WorldWideScience

Sample records for satellite cells activation

  1. M-cadherin-mediated intercellular interactions activate satellite cell division.

    Science.gov (United States)

    Marti, Merce; Montserrat, Núria; Pardo, Cristina; Mulero, Lola; Miquel-Serra, Laia; Rodrigues, Alexandre Miguel Cavaco; Andrés Vaquero, José; Kuebler, Bernd; Morera, Cristina; Barrero, María José; Izpisua Belmonte, Juan Carlos

    2013-11-15

    Adult muscle stem cells and their committed myogenic precursors, commonly referred to as the satellite cell population, are involved in both muscle growth after birth and regeneration after damage. It has been previously proposed that, under these circumstances, satellite cells first become activated, divide and differentiate, and only later fuse to the existing myofiber through M-cadherin-mediated intercellular interactions. Our data show that satellite cells fuse with the myofiber concomitantly to cell division, and only when the nuclei of the daughter cells are inside the myofiber, do they complete the process of differentiation. Here we demonstrate that M-cadherin plays an important role in cell-to-cell recognition and fusion, and is crucial for cell division activation. Treatment of satellite cells with M-cadherin in vitro stimulates cell division, whereas addition of anti-M-cadherin antibodies reduces the cell division rate. Our results suggest an alternative model for the contribution of satellite cells to muscle development, which might be useful in understanding muscle regeneration, as well as muscle-related dystrophies.

  2. Skeletal Muscle Satellite Cell Activation Following Cutaneous Burn in Rats

    Science.gov (United States)

    2013-12-01

    Satellite cell isolation and culture Satellite cells were isolated similar as described by Allen et al. [30]. Following euthanasia , muscles were...satellite cell cultures. Methods Cell Biol 1997;52:155–76. [31] Tatsumi R, Liu X, Pulido A, Morales M, Sakata T, Dial S, Hattori A, Ikeuchi Y, Allen RE

  3. Substrate elasticity affects bovine satellite cell activation kinetics in vitro.

    Science.gov (United States)

    Lapin, M R; Gonzalez, J M; Johnson, S E

    2013-05-01

    Satellite cells support efficient postnatal skeletal muscle hypertrophy through fusion into the adjacent muscle fiber. Nuclear contribution allows for maintenance of the fiber myonuclear domain and proficient transcription of myogenic genes. Niche growth factors affect satellite cell biology; however, the interplay between fiber elasticity and microenvironment proteins remains largely unknown. The objective of the experiment was to examine the effects of hepatocyte growth factor (HGF) and surface elasticity on bovine satellite cell (BSC) activation kinetics in vitro. Young's elastic modulus was calculated for the semimembranosus (SM) and LM muscles of young bulls (5 d; n = 8) and adult cows (27 mo; n = 4) cattle. Results indicate that LM elasticity decreased (P Young's modulus for the SM was noted. Bovine satellite cells were seeded atop polyacrylamide bioscaffolds with surface elasticities that mimic young bull and adult cow LM or traditional cultureware. Cells were maintained in low-serum media supplemented with 5 ng/mL HGF or vehicle only for 24 or 48 h. Activation was evaluated by proliferating cell nuclear antigen (PCNA) immunocytochemistry. Results indicate that BSC maintained on rigid surfaces were activated at 24 h and refractive to HGF supplementation. By contrast, fewer (P young bull (8.1 ± 1.7 kPa) or adult cow (14.6 ± 1.6 kPa) LM. Supplementation with HGF promoted activation of BSC cultured on bioscaffolds as measured by an increase (P muscle stem cells (P > 0.05). However, with increasing surface elasticity, an increase (P muscle progenitors was observed. These results confirm that biophysical and biochemical signals regulate BSC activation.

  4. Satellite cell activity, without expansion, after nonhypertrophic stimuli.

    Science.gov (United States)

    Joanisse, Sophie; McKay, Bryon R; Nederveen, Joshua P; Scribbans, Trisha D; Gurd, Brendon J; Gillen, Jenna B; Gibala, Martin J; Tarnopolsky, Mark; Parise, Gianni

    2015-11-01

    The purpose of the present studies was to determine the effect of various nonhypertrophic exercise stimuli on satellite cell (SC) pool activity in human skeletal muscle. Previously untrained men and women (men: 29 ± 9 yr and women: 29 ± 2 yr, n = 7 each) completed 6 wk of very low-volume high-intensity sprint interval training. In a separate study, recreationally active men (n = 16) and women (n = 3) completed 6 wk of either traditional moderate-intensity continuous exercise (n = 9, 21 ± 4 yr) or low-volume sprint interval training (n = 10, 21 ± 2 yr). Muscle biopsies were obtained from the vastus lateralis before and after training. The fiber type-specific SC response to training was determined, as was the activity of the SC pool using immunofluorescent microscopy of muscle cross sections. Training did not induce hypertrophy, as assessed by muscle cross-sectional area, nor did the SC pool expand in any group. However, there was an increase in the number of active SCs after each intervention. Specifically, the number of activated (Pax7(+)/MyoD(+), P ≤ 0.05) and differentiating (Pax7(-)/MyoD(+), P ≤ 0.05) SCs increased after each training intervention. Here, we report evidence of activated and cycling SCs that may or may not contribute to exercise-induced adaptations while the SC pool remains constant after three nonhypertrophic exercise training protocols.

  5. A role for RNA post-transcriptional regulation in satellite cell activation

    Directory of Open Access Journals (Sweden)

    Farina Nicholas H

    2012-10-01

    Full Text Available Abstract Background Satellite cells are resident skeletal muscle stem cells responsible for muscle maintenance and repair. In resting muscle, satellite cells are maintained in a quiescent state. Satellite cell activation induces the myogenic commitment factor, MyoD, and cell cycle entry to facilitate transition to a population of proliferating myoblasts that eventually exit the cycle and regenerate muscle tissue. The molecular mechanism involved in the transition of a quiescent satellite cell to a transit-amplifying myoblast is poorly understood. Methods Satellite cells isolated by FACS from uninjured skeletal muscle and 12 h post-muscle injury from wild type and Syndecan-4 null mice were probed using Affymetrix 430v2 gene chips and analyzed by Spotfiretm and Ingenuity Pathway analysis to identify gene expression changes and networks associated with satellite cell activation, respectively. Additional analyses of target genes identify miRNAs exhibiting dynamic changes in expression during satellite cell activation. The function of the miRNAs was assessed using miRIDIAN hairpin inhibitors. Results An unbiased gene expression screen identified over 4,000 genes differentially expressed in satellite cells in vivo within 12 h following muscle damage and more than 50% of these decrease dramatically. RNA binding proteins and genes involved in post-transcriptional regulation were significantly over-represented whereas splicing factors were preferentially downregulated and mRNA stability genes preferentially upregulated. Furthermore, six computationally identified miRNAs demonstrated novel expression through muscle regeneration and in satellite cells. Three of the six miRNAs were found to regulate satellite cell fate. Conclusions The quiescent satellite cell is actively maintained in a state poised to activate in response to external signals. Satellite cell activation appears to be regulated by post-transcriptional gene regulation.

  6. Globular adiponectin activates motility and regenerative traits of muscle satellite cells.

    Directory of Open Access Journals (Sweden)

    Tania Fiaschi

    Full Text Available Regeneration of adult injured skeletal muscle is due to activation of satellite cells, a population of stem cells resident beneath the basal lamina. Thus, information on soluble factors affecting satellite cell activation, as well as migration towards injury and fusion into new myofibers are essential. Here, we show that globular adiponectin (gAd, positively affects several features of muscle satellite cells. gAd activates satellite cells to exit quiescence and increases their recruitment towards myotubes. gAd elicits in satellite cells a specific motility program, involving activation of the small GTPase Rac1, as well as expression of Snail and Twist transcription factors driving a proteolytic motility, useful to reach the site of injury. We show that satellite cells produce autocrine full length adiponectin (fAd, which is converted to gAd by activated macrophages. In turns, gAd concurs to attract to the site of injury both satellite cells and macrophages and induces myogenesis in muscle satellite cells. Thus, these findings add a further role for gAd in skeletal muscle, including the hormone among factors participating in muscle regeneration.

  7. Discovery of Novel Small Molecules that Activate Satellite Cell Proliferation and Enhance Repair of Damaged Muscle.

    Science.gov (United States)

    Billin, Andrew N; Bantscheff, Marcus; Drewes, Gerard; Ghidelli-Disse, Sonja; Holt, Jason A; Kramer, Henning F; McDougal, Alan J; Smalley, Terry L; Wells, Carrow I; Zuercher, William J; Henke, Brad R

    2016-02-19

    Skeletal muscle progenitor stem cells (referred to as satellite cells) represent the primary pool of stem cells in adult skeletal muscle responsible for the generation of new skeletal muscle in response to injury. Satellite cells derived from aged muscle display a significant reduction in regenerative capacity to form functional muscle. This decrease in functional recovery has been attributed to a decrease in proliferative capacity of satellite cells. Hence, agents that enhance the proliferative abilities of satellite cells may hold promise as therapies for a variety of pathological settings, including repair of injured muscle and age- or disease-associated muscle wasting. Through phenotypic screening of isolated murine satellite cells, we identified a series of 2,4-diaminopyrimidines (e.g., 2) that increased satellite cell proliferation. Importantly, compound 2 was effective in accelerating repair of damaged skeletal muscle in an in vivo mouse model of skeletal muscle injury. While these compounds were originally prepared as c-Jun N-terminal kinase 1 (JNK-1) inhibitors, structure-activity analyses indicated JNK-1 inhibition does not correlate with satellite cell activity. Screening against a broad panel of kinases did not result in identification of an obvious molecular target, so we conducted cell-based proteomics experiments in an attempt to identify the molecular target(s) responsible for the potentiation of the satellite cell proliferation. These data provide the foundation for future efforts to design improved small molecules as potential therapeutics for muscle repair and regeneration.

  8. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population.

    Science.gov (United States)

    Morrison, Jamie I; Lööf, Sara; He, Pingping; Simon, András

    2006-01-30

    In contrast to mammals, salamanders can regenerate complex structures after injury, including entire limbs. A central question is whether the generation of progenitor cells during limb regeneration and mammalian tissue repair occur via separate or overlapping mechanisms. Limb regeneration depends on the formation of a blastema, from which the new appendage develops. Dedifferentiation of stump tissues, such as skeletal muscle, precedes blastema formation, but it was not known whether dedifferentiation involves stem cell activation. We describe a multipotent Pax7+ satellite cell population located within the skeletal muscle of the salamander limb. We demonstrate that skeletal muscle dedifferentiation involves satellite cell activation and that these cells can contribute to new limb tissues. Activation of salamander satellite cells occurs in an analogous manner to how the mammalian myofiber mobilizes stem cells during skeletal muscle tissue repair. Thus, limb regeneration and mammalian tissue repair share common cellular and molecular programs. Our findings also identify satellite cells as potential targets in promoting mammalian blastema formation.

  9. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  10. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy.

    Science.gov (United States)

    Fry, Christopher S; Lee, Jonah D; Jackson, Janna R; Kirby, Tyler J; Stasko, Shawn A; Liu, Honglu; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2014-04-01

    Our aim in the current study was to determine the necessity of satellite cells for long-term muscle growth and maintenance. We utilized a transgenic Pax7-DTA mouse model, allowing for the conditional depletion of > 90% of satellite cells with tamoxifen treatment. Synergist ablation surgery, where removal of synergist muscles places functional overload on the plantaris, was used to stimulate robust hypertrophy. Following 8 wk of overload, satellite cell-depleted muscle demonstrated an accumulation of extracellular matrix (ECM) and fibroblast expansion that resulted in reduced specific force of the plantaris. Although the early growth response was normal, an attenuation of hypertrophy measured by both muscle wet weight and fiber cross-sectional area occurred in satellite cell-depleted muscle. Isolated primary myogenic progenitor cells (MPCs) negatively regulated fibroblast ECM mRNA expression in vitro, suggesting a novel role for activated satellite cells/MPCs in muscle adaptation. These results provide evidence that satellite cells regulate the muscle environment during growth.

  11. Muscle atrophy reversed by growth factor activation of satellite cells in a mouse muscle atrophy model.

    Directory of Open Access Journals (Sweden)

    Simon Hauerslev

    Full Text Available Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth control factor, myostatin and atrophy markers MAFbx and MuRF1. Hypoxia-induced atrophy was partially restored by hepatocyte growth factor combined with leukemia inhibitory factor treatment. Dividing satellite cells were three-fold increased in the treatment group compared to control. Finally, we demonstrated that myostatin regulates satellite cell activation and myogenesis in vivo following treatment, consistent with previous findings in vitro. Our results suggest, not only a novel in vivo pharmacological treatment directed specifically at activating the satellite cells, but also a myostatin dependent mechanism that may contribute to the progressive muscle wasting seen in severely affected patients with muscular dystrophy and significant on-going regeneration. This treatment could potentially be applied to many conditions that feature muscle wasting to increase muscle bulk and strength.

  12. Muscle Atrophy Reversed by Growth Factor Activation of Satellite Cells in a Mouse Muscle Atrophy Model

    DEFF Research Database (Denmark)

    Hauerslev, Simon; Vissing, John; Krag, Thomas O

    2014-01-01

    Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory...... factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth...... control factor, myostatin and atrophy markers MAFbx and MuRF1. Hypoxia-induced atrophy was partially restored by hepatocyte growth factor combined with leukemia inhibitory factor treatment. Dividing satellite cells were three-fold increased in the treatment group compared to control. Finally, we...

  13. Assessment of satellite cell number and activity status in human skeletal muscle biopsies

    DEFF Research Database (Denmark)

    Mackey, Abigail; Kjaer, Michael; Charifi, Nadia;

    2009-01-01

    The primary aim of our study was to validate the assessment of myonuclear and satellite cell number in biopsies from human skeletal muscle. We found that 25 type I and 25 type II fibers are sufficient to estimate the mean number of myonuclei per fiber. In contrast, the assessment of satellite cells...

  14. Satellite cell activation induced by aerobic muscle adaptation in response to endurance exercise in humans and rodents.

    Science.gov (United States)

    Abreu, Phablo; Mendes, Sávio Victor Diógenes; Ceccatto, Vânia Marilande; Hirabara, Sandro Massao

    2017-02-01

    Although the requirement of satellite cells activation and expansion following injury, mechanical load or growth stimulus provoked by resistance exercise has been well established, their function in response to aerobic exercise adaptation remains unclear. A clear relationship between satellite cell expansion in fiber-type specific myosin heavy chain and aerobic performance has been related, independent of myonuclear accretion or muscle growth. However, the trigger for this activation process is not fully understood yet and it seems to be a multi-faceted and well-orchestrated process. Emerging in vitro studies suggest a role for metabolic pathways and oxygen availability for satellite cell activation, modulating the self-renewal potential and cell fate control. The goal of this review is to describe and discuss the current knowledge about the satellite cell activation and expansion in response to aerobic exercise adaptation in human and rodent models. Additionally, findings about the in vitro metabolic control, which seems be involved in the satellite cell activation and cell fate control, are presented and discussed.

  15. Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor.

    Science.gov (United States)

    Tatsumi, Ryuichi; Liu, Xiaosong; Pulido, Antonio; Morales, Mark; Sakata, Tomowa; Dial, Sharon; Hattori, Akihito; Ikeuchi, Yoshihide; Allen, Ronald E

    2006-06-01

    In the present study, we examined the roles of hepatocyte growth factor (HGF) and nitric oxide (NO) in the activation of satellite cells in passively stretched rat skeletal muscle. A hindlimb suspension model was developed in which the vastus, adductor, and gracilis muscles were subjected to stretch for 1 h. Satellite cells were activated by stretch determined on the basis of 5-bromo-2'-deoxyuridine (BrdU) incorporation in vivo. Extracts from stretched muscles stimulated BrdU incorporation in freshly isolated control rat satellite cells in a concentration-dependent manner. Extracts from stretched muscles contained the active form of HGF, and the satellite cell-activating activity could be neutralized by incubation with anti-HGF antibody. The involvement of NO was investigated by administering nitro-L-arginine methyl ester (L-NAME) or the inactive enantiomer N(G)-nitro-D-arginine methyl ester HCl (D-NAME) before stretch treatment. In vivo activation of satellite cells in stretched muscle was not inhibited by D-NAME but was inhibited by L-NAME. The activity of stretched muscle extract was abolished by L-NAME treatment but could be restored by the addition of HGF, indicating that the extract was not inhibitory. Finally, NO synthase activity in stretched and unstretched muscles was assayed in muscle extracts immediately after 2-h stretch treatment and was found to be elevated in stretched muscle but not in stretched muscle from L-NAME-treated rats. The results of these experiments demonstrate that stretching muscle liberates HGF in a NO-dependent manner, which can activate satellite cells.

  16. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengpeng [Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); Liang, Xinrong; Shan, Tizhong [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); Jiang, Qinyang [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); College of Animal Science and Technology, Guangxi University, Nanning 530004 (China); Deng, Changyan [Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Zheng, Rong, E-mail: zhengrong@mail.hzau.edu.cn [Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Kuang, Shihuan, E-mail: skuang@purdue.edu [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2015-07-17

    The serine/threonine kinase mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive deletion of Mtor gene results in embryonic lethality, the function of mTOR in muscle stem cells (satellite cells) and skeletal muscle regeneration remains to be determined. In this study, we established a satellite cell specific Mtor conditional knockout (cKO) mouse model by crossing Pax7{sup CreER} and Mtor{sup flox/flox} mice. Skeletal muscle regeneration after injury was severely compromised in the absence of Mtor, indicated by increased number of necrotic myofibers infiltrated by Evans blue dye, and reduced number and size of regenerated myofibers in the Mtor cKO mice compared to wild type (WT) littermates. To dissect the cellular mechanism, we analyzed satellite cell-derived primary myoblasts grown on single myofibers or adhered to culture plates. The Mtor cKO myoblasts exhibited defective proliferation and differentiation kinetics when compared to myoblasts derived from WT littermates. At the mRNA and protein levels, the Mtor cKO myoblasts expressed lower levels of key myogenic determinant genes Pax7, Myf5, Myod, Myog than did the WT myoblasts. These results suggest that mTOR is essential for satellite cell function and skeletal muscle regeneration through controlling the expression of myogenic genes. - Highlights: • Pax7{sup CreER} was used to delete Mtor gene in satellite cells. • Satellite cell specific deletion of Mtor impairs muscle regeneration. • mTOR is necessary for satellite cell proliferation and differentiation. • Deletion of Mtor leads to reduced expression of key myogenic genes.

  17. Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for muscle hypertrophy.

    Science.gov (United States)

    Oishi, Yoshimi; Tsukamoto, Hayato; Yokokawa, Takumi; Hirotsu, Keisuke; Shimazu, Mariko; Uchida, Kenji; Tomi, Hironori; Higashida, Kazuhiko; Iwanaka, Nobumasa; Hashimoto, Takeshi

    2015-03-15

    We examined whether a mixed lactate and caffeine compound (LC) could effectively elicit proliferation and differentiation of satellite cells or activate anabolic signals in skeletal muscles. We cultured C2C12 cells with either lactate or LC for 6 h. We found that lactate significantly increased myogenin and follistatin protein levels and phosphorylation of P70S6K while decreasing the levels of myostatin relative to the control. LC significantly increased protein levels of Pax7, MyoD, and Ki67 in addition to myogenin, relative to control. LC also significantly increased follistatin expression relative to control and stimulated phosphorylation of mTOR and P70S6K. In an in vivo study, male F344/DuCrlCrlj rats were assigned to control (Sed, n = 10), exercise (Ex, n = 12), and LC supplementation (LCEx, n = 13) groups. LC was orally administered daily. The LCEx and Ex groups were exercised on a treadmill, running for 30 min at low intensity every other day for 4 wk. The LCEx group experienced a significant increase in the mass of the gastrocnemius (GA) and tibialis anterior (TA) relative to both the Sed and Ex groups. Furthermore, the LCEx group showed a significant increase in the total DNA content of TA compared with the Sed group. The LCEx group experienced a significant increase in myogenin and follistatin expression of GA relative to the Ex group. These results suggest that administration of LC can effectively increase muscle mass concomitant with elevated numbers of myonuclei, even with low-intensity exercise training, via activated satellite cells and anabolic signals. Copyright © 2015 the American Physiological Society.

  18. Effect of eccentric contraction on satellite cell activation in human vastus lateralis muscle.

    Science.gov (United States)

    Imaoka, Yoko; Kawai, Minako; Mori, Futoshi; Miyata, Hirofumi

    2015-09-01

    We compared the time-course of satellite cell (SC) activation between eccentric and concentric contractions in the vastus lateralis (VL) muscle after step exercise. Young adults participated in a 30-min step up/down exercise which mainly involved concentric contractions with the right VL muscle and eccentric contractions with the left VL muscle. The concentric and eccentric contraction phases of the VL muscles were identified by changes in the electromyogram (EMG) and knee joint angle. Biopsy samples were taken from both VL muscles at three time periods: before the exercise and 2 and 5 days after the exercise. We found that the numbers of SCs were significantly increased in the type IIa fibers of the left VL at 2 and 5 days after the exercise. The expression of both hepatocyte growth factor (HGF) and myogenic differentiation 1 (MyoD) mRNA had significantly increased in the left VL at 2 and 5 days after the exercise and in the right VL at 5 days after the exercise. The expression of transient receptor potential canonical (TRPC) 1 mRNA also increased in the left VL at 2 days after exercise. These results indicate that eccentric contraction can effectively activate SC proliferation for up to 5 days after exercise. Similar changes in HGF, MyoD and TRPC1 mRNA expression suggest that HGF/c-Met signal activation through cation influx has a major impact on skeletal muscle SC activation in response to eccentric exercise.

  19. Satellite cell activity is differentially affected by contraction mode in human muscle following a work-matched bout of exercise

    Directory of Open Access Journals (Sweden)

    Robert D Hyldahl

    2014-12-01

    Full Text Available Optimal repair and adaptation of skeletal muscle is facilitated by resident stem cells (satellite cells. To understand how different exercise modes influence satellite cell dynamics, we measured satellite cell activity in conjunction with markers of muscle damage and inflammation in human skeletal muscle following a single work- and intensity-matched bout of eccentric (ECC or concentric contractions (CON. Participants completed a single bout of ECC (n=7 or CON (n=7 of the knee extensors. A muscle biopsy was obtained before and 24 h after exercise. Functional measures and immunohistochemical analyses were used to determine the extent of muscle damage and indices of satellite cell activity. Cytokine concentrations were measured using a multiplexed magnetic bead assay. Isokinetic peak torque decreased following ECC (p<0.05 but not CON. Greater histological staining of the damage marker Xin was observed in muscle samples of ECC vs CON. Tenasin C immunoreactivity increased 15 fold (P<0.01 following ECC and was unchanged following CON. The inflammatory cytokines interferon gamma-induced protein 10 (IP-10 and monocyte chemotactic protein 1 (MCP-1 increased pre- to post-ECC (4.26 ± 1.4 vs. 10.49 ± 5.8 pg/ml, and 3.06 ± 0.7 vs. 6.25 ± 4.6 pg/ml, respectively; p<0.05. There was no change in any cytokine post-CON. Satellite cell content increased 27% pre- to post-ECC (0.10 ± 0.031 vs. 0.127 ± 0.041, respectively; p<0.05. There was no change in satellite cell number in CON (0.099 ± 0.027 vs. 0.102 ± 0.029, respectively. There was no fiber type-specific satellite cell response following either exercise mode. ECC but not CON resulted in an increase in MyoD positive nuclei per myofiber pre- to post-exercise (p<0.05, but there was no change in MyoD DNA binding activity in either condition. In conclusion, ECC but not CON results in functional and histological evidence of muscle damage that is accompanied by increased satellite cell activity 24 h post-exercise.

  20. Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice.

    Science.gov (United States)

    Cisterna, Barbara; Giagnacovo, Marzia; Costanzo, Manuela; Fattoretti, Patrizia; Zancanaro, Carlo; Pellicciari, Carlo; Malatesta, Manuela

    2016-05-01

    During ageing, a progressive loss of skeletal muscle mass and a decrease in muscle strength and endurance take place, in the condition termed sarcopenia. The mechanisms of sarcopenia are complex and still unclear; however, it is known that muscle atrophy is associated with a decline in the number and/or efficiency of satellite cells, the main contributors to muscle regeneration. Physical exercise proved beneficial in sarcopenia; however, knowledge of the effect of adapted physical exercise on the myogenic properties of satellite cells in aged muscles is limited. In this study the amount and activation state of satellite cells as well as their proliferation and differentiation potential were assessed in situ by morphology, morphometry and immunocytochemistry at light and transmission electron microscopy on 28-month-old mice submitted to adapted aerobic physical exercise on a treadmill. Sedentary age-matched mice served as controls, and sedentary adult mice were used as a reference for an unperturbed control at an age when the capability of muscle regeneration is still high. The effect of physical exercise in aged muscles was further analysed by comparing the myogenic potential of satellite cells isolated from old running and old sedentary mice using an in vitro system that allows observation of the differentiation process under controlled experimental conditions. The results of this ex vivo and in vitro study demonstrated that adapted physical exercise increases the number and activation of satellite cells as well as their capability to differentiate into structurally and functionally correct myotubes (even though the age-related impairment in myotube formation is not fully reversed): this evidence further supports adapted physical exercise as a powerful, non-pharmacological approach to counteract sarcopenia and the age-related deterioration of satellite cell capabilities even at very advanced age.

  1. Plane of nutrition affects growth rate, organ size and skeletal muscle satellite cell activity in newborn calves.

    Science.gov (United States)

    MacGhee, M E; Bradley, J S; McCoski, S R; Reeg, A M; Ealy, A D; Johnson, S E

    2016-11-18

    Plane of nutrition effects on body, tissue and cellular growth in the neonatal calf are poorly understood. The hypothesis that a low plane of nutrition (LPN) would limit skeletal muscle size by reducing fibre growth and muscle progenitor cell activity was tested. At birth, calves were randomly assigned to either a LPN (20% CP, 20% fat; GE=1.9 Mcal/days) or a high plane of nutrition (HPN; 27% CP, 10% fat, GE = 3.8 Mcal/days) in a 2 × 3 factorial design to test the impact of diet on neonatal calf growth, organ weight and skeletal muscle morphometry with time. Groups of calves (n = 4 or 5) were euthanised at 2, 4 and 8 week of age and organ and empty carcass weights were recorded. Body composition was measured by DXA. Longissimus muscle (LM) fibre cross-sectional area (CSA), fibre/mm(2) and Pax7 were measured by immunohistology. Satellite cells were isolated at each time point and proliferation rates were measured by EdU incorporation. Calves fed a HPN had greater (p satellite cells per fibre. Proliferation rates of satellite cells isolated from HPN fed calves were greater (p satellite cell activity.

  2. PRMT7 Preserves Satellite Cell Regenerative Capacity.

    Science.gov (United States)

    Blanc, Roméo Sébastien; Vogel, Gillian; Chen, Taiping; Crist, Colin; Richard, Stéphane

    2016-02-16

    Regeneration of skeletal muscle requires the continued presence of quiescent muscle stem cells (satellite cells), which become activated in response to injury. Here, we report that whole-body protein arginine methyltransferase PRMT7(-/-) adult mice and mice conditionally lacking PRMT7 in satellite cells using Pax7-CreERT2 both display a significant reduction in satellite cell function, leading to defects in regenerative capacity upon muscle injury. We show that PRMT7 is preferentially expressed in activated satellite cells and, interestingly, PRMT7-deficient satellite cells undergo cell-cycle arrest and premature cellular senescence. These defects underlie poor satellite cell stem cell capacity to regenerate muscle and self-renew after injury. PRMT7-deficient satellite cells express elevated levels of the CDK inhibitor p21CIP1 and low levels of its repressor, DNMT3b. Restoration of DNMT3b in PRMT7-deficient cells rescues PRMT7-mediated senescence. Our findings define PRMT7 as a regulator of the DNMT3b/p21 axis required to maintain muscle stem cell regenerative capacity.

  3. PRMT7 Preserves Satellite Cell Regenerative Capacity

    Directory of Open Access Journals (Sweden)

    Roméo Sébastien Blanc

    2016-02-01

    Full Text Available Regeneration of skeletal muscle requires the continued presence of quiescent muscle stem cells (satellite cells, which become activated in response to injury. Here, we report that whole-body protein arginine methyltransferase PRMT7−/− adult mice and mice conditionally lacking PRMT7 in satellite cells using Pax7-CreERT2 both display a significant reduction in satellite cell function, leading to defects in regenerative capacity upon muscle injury. We show that PRMT7 is preferentially expressed in activated satellite cells and, interestingly, PRMT7-deficient satellite cells undergo cell-cycle arrest and premature cellular senescence. These defects underlie poor satellite cell stem cell capacity to regenerate muscle and self-renew after injury. PRMT7-deficient satellite cells express elevated levels of the CDK inhibitor p21CIP1 and low levels of its repressor, DNMT3b. Restoration of DNMT3b in PRMT7-deficient cells rescues PRMT7-mediated senescence. Our findings define PRMT7 as a regulator of the DNMT3b/p21 axis required to maintain muscle stem cell regenerative capacity.

  4. The activity of satellite cells and myonuclei following 8 weeks of strength training in young men with suppressed testosterone levels

    DEFF Research Database (Denmark)

    Kvorning, T; Kadi, F; Schjerling, P

    2015-01-01

    AIM: To investigate how suppression of endogenous testosterone during an 8-week strength training period influences the activity of satellite cells and myonuclei. METHODS: Twenty-two moderately trained young men participated in this randomized, placebo-controlled, and double-blinded intervention...... from the mid-portion of the vastus lateralis muscle. RESULTS: Testosterone resting level in goserelin was 10-20 times lower compared with placebo, and the training-induced increase in the level of testosterone was abolished in goserelin. Training increased satellite cells number in type II fibres by 20......% in placebo and by 52% in goserelin (P cells and myonuclei were seen in type I fibres in either group. Data from the microarray analysis...

  5. Nitric oxide synthase inhibition delays low-frequency stimulation-induced satellite cell activation in rat fast-twitch muscle.

    Science.gov (United States)

    Martins, Karen J B; MacLean, Ian; Murdoch, Gordon K; Dixon, Walter T; Putman, Charles T

    2011-12-01

    This study examined the effect of nitric oxide synthase (NOS) inhibition via N(ω)-nitro-l-arginine methyl ester (l-NAME) administration on low-frequency stimulation-induced satellite cell (SC) activation in rat skeletal muscle. l-NAME only delayed stimulation-induced increases in SC activity. Also, stimulation-induced increases in hepatocyte growth factor (HGF) mRNA and protein expression were only abrogated at the mRNA level in l-NAME-treated animals. Therefore, early stimulation-induced SC activation appears to be NOS-dependent, while continued activation may involve NOS-independent HGF translational control mechanisms.

