physical parameters, such as size, density, and albedo is important for constraining where they came from and how they were captured. The best way to obtain these parameters are observations in situ by spacecrafts or from stellar occultations by the objects. Both techniques demand that the orbits are well known. We aimed to obtain good astrometric positions of irregular satellites to improve their orbits and ephemeris. We identified and reduced observations of several irregular satellites from three databases containing more than 8000 images obtained between 1992 and 2014 at three sites (Observat\\'orio do Pico dos Dias, Observatoire de Haute-Provence, and European Southern Observatory - La Silla). We used the software PRAIA (Platform for Reduction of Astronomical Images Automatically) to make the astrometric reduction of the CCD frames. The UCAC4 catalog represented the Inte...

  4. Understanding Motion Capture for Computer Animation

    CERN Document Server

    Menache, Alberto

    2010-01-01

    The power of today's motion capture technology has taken animated characters and special effects to amazing new levels of reality. And with the release of blockbusters like Avatar and Tin-Tin, audiences continually expect more from each new release. To live up to these expectations, film and game makers, particularly technical animators and directors, need to be at the forefront of motion capture technology. In this extensively updated edition of Understanding Motion Capture for Computer Animation and Video Games, an industry insider explains the latest research developments in digital design

  5. Capture into resonance of coupled Duffing oscillators.

    Science.gov (United States)

    Kovaleva, Agnessa

    2015-08-01

    In this paper we investigate capture into resonance of a pair of coupled Duffing oscillators, one of which is excited by periodic forcing with a slowly varying frequency. Previous studies have shown that, under certain conditions, a single oscillator can be captured into persistent resonance with a permanently growing amplitude of oscillations (autoresonance). This paper demonstrates that the emergence of autoresonance in the forced oscillator may be insufficient to generate oscillations with increasing amplitude in the attachment. A parametric domain, in which both oscillators can be captured into resonance, is determined. The quasisteady states determining the growth of amplitudes are found. An agreement between the theoretical and numerical results is demonstrated.

  6. Neutron capture cross section of Am241

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Kawano, T.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Parker, W. E.; Wu, C. Y.; Becker, J. A.

    2008-09-01

    The neutron capture cross section of Am241 for incident neutrons from 0.02 eV to 320 keV has been measured with the detector for advanced neutron capture experiments (DANCE) at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be 665±33 b. Our result is in good agreement with other recent measurements. Resonance parameters for Enwell with the measured data, and the extracted averaged resonance parameters in the unresolved resonance region are consistent with those for the resolved resonances.

  7. Multicast Routing in Satellite Network

    Institute of Scientific and Technical Information of China (English)

    郭惠玲; 宋姝; 李磊; 刘志涛; 郭鹏程

    2004-01-01

    There are some problems in the dual-layer satellite MPLs metworks to be composed of LEO and MEO. In order to solve the problems, this paper presents a plan by means of unicast LSP to implement multicast in the dual-layer satellite MPLs networks. It has advantages of saving space and reducing extra charge.

  8. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros

    2011-01-01

    for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...

  9. Assessing Satellite-Based Fire Data for use in the National Emissions Inventory

    Science.gov (United States)

    Soja, Amber J.; Al-Saadi, Jassim; Giglio, Louis; Randall, Dave; Kittaka, Chieko; Pouliot, George; Kordzi, Joseph J.; Raffuse, Sean; Pace, Thompson G.; Pierce, Thomas E.; Moore, Tom; Biswadev, Roy; Pierce, R. Bradley; Szykman, James J.

    2009-01-01

    Biomass burning is significant to emission estimates because: (1) it can be a major contributor of particulate matter and other pollutants; (2) it is one of the most poorly documented of all sources; (3) it can adversely affect human health; and (4) it has been identified as a significant contributor to climate change through feedbacks with the radiation budget. Additionally, biomass burning can be a significant contributor to a regions inability to achieve the National Ambient Air Quality Standards for PM 2.5 and ozone, particularly on the top 20% worst air quality days. The United States does not have a standard methodology to track fire occurrence or area burned, which are essential components to estimating fire emissions. Satellite imagery is available almost instantaneously and has great potential to enhance emission estimates and their timeliness. This investigation compares satellite-derived fire data to ground-based data to assign statistical error and helps provide confidence in these data. The largest fires are identified by all satellites and their spatial domain is accurately sensed. MODIS provides enhanced spatial and temporal information, and GOES ABBA data are able to capture more small agricultural fires. A methodology is presented that combines these satellite data in Near-Real-Time to produce a product that captures 81 to 92% of the total area burned by wildfire, prescribed, agricultural and rangeland burning. Each satellite possesses distinct temporal and spatial capabilities that permit the detection of unique fires that could be omitted if using data from only one satellite.

  10. The SPOT satellite

    Science.gov (United States)

    Fouquet, J.-P.

    1981-03-01

    The background, objectives and data products of the French SPOT remote sensing satellite system are presented. The system, which was developed starting in 1978 with the subsequent participation of Sweden and Belgium, is based on a standard multimission platform with associated ground control station and a mission-specific payload, which includes two High-Resolution Visible range instruments allowing the acquisition of stereoscopic views from different orbits. Mission objectives include the definition of future remote sensing systems, the compilation of a cartographic and resources data base, the study of species discrimination and production forecasting based on frequent access and off-nadir viewing, the compilation of a stereoscopic data base, and platform and instrument qualification, for possible applications in cartography, geology and agriculture. Standard data products will be available at three levels of preprocessing: radiometric correction only, precision processing for vertical viewing, and cartographic quality processing.

  11. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements...

  12. Astronomy from satellite clusters

    Science.gov (United States)

    Stachnik, R.; Labeyrie, A.

    1984-03-01

    Attention is called to the accumulating evidence that giant space telescopes, comprising a number of separate mirrors on independent satellites, are a realistic prospect for providing research tools of extraordinary power. The ESA-sponsored group and its counterpart in the US have reached remarkably similar conclusions regarding the basic configuration of extremely large synthetic-aperture devices. Both share the basic view that a cluster of spacecraft is preferable to a single monolithic structure. The emphasis of the US group has been on a mission that sweeps across as many sources as possible in the minimum time; it is referred to as SAMSI (Spacecraft Array for Michelson Spatial Interferometry). The European group has placed more emphasis on obtaining two-dimensional images. Their system is referred to as TRIO because, at least initially, it involves three independent systems. Detailed descriptions are given of the two systems.

  13. Advanced satellite communication system

    Science.gov (United States)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  14. Direct Broadcast Satellite: Radio Program

    Science.gov (United States)

    Hollansworth, James E.

    1992-01-01

    NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.

  15. Sky alert! when satellites fail

    CERN Document Server

    Johnson, Les

    2013-01-01

    How much do we depend on space satellites? Defense, travel, agriculture, weather forecasting, mobile phones and broadband, commerce...the list seems endless. But what would our live be like if the unimaginable happened and, by accident or design, those space assets disappeared? Sky Alert! explores what our world would be like, looking in turn at areas where the loss could have catastrophic effects. The book - demonstrates our dependence on space technology and satellites; - outlines the effect on our economy, defense, and daily lives if satellites and orbiting spacecraft were destroyed; - illustrates the danger of dead satellites, spent rocket stages, and space debris colliding with a functioning satellites; - demonstrates the threat of dramatically increased radiation levels associated with geomagnetic storms; - introduces space as a potential area of conflict between nations.

  16. Induction studies with satellite data

    DEFF Research Database (Denmark)

    Olsen, Nils

    1999-01-01

    analysis of the geomagnetic field is performed, and the Q-response, which is the transfer function between the internal (induced) and the external (inducing) expansion coefficients is determined for a specific frequency. In the second approach, known as the geomagnetic depth sounding method, the C....... This paper reviews and discusses the possibilities for induction studies using high-precision magnetic measurements from low-altitude satellites. The different methods and various transfer functions are presented, with special emphasis on the differences in analysing data from ground stations and from...... satellites. The results of several induction studies with scalar satellite data (from the POGO satellites) and with vector data (from the Magsat mission) demonstrate the ability to probe the Earth's conductivity from space. However, compared to the results obtained with ground data the satellite results...

  17. Carbon Dioxide Capture Adsorbents: Chemistry and Methods.

    Science.gov (United States)

    Patel, Hasmukh A; Byun, Jeehye; Yavuz, Cafer T

    2016-12-21

    Excess carbon dioxide (CO2 ) emissions and their inevitable consequences continue to stimulate hard debate and awareness in both academic and public spaces, despite the widespread lack of understanding on what really is needed to capture and store the unwanted CO2 . Of the entire carbon capture and storage (CCS) operation, capture is the most costly process, consisting of nearly 70 % of the price tag. In this tutorial review, CO2 capture science and technology based on adsorbents are described and evaluated in the context of chemistry and methods, after briefly introducing the current status of CO2 emissions. An effective sorbent design is suggested, whereby six checkpoints are expected to be met: cost, capacity, selectivity, stability, recyclability, and fast kinetics.

  18. Assisted living captures profitable market niche.

    Science.gov (United States)

    Pallarito, K

    1995-05-08

    The $15 billion assisted-living industry has captured a profitable market niche and created a star on Wall Street. Sunrise Retirement Home of Falls Church (Va.), right, is a facility of the nation's largest assisted-living provider.

  19. Reactive Capture of Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR, Reactive Innovations, LLC (RIL) proposes to develop a compact and lightweight electrochemical to capture carbon dioxide in the martian...

  20. Multiplexed programmable release of captured DNA.

    Science.gov (United States)

    Kennedy-Darling, Julia; Holden, Matthew T; Shortreed, Michael R; Smith, Lloyd M

    2014-11-03

    Nucleic-acid hybridization is widely used for the specific capture of complementary sequences from complex samples. It is useful for both analytical methodologies, such as array hybridization (e.g. transcriptome analysis, genetic-variation analysis), and preparative strategies such as exome sequencing and sequence-specific proteome capture and analysis (PICh, HyCCAPP). It has not generally been possible to selectively elute particular captured subsequences, however, as the conditions employed for disruption of a duplex can lack the specificity needed to discriminate between different sequences. We show here that it is possible to bind and selectively release multiple sets of sequences by using toehold-mediated DNA branch migration. The strategy is illustrated for simple mixtures of oligonucleotides, for the sequence-specific capture and specific release of crosslinked yeast chromatin, and for the specific release of oligonucleotides hybridized to DNA microarrays. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Communications Satellite as Educational Tool.

    Science.gov (United States)

    Long, Peter

    1982-01-01

    Drawing on the experiences of several countries, the author describes satellite technology, discusses the feasibility of satellite use in traditional educational institutions, and analyzes the role of satellites in social development. (SK)

  2. Polar-Orbiting Satellite (POES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from camera systems or radiometer instruments on satellites in orbit around the poles. Satellite campaigns include...

  3. Telescoping Sample Canister Capture Mechanism (TSCCM)

    Science.gov (United States)

    Kong, Kin Yuen; Gorevan, Stephen; Mukherjee, Suparna; Wilson, Jack

    2003-11-01

    Sample return from solar system bodies including planets, moons, comets and asteroids is of high importance within the space science community. A returned sample will allow much more elaborate and detailed analysis not feasible through remote robotic analysis. For this reason, Honeybee Robotics has developed a low-cost reusable, automated on-orbit sample canister capture mechanism. The purpose of the mechanism is to capture a full sample canister and transfer it to a storage cache, sample return spacecraft, or on-orbit laboratory for further scientific study. The current design allows for reliable misalignment-compensated capture for various sample container geometries in any initial orientation. After capture, the sample canister is aligned and presented for transfer. Honeybee has demonstrated the concept through tests of two- and three-dimensional telescopic capture mechanism breadboards. The telescopic capture mechanism design is scalable, minimizes volume and can be made of lightweight material to minmize mass, all of which are critical aspects of spacecraft design.

  4. Gate manipulation of DNA capture into nanopores.

    Science.gov (United States)

    He, Yuhui; Tsutsui, Makusu; Fan, Chun; Taniguchi, Masateru; Kawai, Tomoji

    2011-10-25

    Understanding biophysics governing DNA capture into a nanopore and establishing a manipulation system for the capture process are essential for nanopore-based genome sequencing. In this work, the functionality of extended electric field and electroosmotic flow (EOF) during the capture stage and their dependence on gate voltage, U(G), are investigated. We demonstrate that while both the electric field and EOF within a cis chamber make long-distance contributions to DNA capture around the pore mouth, the former effect is always capturing, while the latter causes trapping or blocking of the molecule depending on the magnitude of the gate voltage, U(G): an anionic EOF induced by high U(G) is capable of doubling the DNA trapping speed and thus the absorption radius in the cis chamber, whereas a cationic EOF by low U(G) would substantially offset the trapping effort by the electric field and even totally block DNA entrance into the pore. Based on the analysis, a gate regulation is proposed with the objective of achieving a high DNA capture rate while maintaining a low error rate.

  5. Stereoscopic observations from meteorological satellites

    Science.gov (United States)

    Hasler, A. F.; Mack, R.; Negri, A.

    The capability of making stereoscopic observations of clouds from meteorological satellites is a new basic analysis tool with a broad spectrum of applications. Stereoscopic observations from satellites were first made using the early vidicon tube weather satellites (e.g., Ondrejka and Conover [1]). However, the only high quality meteorological stereoscopy from low orbit has been done from Apollo and Skylab, (e.g., Shenk et al. [2] and Black [3], [4]). Stereoscopy from geosynchronous satellites was proposed by Shenk [5] and Bristor and Pichel [6] in 1974 which allowed Minzner et al. [7] to demonstrate the first quantitative cloud height analysis. In 1978 Bryson [8] and desJardins [9] independently developed digital processing techniques to remap stereo images which made possible precision height measurement and spectacular display of stereograms (Hasler et al. [10], and Hasler [11]). In 1980 the Japanese Geosynchronous Satellite (GMS) and the U.S. GOES-West satellite were synchronized to obtain stereo over the central Pacific as described by Fujita and Dodge [12] and in this paper. Recently the authors have remapped images from a Low Earth Orbiter (LEO) to the coordinate system of a Geosynchronous Earth Orbiter (GEO) and obtained stereoscopic cloud height measurements which promise to have quality comparable to previous all GEO stereo. It has also been determined that the north-south imaging scan rate of some GEOs can be slowed or reversed. Therefore the feasibility of obtaining stereoscopic observations world wide from combinations of operational GEO and LEO satellites has been demonstrated. Stereoscopy from satellites has many advantages over infrared techniques for the observation of cloud structure because it depends only on basic geometric relationships. Digital remapping of GEO and LEO satellite images is imperative for precision stereo height measurement and high quality displays because of the curvature of the earth and the large angular separation of the

  6. Recent La Plata basin drought conditions observed by satellite gravimetry

    CERN Document Server

    Chen, J L; Tapley, B D; Longuevergne, L; Yang, Z L; Scanlon, B R; 10.1029/2010JD014689

    2010-01-01

    The Gravity Recovery and Climate Experiment (GRACE) provides quantitative measures of terrestrial water storage (TWS) change. GRACE data show a significant decrease in TWS in the lower (southern) La Plata river basin of South America over the period 2002-2009, consistent with recognized drought conditions in the region. GRACE data reveal a detailed picture of temporal and spatial evolution of this severe drought event, which suggests that the drought began in lower La Plata in around austral spring 2008 and then spread to the entire La Plata basin and peaked in austral fall 2009. During the peak, GRACE data show an average TWS deficit of ~12 cm (equivalent water layer thickness) below the 7 year mean, in a broad region in lower La Plata. GRACE measurements are consistent with accumulated precipitation data from satellite remote sensing and with vegetation index changes derived from Terra satellite observations. The Global Land Data Assimilation System model captures the drought event but underestimates its in...

  7. Finding the Force -- Consistent Particle Seeding for Satellite Aerodynamics

    CERN Document Server

    Parham, J Brent

    2013-01-01

    When calculating satellite trajectories in low-earth orbit, engineers need to adequately estimate aerodynamic forces. But to this day, obtaining the drag acting on the complicated shapes of modern spacecraft suffers from many sources of error. While part of the problem is the uncertain density in the upper atmosphere, this works focuses on improving the modeling of interacting rarified gases and satellite surfaces. The only numerical approach that currently captures effects in this flow regime---like self-shadowing and multiple molecular reflections---is known as test-particle Monte Carlo. This method executes a ray-tracing algorithm to follow particles that pass through a control volume containing the spacecraft and accumulates the momentum transfer to the body surfaces. Statistical fluctuations inherent in the approach demand particle numbers in the order of millions, often making this scheme too costly to be practical. This work presents a parallel test-particle Monte Carlo method that takes advantage of b...

  8. Photometry of Irregular Satellites of Uranus and Neptune

    Science.gov (United States)

    Grav, Tommy; Holman, Matthew J.; Fraser, Wesley C.

    2004-09-01

    We present BVR photometric colors of six Uranian and two Neptunian irregular satellites, collected using the Magellan Observatory (Las Campanas, Chile) and the Keck Observatory (Manua Kea, Hawaii). The colors range from neutral to light red, and like the Jovian and the Saturnian irregular satellites (Grav et al.) there is an apparent lack of the extremely red objects found among the Centaurs and Kuiper Belt objects. The Uranian irregular satellites can be divided into three possible dynamical families, but the colors collected show that two of these dynamical families, the Caliban and Sycorax clusters, have heterogeneous colors. Of the third possible family, the 168° cluster containing two objects with similar average inclinations but quite different average semimajor axes, only one object (U XXI Trinculo) was observed. The heterogeneous colors and the large dispersion of the average orbital elements lead us to doubt that they are collisional families. We favor single captures as a more likely scenario. The two Neptunian satellites observed (N II Nereid and S/2002 N1) both have very similar neutral, Sun-like colors. Together with the high collisional probability between these two objects over the age of the solar system (Nesvorný et al.; Holman et al.), this suggests that S/2002 N1 is a fragment of Nereid, broken loose during a collision or cratering event with an undetermined impactor.