  6. Leucocytes, cytokines and satellite cells

    DEFF Research Database (Denmark)

    Paulsen, Gøran; Mikkelsen, Ulla Ramer; Raastad, Truls

    2012-01-01

    -damaging exercise', primarily eccentric exercise. We review the evidence for the notion that the degree of muscle damage is related to the magnitude of the cytokine response. In the third and final section, we look at the satellite cell response to a single bout of eccentric exercise, as well as the role...... damage. With the exception of IL-6, the sources of systemic cytokines following exercise remain unclear The satellite cell response to severe muscle damage is related to regeneration, whereas the biological significance of satellite cell proliferation after mild damage or non-damaging exercise remains...

  7. Muscle Satellite Cell Heterogeneity and Self-Renewal

    Directory of Open Access Journals (Sweden)

    Norio eMotohashi

    2014-01-01

    Full Text Available Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD.

  8. A global downregulation of microRNAs occurs in human quiescent satellite cells during myogenesis

    NARCIS (Netherlands)

    Koning, Merel; Werker, Paul M N; van Luyn, Marja J A; Krenning, Guido; Harmsen, Martin C

    2012-01-01

    During myogenesis, human satellite cells differentiate and form multinucleated myotubes, while a fraction of the human satellite cells enter quiescence. These quiescent satellite cells are able to activate, proliferate and contribute to muscle regeneration. Post-transcriptional regulation of

  9. Satellite cells: the architects of skeletal muscle.

    Science.gov (United States)

    Chang, Natasha C; Rudnicki, Michael A

    2014-01-01

    The outstanding regenerative capacity of skeletal muscle is attributed to the resident muscle stem cell termed satellite cell. Satellite cells are essential for skeletal muscle regeneration as they ultimately provide the myogenic precursors that rebuild damaged muscle tissue. Satellite cells characteristically are a heterogeneous population of stem cells and committed progenitor cells. Delineation of cellular hierarchy and understanding how lineage fate choices are determined within the satellite cell population will be invaluable for the advancement of muscle regenerative therapies.

  10. Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Kenneth C Loh

    Full Text Available Sphingosine-1-phosphate (S1P activates a widely expressed family of G protein-coupled receptors, serves as a muscle trophic factor and activates muscle stem cells called satellite cells (SCs through unknown mechanisms. Here we show that muscle injury induces dynamic changes in S1P signaling and metabolism in vivo. These changes include early and profound induction of the gene encoding the S1P biosynthetic enzyme SphK1, followed by induction of the catabolic enzyme sphingosine phosphate lyase (SPL 3 days later. These changes correlate with a transient increase in circulating S1P levels after muscle injury. We show a specific requirement for SphK1 to support efficient muscle regeneration and SC proliferation and differentiation. Mdx mice, which serve as a model for muscular dystrophy (MD, were found to be S1P-deficient and exhibited muscle SPL upregulation, suggesting that S1P catabolism is enhanced in dystrophic muscle. Pharmacological SPL inhibition increased muscle S1P levels, improved mdx muscle regeneration and enhanced SC proliferation via S1P receptor 2 (S1PR2-dependent inhibition of Rac1, thereby activating Signal Transducer and Activator of Transcription 3 (STAT3, a central player in inflammatory signaling. STAT3 activation resulted in p21 and p27 downregulation in a S1PR2-dependent fashion in myoblasts. Our findings suggest that S1P promotes SC progression through the cell cycle by repression of cell cycle inhibitors via S1PR2/STAT3-dependent signaling and that SPL inhibition may provide a therapeutic strategy for MD.

  11. Role of the mTORC1 Complex in Satellite Cell Activation by RNA-Induced Mitochondrial Restoration: Dual Control of Cyclin D1 through MicroRNAs

    OpenAIRE

    Jash, Sukanta; Dhar, Gunjan; Ghosh, Utpalendu; Adhya, Samit

    2014-01-01

    During myogenesis, satellite stem cells (SCs) are induced to proliferate and differentiate to myogenic precursors. The role of energy sensors such as the AMP-activated protein kinase (AMPK) and the mammalian Target of Rapamycin (mTOR) in SC activation is unclear. We previously observed that upregulation of ATP through RNA-mediated mitochondrial restoration (MR) accelerates SC activation following skeletal muscle injury. We show here that during regeneration, the AMPK-CRTC2-CREB and Raptor-mTO...

  12. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  13. Myogenic skeletal muscle satellite cells communicate by tunnelling nanotubes.

    Science.gov (United States)

    Tavi, Pasi; Korhonen, Topi; Hänninen, Sandra L; Bruton, Joseph D; Lööf, Sara; Simon, Andras; Westerblad, Håkan

    2010-05-01

    Quiescent satellite cells sit on the surface of the muscle fibres under the basal lamina and are activated by a variety of stimuli to disengage, divide and differentiate into myoblasts that can regenerate or repair muscle fibres. Satellite cells adopt their parent's fibre type and must have some means of communication with the parent fibre. The mechanisms behind this communication are not known. We show here that satellite cells form dynamic connections with muscle fibres and other satellite cells by F-actin based tunnelling nanotubes (TNTs). Our results show that TNTs readily develop between satellite cells and muscle fibres. Once developed, TNTs permit transport of intracellular material, and even cellular organelles such as mitochondria between the muscle fibre and satellite cells. The onset of satellite cell differentiation markers Pax-7 and MyoD expression was slower in satellite cells cultured in the absence than in the presence of muscle cells. Furthermore physical contact between myofibre and satellite cell progeny is required to maintain subtype identity. Our data establish that TNTs constitute an integral part of myogenic cell communication and that physical cellular interaction control myogenic cell fate determination.

  14. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway

    Science.gov (United States)

    Chakravarthy, M. V.; Abraha, T. W.; Schwartz, R. J.; Fiorotto, M. L.; Booth, F. W.

    2000-01-01

    Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.

  15. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway

    Science.gov (United States)

    Chakravarthy, M. V.; Abraha, T. W.; Schwartz, R. J.; Fiorotto, M. L.; Booth, F. W.

    2000-01-01

    Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.

  16. Functional Overload Enhances Satellite Cell Properties in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Shin Fujimaki

    2016-01-01

    Full Text Available Skeletal muscle represents a plentiful and accessible source of adult stem cells. Skeletal-muscle-derived stem cells, termed satellite cells, play essential roles in postnatal growth, maintenance, repair, and regeneration of skeletal muscle. Although it is well known that the number of satellite cells increases following physical exercise, functional alterations in satellite cells such as proliferative capacity and differentiation efficiency following exercise and their molecular mechanisms remain unclear. Here, we found that functional overload, which is widely used to model resistance exercise, causes skeletal muscle hypertrophy and converts satellite cells from quiescent state to activated state. Our analysis showed that functional overload induces the expression of MyoD in satellite cells and enhances the proliferative capacity and differentiation potential of these cells. The changes in satellite cell properties coincided with the inactivation of Notch signaling and the activation of Wnt signaling and likely involve modulation by transcription factors of the Sox family. These results indicate the effects of resistance exercise on the regulation of satellite cells and provide insight into the molecular mechanism of satellite cell activation following physical exercise.

  17. The role of satellite cells in muscle hypertrophy.

    Science.gov (United States)

    Blaauw, Bert; Reggiani, Carlo

    2014-02-01

    The role of satellite cells in muscle hypertrophy has long been a debated issue. In the late 1980s it was shown that proteins remain close to the myonucleus responsible for its synthesis, giving rise to the idea of a nuclear domain. This, together with the observation that during various models of muscle hypertrophy there is an activation of the muscle stem cells, i.e. satellite cells, lead to the idea that satellite cell activation is required for muscle hypertrophy. Thus, satellite cells are not only responsible for muscle repair and regeneration, but also for hypertrophic growth. Further support for this line of thinking was obtained after studies showing that irradiation of skeletal muscle, and therefore elimination of all satellite cells, completely prevented overload-induced hypertrophy. Recently however, using different transgenic approaches, it has become clear that muscle hypertrophy can occur without a contribution of satellite cells, even though in most situations of muscle hypertrophy satellite cells are activated. In this review we will discuss the contribution of satellite cells, and other muscle-resident stem cells, to muscle hypertrophy both in mice as well as in humans.

  18. Age-specific functional epigenetic changes in p21 and p16 in injury-activated satellite cells.

    Science.gov (United States)

    Li, Ju; Han, Suhyoun; Cousin, Wendy; Conboy, Irina M

    2015-03-01

    The regenerative capacity of muscle dramatically decreases with age because old muscle stem cells fail to proliferate in response to tissue damage. Here, we uncover key age-specific differences underlying this proliferative decline: namely, the genetic loci of cyclin/cyclin-dependent kinase (CDK) inhibitors (CDKIs) p21 and p16 are more epigenetically silenced in young muscle stem cells, as compared to old, both in quiescent cells and those responding to tissue injury. Interestingly, phosphorylated ERK (pERK) induced in these cells by ectopic FGF2 is found in association with p21 and p16 promoters, and moreover, only in the old cells. Importantly, in the old satellite cells, FGF2/pERK silences p21 epigenetically and transcriptionally, which leads to reduced p21 protein levels and enhanced cell proliferation. In agreement with the epigenetic silencing of the loci, young muscle stem cells do not depend as much as old on ectopic FGF/pERK for their myogenic proliferation. In addition, other CDKIs, such asp15(INK4B) and p27(KIP1) , become elevated in satellite cells with age, confirming and explaining the profound regenerative defect of old muscle. This work enhances our understanding of tissue aging, promoting strategies for combating age-imposed tissue degeneration.

  19. Satellite Cell Heterogeneity in Skeletal Muscle Homeostasis.

    Science.gov (United States)

    Tierney, Matthew T; Sacco, Alessandra

    2016-06-01

    The cellular turnover required for skeletal muscle maintenance and repair is mediated by resident stem cells, also termed satellite cells. Satellite cells normally reside in a quiescent state, intermittently entering the cell cycle to fuse with neighboring myofibers and replenish the stem cell pool. However, the mechanisms by which satellite cells maintain the precise balance between self-renewal and differentiation necessary for long-term homeostasis remain unclear. Recent work has supported a previously unappreciated heterogeneity in the satellite cell compartment that may underlie the observed variability in cell fate and function. In this review, we examine the work supporting this notion as well as the potential governing principles, developmental origins, and principal determinants of satellite cell heterogeneity.

  20. Regulation of satellite cell function in sarcopenia

    Directory of Open Access Journals (Sweden)

    Stephen E Alway

    2014-09-01

    Full Text Available The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell function that is impacted by the environment (niche of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia, and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration. While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function.

  1. Activation of P2X7 receptors in glial satellite cells reduces pain through downregulation of P2X3 receptors in nociceptive neurons

    OpenAIRE

    Chen, Yong; Zhang, Xiaofei; Wang, Congying; Li, Guangwen; Gu, Yanping; Huang, Li-Yen Mae

    2008-01-01

    Purinergic ionotropic P2X7 receptors (P2X7Rs) are closely associated with excitotoxicity and nociception. Inhibition of P2X7R activation has been considered as a potentially useful strategy to improve recovery from spinal cord injury and reduce inflammatory damage to trauma. The physiological functions of P2X7Rs, however, are poorly understood, even though such information is essential for making the P2X7R an effective therapeutic target. We show here that P2X7Rs in satellite cells of dorsal ...

  2. Role of the mTORC1 complex in satellite cell activation by RNA-induced mitochondrial restoration: dual control of cyclin D1 through microRNAs.

    Science.gov (United States)

    Jash, Sukanta; Dhar, Gunjan; Ghosh, Utpalendu; Adhya, Samit

    2014-10-01

    During myogenesis, satellite stem cells (SCs) are induced to proliferate and differentiate to myogenic precursors. The role of energy sensors such as the AMP-activated protein kinase (AMPK) and the mammalian Target of Rapamycin (mTOR) in SC activation is unclear. We previously observed that upregulation of ATP through RNA-mediated mitochondrial restoration (MR) accelerates SC activation following skeletal muscle injury. We show here that during regeneration, the AMPK-CRTC2-CREB and Raptor-mTORC-4EBP1 pathways were rapidly activated. The phosho-CRTC2-CREB complex was essential for myogenesis and activated transcription of the critical cell cycle regulator cyclin D1 (Ccnd1). Knockdown (KD) of either mTORC or its subunit Raptor delayed SC activation without influencing the differentiation program. KD of 4EBP1 had no effect on SC activation but enhanced myofiber size. mTORC1 positively regulated Ccnd1 translation but destabilized Ccnd1 mRNA. These antithetical effects of mTORC1 were mediated by two microRNAs (miRs) targeted to the 3' untranslated region (UTR) of Ccnd1 mRNA: miR-1 was downregulated in mTORC-KD muscle, and depletion of miR-1 resulted in increased levels of mRNA without any effect on Ccnd1 protein. In contrast, miR-26a was upregulated upon mTORC depletion, while anti-miR-26a oligonucleotide specifically stimulated Ccnd1 protein expression. Thus, mTORC may act as a timer of satellite cell proliferation during myogenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them.

    Science.gov (United States)

    Almeida, Camila F; Fernandes, Stephanie A; Ribeiro Junior, Antonio F; Keith Okamoto, Oswaldo; Vainzof, Mariz

    2016-01-01

    Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.

  4. Stimulation with monochromatic green light during incubation alters satellite cell mitotic activity and gene expression in relation to embryonic and posthatch muscle growth of broiler chickens.

    Science.gov (United States)

    Zhang, L; Zhang, H J; Wang, J; Wu, S G; Qiao, X; Yue, H Y; Yao, J H; Qi, G H

    2014-01-01

    Previous studies showed that monochromatic green light stimuli during embryogenesis accelerated posthatch body weight (BW) and pectoral muscle growth of broilers. In this experiment, we further investigated the morphological and molecular basis of this phenomenon. Fertile broiler eggs (Arbor Acres, n=880) were pre-weighed and randomly assigned to 1 of the 2 incubation treatment groups: (1) dark condition (control group), and (2) monochromatic green light group (560 nm). The monochromatic lighting systems sourced from light-emitting diode lamps and were equalized at the intensity of 15 lx at eggshell level. The dark condition was set as a commercial control from day 1 until hatching. After hatch, 120 male 1-day-old chicks from each group were housed under incandescent white light with an intensity of 30 lx at bird-head level. No effects of light stimuli during embryogenesis on hatching time, hatchability, hatching weight and bird mortality during the feeding trial period were observed in the present study. Compared with the dark condition, the BW, pectoral muscle weight and myofiber cross-sectional areas were significantly greater on 7-day-old chicks incubated under green light. Green light also increased the satellite cell mitotic activity of pectoral muscle on 1- and 3-day-old birds. In addition, green light upregulated MyoD, myogenin and myostatin mRNA expression in late embryos and/ or newly hatched chicks. These data suggest that stimulation with monochromatic green light during incubation promote muscle growth by enhancing proliferation and differentiation of satellite cells in late embryonic and newly hatched stages. Higher expression of myostatin may ultimately help prevent excessive proliferation and differentiation of satellite cells in birds incubated under green light.

  5. Acute morphine activates satellite glial cells and up-regulates IL-1β in dorsal root ganglia in mice via matrix metalloprotease-9

    Directory of Open Access Journals (Sweden)

    Berta Temugin

    2012-03-01

    Full Text Available Abstract Background Activation of spinal cord glial cells such as microglia and astrocytes has been shown to regulate chronic opioid-induced antinociceptive tolerance and hyperalgesia, due to spinal up-regulation of the proinflammatory cytokines such as interleukin-1 beta (IL-1β. Matrix metalloprotease-9 (MMP-9 has been implicated in IL-1β activation in neuropathic pain. However, it is unclear whether acute opioid treatment can activate glial cells in the peripheral nervous system. We examined acute morphine-induced activation of satellite glial cells (SGCs and up-regulation of IL-1β in dorsal root ganglia (DRGs, and further investigated the involvement of MMP-9 in these opioid-induced peripheral changes. Results Subcutaneous morphine injection (10 mg/kg induced robust peripheral glial responses, as evidenced by increased GFAP expression in DRGs but not in spinal cords. The acute morphine-induced GFAP expression is transient, peaking at 2 h and declining after 3 h. Acute morphine treatment also increased IL-1β immunoreactivity in SGCs and IL-1β activation in DRGs. MMP-9 and GFAP are expressed in DRG neurons and SGCs, respectively. Confocal analysis revealed a close proximity of MMP-9 and GFAP immunostaining. Importantly, morphine-induced DRG up-regulation of GFAP expression and IL-1β activation was abolished after Mmp9 deletion or naloxone pre-treatment. Finally, intrathecal injections of IL-1β-selective siRNA not only reduced DRG IL-1β expression but also prolonged acute morphine-induced analgesia. Conclusions Acute morphine induces opioid receptors- and MMP-9-dependent up-regulation of GFAP expression and IL-1β activation in SGCs of DRGs. MMP-9 could mask and shorten morphine analgesia via peripheral neuron-glial interactions. Targeting peripheral glial activation might prolong acute opioid analgesia.

  6. Neonatal Phosphate Nutrition Alters in Vivo and in Vitro Satellite Cell Activity in Pigs

    Directory of Open Access Journals (Sweden)

    Chad H. Stahl

    2012-05-01

    Full Text Available Satellite cell activity is necessary for postnatal skeletal muscle growth. Severe phosphate (PO4 deficiency can alter satellite cell activity, however the role of neonatal PO4 nutrition on satellite cell biology remains obscure. Twenty-one piglets (1 day of age, 1.8 ± 0.2 kg BW were pair-fed liquid diets that were either PO4 adequate (0.9% total P, supra-adequate (1.2% total P in PO4 requirement or deficient (0.7% total P in PO4 content for 12 days. Body weight was recorded daily and blood samples collected every 6 days. At day 12, pigs were orally dosed with BrdU and 12 h later, satellite cells were isolated. Satellite cells were also cultured in vitro for 7 days to determine if PO4 nutrition alters their ability to proceed through their myogenic lineage. Dietary PO4 deficiency resulted in reduced (P < 0.05 sera PO4 and parathyroid hormone (PTH concentrations, while supra-adequate dietary PO4 improved (P < 0.05 feed conversion efficiency as compared to the PO4 adequate group. In vivo satellite cell proliferation was reduced (P < 0.05 among the PO4 deficient pigs, and these cells had altered in vitro expression of markers of myogenic progression. Further work to better understand early nutritional programming of satellite cells and the potential benefits of emphasizing early PO4 nutrition for future lean growth potential is warranted.

  7. Satellite microglia show spontaneous electrical activity that is uncorrelated with activity of the attached neuron.

    Science.gov (United States)

    Wogram, Emile; Wendt, Stefan; Matyash, Marina; Pivneva, Tatyana; Draguhn, Andreas; Kettenmann, Helmut

    2016-06-01

    Microglia are innate immune cells of the brain. We have studied a subpopulation of microglia, called satellite microglia. This cell type is defined by a close morphological soma-to-soma association with a neuron, indicative of a direct functional interaction. Indeed, ultrastructural analysis revealed closely attached plasma membranes of satellite microglia and neurons. However, we found no apparent morphological specializations of the contact, and biocytin injection into satellite microglia showed no dye-coupling with the apposed neurons or any other cell. Likewise, evoked local field potentials or action potentials and postsynaptic potentials of the associated neuron did not lead to any transmembrane currents or non-capacitive changes in the membrane potential of the satellite microglia in the cortex and hippocampus. Both satellite and non-satellite microglia, however, showed spontaneous transient membrane depolarizations that were not correlated with neuronal activity. These events could be divided into fast-rising and slow-rising depolarizations, which showed different characteristics in satellite and non-satellite microglia. Fast-rising and slow-rising potentials differed with regard to voltage dependence. The frequency of these events was not affected by the application of tetrodotoxin, but the fast-rising event frequency decreased after application of GABA. We conclude that microglia show spontaneous electrical activity that is uncorrelated with the activity of adjacent neurons.

  8. Isolation and Culture of Satellite Cells from Mouse Skeletal Muscle.

    Science.gov (United States)

    Musarò, Antonio; Carosio, Silvia

    2017-01-01

    Skeletal muscle tissue is characterized by a population of quiescent mononucleated myoblasts, localized between the basal lamina and sarcolemma of myofibers, known as satellite cells. Satellite cells play a pivotal role in muscle homeostasis and are the major source of myogenic precursors in mammalian muscle regeneration.This chapter describes protocols for isolation and culturing satellite cells isolated from mouse skeletal muscles. The classical procedure, which will be discussed extensively in this chapter, involves the enzymatic dissociation of skeletal muscles, while the alternative method involves isolation of satellite cells from isolated myofibers in which the satellite cells remain in their in situ position underneath the myofiber basal lamina.In particular, we discuss the technical aspect of satellite cell isolation, the methods necessary to enrich the satellite cell fraction and the culture conditions that optimize proliferation and myotube formation of mouse satellite cells.

  9. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    Science.gov (United States)

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  10. Proliferation conditions for human satellite cells. The fractional content of satellite cells

    DEFF Research Database (Denmark)

    Gaster, M; Beck-Nielsen, H; Schrøder, H D

    2001-01-01

    the fraction of Sc in culture. Evaluation of different culture conditions allowed us to find proliferation conditions preferentially for Sc: a) Sc should be cultured on surfaces coated with ECM-gel. b) Primary cell culture should be inoculated in DMEM supplemented with 10% fetal calf serum to increase cell......Primary satellite cell cultures have become an important tool as a model system for skeletal muscles. A common problem in human satellite cell culturing is fibroblast overgrowth. We combined N-CAM (Leu19) immunocytochemical staining of satellite cells (Sc) with stereological methods to estimate...... adherence. c) Change of media to DMEM supplemented with 2% Ultroser-G and 2% FCS after 24 h.d) Before subcultivation, cells should be preplated for 30 min. The fractional content of Sc in passage four when applying this method of cultivation was 0.82 +/- 0.07 (mean +/- SE, N = 10). Our method enabled us...

  11. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells

    Science.gov (United States)

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B.

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT.

  12. Spectrometric Characterization of Active Geosynchronous Satellites

    Science.gov (United States)

    Bedard, D.; Monin, D.; Scott, R.; Wade, G.

    2012-09-01

    Spectrometric characterization of artificial space objects for the purposes of Space Situational Awareness (SSA) has demonstrated great potential since this technique was first reported at this conference over a decade ago. Yet, much scientific work remains to be done before this tool can be used reliably in an operational context. For example, a detailed study of the impacts of a dynamic illumination-object-sensor geometry during individual spectrometric observations has yet to be described. A thorough understanding of this last problem is considered critical if reflectance spectroscopy will be used to characterize active low Earth orbiting spacecraft, in which the Sun-object-sensor geometry varies considerably over the course of a few seconds, or to study space debris that have uncontrolled and varying attitude. It is with the above questions in mind that two observation campaigns were conducted. The first consisted in using small-aperture telescopes to obtain multi-color photometric light curves of active geosynchronous satellites over a wide range of phase angles. The second observation campaign was conducted at the Dominion Astrophysical Observatory (DAO) using the 1.8-metre Plaskett telescope and its Cassegrain spectrograph. The objective of this experiment was to gather time-resolved spectrometric measurements of active geosynchronous satellites as a function of phase angle. This class of satellites was selected because their attitude is controlled and can be estimated to a high level of confidence. This paper presents the two observation campaigns and provides a summary of the key results of this experiment.

  13. Rb1 gene inactivation expands satellite cell and postnatal myoblast pools.

    Science.gov (United States)

    Hosoyama, Tohru; Nishijo, Koichi; Prajapati, Suresh I; Li, Guangheng; Keller, Charles

    2011-06-03

    Satellite cells are well known as a postnatal skeletal muscle stem cell reservoir that under injury conditions participate in repair. However, mechanisms controlling satellite cell quiescence and activation are the topic of ongoing inquiry by many laboratories. In this study, we investigated whether loss of the cell cycle regulatory factor, pRb, is associated with the re-entry of quiescent satellite cells into replication and subsequent stem cell expansion. By ablation of Rb1 using a Pax7CreER,Rb1 conditional mouse line, satellite cell number was increased 5-fold over 6 months. Furthermore, myoblasts originating from satellite cells lacking Rb1 were also increased 3-fold over 6 months, while terminal differentiation was greatly diminished. Similarly, Pax7CreER,Rb1 mice exhibited muscle fiber hypotrophy in vivo under steady state conditions as well as a delay of muscle regeneration following cardiotoxin-mediated injury. These results suggest that cell cycle re-entry of quiescent satellite cells is accelerated by lack of Rb1, resulting in the expansion of both satellite cells and their progeny in adolescent muscle. Conversely, that sustained Rb1 loss in the satellite cell lineage causes a deficit of muscle fiber formation. However, we also show that pharmacological inhibition of protein phosphatase 1 activity, which will result in pRb inactivation accelerates satellite cell activation and/or expansion in a transient manner. Together, our results raise the possibility that reversible pRb inactivation in satellite cells and inhibition of protein phosphorylation may provide a new therapeutic tool for muscle atrophy by short term expansion of the muscle stem cells and myoblast pool.

  14. Notch Signaling Rescues Loss of Satellite Cells Lacking Pax7 and Promotes Brown Adipogenic Differentiation.

    Science.gov (United States)

    Pasut, Alessandra; Chang, Natasha C; Rodriguez, Uxia Gurriaran; Faulkes, Sharlene; Yin, Hang; Lacaria, Melanie; Ming, Hong; Rudnicki, Michael A

    2016-07-12

    Pax7 is a nodal transcription factor that is essential for regulating the maintenance, expansion, and myogenic identity of satellite cells during both neonatal and adult myogenesis. Deletion of Pax7 results in loss of satellite cells and impaired muscle regeneration. Here, we show that ectopic expression of the constitutively active intracellular domain of Notch1 (NICD1) rescues the loss of Pax7-deficient satellite cells and restores their proliferative potential. Strikingly NICD1-expressing satellite cells do not undergo myogenic differentiation and instead acquire a brown adipogenic fate both in vivo and in vitro. NICD-expressing Pax7(-/-) satellite cells fail to upregulate MyoD and instead express the brown adipogenic marker PRDM16. Overall, these results show that Notch1 activation compensates for the loss of Pax7 in the quiescent state and acts as a molecular switch to promote brown adipogenesis in adult skeletal muscle.

  15. Satellite Cells in Muscular Dystrophy - Lost in Polarity.

    Science.gov (United States)

    Chang, Natasha C; Chevalier, Fabien P; Rudnicki, Michael A

    2016-06-01

    Recent findings employing the mdx mouse model for Duchenne muscular dystrophy (DMD) have revealed that muscle satellite stem cells play a direct role in contributing to disease etiology and progression of DMD, the most common and severe form of muscular dystrophy. Lack of dystrophin expression in DMD has critical consequences in satellite cells including an inability to establish cell polarity, abrogation of asymmetric satellite stem-cell divisions, and failure to enter the myogenic program. Thus, muscle wasting in dystrophic mice is not only caused by myofiber fragility but is exacerbated by intrinsic satellite cell dysfunction leading to impaired regeneration. Despite intense research and clinical efforts, there is still no effective cure for DMD. In this review we highlight recent research advances in DMD and discuss the current state of treatment and, importantly, how we can incorporate satellite cell-targeted therapeutic strategies to correct satellite cell dysfunction in DMD.

  16. Methods for Observing and Quantifying Muscle Satellite Cell Motility and Invasion In Vitro.

    Science.gov (United States)

    Lund, Dane K; McAnulty, Patrick; Siegel, Ashley L; Cornelison, Ddw

    2017-01-01

    Motility and/or chemotaxis of satellite cells has been suggested or observed in multiple in vitro and in vivo contexts. Satellite cell motility also affects the efficiency of muscle regeneration, particularly in the context of engrafted exogenous cells. Consequently, there is keen interest in determining what cell-autonomous and environmental factors influence satellite cell motility and chemotaxis in vitro and in vivo. In addition, the ability of activated satellite cells to relocate in vivo would suggest that they must be able to invade and transit through the extracellular matrix (ECM), which is supported by studies in which alteration or addition of matrix metalloprotease (MMP) activity enhanced the spread of engrafted satellite cells. However, despite its potential importance, analysis of satellite cell motility or invasion quantitatively even in an in vitro setting can be difficult; one of the most powerful techniques for overcoming these difficulties is timelapse microscopy. Identification and longitudinal evaluation of individual cells over time permits not only quantification of variations in motility due to intrinsic or extrinsic factors, it permits observation and analysis of other (frequently unsuspected) cellular activities as well. We describe here three protocols developed in our group for quantitatively analyzing satellite cell motility over time in two dimensions on purified ECM substrates, in three dimensions on a living myofiber, and in three dimensions through an artificial matrix.

  17. Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myostatin.

    Science.gov (United States)

    Guardiola, Ombretta; Lafuste, Peggy; Brunelli, Silvia; Iaconis, Salvatore; Touvier, Thierry; Mourikis, Philippos; De Bock, Katrien; Lonardo, Enza; Andolfi, Gennaro; Bouché, Ann; Liguori, Giovanna L; Shen, Michael M; Tajbakhsh, Shahragim; Cossu, Giulio; Carmeliet, Peter; Minchiotti, Gabriella

    2012-11-20

    Skeletal muscle regeneration mainly depends on satellite cells, a population of resident muscle stem cells. However, our understanding of the molecular mechanisms underlying satellite cell activation is still largely undefined. Here, we show that Cripto, a regulator of early embryogenesis, is a novel regulator of muscle regeneration and satellite cell progression toward the myogenic lineage. Conditional inactivation of cripto in adult satellite cells compromises skeletal muscle regeneration, whereas gain of function of Cripto accelerates regeneration, leading to muscle hypertrophy. Moreover, we provide evidence that Cripto modulates myogenic cell determination and promotes proliferation by antagonizing the TGF-β ligand myostatin. Our data provide unique insights into the molecular and cellular basis of Cripto activity in skeletal muscle regeneration and raise previously undescribed implications for stem cell biology and regenerative medicine.

  18. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Rasmussen, Lotte K; Kadi, Fawzi;

    2016-01-01

    muscles of one leg. Muscle biopsies were collected from the vastus lateralis muscles before and after stimulation (2.5 h and 2, 7, and 30 d) and were assessed for satellite cells and regeneration by immunohistochemistry and real-time RT-PCR, and we also measured telomere length. After injury, and compared...... proportion of embryonic myosin(+) fibers and a residual ∼2-fold increase in mRNA levels of matrix proteins (all P telomere length shortening was not observed. In conclusion, ingestion of NSAID has a potentiating effect on Notch...

  19. Effect of vitamin D status improvement with 25-hydroxycholecalciferol on skeletal muscle growth characteristics and satellite cell activity in broiler chickens.