  9. Potential for Using Satellite Lidar for Seasonal Snow Depth Estimation

    Science.gov (United States)

    Jasinski, M. F.; Stoll, J.; Harding, D. J.; Fassnacht, S. R.; Carabajal, C. C.; Markus, T.

    2013-12-01

    This study evaluates the potential for estimating snow depth in complex mountainous terrain using high resolution satellite lidar. For over three decades, satellite remote sensing of snow depth and water equivalent has relied primarily on passive microwave sensors with an approximately 25 km footprint. While successfully employed in many global water balance analyses, their large footprints, necessary to capture the natural emission of the surface, are too coarse to define the spatial heterogeneity of mountain watershed-scale snow due to variable topography and vegetation. In this study, the capability of satellite lidar altimetry for estimating snow depth was evaluated primarily using surface elevations observed by the Geoscience Laser Altimeter Sensor (GLAS) flown on board the Ice, Cloud, and land Elevation Satellite from 2003-2009, with a footprint size of ~70m. The evaluation includes the analysis of GLAS waveforms at near-repeat locations during snow-off and snow on conditions, using several snow depth estimation approaches, focusing on the Uinta Mountains of NE Utah. Also presented is the concept for the ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS), currently set to launch in July 2016, and its potential capability for characterizing snow depth. The opportunity for partnering through NASA's Early Adopter Program using prototype aircraft observations also is presented.

  10. Theory of satellite geodesy applications of satellites to geodesy

    CERN Document Server

    Kaula, William M

    2000-01-01

    The main purpose of this classic text is to demonstrate how Newtonian gravitational theory and Euclidean geometry can be used and developed in the earth's environment. The second is to collect and explain some of the mathematical techniques developed for measuring the earth by satellite.Book chapters include discussions of the earth's gravitational field, with special emphasis on spherical harmonies and the potential of the ellipsoid; matrices and orbital geometry; elliptic motion, linear perturbations, resonance, and other aspects of satellite orbit dynamics; the geometry of satellite obser

  11. Multi-mission Satellite Management

    Science.gov (United States)

    Jamilkowski, M. L.; Teter, M. A.; Grant, K. D.; Dougherty, B.; Cochran, S.

    2015-12-01

    NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. CGS's multi-mission capabilities allows management all of assets as a single enterprise, more efficiently using ground resources and personnel and consolidating multiple ground systems into one. Sophisticated scheduling algorithms compare mission priorities and constraints across all ground stations, creating an enterprise schedule optimized to mission needs, which CGS executes to acquire the satellite link, uplink commands, downlink and route data to the operations and data processing facilities, and generate the final products for delivery to downstream users. This paper will illustrate the CGS's ability to manage multiple, enterprise-wide polar orbiting missions by demonstrating resource modeling and tasking, production of enterprise contact schedules for NOAA's Fairbanks ground station (using both standing and ad hoc requests), deconflicting resources due to ground outages, and updating resource allocations through dynamic priority definitions.

  12. Fast, Affordable, Science and Technology Satellite (FASTSAT) Huntsville-01 (HSV-01) Spacecraft Lessons Learned Report

    Science.gov (United States)

    Smith, Timothy A.

    2012-01-01

    The Fast Affordable Science and Technology Satellite (FASTSAT) project is a path finding effort to produce reliable satellite busses for different applications at an unprecedented speed and low cost. The project is designed to be a generational project and the first satellite produced is the Huntsville -01 (HSV-01) spacecraft. The subject of this report is the lessons learned gained during the development, testing, and up to the delivery of the FASTSAT HSV -01 spacecraft. The purpose of this report is to capture the major findings that will greatly benefit the future FASTSAT satellites and perhaps other projects interested in pushing the boundaries for cost and schedule. The FASTSAT HSV -01 primary objectives, success criteria, and team partners are summarized to give a frame of reference to the lessons learned.

  13. Neutron capture cross section and capture gamma-ray spectra of 89Y

    Directory of Open Access Journals (Sweden)

    Katabuchi Tatsuya

    2016-01-01

    Full Text Available The neutron capture cross section of 89Y was measured by the time-of-flight method in an energy range from 15 to 100 keV. A pulse-height weighting technique was applied to derive the capture yield. The absolute cross section was determined based on the standard reaciotn 197 Au(n, γ198 Au reaction. The neutron capture γ-ray spectrum was derived by unfolding the pulse-height spectrum with detector response functions.

  14. Enhanced virome sequencing using targeted sequence capture.

    Science.gov (United States)

    Wylie, Todd N; Wylie, Kristine M; Herter, Brandi N; Storch, Gregory A

    2015-12-01

    Metagenomic shotgun sequencing (MSS) is an important tool for characterizing viral populations. It is culture independent, requires no a priori knowledge of the viruses in the sample, and may provide useful genomic information. However, MSS can lack sensitivity and may yield insufficient data for detailed analysis. We have created a targeted sequence capture panel, ViroCap, designed to enrich nucleic acid from DNA and RNA viruses from 34 families that infect vertebrate hosts. A computational approach condensed ∼1 billion bp of viral reference sequence into <200 million bp of unique, representative sequence suitable for targeted sequence capture. We compared the effectiveness of detecting viruses in standard MSS versus MSS following targeted sequence capture. First, we analyzed two sets of samples, one derived from samples submitted to a diagnostic virology laboratory and one derived from samples collected in a study of fever in children. We detected 14 and 18 viruses in the two sets, comprising 19 genera from 10 families, with dramatic enhancement of genome representation following capture enrichment. The median fold-increases in percentage viral reads post-capture were 674 and 296. Median breadth of coverage increased from 2.1% to 83.2% post-capture in the first set and from 2.0% to 75.6% in the second set. Next, we analyzed samples containing a set of diverse anellovirus sequences and demonstrated that ViroCap could be used to detect viral sequences with up to 58% variation from the references used to select capture probes. ViroCap substantially enhances MSS for a comprehensive set of viruses and has utility for research and clinical applications.

  15. Satellite communications principles and applications

    CERN Document Server

    Calcutt, David

    1994-01-01

    Satellites are increasingly used for global communications, as well as for radio and television transmissions. With the growth of mobile communications, and of digital technology, the use of satellite systems is set to expand substantially and already all students of electronics or communications engineering must study the subject.This book steers a middle path between offering a basic understanding of the process of communication by satellite and the methodology used; and the extensive mathematical analysis normally adopted in similar texts. It presents the basic concepts, using as mu

  16. Advanced Communications Technology Satellite (ACTS)

    Science.gov (United States)

    Gedney, Richard T.; Schertler, Ronald J.

    1989-01-01

    The NASA Advanced Communications Technology Satellite (ACTS) was conceived to help maintain U.S. leadership in the world's communications-satellite market. This experimental satellite is expected to be launched by NASA in 1992 and to furnish the technology necessary for establishing very small aperture terminal digital networks which provide on-demand full-mesh connectivity, and 1.544-MBPS services with only a single hop. Utilizing on-board switching and processing, each individual voice or data circuit can be separately routed to any location in the network. This paper provides an overview of the ACTS and discusses the value of the technology for future communications systems.

  17. The french educational satellite arsene

    Science.gov (United States)

    Danvel, M.; Escudier, B.

    ARSENE (Ariane, Radio-amateur, Satellite pour l'ENseignement de l'Espace) is a telecommunications satellite for Amateur Space Service. Its main feature is that more than 100 students from French engineering schools and universities have been working since 1979 for definition phase and satellite development. The highest IAF awards has been obtained by "ARSENE students" in Tokyo (1980) and Rome (1981). The French space agency, CNES and French aerospace industries are supporting the program. The European Space Agency offered to place ARSENE in orbit on the first Ariane mark IV launch late 1985.

  18. ISDN - The case for satellites

    Science.gov (United States)

    Pelton, Joseph N.; McDougal, Patrick J.

    1987-05-01

    The Integrated Services Digital Network (ISDN) holds much promise for both suppliers and users of telecommunications in the near future. This article examines the role of satellites in this new ISDN environment and emphasizes several advantages of satellites in the ongoing evolution to an all-digital world. In specific, the role of Intelsat, the global satellite system, is discussed with emphasis on Intelsat's digital services which today can offer all the characteristics and standards of ISDN in a flexible, cost-efficient manner.

  19. Leucocytes, cytokines and satellite cells

    DEFF Research Database (Denmark)

    Paulsen, Gøran; Mikkelsen, Ulla Ramer; Raastad, Truls

    2012-01-01

    -damaging exercise', primarily eccentric exercise. We review the evidence for the notion that the degree of muscle damage is related to the magnitude of the cytokine response. In the third and final section, we look at the satellite cell response to a single bout of eccentric exercise, as well as the role...... damage. With the exception of IL-6, the sources of systemic cytokines following exercise remain unclear The satellite cell response to severe muscle damage is related to regeneration, whereas the biological significance of satellite cell proliferation after mild damage or non-damaging exercise remains...

  20. Capture of farmed Nile crocodiles (Crocodylus niloticus): comparison of physiological parameters after manual capture and after capture with electrical stunning.

    Science.gov (United States)

    Pfitzer, S; Ganswindt, A; Fosgate, G T; Botha, P J; Myburgh, J G

    2014-09-27

    The electric stunner (e-stunner) is commonly used to handle Nile crocodiles (Crocodylus niloticus) on commercial farms in South Africa, but while it seems to improve handling and safety for the keepers, no information regarding physiological reactions to e-stunning is currently available. The aim of this study was therefore to compare various physiological parameters in farmed C niloticus captured either manually (noosing) or by using an e-stunner. A total of 45 crocodiles were captured at a South African farm by either e-stunning or noosing, and blood samples were taken immediately as well as four hours after capture. Parameters monitored were serum corticosterone, lactate, glucose, as well as alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase and creatine kinase. Lactate concentrations were significantly higher in noosed compared with e-stunned animals (Pcrocodiles in a commercial setup because it is quicker, safer and did not cause a significant increase in any of the parameters measured.

  1. Mobile satellite news gathering (SNG) system; Soko SNG (Satellite News Gathering) shasaikyoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Commercialization was made for broadcasting stations on a mobile station system capable of capturing a satellite automatically while the system is moving. Its feature is the enhanced tracking accuracy as a result of using the Company's original null-sensor (see Note), and detecting and controlling intersecting polarized waves of reference signals from the satellite. The material for transmission is digitally transmitted by MPEG2, making it possible to transmit more data than by conventional systems. The system is being used for live broadcasting of marathon races and emergency news broadcasting. It is expected that the system may be applied to applications other than broadcasting stations, such as automobiles and ships. (Note: A null-sensor is a unit used for adjusting antenna directions for an SNG transmitter. It uses IF receiving signals of H/V polarized waves of parabolic antenna as an input, and outputs the main polarized wave level and the intersecting polarized wave level.) (translated by NEDO)

  2. Planetary satellites - an update

    Science.gov (United States)

    Beatty, J. K.

    1983-11-01

    General features of all known planetary satellites in the system are provided, and attention is focused on prominent features of several of the bodies. Titan has an atmosphere 1.5 times earth's at sea level, a well a a large body of liquid which may be ethane, CH4, and disolved N2. Uranus has at least five moons, whose masses have recently been recalculated and determined to be consistent with predictions of outer solar system composition. Io's violent volcanic activity is a demonstration of the conversion of total energy (from Jupiter) to heat, i.e., interior melting and consequent volcanoes. Plumes of SO2 have been seen and feature temperatures of up to 650 K. Enceladus has a craterless, cracked surface, indicating the presence of interior ice and occasional breakthroughs from tidal heating. Hyperion has a chaotic rotation, and Iapetus has one light and one dark side, possibly from periodic collisions with debris clouds blasted off the surface of the outer moon Phoebe.

  3. Hubble Space Telescope satellite

    Science.gov (United States)

    Mitchell, R. E.

    1985-01-01

    The Hubble Space Telescope, named for the American astronomer Edwin Powell Hubble, will be the largest and most powerful astronomical instrument ever orbited. Placed above the obscuring effects of the earth's atmosphere in a 600-km orbit, this remotely-controlled, free-flying satellite observatory will expand the terrestrial-equivalent resolution of the universe by a factor of seven, or a volumetric factor of 350. This telescope has a 2.4-m primary mirror and can accommodate five scientific instruments (cameras, spectrographs and photometers). The optics are suitable for a spectral range from 1100 angstrom to 1 mm wavelength. With a projected service life of fifteen years, the spacecraft can be serviced on-orbit for replacement of degraded systems, to insert advanced scientific instruments, and to reboost the telescope from decayed altitudes. The anticipated image quality will be a result of extremely precise lambda/20 optics, stringent cleanliness, and very stable pointing: jitter will be held to less than 0.01 arcsecond for indefinite observation periods, consistent with instrument apertures as small as 0.1 arcsecond.

  4. Active suppression after involuntary capture of attention.

    Science.gov (United States)

    Sawaki, Risa; Luck, Steven J

    2013-04-01

    After attention has been involuntarily captured by a distractor, how is it reoriented toward a target? One possibility is that attention to the distractor passively fades over time, allowing the target to become attended. Another possibility is that the captured location is actively suppressed so that attention can be directed toward the target location. The present study investigated this issue with event-related potentials (ERPs), focusing on the N2pc component (a neural measure of attentional deployment) and the Pd component (a neural measure of attentional suppression). Observers identified a color-defined target in a search array, which was preceded by a task-irrelevant cue array. When the cue array contained an item that matched the target color, this item captured attention (as measured both behaviorally and with the N2pc component). This capture of attention was followed by active suppression (indexed by the Pd component), and this was then followed by a reorienting of attention toward the target in the search array (indexed by the N2pc component). These findings indicate that the involuntary capture of attention by a distractor is followed by an active suppression process that presumably facilitates the subsequent voluntary orienting of attention to the target.

  5. Selective particle capture by asynchronously beating cilia

    Science.gov (United States)

    Ding, Yang; Kanso, Eva

    2015-12-01

    Selective particle filtration is fundamental in many engineering and biological systems. For example, many aquatic microorganisms use filter feeding to capture food particles from the surrounding fluid, using motile cilia. One of the capture strategies is to use the same cilia to generate feeding currents and to intercept particles when the particles are on the downstream side of the cilia. Here, we develop a 3D computational model of ciliary bands interacting with flow suspended particles and calculate particle trajectories for a range of particle sizes. Consistent with experimental observations, we find optimal particle sizes that maximize capture rate. The optimal size depends nonlinearly on cilia spacing and cilia coordination, synchronous vs. asynchronous. These parameters affect the cilia-generated flow field, which in turn affects particle trajectories. The low capture rate of smaller particles is due to the particles' inability to cross the flow streamlines of neighboring cilia. Meanwhile, large particles have difficulty entering the sub-ciliary region once advected downstream, also resulting in low capture rates. The optimal range of particle sizes is enhanced when cilia beat asynchronously. These findings have potentially important implications on the design and use of biomimetic cilia in processes such as particle sorting in microfluidic devices.

  6. Quality assessment of video image capture systems

    Science.gov (United States)

    Rowberg, Alan H.; Lian, Jing

    1991-05-01

    As Picture Archiving and Communication System (PACS) technology has matured, video image capture has become a common way of capturing digital images from many modalities. While digital interfaces, such as those which use the ACR/NEMA standard, will become more common in the future, and are preferred because of the accuracy of image transfer, video image capture will be the dominant method in the short term, and may continue to be used for some time because of the low cost and high speed often associated with such devices. A series of digital phantoms has been developed for display on either a CT9800 or Hilite Advantage scanner. The phantom images have been stored on magnetic tape in the standard tape archive format used by General Electric, so that the images may be loaded onto the scanner at any time. These images are then captured using a commercial video image capture board in a PC/286 computer, where the images are not only to be displayed, but also analyzed with the use of an automated process implemented in a computer program on the same PC. Results of the analyses are saved, together with the data and time of image acquisition, so that the results can be displayed graphically, as trend plots.

  7. Technology Roadmap: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    As long as fossil fuels and carbon-intensive industries play dominant roles in our economies, carbon capture and storage (CCS) will remain a critical greenhouse gas reduction solution. This CCS roadmap aims at assisting governments and industry in integrating CCS in their emissions reduction strategies and in creating the conditions for scaled-up deployment of all three components of the CCS chain: CO2 capture, transport and storage. To get us onto the right pathway, this roadmap highlights seven key actions needed in the next seven years to create a solid foundation for deployment of CCS starting by 2020. IEA analysis shows that CCS is an integral part of any lowest-cost mitigation scenario where long-term global average temperature increases are limited to significantly less than 4 °C, particularly for 2 °C scenarios (2DS). In the 2DS, CCS is widely deployed in both power generation and industrial applications. The total CO2 capture and storage rate must grow from the tens of megatonnes of CO2 captured in 2013 to thousands of megatonnes of CO2 in 2050 in order to address the emissions reduction challenge. A total cumulative mass of approximately 120 GtCO2 would need to be captured and stored between 2015 and 2050, across all regions of the globe.

  8. Commercial satellite broadcasting for Europe

    Science.gov (United States)

    Forrest, J. R.

    1988-12-01

    A review is presented of the current television broadcasting situation in European countries, which involves a varied mix of terrestrial VHF or UHF systems and cable networks. A small market has emerged in Europe for receivers using the low-power telecommunications satellite transmission between the program providers and cable network companies. This is expected to change with the launch of medium-power pan-European telecommunication satellites (e.g. ASTRA, EUTELSAT II), which are now directly addressing the market of home reception. DBS (direct broadcast satellite) in the UK, using the D-MAC transmission standard, will offer three additional television channels, data broadcasting services, and a planned evolution to compatible forms of wide-screen, high-definition television. Comments are given on receiver and conditional access system standardization. Some views are expressed on satellite broadcasting as part of an overall broadcasting framework for the future.

  9. Biogeography based Satellite Image Classification

    CERN Document Server

    Panchal, V K; Kaur, Navdeep; Kundra, Harish

    2009-01-01

    Biogeography is the study of the geographical distribution of biological organisms. The mindset of the engineer is that we can learn from nature. Biogeography Based Optimization is a burgeoning nature inspired technique to find the optimal solution of the problem. Satellite image classification is an important task because it is the only way we can know about the land cover map of inaccessible areas. Though satellite images have been classified in past by using various techniques, the researchers are always finding alternative strategies for satellite image classification so that they may be prepared to select the most appropriate technique for the feature extraction task in hand. This paper is focused on classification of the satellite image of a particular land cover using the theory of Biogeography based Optimization. The original BBO algorithm does not have the inbuilt property of clustering which is required during image classification. Hence modifications have been proposed to the original algorithm and...

  10. Virtual Satellite Integration Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An integrated environment for rapid design studies of small satellite missions will be developed. This environment will be designed to streamline processes at the...

  11. Virtual Satellite Integration Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advatech Pacific proposes to develop a Virtual Satellite Integration Environment (VSIE) for the NASA Ames Mission Design Center. The VSIE introduces into NASA...

  12. Satellite Teleconferencing in the Caribbean.

    Science.gov (United States)

    Sankar, Hollis C.

    1985-01-01

    Discusses the need for, and the development, use, and future trends of, the University of the West Indies Distance Teaching Experiment, which utilizes telephone and communications satellite technology teleconferencing to extend educational opportunities to the peoples of the Caribbean. (MBR)

  13. Geography with the environmental satellites

    Directory of Open Access Journals (Sweden)

    J.P. Gastellu Etchegorry

    2013-07-01

    Full Text Available Coarse spatial resolution, high temporal frequency data from the earth polar orbiting (NOAA. HACMM, Nimbus, etc. satellites and from the geostationary (GOES. Meteosat, and GMS satellites are presented to demonstrate their utility for monitoring terrestrial and atmospheric processes. The main characteristics of these ,satellites and of the instruments on board are reviewed. In order to be useful for environmental assessments. the remotely sensed data must be processed (atmospheric and geometric corrections, etc.. The NOAA Center provides a wide range of already processed data. such as meteorological. oceanic, hydrologic and vegetation products; o rough description of these preprocessed data is given in this article. Finally, some examples of applicotions in Southeast Asia and especially in Indonesia, are described, i.e.: agroecosystem, drought and oceanic monitoring. The paper concludes that coarse resolution, high temporal frequency ,satellite data are very valuable for environmental studies. the emphasis being laid on the improve. ment of the crop and drought assessment programmes.

  14. Diagnosing Aircraft Icing Potential from Satellite Cloud Retrievals

    Science.gov (United States)

    Smith, William L., Jr.; Minnis, Patrick; Fleeger, Cecilia; Spangenberg, Douglas

    2013-01-01

    The threat for aircraft icing in clouds is a significant hazard that routinely impacts aviation operations. Accurate diagnoses and forecasts of aircraft icing conditions requires identifying the location and vertical distribution of clouds with super-cooled liquid water (SLW) droplets, as well as the characteristics of the droplet size distribution. Traditional forecasting methods rely on guidance from numerical models and conventional observations, neither of which currently resolve cloud properties adequately on the optimal scales needed for aviation. Satellite imagers provide measurements over large areas with high spatial resolution that can be interpreted to identify the locations and characteristics of clouds, including features associated with adverse weather and storms. This paper describes new techniques for interpreting cloud products derived from satellite data to infer the flight icing threat to aircraft. For unobscured low clouds, the icing threat is determined using empirical relationships developed from correlations between satellite imager retrievals of liquid water path and droplet size with icing conditions reported by pilots (PIREPS). For deep ice over water cloud systems, ice and liquid water content (IWC and LWC) profiles are derived by using the imager cloud properties to constrain climatological information on cloud vertical structure and water phase obtained apriori from radar and lidar observations, and from cloud model analyses. Retrievals of the SLW content embedded within overlapping clouds are mapped to the icing threat using guidance from an airfoil modeling study. Compared to PIREPS and ground-based icing remote sensing datasets, the satellite icing detection and intensity accuracies are approximately 90% and 70%, respectively, and found to be similar for both low level and deep ice over water cloud systems. The satellite-derived icing boundaries capture the reported altitudes over 90% of the time. Satellite analyses corresponding to

  15. Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model

    Science.gov (United States)

    Dutkiewicz, S.; Hickman, A. E.; Jahn, O.; Gregg, W. W.; Mouw, C. B.; Follows, M. J.

    2015-02-01

    We present a numerical model of the ocean that couples a three-stream radiative transfer component with a marine biogeochemical-ecosystem in a dynamic three-dimensional physical framework. The radiative transfer component resolves spectral irradiance as it is absorbed and scattered within the water column. We explicitly include the effect of several optically important water constituents (the phytoplankton community, detrital particles, and coloured dissolved organic matter, CDOM). The model is evaluated against in situ observed and satellite derived products. In particular we compare to concurrently measured biogeochemical, ecosystem and optical data along a north-south transect of the Atlantic Ocean. The simulation captures the patterns and magnitudes of these data, and estimates surface upwelling irradiance analogous to that observed by ocean colour satellite instruments. We conduct a series of sensitivity experiments to demonstrate, globally, the relative importance of each of the water constituents, and the crucial feedbacks between the light field and the relative fitness of phytoplankton types, and the biogeochemistry of the ocean. CDOM has proportionally more importance at short wavelengths and in more productive waters, phytoplankton absorption is especially important at the deep chlorophyll a (Chl a) maximum, and absorption by water molecules is relatively most important in the highly oligotrophic gyres. Sensitivity experiments in which absorption by any of the optical constituents was increased led to a decrease in the size of the oligotrophic regions of the subtropical gyres: lateral nutrient supplies were enhanced as a result of decreasing high latitude productivity. Scattering does not as strongly affect the ecosystem and biogeochemistry fields within the water column but is important for setting the surface upwelling irradiance, and hence sea surface reflectance. Having a model capable of capturing bio-optical feedbacks will be important for

  16. women Contrlbute to Satellite Technology

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    IN the early morning of August 14, 1992, at the Xichang satellite launching center, China Central Television Station was about to do a live, worldwide broadcast on the launching of an Australian communications satellite made by the United States. With the order of the commander, "Ignition," people could watch the white rocket rise, pierce the blue sky and race toward the space with a long flaming tail trailing behind it.

  17. Existence of undiscovered Uranian satellites

    Energy Technology Data Exchange (ETDEWEB)

    Boice, D.C.

    1986-04-01

    Structure in the Uranian ring system as observed in recent occultations may contain indirect evidence for the existence of undiscovered satellites. Using the Alfven and Arrhenius (1975, 1976) scenario for the formation of planetary systems, the orbital radii of up to nine hypothetical satellites interior to Miranda are computed. These calculations should provide interesting comparisons when the results from the Voyager 2 encounter with Uranus are made public. 15 refs., 1 fig., 1 tab.

  18. Radio interferometry and satellite tracking

    CERN Document Server

    Kawase, Seiichiro

    2012-01-01

    Worldwide growth of space communications has caused a rapid increase in the number of satellites operating in geostationary orbits, causing overcrowded orbits. This practical resource is designed to help professionals overcome this problem. This timely book provides a solid understanding of the use of radio interferometers for tracking and monitoring satellites in overcrowded environments. Practitioners learn the fundamentals of radio interferometer hardware, including antennas, receiving equipment, signal processing and phase detection, and measurement accuracies. This in-depth volume describ

  19. Muon capture rates within the projected QRPA

    CERN Document Server

    Santos, Danilo Sande; Krmpotić, Francisco; Dimarco, Alejandro J

    2012-01-01

    The conservation of the number of particles within the QRPA plays an important role in the evaluation muon capture rates in all light nuclei with A \\precsim 30 . The violation of the CVC by the Coulomb field in this mass region is of minor importance, but this effect could be quite relevant for medium and heavy nuclei studied previously. The extreme sensitivity of the muon capture rates on the 'pp' coupling strength in nuclei with large neutron excess when described within the QRPA is pointed out. We reckon that the comparison between theory and data for the inclusive muon capture is not a fully satisfactory test on the nuclear model that is used. The exclusive muon transitions are much more robust for such a purpose.

  20. Electron capture in carbon dwarf supernovae

    Science.gov (United States)

    Mazurek, T. J.; Truran, J. W.; Cameron, A. G. W.

    1974-01-01

    The rates of electron capture on heavier elements under the extreme conditions predicted for dwarf star supernovae have been computed, incorporating modifications that seem to be indicated by present experimental results. An estimate of the maximum possible value of such rates is also given. The distribution of nuclei in nuclear statistical equilibrium has been calculated for the range of expected supernovae conditions, including the effects of the temperature dependence of nuclear partition functions. These nuclide abundance distributions are then used to compute nuclear equilibrium thermodynamic properties. The effects of the electron capture on such equilibrium matter are discussed. In the context of the 'carbon detonation' supernova model, the dwarf central density required to ensure core collapse to a neutron star configuration is found to be slightly higher than that obtained by Bruenn (1972) with the electron capture rates of Hansen (1966).-

  1. Neutron transmission and capture of 241Am

    Directory of Open Access Journals (Sweden)

    Sage C.

    2013-03-01

    Full Text Available A set of neutron transmission and capture experiments based on the Time Of Flight (TOF technique, were performed in order to determine the 241Am capture cross section in the energy range from 0.01 eV to 1 keV. The GELINA facility of the Institute for Reference Materials and Measurements (IRMM served as the neutron source. A pair of C6D6 liquid scintillators was used to register the prompt gamma rays emerging from the americium sample, while a Li-glass detector was used in the transmission setup. Results from the capture and transmission data acquired are consistent with each other, but appear to be inconsistent with the evaluated data files. Resonance parameters have been derived for the data up to the energy of 100 eV.

  2. Quantifying protein diffusion and capture on filaments

    CERN Document Server

    Reithmann, Emanuel; Frey, Erwin

    2015-01-01

    The functional relevance of regulating proteins is often limited to specific binding sites such as the ends of microtubules or actin-filaments. A localization of proteins on these functional sites is of great importance. We present a quantitative theory for a diffusion and capture process, where proteins diffuse on a filament and stop diffusing when reaching the filament's end. It is found that end-association after one-dimensional diffusion is the main source for tip-localization of such proteins. As a consequence, diffusion and capture is highly efficient in enhancing the reaction velocity of enzymatic reactions, where proteins and filament ends are to each other as enzyme and substrate. We show that the reaction velocity can effectively be described within a Michaelis-Menten framework. Together one-dimensional diffusion and capture beats the (three-dimensional) Smoluchowski diffusion limit for the rate of protein association to filament ends.

  3. Selective gas capture via kinetic trapping

    CERN Document Server

    Kundu, Joyjit; Prendergast, David; Whitelam, Stephen

    2016-01-01

    Conventional approaches to the capture of CO_2 by metal-organic frameworks focus on equilibrium conditions, and frameworks that contain little CO_2 in equilibrium are often rejected as carbon-capture materials. Here we use a statistical mechanical model, parameterized by quantum mechanical data, to suggest that metal-organic frameworks can be used to separate CO_2 from a typical flue gas mixture when used under {\\em nonequilibrium} conditions. The origin of this selectivity is an emergent gas-separation mechanism that results from the acquisition by different gas types of different mobilities within a crowded framework. The resulting distribution of gas types within the framework is in general spatially and dynamically heterogeneous. Our results suggest that relaxing the requirement of equilibrium can substantially increase the parameter space of conditions and materials for which selective gas capture can be effected.

  4. Inertial capture in flow through porous media

    Science.gov (United States)

    Andrade, J. S., Jr.; Araújo, A. D.; Vasconcelos, T. F.; Herrmann, H. J.

    2008-08-01

    We investigate through numerical calculation of non-Brownian particles transported by a fluid in a porous medium, the influence of geometry and inertial effects on the capture efficiency of the solid matrix. In the case of a periodic array of cylinders and under the action of gravity, our results reveal that δ ˜ St, where δ is the particle capture efficiency, and St is the Stokes number. In the absence of gravity, we observe a typical second order transition between non-trapping and trapping of particles that can be expressed as δ ˜ ( St - St c ) α , with an exponent α ≈ 0.5, where St c is the critical Stokes number. We also perform simulations for flow through a random porous structure and confirm that its capture behavior is consistent with the simple periodic model.

  5. Electron capture from coherent elliptic Rydberg states

    Energy Technology Data Exchange (ETDEWEB)

    Day, J.C.; DePaola, B.D.; Ehrenreich, T.; Hansen, S.B.; Horsdal-Pedersen, E.; Leontiev, Y.; Mogensen, K.S. [Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)

    1997-12-01

    Experimental relative cross sections for electron capture by singly charged ions (Na{sup +}) from coherent elliptic states of principal quantum number n=25 are presented. An interval of reduced impact velocities from about 1{endash}2 is covered. Absolute reaction cross sections could not be determined precisely, but the eccentricity of the coherent elliptic states and their orientation relative to the ion-impact velocity were varied to expose the dependence of the electron-capture process on the initial motion of the electron. The dependencies on eccentricity and orientation are generally strong and they vary sharply with impact velocity. Qualitatively, the observations agree fairly well with classical trajectory Monte Carlo (CTMC) calculations, as expected for the large quantum numbers involved, but significant deviations of a systematic nature do remain, showing that some aspects of the capture reactions studied are described poorly by classical physics as represented by the CTMC model. {copyright} {ital 1997} {ital The American Physical Society}

  6. Capturing Creativity in Collaborative Design Processes

    DEFF Research Database (Denmark)

    Pedersen, J. U.; Onarheim, Balder

    2015-01-01

    This paper is concerned with the question of how we can capture creativity in collaborative design processes consisting of two or more individuals collaborating in the process of producing innovative outputs. Traditionally, methods for detecting creativity are focused on the cognitive and mental...... processes of the solitary individual. A new framework for studying and capturing creativity, which goes beyond individual cognitive processes by examining the applied creative process of individuals in context, is proposed. We apply a context sensitive framework that embraces the creative collaborative...... process and present the process in a visual overview with the use of a visual language of symbols. The framework, entitled C3, Capturing Creativity in Context, is presented and subsequently evaluated based on a pilot study utilizing C3. Here it was found that the framework was particularly useful...

  7. Spanish Earth Observation Satellite System

    Science.gov (United States)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  8. CAPTURE OF TROJANS BY JUMPING JUPITER

    Energy Technology Data Exchange (ETDEWEB)

    Nesvorny, David [Department of Space Studies, Southwest Research Institute, 1050 Walnut St., Suite 300, Boulder, CO 80302 (United States); Vokrouhlicky, David [Institute of Astronomy, Charles University, V Holesovickach 2, 180 00 Prague 8 (Czech Republic); Morbidelli, Alessandro [Departement Cassiopee, University of Nice, CNRS, Observatoire de la Cote d' Azur, Nice, F-06304 (France)

    2013-05-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to {approx}5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) Multiplication-Sign 10{sup -7} for each particle in the original transplanetary disk, implying that the disk contained (3-4) Multiplication-Sign 10{sup 7} planetesimals with absolute magnitude H < 9 (corresponding to diameter D = 80 km for a 7% albedo). The disk mass inferred from this work, M{sub disk} {approx} 14-28 M{sub Earth}, is consistent with the mass deduced from recent dynamical simulations of the planetary instability.

  9. Thermal Propulsion Capture System Heat Exchanger Design

    Science.gov (United States)

    Richard, Evan M.

    2016-01-01

    One of the biggest challenges of manned spaceflight beyond low earth orbit and the moon is harmful radiation that astronauts would be exposed to on their long journey to Mars and further destinations. Using nuclear energy has the potential to be a more effective means of propulsion compared to traditional chemical engines (higher specific impulse). An upper stage nuclear engine would allow astronauts to reach their destination faster and more fuel efficiently. Testing these engines poses engineering challenges due to the need to totally capture the engine exhaust. The Thermal Propulsion Capture System is a concept for cost effectively and safely testing Nuclear Thermal Engines. Nominally, hydrogen exhausted from the engine is not radioactive, but is treated as such in case of fuel element failure. The Thermal Propulsion Capture System involves injecting liquid oxygen to convert the hydrogen exhaust into steam. The steam is then cooled and condensed into liquid water to allow for storage. The Thermal Propulsion Capture System concept for ground testing of a nuclear powered engine involves capturing the engine exhaust to be cooled and condensed before being stored. The hydrogen exhaust is injected with liquid oxygen and burned to form steam. That steam must be cooled to saturation temperatures before being condensed into liquid water. A crossflow heat exchanger using water as a working fluid will be designed to accomplish this goal. Design a cross flow heat exchanger for the Thermal Propulsion Capture System testing which: Eliminates the need for water injection cooling, Cools steam from 5800 F to saturation temperature, and Is efficient and minimizes water requirement.

  10. Satellite Attitude from a Raven Class Telescope

    Science.gov (United States)

    2010-09-01

    Cache MATLAB was used as an interface to the jSim libraries, including orbit propagation, Earth Track determination, and satellite orientation methods...collection opportunities of the satellite. The combined software tool calculates the satellite orientation required to image the asset location... satellite orientation estimations, with only the photometric signatures with strong features being correctly estimated. The strong features that

  11. CHINA LAUNCHES 2 SCIENTIFIC EXPERIMENT SATELLITES

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China placed 2 scientific experiment satellites into preset orbits atop a LM-4B launch vehicle on Sept. 9, 2004. A LM-4B blasted off at 7:14 am from Taiyuan Satellite Launch Center in Shanxi Province. Sources from the Xi'an Satellite Monitor and Control Center said that one satellite,

  12. China Launches First Ever Nano-satellite

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    China successfully launched two scientific satellites, including a nano-satellite for the first time, heralding a breakthrough in space technology. A LM-2C rocket carrying Nano-Satellite I (NS-1), which weighs just 25kg and an Experiment Satellite I, weighing 204kg blasted off at 11:59 p.m. on April 18,

  13. Precipitating amino acid solvents for CO2 capture: opportunities to reduce costs in post combustion capture

    NARCIS (Netherlands)

    Sanchez Fernandez, E.; Heffernan, K.; Ham, L.V. van der; Linders, M.J.G.; Goetheer, E.L.V.; Vlugt, T.J.H.