    Science.gov (United States)

    Hutton, K C; Vaughn, M A; Litta, G; Turner, B J; Starkey, J D

    2014-08-01

    Skeletal muscle satellite cells (SC) play a critical role in the hypertrophic growth of postnatal muscle. Increases in breast meat yield have been consistently observed in broiler chickens fed 25-hydroxycholecalciferol (25OHD3), but it is unclear whether this effect is mediated by SC. Thus, our objective was to determine the effect of vitamin D status improvement by replacing the majority of dietary vitamin D3 (D3) with 25OHD3 on SC activity and muscle growth characteristics in the pectoralis major (PM) and the biceps femoris (BF) muscles. Day-old, male Ross 708 broiler chickens (n = 150) were fed 1 of 2 corn and soybean meal-based diets for 49 d. The control diet (CTL) contained 5,000 IU D3 per kg of diet and the experimental diet (25OHD3) contained 2,240 IU D3 per kg of diet + 2,760 IU 25OHD3 per kg of diet. Ten birds per treatment were harvested every 7 d. Two hours before harvest, birds were injected intraperitoneally with 5'-bromo-2'deoxyuridine (BrdU) to label mitotically active cells. Blood was collected from each bird at harvest to measure circulating concentrations of 25OHD3, a marker of vitamin D status. The PM and BF muscles were weighed and processed for cryohistological determination of skeletal muscle fiber cross-sectional area, enumeration of Myf-5+ and Pax7+ SC, and mitotically active (BrdU+) SC using immunofluorescence microscopy. Circulating 25OHD3 concentrations were greater in 25OHD3-fed birds on d 7, 14, 21, 28, 35, 42, and 49 when compared with CTL (P Growth performance and feed efficiency did not differ among dietary treatments (P > 0.10). Improved vitamin D status as a result of feeding 25OHD3 increased the number of mitotically active (Pax7+;BrdU+) SC (P = 0.01) and tended to increase the density of Pax7+ SC (P = 0.07) in the PM muscles of broilers on d 21 and 35, respectively. Broiler chickens fed 25OHD3 also tended to have greater Myf-5+ SC density (P = 0.09) on d 14, greater total nuclear density (P = 0.05) on d 28, and a greater muscle

  20. Isolation, Culture and Identification of Porcine Skeletal Muscle Satellite Cells

    Directory of Open Access Journals (Sweden)

    Bo-jiang Li

    2015-08-01

    Full Text Available The objective of this study was to establish the optimum protocol for the isolation and culture of porcine muscle satellite cells. Mononuclear muscle satellite cells are a kind of adult stem cell, which is located between the basal lamina and sarcolemma of muscle fibers and is the primary source of myogenic precursor cells in postnatal muscle. Muscle satellite cells are a useful model to investigate the mechanisms of muscle growth and development. Although the isolation and culture protocols of muscle satellite cells in some species (e.g. mouse have been established successfully, the culture system for porcine muscle satellite cells is very limited. In this study, we optimized the isolation procedure of porcine muscle satellite cells and elaborated the isolation and culture process in detail. Furthermore, we characterized the porcine muscle satellite cells using the immunofluorecence. Our study provides a reference for the isolation of porcine muscle satellite cells and will be useful for studying the molecular mechanisms in these cells.

  1. Satellite cells from dystrophic muscle retain regenerative capacity

    Directory of Open Access Journals (Sweden)

    Luisa Boldrin

    2015-01-01

    Full Text Available Duchenne muscular dystrophy is an inherited disorder that is characterized by progressive skeletal muscle weakness and wasting, with a failure of muscle maintenance/repair mediated by satellite cells (muscle stem cells. The function of skeletal muscle stem cells resident in dystrophic muscle may be perturbed by being in an increasing pathogenic environment, coupled with constant demands for repairing muscle. To investigate the contribution of satellite cell exhaustion to this process, we tested the functionality of satellite cells isolated from the mdx mouse model of Duchenne muscular dystrophy. We found that satellite cells derived from young mdx mice contributed efficiently to muscle regeneration within our in vivo mouse model. To then test the effects of long-term residence in a dystrophic environment, satellite cells were isolated from aged mdx muscle. Surprisingly, they were as functional as those derived from young or aged wild type donors. Removing satellite cells from a dystrophic milieu reveals that their regenerative capacity remains both intact and similar to satellite cells derived from healthy muscle, indicating that the host environment is critical for controlling satellite cell function.

  2. The behaviour of satellite cells in response to exercise: what have we learned from human studies?

    DEFF Research Database (Denmark)

    Kadi, Fawzi; Olsen, Steen Schytte

    2005-01-01

    Understanding the complex role played by satellite cells in the adaptive response to exercise in human skeletal muscle has just begun. The development of reliable markers for the identification of satellite cell status (quiescence/activation/proliferation) is an important step towards the underst......Understanding the complex role played by satellite cells in the adaptive response to exercise in human skeletal muscle has just begun. The development of reliable markers for the identification of satellite cell status (quiescence/activation/proliferation) is an important step towards...... the understanding of satellite cell behaviour in exercised human muscles. It is hypothesised currently that exercise in humans can induce (1) the activation of satellite cells without proliferation, (2) proliferation and withdrawal from differentiation, (3) proliferation and differentiation to provide myonuclei...... and (4) proliferation and differentiation to generate new muscle fibres or to repair segmental fibre injuries. In humans, the satellite cell pool can increase as early as 4 days following a single bout of exercise and is maintained at higher level following several weeks of training. Cessation...

  3. Karyopherin Alpha 1 Regulates Satellite Cell Proliferation and Survival by Modulating Nuclear Import.

    Science.gov (United States)

    Choo, Hyo-Jung; Cutler, Alicia; Pavlath, Grace K

    2016-07-19

    Satellite cells are stem cells with an essential role in skeletal muscle repair. Precise regulation of gene expression is critical for proper satellite cell quiescence, proliferation, differentiation and self-renewal. Nuclear proteins required for gene expression are dependent on the nucleocytoplasmic transport machinery to access to nucleus, however little is known about regulation of nuclear transport in satellite cells. The best characterized nuclear import pathway is classical nuclear import which depends on a classical nuclear localization signal (cNLS) in a cargo protein and the heterodimeric import receptors, karyopherin alpha (KPNA) and beta (KPNB). Multiple KPNA1 paralogs exist and can differ in importing specific cNLS proteins required for cell differentiation and function. We show that transcripts for six Kpna paralogs underwent distinct changes in mouse satellite cells during muscle regeneration accompanied by changes in cNLS proteins in nuclei. Depletion of KPNA1, the most dramatically altered KPNA, caused satellite cells in uninjured muscle to prematurely activate, proliferate and undergo apoptosis leading to satellite cell exhaustion with age. Increased proliferation of satellite cells led to enhanced muscle regeneration at early stages of regeneration. In addition, we observed impaired nuclear localization of two key KPNA1 cargo proteins: p27, a cyclin-dependent kinase inhibitor associated with cell cycle control and lymphoid enhancer factor 1, a critical cotranscription factor for β-catenin. These results indicate that regulated nuclear import of proteins by KPNA1 is critical for satellite cell proliferation and survival and establish classical nuclear import as a novel regulatory mechanism for controlling satellite cell fate. Stem Cells 2016.

  4. Use of Advanced Solar Cells for Commercial Communication Satellites

    Science.gov (United States)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  5. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle.

    Science.gov (United States)

    McCarthy, John J; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B; Srikuea, Ratchakrit; Lawson, Benjamin A; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S; Esser, Karyn A; Dupont-Versteegden, Esther E; Peterson, Charlotte A

    2011-09-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca(2+) sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells.

  6. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle

    Science.gov (United States)

    McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.

    2011-01-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca2+ sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells. PMID:21828094

  7. Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Langberg, H; Helmark, I C

    2009-01-01

    exercise in vivo in human skeletal muscle. Eight young healthy males performed 200 maximal eccentric contractions with each leg. An NSAID was infused via a microdialysis catheter into the vastus lateralis muscle of one leg (NSAID leg) before, during, and for 4.5 h after exercise, with the other leg working...... of satellite cells 8 days after exercise. These results suggest that NSAIDs negatively affect satellite cell activity after unaccustomed eccentric exercise.......Despite the widespread consumption of nonsteroidal anti-inflammatory drugs (NSAIDs), the influence of these drugs on muscle satellite cells is not fully understood. The aim of the present study was to investigate the effect of a local NSAID infusion on satellite cells after unaccustomed eccentric...

  8. Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Xiaoti Xu

    2015-09-01

    Full Text Available Identification of human satellite cells that fulfill muscle stem cell criteria is an unmet need in regenerative medicine. This hurdle limits understanding how closely muscle stem cell properties are conserved among mice and humans and hampers translational efforts in muscle regeneration. Here, we report that PAX7 satellite cells exist at a consistent frequency of 2–4 cells/mm of fiber in muscles of the human trunk, limbs, and head. Xenotransplantation into mice of 50–70 fiber-associated, or 1,000–5,000 FACS-enriched CD56+/CD29+ human satellite cells led to stable engraftment and formation of human-derived myofibers. Human cells with characteristic PAX7, CD56, and CD29 expression patterns populated the satellite cell niche beneath the basal lamina on the periphery of regenerated fibers. After additional injury, transplanted satellite cells robustly regenerated to form hundreds of human-derived fibers. Together, these findings conclusively delineate a source of bona-fide endogenous human muscle stem cells that will aid development of clinical applications.

  9. Satellite Cells Contribution to Exercise Mediated Muscle Hypertrophy and Repair

    Science.gov (United States)

    Bazgir, Behzad; Fathi, Rouhollah; Rezazadeh Valojerdi, Mojtaba; Mozdziak, Paul; Asgari, Alireza

    2017-01-01

    Satellite cells (SCs) are the most abundant skeletal muscle stem cells. They are widely recognized for their contributions to maintenance of muscle mass, regeneration and hypertrophy during the human life span. These cells are good candidates for cell therapy due to their self-renewal capabilities and presence in an undifferentiated form. Presently, a significant gap exists between our knowledge of SCs behavior and their application as a means for human skeletal muscle tissue repair and regeneration. Both physiological and pathological stimuli potentially affect SCs activation, proliferation, and terminal differentiation the former category being the focus of this article. Activation of SCs occurs following exercise, post-training micro-injuries, and electrical stimulation. Exercise, as a potent and natural stimulus, is at the center of numerous studies on SC activation and relevant fields. According to research, different exercise modalities end with various effects. This review article attempts to picture the state of the art of the SCs life span and their engagement in muscle regeneration and hypertrophy in exercise. PMID:28042532

  10. Satellite Cells Contribution to Exercise Mediated Muscle Hypertrophy and Repair

    Directory of Open Access Journals (Sweden)

    Behzad Bazgir

    2016-10-01

    Full Text Available Satellite cells (SCs are the most abundant skeletal muscle stem cells. They are widely recognized for their contributions to maintenance of muscle mass, regeneration and hypertrophy during the human life span. These cells are good candidates for cell therapy due to their self-renewal capabilities and presence in an undifferentiated form. Presently, a significant gap exists between our knowledge of SCs behavior and their application as a means for human skeletal muscle tissue repair and regeneration. Both physiological and pathological stimuli potentially affect SCs activation, proliferation, and terminal differentiation - the former category being the focus of this article. Activation of SCs occurs following exercise, post-training micro-injuries, and electrical stimulation. Exercise, as a potent and natural stimulus, is at the center of numerous studies on SC activation and relevant fields. According to research, different exercise modalities end with various effects. This review article attempts to picture the state of the art of the SCs life span and their engagement in muscle regeneration and hypertrophy in exercise.

  11. [Molecular mechanism maintaining muscle satellite cells and the roles in sarcopenia.

    Science.gov (United States)

    Takemoto, Yusei; Fukada, So-Ichiro

    2017-01-01

    Skeletal muscle has its stem cell named satellite cell. The absence of satellite cells does not allow muscle regeneration, it is unquestionable that satellite cell is indispensable for muscle regeneration processes. A certain number of satellite cells appear to be necessary for the successful muscle regeneration, meaning the maintenance of the satellite cells is essential for the functional homeostasis of skeletal muscle. Recent studies have revealed the molecular mechanism underlying satellite cell maintenance in a steady state. A loss of those molecules responsible for the maintenance often results in decreased satellite cell pool and reduced regeneration ability. On the other hand, the contribution of satellite cells to muscle hypertrophy or aged-related atrophy(sarcopenia)is controversial. In this review, we will introduce the molecules that regulate satellite cells homeostasis in the dormant state and then further discuss the recent results on the roles of satellite cell in sarcopenia.

  12. About mechanisms of tetonic activity of the satellites

    Science.gov (United States)

    Barkin, Yu. V.

    2003-04-01

    ABOUT MECHANISMS OF TECTONIC ACTIVITY OF THE SATELLITES Yu.V. Barkin Sternberg Astronomical Institute, Moscow, Russia, barkin@sai.msu.ru Due to attraction of the central planet and others external bodies satellite is subjected by tidal and non-tidal deformations. Elastic energy is changed in dependence from mutual position and motion of celestial bodies and as result the tensional state of satellite and its tectonic (endogenous) activity also is changed. Satellites of the planets have the definite shell’s structure and due to own rotation these shells are characterized by different oblatenesses. Gravitational interaction of the satellite and its mother planet generates big additional mechanical forces (and moments) between the neighboring non-spherical shells of the satellite (mantle, core and crust). These forces and moments are cyclic functions of time, which are changed in the different time-scales. They generate corresponding cyclic perturbations of the tensional state of the shells, their deformations, small relative transnational displacements and slow rotation of the shells and others. In geological period of time it leads to a fundamental tectonic reconstruction of the body. Definite contribution to discussed phenomena are caused by classical tidal mechanism. of planet-satellite interaction. But in this report we discuss in first the new mechanisms of endogenous activity of celestial bodies. They are connected with differential gravitational attraction of non-spherical satellite shells by the external celestial bodies which leads: 1) to small relative rotation (nutations) of the shells; 2) to small relative translational motions of the shells (displacements of their center of mass); 3) to relative displacements and rotations of the shells due to eccentricity of their center of mass positions; 4) to viscous elastic deformations of the shells and oth. (Barkin, 2001). For higher evaluations of the power of satellite endogenous activities were obtained

  13. Effect of tetrandrine on nitroglycerin induced activation of satellite cells in trigeminal ganglia%粉防己碱对硝酸甘油致三叉神经节卫星胶质细胞激活的影响

    Institute of Scientific and Technical Information of China (English)

    崔智威; 熊新; 陈力学; 秦光成; 陈连连; 周冀英

    2011-01-01

    Objective;To evaluate the effect of tetrandrine (Tet) on nitroglycerin ( GTN ) - induced activation of the satellite cells released inflammatory cytokines and to explore its mechanism. Method: Neonatal rat satellite cells of trigeminal ganglia were cultured and separated into three groups. Group CON: the cells were normal cultured; Group TGN: the cells were cultured with 0. 55 mmol·L" GTN; Group Tet: the cells were treated with 0. 55 mmol·L-1 GTN and 1 x 10 mol·L-1 Tet respectively. Cell viability after GTN and Tet was detected by AlamarBlue assay. The concentration change of intracellular Ca2 + ( [ Ca2 + ]I) in single satellite cell loaded with Fluo-3/AM was determined by laser scanning confocal microscopy. NF-kB and IL-1β mRNA levels were determined by FQ-PCR. Through double-immunofluorescent staining identifies satellite cells and determines the expression of NF-kB protein. Result: Satellite cells activities decreased with GTN stimulating, but according to the viability and modality of the cells, 1 x 10 mol·L-1Tet was the suitable prophylaxis. Tet can inhibit the elevation of cytosolic free calcium of rat satellite cell and decrease the mRNA and protein levels of NF-kB and the mRNA levels of IL-1β. Conclusion; Via preventing Ca2+ influxion, Tet inhibited NF-kB activation of satellite cell which decreased IL-1β expression.%目的:探讨粉防己碱(Tet)对硝酸甘油(GTN)激活的三叉神经节卫星胶质细胞释放的炎性因子的影响及其机制.方法:体外纯化培养新生大鼠三叉神经节卫星胶质细胞;实验分正常对照组、GTN组和Tet治疗组;GTN组和Tet治疗组利用0.55 mmol·L-1 GTN诱导卫星胶质细胞激活,Tet治疗组同时给予1×10-7 mol·L-1 Tet进行干预.应用AlamarBlue检测细胞存活情况;利用Fluo-3/AM探针负载后,激光共聚焦显微镜观测各实验组细胞内Ca2+浓度([Ca2+]i)的变化;FQ-PCR检测NF-κB,IL-1β mRNA的表达情况;利用双重免疫荧光技术同时对卫星胶

  14. Conditional Cripto overexpression in satellite cells promotes myogenic commitment and enhances early regeneration.

    Science.gov (United States)

    Prezioso, Carolina; Iaconis, Salvatore; Andolfi, Gennaro; Zentilin, Lorena; Iavarone, Francescopaolo; Guardiola, Ombretta; Minchiotti, Gabriella

    2015-01-01

    Skeletal muscle regeneration mainly depends on satellite cells, a population of resident muscle stem cells. Despite extensive studies, knowledge of the molecular mechanisms underlying the early events associated with satellite cell activation and myogenic commitment in muscle regeneration remains still incomplete. Cripto is a novel regulator of postnatal skeletal muscle regeneration and a promising target for future therapy. Indeed, Cripto is expressed both in myogenic and inflammatory cells in skeletal muscle after acute injury and it is required in the satellite cell compartment to achieve effective muscle regeneration. A critical requirement to further explore the in vivo cellular contribution of Cripto in regulating skeletal muscle regeneration is the possibility to overexpress Cripto in its endogenous configuration and in a cell and time-specific manner. Here we report the generation and the functional characterization of a novel mouse model for conditional expression of Cripto, i.e., the Tg:DsRed (loxP/loxP) Cripto-eGFP mice. Moreover, by using a satellite cell specific Cre-driver line we investigated the biological effect of Cripto overexpression in vivo, and provided evidence that overexpression of Cripto in the adult satellite cell compartment promotes myogenic commitment and differentiation, and enhances early regeneration in a mouse model of acute injury.

  15. Function of Membrane-Associated Proteoglycans in the Regulation of Satellite Cell Growth.

    Science.gov (United States)

    Song, Yan

    2016-01-01

    Muscle growth can be divided into embryonic and postnatal periods. During the embryonic period, mesenchymal stem cells proliferate and differentiate to form muscle fibers. Postnatal muscle growth (hypertrophy) is characterized by the enlargement of existing muscle fiber size. Satellite cells (also known as adult myoblasts) are responsible for hypertrophy. The activity of satellite cells can be regulated by their extracellular matrix (ECM). The ECM is composed of collagens, proteoglycans, non-collagenous glycoproteins, cytokines and growth factors. Proteoglycans contain a central core protein with covalently attached glycosaminoglycans (GAGs: chondroitin sulfate, keratan sulfate, dermatan sulfate, and heparan sulfate) and N- or O-linked glycosylation chains. Membrane-associated proteoglycans attach to the cell membrane either through a glycosylphosphatidylinositol anchor or transmembrane domain. The GAGs can bind proteins including cytokines and growth factors. Both cytokines and growth factors play important roles in regulating satellite cell growth and development. Cytokines are generally associated with immune cells. However, cytokines can also affect muscle cell development. For instance, interleukin-6, tumor necrosis factor-α, and leukemia inhibitory factor have been reported to affect the proliferation and differentiation of satellite cells and myoblasts. Growth factors are potent stimulators or inhibitors of satellite cell proliferation and differentiation. The proper function of some cytokines and growth factors requires an interaction with the cell membrane-associated proteoglycans to enhance the affinity to bind to their primary receptors to initiate downstream signal transduction. This chapter is focused on the interaction of membrane-associated proteoglycans with cytokines and growth factors, and their role in satellite cell growth and development.

  16. Impaired energy metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes

    DEFF Research Database (Denmark)

    Baraibar, Martín A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina

    2016-01-01

    Accumulation of oxidized proteins is a hallmark of cellular and organismal aging. Adult muscle stem cell (or satellite cell) replication and differentiation is compromised with age contributing to sarcopenia. However, the molecular events related to satellite cell dysfunction during aging...

  17. Satellite glial cells in sensory ganglia: its role in pain

    Directory of Open Access Journals (Sweden)

    Filipa Alexandra Leite Costa

    2015-02-01

    Full Text Available BACKGROUND AND OBJECTIVES: Satellite glial cells in sensory ganglia are a recent subject of research in the field of pain and a possible therapeutic target in the future. Therefore, the aim of this study was to summarize some of the important physiological and morphological characteristics of these cells and gather the most relevant scientific evidence about its possible role in the development of chronic pain. CONTENT: In the sensory ganglia, each neuronal body is surrounded by satellite glial cells forming distinct functional units. This close relationship enables bidirectional communication via a paracrine signaling between those two cell types. There is a growing body of evidence that glial satellite cells undergo structural and biochemical changes after nerve injury, which influence neuronal excitability and consequently the development and/or maintenance of pain in different animal models of chronic pain. CONCLUSIONS: Satellite glial cells are important in the establishment of physiological pain, in addition to being a potential target for the development of new pain treatments.

  18. Restricted maternal nutrition alters myogenic regulatory factor expression in satellite cells of ovine offspring.

    Science.gov (United States)

    Raja, J S; Hoffman, M L; Govoni, K E; Zinn, S A; Reed, S A

    2016-07-01

    Poor maternal nutrition inhibits muscle development and postnatal muscle growth. Satellite cells are myogenic precursor cells that contribute to postnatal muscle growth, and their activity can be evaluated by the expression of several transcription factors. Paired-box (Pax)7 is expressed in quiescent and active satellite cells. MyoD is expressed in activated and proliferating satellite cells and myogenin is expressed in terminally differentiating cells. Disruption in the expression pattern or timing of expression of myogenic regulatory factors negatively affects muscle development and growth. We hypothesized that poor maternal nutrition during gestation would alter the in vitro temporal expression of MyoD and myogenin in satellite cells from offspring at birth and 3 months of age. Ewes were fed 100% or 60% of NRC requirements from day 31±1.3 of gestation. Lambs from control-fed (CON) or restricted-fed (RES) ewes were euthanized within 24 h of birth (birth; n=5) or were fed a control diet until 3 months of age (n=5). Satellite cells isolated from the semitendinosus muscle were used for gene expression analysis or cultured for 24, 48 or 72 h and immunostained for Pax7, MyoD or myogenin. Fusion index was calculated from a subset of cells allowed to differentiate. Compared with CON, temporal expression of MyoD and myogenin was altered in cultured satellite cells isolated from RES lambs at birth. The percent of cells expressing MyoD was greater in RES than CON (P=0.03) after 24 h in culture. After 48 h of culture, there was a greater percent of cells expressing myogenin in RES compared with CON (P0.05). In satellite cells from RES lambs at 3 months of age, the percent of cells expressing MyoD and myogenin were greater than CON after 72 h in culture (Psatellite cells of the offspring, which may reduce the pool of myoblasts, decrease myoblast fusion and contribute to the poor postnatal muscle growth previously observed in these animals.

  19. Advanced Power Technology Development Activities for Small Satellite Applications

    Science.gov (United States)

    Piszczor, Michael F.; Landis, Geoffrey A.; Miller, Thomas B.; Taylor, Linda M.; Hernandez-Lugo, Dionne; Raffaelle, Ryne; Landi, Brian; Hubbard, Seth; Schauerman, Christopher; Ganter, Mathew; hide

    2017-01-01

    NASA Glenn Research Center (GRC) has a long history related to the development of advanced power technology for space applications. This expertise covers the breadth of energy generation (photovoltaics, thermal energy conversion, etc.), energy storage (batteries, fuel cell technology, etc.), power management and distribution, and power systems architecture and analysis. Such advanced technology is now being developed for small satellite and cubesat applications and could have a significant impact on the longevity and capabilities of these missions. A presentation during the Pre-Conference Workshop will focus on various advanced power technologies being developed and demonstrated by NASA, and their possible application within the small satellite community.

  20. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle.

    Science.gov (United States)

    Egner, Ingrid M; Bruusgaard, Jo C; Gundersen, Kristian

    2016-08-15

    The largest mammalian cells are the muscle fibers, and they have multiple nuclei to support their large cytoplasmic volumes. During hypertrophic growth, new myonuclei are recruited from satellite stem cells into the fiber syncytia, but it was recently suggested that such recruitment is not obligatory: overload hypertrophy after synergist ablation of the plantaris muscle appeared normal in transgenic mice in which most of the satellite cells were abolished. When we essentially repeated these experiments analyzing the muscles by immunohistochemistry and in vivo and ex vivo imaging, we found that overload hypertrophy was prevented in the satellite cell-deficient mice, in both the plantaris and the extensor digitorum longus muscles. We attribute the previous findings to a reliance on muscle mass as a proxy for fiber hypertrophy, and to the inclusion of a significant number of regenerating fibers in the analysis. We discuss that there is currently no model in which functional, sustainable hypertrophy has been unequivocally demonstrated in the absence of satellite cells; an exception is re-growth, which can occur using previously recruited myonuclei without addition of new myonuclei. © 2016. Published by The Company of Biologists Ltd.

  1. THE ROLE OF SATELLITE CELLS IN CRUSH INJURY OF RAT SKELETON MUSCLE

    Directory of Open Access Journals (Sweden)

    DilekBURUKOĞLU

    2013-02-01

    Full Text Available The crush type of injury in rat skeletal muscle is often used in tissue degeneration and regeneration. After crush injury muscle tissue begins to regenerate. In this process, it is accepted that satellite cells play an important role which are very sensitive to muscle injury. The aim of this microscopic study was to examine role of satellite cells in muscle regeneration in crush injury. This research was done the department of Histology&Embryology in Eskişehir Osmangazi University in 2008. Ethic approval of this study has been received. During the study, the whole essential and ethics conditionshave been done. In the study 36 Spraque-Dawley rats were used. The rats were separated into 5 groups as test and control groups. Crush type of injury has been applied on muscles of right hind extremitiesof testing group rats by applying 3.5 kg of weight for 6 hours. In according to testing periods rats were anaesthetized intraperitoneally with ketamine 30mg/kg + xylazine 10mg/kg and sacrificied 3, 7, 14 and 21-day intervals. After crush injury, increased satellite cells were particularly observed on day 7. Alsosignificant increased of satellite cells and regenerated myofibrils were detected on day 14. However, satellite cells were seen on day-21 were similar to control group. In crush injuries, number of satellitecells were markedly increased and actively involved into regeneration process of the skeleton muscle.

  2. Neonatal Satellite Cells Form Small Myotubes in Vitro

    NARCIS (Netherlands)

    Carvajal Monroy, P.L.; Grefte, S.; Kuijpers-Jagtman, A.M.; Den Hoff, Von J.W.; Wagener, F.A.D.T.G.

    2017-01-01

    Although palatal muscle reconstruction in patients with cleft palate takes place during early childhood, normal speech development is often not achieved. We hypothesized that the intrinsic properties of head satellite cells (SCs) and the young age of these patients contribute to the poor muscle

  3. Active vision in satellite scene analysis

    Science.gov (United States)

    Naillon, Martine

    1994-01-01

    In earth observation or planetary exploration it is necessary to have more and, more autonomous systems, able to adapt to unpredictable situations. This imposes the use, in artificial systems, of new concepts in cognition, based on the fact that perception should not be separated from recognition and decision making levels. This means that low level signal processing (perception level) should interact with symbolic and high level processing (decision level). This paper is going to describe the new concept of active vision, implemented in Distributed Artificial Intelligence by Dassault Aviation following a 'structuralist' principle. An application to spatial image interpretation is given, oriented toward flexible robotics.

  4. New insights into the epigenetic control of satellite cells

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Epigenetics finely tunes gene expression at a functionallevel without modifying the DNA sequence, therebycontributing to the complexity of genomic regulation.Satellite cells (SCs) are adult muscle stem cells thatare important for skeletal post-natal muscle growth,homeostasis and repair. The understanding of theepigenome of SCs at different stages and of themultiple layers of the post-transcriptional regulationof gene expression is constantly expanding. Dynamicinteractions between different epigenetic mechanismsregulate the appropriate timing of muscle-specific geneexpression and influence the lineage fate of SCs. Inthis review, we report and discuss the recent literatureabout the epigenetic control of SCs during the myogenicprocess from activation to proliferation and from theircommitment to a muscle cell fate to their differentiationand fusion to myotubes. We describe how the coordinatedactivities of the histone methyltransferasefamilies Polycomb group (PcG), which represses theexpression of developmentally regulated genes, andTrithorax group, which antagonizes the repressive activityof the PcG, regulate myogenesis by restricting geneexpression in a time-dependent manner during eachstep of the process. We discuss how histone acetylationand deacetylation occurs in specific loci throughoutSC differentiation to enable the time-dependent transcriptionof specific genes. Moreover, we describe themultiple roles of microRNA, an additional epigeneticmechanism, in regulating gene expression in SCs, byrepressing or enhancing gene transcription or translationduring each step of myogenesis. The importance ofthese epigenetic pathways in modulating SC activationand differentiation renders them as promising targetsfor disease interventions. Understanding the mostrecent findings regarding the epigenetic mechanismsthat regulate SC behavior is useful from the perspectiveof pharmacological manipulation for improving muscleregeneration and for promoting muscle homeostasisunder

  5. Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise

    DEFF Research Database (Denmark)

    Crameri, Regina M; Langberg, Henning; Magnusson, Peter

    2004-01-01

    desmin or dystrophin, were not observed, and hence did not appear to induce the expression of either N-CAM or FA1. We therefore propose that satellite cells can be induced to re-enter the cell growth cycle after a single bout of unaccustomed high intensity exercise. However, a single bout of exercise......No studies to date have reported activation of satellite cells in vivo in human muscle after a single bout of high intensity exercise. In this investigation, eight individuals performed a single bout of high intensity exercise with one leg, the contralateral leg being the control. A significant...... increase in mononuclear cells staining for the neural cell adhesion molecule (N-CAM) and fetal antigen 1 (FA1) were observed within the exercised human vastus lateralis muscle on days 4 and 8 post exercise. In addition, a significant increase in the concentration of the FA1 protein was determined...