    2014-01-01

    Post-combustion CO2 capture based on absorption and thermal desorption is considered a suitable technology for carbon abatement in fossil fuelled power plants. The economic viability of post-combustion capture has been widely studied. The major drawbacks of this technology are the efficiency penalti

  14. Precipitating amino acid solvents for CO2 capture: Opportunities to reduce costs in post combustion capture

    NARCIS (Netherlands)

    Sanchez-Fernandez, E.; Heffernan, K.; Van der Ham, L.; Linders, M.J.G.; Goetheer, E.; Vlugt, T.J.H.

    2014-01-01

    Post-combustion CO2 capture based on absorption and thermal desorption is considered a suitable technology for carbon abatement in fossil fuelled power plants. The economic viability of post-combustion capture has been widely studied. The major drawbacks of this technology are the efficiency penalti

  15. Capturing birds with mist nets: A review

    Science.gov (United States)

    Keyes, B.E.; Grue, C.E.

    1982-01-01

    Herein we have tried to provide a comprehensive review of mist-netting techniques suitable for both novice and experienced netters. General mist-netting procedures and modifications developed by netters for particular bird species and habitats are included. Factors which influence capture success, including site selection, net specifications and placement, weather, and time of day, are discussed. Guidelines are presented for the care of netted birds and the use of mist-net data in the study of bird communities. The advantages of the use of mist nets over other methods of capturing birds are also discussed.

  16. Systematic muon capture rates in PQRPA

    Energy Technology Data Exchange (ETDEWEB)

    Samana, A. R. [Departamento de Ciências Exatas e Tecnológicas, UESC-Br (Brazil); Sande, D. [Instituto de Geociências, UFBA-Br (Brazil); Krmpotić, F. [Instituto de Física La Plata, CONICET-Ar and Fac. de Cs. Astronómicas y Geofísicas, UNLP-Ar (Argentina)

    2015-05-15

    In this work we performed a systematic study of the inclusive muon capture rates for several nuclei with A < 60 using the Projected Random Quasi-particle Phase Approximation (PQRPA) as nuclear model, because it is the only RPA model that treats the Pauli Principle correctly. We reckon that the comparison between theory and data for the inclusive muon capture is not a fully satisfactory test on the nuclear model that is used. The exclusive muon transitions are more robust for such a purpose.

  17. Fast Development Of China's Small Satellite Industry

    Institute of Scientific and Technical Information of China (English)

    Sun Hongjin

    2009-01-01

    @@ China Spacesat Co., Ltd of China Academy of Space Technology (CAST) recently said, along with the successful launch of HJ-1A/B for the environment and disaster monitoring and forecasting small satellite constellation and after years of efforts, small satellite development technology has achieved fruitful results, and the development status has been greatly improved.China's small satellite technology has realized a great-leap-forward in development from a single satellite model to series model, from the satellite program to space industry. China has explored a development road for China's small satellite industrialization, and a modern small satellite development base has resulted.

  18. Shadow imaging of geosynchronous satellites

    Science.gov (United States)

    Douglas, Dennis Michael

    Geosynchronous (GEO) satellites are essential for modern communication networks. If communication to a GEO satellite is lost and a malfunction occurs upon orbit insertion such as a solar panel not deploying there is no direct way to observe it from Earth. Due to the GEO orbit distance of ~36,000 km from Earth's surface, the Rayleigh criteria dictates that a 14 m telescope is required to conventionally image a satellite with spatial resolution down to 1 m using visible light. Furthermore, a telescope larger than 30 m is required under ideal conditions to obtain spatial resolution down to 0.4 m. This dissertation evaluates a method for obtaining high spatial resolution images of GEO satellites from an Earth based system by measuring the irradiance distribution on the ground resulting from the occultation of the satellite passing in front of a star. The representative size of a GEO satellite combined with the orbital distance results in the ground shadow being consistent with a Fresnel diffraction pattern when observed at visible wavelengths. A measurement of the ground shadow irradiance is used as an amplitude constraint in a Gerchberg-Saxton phase retrieval algorithm that produces a reconstruction of the satellite's 2D transmission function which is analogous to a reverse contrast image of the satellite. The advantage of shadow imaging is that a terrestrial based redundant set of linearly distributed inexpensive small telescopes, each coupled to high speed detectors, is a more effective resolved imaging system for GEO satellites than a very large telescope under ideal conditions. Modeling and simulation efforts indicate sub-meter spatial resolution can be readily achieved using collection apertures of less than 1 meter in diameter. A mathematical basis is established for the treatment of the physical phenomena involved in the shadow imaging process. This includes the source star brightness and angular extent, and the diffraction of starlight from the satellite

  19. CHINA RETRIEVES 19th RECOVERABLE SATELLITE

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China on Sept.25 recovered its 19th recoverable sci-tech experimental satellite 27 days after the satellite orbited in space. The satellite, which was launched on Aug.29 from the Jiuquan Satellite Launch Center in Gansu Province, northwest China, touched the ground at 7:55 a.m.on Sept.25. The satellite, atop a Long March 2C carrier rocket, is mainly for

  20. Jupiter small satellite montage

    Science.gov (United States)

    2000-01-01

    A montage of images of the small inner moons of Jupiter from the camera onboard NASA's Galileo spacecraft shows the best views obtained of these moons during Galileo's 11th orbit around the giant planet in November 1997. At that point, Galileo was completing its first two years in Jupiter orbit--known as the Galileo 'prime mission'--and was about to embark on a successful two-year extension, called the Galileo Europa Mission. The top two images show the moon Thebe. Thebe rotates by approximately 50 degrees between the time these two images were taken, so that the same prominent impact crater is seen in both views; this crater, which has been given the provisional name Zethus, is near the point on Thebe that faces permanently away from Jupiter. The next two images show the moon Amalthea; they were taken with the Sun directly behind the observer, an alignment that emphasizes patterns of intrinsically bright or dark surface material. The third image from the top is a view of Amalthea's leading side, the side of the moon that 'leads' as Amalthea moves in its orbit around Jupiter. This image looks 'noisy' because it was obtained serendipitously during an observation of the Jovian satellite Io (Amalthea and Io shared the same camera frame but the image was exposed for bright Io rather than for the much darker Amalthea). The fourth image from the top emphasizes prominent 'spots' of relatively bright material that are located near the point on Amalthea that faces permanently away from Jupiter. The bottom image is a view of the tiny moon Metis. In all the images, north is approximately up, and the moons are shown in their correct relative sizes. The images are, from top to bottom: Thebe taken on November 7, 1997 at a range of 504,000 kilometers (about 313,000 miles); Thebe on November 7, 1997 at a range of 548,000 kilometers (about 340,000 miles); Amalthea on November 6, 1997 at a range of about 650,000 kilometers (about 404,000 miles); Amalthea on November 7, 1997 at a

  1. Weather Satellite Enterprise Information Chain

    Science.gov (United States)

    Jamilkowski, M. L.; Grant, K. D.; Miller, S. W.; Cochran, S.

    2015-12-01

    NOAA & NASA are acquiring the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). Contributing the afternoon orbit & ground system (GS) to replace current NOAA POES Satellites, its sensors will collect meteorological, oceanographic & climatological data. The JPSS Common Ground System (CGS), consisting of C3 and IDP segments, is developed by Raytheon. It now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transferring data between ground facilities, processing them into environmental products for NOAA weather centers, and expanding to support JPSS-1 in 2017. As a multi-mission system, CGS provides combinations of C3, data processing, and product delivery for numerous NASA, NOAA, DoD and international missions.The CGS provides a wide range of support to a number of missions: Command and control and mission management for the S-NPP mission today, expanding this support to the JPSS-1 satellite mission in 2017 Data acquisition for S-NPP, the JAXA's Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the DoD Data routing over a global fiber network for S-NPP, JPSS-1, GCOM-W1, POES, DMSP, Coriolis/WindSat, NASA EOS missions, MetOp for EUMETSAT and the National Science Foundation Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS plays a key role in facilitating the movement and value-added enhancement of data all the way from satellite-based sensor data to delivery to the consumers who generate forecasts and produce watches and warnings. This presentation will discuss the information flow from sensors, through data routing and processing, and finally to product delivery. It will highlight how advances in architecture developed through lessons learned from S-NPP and implemented for JPSS-1 will increase data availability and reduce latency for end user applications.

  2. Synthesis of optimal adsorptive carbon capture processes.

    Energy Technology Data Exchange (ETDEWEB)

    chang, Y.; Cozad, A.; Kim, H.; Lee, A.; Vouzis, P.; Konda, M.; Simon, A.; Sahinidis, N.; Miller, D.

    2011-01-01

    Solid sorbent carbon capture systems have the potential to require significantly lower regeneration energy compared to aqueous monoethanol amine (MEA) systems. To date, the majority of work on solid sorbents has focused on developing the sorbent materials themselves. In order to advance these technologies, it is necessary to design systems that can exploit the full potential and unique characteristics of these materials. The Department of Energy (DOE) recently initiated the Carbon Capture Simulation Initiative (CCSI) to develop computational tools to accelerate the commercialization of carbon capture technology. Solid sorbents is the first Industry Challenge Problem considered under this initiative. An early goal of the initiative is to demonstrate a superstructure-based framework to synthesize an optimal solid sorbent carbon capture process. For a given solid sorbent, there are a number of potential reactors and reactor configurations consisting of various fluidized bed reactors, moving bed reactors, and fixed bed reactors. Detailed process models for these reactors have been modeled using Aspen Custom Modeler; however, such models are computationally intractable for large optimization-based process synthesis. Thus, in order to facilitate the use of these models for process synthesis, we have developed an approach for generating simple algebraic surrogate models that can be used in an optimization formulation. This presentation will describe the superstructure formulation which uses these surrogate models to choose among various process alternatives and will describe the resulting optimal process configuration.

  3. Capture-Gated Fast Neutron Spectroscopy

    Science.gov (United States)

    Mumm, H. P.; Abdurashitov, J. N.; Beise, E. J.; Breuer, H.; Gavrin, V. N.; Heimbach, C. R.; Langford, T. J.; Mendenhall, M.; Nico, J. S.; Shikhin, A. A.

    2015-10-01

    We present recent developments in fast neutron detection using segmented spectrometers based on the principle of capture-gating. Our approach employs an organic scintillator to detect fast neutrons through their recoil interaction with protons in the scintillator. The neutrons that thermalize and are captured produce a signal indicating that the event was due to a neutron recoil and that the full energy of the neutron was deposited. The delayed neutron capture also serves to discriminate against uncorrelated background events. The segmentation permits reconstruction of the initial neutron energy despite the nonlinear response of the scintillator. We have constructed spectrometers using both He-3 proportional counters and Li-6 doping as capture agents in plastic and liquid organic scintillators. We discuss the operation of the spectrometers for the measurement of low levels of fast neutrons for several applications, including the detection of very low-activity neutron sources and the characterization of the flux and spectrum of fast neutrons at the Earth's surface and in the underground environment.

  4. Chromatin conformation capture strategies in molecular diagnostics

    NARCIS (Netherlands)

    Vree, P.J.P. de

    2015-01-01

    In this thesis I have explored the clinical potential of the 4C-technology and worked on development of a novel chromatin conformation capture based technology, called TLA. In chapter 2 I describe how the 4C-technology can be applied as a targeted strategy to identify putative fusion-genes or chromo

  5. Influence of attentional capture on oculomotor control

    NARCIS (Netherlands)

    Theeuwes, J.; Kramer, A.F.; Hahn, S.

    1999-01-01

    Previous research has shown that when searching for a color singleton. top-down control cannot prevent attentional capture by an abrupt visual onset. The present research addressed whether a task-irrelevant abrupt onset would affect eye movement behavior when searching for a color singleton. Results

  6. Target Capture during Mos1 Transposition*

    Science.gov (United States)

    Pflieger, Aude; Jaillet, Jerôme; Petit, Agnès; Augé-Gouillou, Corinne; Renault, Sylvaine

    2014-01-01

    DNA transposition contributes to genomic plasticity. Target capture is a key step in the transposition process, because it contributes to the selection of new insertion sites. Nothing or little is known about how eukaryotic mariner DNA transposons trigger this step. In the case of Mos1, biochemistry and crystallography have deciphered several inverted terminal repeat-transposase complexes that are intermediates during transposition. However, the target capture complex is still unknown. Here, we show that the preintegration complex (i.e., the excised transposon) is the only complex able to capture a target DNA. Mos1 transposase does not support target commitment, which has been proposed to explain Mos1 random genomic integrations within host genomes. We demonstrate that the TA dinucleotide used as the target is crucial both to target recognition and in the chemistry of the strand transfer reaction. Bent DNA molecules are better targets for the capture when the target DNA is nicked two nucleotides apart from the TA. They improve strand transfer when the target DNA contains a mismatch near the TA dinucleotide. PMID:24269942

  7. Capturing phosphates with iron enhanced sand filtration.

    Science.gov (United States)

    Erickson, Andrew J; Gulliver, John S; Weiss, Peter T

    2012-06-01

    Most treatment practices for urban runoff capture pollutants such as phosphorus by either settling or filtration while dissolved phosphorus, typically as phosphates, is untreated. Dissolved phosphorus, however, represents an average 45% of total phosphorus in stormwater runoff and can be more than 95%. In this study, a new stormwater treatment technology to capture phosphate, called the Minnesota Filter, is introduced. The filter comprises iron filings mixed with sand and is tested for phosphate removal from synthetic stormwater. Results indicate that sand mixed with 5% iron filings captures an average of 88% phosphate for at least 200 m of treated depth, which is significantly greater than a sand filter without iron filings. Neither incorporation of iron filings into a sand filter nor capture of phosphates onto iron filings in column experiments had a significant effect on the hydraulic conductivity of the filter at mixtures of 5% or less iron by weight. Field applications with up to 10.7% iron were operated over 1 year without detrimental effects upon hydraulic conductivity. A model is applied and fit to column studies to predict the field performance of iron-enhanced sand filters. The model predictions are verified through the predicted performance of the filters in removing phosphates in field applications. Practical applications of the technology, both existing and proposed, are presented so stormwater managers can begin implementation.

  8. Nuclear capture at rest of Ξ hyperons

    Science.gov (United States)

    Aoki, S.; Bahk, S. Y.; Chung, S. H.; Funahashi, H.; Hahn, C. H.; Hanabata, M.; Hara, T.; Hirata, S.; Hoshino, K.; Ieiri, M.; Iijima, T.; Imai, K.; Itow, Y.; Jin-ya, T.; Kazuno, M.; Kim, C. O.; Kim, J. Y.; Kim, S. H.; Kodama, K.; Kuze, T.; Maeda, Y.; Masaike, A.; Masuoka, A.; Matsuda, Y.; Matsui, A.; Nagase, Y.; Nagoshi, C.; Nakamura, M.; Nakanishi, S.; Nakano, T.; Nakazawa, K.; Niwa, K.; Oda, H.; Okabe, H.; Ono, S.; Ozaki, R.; Park, B. D.; Park, I. G.; Sakai, K.; Sasaki, T.; Sato, Y.; Shibuya, H.; Shimizu, H. M.; Song, J. S.; Sugimoto, M.; Tajima, H.; Takahashi, H.; Takashima, R.; Takeutchi, F.; Tanaka, K. H.; Teranaka, M.; Tezuka, I.; Togawa, H.; Tsunemi, T.; Ukai, M.; Ushida, N.; Watanabe, T.; Yasuda, N.; Yokota, J.; Yoon, C. S.; KEK E176 Collaboration

    2009-09-01

    An emulsion-counter hybrid experiment (KEK E176) was carried out to search for double strangeness systems such as double- Λ hypernuclei and H-dibaryons. More than 10% of Ξ hyperons produced in the (K -, K +) reaction were brought to rest in the nuclear emulsion. We have obtained 98 candidate events of nuclear capture at rest of Ξ hyperons which are described in this report. Among those, four events were identified as sequential weak decay of double- Λ hypernuclei. The binding energies of Ξ-( 12C, 14N and 16O) states have been estimated for two events which emit twin single- Λ hypernuclei back to back from the capture point. The Σp decay vertex of an H-dibaryon was searched for near the capture point and no evidence was observed. Upper limits for the branching ratio of H emission are 5-10% for a lifetime less than 0.1 ns at the 90% confidence level. The trapping probabilities of single and double strangeness to a nuclear fragment following Ξ capture at rest have been studied.

  9. Optimum prey capture techniques in fish

    NARCIS (Netherlands)

    Leeuwen, van J.L.

    1983-01-01

    In this thesis hydrodynamic principles are used to quantify relations between form and function in the prey capture mechanism of actinopterygian fish. This work is closely related to the papers on the hydrodynamics of fish feeding by Muller et al. (1982) and Muller & Osse (in press).

  10. Historic Methods for Capturing Magnetic Field Images

    Science.gov (United States)

    Kwan, Alistair

    2016-01-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection…

  11. Capture and fission with DANCE and NEUANCE

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T.A.; Chadwick, M.B.; Couture, A.; Fowler, M.M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T.N.; Talou, P.; Ullmann, J.L.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

    2015-12-15

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on {sup 235}U are focused on quantifying the population of short-lived isomeric states in {sup 236}U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables. (orig.)

  12. Particle capture into the lung made simple?

    Science.gov (United States)

    de Vasconcelos, Talita Felipe; Sapoval, Bernard; Andrade, José S; Grotberg, James B; Hu, Yingying; Filoche, Marcel

    2011-06-01

    Understanding the impact distribution of particles entering the human respiratory system is of primary importance as it concerns not only atmospheric pollutants or dusts of various kinds but also the efficiency of aerosol therapy and drug delivery. To model this process, current approaches consist of increasingly complex computations of the aerodynamics and particle capture phenomena, performed in geometries trying to mimic lungs in a more and more realistic manner for as many airway generations as possible. Their capture results from the complex interplay between the details of the aerodynamic streamlines and the particle drag mechanics in the resulting flow. In contrast, the present work proposes a major simplification valid for most airway generations at quiet breathing. Within this context, focusing on particle escape rather than capture reveals a simpler structure in the entire process. When gravity can be neglected, we show by computing the escape rates in various model geometries that, although still complicated, the escape process can be depicted as a multiplicative escape cascade in which each elementary step is associated with a single bifurcation. As a net result, understanding of the particle capture may not require computing particle deposition in the entire lung structure but can be abbreviated in some regions using our simpler approach of successive computations in single realistic bifurcations. Introducing gravity back into our model, we show that this multiplicative model can still be successfully applied on up to nine generations, depending on particle type and breathing conditions.