  6. Satellite Dynamic Damping via Active Force Control Augmentation

    Science.gov (United States)

    Varatharajoo, Renuganth

    2012-07-01

    An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC

  7. Effects of 28 days of resistance exercise and consuming a commercially available pre-workout supplement, NO-Shotgun®, on body composition, muscle strength and mass, markers of satellite cell activation, and clinical safety markers in males

    Directory of Open Access Journals (Sweden)

    Leutholtz Brian

    2009-08-01

    Full Text Available Abstract Purpose This study determined the effects of 28 days of heavy resistance exercise combined with the nutritional supplement, NO-Shotgun®, on body composition, muscle strength and mass, markers of satellite cell activation, and clinical safety markers. Methods Eighteen non-resistance-trained males participated in a resistance training program (3 × 10-RM 4 times/wk for 28 days while also ingesting 27 g/day of placebo (PL or NO-Shotgun® (NO 30 min prior to exercise. Data were analyzed with separate 2 × 2 ANOVA and t-tests (p Results Total body mass was increased in both groups (p = 0.001, but without any significant increases in total body water (p = 0.77. No significant changes occurred with fat mass (p = 0.62; however fat-free mass did increase with training (p = 0.001, and NO was significantly greater than PL (p = 0.001. Bench press strength for NO was significantly greater than PL (p = 0.003. Myofibrillar protein increased with training (p = 0.001, with NO being significantly greater than PL (p = 0.019. Serum IGF-1 (p = 0.046 and HGF (p = 0.06 were significantly increased with training and for NO HGF was greater than PL (p = 0.002. Muscle phosphorylated c-met was increased with training for both groups (p = 0.019. Total DNA was increased in both groups (p = 0.006, while NO was significantly greater than PL (p = 0.038. For DNA/protein, PL was decreased and NO was not changed (p = 0.014. All of the myogenic regulatory factors were increased with training; however, NO was shown to be significantly greater than PL for Myo-D (p = 0.008 and MRF-4 (p = 0.022. No significant differences were located for any of the whole blood and serum clinical chemistry markers (p > 0.05. Conclusion When combined with heavy resistance training for 28 days, NO-Shotgun® is not associated with any negative side effects, nor does it abnormally impact any of the clinical chemistry markers. Rather, NO-Shotgun® effectively increases muscle strength and mass

  8. Ocean Wind Fields from Satellite Active Microwave Sensors

    OpenAIRE

    Zecchetto, S.

    2010-01-01

    Scatterometer QuikSCAT data have been downloaded from the Physical Oceanography Distributed Active Archive Center (PODAAC) of the Jet Propulsion Laboratory, Pasadena, USA. The ASCAT data have been obtained from the Koninklijk Nederlands Meteorologisch Instituut (Dutch Meteorological Service KNMI, www.knmi.nl) operating in the framework of the Ocean & Sea Ice Satellite Application Facility (www.osi-saf.org) of EUMETSAT. The Envisat ASAR Wide Swath image has been downloaded from the ESA web ser...

  9. The effect of nutritional status and myogenic satellite cell age on turkey satellite cell proliferation, differentiation, and expression of myogenic transcriptional regulatory factors and heparan sulfate proteoglycans syndecan-4 and glypican-1.

    Science.gov (United States)

    Harthan, Laura B; McFarland, Douglas C; Velleman, Sandra G

    2014-01-01

    Posthatch satellite cell mitotic activity is a critical component of muscle development and growth. Satellite cells are myogenic stem cells that can be induced by nutrition to follow other cellular developmental pathways, and whose mitotic activity declines with age. The objective of the current study was to determine the effect of restricting protein synthesis on the proliferation and differentiation, expression of myogenic transcriptional regulatory factors myogenic determination factor 1, myogenin, and myogenic regulatory factor 4, and expression of the heparan sulfate proteoglycans syndecan-4 and glypican-1 in satellite cells isolated from 1-d-, 7-wk-, and 16-wk-old turkey pectoralis major muscle (1 d, 7 wk, and 16 wk cells, respectively) by using variable concentrations of Met and Cys. Four Met concentrations-30 (control), 7.5, 3, or 0 mg/L with 3.2 mg/L of Cys per 1 mg/L of Met-were used for culture of satellite cells to determine the effect of nutrition and age on satellite cell behavior during proliferation and differentiation. Proliferation was reduced by lower Met and Cys concentrations in all ages at 96 h of proliferation. Differentiation was increased in the 1 d Met-restricted cells, whereas the 7 wk cells treated with 3 mg/L of Met had decreased differentiation. Reduced Met and Cys levels from the control did not significantly affect the 16 wk cells at 72 h of differentiation. However, medium with no Met or Cys suppressed differentiation at all ages. The expression of myogenic determination factor 1, myogenin, myogenic regulatory factor 4, syndecan-4, and glypican-1 was differentially affected by age and Met or Cys treatment. These data demonstrate the age-specific manner in which turkey pectoralis major muscle satellite cells respond to nutritional availability and the importance of defining optimal nutrition to maximize satellite cell proliferation and differentiation for subsequent muscle mass accretion.

  10. An active attitude control system for a drag sail satellite

    Science.gov (United States)

    Steyn, Willem Herman; Jordaan, Hendrik Willem

    2016-11-01

    The paper describes the development and simulation results of a full ADCS subsystem for the deOrbitSail drag sail mission. The deOrbitSail satellite was developed as part of an European FP7 collaboration research project. The satellite was launched and commissioning started on 10th July 2015. Various new actuators and sensors designed for this mission will be presented. The deOrbitSail satellite is a 3U CubeSat to deploy a 4 by 4 m drag sail from an initial 650 km circular polar low earth orbit. With an active attitude control system it will be shown that by maximising the drag force, the expected de-orbiting period from the initial altitude will be less than 50 days. A future application of this technology will be the use of small drag sails as low-cost devices to de-orbit LEO satellites, when they have reached their end of life, without having to use expensive propulsion systems. Simulation and Hardware-in-Loop experiments proved the feasibility of the proposed attitude control system. A magnetic-only control approach using a Y-Thomson spin, is used to detumble the 3U Cubesat with stowed sail and subsequently to 3-axis stabilise the satellite to be ready for the final deployment phase. Minituarised torquer rods, a nano-sized momentum wheel, attitude sensor hardware (magnetometer, sun, earth) developed for this phase will be presented. The final phase will be to deploy and 3-axis stabilise the drag sail normal to the satellite's velocity vector, using a combined Y-momentum wheel and magnetic controller. The design and performance improvements when using a 2-axis translation stage to adjust the sail centre-of-pressure to satellite centre-of-mass offset, will also be discussed, although for launch risk reasons this stage was not included in the final flight configuration. To accurately determine the drag sail's attitude during the sunlit part of the orbit, an accurate wide field of view dual sensor to measure both the sun and nadir vector direction was developed for

  11. Pax3-induced expansion enables the genetic correction of dystrophic satellite cells.

    Science.gov (United States)

    Filareto, Antonio; Rinaldi, Fabrizio; Arpke, Robert W; Darabi, Radbod; Belanto, Joseph J; Toso, Erik A; Miller, Auston Z; Ervasti, James M; McIvor, R Scott; Kyba, Michael; Perlingeiro, Rita Cr

    2015-01-01

    Satellite cells (SCs) are indispensable for muscle regeneration and repair; however, due to low frequency in primary muscle and loss of engraftment potential after ex vivo expansion, their use in cell therapy is currently unfeasible. To date, an alternative to this limitation has been the transplantation of SC-derived myogenic progenitor cells (MPCs), although these do not hold the same attractive properties of stem cells, such as self-renewal and long-term regenerative potential. We develop a method to expand wild-type and dystrophic fresh isolated satellite cells using transient expression of Pax3. This approach can be combined with genetic correction of dystrophic satellite cells and utilized to promote muscle regeneration when transplanted into dystrophic mice. Here, we show that SCs from wild-type and dystrophic mice can be expanded in culture through transient expression of Pax3, and these expanded activated SCs can regenerate the muscle. We test this approach in a gene therapy model by correcting dystrophic SCs from a mouse lacking dystrophin using a Sleeping Beauty transposon carrying the human μDYSTROPHIN gene. Transplantation of these expanded corrected cells into immune-deficient, dystrophin-deficient mice generated large numbers of dystrophin-expressing myofibers and improved contractile strength. Importantly, in vitro expanded SCs engrafted the SC compartment and could regenerate muscle after secondary injury. These results demonstrate that Pax3 is able to promote the ex vivo expansion of SCs while maintaining their stem cell regenerative properties.

  12. Measuring thermal budgets of active volcanoes by satellite remote sensing

    Science.gov (United States)

    Glaze, L.; Francis, P. W.; Rothery, D. A.

    1989-01-01

    Thematic Mapper measurements of the total radiant energy flux Q at Lascar volcano in north Chile for December 1984 are reported. The results are consistent with the earlier suggestion that a lava lake is the source of a reported thermal budget anomaly, and with values for 1985-1986 that are much lower, suggesting that fumarolic activity was then a more likely heat source. The results show that satellite remote sensing may be used to monitor the activity of a volcano quantitatively, in a way not possible by conventional ground studies, and may provide a method for predicting eruptions.

  13. RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells.

    Science.gov (United States)

    Vasyutina, Elena; Lenhard, Diana C; Wende, Hagen; Erdmann, Bettina; Epstein, Jonathan A; Birchmeier, Carmen

    2007-03-13

    In the developing muscle, a pool of myogenic progenitor cells is formed and maintained. These resident progenitors provide a source of cells for muscle growth in development and generate satellite cells in the perinatal period. By the use of conditional mutagenesis in mice, we demonstrate here that the major mediator of Notch signaling, the transcription factor RBP-J, is essential to maintain this pool of progenitor cells in an undifferentiated state. In the absence of RBP-J, these cells undergo uncontrolled myogenic differentiation, leading to a depletion of the progenitor pool. This results in a lack of muscle growth in development and severe muscle hypotrophy. In addition, satellite cells are not formed late in fetal development in conditional RBP-J mutant mice. We conclude that RBP-J is required in the developing muscle to set aside proliferating progenitors and satellite cells.

  14. Muscle Interstitial Cells: A Brief Field Guide to Non-satellite Cell Populations in Skeletal Muscle.

    Science.gov (United States)

    Tedesco, Francesco Saverio; Moyle, Louise A; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle regeneration is mainly enabled by a population of adult stem cells known as satellite cells. Satellite cells have been shown to be indispensable for adult skeletal muscle repair and regeneration. In the last two decades, other stem/progenitor cell populations resident in the skeletal muscle interstitium have been identified as "collaborators" of satellite cells during regeneration. They also appear to have a key role in replacing skeletal muscle with adipose, fibrous, or bone tissue in pathological conditions. Here, we review the role and known functions of these different interstitial skeletal muscle cell types and discuss their role in skeletal muscle tissue homeostasis, regeneration, and disease, including their therapeutic potential for cell transplantation protocols.

  15. Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise.

    Science.gov (United States)

    Murach, Kevin A; Walton, R Grace; Fry, Christopher S; Michaelis, Sami L; Groshong, Jason S; Finlin, Brian S; Kern, Philip A; Peterson, Charlotte A

    2016-09-01

    This investigation evaluated whether moderate-intensity cycle ergometer training affects satellite cell and molecular responses to acute maximal concentric/eccentric resistance exercise in middle-aged women. Baseline and 72 h postresistance exercise vastus lateralis biopsies were obtained from seven healthy middle-aged women (56 ± 5 years, BMI 26 ± 1, VO2max 27 ± 4) before and after 12 weeks of cycle training. Myosin heavy chain (MyHC) I- and II-associated satellite cell density and cross-sectional area was determined via immunohistochemistry. Expression of 93 genes representative of the muscle-remodeling environment was also measured via NanoString. Overall fiber size increased ~20% with cycle training (P = 0.052). MyHC I satellite cell density increased 29% in response to acute resistance exercise before endurance training and 50% with endurance training (P training, MyHC I satellite cell density decreased by 13% in response to acute resistance exercise (acute resistance × training interaction, P trained state in response to resistance exercise. Similar satellite cell and gene expression response patterns indicate coordinated regulation of the muscle environment to promote adaptation. Moderate-intensity endurance cycle training modulates the response to acute resistance exercise, potentially conditioning the muscle for more intense concentric/eccentric activity. These results suggest that cycle training is an effective endurance exercise modality for promoting growth in middle-aged women, who are susceptible to muscle mass loss with progressing age.

  16. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Somik [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yin, Hongshan [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei (China); Nam, Deokhwa [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Li, Yong [Department of Pediatric Surgery, Center for Stem Cell Research and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Ma, Ke, E-mail: kma@houstonmethodist.org [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States)

    2015-02-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.

  17. The satellite cell in male and female, developing and adult mouse muscle: distinct stem cells for growth and regeneration.

    Directory of Open Access Journals (Sweden)

    Alice Neal

    Full Text Available Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration.

  18. Insights into correlation between satellite infrared information and fault activities

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Tectonic activities are accompanied with material movement and energy transfer, which definitely change the state of thermal radiation on the ground. Thus it is possible to infer present-day tectonic activities based on variations of the thermal radiation state on the ground. The received satellite infrared information is, however, likely influenced by many kinds of factors. Therefore, the first problem that needs to be solved is to extract information on tectonic activities and eliminate effects of external (non-tectonic) factors. In this study, we firstly make a review of the current studies on this subject, and then present the technical approach and our research goal.Using the data of 20 years from the infrared band of the satellite of National Oceanic and Atmospheric Administration (NOAA) and the method we have developed, we investigate fault activities in western China. The results show that the areas with high residual values of land surface brightness temperature (LSBT), which is presumably related to faultings in space, accord usually with the locations of followed major earthquakes. The times of their value growing are also roughly consistent with the beginning of active periods of earthquakes.The low frequency component fields of the LSBT, acquired from wavelet analysis, exhibit well the spatial distributions of active faults.The "heat penetrability index" (HPI) related with enhancement of subsurface thermal information has been expressed well for the backgrounds of accelerated tectonic motions, and some correlations exist between HPI and the local faulting and seismicity. This study provides a new approach to study temporal-spatial evolution of recent activities of faults and their interactions.

  19. Commitment of Satellite Cells Expressing the Calcium Channel α2δ1 Subunit to the Muscle Lineage

    Directory of Open Access Journals (Sweden)

    Tammy Tamayo

    2012-01-01

    Full Text Available Satellite cells can maintain or repair muscle because they possess stem cell properties, making them a valuable option for cell therapy. However, cell transplants into skeletal muscle of patients with muscular dystrophy are limited by donor cell attachment, migration, and survival in the host tissue. Cells used for therapy are selected based on specific markers present in the plasma membrane. Although many markers have been identified, there is a need to find a marker that is expressed at different states in satellite cells, activated, quiescent, or differentiated cell. Furthermore, the marker has to be present in human tissue. Recently we reported that the plasma membrane α2δ1 protein is involved in cell attachment and migration in myoblasts. The α2δ1 subunit forms a part of the L-type voltage-dependent calcium channel in adult skeletal muscle. We found that the α2δ1 subunit is expressed in the majority of newly isolated satellite cells and that it appears earlier than the α1 subunits and at higher levels than the β or γ subunits. We also found that those cells that expressed α2δ1 would differentiate into muscle cells. This evidence indicates that the α2δ1 may be used as a marker of satellite cells that will differentiate into muscle.

  20. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program.

    Science.gov (United States)

    Lee, Eun Ju; Jan, Arif Tasleem; Baig, Mohammad Hassan; Ashraf, Jalaluddin Mohammad; Nahm, Sang-Soep; Kim, Yong-Woon; Park, So-Young; Choi, Inho

    2016-08-01

    Differentiation of muscle satellite cells (MSCs) involves interaction of the proteins present in the extracellular matrix (ECM) with MSCs to regulate their activity, and therefore phenotype. Herein, we report fibromodulin (FMOD), a member of the proteoglycan family participating in the assembly of ECM, as a novel regulator of myostatin (MSTN) during myoblast differentiation. In addition to having a pronounced effect on the expression of myogenic marker genes [myogenin (MYOG) and myosin light chain 2 (MYL2)], FMOD was found to maintain the transcriptional activity of MSTN Moreover, coimmunoprecipitation and in silico studies performed to investigate the interaction of FMOD helped confirm that it antagonizes MSTN function by distorting its folding and preventing its binding to activin receptor type IIB. Furthermore, in vivo studies revealed that FMOD plays an active role in healing by increasing satellite cell recruitment to sites of injury. Together, these findings disclose a hitherto unrecognized regulatory role for FMOD in MSCs and highlight new mechanisms whereby FMOD circumvents the inhibitory effects of MSTN and triggers myoblast differentiation. These findings offer a basis for the design of novel MSTN inhibitors that promote muscle regeneration after injury or for the development of pharmaceutical agents for the treatment of different muscle atrophies.-Lee, E. J., Jan, A. T., Baig, M. H., Ashraf, J. M., Nahm, S.-S., Kim, Y.-W., Park, S.-Y., Choi, I. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program.

  1. RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells

    OpenAIRE

    Vasyutina, Elena; Lenhard, Diana C.; Wende, Hagen; Erdmann, Bettina; Epstein, Jonathan A.; Birchmeier, Carmen

    2007-01-01

    In the developing muscle, a pool of myogenic progenitor cells is formed and maintained. These resident progenitors provide a source of cells for muscle growth in development and generate satellite cells in the perinatal period. By the use of conditional mutagenesis in mice, we demonstrate here that the major mediator of Notch signaling, the transcription factor RBP-J, is essential to maintain this pool of progenitor cells in an undifferentiated state. In the absence of RBP-J, these cells unde...

  2. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes.

    Science.gov (United States)

    Morena, Deborah; Maestro, Nicola; Bersani, Francesca; Forni, Paolo Emanuele; Lingua, Marcello Francesco; Foglizzo, Valentina; Šćepanović, Petar; Miretti, Silvia; Morotti, Alessandro; Shern, Jack F; Khan, Javed; Ala, Ugo; Provero, Paolo; Sala, Valentina; Crepaldi, Tiziana; Gasparini, Patrizia; Casanova, Michela; Ferrari, Andrea; Sozzi, Gabriella; Chiarle, Roberto; Ponzetto, Carola; Taulli, Riccardo

    2016-03-17

    Embryonal Rhabdomyosarcoma (ERMS) and Undifferentiated Pleomorphic Sarcoma (UPS) are distinct sarcoma subtypes. Here we investigate the relevance of the satellite cell (SC) niche in sarcoma development by using Hepatocyte Growth Factor (HGF) to perturb the niche microenvironment. In a Pax7 wild type background, HGF stimulation mainly causes ERMS that originate from satellite cells following a process of multistep progression. Conversely, in a Pax7 null genotype ERMS incidence drops, while UPS becomes the most frequent subtype. Murine EfRMS display genetic heterogeneity similar to their human counterpart. Altogether, our data demonstrate that selective perturbation of the SC niche results in distinct sarcoma subtypes in a Pax7 lineage-dependent manner, and define a critical role for the Met axis in sarcoma initiation. Finally, our results provide a rationale for the use of combination therapy, tailored on specific amplifications and activated signaling pathways, to minimize resistance emerging from sarcomas heterogeneity.

  3. Development of a nitric oxide-releasing analogue of the muscle relaxant guaifenesin for skeletal muscle satellite cell myogenesis.

    Science.gov (United States)

    Wang, Guqi; Burczynski, Frank J; Hasinoff, Brian B; Zhang, Kaidong; Lu, Qilong; Anderson, Judy E

    2009-01-01

    Nitric oxide (NO) mediates activation of satellite precursor cells to enter the cell cycle. This provides new precursor cells for skeletal muscle growth and muscle repair from injury or disease. Targeting a new drug that specifically delivers NO to muscle has the potential to promote normal function and treat neuromuscular disease, and would also help to avoid side effects of NO from other treatment modalities. In this research, we examined the effectiveness of the NO donor, iosorbide dinitrate (ISDN), and a muscle relaxant, methocarbamol, in promoting satellite cell activation assayed by muscle cell DNA synthesis in normal adult mice. The work led to the development of guaifenesin dinitrate (GDN) as a new NO donor for delivering nitric oxide to muscle. The results revealed that there was a strong increase in muscle satellite cell activation and proliferation, demonstrated by a significant 38% rise in DNA synthesis after a single transdermal treatment with the new compound for 24 h. Western blot and immunohistochemistry analyses showed that the markers of satellite cell myogenesis, expression of myf5, myogenin, and follistatin, were increased after 24 h oral administration of the compound in adult mice. This research extends our understanding of the outcomes of NO-based treatments aimed at promoting muscle regeneration in normal tissue. The potential use of such treatment for conditions such as muscle atrophy in disuse and aging, and for the promotion of muscle tissue repair as required after injury or in neuromuscular diseases such as muscular dystrophy, is highlighted.

  4. Impaired energy metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes

    DEFF Research Database (Denmark)

    Baraibar, Martín A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina

    2016-01-01

    Accumulation of oxidized proteins is a hallmark of cellular and organismal aging. Adult muscle stem cell (or satellite cell) replication and differentiation is compromised with age contributing to sarcopenia. However, the molecular events related to satellite cell dysfunction during aging are not...

  5. Isolation, culture and biological characteristics of multipotent porcine skeletal muscle satellite cells.

    Science.gov (United States)

    Yang, Jinjuan; Liu, Hao; Wang, Kunfu; Li, Lu; Yuan, Hongyi; Liu, Xueting; Liu, Yingjie; Guan, Weijun

    2017-03-02

    Skeletal muscle has a huge regenerative potential for postnatal muscle growth and repair, which mainly depends on a kind of muscle progenitor cell population, called satellite cell. Nowadays, the majority of satellite cells were obtained from human, mouse, rat and other animals but rarely from pig. In this article, the porcine skeletal muscle satellite cells were isolated and cultured in vitro. The expression of surface markers of satellite cells was detected by immunofluorescence and RT-PCR assays. The differentiation capacity was assessed by inducing satellite cells into adipocytes, myoblasts and osteoblasts. The results showed that satellite cells isolated from porcine tibialis anterior were subcultured up to 12 passages and were positive for Pax7, Myod, c-Met, desmin, PCNA and NANOG but were negative for Myogenin. Satellite cells were also induced to differentiate into adipocytes, osteoblasts and myoblasts, respectively. These findings indicated that porcine satellite cells possess similar biological characteristics of stem cells, which may provide theoretical basis and experimental evidence for potential therapeutic application in the treatment of dystrophic muscle and other muscle injuries.

  6. Differential satellite cell density of type I and II fibres with lifelong endurance running in old men

    DEFF Research Database (Denmark)

    Mackey, Abigail; Karlsen, A; Couppé, C

    2014-01-01

    between these variables were determined. RESULTS: In O-Un and O-Tr, type II fibres were smaller and contained fewer satellite cells than type I fibres. However, when expressed relative to fibre area, the difference in satellite cell content between fibre types was eliminated in O-Tr, but not O...... the satellite cell pool and (ii) is associated with a similar density of satellite cells in type I and II fibres despite a failure to preserve the equal fibre type distribution of satellite cells observed in young individuals. Taken together, these data reveal a differential regulation of satellite cell content...

  7. Label-free screening of niche-to-niche variation in satellite stem cells using functionalized pores

    Science.gov (United States)

    Chapman, Matthew R.; Balakrishnan, Karthik; Conboy, Michael J.; Mohanty, Swomitra; Jabart, Eric; Huang, Haiyan; Hack, James; Conboy, Irina M.; Sohn, Lydia L.

    2012-02-01

    Combinations of surface markers are currently used to identify muscle satellite cells. Using pores functionalized with specific antibodies and measuring the transit time of cells passing through these pores, we discovered remarkable heterogeneity in the expression of these markers in muscle (satellite) stem cells that reside in different single myofibers. Microniche-specific variation in stem cells of the same organ has not been previously described, as bulk analysis does not discriminate between separate myofibers or even separate hind-leg muscle groups. We found a significant population of Sca-1+ satellite cells that form myotubes, thereby demonstrating the myogenic potential of Sca-1+ cells, which are currently excluded in bulk sorting. Finally, using our label-free pore screening technique, we have been able to quantify directly surface expression of Notch1 without activation of the Notch pathway. We show for the first time Notch1-expression heterogeneity in unactivated satellite cells. The discovery of fiber-to-fiber variations prompts new research into the reasons for such diversity in muscle stem cells.

  8. Sox2 promotes survival of satellite glial cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Taro, E-mail: koiket@hirakata.kmu.ac.jp; Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-08-14

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling.

  9. Isolation and characterization of satellite cells from rat head branchiomeric muscles

    NARCIS (Netherlands)

    Carvajal Monroy, P.L.; Yablonka-Reuveni, Z.; Grefte, Sander; Kuijpers-Jagtman, Anne Marie; Wagener, F.A.D.T.G.; Hoff, Von den J.W.

    2015-01-01

    This protocol describes the isolation of satellite cells from branchiomeric head muscles of a 9 week-old rat. The muscles originate from different branchial arches. Subsequently, the satellite cells are cultured on a spot coating of millimeter size to study their differentiation. This approach avoid

  10. A myogenic precursor cell that could contribute to regeneration in zebrafish and its similarity to the satellite cell.

    Science.gov (United States)

    Siegel, Ashley L; Gurevich, David B; Currie, Peter D

    2013-09-01

    The cellular basis for mammalian muscle regeneration has been an area of intense investigation over recent decades. The consensus is that a specialized self-renewing stem cell, termed the satellite cell, plays a major role during the process of regeneration in amniotes. How broadly this mechanism is deployed within the vertebrate phylogeny remains an open question. A lack of information on the role of cells analogous to the satellite cell in other vertebrate systems is even more unexpected given the fact that satellite cells were first designated in frogs. An intriguing aspect of this debate is that a number of amphibia and many fish species exhibit epimorphic regenerative processes in specific tissues, whereby regeneration occurs by the dedifferentiation of the damaged tissue, without deploying specialized stem cell populations analogous to satellite cells. Hence, it is feasible that a cellular process completely distinct from that deployed during mammalian muscle regeneration could operate in species capable of epimorphic regeneration. In this minireview, we examine the evidence for the broad phylogenetic distribution of satellite cells. We conclude that, in the vertebrates examined so far, epimorphosis does not appear to be deployed during muscle regeneration, and that analogous cells expressing similar marker genes to satellite cells appear to be deployed during the regenerative process. However, the functional definition of these cells as self-renewing muscle stem cells remains a final hurdle to the definition of the satellite cell as a generic vertebrate cell type.

  11. Position surveillance using one active ranging satellite and time-of-arrival of a signal from an independent satellite

    Science.gov (United States)

    Anderson, R. E.; Frey, R. L.; Lewis, J. R.

    1980-01-01

    Position surveillance using one active ranging/communication satellite and the time-of-arrival of signals from an independent satellite was shown to be feasible and practical. A towboat on the Mississippi River was equipped with a tone-code ranging transponder and a receiver tuned to the timing signals of the GOES satellite. A similar transponder was located at the office of the towing company. Tone-code ranging interrogations were transmitted from the General Electric Earth Station Laboratory through ATS-6 to the towboat and to the ground truth transponder office. Their automatic responses included digital transmissions of time-of-arrival measurements derived from the GOES signals. The Earth Station Laboratory determined ranges from the satellites to the towboat and computed position fixes. The ATS-6 lines-of-position were more precise than 0.1 NMi, 1 sigma, and the GOES lines-of-position were more precise than 1.6 NMi, 1 sigma. High quality voice communications were accomplished with the transponders using a nondirectional antenna on the towboat. The simple and effective surveillance technique merits further evaluation using operational maritime satellites.

  12. Catalogue of satellite photography of the active volcanoes of the world

    Science.gov (United States)

    Heiken, G.

    1976-01-01

    A catalogue is presented of active volcanoes as viewed from Earth-orbiting satellites. The listing was prepared of photographs, which have been screened for quality, selected from the earth resources technology satellite (ERTS) and Skylab, Apollo and Gemini spacecraft. There is photography of nearly every active volcano in the world; the photographs are particularly useful for regional studies of volcanic fields.

  13. Satellite cell heterogeneity revealed by G-Tool, an open algorithm to quantify myogenesis through colony-forming assays

    Directory of Open Access Journals (Sweden)

    Ippolito Joseph

    2012-06-01

    Full Text Available Abstract Background Muscle growth and repair is accomplished by the satellite cell pool, a self-renewing population of myogenic progenitors. Functional heterogeneity within the satellite cell compartment and changes in potential with experimental intervention can be revealed by in vitro colony-forming cell (CFC assays, however large numbers of colonies need to be assayed to give meaningful data, and manually quantifying nuclei and scoring markers of differentiation is experimentally limiting. Methods We present G-Tool, a multiplatform (Java open-source algorithm that analyzes an ensemble of fluorescent micrographs of satellite cell-derived colonies to provide quantitative and statistically meaningful metrics of myogenic potential, including proliferation capacity and propensity to differentiate. Results We demonstrate the utility of G-Tool in two applications: first, we quantify the response of satellite cells to oxygen concentration. Compared to 3% oxygen which approximates tissue levels, we find that 21% oxygen, the ambient level, markedly limits the proliferative potential of transit amplifying progeny but at the same time inhibits the rate of terminal myogenic differentiation. We also test whether satellite cells from different muscles have intrinsic differences that can be read out in vitro. Compared to masseter, dorsi, forelimb and hindlimb muscles, we find that the diaphragm satellite cells have significantly increased proliferative potential and a reduced propensity to spontaneously differentiate. These features may be related to the unique always-active status of the diaphragm. Conclusions G-Tool facilitates consistent and reproducible CFC analysis between experiments and individuals. It is released under an open-source license that enables further development by interested members of the community.

  14. Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish.

    Science.gov (United States)

    Berberoglu, Michael A; Gallagher, Thomas L; Morrow, Zachary T; Talbot, Jared C; Hromowyk, Kimberly J; Tenente, Inês M; Langenau, David M; Amacher, Sharon L

    2017-04-15

    Satellite cells, also known as muscle stem cells, are responsible for skeletal muscle growth and repair in mammals. Pax7 and Pax3 transcription factors are established satellite cell markers required for muscle development and regeneration, and there is great interest in identifying additional factors that regulate satellite cell proliferation, differentiation, and/or skeletal muscle regeneration. Due to the powerful regenerative capacity of many zebrafish tissues, even in adults, we are exploring the regenerative potential of adult zebrafish skeletal muscle. Here, we show that adult zebrafish skeletal muscle contains cells similar to mammalian satellite cells. Adult zebrafish satellite-like cells have dense heterochromatin, express Pax7 and Pax3, proliferate in response to injury, and show peak myogenic responses 4-5 days post-injury (dpi). Furthermore, using a pax7a-driven GFP reporter, we present evidence implicating satellite-like cells as a possible source of new muscle. In lieu of central nucleation, which distinguishes regenerating myofibers in mammals, we describe several characteristics that robustly identify newly-forming myofibers from surrounding fibers in injured adult zebrafish muscle. These characteristics include partially overlapping expression in satellite-like cells and regenerating myofibers of two RNA-binding proteins Rbfox2 and Rbfoxl1, known to regulate embryonic muscle development and function. Finally, by analyzing pax7a; pax7b double mutant zebrafish, we show that Pax7 is required for adult skeletal muscle repair, as it is in the mouse.

  15. Comparison and analysis of Wuding and avian chicken skeletal muscle satellite cells.

    Science.gov (United States)

    Tong, H Q; Jiang, Z Q; Dou, T F; Li, Q H; Xu, Z Q; Liu, L X; Gu, D H; Rong, H; Huang, Y; Chen, X B; Jois, M; Te Pas, M F W; Ge, C R; Jia, J J

    2016-10-05

    Chicken skeletal muscle satellite cells are located between the basement membrane and the sarcolemma of mature muscle fibers. Avian broilers have been genetically selected based on their high growth velocity and large muscle mass. The Wuding chicken is a famous local chicken in Yunnan Province that undergoes non-selection breeding and is slow growing. In this study, we aimed to explore differences in the proliferation and differentiation properties of satellite cells isolated from the two chicken breeds. Using immunofluorescence, hematoxylin-eosin staining and real-time polymerase chain reaction analysis, we analyzed the in vitro characteristics of proliferating and differentiating satellite cells isolated from the two chicken breeds. The growth curve of satellite cells was S-shaped, and cells from Wuding chickens entered the logarithmic phase and plateau phase 1 day later than those from Avian chicken. The results also showed that the two skeletal muscle satellite cell lines were positive for Pax7, MyoD and IGF-1. The expression of Pax7 followed a downward trend, whereas that of MyoD and IGF-1 first increased and subsequently decreased in cells isolated from the two chickens. These data indicated that the skeletal muscle satellite cells of Avian chicken grow and differentiate faster than did those of Wuding chickens. We suggest that the methods of breeding selection applied to these breeds regulate the characteristics of skeletal muscle satellite cells to influence muscle growth.

  16. Phenotypic changes in satellite glial cells in cultured trigeminal ganglia.

    Science.gov (United States)

    Belzer, Vitali; Shraer, Nathanael; Hanani, Menachem

    2010-11-01

    Satellite glial cells (SGCs) are specialized cells that form a tight sheath around neurons in sensory ganglia. In recent years, there is increasing interest in SGCs and they have been studied in both intact ganglia and in tissue culture. Here we studied phenotypic changes in SGCs in cultured trigeminal ganglia from adult mice, containing both neurons and SGCs, using phase optics, immunohistochemistry and time-lapse photography. Cultures were followed for up to 14 days. After isolation virtually every sensory neuron is ensheathed by SGCs, as in the intact ganglia. After one day in culture, SGCs begin to migrate away from their parent neurons, but in most cases the neurons still retain an intact glial cover. At later times in culture, there is a massive migration of SGCs away from the neurons and they undergo clear morphological changes, and at 7 days they become spindle-shaped. At one day in culture SGCs express the glial marker glutamine synthetase, and also the purinergic receptor P2X7. From day 2 in culture the glutamine synthetase expression is greatly diminished, whereas that of P2X7 is largely unchanged. We conclude that SGCs retain most of their characteristics for about 24 h after culturing, but undergo major phenotypic changes at later times.

  17. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    Science.gov (United States)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  18. Transcription of Satellite III non-coding RNAs is a general stress response in human cells

    Science.gov (United States)

    Valgardsdottir, Rut; Chiodi, Ilaria; Giordano, Manuela; Rossi, Antonio; Bazzini, Silvia; Ghigna, Claudia; Riva, Silvano; Biamonti, Giuseppe

    2008-01-01

    In heat-shocked human cells, heat shock factor 1 activates transcription of tandem arrays of repetitive Satellite III (SatIII) DNA in pericentromeric heterochromatin. Satellite III RNAs remain associated with sites of transcription in nuclear stress bodies (nSBs). Here we use real-time RT-PCR to study the expression of these genomic regions. Transcription is highly asymmetrical and most of the transcripts contain the G-rich strand of the repeat. A low level of G-rich RNAs is detectable in unstressed cells and a 104-fold induction occurs after heat shock. G-rich RNAs are induced by a wide range of stress treatments including heavy metals, UV-C, oxidative and hyper-osmotic stress. Differences exist among stressing agents both for the kinetics and the extent of induction (>100- to 80.000-fold). In all cases, G-rich transcripts are associated with nSBs. On the contrary, C-rich transcripts are almost undetectable in unstressed cells and modestly increase after stress. Production of SatIII RNAs after hyper-osmotic stress depends on the Tonicity Element Binding Protein indicating that activation of the arrays is triggered by different transcription factors. This is the first example of a non-coding RNA whose transcription is controlled by different transcription factors under different growth conditions. PMID:18039709

  19. Effects of Chronic Blood-Flow Restriction Exercise on Skeletal Muscle Size and Myogenic Satellite Cell Expression

    DEFF Research Database (Denmark)

    Aagaard, Per; Jacobsen, Mikkel; Jensen, Kasper Yde

    2016-01-01

    of continued sports activity, resulting in visible hypertrophy of his left leg. AIM: To study the effect of chronic blood-flow restricted (BFR) exercise conditions on skeletal muscle size and myogenic satellite cell (SC) expression in an arterio-venous shunt patient. METHODS: Muscle biopsies were obtained from......-regulation in myogenic satellite cell activity within all stages of the cell cycle, which was accompanied by substantial muscle hypertrophy. Specifically, muscle fiber cross-sectional area (40%) and myonuclei number (15%) were elevated in the affected leg, together with an elevated myonuclear domain (20%). This single......-case study confirms previous result from our Lab demonstrating that blood-flow restricted muscle exercise leads to a marked activation of myogenic SCs, upregulated myonuclei number and marked myofiber hypertrophy....

  20. The effect of temperature on proliferation and differentiation of chicken skeletal muscle satellite cells isolated from different muscle types.

    Science.gov (United States)

    Harding, Rachel L; Halevy, Orna; Yahav, Shlomo; Velleman, Sandra G

    2016-04-01

    Skeletal muscle satellite cells are a muscle stem cell population that mediate posthatch muscle growth and repair. Satellite cells respond differentially to environmental stimuli based upon their fiber-type of origin. The objective of this study was to determine how temperatures below and above the in vitro control of 38°C affected the proliferation and differentiation of satellite cells isolated from the chicken anaerobic pectoralis major (p. major) or mixed fiber biceps femoris (b.femoris) muscles. The satellite cells isolated from the p. major muscle were more sensitive to both cold and hot temperatures compared to the b.femoris satellite cells during both proliferation and differentiation. The expressions of myogenic regulatory transcription factors were also different between satellite cells from different fiber types. MyoD expression, which partially regulates proliferation, was generally expressed at higher levels in p. major satellite cells compared to the b.femoris satellite cells from 33 to 43°C during proliferation and differentiation. Similarly, myogenin expression, which is required for differentiation, was also expressed at higher levels in p. major satellite cells in response to both cold and hot temperatures during proliferation and differentiation than b. femoris satellite cells. These data demonstrate that satellite cells from the anaerobic p. major muscle are more sensitive than satellite cells from the aerobic b. femoris muscle to both hot and cold thermal stress during myogenic proliferation and differentiation.

  1. Defining a role for non-satellite stem cells in the regulation of muscle repair following exercise

    Directory of Open Access Journals (Sweden)

    Marni D. Boppart

    2013-11-01

    Full Text Available Skeletal muscle repair is essential for effective remodeling, tissue maintenance, and initiation of beneficial adaptations post-eccentric exercise. A series of well characterized events, such as recruitment of immune cells and activation of satellite cells, constitute the basis for muscle regeneration. However, details regarding the fine-tuned regulation of this process in response to different types of injury are open for investigation. Muscle-resident non-myogenic, non-satellite stem cells expressing conventional mesenchymal stem cell (MSC markers, have the potential to significantly contribute to regeneration given the role for bone marrow-derived MSCs in whole body tissue repair in response to injury and disease. The purpose of this mini-review is to highlight a regulatory role for non-satellite stem cells in the process of skeletal muscle healing post-eccentric exercise. The non-myogenic, non-satellite stem cell fraction will be defined, its role in tissue repair will be briefly reviewed, and recent studies demonstrating a contribution to eccentric exercise-induced regeneration will be presented.  

  2. Satellite Cells CD44 Positive Drive Muscle Regeneration in Osteoarthritis Patients

    Directory of Open Access Journals (Sweden)

    Manuel Scimeca

    2015-01-01

    Full Text Available Age-related bone diseases, such as osteoarthritis and osteoporosis, are strongly associated with sarcopenia and muscle fiber atrophy. In this study, we analyzed muscle biopsies in order to demonstrate that, in osteoarthritis patients, both osteophytes formation and regenerative properties of muscle stem cells are related to the same factors. In particular, thanks to immunohistochemistry, transmission electron microscopy, and immunogold labeling we investigated the role of BMP-2 in muscle stem cells activity. In patients with osteoarthritis both immunohistochemistry and transmission electron microscopy allowed us to note a higher number of CD44 positive satellite muscle cells forming syncytium. Moreover, the perinuclear and cytoplasmic expression of BMP-2 assessed by in situ molecular characterization of satellite cells syncytia suggest a very strict correlation between BMP-2 expression and muscle regeneration capability. Summing up, the higher BMP-2 expression in osteoarthritic patients could explain the increased bone mineral density as well as decreased muscle atrophy in osteoarthrosic patients. In conclusion, our results suggest that the control of physiological BMP-2 balance between bone and muscle tissues may be considered as a potential pharmacological target in bone-muscle related pathology.

  3. Mobile communications by satellite in Europe - Overview of ESA activities

    Science.gov (United States)

    Rogard, R.; Jongejans, A.; Bartholome, P.

    ESA is conducting studies aimed at the definition of a Land Mobile Satellite System for digital communications within the Western European region, in view of recent market studies indicating the existence of substantial demand for the provision of mobile communications services by satellite. Attention is presently given to the 'Prodat' low-rate system and its ARQ-coding scheme, Prodat's CDMA return link (noting interference protection and spectrum use efficiency criteria) and the aims of Prodat performance trials.

  4. File list: Oth.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 TFs and others Muscle Satellite Cells, Skeletal... Muscle SRX818829,SRX818831,SRX818828,SRX818830 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  5. File list: His.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Histone Muscle Satellite Cells, Skeletal... Muscle SRX818827,SRX818825,SRX818826 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  6. File list: ALL.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 All antigens Muscle Satellite Cells, Skeletal...18833,SRX818834 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  7. File list: ALL.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 All antigens Muscle Satellite Cells, Skeletal...18834,SRX818832 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  8. File list: ALL.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 All antigens Muscle Satellite Cells, Skeletal...18830,SRX818832 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  9. File list: NoD.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 No description Muscle Satellite Cells, Skeletal... Muscle http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  10. File list: Unc.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Unclassified Muscle Satellite Cells, Skeletal... Muscle http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  11. File list: Pol.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 RNA polymerase Muscle Satellite Cells, Skeletal... Muscle http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  12. File list: DNS.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 DNase-seq Muscle Satellite Cells, Skeletal... Muscle http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  13. File list: Oth.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 TFs and others Muscle Satellite Cells, Skeletal... Muscle SRX818829,SRX818828,SRX818830,SRX818831 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  14. File list: NoD.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 No description Muscle Satellite Cells, Skeletal... Muscle http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  15. File list: Unc.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Unclassified Muscle Satellite Cells, Skeletal... Muscle http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  16. File list: Oth.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 TFs and others Muscle Satellite Cells, Skeletal... Muscle SRX818831,SRX818829,SRX818828,SRX818830 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  17. File list: NoD.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 No description Muscle Satellite Cells, Skeletal... Muscle http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  18. File list: InP.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Input control Muscle Satellite Cells, Skeletal... Muscle SRX818833,SRX818834,SRX818832 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  19. File list: His.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Histone Muscle Satellite Cells, Skeletal... Muscle SRX818827,SRX818825,SRX818826 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  20. File list: DNS.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 DNase-seq Muscle Satellite Cells, Skeletal... Muscle http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  1. File list: ALL.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 All antigens Muscle Satellite Cells, Skeletal...18832,SRX818833 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  2. File list: NoD.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 No description Muscle Satellite Cells, Skeletal... Muscle http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  3. File list: His.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Histone Muscle Satellite Cells, Skeletal... Muscle SRX818826,SRX818827,SRX818825 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  4. File list: InP.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Input control Muscle Satellite Cells, Skeletal Muscle... SRX818834,SRX818832,SRX818833 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  5. File list: Pol.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 RNA polymerase Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  6. File list: DNS.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 DNase-seq Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  7. File list: Pol.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 RNA polymerase Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  8. File list: Pol.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 RNA polymerase Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  9. File list: Unc.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Unclassified Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  10. File list: Oth.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 TFs and others Muscle Satellite Cells, Skeletal Muscle... SRX818829,SRX818828,SRX818830,SRX818831 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  11. File list: Unc.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Unclassified Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  12. File list: InP.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Input control Muscle Satellite Cells, Skeletal Muscle... SRX818832,SRX818833,SRX818834 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Myo.50.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  13. File list: InP.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Input control Muscle Satellite Cells, Skeletal Muscle... SRX818833,SRX818834,SRX818832 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Myo.05.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  14. File list: DNS.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 DNase-seq Muscle Satellite Cells, Skeletal Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Myo.20.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  15. File list: His.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle mm9 Histone Muscle Satellite Cells, Skeletal Muscle... SRX818827,SRX818826,SRX818825 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.10.AllAg.Satellite_Cells,_Skeletal_Muscle.bed ...

  16. A simplified but robust method for the isolation of avian and mammalian muscle satellite cells

    Directory of Open Access Journals (Sweden)

    Baquero-Perez Belinda

    2012-06-01

    Full Text Available Abstract Background Current methods of isolation of muscle satellite cells from different animal species are highly variable making inter-species comparisons problematic. This variation mainly stems from the use of different proteolytic enzymes to release the satellite cells from the muscle tissue (sometimes a single enzyme is used but often a combination of enzymes is preferred and the different extracellular matrix proteins used to coat culture ware. In addition, isolation of satellite cells is frequently laborious and sometimes may require pre-plating of the cell preparation on uncoated flasks or Percoll centrifugation to remove contaminating fibroblasts. The methodology employed to isolate and culture satellite cells in vitro can critically determine the fusion of myoblasts into multi-nucleated myotubes. These terminally differentiated myotubes resemble mature myofibres in the muscle tissue in vivo, therefore optimal fusion is a keystone of in vitro muscle culture. Hence, a simple method of muscle satellite cell isolation and culture of different vertebrate species that can result in a high fusion rate is highly desirable. Results We demonstrate here a relatively simple and rapid method of isolating highly enriched muscle satellite cells from different avian and mammalian species. In brief, muscle tissue was mechanically dissociated, digested with a single enzyme (pronase, triturated with a 10-ml pipette, filtered and directly plated onto collagen coated flasks. Following this method and after optimization of the cell culture conditions, excellent fusion rates were achieved in the duck, chicken, horse and cow (with more than 50% cell fusion, and to a lesser extent pig, pointing to pronase as a highly suitable enzyme to release satellite cells from muscle tissue. Conclusions Our simplified method presents a quick and simple alternative to isolating highly enriched muscle satellite cell cultures which can subsequently rapidly differentiate

  17. Satellited 4q identified in amniotic fluid cells

    Energy Technology Data Exchange (ETDEWEB)

    Miller, I.; Hsieh, C.L.; Songster, G. [Stanford Univ. Medical Center, Stanford, CA (United States)] [and others

    1995-01-16

    Extra material was identified on the distal long arm of a chromosome 4 in an amniotic fluid specimen sampled at 16.6 weeks of gestational age. There was no visible loss of material from chromosome 4, and no evidence for a balanced rearrangement. The primary counseling issue in this case was advanced maternal age. Ultrasound findings were normal, and family history was unremarkable. The identical 4qs chromosome was observed in cells from a paternal peripheral blood specimen and appeared to be an unbalanced rearrangement. This extra material was NOR positive in lymphocytes from the father, but was negative in the fetal amniocytes. Father`s relatives were studied to verify the familial origin of this anomaly. In situ hybridization with both exon and intron sequences of ribosomal DNA demonstrated that ribosomal DNA is present at the terminus of the 4qs chromosome in the fetus, father, and paternal grandmother. This satellited 4q might have been derived from a translocation event that resulted in very little or no loss from the 4q and no specific phenotype. This derivative chromosome 4 has been inherited through at least 3 generations of phenotypically normal individuals. 8 refs., 3 figs.

  18. MicroRNA-128 regulates the proliferation and differentiation of bovine skeletal muscle satellite cells by repressing Sp1.

    Science.gov (United States)

    Dai, Yang; Zhang, Wei Ran; Wang, Yi Min; Liu, Xin Feng; Li, Xin; Ding, Xiang Bin; Guo, Hong

    2016-03-01

    MicroRNAs (miRNAs) play essential roles in muscle cell proliferation and differentiation. The muscle-specific miRNAs miR-1 and miR-206 have been shown to regulate muscle development and promote myogenic differentiation; however, it is likely that a number of other miRNAs play important roles in regulating myogenesis as well. microRNA-128 (miR-128) has been reported to be highly expressed in brain and skeletal muscle, and we found that miR-128 is also up-regulated during bovine skeletal muscle satellite cell differentiation using microarray analysis and qRT-PCR. However, little is known about the functions of miR-128 in bovine skeletal muscle satellite cell development. In this study, we investigated the biological functions of miR-128 in bovine skeletal muscle cell development. Using a dual-luciferase reporter assay, we confirmed that miR-128 regulates the Sp1 gene. Over-expression of miR-128 reduced Sp1 protein levels and inhibited muscle satellite cell proliferation and differentiation. Inhibition of miR-128 increased Sp1 protein levels and promoted muscle satellite cell differentiation but also suppressed proliferation. Changes in miR-128 and Sp1 expression levels also affected the protein levels of MyoD and CDKN1A. Sp1, an activator of MyoD and a suppressor of CDKN1A, plays an important role in bovine muscle cell proliferation and differentiation. The results of our study reveal a mechanism by which miR-128 regulates bovine skeletal muscle satellite cell proliferation and myogenic differentiation via Sp1.

  19. Theoretical Investigation of Laser-Radiation Effects on Satellite Solar Cells

    Science.gov (United States)

    Abdel-Hadi, Yasser; El-Hameed, Afaf; Hamdy, Ola

    This research concerns with the studying of laser-powered solar panels for space applications. A model describing the laser effects on satellite solar cell has been developed. These effects are studied theoretically in order to determine the performance limits of the solar cells when they are powered by laser radiation during the satellite eclipse. A comparison between some different common types of the solar cells used for these purpose is considered in this study. The obtained results are reported to optimize the use of laser-powered satellites.

  20. 负荷运动对人体骨骼肌卫星细胞的影响%Affect Human Skeletal Muscle Satellite Cells Analysis of the Load Movement

    Institute of Scientific and Technical Information of China (English)

    余群; 王丽平; 翁锡全

    2014-01-01

    骨骼肌在运动损伤、发育和重建等过程中卫星细胞具有重要的生理作用。适宜的运动训练可以激活肌卫星细胞,使之增殖并向成肌的肌卫星细胞转化。文章阐述了骨骼肌卫星细胞的特征、负荷运动对肌卫星细胞的影响,以及运动对卫星细胞的激活与增殖的作用机制;并对人体衰老过程中肌卫星细胞的变化规律进行分析与探讨。%Skeletal muscle satellite cells in skeletal muscle growth and development ,physiology and pathology of skeletal mus‐cle damage repair and remodeling process plays an important role .Appropriate exercise training can activate satellite cells ,satellite cells proliferate and promote myoblast differentiation .In addition ,skeletal muscle satellite cells are generally in a resting state ,it will not participate in the synthesis of gene expression and protein .But it can be activated in sports injuries ,mechanical traction or weight training and other specialized stress during differentiation and fusion into myotubes able to participate in the repair of skele ‐tal muscle .In this paper ,the origins of skeletal muscle satellite cells ,morphological characteristics and different exercise training on human skeletal muscle satellite cells as well as the impact of exercise training on skeletal muscle satellite cell activation ,prolif‐eration and changes of the aging process of skeletal muscle satellite cells were analyzed and discussion .

  1. Molecular and functional heterogeneity of early postnatal porcine satellite cell populations is associated with bioenergetic profile

    Science.gov (United States)

    Miersch, Claudia; Stange, Katja; Hering, Silvio; Kolisek, Martin; Viergutz, Torsten; Röntgen, Monika

    2017-01-01

    During postnatal development, hyperplastic and hypertrophic processes of skeletal muscle growth depend on the activation, proliferation, differentiation, and fusion of satellite cells (SC). Therefore, molecular and functional SC heterogeneity is an important component of muscle plasticity and will greatly affect long-term growth performance and muscle health. However, its regulation by cell intrinsic and extrinsic factors is far from clear. In particular, there is only minor information on the early postnatal period which is critical for muscle maturation and the establishment of adult SC pools. Here, we separated two SC subpopulations (P40/50, P50/70) from muscle of 4-day-old piglets. Our results characterize P40/50 as homogeneous population of committed (high expression of Myf5), fast-proliferating muscle progenitors. P50/70 constituted a slow-proliferating phenotype and contains high numbers of differentiated SC progeny. During culture, P50/70 is transformed to a population with lower differentiation potential that contains 40% Pax7-positive cells. A reversible state of low mitochondrial activity that results from active down-regulation of ATP-synthase is associated with the transition of some of the P50/70 cells to this more primitive fate typical for a reserve cell population. We assume that P40/50 and P50/70 subpopulations contribute unequally in the processes of myofiber growth and maintenance of the SC pool. PMID:28344332

  2. Mobile satellite communications technology - A summary of NASA activities

    Science.gov (United States)

    Dutzi, E. J.; Knouse, G. H.

    1986-01-01

    Studies in recent years indicate that future high-capacity mobile satellite systems are viable only if certain high-risk enabling technologies are developed. Accordingly, NASA has structured an advanced technology development program aimed at efficient utilization of orbit, spectrum, and power. Over the last two years, studies have concentrated on developing concepts and identifying cost drivers and other issues associated with the major technical areas of emphasis: vehicle antennas, speech compression, bandwidth-efficient digital modems, network architecture, mobile satellite channel characterization, and selected space segment technology. The program is now entering the next phase - breadboarding, development, and field experimentation.

  3. The quasi-parallel lives of satellite cells and atrophying muscle

    Directory of Open Access Journals (Sweden)

    Stefano eBiressi

    2015-07-01

    Full Text Available Skeletal muscle atrophy or wasting accompanies various chronic illnesses and the aging process, thereby reducing muscle function. One of the most important components contributing to effective muscle repair in postnatal organisms, the satellite cells, have recently become the focus of several studies examining factors participating in the atrophic process. We critically examine here the experimental evidence linking satellite cell function with muscle loss in connection with various diseases as well as aging, and in the subsequent recovery process. Several recent reports have investigated the changes in satellite cells in terms of their differentiation and proliferative capacity in response to various atrophic stimuli. In this regard, we review the molecular changes within satellite cells that contribute to their dysfunctional status in atrophy, with the intention of shedding light on novel potential pharmacological targets to counteract the loss of muscle mass.

  4. Communication between neuronal somata and satellite glial cells in sensory ganglia.

    Science.gov (United States)

    Huang, Li-Yen M; Gu, Yanping; Chen, Yong

    2013-10-01

    Studies of the structural organization and functions of the cell body of a neuron (soma) and its surrounding satellite glial cells (SGCs) in sensory ganglia have led to the realization that SGCs actively participate in the information processing of sensory signals from afferent terminals to the spinal cord. SGCs use a variety ways to communicate with each other and with their enwrapped soma. Changes in this communication under injurious conditions often lead to abnormal pain conditions. "What are the mechanisms underlying the neuronal soma and SGC communication in sensory ganglia?" and "how do tissue or nerve injuries affect the communication?" are the main questions addressed in this review. Copyright © 2013 Wiley Periodicals, Inc.

  5. Gap junctional communication between the satellite cells of rat dorsal root ganglia.

    Science.gov (United States)

    Sakuma, E; Wang, H J; Asai, Y; Tamaki, D; Amano, K; Mabuchi, Y; Herbert, D C; Soji, T

    2001-06-01

    Many studies have described the ultrastructure of the dorsal root ganglia in various embryonic and adult animals, but in spite of the efforts of many investigators the functional role of the satellite cells in this tissue is not clearly understood. In this study, we discuss the function of this cell type based on the concept of cell-to-cell interaction through gap junctions. Five male 60 day-old Wistar strain rats were used. All animals were anesthetized with pentobarbital and perfused with glutaraldehyde fixative, then the dorsal root ganglia in levels L4, L5 and L6 were taken from each rat. After postosmication, the specimens were prepared for observation by transmission electron microscopy. All nerve cells were completely surrounded by satellite cell cytoplasmic expansions. The boundaries between adjacent nerve cells and satellite cells were complicated due to the presence of perikaryal projections of nerve cells. Gap junctions which showed the typical trilamellar structure of plasma membranes were found mainly between satellite cell processes belonging to the same nerve cell. On the other hand, some gap junctions were found between the satellite cell projections belonging to different nerve cells. The size of the gap junctions ranged from 300 to 400 nm. No gap junctions were associated with the plasma membrane of any nerve cell. In conclusion, only satellite cells can share free transcellular exchange of cytoplasmic molecules such as ions, amino acids, sugars and several second messengers including cAMP and inositol 1,4,5-triphosphate by way of gap junctions in dorsal root ganglia.

  6. An Active K-Band Receive Slot Array for Mobile Satellite Communications

    Science.gov (United States)

    Tulintseff, A. N.; Lee, K. A.; Sukamto, L. M.; Chew, W.

    1994-01-01

    An active receive slot array has been developed for operation in the downlink frequency band, 19.914-20.064 GHz, of NASA's Advanced Communication Technology Satellite (ACTS) for the ACTS Mobile Terminal (AMT) project.

  7. Optimized High Temperature PEM Fuel Cell & High Pressure PEM Electrolyser for Regenerative Fuel Cell Systems in GEO Telecommunication Satellites

    Directory of Open Access Journals (Sweden)

    Farnes Jarle

    2017-01-01

    Full Text Available Next generation telecommunication satellites will demand increasingly more power. Power levels up to 50 kW are foreseen for the next decades. Battery technology that can sustain up to 50 kW for eclipse lengths of up to 72 minutes will represent a major impact on the total mass of the satellite, even with new Li-ion battery technologies. Regenerative fuel cell systems (RFCS were identified years ago as a possible alternative to rechargeable batteries. CMR Prototech has investigated this technology in a series of projects initiated by ESA focusing on both the essential fuel cell technology, demonstration of cycle performance of a RFCS, corresponding to 15 years in orbit, as well as the very important reactants storage systems. In the last two years the development has been focused towards optimising the key elements of the RFCS; the HTPEM fuel cell and the High Pressure PEM electrolyser. In these ESA activities the main target has been to optimise the design by reducing the mass and at the same time improve the performance, thus increasing the specific energy. This paper will present the latest development, including the main results, showing that significant steps have been taken to increase TRL on these key components.

  8. Reduced satellite cell population may lead to contractures in children with cerebral palsy.

    Science.gov (United States)

    Smith, Lucas R; Chambers, Henry G; Lieber, Richard L

    2013-03-01

    Satellite cells are the stem cells residing in muscle responsible for skeletal muscle growth and repair. Skeletal muscle in cerebral palsy (CP) has impaired longitudinal growth that results in muscle contractures. We hypothesized that the satellite cell population would be reduced in contractured muscle. We compared the satellite cell populations in hamstring muscles from participants with CP contracture (n=8; six males, two females; age range 6-15y; Gross Motor Function Classification System [GMFCS] levels II-V; 4 with hemiplegia, 4 with diplegia) and from typically developing participants (n=8; six males, two females, age range 15-18y). Muscle biopsies were extracted from the gracilis and semitendinosus muscles and mononuclear cells were isolated. Cell surface markers were stained with fluorescently conjugated antibodies to label satellite cells (neural cell adhesion molecule) and inflammatory and endothelial cells (CD34 and CD4 respectively). Cells were analyzed using flow cytometry to determine cell populations. After gating for intact cells a mean of 12.8% (SD 2.8%) were determined to be satellite cells in typically developing children, but only 5.3% (SD 2.3%; p0.05) suggesting the isolation procedure was valid. A reduced satellite cell population may account for the decreased longitudinal growth of muscles in CP that develop into fixed contractures or the decreased ability to strengthen muscle in CP. This suggests a unique musculoskeletal disease mechanism and provides a potential therapeutic target for debilitating muscle contractures. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  9. Proton irradiation effects of amorphous silicon solar cell for solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yousuke; Oshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sasaki, Susumu; Kuroda, Hideo; Ushirokawa, Akio

    1997-03-01

    Flexible amorphous silicon(fa-Si) solar cell module, a thin film type, is regarded as a realistic power generator for solar power satellite. The radiation resistance of fa-Si cells was investigated by the irradiations of 3,4 and 10 MeV protons. The hydrogen gas treatment of the irradiated fa-Si cells was also studied. The fa-Si cell shows high radiation resistance for proton irradiations, compared with a crystalline silicon solar cell. (author)

  10. Temperature effect on proliferation and differentiation of satellite cells from turkeys with different growth rates.

    Science.gov (United States)

    Clark, D L; Coy, C S; Strasburg, G M; Reed, K M; Velleman, S G

    2016-04-01

    Poultry selected for growth have an inefficient thermoregulatory system and are more sensitive to temperature extremes. Satellite cells are precursors to skeletal muscle and mediate all posthatch muscle growth. Their physiological functions are affected by temperature. The objective of the current study was to determine how temperature affects satellite cells isolated from the pectoralis major (p. major) muscle (breast muscle) of turkeys selected for increased 16 wk body weight (F line) in comparison to a randombred control line (RBC2) from which the F line originated. Pectoralis major muscle satellite cells were thermally challenged by culturing between 33°C and 43°C to analyze the effects of cold and heat on proliferation and differentiation as compared to control temperature of 38°C. Expression levels of myogenic regulatory factors: myogenic differentiation factor 1 (MYOD1) and myogenin (MYOG) were quantified by quantitative polymerase chain reaction (qPCR). At all sampling times, proliferation increased at a linear rate across temperature in both the RBC2 and F lines. Differentiation also increased at a linear rate across temperature from 33 to 41°C at all sampling times in both the F and RBC2 lines. Satellite cells isolated from F line turkeys were more sensitive to both hot and cold temperatures as proliferation and differentiation increased to a greater extent across temperature (33 to 43°C) when compared with the RBC2 line. Expression of MYOD1 and MYOG increased as temperatures increased from 33 to 41°C at all sampling times in both the F and RBC2 lines. These results demonstrate that satellite cell function is sensitive to both cold and hot temperatures and p. major muscle satellite cells from F line turkeys are more sensitive to temperature extremes than RBC2 satellite cells.

  11. Active subspace approach to reliability and safety assessments of small satellite separation

    Science.gov (United States)

    Hu, Xingzhi; Chen, Xiaoqian; Zhao, Yong; Tuo, Zhouhui; Yao, Wen

    2017-02-01

    Ever-increasing launch of small satellites demands an effective and efficient computer-aided analysis approach to shorten the ground test cycle and save the economic cost. However, the multiple influencing factors hamper the efficiency and accuracy of separation reliability assessment. In this study, a novel evaluation approach based on active subspace identification and response surface construction is established and verified. The formulation of small satellite separation is firstly derived, including equations of motion, separation and gravity forces, and quantity of interest. The active subspace reduces the dimension of uncertain inputs with minimum precision loss and a 4th degree multivariate polynomial regression (MPR) using cross validation is hand-coded for the propagation and error analysis. A common spring separation of small satellites is employed to demonstrate the accuracy and efficiency of the approach, which exhibits its potential use in widely existing needs of satellite separation analysis.