  13. Water surface capturing by image processing

    Science.gov (United States)

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  14. Capture and fission with DANCE and NEUANCE

    Science.gov (United States)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.

    2015-12-01

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomeric states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.

  15. Radiative muon capture in light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hasinoff, M.D.; Ahmad, S; Armstrong, D.S.; Azuelos, G.; Bertl, W.; Blecher, M.; Burnham, R.A.; Clifford, E.T.H.; Chen, C.Q.; Ding, Z.H.; Depommier, P.; Gorringe, T.P.; Henderson, R.; Larabee, A.J.; Macdonald, J.A.; Mes, H.; Numao, T.; Poutissou, J.M.; Poutissou, R.; Robertson, B.C.; Serna-Angel, A.; Summhammer, J.; Taylor, G.N.; Waltham, C.E.; Wright, D.H.; Zhang, N.S.; MacDonald, S.C. (British Columbia Univ., Vancouver,

    1989-06-01

    Radiative muon capture rates have been measured for carbon, oxygen and calcium targets. The carbon and oxygen rates yield large values for g{sub p} when compared to detailed microscopic calculations but the conventional Goldberger-Treiman value when compared to phenomenological model calculations. A progress report on the TRIUMF RMC measurement on hydrogen is also given. 16 refs., 2 figs., 1 tab.

  16. The radiative muon capture program at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Gorringe, T. (Department of Physics and Astronomy, University of Kentucky, Lexington (United States)); RMC Collaboration

    1998-11-01

    We describe recent measurements of radiative muon capture on hydrogen, [sup 3]He and [sup 58,60,62]Ni using the RMC pair spectrometer at the TRIUMF cyclotron laboratory. Our determinations of the induced pseudoscalar coupling of the nucleon's weak current are discussed. (author) 5 refs, 1 fig

  17. Capture technologies: Improvements and promising developments

    NARCIS (Netherlands)

    Blomen, E.; Hendriks, C.; Neele, F.

    2009-01-01

    In this status report we want to provide a comprehensive overview of the current status and promising technologies of CO2 capture by means of a literature review, in-house knowledge and interviews. We describe the technology, bottlenecks towards implementation and potential use. The results will be

  18. CO2 capture, transport, storage and utilisation

    NARCIS (Netherlands)

    Brouwer, J.H.

    2013-01-01

    Reducing CO2 emissions requires an integrated CO2 management approach. The dependency between the different industry sectors is higher than commonly acknowledged and covers all areas; capture, transport, storage and utilisation. TNO is one of Europe’s largest independent research organisations and p

  19. Salmonella capture using orbiting magnetic microbeads

    Science.gov (United States)

    Owen, Drew; Ballard, Matthew; Mills, Zachary; Hanasoge, Srinivas; Hesketh, Peter; Alexeev, Alexander

    2014-11-01

    Using three-dimensional simulations and experiments, we examine capture of salmonella from a complex fluid sample flowing through a microfluidic channel. Capture is performed using orbiting magnetic microbeads, which can easily be extracted from the system for analysis after salmonella capture. Numerical simulations are used to model the dynamics of the system, which consists of a microchannel filled with a viscous fluid, model salmonella, magnetic microbeads and a series of angled parallel ridges lining the top of the microchannel. Simulations provide a statistical measure of the ability of the system to capture target salmonella. Our modeling findings guide the design of a lab-on-a-chip experimental device to be used for the detection of salmonella from complex food samples, allowing for the detection of the bacteria at the food source and preventing the consumption of contaminated food. Such a device can be used as a generic platform for the detection of a variety of biomaterials from complex fluids. This work is supported by a grant from the United States Department of Agriculture.

  20. Historic Methods for Capturing Magnetic Field Images

    Science.gov (United States)

    Kwan, Alistair

    2016-03-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection processes.

  1. Analysis of capture-recapture data

    CERN Document Server

    McCrea, Rachel S

    2014-01-01

    An important first step in studying the demography of wild animals is to identify the animals uniquely through applying markings, such as rings, tags, and bands. Once the animals are encountered again, researchers can study different forms of capture-recapture data to estimate features, such as the mortality and size of the populations. Capture-recapture methods are also used in other areas, including epidemiology and sociology.With an emphasis on ecology, Analysis of Capture-Recapture Data covers many modern developments of capture-recapture and related models and methods and places them in the historical context of research from the past 100 years. The book presents both classical and Bayesian methods.A range of real data sets motivates and illustrates the material and many examples illustrate biometry and applied statistics at work. In particular, the authors demonstrate several of the modeling approaches using one substantial data set from a population of great cormorants. The book also discusses which co...

  2. Incremental learning for automated knowledge capture.

    Energy Technology Data Exchange (ETDEWEB)

    Benz, Zachary O.; Basilico, Justin Derrick; Davis, Warren Leon,; Dixon, Kevin R.; Jones, Brian S.; Martin, Nathaniel; Wendt, Jeremy Daniel

    2013-12-01

    People responding to high-consequence national-security situations need tools to help them make the right decision quickly. The dynamic, time-critical, and ever-changing nature of these situations, especially those involving an adversary, require models of decision support that can dynamically react as a situation unfolds and changes. Automated knowledge capture is a key part of creating individualized models of decision making in many situations because it has been demonstrated as a very robust way to populate computational models of cognition. However, existing automated knowledge capture techniques only populate a knowledge model with data prior to its use, after which the knowledge model is static and unchanging. In contrast, humans, including our national-security adversaries, continually learn, adapt, and create new knowledge as they make decisions and witness their effect. This artificial dichotomy between creation and use exists because the majority of automated knowledge capture techniques are based on traditional batch machine-learning and statistical algorithms. These algorithms are primarily designed to optimize the accuracy of their predictions and only secondarily, if at all, concerned with issues such as speed, memory use, or ability to be incrementally updated. Thus, when new data arrives, batch algorithms used for automated knowledge capture currently require significant recomputation, frequently from scratch, which makes them ill suited for use in dynamic, timecritical, high-consequence decision making environments. In this work we seek to explore and expand upon the capabilities of dynamic, incremental models that can adapt to an ever-changing feature space.

  3. Annual Report: Carbon Capture (30 September 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Luebke, David; Morreale, Bryan; Richards, George; Syamlal, Madhava

    2014-04-16

    Capture of carbon dioxide (CO{sub 2}) is a critical component in reducing greenhouse gas emissions from fossil fuel-based processes. The Carbon Capture research to be performed is aimed at accelerating the development of efficient, cost-effective technologies which meet the post-combustion programmatic goal of capture of 90% of the CO{sub 2} produced from an existing coal-fired power plant with less than a 35% increase in the cost of electricity (COE), and the pre-combustion goal of 90% CO{sub 2} capture with less than a 10% increase in COE. The specific objective of this work is to develop innovative materials and approaches for the economic and efficient capture of CO{sub 2} from coal-based processes, and ultimately assess the performance of promising technologies at conditions representative of field application (i.e., slip stream evaluation). The Carbon Capture research includes seven core technical research areas: post-combustion solvents, sorbents, and membranes; pre-combustion solvents, sorbents, and membranes; and oxygen (O{sub 2}) production. The goal of each of these tasks is to develop advanced materials and processes that are able to reduce the energy penalty and cost of CO{sub 2} (or O{sub 2}) separation over conventional technologies. In the first year of development, materials will be examined by molecular modeling, and then synthesized and experimentally characterized at lab scale. In the second year, they will be tested further under ideal conditions. In the third year, they will be tested under realistic conditions. The most promising materials will be tested at the National Carbon Capture Center (NCCC) using actual flue or fuel gas. Systems analyses will be used to determine whether or not materials developed are likely to meet the Department of Energy (DOE) COE targets. Materials which perform well and appear likely to improve in performance will be licensed for further development outside of the National Energy Technology Laboratory (NETL

  4. Stratospheric dryness: model simulations and satellite observations

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2007-01-01

    Full Text Available The mechanisms responsible for the extreme dryness of the stratosphere have been debated for decades. A key difficulty has been the lack of comprehensive models which are able to reproduce the observations. Here we examine results from the coupled lower-middle atmosphere chemistry general circulation model ECHAM5/MESSy1 together with satellite observations. Our model results match observed temperatures in the tropical lower stratosphere and realistically represent the seasonal and inter-annual variability of water vapor. The model reproduces the very low water vapor mixing ratios (below 2 ppmv periodically observed at the tropical tropopause near 100 hPa, as well as the characteristic tape recorder signal up to about 10 hPa, providing evidence that the dehydration mechanism is well-captured. Our results confirm that the entry of tropospheric air into the tropical stratosphere is forced by large-scale wave dynamics, whereas radiative cooling regionally decelerates upwelling and can even cause downwelling. Thin cirrus forms in the cold air above cumulonimbus clouds, and the associated sedimentation of ice particles between 100 and 200 hPa reduces water mass fluxes by nearly two orders of magnitude compared to air mass fluxes. Transport into the stratosphere is supported by regional net radiative heating, to a large extent in the outer tropics. During summer very deep monsoon convection over Southeast Asia, centered over Tibet, moistens the stratosphere.

  5. Stream Gauges and Satellite Measurements

    Science.gov (United States)

    Alsdorf, D. E.

    2010-12-01

    Satellite measurements should not be viewed as a replacement for stream gauges. However, occasionally it is suggested that because satellite-based measurements can provide river discharge, a motivation for satellite approaches is an increasing lack of stream gauges. This is an argument for more stream gauges, but not necessarily for satellite measurements. Rather, in-situ and spaceborne methods of estimating discharge are complementary. Stream gauges provide frequent measurements at one point in the river reach whereas satellites have the potential to measure throughout all reaches but at orbital repeat intervals of days to weeks. The Surface Water and Ocean Topography satellite mission (SWOT) is an opportunity to further develop these complements. The motivation for SWOT, and indeed for any satellite based method of estimating discharge, should not be as a replacement for stream gauges. Scientific and application uses should motivate the measurements. For example, understanding floods with their dynamic water surfaces are best sampled from remote platforms that provide water surface elevations throughout the floodwave. As another example, today’s water and energy balance models are giving outputs at increasing spatial resolution and are making use of water surface elevations throughout the modeled basin. These models require a similar resolution in the calibrating and validating observations. We should also be aware of practical limitations. In addition to providing spatially distributed hydrodynamic measurements on rivers, SWOT will be able to measure storage changes in the estimated 30 million lakes in the world that are larger than a hectare. Knowing the storage changes in these lakes is especially important in certain regions such as the Arctic but gauging even a small fraction of these is impractical. Another motivator for satellite methods is that even in the presence of stream gauges, discharge data is not always well shared throughout all countries

  6. Chartering Launchers for Small Satellites

    Science.gov (United States)

    Hernandez, Daniel

    The question of how to launch small satellites has been solved over the years by the larger launchers offering small satellites the possibility of piggy-backing. Specific fixtures have been developed and commercialized: Arianespace developed the ASAP interface, the USAF studied ESPA, NASA has promoted Shuttle launch possibilities, Russian authorities and companies have been able to find solutions with many different launchers... It is fair to say that most launcher suppliers have worked hard and finally often been able to find solutions to launch most small satellites into orbit. It is also true, however, that most of these small satellites were technology demonstration missions capable of accepting a wide range of orbit and launch characteristics: orbit altitude and inclination, launch date, etc. In some cases the small satellite missions required a well-defined type of orbit and have therefore been obliged to hire a small launcher on which they were the prime passenger. In our paper we would like to propose an additional solution to all these possibilities: launchers could plan well in advance (for example about 3 years), trips to precisely defined orbits to allow potential passengers to organize themselves and be ready on the D-Day. On the scheduled date the chartered launcher goes to the stated orbit while on another date, another chartered launcher goes to another orbit. The idea is to organize departures for space like trains or airplanes leaving on known schedules for known destinations.

  7. Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  8. Satellite Tracking Astrometric Network (STAN)

    Science.gov (United States)

    Vecchiato, Alberto; Gai, Mario

    2015-08-01

    The possibility of precise orbit tracking and determination of different types of satellites has been explored for at least some 25 years (Arimoto et al., 1990). Proposals in this sense made use mainly of astrometric observations, but multiple tracking techniques combining transfer and laser ranging was also suggested (Guo et al., 2009; Montojo et al., 2011), with different requirements and performances ranging from $\\sim100$~m to tenths of meters.In this work we explore the possible improvements and a novel implementation of a technique relying on large angle, high precision astrometry from ground for the determination of satellite orbits. The concept is based on combined observation of geostationary satellites and other near-Earth space objects from two or more telescopes, applying the triangulation principle over widely separated regions of the sky. An accuracy of a few $10^{-2}$~m can be attained with 1-meter-class telescopes and a field of vied of some arcminutes.We discuss the feasibility of the technique, some of the implementation aspects, and the limitations imposed by atmospheric turbulence. The potential benefits for satellite orbit control and navigation systems are presented, depending on the number and position of the contributing telescopes.We also discuss the possibility that, by reversing the roles of stars and satellites, the same kind of observations can be used for verification and maintenance of astrometric catalogs.

  9. Research Supporting Satellite Communications Technology

    Science.gov (United States)

    Horan Stephen; Lyman, Raphael

    2005-01-01

    This report describes the second year of research effort under the grant Research Supporting Satellite Communications Technology. The research program consists of two major projects: Fault Tolerant Link Establishment and the design of an Auto-Configurable Receiver. The Fault Tolerant Link Establishment protocol is being developed to assist the designers of satellite clusters to manage the inter-satellite communications. During this second year, the basic protocol design was validated with an extensive testing program. After this testing was completed, a channel error model was added to the protocol to permit the effects of channel errors to be measured. This error generation was used to test the effects of channel errors on Heartbeat and Token message passing. The C-language source code for the protocol modules was delivered to Goddard Space Flight Center for integration with the GSFC testbed. The need for a receiver autoconfiguration capability arises when a satellite-to-ground transmission is interrupted due to an unexpected event, the satellite transponder may reset to an unknown state and begin transmitting in a new mode. During Year 2, we completed testing of these algorithms when noise-induced bit errors were introduced. We also developed and tested an algorithm for estimating the data rate, assuming an NRZ-formatted signal corrupted with additive white Gaussian noise, and we took initial steps in integrating both algorithms into the SDR test bed at GSFC.

  10. Flight results from the gravity-gradient-controlled RAE-1 satellite

    Science.gov (United States)

    Blanchard, D. L.

    1986-01-01

    The in-orbit dynamics of a large, flexible spacecraft has been modeled with a computer simulation, which was used for designing the control system, developing a deployment and gravity-gradient capture procedure, predicting the steady-state behavior, and designing a series of dynamics experiments for the Radio Astronomy Explorer (RAE) satellite. This flexible body dynamics simulator permits three-dimensional, large-angle rotation of the total spacecraft and includes effects of orbit eccentricity, thermal bending, solar pressure, gravitational accelerations, and the damper system. Flight results are consistent with the simulator predictions and are presented for the deployment and capture phases, the steady-state mission, and the dynamics experiments.

  11. Orbit Determination Using Satellite-to-Satellite Tracking Data

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Satellite-to-Satellite Tracking (SST) data can be used to determine the orbits of spacecraft in two ways. One is combined orbit determination, which combines SST data with ground-based tracking data and exploits the enhanced tracking geometry. The other is the autonomous orbit determination, which uses only SST. The latter only fits some particular circumstances since it suffers the rank defect problem in other circumstances. The proof of this statement is presented. The na ture of the problem is also investigated in order to find an effective solution. Several methods of solution are discussed. The feasibility of the methods is demonstrated by their apphcation to a simulation.

  12. Statistical inference for capture-recapture experiments

    Science.gov (United States)

    Pollock, Kenneth H.; Nichols, James D.; Brownie, Cavell; Hines, James E.

    1990-01-01

    This monograph presents a detailed, practical exposition on the design, analysis, and interpretation of capture-recapture studies. The Lincoln-Petersen model (Chapter 2) and the closed population models (Chapter 3) are presented only briefly because these models have been covered in detail elsewhere. The Jolly- Seber open population model, which is central to the monograph, is covered in detail in Chapter 4. In Chapter 5 we consider the "enumeration" or "calendar of captures" approach, which is widely used by mammalogists and other vertebrate ecologists. We strongly recommend that it be abandoned in favor of analyses based on the Jolly-Seber model. We consider 2 restricted versions of the Jolly-Seber model. We believe the first of these, which allows losses (mortality or emigration) but not additions (births or immigration), is likely to be useful in practice. Another series of restrictive models requires the assumptions of a constant survival rate or a constant survival rate and a constant capture rate for the duration of the study. Detailed examples are given that illustrate the usefulness of these restrictions. There often can be a substantial gain in precision over Jolly-Seber estimates. In Chapter 5 we also consider 2 generalizations of the Jolly-Seber model. The temporary trap response model allows newly marked animals to have different survival and capture rates for 1 period. The other generalization is the cohort Jolly-Seber model. Ideally all animals would be marked as young, and age effects considered by using the Jolly-Seber model on each cohort separately. In Chapter 6 we present a detailed description of an age-dependent Jolly-Seber model, which can be used when 2 or more identifiable age classes are marked. In Chapter 7 we present a detailed description of the "robust" design. Under this design each primary period contains several secondary sampling periods. We propose an estimation procedure based on closed and open population models that allows for

  13. Satellites, tweets, forecasts: the future of flood disaster management?

    Science.gov (United States)

    Dottori, Francesco; Kalas, Milan; Lorini, Valerio; Wania, Annett; Pappenberger, Florian; Salamon, Peter; Ramos, Maria Helena; Cloke, Hannah; Castillo, Carlos

    2017-04-01

    Floods have devastating effects on lives and livelihoods around the world. Structural flood defence measures such as dikes and dams can help protect people. However, it is the emerging science and technologies for flood disaster management and preparedness, such as increasingly accurate flood forecasting systems, high-resolution satellite monitoring, rapid risk mapping, and the unique strength of social media information and crowdsourcing, that are most promising for reducing the impacts of flooding. Here, we describe an innovative framework which integrates in real-time two components of the Copernicus Emergency mapping services, namely the European Flood Awareness System and the satellite-based Rapid Mapping, with new procedures for rapid risk assessment and social media and news monitoring. The integrated framework enables improved flood impact forecast, thanks to the real-time integration of forecasting and monitoring components, and increases the timeliness and efficiency of satellite mapping, with the aim of capturing flood peaks and following the evolution of flooding processes. Thanks to the proposed framework, emergency responders will have access to a broad range of timely and accurate information for more effective and robust planning, decision-making, and resource allocation.