  12. Influence of skeletal muscle satellite cells implanted into infarcted myocardium on remnant myocyte volumes

    Institute of Scientific and Technical Information of China (English)

    钟竑; 朱洪生; 卫洪超; 张臻

    2003-01-01

    Objective To study the effects of skeletal muscle satellite cells implanted into infarcted myocardium on the volume of remnant myocytes.Methods Thirty-six adult mongrel canines were divided randomly into implantation group and control group. In the implantation group, skeletal muscle satellite cells taken from the gluteus maximus muscles of the dogs were cultured, proliferated and labeled with 4', 6-diamidino-2-phenylindone (DAPI) in vitro. In both groups, a model of acute myocardial infarction was established in every dog. In the implantation group, each dog was injected with M199 solution containing autologous skeletal muscle satellite cells. The dogs in the control group received M199 solution without skeletal muscle satellite cells. The dogs of both groups were killed 2, 4 and 8 weeks after implantation (six dogs in a separate group each time). Both infarcted myocardium and normal myocytes distal from the infracted regions isolated were observed under optical and fluorescent microscope. Their volumes were determined using a confocal microscopy image analysis system and analyzed using SAS. A P<0.05 was considered significant.Results A portion of the implanted cells differentiated into muscle fiber with striations and were connected with intercalated discs. Cross-sectional area and cell volume were increased in normal myocardium. Hypertrophy of remnant myocytes in the infarcted site after skeletal muscle cell implantation was much more evident than in the control group. Cross-sectional area, cell area and cell volume differed significantly from those of the control group (P< 0.05). Hypertrophy of the cells occurred predominantly in terms of width and thickness, whereas cell length remained unchanged. Conclusion Skeletal muscle satellite cells implanted into infarct myocardium, could induce the hypertrophy of remnant myocyte cells in the infarcted site and could also aid in the recovery of the contractile force of the infarcted myocardium.

  13. Enhanced satellite cell proliferation with resistance training in elderly men and women

    DEFF Research Database (Denmark)

    Mackey, Abigail; Esmarck, B; Kadi, F

    2007-01-01

    In addition to the well-documented loss of muscle mass and strength associated with aging, there is evidence for the attenuating effects of aging on the number of satellite cells in human skeletal muscle. The aim of this study was to investigate the response of satellite cells in elderly men...... and women to 12 weeks of resistance training. Biopsies were collected from the m. vastus lateralis of 13 healthy elderly men and 16 healthy elderly women (mean age 76+/-SD 3 years) before and after the training period. Satellite cells were visualized by immunohistochemical staining of muscle cross......-sections with a monoclonal antibody against neural cell adhesion molecule (NCAM) and counterstaining with Mayer's hematoxylin. Compared with the pre-training values, there was a significant increase (Pcells per fiber post-training in males (from 0.11+/-0.03 to 0...

  14. Characterisation of equine satellite cell transcriptomic profile response to β-hydroxy-β-methylbutyrate (HMB).

    Science.gov (United States)

    Szcześniak, Katarzyna A; Ciecierska, Anna; Ostaszewski, Piotr; Sadkowski, Tomasz

    2016-10-01

    β-Hydroxy-β-methylbutyrate (HMB) is a popular ergogenic aid used by human athletes and as a supplement to sport horses, because of its ability to aid muscle recovery, improve performance and body composition. Recent findings suggest that HMB may stimulate satellite cells and affect expressions of genes regulating skeletal muscle cell growth. Despite the scientific data showing benefits of HMB supplementation in horses, no previous study has explained the mechanism of action of HMB in this species. The aim of this study was to reveal the molecular background of HMB action on equine skeletal muscle by investigating the transcriptomic profile changes induced by HMB in equine satellite cells in vitro. Upon isolation from the semitendinosus muscle, equine satellite cells were cultured until the 2nd day of differentiation. Differentiating cells were incubated with HMB for 24 h. Total cellular RNA was isolated, amplified, labelled and hybridised to microarray slides. Microarray data validation was performed with real-time quantitative PCR. HMB induced differential expressions of 361 genes. Functional analysis revealed that the main biological processes influenced by HMB in equine satellite cells were related to muscle organ development, protein metabolism, energy homoeostasis and lipid metabolism. In conclusion, this study demonstrated for the first time that HMB has the potential to influence equine satellite cells by controlling global gene expression. Genes and biological processes targeted by HMB in equine satellite cells may support HMB utility in improving growth and regeneration of equine skeletal muscle; however, the overall role of HMB in horses remains equivocal and requires further proteomic, biochemical and pharmacokinetic studies.

  15. The differential proliferative ability of satellite cells in Lantang and Landrace pigs.

    Science.gov (United States)

    Wang, Xiu-qi; Yang, Wei-jun; Yang, Zhou; Shu, Gang; Wang, Song-bo; Jiang, Qing-yan; Yuan, Li; Wu, Tong-shan

    2012-01-01

    Here, for the first time, we evaluate the hypothesis that the proliferative abilities of satellite cells (SCs) isolated from Lantang (indigenous Chinese pigs) and Landrace pigs, which differ in muscle characteristics, are different. SCs were isolated from the longissimus dorsi muscle of neonatal Lantang and Landrace pigs. Proliferative ability was estimated by the count and proliferative activity of viable cells using a hemocytometer and MTT assay at different time points after seeding, respectively. Cell cycle information was detected by flow cytometry. Results showed that there was a greater (PLandrace pigs after 72 h of culture. The percentage of cell population in S phase and G(2)/M phases in Lantang pigs were higher (PLandrace pigs. The mRNA abundances of MyoD, Myf5, myogenin and Pax7 in SCs from Lantang pigs were higher (PLandrace pigs. Protein levels of MyoD, myogenin, myostatin, S6K, phosphorylated mTOR and phosphorylated eIF4E were consistent with the corresponding mRNA abundance. Collectively, these findings suggested that SCs in the two breeds present different proliferative abilities, and the proliferative potential of SCs in Lantang pigs is higher than in Landrace pigs.

  16. Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders.

    Science.gov (United States)

    Dayanidhi, Sudarshan; Lieber, Richard L

    2014-11-01

    Satellite cells (SCs) are the muscle stem cells responsible for longitudinal and cross-sectional postnatal growth and repair after injury and which provide new myonuclei when needed. We review their morphology and contribution to development and their role in sarcomere and myonuclear addition. SCs, similar to other tissue stem cells, cycle through different states, such as quiescence, activation, and self-renewal, and thus we consider the signaling mechanisms involved in maintenance of these states. The role of the SC niche and their interactions with other cells, such as fibroblasts and the extracellular matrix, are all emerging as major factors that affect aging and disease. Interestingly, children with cerebral palsy appear to have a reduced SC number, which could play a role in their reduced muscular development and even in muscular contracture formation. Finally, we review the current information on SC dysfunction in children with muscular dystrophy and emerging therapies that target promotion of myogenesis and reduction of fibrosis. © 2014 Wiley Periodicals, Inc.

  17. A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle.

    Science.gov (United States)

    Dubois, Vanessa; Laurent, Michaël R; Sinnesael, Mieke; Cielen, Nele; Helsen, Christine; Clinckemalie, Liesbeth; Spans, Lien; Gayan-Ramirez, Ghislaine; Deldicque, Louise; Hespel, Peter; Carmeliet, Geert; Vanderschueren, Dirk; Claessens, Frank

    2014-07-01

    Androgens have well-established anabolic actions on skeletal muscle, although the direct effects of the androgen receptor (AR) in muscle remain unclear. We generated satellite cell-specific AR-knockout (satARKO) mice in which the AR is selectively ablated in satellite cells, the muscle precursor cells. Total-limb maximal grip strength is decreased by 7% in satARKO mice, with soleus muscles containing ∼10% more type I fibers and 10% less type IIa fibers than the corresponding control littermates. The weight of the perineal levator ani muscle is markedly reduced (-52%). Thus, muscle AR is involved in fiber-type distribution and force production of the limb muscles, while it is a major determinant of the perineal muscle mass. Surprisingly, myostatin (Mstn), a strong inhibitor of skeletal muscle growth, is one of the most androgen-responsive genes (6-fold reduction in satARKO) through direct transcription activation by the AR. Consequently, muscle hypertrophy in response to androgens is augmented in Mstn-knockout mice. Our finding that androgens induce Mstn signaling to restrain their own anabolic actions has implications for the treatment of muscle wasting disorders.-Dubois, V., Laurent, M. R., Sinnesael, M., Cielen, N., Helsen, C., Clinckemalie, L., Spans, L., Gayan-Ramirez, G., Deldicque, L., Hespel, P., Carmeliet, G., Vanderschueren, D., and Claessens, F. A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle.

  18. IMPROVING METHODOLOGICAL STRATEGIES FOR SATELLITE CELLS COUNTING IN HUMAN MUSCLE DURING AGEING

    Directory of Open Access Journals (Sweden)

    Špela Sajko

    2011-05-01

    Full Text Available Stereological methods, based on the optical disector principle and fluorescent staining, were developed for estimating frequency of satellite cells in skeletal muscles. The parameter NL(sc, fib (number of satellite cells per fibre length was compared with the parameter NN(sc, nucl (the percentage of satellite cell nuclei in all muscle nuclei, most often published in the literature, by applying unbiased sampling and counting procedures and using a confocal microscope. The methods were tested in autopsy samples of four young vs. four old human vastus lateralis muscles. Both parameters NL(sc, fib and NN(sc, nucl declined during ageing. However, it appears that the two parameters cannot be substituted one by the other because the number of nuclei per fibre length tends to be increased during aging. Using the introduced methods, it is more straightforward to estimate NL(sc, fib than NN(sc, nucl.

  19. Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence.

    Science.gov (United States)

    Kostallari, Enis; Baba-Amer, Yasmine; Alonso-Martin, Sonia; Ngoh, Pamela; Relaix, Frederic; Lafuste, Peggy; Gherardi, Romain K

    2015-04-01

    The satellite cells, which serve as adult muscle stem cells, are both located beneath myofiber basement membranes and closely associated with capillary endothelial cells. We observed that 90% of capillaries were associated with pericytes in adult mouse and human muscle. During post-natal growth, newly formed vessels with their neuroglial 2 proteoglycan (NG2)-positive pericytes became progressively associated with the post-natal muscle stem cells, as myofibers increased in size and satellite cells entered into quiescence. In vitro, human muscle-derived pericytes promoted myogenic cell differentiation through insulin-like growth factor 1 (IGF1) and myogenic cell quiescence through angiopoietin 1 (ANGPT1). Diphtheria toxin-induced ablation of muscle pericytes in growing mice led both to myofiber hypotrophy and to impaired establishment of stem cells quiescence. Similar effects were observed following conditional in vivo deletion of pericyte Igf1 and Angpt1 genes, respectively. Our data therefore demonstrate that, by promoting post-natal myogenesis and stem cell quiescence, pericytes play a key role in the microvascular niche of satellite cells. © 2015. Published by The Company of Biologists Ltd.

  20. Analytical study of pulsed laser irradiation on some materials used for photovoltaic cells on satellites

    Directory of Open Access Journals (Sweden)

    Afaf M. Abd El-Hameed

    2015-12-01

    Full Text Available The present research concerns on the study of laser-powered solar panels used for space applications. A mathematical model representing the laser effects on semiconductors has been developed. The temperature behavior and heat flow on the surface and through a slab has been studied after exposed to nano-second pulsed laser. The model is applied on two different types of common active semiconductor materials that used for photovoltaic cells fabrication as silicon (Si, and gallium arsenide (GaAs. These materials are used for receivers’ manufacture for laser beamed power in space. Various values of time are estimated to clarify the heat flow through the material sample and generated under the effects of pulsed laser irradiation. These effects are theoretically studied in order to determine the performance limits of the solar cells when they are powered by laser radiation during the satellite eclipse. Moreover, the obtained results are carried out to optimize conversion efficiency of photovoltaic cells and may be helpful to give more explanation for layout of the light-electricity space systems.

  1. Skeletal muscle satellite cells, mitochondria and microRNAs: their involvement in the pathogenesis of ALS

    Directory of Open Access Journals (Sweden)

    Stavroula Tsitkanou

    2016-09-01

    Full Text Available Amyotrophic lateral sclerosis (ALS, also known as motor neurone disease (MND, is a fatal motor neurone disorder. It results in progressive degeneration and death of upper and lower motor neurones, protein aggregation, severe muscle atrophy and respiratory insufficiency. Median survival with ALS is between two to five years from the onset of symptoms. ALS manifests as either familial ALS (FALS (~10% of cases or sporadic ALS (SALS, (~90% of cases. Mutations in the copper/zinc (CuZn superoxide dismutase (SOD1 gene account for ~20% of FALS cases and the mutant SOD1 mouse model has been used extensively to help understand the ALS pathology. As the precise mechanisms causing ALS are not well understood there is presently no cure. Recent evidence suggests that motor neuron degradation may involve a cell non-autonomous phenomenon involving numerous cell types within various tissues. Skeletal muscle is now considered as an important tissue involved in the pathogenesis of ALS by activating a retrograde signalling cascade that degrades motor neurons. Skeletal muscle heath and function are regulated by numerous factors including satellite cells, mitochondria and microRNAs. Studies demonstrate that in ALS these factors show various levels of dysregulation within the skeletal muscle. This review provides an overview of their dysregulation in various ALS models as well as how they may contribute individually and/or synergistically to the ALS pathogenesis.

  2. Analytical study of pulsed laser irradiation on some materials used for photovoltaic cells on satellites

    Science.gov (United States)

    Abd El-Hameed, Afaf M.

    2015-12-01

    The present research concerns on the study of laser-powered solar panels used for space applications. A mathematical model representing the laser effects on semiconductors has been developed. The temperature behavior and heat flow on the surface and through a slab has been studied after exposed to nano-second pulsed laser. The model is applied on two different types of common active semiconductor materials that used for photovoltaic cells fabrication as silicon (Si), and gallium arsenide (GaAs). These materials are used for receivers' manufacture for laser beamed power in space. Various values of time are estimated to clarify the heat flow through the material sample and generated under the effects of pulsed laser irradiation. These effects are theoretically studied in order to determine the performance limits of the solar cells when they are powered by laser radiation during the satellite eclipse. Moreover, the obtained results are carried out to optimize conversion efficiency of photovoltaic cells and may be helpful to give more explanation for layout of the light-electricity space systems.

  3. Can a Satellite Galaxy Merger Explain the Active Past of the Galactic Center?

    CERN Document Server

    Lang, Meagan; Bogdanovic, Tamara; Amaro-Seoane, Pau; Sesana, Alberto

    2011-01-01

    Observations of the Galactic Center (GC) have accumulated a multitude of "forensic" evidence indicating that several million years ago the center of the Milky Way galaxy was teaming with starforming and accretion-powered activity -- this paints a rather different picture from the GC as we understand it today. We examine a possibility that this epoch of activity could have been triggered by the infall of a satellite galaxy into the Milky Way which began at the redshift of 10 and ended few million years ago with a merger of the Galactic supermassive black hole with an intermediate mass black hole brought in by the inspiralling satellite.

  4. Optimized Fast-FISH with a-satellite probes: acceleration by microwave activation

    Directory of Open Access Journals (Sweden)

    Durm M.

    1997-01-01

    Full Text Available It has been shown for several DNA probes that the recently introduced Fast-FISH (fluorescence in situ hybridization technique is well suited for quantitative microscopy. For highly repetitive DNA probes the hybridization (renaturation time and the number of subsequent washing steps were reduced considerably by omitting denaturing chemical agents (e.g., formamide. The appropriate hybridization temperature and time allow a clear discrimination between major and minor binding sites by quantitative fluorescence microscopy. The well-defined physical conditions for hybridization permit automatization of the procedure, e.g., by a programmable thermal cycler. Here, we present optimized conditions for a commercially available X-specific a-satellite probe. Highly fluorescent major binding sites were obtained for 74oC hybridization temperature and 60 min hybridization time. They were clearly discriminated from some low fluorescent minor binding sites on metaphase chromosomes as well as in interphase cell nuclei. On average, a total of 3.43 ± 1.59 binding sites were measured in metaphase spreads, and 2.69 ± 1.00 in interphase nuclei. Microwave activation for denaturation and hybridization was tested to accelerate the procedure. The slides with the target material and the hybridization buffer were placed in a standard microwave oven. After denaturation for 20 s at 900 W, hybridization was performed for 4 min at 90 W. The suitability of a microwave oven for Fast-FISH was confirmed by the application to a chromosome 1-specific a-satellite probe. In this case, denaturation was performed at 630 W for 60 s and hybridization at 90 W for 5 min. In all cases, the results were analyzed quantitatively and compared to the results obtained by Fast-FISH. The major binding sites were clearly discriminated by their brightness

  5. THE IMPROVEMENT OF INFARCTED MYOCARDIAL CONTRACTILE FORCE AFTER AUTOLOGOUS SKELETAL MUSCLE SATELLITE CELL IMPLANTATION

    Institute of Scientific and Technical Information of China (English)

    钟竑; 朱洪生; 张臻

    2002-01-01

    Objective To study the improvement of infarcted myocardial contractile force after autologous skeletal muscle satellite cell implantation via intracoronary arterial perfusion. Methods Skeletal muscle cells were harvested from gluteus max of adult mongrel dogs and the cells were cultured and expanded before being labeled with DAPI (4, 6-diamidino-2-phenylindone). The labeled cells were then implanted into the acute myocardial infarct site via the ligated left anterior descending (LAD) coronary artery. Specimens were taken at 2nd, 4th, 8th week after myoblast implantation for histologic and contractile force evaluation, respectively. Results The satellite cells with fluorescence had been observed in the infarct site and also in papi-llary muscle with consistent oriented direction of host myocardium. A portion of the implanted cells had differen-tiated into muscle fibers. Two weeks after implantation, the myocardial contractile force showed no significant difference between the cell implant group and control group. At 4 and 8 week, the contractile force in the cell implant group was better than that in control group. Conclusion The skeletal muscle satellite cells, implanted into infarct myocardium by intracoronary arterial perfusion, could disseminate through the entire infarcted zone with myocardial regeneration and improve the contractile function of the infarcted myocardium.

  6. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals

    Directory of Open Access Journals (Sweden)

    Y. Y. Liu

    2010-09-01

    Full Text Available Combining information derived from satellite-based passive and active microwave sensors has the potential to offer improved retrievals of surface soil moisture variations at global scales. Here we propose a technique to take advantage of retrieval characteristics of passive (AMSR-E and active (ASCAT microwave satellite estimates over sparse-to-moderately vegetated areas to obtain an improved soil moisture product. To do this, absolute soil moisture values from AMSR-E and relative soil moisture derived from ASCAT are rescaled against a reference land surface model date set using a cumulative distribution function (CDF matching approach. While this technique imposes the bias of the reference to the rescaled satellite products, it adjusts both satellite products to the same range and almost preserves the correlation between satellite products and in situ measurements. Comparisons with in situ data demonstrated that over the regions where the correlation coefficient between rescaled AMSR-E and ASCAT is above 0.65 (hereafter referred to as transitional regions, merging the different satellite products together increases the number of observations while minimally changing the accuracy of soil moisture retrievals. These transitional regions also delineate the boundary between sparsely and moderately vegetated regions where rescaled AMSR-E and ASCAT are respectively used in the merged product. Thus the merged product carries the advantages of better spatial coverage overall and increased number of observations particularly for the transitional regions. The combination approach developed in this study has the potential to be applied to existing microwave satellites as well as to new microwave missions. Accordingly, a long-term global soil moisture dataset can be developed and extended, enhancing basic understanding of the role of soil moisture in the water, energy and carbon cycles.

  7. The effect of nutritional status and muscle fiber type on myogenic satellite cell fate and apoptosis.

    Science.gov (United States)

    Powell, D J; McFarland, D C; Cowieson, A J; Muir, W I; Velleman, S G

    2014-01-01

    Satellite cells (SC) are multipotential stem cells that can be induced by nutrition to alter their cellular developmental fate, which may vary depending on their fiber type origin. The objective of the current study was to determine the effect of restricting protein synthesis on inducing adipogenic transdifferentiation and apoptosis of SC originating from fibers of the fast glycolytic pectoralis major (p. major) and fast oxidative and glycolytic biceps femoris (b. femoris) muscles of the chicken. The availability of the essential sulfur amino acids Met and Cys was restricted to regulate protein synthesis during SC proliferation and differentiation. The SC were cultured and treated with 1 of 6 Met/Cys concentrations: 60/192, 30/96 (control), 7.5/24, 3/9.6, 1/3.2, or 0/0 mg/L. Reductions in Met/Cys concentrations from the control level resulted in increased lipid staining and expression of the adipogenic marker genes peroxisome proliferator-activated receptor gamma and stearoyl-CoA desaturase during differentiation in the p. major SC. Although b. femoris SC had increased lipid staining at lower Met/Cys concentrations, there was no increase in expression of either adipogenic gene. For both muscle types, SC Met/Cys, concentration above the control increased the expression of peroxisome proliferator-activated receptor gamma and stearoyl-CoA desaturase during differentiation. As Met/Cys concentration was decreased during proliferation, a dose-dependent decline in all apoptotic cells occurred except for early apoptotic cells in the p. major, which had no treatment effect (P nutrition on SC transdifferentiation to an adipogenic lineage and apoptosis, and the effect of fiber type on this response in an in vitro context.

  8. Comparison and analysis of Wuding and avian chicken skeletal muscle satellite cells

    NARCIS (Netherlands)

    Tong, H.Q.; Jiang, Z.Q.; Dou, T.F.; Li, Q.H.; Xu, Z.Q.; Liu, L.X.; Gu, D.H.; Rong, H.; Huang, Y.; Chen, X.B.; Jois, M.; Pas, te M.F.W.; Ge, C.R.; Jia, J.J.

    2016-01-01

    Chicken skeletal muscle satellite cells are located between the basement membrane and the sarcolemma of mature muscle fibers. Avian broilers have been genetically selected based on their high growth velocity and large muscle mass. The Wuding chicken is a famous local chicken in Yunnan Province th

  9. Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, Stine Klejs; Knudsen, Inge Skovgaard

    2014-01-01

    Human skeletal muscle satellite cells (SCs) are essential for muscle regeneration and remodeling processes in healthy and clinical conditions involving muscle breakdown. However, the potential influence of protein supplementation on post-exercise SC regulation in human skeletal muscle has not bee...

  10. Reduced satellite cell numbers with spinal cord injury and aging in humans

    NARCIS (Netherlands)

    Verdijk, L.B.; Dirks, M.L.; Snijders, T.; Prompers, J.J.; Beelen, M.; Jonkers, R.A.; Thijssen, D.H.J.; Hopman, M.T.E.; Loon, L.J. van

    2012-01-01

    INTRODUCTION: Both sarcopenia and spinal cord injury (SCI) are characterized by the loss of skeletal muscle mass and function. Despite obvious similarities in atrophy between both models, differences in muscle fiber size and satellite cell content may exist on a muscle fiber type-specific level.

  11. Expression of CCAAT/Enhancer Binding Protein Beta in Muscle Satellite Cells Inhibits Myogenesis in Cancer Cachexia.

    Science.gov (United States)

    Marchildon, François; Lamarche, Émilie; Lala-Tabbert, Neena; St-Louis, Catherine; Wiper-Bergeron, Nadine

    2015-01-01

    Cancer cachexia is a paraneoplastic syndrome that causes profound weight loss and muscle mass atrophy and is estimated to be the cause of up to 30% of cancer deaths. Though the exact cause is unknown, patients with cancer cachexia have increased muscle protein catabolism. In healthy muscle, injury activates skeletal muscle stem cells, called satellite cells, to differentiate and promote regeneration. Here, we provide evidence that this mechanism is inhibited in cancer cachexia due to persistent expression of CCAAT/Enhancer Binding Protein beta (C/EBPβ) in muscle myoblasts. C/EBPβ is a bzip transcription factor that is expressed in muscle satellite cells and is normally downregulated upon differentiation. However, in myoblasts exposed to a cachectic milieu, C/EBPβ expression remains elevated, despite activation to differentiate, resulting in the inhibition of myogenin expression and myogenesis. In vivo, cancer cachexia results in increased number of Pax7+ cells that also express C/EBPβ and the inhibition of normal repair mechanisms. Loss of C/EBPβ expression in primary myoblasts rescues differentiation under cachectic conditions without restoring myotube size, indicating that C/EBPβ is an important inhibitor of myogenesis in cancer cachexia.

  12. Solar attitude control including active nutation damping in a fixed-momentum wheel satellite

    Science.gov (United States)

    Azor, Ruth

    1992-08-01

    In geostationary cruise of a momentum biased satellite, it is necessary to stabilize the roll/yaw attitude due to disturbances, caused mainly by solar pressure. This work presents a roll/yaw control, which is obtained by the use of solar arrays and fixed flaps as actuators, with a horizon sensor for roll measurement. The design also includes an active nutation damping.

  13. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration

    Science.gov (United States)

    Castiglioni, Alessandra; Basso, Veronica; Vezzoli, Michela; Monno, Antonella; Almada, Albert E.; Mondino, Anna; Wagers, Amy J.; Manfredi, Angelo A.; Rovere-Querini, Patrizia

    2015-01-01

    Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue. PMID:26039259

  14. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration.

    Directory of Open Access Journals (Sweden)

    Alessandra Castiglioni

    Full Text Available Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue.

  15. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration.

    Science.gov (United States)

    Castiglioni, Alessandra; Corna, Gianfranca; Rigamonti, Elena; Basso, Veronica; Vezzoli, Michela; Monno, Antonella; Almada, Albert E; Mondino, Anna; Wagers, Amy J; Manfredi, Angelo A; Rovere-Querini, Patrizia

    2015-01-01

    Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue.

  16. Alkaline regenerative fuel cell energy storage system for manned orbital satellites

    Science.gov (United States)

    Martin, R. E.; Gitlow, B.; Sheibley, D. W.

    1982-01-01

    It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.

  17. The differential proliferative ability of satellite cells in Lantang and Landrace pigs.

    Directory of Open Access Journals (Sweden)

    Xiu-qi Wang

    Full Text Available Here, for the first time, we evaluate the hypothesis that the proliferative abilities of satellite cells (SCs isolated from Lantang (indigenous Chinese pigs and Landrace pigs, which differ in muscle characteristics, are different. SCs were isolated from the longissimus dorsi muscle of neonatal Lantang and Landrace pigs. Proliferative ability was estimated by the count and proliferative activity of viable cells using a hemocytometer and MTT assay at different time points after seeding, respectively. Cell cycle information was detected by flow cytometry. Results showed that there was a greater (P<0.05 number of SCs in Lantang pigs compared with Landrace pigs after 72 h of culture. The percentage of cell population in S phase and G(2/M phases in Lantang pigs were higher (P<0.05, while in G(0/G(1 phase was lower (P<0.05 in comparison with the Landrace pigs. The mRNA abundances of MyoD, Myf5, myogenin and Pax7 in SCs from Lantang pigs were higher (P<0.05, while those of myostatin, Smad3 and genes in the mammalian target of rapamycin (mTOR pathway (with the exception of 4EBP1 were lower (P<0.05 than the Landrace pigs. Protein levels of MyoD, myogenin, myostatin, S6K, phosphorylated mTOR and phosphorylated eIF4E were consistent with the corresponding mRNA abundance. Collectively, these findings suggested that SCs in the two breeds present different proliferative abilities, and the proliferative potential of SCs in Lantang pigs is higher than in Landrace pigs.

  18. Dnmt3a Regulates Proliferation of Muscle Satellite Cells via p57Kip2

    Science.gov (United States)

    Naito, Masashi; Mori, Masaki; Inagawa, Masayo; Miyata, Kohei; Hashimoto, Naohiro; Tanaka, Sakae; Asahara, Hiroshi

    2016-01-01

    Cell differentiation status is defined by the gene expression profile, which is coordinately controlled by epigenetic mechanisms. Cell type-specific DNA methylation patterns are established by chromatin modifiers including de novo DNA methyltransferases, such as Dnmt3a and Dnmt3b. Since the discovery of the myogenic master gene MyoD, myogenic differentiation has been utilized as a model system to study tissue differentiation. Although knowledge about myogenic gene networks is accumulating, there is only a limited understanding of how DNA methylation controls the myogenic gene program. With an aim to elucidate the role of DNA methylation in muscle development and regeneration, we investigate the consequences of mutating Dnmt3a in muscle precursor cells in mice. Pax3 promoter-driven Dnmt3a-conditional knockout (cKO) mice exhibit decreased organ mass in the skeletal muscles, and attenuated regeneration after cardiotoxin-induced muscle injury. In addition, Dnmt3a-null satellite cells (SCs) exhibit a striking loss of proliferation in culture. Transcriptome analysis reveals dysregulated expression of p57Kip2, a member of the Cip/Kip family of cyclin-dependent kinase inhibitors (CDKIs), in the Dnmt3a-KO SCs. Moreover, RNAi-mediated depletion of p57Kip2 replenishes the proliferation activity of the SCs, thus establishing a role for the Dnmt3a-p57Kip2 axis in the regulation of SC proliferation. Consistent with these findings, Dnmt3a-cKO muscles exhibit fewer Pax7+ SCs, which show increased expression of p57Kip2 protein. Thus, Dnmt3a is found to maintain muscle homeostasis by epigenetically regulating the proliferation of SCs through p57Kip2. PMID:27415617

  19. Dnmt3a Regulates Proliferation of Muscle Satellite Cells via p57Kip2.

    Directory of Open Access Journals (Sweden)

    Masashi Naito

    2016-07-01

    Full Text Available Cell differentiation status is defined by the gene expression profile, which is coordinately controlled by epigenetic mechanisms. Cell type-specific DNA methylation patterns are established by chromatin modifiers including de novo DNA methyltransferases, such as Dnmt3a and Dnmt3b. Since the discovery of the myogenic master gene MyoD, myogenic differentiation has been utilized as a model system to study tissue differentiation. Although knowledge about myogenic gene networks is accumulating, there is only a limited understanding of how DNA methylation controls the myogenic gene program. With an aim to elucidate the role of DNA methylation in muscle development and regeneration, we investigate the consequences of mutating Dnmt3a in muscle precursor cells in mice. Pax3 promoter-driven Dnmt3a-conditional knockout (cKO mice exhibit decreased organ mass in the skeletal muscles, and attenuated regeneration after cardiotoxin-induced muscle injury. In addition, Dnmt3a-null satellite cells (SCs exhibit a striking loss of proliferation in culture. Transcriptome analysis reveals dysregulated expression of p57Kip2, a member of the Cip/Kip family of cyclin-dependent kinase inhibitors (CDKIs, in the Dnmt3a-KO SCs. Moreover, RNAi-mediated depletion of p57Kip2 replenishes the proliferation activity of the SCs, thus establishing a role for the Dnmt3a-p57Kip2 axis in the regulation of SC proliferation. Consistent with these findings, Dnmt3a-cKO muscles exhibit fewer Pax7+ SCs, which show increased expression of p57Kip2 protein. Thus, Dnmt3a is found to maintain muscle homeostasis by epigenetically regulating the proliferation of SCs through p57Kip2.

  20. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise?

    Science.gov (United States)

    Paulsen, Gøran; Mikkelsen, Ulla Ramer; Raastad, Truls; Peake, Jonathan M

    2012-01-01

    regeneration, whereas the biological significance of satellite cell proliferation after mild damage or non-damaging exercise remains uncertain. The COX enzymes regulate satellite cell activity, as demonstrated in animal models; however the roles of the COX enzymes in human skeletal muscle need further investigation. We suggest using the term 'muscle damage' with care. Comparisons between studies and individuals must consider changes in and recovery of muscle force-generating capacity.

  1. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals

    Directory of Open Access Journals (Sweden)

    Y. Y. Liu

    2011-02-01

    Full Text Available Combining information derived from satellite-based passive and active microwave sensors has the potential to offer improved estimates of surface soil moisture at global scale. We develop and evaluate a methodology that takes advantage of the retrieval characteristics of passive (AMSR-E and active (ASCAT microwave satellite estimates to produce an improved soil moisture product. First, volumetric soil water content (m3 m−3 from AMSR-E and degree of saturation (% from ASCAT are rescaled against a reference land surface model data set using a cumulative distribution function matching approach. While this imposes any bias of the reference on the rescaled satellite products, it adjusts them to the same range and preserves the dynamics of original satellite-based products. Comparison with in situ measurements demonstrates that where the correlation coefficient between rescaled AMSR-E and ASCAT is greater than 0.65 ("transitional regions", merging the different satellite products increases the number of observations while minimally changing the accuracy of soil moisture retrievals. These transitional regions also delineate the boundary between sparsely and moderately vegetated regions where rescaled AMSR-E and ASCAT, respectively, are used for the merged product. Therefore the merged product carries the advantages of better spatial coverage overall and increased number of observations, particularly for the transitional regions. The combination method developed has the potential to be applied to existing microwave satellites as well as to new missions. Accordingly, a long-term global soil moisture dataset can be developed and extended, enhancing basic understanding of the role of soil moisture in the water, energy and carbon cycles.

  2. Ectopic development of skeletal muscle induced by subcutaneous transplant of rat satellite cells

    Directory of Open Access Journals (Sweden)

    M.G. Fukushima

    2005-03-01

    Full Text Available The present study analyzes the ectopic development of the rat skeletal muscle originated from transplanted satellite cells. Satellite cells (10(6 cells obtained from hindlimb muscles of newborn female 2BAW Wistar rats were injected subcutaneously into the dorsal area of adult male rats. After 3, 7, and 14 days, the transplanted tissues (N = 4-5 were processed for histochemical analysis of peripheral nerves, inactive X-chromosome and acetylcholinesterase. Nicotinic acetylcholine receptors (nAChRs were also labeled with tetramethylrhodamine-labeled alpha-bungarotoxin. The development of ectopic muscles was successful in 86% of the implantation sites. By day 3, the transplanted cells were organized as multinucleated fibers containing multiple clusters of nAChRs (N = 2-4, resembling those from non-innervated cultured skeletal muscle fibers. After 7 days, the transplanted cells appeared as a highly vascularized tissue formed by bundles of fibers containing peripheral nuclei. The presence of X chromatin body indicated that subcutaneously developed fibers originated from female donor satellite cells. Differently from the extensor digitorum longus muscle of adult male rat (87.9 ± 1.0 µm; N = 213, the diameter of ectopic fibers (59.1 µm; N = 213 did not obey a Gaussian distribution and had a higher coefficient of variation. After 7 and 14 days, the organization of the nAChR clusters was similar to that of clusters from adult innervated extensor digitorum longus muscle. These findings indicate the histocompatibility of rats from 2BAW colony and that satellite cells transplanted into the subcutaneous space of adult animals are able to develop and fuse to form differentiated skeletal muscle fibers.

  3. Mast cell activation disease

    African Journals Online (AJOL)

    EL-HAKIM

    only IgE dependent allergic diseases but also play a ... Mast cells are tissue fixed effector cells of allergic ..... alleviated high intensity symptoms of MCAD.29 ... Osteoporosis, osteolysis, bone pain: biphosphonates (vitamin D plus calcium.

  4. Knowledge Management Activity within the Satellite Domain in Japan Aerospace Exploration Agency

    Science.gov (United States)

    Tateshita, Hiroaki; Soga, Midori; Fukuda, Takao; Miyoshi, Hiroshi

    Previously, each satellite project in JAXA had individually its own way of managing technical information (e.g. technical documents for planning, requirements, specifications, design, test, and operation). Although there was an information sharing environment in JAXA, no project actively submitted its own information due to a lack of functions for access control and for rapid acquisition of information, which are required by satellite projects. These situations made it very difficult for users to gather information on other projects. Additionally, there was the risk of losing significant knowledge of satellite projects upon their termination. In order to resolve these issues, minimum standard rules, including user-friendly classification rules, were established from the point of view of leveraging knowledge through long discussions with each project. An information system with appropriate access control was developed to implement the standard rules. Since April 2007, the rules and the system have been applied to each project. The risk of losing knowledge has been reduced by enabling the terminated projects to smoothly transfer their technical information to the system. This paper presents an overview of our current knowledge-management activity within the satellite domain including the remaining issues and the proposed solutions to these issues.

  5. Precise Orbit Determination of the two LAGEOS and LARES satellites and the LARASE activities

    Science.gov (United States)

    Massimo Lucchesi, David; Peron, Roberto; Anselmo, Luciano; Bassan, Massimo; Magnafico, Carmelo; Nobili, Anna Maria; Pardini, Carmen; Pucacco, Giuseppe; Stanga, Ruggero; Visco, Massimo

    2016-04-01

    The LAser RAnged Satellites Experiment (LARASE) research program aims to provide an original contribution in testing and verifying Einstein's theory of General Relativity (GR) in its Weak-Field and Slow-Motion (WFSM) limit by means of the powerful Satellite Laser Ranging (SLR) technique. Therefore, in this perspective, a Precise Orbit Determination (POD) of a dedicated set of passive laser-ranged satellites is required. In particular, the joint analysis of the orbit of the two LAGEOS (LAser GEOdynamic Satellite) satellites with that of the more recently launched LARES (LAser RElativity Satellite) satellite will be exploited in order to obtain precise measurements of the gravitational interaction in the field of the Earth. A major point to be reached within the activities of LARASE is to provide the relativistic measurements with an error budget of the various systematic effects (both gravitational and non-gravitational) that be robust and reliable. This requires a careful analysis of the various disturbing effects on the orbit of the considered satellites, especially for the new LARES. This activity has been planned both for the gravitational and the non-gravitational perturbations (NGP). Therefore, we started to re-visit, update and improve previous dynamical models, especially for the NGP, and we also developed new models in such a way to improve the current dynamical models used in space geodesy to account for the main perturbations acting on the orbit of LAGEOS and LARES. We focused especially on the spin dynamics, the drag effects (especially for LARES, because of its much lower height with respect to the two LAGEOS) and, at a preliminary level, the thermal ones that, as it is well known from the literature, are very important for the LAGEOS satellites. These studies are of fundamental importance not only for the objective of a reliable error budget, but also in order to improve the POD. In this context, because of the importance of the LAGEOS satellites in

  6. Does an NSAID a Day Keep Satellite Cells at Bay?

    DEFF Research Database (Denmark)

    Mackey, Abigail L

    2013-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed among athletes worldwide, despite growing evidence for a negative influence on the adaptation of skeletal muscle to exercise, at least in young healthy individuals. This review focuses on the potential of NSAIDs to alter the activ......Non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed among athletes worldwide, despite growing evidence for a negative influence on the adaptation of skeletal muscle to exercise, at least in young healthy individuals. This review focuses on the potential of NSAIDs to alter...... in the response of muscle under conditions where cyclooxygenase and prostaglandin activity are blocked through NSAID ingestion or infusion. Discrepancies in the literature regarding the response of young and old individuals are addressed, where it appears that the elderly may benefit from NSAID ingestion...

  7. Regulation of turkey myogenic satellite cell migration by MicroRNAs miR-128 and miR-24.

    Science.gov (United States)

    Velleman, S G; Harding, R L

    2016-12-05

    Myogenic satellite cells are an adult stem cell responsible for all post-hatch muscle growth in poultry. As a stem cell population, satellite cells are highly heterogeneous, but the origin of this heterogeneity remains unclear. Heterogeneity is, in part, regulated by gene expression. One method of endogenous gene regulation that may contribute to heterogeneity is microRNAs (miRNAs). Two miRNAs previously shown to regulate poultry myogenic satellite cell proliferation and differentiation, miR-128 and miR-24, were studied to determine if they also affected satellite cell migration. Satellite cell migration is an essential step for both proliferation and differentiation. During proliferation, satellite cells will migrate and align to form new myofibers or donate their nuclei to existing myofibers leading to muscle fiber hypertrophy or regeneration. Transient transfection of miRNA specific mimics to each miRNA reduced migration of satellite cells following a cell culture scratch at 72 h of proliferation when the cultures were 90 to 100% confluent. However, only the migration in cells transfected with miR-24 mimics at 24 and 30 h following the scratch was significantly reduced (P ≤ 0.05) to around 70% of the distance migrated by controls. Alternately, transfection with inhibitors specific to miR-128 or miR-24 significantly (P ≤ 0.05) increased migration between 147 and 252% compared to their controls between 24 and 48 h following the scratch. These data demonstrate that miR-128 and miR-24 play a role in myogenic satellite cell migration, which will impact muscle development and growth.

  8. Critical amino acids in syndecan-4 cytoplasmic domain modulation of turkey satellite cell growth and development.

    Science.gov (United States)

    Song, Yan; McFarland, Douglas C; Velleman, Sandra G

    2012-02-01

    Syndecan-4 is composed of a core protein and covalently attached glycosaminoglycan (GAG) and N-linked glycosylated (N-glycosylated) chains. The core protein is divided into extracellular, transmembrane, and cytoplasmic domains. The cytoplasmic domain has two conserved regions and a variable region in the middle. The Ser residue in the conserved region 1 and the Tyr residue in the variable region are important in regulating protein kinase C alpha (PKCα) membrane localization and focal adhesion formation. The objective of the current study was to investigate the role of syndecan-4 Ser and Tyr residues in combination with the GAG and N-glycosylated chains in turkey satellite cell proliferation, differentiation, fibroblast growth factor 2 (FGF2) responsiveness, and PKCα membrane localization. Site-directed mutagenesis was used to generate Ser and Tyr mutants with or without GAG and N-glycosylated chains. The wild type and mutant syndecan-4 constructs were transfected into turkey satellite cells. The over-expression of Ser and Tyr mutants increased cell proliferation and differentiation and decreased membrane localization of PKCα. Furthermore, Ser mutants enhanced cellular responsiveness to FGF2. The results from this study are the first demonstration of a role of syndecan-4 cytoplasmic domain Ser and Tyr residues in regulating satellite cell proliferation, differentiation, and the modulation of cellular responsiveness to FGF2.

  9. Plasticity and recovery of skeletal muscle satellite cells during limb regeneration.

    Science.gov (United States)

    Morrison, Jamie I; Borg, Paula; Simon, András

    2010-03-01

    Salamander limb regeneration depends on local progenitors whose progeny are recruited to the new limb. We previously identified a Pax7(+) cell population in skeletal muscle whose progeny have the potential to contribute to the regenerating limb. However, the plasticity of individual Pax7(+) cells, as well as their recovery within the new limb, was unclear. Here, we show that Pax7(+) cells remain present after multiple rounds of limb amputation/regeneration. Pax7(+) cells are found exclusively within skeletal muscle in the regenerating limb and proliferate where the myofibers are growing. Pax7 is rapidly down-regulated in the blastema, and analyses of clonal derivatives show that Pax7(+) cell progeny are not restricted to skeletal muscle during limb regeneration. Our data suggest that the newt regeneration blastema is not entirely a composite of lineage-restricted progenitors. The results demonstrate that except for a transient and subsequently blunted increase, skeletal muscle satellite cells constitute a stable pool of reserve cells for multiple limb regeneration events.-Morrison, J. I., Borg, P., Simon, A. Plasticity and recovery of skeletal muscle satellite cells during limb regeneration.

  10. Satellite cell response to erythropoietin treatment and endurance training in healthy young men

    DEFF Research Database (Denmark)

    Hoedt, Andrea; Christensen, Britt; Nellemann, Birgitte

    2016-01-01

    KEY POINT: Erythropoietin (Epo) treatment may induce myogenic differentiation factor (MyoD) expression and prevent apoptosis in satellite cells (SCs) in murine and in vitro models. Endurance training stimulates SC proliferation in vivo in murine and human skeletal muscle. In the present study, we...... show, in human skeletal muscle, that treatment with an Epo-stimulating agent (darbepoetin-α) in vivo increases the content of MyoD(+) SCs in healthy young men. Moreover, we report that Epo receptor mRNA is expressed in adult human SCs, suggesting that Epo may directly target SCs through ligand......-term Epo treatment during disease conditions involving anaemia may impact SCs and warrants further investigation. Satellite cell (SC) proliferation is observed following erythropoitin treatment in vitro in murine myoblasts and endurance training in vivo in human skeletal muscle. The present study aimed...

  11. Solar sail attitude control including active nutation damping in a fixed-momentum wheel satellite

    Science.gov (United States)

    Azor, Ruth

    1992-02-01

    In the geostationary cruise of a momentum biased satellite, it is necessary to stabilize the roll/yaw attitude due to disturbances caused by solar radiation pressure. This work presents a roll/yaw control system with a horizon sensor for roll measurement. Roll/yaw control is obtained by the use of solar arrays and fixed flaps as actuators. The design also includes an active nutation damping method.

  12. Effects of Massage on Satellite Cells of Acute Contusive Skeletal Muscles

    Institute of Scientific and Technical Information of China (English)

    胡军; 张喜林; 严隽陶

    2007-01-01

    Objective: To study the mechanism of Tuina in the treatment of skeletal muscle injury. Methods: Rabbits were heavily beaten at gastrocnemius muscle to make acute contusion model and then treated respectively by early Tuina and routine Tuina. The number of satellite cells of skeletal muscles was observed. Results: The number of the satellite cells continued to grow in both groups, and it began to increase significantly 3-5 days after Tuina treatment. Early Tuina treatment produces larger number of satellite cells than routine Tuina treatment.Conclusion: Early Tuina treatment is helpful to the marked recovery of skeletal muscles by increasing the number of satellite cell.%目的:探讨推拿治疗骨骼肌损伤的机理.方法:以重物打击方式造成腓肠肌急性挫伤模型,施以早期推拿治疗和常规推拿治疗,观察骨骼肌卫星细胞数量变化.结果:各组卫星细胞数量均呈持续上升趋势,常规治疗组和早期手法组的卫星细胞数量在3~5 d时就开始有大幅度上升.早期手法组卫星细胞数量多于常规治疗组.结论:早期手法对卫星细胞数增加作用明显有助于骨骼肌功能恢复.

  13. Molecular basis of the myogenic profile of aged human skeletal muscle satellite cells during differentiation

    OpenAIRE

    Pietrangelo, Tiziana; Puglielli, Cristina; Mancinelli, Rosa; Beccafico, Sara; Fanò, Giorgio; Fulle, Stefania

    2009-01-01

    Abstract Sarcopenia is the age-related loss of muscle mass, strength and function. Human muscle proteins are synthesized at a slower rate in the elderly than in young adults, leading to atrophy and muscle mass loss with a decline in the functional capability. Additionally, aging is accompanied by a decrease in the ability of muscle tissue to regenerate following injury or overuse due to the impairment of intervening satellite cells, in which we previously reported oxidative damage ...

  14. Effects of voluntary wheel running on satellite cells in the rat plantaris muscle

    OpenAIRE

    Atsushi Kojima; Mitsutoshi Kurosaka; Yuji Ogura; Hisashi Naito; Shizuo Katamoto; Katsumasa Goto

    2009-01-01

    This study investigated the effects of voluntary wheel running on satellite cells in the rat plantaris muscle. Seventeen 5-week-old male Wistar rats were assigned to a control (n = 5) or training (n = 12) group. Each rat in the training group ran voluntarily in a running-wheel cage for 8 weeks. After the training period, the animals were anesthetized, and the plantaris muscles were removed, weighed, and analyzed immunohistochemically and biochemically. Although there were no significant diffe...

  15. Satellite SAR observation of the sea surface wind field caused by rain cells

    Institute of Scientific and Technical Information of China (English)

    YE Xiaomin; LIN Mingsen; YUAN Xinzhe; DING Jing; XIE Xuetong; ZHANG Yi; XU Ying

    2016-01-01

    Rain cells or convective rain, the dominant form of rain in the tropics and subtropics, can be easy detected by satellite Synthetic Aperture Radar (SAR) images with high horizontal resolution. The footprints of rain cells on SAR images are caused by the scattering and attenuation of the rain drops, as well as the downward airflow. In this study, we extract sea surface wind field and its structure caused by rain cells by using a RADARSAT-2 SAR image with a spatial resolution of 100 m for case study. We extract the sea surface wind speeds from SAR image by using CMOD4 geophysical model function with outside wind directions of NCEP final operational global analysis data, Advance Scatterometer (ASCAT) onboard European MetOp-A satellite and microwave scatterometer onboard Chinese HY-2 satellite, respectively. The root-mean-square errors (RMSE) of these SAR wind speeds, validated against NCEP, ASCAT and HY-2, are 1.48 m/s, 1.64 m/s and 2.14 m/s, respectively. Circular signature patterns with brighter on one side and darker on the opposite side on SAR image are interpreted as the sea surface wind speed (or sea surface roughness) variety caused by downdraft associated with rain cells. The wind speeds taken from the transect profile which superposes to the wind ambient vectors and goes through the center of the circular footprint of rain cell can be fitted as a cosine or sine curve in high linear correlation with the values of no less than 0.80. The background wind speed, the wind speed caused by rain cell and the diameter of footprint of the rain cell with kilometers or tens of kilometers can be acquired by fitting curve. Eight cases interpreted and analyzed in this study all show the same conclusion.

  16. Rainbow trout (Oncorhynchus mykiss) muscle satellite cells are targets of salmonid alphavirus infection.

    Science.gov (United States)

    Biacchesi, Stéphane; Jouvion, Grégory; Mérour, Emilie; Boukadiri, Abdelhak; Desdouits, Marion; Ozden, Simona; Huerre, Michel; Ceccaldi, Pierre-Emmanuel; Brémont, Michel

    2016-01-08

    Sleeping disease in rainbow trout is characterized by an abnormal swimming behaviour of the fish which stay on their side at the bottom of the tanks. This sign is due to extensive necrosis and atrophy of red skeletal muscle induced by the sleeping disease virus (SDV), also called salmonid alphavirus 2. Infections of humans with arthritogenic alphaviruses, such as Chikungunya virus (CHIKV), are global causes of debilitating musculoskeletal diseases. The mechanisms by which the virus causes these pathologies are poorly understood due to the restrictive availability of animal models capable of reproducing the full spectrum of the disease. Nevertheless, it has been shown that CHIKV exhibits a particular tropism for muscle stem cells also known as satellite cells. Thus, SDV and its host constitute a relevant model to study in details the virus-induced muscle atrophy, the pathophysiological consequences of the infection of a particular cell-type in the skeletal muscle, and the regeneration of the muscle tissue in survivors together with the possible virus persistence. To study a putative SDV tropism for that particular cell type, we established an in vivo and ex vivo rainbow trout model of SDV-induced atrophy of the skeletal muscle. This experimental model allows reproducing the full panel of clinical signs observed during a natural infection since the transmission of the virus is arthropod-borne independent. The virus tropism in the muscle tissue was studied by immunohistochemistry together with the kinetics of the muscle atrophy, and the muscle regeneration post-infection was observed. In parallel, an ex vivo model of SDV infection of rainbow trout satellite cells was developed and virus replication and persistence in that particular cell type was followed up to 73 days post-infection. These results constitute the first observation of a specific SDV tropism for the muscle satellite cells.

  17. Contraction-induced muscle fiber damage is increased in soleus muscle of streptozotocin-diabetic rats and is associated with elevated expression of brain-derived neurotrophic factor mRNA in muscle fibers and activated satellite cells

    NARCIS (Netherlands)

    Copray, S; Liem, R; Brouwer, N; Greenhaff, P; Habens, F; Fernyhough, P

    The expression of brain-derived neurotrophic factor (BDNF) is elevated in the soleus muscle of streptozotocin-diabetic rats. To determine whether this diabetes-induced elevation was associated with or enhanced by muscle activity we have induced high-intensity muscle contraction by electrically

  18. Contraction-induced muscle fiber damage is increased in soleus muscle of streptozotocin-diabetic rats and is associated with elevated expression of brain-derived neurotrophic factor mRNA in muscle fibers and activated satellite cells

    NARCIS (Netherlands)

    Copray, S; Liem, R; Brouwer, N; Greenhaff, P; Habens, F; Fernyhough, P

    2000-01-01

    The expression of brain-derived neurotrophic factor (BDNF) is elevated in the soleus muscle of streptozotocin-diabetic rats. To determine whether this diabetes-induced elevation was associated with or enhanced by muscle activity we have induced high-intensity muscle contraction by electrically stimu

  19. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures.

    Science.gov (United States)

    Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R

    2016-06-01

    Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( BSC cultures with 10 n TBA in the presence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( BSC cultures treated with 10 n TBA exhibit increased ( BSC cultures.

  20. On spatial distribution of proton radiation belt from solar cell degradation of Akebono satellite

    Science.gov (United States)

    Miyake, W.; Miyoshi, Y.; Matsuoka, A.

    2013-12-01

    Solar cells on any satellite degrade gradually due to severe space radiation environment. We found a fair correlation between the decrease rate of solar cell output current of Akebono satellite orbiting in the inner magnetosphere and trapped proton flux from AP8 model between 1989 and 1992. After 1993, presumably as a result of long-term degradation, variation of solar cell output seems more susceptible to other causes such as high temperature effect, and simple monthly averaged data show no significant relation between them. One of possible causes for the temperature variation of the solar cells is terrestrial heat radiation with changing orientation of solar cell panels towards the earth and another is solar radiation varied with eccentric earth's orbit around the sun. In order to remove the possible temperature effect, we sort the data expected to be least affected by the terrestrial heat radiation from the orbit conditions, and also analyze difference of the output current for a month from that for the same month in the previous year. The analysis method leads us to successfully track a continuous correlation between the decease rate of solar cell output and energetic trapped proton flux up to 1996. We also discuss the best-fitted spatial distribution of energetic protons from comparison with model calculations.

  1. Visual attention based detection of signs of anthropogenic activities in satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Skurikhin, Alexei N [Los Alamos National Laboratory

    2010-10-13

    With increasing deployment of satellite imaging systems, only a small fraction of collected data can be subject to expert scrutiny. We present and evaluate a two-tier approach to broad area search for signs of anthropogenic activities in high-resolution commercial satellite imagery. The method filters image information using semantically oriented interest points by combining Harris corner detection and spatial pyramid matching. The idea is that anthropogenic structures, such as rooftop outlines, fence corners, road junctions, are locally arranged in specific angular relations to each other. They are often oriented at approximately right angles to each other (which is known as rectilinearity relation). Detecting the rectilinearity provides an opportunity to highlight regions most likely to contain anthropogenic activity. This is followed by supervised classification of regions surrounding the detected corner points as man-made vs. natural scenes. We consider, in particular, a search for anthropogenic activities in uncluttered areas. In this paper, we proposed and evaluated a two-tier approach to broad area search for signs of anthropogenic activities. Results from experiments on high-resolution ({approx}0.6m) commercial satellite image data showed the potential applicability of this approach and its ability of achieving both high precision and recall rates. The main advantage of combining corner-based cueing with general object recognition is that the incorporation of domain specific knowledge even in its more general form, such as presence of comers, provides a useful cue to narrow the focus of search for signs of anthropogenic activities. Combination of comer based cueing with spatial pyramid matching addressed the issue of comer categorization. An important practical issue for further research is optimizing the balance between false positive and false negative rates. While the results presented in the paper are encouraging, the problem of an automated broad area

  2. Charge efficiency of Ni/H2 cells during transfer orbit of Telstar 4 satellites

    Science.gov (United States)

    Fang, W. C.; Maurer, Dean W.; Vyas, B.; Thomas, M. N.

    1994-02-01

    The TELSTAR 4 communication satellites being manufactured by Martin Marietta Astro Space (Astro Space) for AT&T are three axis stabilized spacecraft scheduled to be launched on expendable vehicles such as the Atlas or Ariane rockets. Typically, these spacecraft consist of a box that holds the electronics and supports the antenna reflectors and the solar array wings. The wings and reflectors are folded against the sides of the box during launch and the spacecraft is spun for attitude control in that phase; they are then deployed after achieving the final orbit. The launch phase and transfer orbits required to achieve the final geosynchronous orbit typically take 4 to 5 days during which time the power required for command, telemetry, attitude control, heaters, etc., is provided by two 50 AH nickel hydrogen batteries augmented by the exposed outboard solar panels. In the past, this situation has presented no problem since there was a considerable excess of power available from the array. In the case of large high powered spacecraft such as TELSTAR 4, however, the design power levels in transfer orbit approach the time-averaged power available from the exposed surface area of the solar arrays, resulting in a very tight power margin. To compound the difficulty, the array output of the spinning spacecraft in transfer orbit is shaped like a full wave rectified sine function and provides very low charging rates to the batteries during portions of the rotation. In view of the typically low charging efficiency of alkaline nickel batteries at low rates, it was decided to measure the efficiency during a simulation of the TELSTAR 4 conditions at the expected power levels and temperatures on three nickel hydrogen cells of similar design. The unique feature of nickel hydrogen cells that makes the continuous measurement of efficiency possible is that hydrogen is one of the active materials and thus, cell pressure is a direct measure of the state of charge or available capacity

  3. Satellite cascade attitude control via fuzzy PD controller with active force control under momentum dumping

    Science.gov (United States)

    Ismail, Z.; Varatharajoo, R.

    2016-10-01

    In this paper, fuzzy proportional-derivative (PD) controller with active force control (AFC) scheme is studied and employed in the satellite attitude control system equipped with reaction wheels. The momentum dumping is enabled via proportional integral (PI) controller as the system is impractical without momentum dumping control. The attitude controllers are developed together with their governing equations and evaluated through numerical treatment with respect to a reference satellite mission. From the results, it is evident that the three axis attitudes accuracies can be improved up to ±0.001 degree through the fuzzy PD controller with AFC scheme for the attitude control. In addition, the three-axis wheel angular momentums are well maintained during the attitude control tasks.

  4. Optimality of incompletely measurable active and passive attitude control systems. [for satellites

    Science.gov (United States)

    Schiehlen, W.; Popp, K.

    1973-01-01

    Passive attitude control systems and active systems with incomplete state measurements are only suboptimal systems in the sense of optimal control theory, since optimal systems require complete state measurements or state estimations. An optimal system, then, requires additional hardware (especially in the case of flexible spacecraft) which results in higher costs. Therefore, it is a real engineering problem to determine how much an optimal system exceeds the suboptimal system, or in other words, what is the suboptimal system's degree of optimality. The problem will be treated in three steps: (1) definition of the degree of optimality for linear, time-invariant systems; (2) a computation method using the quadratic cost functional; (3) application to a gravity-gradient stabilized three-body satellite and a spinning flexible satellite.

  5. Active-passive integrated vibration control for control moment gyros and its application to satellites

    Science.gov (United States)

    Zhang, Yao; Zang, Yue; Li, Mou; Wang, Youyi; Li, Wenbo

    2017-04-01

    The strategy of active-passive integrated vibration control on the truss enveloping control moment gyroscopes (CMGs) is presented and its characteristics of time domain and frequency domain are analyzed. Truss enveloping CMGs contains pyramid-type CMGs, which are enveloped by multiple struts. These struts can be employed to realize the active-passive integrated vibration control. In addition, the struts of the trusses can maintain the working space of CMGs. Firstly, the disturbance characteristics of CMGs are analyzed considering static and dynamic imbalances of the CMG's rotor; then, an active-passive integrated vibration isolation truss structure is developed based on its characteristics. This structure can restrain the CMG vibration as much as possible and reduce its influence on the photographic quality of optical payloads. Next, the dynamic model of the active-passive vibration isolation truss structure is established. The frequency domain analysis of this model shows that the active-passive integrated vibration control method can restrain the high-frequency vibration and also improve the characteristics of low-frequency vibration. Finally, the dynamic model for the whole satellite is built with this type of CMGs. The time domain simulations of satellite attitude control verify the attitude control improvements resulting from the CMGs vibration control strategy.

  6. Reduced satellite cell number in situ in muscular contractures from children with cerebral palsy.

    Science.gov (United States)

    Dayanidhi, Sudarshan; Dykstra, Peter B; Lyubasyuk, Vera; McKay, Bryon R; Chambers, Henry G; Lieber, Richard L

    2015-07-01

    Satellite cells (SC) are quiescent adult muscle stem cells critical for postnatal development. Children with cerebral palsy have impaired muscular growth and develop contractures. While flow cytometry previously demonstrated a reduced SC population, extracellular matrix abnormalities may influence the cell isolation methods used, systematically isolating fewer cells from CP muscle and creating a biased result. Consequently, the purpose of this study was to use immunohistochemistry on serial muscle sections to quantify SC in situ. Serial cross-sections from human gracilis muscle biopsies (n = 11) were labeled with fluorescent antibodies for Pax7 (SC transcriptional marker), laminin (basal lamina), and 4',6-diamidino-2-phenylindole (nuclei). Fluorescence microscopy under high magnification was used to identify SC based on labeling and location. Mean SC/100 myofibers was reduced by ∼70% (p muscle growth and apparent decreased responsiveness of CP muscle to exercise. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. The vascular endothelial growth factor expression and vascular regeneration in infarcted myocardium by skeletal muscle satellite cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Myocardial infarction results in tissue necrosis, leading to cell loss and ultimately to cardiac failure. Implantation of skeletal muscle satellite cells into the scar area may compensate for the cell loss and provides a new strategy for infarct therapy. Vascular endothelial growth factor (VEGF) is a promising reagent for inducing myocardial angiogenesis. Skeletal myoblast transplantation has been shown to improve cardiac function in chronic heart failure models by regenerating muscle. We hypothesized that VEGF expression and vascular regeneration increased in infarcted myocardium by skeletal muscle satellite cells, which can promote vascular producing and improve survival environment in infarcted myocardium.Methods The skeletal muscle satellite cells were implanted into the infarcted myocardium in a model through ligated left anterior artery in Louis Inbrad Strain rat. Specimens were got for identifying the expression of VEGF and the density of vascular by immunochemical method at two weeks after implantation. Results The proliferation and differentiation of the skeletal muscle satellite cell was very well. The expression of VEGF was higher in the implanted group (146.83±2.49) than that in the control group (134.26±6.84) (P<0.05). The vascular density in the implanted group (13.00±1.51) was also higher than that in the control (10.68±1.79) (P<0.05). Conclusion The implanted satellite cell could excrete growth factor that would induce angiogenesis and improve cell survival environment in infarcted myocardium.