  14. Convolutional neural network features based change detection in satellite images

    Science.gov (United States)

    Mohammed El Amin, Arabi; Liu, Qingjie; Wang, Yunhong

    2016-07-01

    With the popular use of high resolution remote sensing (HRRS) satellite images, a huge research efforts have been placed on change detection (CD) problem. An effective feature selection method can significantly boost the final result. While hand-designed features have proven difficulties to design features that effectively capture high and mid-level representations, the recent developments in machine learning (Deep Learning) omit this problem by learning hierarchical representation in an unsupervised manner directly from data without human intervention. In this letter, we propose approaching the change detection problem from a feature learning perspective. A novel deep Convolutional Neural Networks (CNN) features based HR satellite images change detection method is proposed. The main guideline is to produce a change detection map directly from two images using a pretrained CNN. This method can omit the limited performance of hand-crafted features. Firstly, CNN features are extracted through different convolutional layers. Then, a concatenation step is evaluated after an normalization step, resulting in a unique higher dimensional feature map. Finally, a change map was computed using pixel-wise Euclidean distance. Our method has been validated on real bitemporal HRRS satellite images according to qualitative and quantitative analyses. The results obtained confirm the interest of the proposed method.

  15. A preliminary design for a satellite power system

    Science.gov (United States)

    Enriquez, Clara V.; Kokaly, Ray; Nandi, Saumya; Timmons, Mike; Garrard, Mark; Mercado, Rommel; Rogers, Brian; Ugaz, Victor

    1991-01-01

    Outlined here is a preliminary design for a Solar Power Satellite (SPS) system. The SPS will provide a clean, reliable source of energy for mass consumption. The system will use satellites in geostationary orbits around the Earth to capture the sun's energy. The intercepted sunlight will be converted to laser beam energy which can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting to one ground station. The SPs technology uses multi-layer solar cell technology arranged on a 20 sq km planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Construction will take place in low Earth orbit and array sections, 20 in total, will be sailed on the solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing panels (SSAPs). The primary truss elements used to support the arrays are composed on composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  16. New Regional Satellite Positioning Constellation Scheme Discussion

    Institute of Scientific and Technical Information of China (English)

    CHU Hai-bin; ZHANG Nai-tong; GU Xue-mai

    2005-01-01

    The characteristics of present "Beidou" satellite positioning system are analyzed. In order to perfect our country regional satellite positioning system, the idea of "Beidou" geosychronous earth orbit (GEO) satellites combined with some middle earth orbit (MEO) satellites constellation is put forward. The details of general satellite constellation optimized method are described, using this method the multiple positioning constellation design results are gained. And those results belong to two type of schems, one is 2 GEO plus some MEO satellites and the other is 3 GEO plus some MEO satellites. Through simulation and comparison, among those multiple design results, final optimized regional positioning constellation is given. In order to check the chosen constellation cover performance, the position dilution of precision(PDOP) is calculated, and with satellite constellation simulation software Satlab many coverage performances of the chosen constellation substellar point track, elevation, azimuth and visible satellites number changing situation are also simulated.

  17. ERTS-A satellite imagery

    Science.gov (United States)

    Colvocoresses, Alden P.

    1970-01-01

    The first satellite designed to survey the Earth's resources is scheduled to be launched in 1972. This satellite, known as ERTS-A, will telemeter frames of imagery each covering 100-nautical-mile squares of the Earth. Except for the internal anomalies in the sensor system, the imagery, after being properly scaled, rectified, and controlled, may be considered an orthographic view of the Earth and used as a planimetric photomap. The accuracy of this photomap will be limited, principally by the geometric fidelity of the sensor system rather than by external effects, such as relief displacement, which restrict the direct cartographic use of the conventional aerial photograph. ERST-A is not designed as a topographic mapping satellite but does have real potential' for thematic mapping particularly in areas now covered by topographic maps.

  18. Gaussian Entanglement Distribution via Satellite

    CERN Document Server

    Hosseinidehaj, Nedasadat

    2014-01-01

    In this work we analyse three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the trade-off between space-based engineering complexity and the rate of ground-station entanglement generation...

  19. Satellite Communications Using Commercial Protocols

    Science.gov (United States)

    Ivancic, William D.; Griner, James H.; Dimond, Robert; Frantz, Brian D.; Kachmar, Brian; Shell, Dan

    2000-01-01

    NASA Glenn Research Center has been working with industry, academia, and other government agencies in assessing commercial communications protocols for satellite and space-based applications. In addition, NASA Glenn has been developing and advocating new satellite-friendly modifications to existing communications protocol standards. This paper summarizes recent research into the applicability of various commercial standard protocols for use over satellite and space- based communications networks as well as expectations for future protocol development. It serves as a reference point from which the detailed work can be readily accessed. Areas that will be addressed include asynchronous-transfer-mode quality of service; completed and ongoing work of the Internet Engineering Task Force; data-link-layer protocol development for unidirectional link routing; and protocols for aeronautical applications, including mobile Internet protocol routing for wireless/mobile hosts and the aeronautical telecommunications network protocol.

  20. Landsat—Earth observation satellites

    Science.gov (United States)

    ,

    2015-11-25

    Since 1972, Landsat satellites have continuously acquired space-based images of the Earth’s land surface, providing data that serve as valuable resources for land use/land change research. The data are useful to a number of applications including forestry, agriculture, geology, regional planning, and education. Landsat is a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). NASA develops remote sensing instruments and the spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and data distribution. The result of this program is an unprecedented continuing record of natural and human-induced changes on the global landscape.

  1. Small satellites and their regulation

    CERN Document Server

    Jakhu, Ram S

    2014-01-01

    Since the launch of UoSat-1 of the University of Surrey (United Kingdom) in 1981, small satellites proved regularly to be useful, beneficial, and cost-effective tools. Typical tasks cover education and workforce development, technology demonstration, verification and validation, scientific and engineering research as well as commercial applications. Today the launch masses range over almost three orders of magnitude starting at less than a kilogram up to a few hundred kilograms, with budgets of less than US$ 100.00 and up to millions within very short timeframes of sometimes less than two years. Therefore each category of small satellites provides specific challenges in design, development and operations. Small satellites offer great potentials to gain responsive, low-cost access to space within a short timeframe for institutions, companies, regions and countries beyond the traditional big players in the space arena. For these reasons (particularly the low cost of construction, launch and operation), small (m...

  2. A multi-source satellite data approach for modelling Lake Turkana water level: Calibration and validation using satellite altimetry data

    Science.gov (United States)

    Velpuri, N.M.; Senay, G.B.; Asante, K.O.

    2012-01-01

    Lake Turkana is one of the largest desert lakes in the world and is characterized by high degrees of interand intra-annual fluctuations. The hydrology and water balance of this lake have not been well understood due to its remote location and unavailability of reliable ground truth datasets. Managing surface water resources is a great challenge in areas where in-situ data are either limited or unavailable. In this study, multi-source satellite-driven data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, and a digital elevation dataset were used to model Lake Turkana water levels from 1998 to 2009. Due to the unavailability of reliable lake level data, an approach is presented to calibrate and validate the water balance model of Lake Turkana using a composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data. Model validation results showed that the satellitedriven water balance model can satisfactorily capture the patterns and seasonal variations of the Lake Turkana water level fluctuations with a Pearson's correlation coefficient of 0.90 and a Nash-Sutcliffe Coefficient of Efficiency (NSCE) of 0.80 during the validation period (2004-2009). Model error estimates were within 10% of the natural variability of the lake. Our analysis indicated that fluctuations in Lake Turkana water levels are mainly driven by lake inflows and over-the-lake evaporation. Over-the-lake rainfall contributes only up to 30% of lake evaporative demand. During the modelling time period, Lake Turkana showed seasonal variations of 1-2m. The lake level fluctuated in the range up to 4m between the years 1998-2009. This study demonstrated the usefulness of satellite altimetry data to calibrate and validate the satellite-driven hydrological model for Lake Turkana without using any in-situ data. Furthermore, for Lake Turkana, we identified and outlined opportunities and challenges of using a calibrated satellite-driven water balance

  3. Reinventing the Solar Power Satellite

    Science.gov (United States)

    Landis, Geoffrey A.

    2004-01-01

    The selling price of electrical power varies with time. The economic viability of space solar power is maximum if the power can be sold at peak power rates, instead of baseline rate. Price and demand of electricity was examined from spot-market data from four example markets: New England, New York City, suburban New York, and California. The data was averaged to show the average price and demand for power as a function of time of day and time of year. Demand varies roughly by a factor of two between the early-morning minimum demand, and the afternoon maximum; both the amount of peak power, and the location of the peak, depends significantly on the location and the weather. The demand curves were compared to the availability curves for solar energy and for tracking and non-tracking satellite solar power systems in order to compare the market value of terrestrial and solar electrical power. In part 2, new designs for a space solar power (SSP) system were analyzed to provide electrical power to Earth for economically competitive rates. The approach was to look at innovative power architectures to more practical approaches to space solar power. A significant barrier is the initial investment required before the first power is returned. Three new concepts for solar power satellites were invented and analyzed: a solar power satellite in the Earth-Sun L2 point, a geosynchronous no-moving parts solar power satellite, and a nontracking geosynchronous solar power satellite with integral phased array. The integral-array satellite had several advantages, including an initial investment cost approximately eight times lower than the conventional design.

  4. MEMOS - Mars Environment Monitoring Satellite

    Science.gov (United States)

    Ott, T.; Barabash, S.; von Schéele, F.; Clacey, E.; Pokrupa, N.

    2007-08-01

    The Swedish Institute of Space Physics (IRF) in cooperation with the Swedish Space Corporation (SSC) has conducted first studies on a Mars Environment Monitoring Satellite (MEMOS). The MEMOS microsatellite (mass ELT) Proximity-1 transceiver will autonomously communicate with the parent satellite at inter-satellite ranges 2 kbit/s. The transceiver also implements a coherent transponding mode for orbit determination through two-way Doppler ranging between the parent satellite and MEMOS. In addition ELT is compatible with a future Martian communication and navigation network pursued by NASA, which could be taken advantage of in the future for relaying data or performing ranging via other satellites part of the network. A system design driver for inter-satellite communication at Mars is the high demand of power. This leads to a disk-shape and thus easy to accommodate spacecraft configuration of MEMOS comprising a single sun-pointing solar array favourable in terms of power and spin stability. Multi-junction solar cells, which currently have an efficiency of ~29% under laboratory conditions are a key factor to keep MEMOS solar array area of ~1.15 m2 small compared to the worst case system power requirements of ~105 W. During eclipse periods high-efficient Li-ion batteries (6 x 20 Wh) will ensure power supply. The spacecraft and payload design will incorporate new technology developments such as autonomous navigation, MicroElectroMechanical Systems MEMS, Micro- Opto-ElectroMechanical Systems MOEMS and new materials to achieve low mass at high performance. Thereby it will profit from Swedish developments and heritage in small- / microsatellites like Astrid-2, SMART-1 or the upcoming rendezvous and formation flying demonstration mission PRISMA.

  5. Hybridization Capture Using Short PCR Products Enriches Small Genomes by Capturing Flanking Sequences (CapFlank)

    DEFF Research Database (Denmark)

    Tsangaras, Kyriakos; Wales, Nathan; Sicheritz-Pontén, Thomas;

    2014-01-01

    Solution hybridization capture methods utilize biotinylated oligonucleotides as baits to enrich homologous sequences from next generation sequencing (NGS) libraries. Coupled with NGS, the method generates kilo to gigabases of high confidence consensus targeted sequence. However, in many experimen...

  6. Communication Satellites 1958 to 1986

    Science.gov (United States)

    1984-10-01

    effort that is still advancing the state of the art . 2-1 3. EXPERIMENTAL SATELLITES Although the performance of communication satellites could be...bandwidths was much beyond the state of the art . The choice of the Delta launch vehicle provided basic design constraints such as size, weight, and... Griego M6/215 A. S. Gilcrest M4/958 T. J. Carr M5/699 C. H. Bredall M5/690 J. B. Bryson M5/669 R. L. Porter M5/692 T. M. Bedbury M5/669 R. D. Smith

  7. Chameleon gravity and satellite geodesy

    CERN Document Server

    Morris, J R

    2014-01-01

    We consider the possibility of the detection of a chameleon effect by an earth orbiting satellite such as LAGEOS, and possible constraints that might be placed on chameleon model parameters. Approximate constraints presented here result from using a simple monopole approximation for the gravitational field of the earth, along with results from the Khoury-Weltman chameleon model, solar system constraints obtained from the Cassini mission, and parameter bounds obtained from the LAGEOS satellite. It is furthermore suggested that a comparison of ground-based and space-based multipole moments of the geopotential could reveal a possible chameleon effect.

  8. The Cosmic Background Explorer Satellite

    Science.gov (United States)

    Mather, J.; Kelsall, T.

    1980-01-01

    The Cosmic Background Explorer (COBE) satellite, planned for launch in 1985, will measure the diffuse infrared and microwave radiation of the universe over the entire wavelength range from a few microns to 1.3 cm. It will include three instruments: a set of microwave isotropy radiometers at 23, 31, 53, and 90 GHz, an interferometer spectrometer from 1 to 100/cm, and a filter photometer from 1 to 300 microns. The COBE satellite is designed to reach the sensitivity limits set by foreground sources such as the interstellar and interplanetary dust, starlight, and galactic synchrotron radiation, so that a diffuse residual radiation may be interpreted unambiguously as extragalactic

  9. Vocoders in mobile satellite communications

    Science.gov (United States)

    Kriedte, W.; Canavesio, F.; dal Degan, N.; Pirani, G.; Rusina, F.; Usai, P.

    Owing to the power constraints that characterize onboard transmission sections, low-bit-rate coders seem suitable for speech communications inside mobile satellite systems. Vocoders that operate at rates below 4.8 kbit/s could therefore be a desirable solution for this application, providing also the redundancy that must be added to cope with the channel error rate. After reviewing the mobile-satellite-systems aspects, the paper outlines the features of two different types of vocoders that are likely to be employed, and the relevant methods of assessing their performances. Finally, some results from computer simulations of the speech transmission systems are reported.

  10. Advanced Communications Technology Satellite (ACTS)

    Science.gov (United States)

    Olmstead, Dean A.; Schertler, Ronald J.

    The benefits that will be offered by the NASA-sponsored communication spacecraft ACTS which is scheduled for launch in 1992 are described together with examples of demonstrations on proposed data, video, and voice applications supported by the advanced ACTS technologies. Compared to existing satellite service, the ACTS will provide lower cost, better service, greater convenience, and improved service reliability of telecommunications to customers around the world. In addition, the pioneering ACTS technology will provide many capabilities qualitatively different from those of current satellite systems, such as on-demand assignment, frequency reuse, and the flexible targeting of spot beams directly to the very-small-aperture terminals at customer premises.

  11. Mobile satellite communications for consumers

    Science.gov (United States)

    Noreen, Gary K.

    1991-11-01

    The RadioSat system based on MSAT satellites and scheduled for launch in 1994 is described. The RadioSat system will provide integrated communications and navigation services to consumers, including nationwide digital audio broadcasts, data broadcasts, precision navigation, and two-way voice and data communications. Particular attention is given to the MSAT satellite system capabilities and economics. It is concluded that the RadioSat system will be capable of providing a low-cost, highly flexible two-way communications for consumers that can be adapted to various applications.

  12. Broadcast satellite service: The international dimension

    Science.gov (United States)

    Samara, Noah

    1991-09-01

    The dawn of the 1990's has witnessed the birth of a new satellite service - satellite sound broadcasting. This new service is characterized by digital transmission at data rates up to 256 kb/s from satellites in geostationary orbit to small, low-cost, mobile and portable receivers. The satellite sound broadcasting service is a logical step beyond navigation satellite service, such as that provided by the GPS Navstar system. The mass market appeal of satellite sound broadcasting in the area of lightsat technology and low-cost digital radios has greatly facilitated the financing of this type of space service.

  13. New hints on Phobos collisional capture origin from Rosetta-OSIRIS observation .

    Science.gov (United States)

    Pajola, M.; Lazzarin, M.; Bertini, I.; Turrini, D.; Marzari, F.; Magrin, S.; La Forgia, F.; Ferri, F.; Barbieri, C.

    On 2007 February 24 and 25, the ESA Rosetta mission flew by the planet Mars during its complex interplanetary trajectory towards its main target: comet 67P/Churyumov-Gerasimenko. The geometry of this gravitational assist gave the chance to image Phobos before and after Rosetta-Mars closest approach (CA) from a distance range between 115 000 to 21 000 km. Different surface areas of Phobos were observed belonging to the leading and trailing hemisphere of the anti-Mars hemisphere of the satellite, and also a section of its sub-Mars hemisphere. We compared our spectra, obtained during the pre- and the post-CA, with the reflectance spectra of D-type asteroids, showing that Phobos near-ultraviolet, visible and near-infrared (263.5-992.0 nm) reflectivity is within the spectral dispersion of the D-type asteroids. We investigated then the possibility of a dynamical collisional capture of Phobos similar to the origin of the irregular satellites of the giants planets. The coupled observational and dynamical ones suggest an early capture of Phobos in the first 10-100 Ma of the lifetime of the Solar System, consistently with the results of previous studies of the orbital evolution of Phobos.

  14. Muon Capture on the Proton and Deuteron

    CERN Document Server

    Gray, Frederick

    2008-01-01

    By measuring the lifetime of the negative muon in pure protium (hydrogen-1), the MuCap experiment determines the rate of muon capture on the proton, from which the proton's pseudoscalar coupling g_p may be inferred. A precision of 15% for g_p has been published; this is a step along the way to a goal of 7%. This coupling can be calculated precisely from heavy baryon chiral perturbation theory and therefore permits a test of QCD's chiral symmetry. Meanwhile, the MuSun experiment is in its final design stage; it will measure the rate of muon capture on the deuteron using a similar technique. This process can be related through pionless effective field theory and chiral perturbation theory to other two-nucleon reactions of astrophysical interest, including proton-proton fusion and deuteron breakup.

  15. Electron capture cross sections for stellar nucleosynthesis

    CERN Document Server

    Giannaka, P G

    2015-01-01

    In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasi-particle random-phase approximation (pn-QRPA) and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the above mentioned $e^-$-capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the $^{66}Zn$ isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.

  16. Interactive animation of 4D performance capture.

    Science.gov (United States)

    Casas, Dan; Tejera, Margara; Guillemaut, Jean-Yves; Hilton, Adrian

    2013-05-01

    A 4D parametric motion graph representation is presented for interactive animation from actor performance capture in a multiple camera studio. The representation is based on a 4D model database of temporally aligned mesh sequence reconstructions for multiple motions. High-level movement controls such as speed and direction are achieved by blending multiple mesh sequences of related motions. A real-time mesh sequence blending approach is introduced, which combines the realistic deformation of previous nonlinear solutions with efficient online computation. Transitions between different parametric motion spaces are evaluated in real time based on surface shape and motion similarity. Four-dimensional parametric motion graphs allow real-time interactive character animation while preserving the natural dynamics of the captured performance.

  17. Book review: Spatial capture-recapture

    Science.gov (United States)

    Russell, Robin E.

    2014-01-01

    Understanding how animals use space is a vital aspect of conservation planning and wildlife management. Technological developments (e.g., increased computer power and desktop geographic information system [GIS] applications) are bringing the ability to analyze spatial data sets to the individual biologist. Therefore, it is not surprising that methodologies have been developed to incorporate space into capture-recapture models, which are some of the most fundamental models in the field of wildlife ecology. Spatial Capture-Recapture (hereafter SCR) is a timely and informative contribution that summarizes the history and motivation behind SCR models, in addition to providing details of the methodological framework that allows the reader to develop and customize SCR models to address their own ecological questions.

  18. Thermal neutron capture gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Tuli, J.K.

    1983-01-01

    The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,..cap alpha..), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,..gamma..) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide.

  19. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone...... that raw meal could be used as a sorbent for the easy integration of the carbonate looping process into the cement pyro process for reducing CO2 emissions from the cement production process....

  20. Layered solid sorbents for carbon dioxide capture

    Science.gov (United States)

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2013-02-25

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  1. Head-Up Displays and Attention Capture

    Science.gov (United States)

    Prinzel, Lawrence J., III; Risser, Matthew

    2004-01-01

    The primary role of head-up displays (HUDs) is to provide primary flight, navigation, and guidance information to the pilot in a forward field-of-view on a head-up transparent screen. Therefore, this theoretically allows for optimal control of an aircraft through the simultaneous scanning of both instrument data and the out-the-window scene. However, despite significant aviation safety benefits afforded by HUDs, a number of accidents have shown that their use does not come without costs. The human factors community has identified significant issues related to the pilot distribution of near and far domain attentional resources because of the compellingness of symbology elements on the HUD; a concern termed, attention or cognitive capture. The paper describes the phenomena of attention capture and presents a selected survey of the literature on the etiology and potential prescriptions.

  2. Gold nanoparticle capture within protein crystal scaffolds

    Science.gov (United States)

    Kowalski, Ann E.; Huber, Thaddaus R.; Ni, Thomas W.; Hartje, Luke F.; Appel, Karina L.; Yost, Jarad W.; Ackerson, Christopher J.; Snow, Christopher D.

    2016-06-01

    DNA assemblies have been used to organize inorganic nanoparticles into 3D arrays, with emergent properties arising as a result of nanoparticle spacing and geometry. We report here the use of engineered protein crystals as an alternative approach to biologically mediated assembly of inorganic nanoparticles. The protein crystal's 13 nm diameter pores result in an 80% solvent content and display hexahistidine sequences on their interior. The hexahistidine sequence captures Au25(glutathione)~17 (nitrilotriacetic acid)~1 nanoclusters throughout a chemically crosslinked crystal via the coordination of Ni(ii) to both the cluster and the protein. Nanoparticle loading was validated by confocal microscopy and elemental analysis. The nanoparticles may be released from the crystal by exposure to EDTA, which chelates the Ni(ii) and breaks the specific protein/nanoparticle interaction. The integrity of the protein crystals after crosslinking and nanoparticle capture was confirmed by single crystal X-ray crystallography.DNA assemblies have been used to organize inorganic nanoparticles into 3D arrays, with emergent properties arising as a result of nanoparticle spacing and geometry. We report here the use of engineered protein crystals as an alternative approach to biologically mediated assembly of inorganic nanoparticles. The protein crystal's 13 nm diameter pores result in an 80% solvent content and display hexahistidine sequences on their interior. The hexahistidine sequence captures Au25(glutathione)~17 (nitrilotriacetic acid)~1 nanoclusters throughout a chemically crosslinked crystal via the coordination of Ni(ii) to both the cluster and the protein. Nanoparticle loading was validated by confocal microscopy and elemental analysis. The nanoparticles may be released from the crystal by exposure to EDTA, which chelates the Ni(ii) and breaks the specific protein/nanoparticle interaction. The integrity of the protein crystals after crosslinking and nanoparticle capture was

  3. Double electron capture searches in $^{74}$Se

    CERN Document Server

    Lehnert, B; Degering, D; Sommer, D; Wagner, L; Zuber, K

    2016-01-01

    A search for various double electron capture modes of $^{74}$Se has been performed using an ultralow background Ge-detector in the Felsenkeller laboratory, Germany. Especially for the potentially resonant transition into the 1204.2 keV excited state of $^{74}$Ge a lower half-life limit of $0.70\\cdot 10^{19}$ yr (90% credibility) has been obtained. Serious concerns are raised about the validity of obtained $^{74}$Se limits in some recent publications.

  4. Neutron capture cross sections from Surrogate measurements

    Directory of Open Access Journals (Sweden)

    Scielzo N.D.

    2010-03-01

    Full Text Available The prospects for determining cross sections for compound-nuclear neutron-capture reactions from Surrogate measurements are investigated. Calculations as well as experimental results are presented that test the Weisskopf-Ewing approximation, which is employed in most analyses of Surrogate data. It is concluded that, in general, one has to go beyond this approximation in order to obtain (n,γ cross sections of sufficient accuracy for most astrophysical and nuclear-energy applications.

  5. Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Teng, Baiyang

    2013-05-01

    Carbon dioxide (CO2) has long been regarded as the major greenhouse gas, which leads to numerous negative effects on global environment. The capture and separation of CO2 by selective adsorption using porous materials proves to be an effective way to reduce the emission of CO2 to atmosphere. Porous organic polymers (POPs) are promising candidates for this application due to their readily tunable textual properties and surface functionalities. The objective of this thesis work is to develop new POPs with high CO2 adsorption capacities and CO2/N2 selectivities for post-combustion effluent (e.g. flue gas) treatment. We will also exploit the correlation between the CO2 capture performance of POPs and their textual properties/functionalities. Chapters Two focuses on the study of a group of porous phenolic-aldehyde polymers (PPAPs) synthesized by a catalyst-free method, the CO2 capture capacities of these PPAPs exceed 2.0 mmol/g at 298 K and 1 bar, while keeping CO2/N2 selectivity of more than 30 at the same time. Chapter Three reports the gas adsorption results of different hyper-cross-linked polymers (HCPs), which indicate that heterocyclo aromatic monomers can greatly enhance polymers’ CO2/N2 selectivities, and the N-H bond is proved to the active CO2 adsorption center in the N-contained (e.g. pyrrole) HCPs, which possess the highest selectivities of more than 40 at 273 K when compared with other HCPs. Chapter Four emphasizes on the chemical modification of a new designed polymer of intrinsic microporosity (PIM) with high CO2/N2 selectivity (50 at 273 K), whose experimental repeatability and chemical stability prove excellent. In Chapter Five, we demonstrate an improvement of both CO2 capture capacity and CO2/N2 selectivity by doping alkali metal ions into azo-polymers, which leads a promising method to the design of new porous organic polymers.

  6. Spatial scaling of the binocular capture effect.

    Science.gov (United States)

    Raghunandan, Avesh; Anderson, Coleman S; Saladin, James J

    2009-03-01

    Binocular "capture" occurs when the perceived visual direction of a monocular stimulus is displaced in the direction of the cyclopean visual direction of nearby binocular targets. This effect increases with the vertical separation of broadband monocular stimuli. The present study investigated whether the "capture" effect exhibits a systematic relationship with the spatial frequency composition of monocular lines and vertical separation. Subjects judged the horizontal misalignment of 66 arc min vertical spatial frequency ribbons that were temporally interleaved with a random dot depth edge (3.2 degrees) for 108 ms. Spatial frequency ribbons were constructed from horizontal cosine gratings windowed by a 4 arc min vertical Gaussian envelope. The bottom half of the depth edge was presented with zero relative disparity, whereas the top half was presented with 10 arc min of crossed or uncrossed relative disparity. Four vertical separations (8, 16, 30, and 60 arc min) and three ribbon spatial frequencies (1, 4, and 8 cpd) were tested. The horizontal ribbon offset corresponding to 50% performance was calculated for each combination of depth condition, ribbon spatial frequency, and vertical separation. The magnitude of the "capture" effect was consistently larger for higher spatial frequency ribbons and decreased with decreasing vertical separation. When vertical separation was expressed as multiples of spatial periods of the respective ribbon spatial frequency, the magnitude of effect was significantly larger for separations greater than about one spatial period. The systematic scaling of the "capture" effect with spatial frequency and vertical separation is strongly suggestive of the operation of multiple spatial scale mechanisms; similar to those advocated for the processing of relative positional acuity with increasing vertical separation of monocular targets.

  7. Cutting the cost of carbon capture: a case for carbon capture and utilization.

    Science.gov (United States)

    Joos, Lennart; Huck, Johanna M; Van Speybroeck, Veronique; Smit, Berend

    2016-10-20

    A significant part of the cost for carbon capture and storage (CCS) is related to the compression of captured CO2 to its supercritical state, at 150 bar and typically 99% purity. These stringent conditions may however not always be necessary for specific cases of carbon capture and utilization (CCU). In this manuscript, we investigate how much the parasitic energy of an adsorbent-based carbon capture process may be lowered by utilizing CO2 at 1 bar and adapting the final purity requirement for CO2 from 99% to 70% or 50%. We compare different CO2 sources: the flue gases of coal-fired or natural gas-fired power plants and ambient air. We evaluate the carbon capture performance of over 60 nanoporous materials and determine the influence of the initial and final CO2 purity on the parasitic energy of the carbon capture process. Moreover, we demonstrate the underlying principles of the parasitic energy minimization in more detail using the commercially available NaX zeolite. Finally, the calculated utilization cost of CO2 is compared with the reported prices for CO2 and published costs for CCS.

  8. Tracking Progress in Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    At the second Clean Energy Ministerial in Abu Dhabi, April 2011 (CEM 2), the Carbon Capture, Use and Storage Action Group (CCUS AG) presented seven substantive recommendations to Energy Ministers on concrete, near-term actions to accelerate global carbon capture and storage (CCS) deployment. Twelve CCUS AG governments agreed to advance progress against the 2011 recommendations by the third Clean Energy Ministerial (London, 25-26 April 2012) (CEM 3). Following CEM 2, the CCUS AG requested the IEA and the Global CCS Institute to report on progress made against the 2011 recommendations at CEM 3. Tracking Progress in Carbon Capture and Storage: International Energy Agency/Global CCS Institute report to the third Clean Energy Ministerial responds to that request. The report considers a number of key questions. Taken as a whole, what advancements have committed CCUS AG governments made against the 2011 recommendations since CEM 2? How can Energy Ministers continue to drive progress to enable CCS to fully contribute to climate change mitigation? While urgent further action is required in all areas, are there particular areas that are currently receiving less policy attention than others, where efforts could be redoubled? The report concludes that, despite developments in some areas, significant further work is required. CCS financing and industrial applications continue to represent a particularly serious challenge.

  9. Reconciling Coulomb breakup and neutron radiative capture

    Science.gov (United States)

    Capel, P.; Nollet, Y.

    2017-07-01

    The Coulomb-breakup method to extract the cross section for neutron radiative capture at astrophysical energies is analyzed in detail. In particular, its sensitivity to the description of the neutron-core continuum is ascertained. We consider the case of 14C(n ,γ )15C for which both the radiative capture at low energy and the Coulomb breakup of 15C into 14C+n on Pb at 68 MeV/nucleon have been measured with accuracy. We confirm the direct proportionality of the cross section for both reactions to the square of the asymptotic normalization constant of 15C observed by Summers and Nunes [Phys. Rev. C 78, 011601(R) (2008), 10.1103/PhysRevC.78.011601], but we also show that the 14C-n continuum plays a significant role in the calculations. Fortunately, the method proposed by Summers and Nunes can be improved to absorb that continuum dependence. We show that a more precise radiative-capture cross section can be extracted selecting the breakup data at forward angles and low 14C-n relative energies.

  10. Neutron capture therapy. Principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Sauerwein, Wolfgang A.G. [University Hospital Duisburg-Essen Univ., Essen (Germany). Dept. of Radiation Oncology; Moss, Raymond [European Commission, Petten (Netherlands). Inst. for Energy; Wittig, Andrea [Marburg Univ. (Germany). Dept. of Radiotherapy and Radiation Oncology; Nakagawa, Yoshinobu (eds.) [Kagawa National Children' s Hospital, Zentsuji, Kagawa (Japan). Dept. of Neurosurgery

    2012-07-01

    State of the art report on neutron capture therapy. Summarizes the progress made in recent decades. Multidisciplinary approach. Written by the most experienced specialists Neutron capture therapy (NCT) is based on the ability of the non-radioactive isotope boron-10 to capture thermal neutrons with very high probability and immediately to release heavy particles with a path length of one cell diameter. This in principle allows for tumor cell-selective high-LET particle radiotherapy. NCT is exciting scientifically but challenging clinically, and a key factor in success is close collaboration among very different disciplines. This book provides a comprehensive summary of the progress made in NCT in recent years. Individual sections cover all important aspects, including neutron sources, boron chemistry, drugs for NCT, dosimetry, and radiation biology. The use of NCT in a variety of malignancies and also some non-malignant diseases is extensively discussed. NCT is clearly shown to be a promising modality at the threshold of wider clinical application. All of the chapters are written by experienced specialists in language that will be readily understood by all participating disciplines.

  11. Developing shock-capturing difference methods

    Institute of Scientific and Technical Information of China (English)

    TU Guo-hua; YUAN Xiang-jiang; LU Li-peng

    2007-01-01

    A new shock-capturing method is proposed which is based on upwind schemes and flux-vector splittings. Firstly, original upwind schemes are projected along characteristic directions. Secondly, the amplitudes of the characteristic decompositions are carefully controlled by limiters to prevent non-physical oscillations. Lastly, the schemes are converted into conservative forms, and the oscillation-free shock-capturing schemes are acquired. Two explicit upwind schemes (2nd-order and 3rd-order) and three compact upwind schemes (3rd-order, 5th-order and 7th-order) are modified by the method for hyperbolic systems and the modified schemes are checked on several one-dimensional and two-dimensional test cases. Some numerical solutions of the schemes are compared with those of a WENO scheme and a MP scheme as well as a compact-WENO scheme. The results show that the method with high order accuracy and high resolutions can capture shock waves smoothly.

  12. Results of a Hubble Space Telescope Search for Natural Satellites of Dwarf Planet 1 Ceres

    Science.gov (United States)

    DeMario, Benjamin; Schmidt, Britney E.; Mutchler, Maximilian J.; Li, Jian-Yang; McFadden, Lucy Ann; McLean, Brian; Russell, Christopher T.

    2016-10-01

    In order to prepare for the arrival of the Dawn spacecraft at Ceres, a search for satellites was undertaken by the Hubble Space Telescope (HST) to enhance the mission science return and to ensure spacecraft safety. Previous satellite searches from ground-based telescopes have detected no satellites within Ceres' Hill sphere down to a size of 3 km (Gehrels et al. 1987) and early HST investigations searched to a limit of 1-2 km (Bieryla et al. 2011). The Wide Field Camera 3 (WFC3) on board the HST was used to image Ceres between 14 April - 28 April 2014. These images cover approximately the inner third of Ceres' Hill sphere, where the Hill sphere is the region surrounding Ceres where stable satellite orbits are possible. We performed a deep search for possible companions orbiting Ceres. No natural companions were located down to a diameter of 48 meters, over most of the Hill sphere to a distance of 205,000 km (434 Ceres radii) from the surface of Ceres. It was impossible to search all the way to the surface of Ceres because of scattered light, but at a distance of 2865 km (five Ceres radii), the search limit was determined to be 925 meters. The absence of a satellite around Ceres could, in the future, support more refined theories about satellite formation or capture mechanisms in the solar system.

  13. Autonomous Sub-Pixel Satellite Track Endpoint Determination for Space Based Images

    Energy Technology Data Exchange (ETDEWEB)

    Simms, L M

    2011-03-07

    An algorithm for determining satellite track endpoints with sub-pixel resolution in spaced-based images is presented. The algorithm allows for significant curvature in the imaged track due to rotation of the spacecraft capturing the image. The motivation behind the subpixel endpoint determination is first presented, followed by a description of the methodology used. Results from running the algorithm on real ground-based and simulated spaced-based images are shown to highlight its effectiveness.

  14. Longitudinal RF capture simulation and BPM signal estimation

    CERN Document Server

    Feng, Yong-Chun; Chen, Yu-Cong; Yin, Yan; Zhang, Xiao-Hu; Ruan, Shuang; Liu, Tong; You, Yao-Yao; Kang, Xin-Cai; Zhao, Tie-Cheng; Xu, Zhi-Guo; Li, Peng; Wang, Yan-Yu; Yuan, You-Jin

    2016-01-01

    In this paper, the theoretical aspects behind longitudinal RF capture are reviewed and the capture process is simulated via a program based on this theory. Four kinds of cases with different initial distribution and capture curve are considered, i.e. uniform distribution with adiabatic capture, uniform distribution with non-adiabatic capture, Gaussian distribution with adiabatic capture and Gaussian distribution with non-adiabatic capture. The simulation results are compared each other and discussed, and Gaussian distribution with adiabatic capture is demonstrated having a higher capture efficiency and leading to a shorter bunch length. In addition, the BPM induced signal is simulated with high input impendence, i.e. $1M\\Omega$, and low input impendence, i.e. $50\\Omega$, respectively. Finally, the BPM signal of Heavy Ion Medical Machine (HIMM) is estimated and compared with measured one, and a good agreement is achieved.

  15. River diversions, avulsions and captures in the Tortuguero coastal plain

    Science.gov (United States)

    Galve, Jorge Pedro; Alvarado, Guillermo; Pérez Peña, José Vicente; Azañón, José Miguel; Mora, Mauricio; Booth-Rea, Guillermo

    2016-04-01

    The Tortuguero area is a coastal plain that forms part of the North Limón sedimentary basin, the back-arc region of the Caribbean side of Costa Rica. This coastal plain is characterised by an abnormal drainage pattern with river captures, diversions and shifts in channel directions. We are analyzing this anomalous drainage network adopting a classical geomorphological approach combined with geomorphometric techniques. The SRTM DEM at 1 arc-second of resolution (~30 m) from NASA, topographic maps 1:50,000, satellital images and the digital cartography of the drainage network have been used for inventorying the channel pattern anomalies. River segments were categorized according to sinuosity, orientation, slope changes and incision using GIS tools. Initially, anomalies in the analyzed river courses suggested that buried thrust fronts could disrupt their natural pattern. However, we have not identified any evidence to link the activity of buried structures with the disruption of natural drainage. Blind thrusts detected through seismic subsurface exploration in the SE sector of the Tortuguero plain do not seem to produce changes in the sinuosity, orientation, slope and incision of rivers as those observed in the deeply studied tectonically active area of the Po Plain (Italy). The identified river pattern anomalies have been explained due to other alternative causes: (1) the migration of the mouths of Reventazón, Pacuare and Matina rivers is produced by sand sedimentation in the coast because of a successive ridge beach formation. This migration to the SE has the same direction than the main ocean currents those deposited the sand. (2) The anomalous course of Parismina river is most probably conditioned by the fracturation of the dissected volcanic apron of Turrialba volcano. (3) Channel migration and capture of Barbilla river by Matina river can be triggered by the tectonic tilting of the coastal plain towards the SE. The subsidence of the SE sector of the plain was

  16. China's Meteorological Satellite Application System

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiashen

    2008-01-01

    @@ (Continued) Applications In Global Environment And Natural Disaster Monitoring 1) Application in world crop yield estimation China is now one of the few nations in the world that can provide operational service with both GEO and polar-orbit meteorological satellites.

  17. Water Quality Monitoring by Satellite

    Science.gov (United States)

    Journal of Chemical Education, 2004

    2004-01-01

    The availability of abundant water resources in the Upper Midwest of the United States is nullified by their contamination through heavy commercial and industrial activities. Scientists have taken the responsibility of detecting the water quality of these resources through remote-sensing satellites to develop a wide-ranging water purification plan…

  18. Introductory Course on Satellite Navigation

    Science.gov (United States)

    Giger, Kaspar; Knogl, J. Sebastian

    2012-01-01

    Satellite navigation is widely used for personal navigation and more and more in precise and safety-critical applications. Thus, the subject is suited for attracting the interest of young people in science and engineering. The practical applications allow catching the students' attention for the theoretical background. Educational material on the…

  19. Satellite imager calibration and validation

    CSIR Research Space (South Africa)

    Vhengani, L

    2010-10-01

    Full Text Available The success or failure of any earth observation mission depends on the quality of its data. Data quality is assessed by determining the radiometric, spatial, spectral and geometric fidelity of the satellite sensor. The process is termed calval...

  20. GOES-R: Satellite Insight

    Science.gov (United States)

    Fitzpatrick, Austin J.; Leon, Nancy J.; Novati, Alexander; Lincoln, Laura K.; Fisher, Diane K.

    2012-01-01

    GOES-R: Satellite Insight seeks to bring awareness of the GOES-R (Geostationary Operational Environmental Satellite -- R Series) satellite currently in development to an audience of all ages on the emerging medium of mobile games. The iPhone app (Satellite Insight) was created for the GOES-R Program. The app describes in simple terms the types of data products that can be produced from GOES-R measurements. The game is easy to learn, yet challenging for all audiences. It includes educational content and a path to further information about GOESR, its technology, and the benefits of the data it collects. The game features action-puzzle game play in which the player must prevent an overflow of data by matching falling blocks that represent different types of GOES-R data. The game adds more different types of data blocks over time, as long as the player can prevent a data overflow condition. Points are awarded for matches, and players can compete with themselves to beat their highest score.

  1. The Omninet mobile satellite system

    Science.gov (United States)

    Salmasi, A.; Curry, W.

    Mobile Satellite System (MSS) design offering relatively low cost voice, data, and position location services to nonmetropolitan areas of North America is proposed. The system provides spectrally efficient multiple access and modulation techniques, and flexible user interconnection to public and private switched networks. Separate UHF and L-band satellites employing two 9.1 m unfurlable antennas each, achieve a 6048 channel capacity and utilize spot beams. Mobile terminals have modular design and employ 5 dBi omnidirectional antennas. Gateway stations (with two 5 m Ku-band antennas) and base stations (with a single 1.8 m Ku-band antenna) transmit terrestrial traffic to the satellite, where traffic is then transponded via an L-band or UHF downlink to mobile users. The Network Management Center uses two 5-m antennas and incorporates the Integrated-Adaptive Mobile Access Protocol to assure demand assignment of satellite capacity. Preliminary implementation of this low-risk system involves a mobile alphanumeric data service employing receive-only terminals at Ku-band projected for 1987, and plans for the launching of L-band receive-only packages as early as 1988.

  2. Platelet satellitism in infectious disease?

    Science.gov (United States)

    Laskaj, Renata; Sikiric, Dubravka; Skerk, Visnja

    2015-01-01

    Background Platelet satellitism is a phenomenon of unknown etiology of aggregating platelets around polymorphonuclear neutrophils and other blood cells which causes pseudothrombocytopenia, visible by microscopic examination of blood smears. It has been observed so far in about a hundred cases in the world. Case subject and methods Our case involves a 73-year-old female patient with a urinary infection. Biochemical serum analysis (CRP, glucose, AST, ALT, ALP, GGT, bilirubin, sodium, potassium, chloride, urea, creatinine) and blood cell count were performed with standard methods on autoanalyzers. Serum protein fractions were examined by electrophoresis and urinalysis with standard methods on autoanalyzer together with microscopic examination of urine sediment. Erythrocyte sedimentation rate, blood culture and urine culture tests were performed with standard methods. Results Due to typical pathological values for bacterial urinary infection, the patient was admitted to the hospital. Blood smear examination revealed phenomenon, which has persisted for three weeks after the disease has been cured. Blood smears with EDTA as an anticoagulant had platelet satellitism whereas the phenomenon was not observed in tubes with different anticoagulants (Na, Li-heparin) and capillary blood. Discussion We hypothesize that satellitism was induced by some immunological mechanism through formation of antibodies which have mediated platelets binding to neutrophil membranes and vice versa. Unfortunately we were unable to determine the putative trigger for this phenomenon. To our knowledge this is the second case of platelet satellitism ever described in Croatia. PMID:26110042

  3. China Satcom: Innovating Satellite Communication

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    China Satellite Communications Group Corporation (China Satcom) is a state-owned large-sized key enterprise formally established on Dec. 19, 2001 according to the general deployment of the State Council on telecommunication system reform. Relying on its complete service system, China Satcom provides various users with specialized and high quality information communication service.

  4. University Satellite Campus Management Models

    Science.gov (United States)

    Fraser, Doug; Stott, Ken

    2015-01-01

    Among the 60 or so university satellite campuses in Australia are many that are probably failing to meet the high expectations of their universities and the communities they were designed to serve. While in some cases this may be due to the demand driven system, it may also be attributable in part to the ways in which they are managed. The…

  5. RFP for the italien satellite AGILE

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Riis, Troels

    1999-01-01

    The document descibes the ASC Star Tracker (performance, functionality, requirements etc.) to the Italian satellite AGILE.......The document descibes the ASC Star Tracker (performance, functionality, requirements etc.) to the Italian satellite AGILE....

  6. Highly Enhanced Risk Management Emergency Satellite

    DEFF Research Database (Denmark)

    Dalmeir, Michael; Gataullin, Yunir; Indrajit, Agung

    HERMES (Highly Enhanced Risk Management Emergency Satellite) is potential European satellite mission for global flood management, being implemented by Technical University Munich and European Space Agency. With its main instrument - a reliable and precise Synthetic Aperture Radar (SAR) antenna...

  7. DIORAMA Model of Satellite Body Orientation

    Energy Technology Data Exchange (ETDEWEB)

    Werley, Kenneth Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-04

    The DIORAMA GPS satellite platform orientation model is described. Satellites need to keep sensors pointed towards the earth and solar panels oriented to face the sun (when not in the earth’s shadow) while they orbit the earth.

  8. New Equipment Training Center-Satellite Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Satellite Facility is a 24-hour on-site military satellite transmission and downlink capability to Southwest Asia and all other military OCONUS and CONUS...

  9. Satellite Tags- Guam/CNMI EEZ

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite tagging was implemented in 2013. Satellite tagging is conducted using a Dan Inject air rifle and deployment arrows designed by Wildlife Computers. Two...

  10. Are rotating planes of satellite galaxies ubiquitous?

    CERN Document Server

    Phillips, John I; Bullock, James S; Boylan-Kolchin, Michael

    2015-01-01

    We compare the dynamics of satellite galaxies in the Sloan Digital Sky Survey to simple models in order to test the hypothesis that a large fraction of satellites co-rotate in coherent planes. We confirm the previously-reported excess of co-rotating satellite pairs located near diametric opposition with respect to the host, but show that this signal is unlikely to be due to rotating discs (or planes) of satellites. In particular, no overabundance of co-rotating satellites pairs is observed within $\\sim 20^{\\circ}-50^{\\circ}$ of direct opposition, as would be expected for planar distributions inclined relative to the line-of-sight. Instead, the excess co-rotation for satellite pairs within $\\sim 10^{\\circ}$ of opposition is consistent with random noise associated with undersampling of an underlying isotropic velocity distribution. We conclude that at most $10\\%$ of the hosts in our sample harbor co-rotating satellite planes (as traced by the luminous satellite population).

  11. Biophysical applications of satellite remote sensing

    CERN Document Server

    Hanes, Jonathan

    2014-01-01

    Including an introduction and historical overview of the field, this comprehensive synthesis of the major biophysical applications of satellite remote sensing includes in-depth discussion of satellite-sourced biophysical metrics such as leaf area index.

  12. Space Environment Deteation of Chinese Meteorological Satellites

    Institute of Scientific and Technical Information of China (English)

    XU Ying; WANG Shijin; ZHU Guangwu; LIANG Jinbao

    2004-01-01

    This paper presents the space environment detection of Chinese geosynchronous and sun-synchronous meteorological satellites and gives a short perspective of space environment observations on board meteorological satellites.

  13. AUTOMATIC APPROACH TO VHR SATELLITE IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    P. Kupidura

    2016-06-01

    preliminary step of recalculation of pixel DNs to reflectance is required. Thanks to this, the proposed approach is in theory universal, and might be applied to different satellite system images of different acquisition dates. The test data consists of 3 Pleiades images captured on different dates. Research allowed to determine optimal indices values. Using the same parameters, we obtained a very good accuracy of extraction of 5 land cover/use classes: water, low vegetation, bare soil, wooded area and built-up area in all the test images (kappa from 87% to 96%. What constitutes important, even significant changes in parameter values, did not cause a significant declination of classification accuracy, which demonstrates how robust the proposed method is.

  14. Automatic Approach to Vhr Satellite Image Classification

    Science.gov (United States)

    Kupidura, P.; Osińska-Skotak, K.; Pluto-Kossakowska, J.

    2016-06-01

    of recalculation of pixel DNs to reflectance is required. Thanks to this, the proposed approach is in theory universal, and might be applied to different satellite system images of different acquisition dates. The test data consists of 3 Pleiades images captured on different dates. Research allowed to determine optimal indices values. Using the same parameters, we obtained a very good accuracy of extraction of 5 land cover/use classes: water, low vegetation, bare soil, wooded area and built-up area in all the test images (kappa from 87% to 96%). What constitutes important, even significant changes in parameter values, did not cause a significant declination of classification accuracy, which demonstrates how robust the proposed method is.

  15. Mineralogical interpretation of Phobos OSIRIS reflectance spectrum: is Phobos a collisionally captured asteroid?

    Science.gov (United States)

    Pajola, M.; Lazzarin, M.; Dalle Ore, C. M.; Roush, T. L.; Magrin, S.; Bertini, I.; La Forgia, F.; Barbieri, C.

    2013-09-01

    We will present the reflectance spectrum of Phobos from Near Ultraviolet to Near Infrared (245.5-992.0 nm) acquired by the OSIRIS [1] instrument onboard the ESA Rosetta mission. The data have been acquired through the filters of the Wide and the Narrow Angle Camera of the OSIRIS instrument (see Tab. 1) during Rosetta Mars swing-by maneuver on February 24th and 25th , 2007 [2]. Since the time of the fly-by a wide Phobos paper [3] has been published, which focused on the NAC Phobos spectrophotometry and showed that the OSIRIS-NAC spectra are within the spectral dispersion of D-types asteroids. These results lead us to speculate on a possible asteroidal origin of Phobos and we decided to complement our work by performing an investigation of the conditions needed to collisionally capture Phobos in a way similar to that proposed for the irregular satellites of the giant planets [4, 5]. The observational and dynamical results we obtained strongly argued for an early capture of Phobos, likely immediately after the formation of Mars. With this work we are making a step forward from our Phobos paper [3] and we are showing the results we have accomplished in characterizing and interpreting the mineralogical possible origin of the Phobos OSIRIS data by analyzing the complete (NAC-WAC) reflectance spectrum. The observed area goes from 86.8°N to 90°S in latitude and from 126°W to 286°W in ongitude, belonging both to the leading and to the trailing hemisphere of the satellite. We have performed a mineralogical modeling of the surface composition of Phobos which plays in favor of the interpretation of Phobos as a possible collisionally captured asteroid

  16. Radiometric Analysis of Daytime Satellite Detection

    Science.gov (United States)

    2006-03-01

    detector m No 300 km – 1500 km 400 km Cos(θs) cosine of satellite orientation angle unitless No 0-1 0.5 Δf noise-equivalent bandwidth Hz No...Dependence Asat area of satellite m2 9 m2 linear Rsat-det distance from satellite to detector m 400 km 2 1 x Cos(θs) cosine of satellite orientation angle

  17. Satellite cells: the architects of skeletal muscle.

    Science.gov (United States)

    Chang, Natasha C; Rudnicki, Michael A

    2014-01-01

    The outstanding regenerative capacity of skeletal muscle is attributed to the resident muscle stem cell termed satellite cell. Satellite cells are essential for skeletal muscle regeneration as they ultimately provide the myogenic precursors that rebuild damaged muscle tissue. Satellite cells characteristically are a heterogeneous population of stem cells and committed progenitor cells. Delineation of cellular hierarchy and understanding how lineage fate choices are determined within the satellite cell population will be invaluable for the advancement of muscle regenerative therapies.

  18. ESPA Satellite Dispenser for ORBCOMM Generation 2

    OpenAIRE

    2013-01-01

    ORBCOMM’s machine-to-machine (M2M) solutions offer global asset monitoring and messaging services through a powerful Low Earth Orbit (LEO) satellite constellation. The original constellation deployment consisted of thirtyfive satellites launched in the late 1990s. ORBCOMM is launching the new ORBCOMM Generation 2 (OG2) satellites to upgrade and expand the constellation network. The OG2 satellites being manufactured by Sierra Nevada Corporation will have more data capacity with the potential f...

  19. A Predictive Model for Satellite-Derived Phytoplankton Absorption Over the Louisiana Shelf Hypoxic Zone: Effects of Nutrients and Physical Forcing

    Science.gov (United States)

    2008-06-06

    by the spatial coastal areas, has been implemented in the most recent (5th) and temporal scales of variability that they can capture. global... temporal resolution, applied during our image processing) that further improves Imagery from the Coastal Zone Color Scanner (CZCS) satellite...retrievals of phytoplankton biomass in Case 2 waters ocean color satellite (1978-1985) provided the first clima - [Ransibrahmanakul and Stumpf, 2006]. Taken

  20. China Launches Two Natural Disaster Monitoring Satellites

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ China launched two satellites, HJ-1A and HJ-1B, to monitor the environment and natural disasters at 11:25am on September 6 (Beijing time) from the Taiyuan Satellite Launch Center in Shanxi Province. The two satellites are expected to improve the country's ability in the rapid monitoring of environmental changes and reducing calamities.