  8. The long, the short, and the micro: a polyA tale of Pax3 in satellite cells.

    Science.gov (United States)

    Pasut, Alessandra; Rudnicki, Michael A

    2012-03-02

    The use of alternative polyadenylation sites is emerging as an important regulator of gene expression. In this issue of Cell Stem Cell, Boutet et al. (2012) report that alternative 3'UTRs of the Pax3 transcript restrict its expression to axial satellite cells through miR-mediated targeting of one of the isoforms. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Biosonar, dive, and foraging activity of satellite tracked harbor porpoises (Phocoena phocoena)

    DEFF Research Database (Denmark)

    Linnenschmidt, Meike; Teilmann, Jonas; Akamatsu, Tomonari

    2013-01-01

    rates and higher dive activity at night. A female traveling in open waters showed no diel rhythm, but its sonar activity was three times higher compared to the males’. Considerable individual differences in dive and echolocation activity could have been influenced by biological and physical factors......This study presents bioacoustic recordings in combination with movements and diving behavior of three free-ranging harbor porpoises (a female and two males) in Danish waters. Each porpoise was equipped with an acoustic data logger (A-tag), a time-depth-recorder, a VHF radio transmitter......, and a satellite transmitter. The units were programmed to release after 24 or 72 h. Possible foraging occurred mostly near the surface or at the bottom of a dive. The porpoises showed individual diversity in biosonar activity (50,000 clicks per hour) and in dive frequency (6–179 dives per hour). We...

  10. PPARγ and MyoD are differentially regulated by myostatin in adipose-derived stem cells and muscle satellite cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Deng, Bing [Wuhan Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208 (China); Wen, Jianghui [Wu Han University of Technology, Wuhan 430074 (China); Chen, Kun [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Liu, Wu; Ye, Shengqiang; Huang, Haijun [Wuhan Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208 (China); Jiang, Siwen, E-mail: jiangsiwen@mail.hzau.edu.cn [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Xiong, Yuanzhu, E-mail: xiongyzhu@163.com [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China)

    2015-03-06

    Myostatin (MSTN) is a secreted protein belonging to the transforming growth factor-β (TGF-β) family that is primarily expressed in skeletal muscle and also functions in adipocyte maturation. Studies have shown that MSTN can inhibit adipogenesis in muscle satellite cells (MSCs) but not in adipose-derived stem cells (ADSCs). However, the mechanism by which MSTN differently regulates adipogenesis in these two cell types remains unknown. Peroxisome proliferator-activated receptor-γ (PPARγ) and myogenic differentiation factor (MyoD) are two key transcription factors in fat and muscle cell development that influence adipogenesis. To investigate whether MSTN differentially regulates PPARγ and MyoD, we analyzed PPARγ and MyoD expression by assessing mRNA, protein and methylation levels in ADSCs and MSCs after treatment with 100 ng/mL MSTN for 0, 24, and 48 h. PPARγ mRNA levels were downregulated after 24 h and upregulated after 48 h of treatment in ADSCs, whereas in MSCs, PPARγ levels were downregulated at both time points. MyoD expression was significantly increased in ADSCs and decreased in MSCs. PPARγ and MyoD protein levels were upregulated in ADSCs and downregulated in MSCs. The CpG methylation levels of the PPARγ and MyoD promoters were decreased in ADSCs and increased in MSCs. Therefore, this study demonstrated that the different regulatory adipogenic roles of MSTN in ADSCs and MSCs act by differentially regulating PPARγ and MyoD expression. - Highlights: • PPARγ and MyoD mRNA and protein levels are upregulated by myostatin in ADSCs. • PPARγ and MyoD mRNA and protein levels are downregulated by myostatin in MSCs. • PPARγ exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • MyoD exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • PPARγ and MyoD are differentially regulated by myostatin in ADSCs and MSCs.

  11. Synchronization and Antisynchronization of a Planar Oscillation of Satellite in an Elliptic Orbit via Active Control

    Directory of Open Access Journals (Sweden)

    Mohammad Shahzad

    2011-01-01

    Full Text Available We have investigated the synchronization and antisynchronization behaviour of two identical planar oscillation of a satellite in elliptic orbit evolving from different initial conditions using the active control technique based on the Lyapunov stability theory and the Routh-Hurwitz criteria. The designed controller, with our own choice of the coefficient matrix of the error dynamics that satisfy the Lyapunov stability theory and the Routh-Hurwitz criteria, is found to be effective in the stabilization of the error states at the origin, thereby, achieving synchronization and antisynchronization between the states variables of two nonlinear dynamical systems under consideration. The results are validated by numerical simulations using mathematica.

  12. Surveillance of waste disposal activity at sea using satellite ocean color imagers: GOCI and MODIS

    Science.gov (United States)

    Hong, Gi Hoon; Yang, Dong Beom; Lee, Hyun-Mi; Yang, Sung Ryull; Chung, Hee Woon; Kim, Chang Joon; Kim, Young-Il; Chung, Chang Soo; Ahn, Yu-Hwan; Park, Young-Je; Moon, Jeong-Eon

    2012-09-01

    Korean Geostationary Ocean Color Imager (GOCI) and Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua observations of the variation in ocean color at the sea surface were utilized to monitor the impact of nutrient-rich sewage sludge disposal in the oligotrophic area of the Yellow Sea. MODIS revealed that algal blooms persisted in the spring annually at the dump site in the Yellow Sea since year 2000 to the present. A number of implications of using products of the satellite ocean color imagers were exploited here based on the measurements in the Yellow Sea. GOCI observes almost every hour during the daylight period, every day since June 2011. Therefore, GOCI provides a powerful tool to monitor waste disposal at sea in real time. Tracking of disposal activity from a large tanker was possible hour by hour from the GOCI timeseries images compared to MODIS. Smaller changes in the color of the ocean surface can be easily observed, as GOCI resolves images at smaller scales in space and time in comparison to polar orbiting satellites, e.g., MODIS. GOCI may be widely used to monitor various marine activities in the sea, including waste disposal activity from ships.

  13. Myofiber-specific TEAD1 overexpression drives satellite cell hyperplasia and counters pathological effects of dystrophin deficiency

    Science.gov (United States)

    Southard, Sheryl; Kim, Ju-Ryoung; Low, SiewHui; Tsika, Richard W; Lepper, Christoph

    2016-01-01

    When unperturbed, somatic stem cells are poised to affect immediate tissue restoration upon trauma. Yet, little is known regarding the mechanistic basis controlling initial and homeostatic ‘scaling’ of stem cell pool sizes relative to their target tissues for effective regeneration. Here, we show that TEAD1-expressing skeletal muscle of transgenic mice features a dramatic hyperplasia of muscle stem cells (i.e. satellite cells, SCs) but surprisingly without affecting muscle tissue size. Super-numeral SCs attain a ‘normal’ quiescent state, accelerate regeneration, and maintain regenerative capacity over several injury-induced regeneration bouts. In dystrophic muscle, the TEAD1 transgene also ameliorated the pathology. We further demonstrate that hyperplastic SCs accumulate non-cell-autonomously via signal(s) from the TEAD1-expressing myofiber, suggesting that myofiber-specific TEAD1 overexpression activates a physiological signaling pathway(s) that determines initial and homeostatic SC pool size. We propose that TEAD1 and its downstream effectors are medically relevant targets for enhancing muscle regeneration and ameliorating muscle pathology. DOI: http://dx.doi.org/10.7554/eLife.15461.001 PMID:27725085

  14. Candidate solar cell materials for photovoltaic conversion in a solar power satellite /SPS/

    Science.gov (United States)

    Glaser, P. E.; Almgren, D. W.

    1978-01-01

    In recognition of the obstacles to solar-generated baseload power on earth, proposals have been made to locate solar power satellites in geosynchronous earth orbit (GEO), where solar energy would be available 24 hours a day during most of the time of the year. In an SPS, the electricity produced by solar energy conversion will be fed to microwave generators forming part of a planar phase-array transmitting antenna. The antenna is designed to precisely direct a microwave beam of very low intensity to one or more receiving antennas at desired locations on earth. At the receiving antenna, the microwave energy will be safely and efficiently reconverted to electricity and then be transmitted to consumers. An SPS system will include a number of satellites in GEO. Attention is given to the photovoltaic option for solar energy conversion in GEO, solar cell requirements, the availability of materials, the implication of large production volumes, requirements for high-volume manufacture of solar cell arrays, and the effects of concentration ratio on solar cell array area.

  15. Correlated NOS-Imu and myf5 expression by satellite cells in mdx mouse muscle regeneration during NOS manipulation and deflazacort treatment.

    Science.gov (United States)

    Anderson, Judy E; Vargas, Cinthya

    2003-06-01

    Satellite cells, muscle precursor cells in skeletal muscle, are normally quiescent and become activated by disease or injury. A lack of dystrophin and changes in the expression or activity of neuronal nitric oxide synthase (NOS-I) affect the timing of activation in vivo. Nitric oxide synthase inhibition delays muscle repair in normal mice, and worsens muscular dystrophy in the mdx mouse, a genetic homologue of Duchenne muscular dystrophy. However, the potential role of activation and repair events mediated by nitric oxide in determining the outcome of steroid or other treatments for muscular dystrophy is not clear. We tested the hypothesis that the extent of repair in dystrophic muscles of mdx mice is partly dependent on NOS-Imu expression and activity. Myotube formation in regenerating muscle was promoted by deflazacort treatment of mdx dystrophic mice (PImu mRNA expression and activity were present in satellite cells and very new myotubes of regenerating and dystrophic muscle. Deflazacort treatment resulted in increased NOS-Imu expression in regenerating muscles in a strong and specific correlation with myf5 expression (r=0.95, PImu and myf5 expression in the diaphragm without affecting the diameter of non-regenerating fibres. These in vivo studies suggest that gains in NOS-Imu expression and nitric oxide synthase activity in satellite cells can increase the extent and speed of repair, even in the absence of dystrophin in muscle fibres. NOS-Imu may be a useful therapeutic target to augment the effects of steroidal or other treatments of muscular dystrophy.

  16. Satellite observation of pollutant emissions from gas flaring activities near the Arctic

    Science.gov (United States)

    Li, Can; Hsu, N. Christina; Sayer, Andrew M.; Krotkov, Nickolay A.; Fu, Joshua S.; Lamsal, Lok N.; Lee, Jaehwa; Tsay, Si-Chee

    2016-05-01

    Gas flaring is a common practice in the oil industry that can have significant environmental impacts, but has until recently been largely overlooked in terms of relevance to climate change. We utilize data from various satellite sensors to examine pollutant emissions from oil exploitation activities in four areas near the Arctic. Despite the remoteness of these sparsely populated areas, tropospheric NO2 retrieved from the Ozone Monitoring Instrument (OMI) is substantial at ˜1 × 1015 molecules cm-2, suggesting sizeable emissions from these industrial activities. Statistically significant (at the 95% confidence level, corresponding uncertainties in parentheses) increasing trends of 0.017 (±0.01) × 1015 and 0.015 (±0.006) × 1015 molecules cm-2 year-1 over 2004-2015 were found for Bakken (USA) and Athabasca (Canada), two areas having recently experienced fast expansion in the oil industry. This rapid change has implications for emission inventories, which are updated less frequently. No significant trend was found for the North Sea (Europe), where oil production has been declining since the 1990s. For northern Russia, the trend was just under the 95% significance threshold at 0.0057 (±0.006) × 1015 molecules cm-2 year-1. This raises an interesting inconsistency as prior studies have suggested that, in contrast to the continued, albeit slow, expansion of Russian oil/gas production, gas flaring in Russia has decreased in recent years. However, only a fraction of oil fields in Russia were covered in our analysis. Satellite aerosol optical depth (AOD) data revealed similar tendencies, albeit at a weaker level of statistical significance, due to the longer lifetime of aerosols and contributions from other sources. This study demonstrates that synergetic use of data from multiple satellite sensors can provide valuable information on pollutant emission sources that is otherwise difficult to acquire.

  17. Analyses of the differentiation potential of satellite cells from myoD-/-, mdx, and PMP22 C22 mice

    Directory of Open Access Journals (Sweden)

    Huxley Clare

    2005-03-01

    Full Text Available Abstract Background Sporadic and sometimes contradictory studies have indicated changes in satellite cell behaviour associated with the progressive nature of human Duchenne muscular dystrophy (DMD. Satellite cell proliferation and number are reportedly altered in DMD and the mdx mouse model. We recently found that satellite cells in MSVski transgenic mice, a muscle hypertrophy model showing progressive muscle degeneration, display a severe ageing-related differentiation defect in vitro. We tested the hypothesis that similar changes contribute to the gradual loss of muscle function with age in mdx and PMP22 mice, a model of human motor and sensory neuropathy type 1A (HMSN1A. Methods Single extensor digitorum longus muscle fibres were cultured from mdx and PMP22 mice and age- and genetic background-matched controls. Mice at several ages were compared with regard to the differentiation of satellite cells, assayed as the proportion of desmin-expressing cells that accumulated sarcomeric myosin heavy chain. Results Satellite cells of 2 month, 6 month, and 12 month old mdx mice were capable of differentiating to a similar extent to age-matched wild type control animals in an in vitro proliferation/differentiation model. Strikingly, differentiation efficiency in individual 6 month and 12 month old mdx animals varies to a much higher extent than in age-matched controls, younger mdx animals, or PMP22 mice. In contrast, differentiation of myoblasts from all myoD null mice assayed was severely impaired in this assay system. The defect in satellite cell differentiation that occurs in some mdx animals arises from a delay in differentiation that is not overcome by IGF-1 treatment at any phase of cultivation. Conclusion Overall, a defect in satellite cell differentiation above that arising through normal ageing does not occur in mdx or PMP22 mouse models of human disease. Nonetheless, the impaired differentiation of satellite cells from some mdx animals

  18. Satellite cells senescence in limb muscle of severe patients with COPD.

    Directory of Open Access Journals (Sweden)

    Marie-Eve Thériault

    Full Text Available RATIONALE: The maintenance of peripheral muscle mass may be compromised in chronic obstructive pulmonary disease (COPD due to premature cellular senescence and exhaustion of the regenerative potential of the muscles. METHODS: Vastus lateralis biopsies were obtained from patients with COPD (n = 16 and healthy subjects (n = 7. Satellite cell number and the proportion of central nuclei, as a marker of muscle regenerative events, were assessed on cryosections. Telomere lengths, used as a marker of cellular senescence, were determined using Southern blot analyses. RESULTS: Central nuclei proportion was significantly higher in patients with COPD with a preserved muscle mass compared to controls and patients with COPD with muscle atrophy (p<0.001. In COPD, maximal telomere length was significantly decreased compared to controls (p<0.05. Similarly, minimal telomere length was significantly reduced in GOLD III-IV patients with muscle atrophy compared to controls (p<0.005. Minimal, mean and maximum telomere lengths correlated with mid-thigh muscle cross-sectional area (MTCSA (R = 0.523, p = 0.005; R = 0.435, p = 0.019 and R = 0.491, p = 0.009, respectively. CONCLUSIONS: Evidence of increased regenerative events was seen in GOLD III-IV patients with preserved muscle mass. Shortening of telomeres in GOLD III-IV patients with muscle atrophy is consistent with an increased number of senescent satellite cells and an exhausted muscle regenerative capacity, compromising the maintenance of muscle mass in these individuals.

  19. Immunocalization of telomerase in cells of lizard tail after amputation suggests cell activation for tail regeneration.

    Science.gov (United States)

    Alibardi, L

    2016-02-01

    Tail amputation (autotomy) in most lizards elicits a remarkable regenerative response leading to a new although simplified tail. No information on the trigger mechanism following wounding is known but cells from the stump initiate to proliferate and form a regenerative blastema. The present study shows that telomerases are mainly activated in the nuclei of various connective and muscle satellite cells of the stump, and in other tissues, probably responding to the wound signals. Western blotting detection also indicates that telomerase positive bands increases in the regenerating blastema in comparison to the normal tail. Light and ultrastructural immunocytochemistry localization of telomerase shows that 4-14 days post-amputation in lizards immunopositive nuclei of sparse cells located among the wounded tissues are accumulating into the forming blastema. These cells mainly include fibroblasts and fat cells of the connective tissue and satellite cells of muscles. Also some immature basophilic and polychromatophilic erytroblasts, lymphoblasts and myelocytes present within the Bone Marrow of the vertebrae show telomerase localization in their nuclei, but their contribution to the formation of the regenerative blastema remains undetermined. The study proposes that one of the initial mechanisms triggering cell proliferation for the formation of the blastema in lizards involve gene activation for the production of telomerase that stimulates the following signaling pathways for cell division and migration.

  20. Using Light-at-Night (LAN) Satellite Data for Identifying Clusters of Economic Activities in Europe

    Science.gov (United States)

    Rybnikova, N. A.; Portnov, B. A.

    2015-04-01

    Enterprises organized in clusters are often efficient in stimulating urban development, productivity and profit outflows. Identifying clusters of economic activities (EAs) thus becomes an important step in devising regional development policies, aimed at facilitating regional economic development. However, a major problem with cluster identification stems from limited reporting of specific EAs by individual countries and administrative entities. Even Eurostat, which maintains most advances regional databases, provides data for less than 50% of all regional subdivisions of the 3rd tier of the Nomenclature of Territorial Units for Statistics (NUTS3). Such poor reporting impedes identification of EA clusters and economic forces behind them. In this study, we test a possibility that missing data on geographic concentrations of EAs can be reconstructed using Light-at-Night (LAN) satellite measurements, and that such reconstructed data can then be used for the identification of EA clusters. As we hypothesize, LAN, captured by satellite sensors, is characterized by different intensity, depending on its source - production facilities, services, etc., - and this information can be used for EA identification. The study was carried out in three stages. First, using nighttime satellite images, we determined what types of EAs can be identified, with a sufficient degree of accuracy, by LAN they emit. Second, we calculated multivariate statistical models, linking EAs concentrations with LAN intensities and several locational and development attributes of NUTS3 regions in Europe. Next, using the obtained statistical models, we restored missing data on EAs across NUTS3 regions in Europe and identified clusters of EAs, using spatial analysis tools.

  1. Sentinel-3 Satellite Applications In The Monitoring Of The Active Forest Fires

    Science.gov (United States)

    Calle, A.; Gonzalez-Alonso, F.

    2013-12-01

    FRP (Fire Radiative Power) is the magnitude associated to the thermal radiance which explains the ecological effects of active fire; it is the component of the chemical power released from burning vegetation and emitted as radiation during the process of combustion. In this paper, a discussion of the procedures for active fire FRP is presented: The Dozier method, the MODIS (Moderate Resolution Imaging Spectroradiometer) fire detection algorithm and semi-empirical relation-ship based on previous studies of BIRD (Bi-spectral InfraRed Detection) satellite. These procedures, described above, are applied to simulated data by a radiative transfer model, based on Sentinel-3/SLSTR spectral characteristics in order to analyze the impact of atmospheric conditions on FRP estimations.

  2. Solid State Inflation Balloon Active Deorbiter: Scalable Low-Cost Deorbit System for Small Satellites

    Science.gov (United States)

    Huang, Adam

    2016-01-01

    The goal of the Solid State Inflation Balloon Active Deorbiter project is to develop and demonstrate a scalable, simple, reliable, and low-cost active deorbiting system capable of controlling the downrange point of impact for the full-range of small satellites from 1 kg to 180 kg. The key enabling technology being developed is the Solid State Gas Generator (SSGG) chip, generating pure nitrogen gas from sodium azide (NaN3) micro-crystals. Coupled with a metalized nonelastic drag balloon, the complete Solid State Inflation Balloon (SSIB) system is capable of repeated inflation/deflation cycles. The SSGG minimizes size, weight, electrical power, and cost when compared to the current state of the art.

  3. Circularly Polarized Transparent Microstrip Patch Reflectarray Integrated with Solar Cell for Satellite Applications

    Directory of Open Access Journals (Sweden)

    S. H. Zainud-Deen

    2016-01-01

    Full Text Available Circularly polarized (CP transparent microstrip reflectarray antenna is integrated with solar cell for small satellite applications at 10 GHz. The reflectarray unit cell consists of a perfect electric conductor (PEC square patch printed on an optically transparent substrate with the PEC ground plane. A comparison between using transparent conducting polymers and using the PEC in unit-cell construction has been introduced. The waveguide simulator is used to calculate the required compensation phase of each unit cell in the reflectarray. The radiation characteristics of 13 × 13 CP transparent reflectarray antenna are investigated. A circularly polarized horn antenna is used to feed the reflectarray. The solar cell is incorporated with the transparent reflectarray on the same area. The solar-cell integration with the reflectarray reduces the maximum gain by about 0.5 dB due to the increase in the magnitude of the reflection coefficient. The results are calculated using the finite integral technique (FIT.

  4. Study on Cell Error Rate of a Satellite ATM System Based on CDMA

    Institute of Scientific and Technical Information of China (English)

    赵彤宇; 张乃通

    2003-01-01

    In this paper, the cell error rate (CER) of a CDMA-based satellite ATM system is analyzed. Two fading models, i.e. the partial fading model and the total fading model are presented according to multi-path propagation fading and shadow effect. Based on the total shadow model, the relation of CER vs. the number of subscribers at various elevations under 2D-RAKE receiving and non-diversity receiving is got. The impact on cell error rate with pseudo noise (PN) code length is also considered. The result that the maximum likelihood combination of multi-path signal would not improve the system performance when multiple access interference (MAI) is small, on the contrary the performance may be even worse is abtained.

  5. Potential Role of Omega-3 Fatty Acids on the Myogenic Program of Satellite Cells.

    Science.gov (United States)

    Bhullar, Amritpal S; Putman, Charles T; Mazurak, Vera C

    2016-01-01

    Skeletal muscle loss is associated with aging as well as pathological conditions. Satellite cells (SCs) play an important role in muscle regeneration. Omega-3 fatty acids are widely studied in a variety of muscle wasting diseases; however, little is known about their impact on skeletal muscle regeneration. The aim of this review is to evaluate studies examining the effect of omega-3 fatty acids, α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid on the regulation of SC proliferation and differentiation. This review highlights mechanisms by which omega-3 fatty acids may modulate the myogenic program of the stem cell population within skeletal muscles and identifies considerations for future studies. It is proposed that minimally three myogenic transcriptional regulatory factors, paired box 7 (Pax7), myogenic differentiation 1 protein, and myogenin, should be measured to confirm the stage of SCs within the myogenic program affected by omega-3 fatty acids.

  6. Perineuronal satellite neuroglia in the telencephalon of New Caledonian crows and other Passeriformes: evidence of satellite glial cells in the central nervous system of healthy birds?

    Science.gov (United States)

    Medina, Felipe S; Hunt, Gavin R; Gray, Russell D; Wild, J Martin; Kubke, M Fabiana

    2013-01-01

    Glia have been implicated in a variety of functions in the central nervous system, including the control of the neuronal extracellular space, synaptic plasticity and transmission, development and adult neurogenesis. Perineuronal glia forming groups around neurons are associated with both normal and pathological nervous tissue. Recent studies have linked reduction in the number of perineuronal oligodendrocytes in the prefrontal cortex with human schizophrenia and other psychiatric disorders. Therefore, perineuronal glia may play a decisive role in homeostasis and normal activity of the human nervous system. Here we report on the discovery of novel cell clusters in the telencephala of five healthy Passeriforme, one Psittaciform and one Charadriiforme bird species, which we refer to as Perineuronal Glial Clusters (PGCs). The aim of this study is to describe the structure and distribution of the PGCs in a number of avian species. PGCs were identified with the use of standard histological procedures. Heterochromatin masses visible inside the nuclei of these satellite glia suggest that they may correspond to oligodendrocytes. PGCs were found in the brains of nine New Caledonian crows, two Japanese jungle crows, two Australian magpies, two Indian mynah, three zebra finches (all Passeriformes), one Southern lapwing (Charadriiformes) and one monk parakeet (Psittaciformes). Microscopic survey of the brain tissue suggests that the largest PGCs are located in the hyperpallium densocellulare and mesopallium. No clusters were found in brain sections from one Gruiform (purple swamphen), one Strigiform (barn owl), one Trochiliform (green-backed firecrown), one Falconiform (chimango caracara), one Columbiform (pigeon) and one Galliform (chick). Our observations suggest that PGCs in Aves are brain region- and taxon-specific and that the presence of perineuronal glia in healthy human brains and the similar PGCs in avian gray matter is the result of convergent evolution. The discovery

  7. The relation between the geophysical activity of the Saturnian satellites and the Cassini Division

    Science.gov (United States)

    Noyelles, Benoit; Baillie, Kevin; Charnoz, Sebastien; Lainey, Valery; Tobie, Gabriel

    2017-06-01

    The Cassini Division is a 4,500 km wide gap in the rings of Saturn, which inner edge is at the exact 2:1 Inner Lindblad Resonance with Mimas. We here present our latest results regarding the formation and the stability of the Division, in combining N-body simulations of the main satellites of Saturn with hydrodynamical simulations of the rings, with the 1-D code Hydrorings (Charnoz et al. 2011). We show that an inward migration of Mimas over 8,000 to 9,000 km would create the Division in less than 10 Myr, and we get a final mass distribution in the rings that would look like the density distribution derived from optical depth observations assuming a uniform mass extinction coefficient for the ring particles. We also investigated two sources of inward migration of Mimas, i.e. an intense dissipation of Mimas, and an intense dissipation in Enceladus which would have been locked in a mean-motion resonance with Mimas, provoking the inward migration of the two satellites. The scenario involving a past intense dissipation in Mimas keeps the system of Saturn stable, but is inconsistent with the observed age of the surface of Mimas. However, a past intense dissipation in Enceladus is acceptable from a geophysical point of view owing to its present activity, but would have required an eccentricity so high that the system of Saturn would have been destabilized.

  8. Satellites of Xe transitions induced by infrared active vibrational modes of CF4 and C2F6 molecules.

    Science.gov (United States)

    Alekseev, Vadim A; Schwentner, Nikolaus

    2011-07-28

    Absorption and luminescence excitation spectra of Xe/CF(4) mixtures were studied in the vacuum UV region at high resolution using tunable synchrotron radiation. Pressure-broadened resonance bands and bands associated with dipole-forbidden states of the Xe atom due to collision-induced breakdown of the optical selection rules are reported. The spectra display in addition numerous satellite bands corresponding to transitions to vibrationally excited states of a Xe-CF(4) collisional complex. These satellites are located at energies of Xe atom transition increased by one quantum energy in the IR active v(3) vibrational mode of CF(4) (v(3) = 1281 cm(-1)). Satellites of both resonance and dipole-forbidden transitions were observed. Satellites of low lying resonance states are spectrally broad bands closely resembling in shape their parent pressure-broadened resonance bands. In contrast, satellites of dipole-forbidden states and of high lying resonance states are spectrally narrow bands (FWHM ∼10 cm(-1)). The satellites of dipole-forbidden states are orders of magnitude stronger than transitions to their parent states due to collision-induced breakdown of the optical selection rules. These satellites are attributed to a coupling of dipole-forbidden and resonance states induced by the electric field of the transient CF(4) (v(3) = 0 ↔ v(3) = 1) dipole. Similar satellites are present in spectra of Xe/C(2)F(6) mixtures where these bands are induced by the IR active v(10) mode of C(2)F(6). Transitions to vibrationally excited states of Xe-CF(4)(C(2)F(6)) collision pairs were also observed in two-photon LIF spectra.

  9. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training

    DEFF Research Database (Denmark)

    Olsen, Steen Schytte

    2006-01-01

    The present study investigated the influence of creatine and protein supplementation on satellite cell frequency and number of myonuclei in human skeletal muscle during 16 weeks of heavy-resistance training. In a double-blinded design 32 healthy, male subjects (19–26 years) were assigned...... in the control group (CON). In conclusion, the present study demonstrates for the first time that creatine supplementation in combination with strength training amplifies the training-induced increase in satellite cell number and myonuclei concentration in human skeletal muscle fibres, thereby allowing......). Furthermore, timed protein/placebo intake were administered at all training sessions. Muscle biopsies were obtained at week 0, 4, 8 (week 8 not CON) and 16 of resistance training (3 days per week). Satellite cells were identified by immunohistochemistry. Muscle mean fibre (MFA) area was determined after...

  10. MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16

    DEFF Research Database (Denmark)

    Yin, Hang; Pasut, Alessandra; Soleimani, Vahab D

    2013-01-01

    (satellite cells) have long been considered uniformly determined toward the myogenic lineage. Here, we report that adult satellite cells give rise to brown adipocytes and that microRNA-133 regulates the choice between myogenic and brown adipose determination by targeting the 3'UTR of Prdm16. Antagonism...... are downregulated in mice exposed to cold, resulting in de novo generation of satellite cell-derived brown adipocytes. Therefore, microRNA-133 represents an important therapeutic target for the treatment of obesity....... of microRNA-133 during muscle regeneration increases uncoupled respiration, glucose uptake, and thermogenesis in local treated muscle and augments whole-body energy expenditure, improves glucose tolerance, and impedes the development of diet-induced obesity. Finally, we demonstrate that miR-133 levels...

  11. Retrievals of Falling Snow from Satellite-borne Active and Passive Sensors

    Science.gov (United States)

    Jackson, Gail; Munchak, S. Joseph; Johnson, Benjamin

    2014-05-01

    Precipitation, including rain and snow, is a critical part of the Earth's energy and hydrology cycles. Precipitation impacts latent heating profiles locally while global circulation patterns distribute precipitation and energy from the equator to the poles. For the hydrological cycle, falling snow is a primary contributor in northern latitudes during the winter seasons. Falling snow is the source of snow pack accumulations that provide fresh water resources for many communities in the world. Furthermore, falling snow impacts society by causing transportation disruptions during severe snow events. In order to collect information on the complete global precipitation cycle, both liquid and frozen precipitation must be collected. The Global Precipitation Measurement (GPM) mission's Core satellite, scheduled for launch in February 2014, is well designed to detect and estimate falling snow. The GPM core carries a passive radiometer with frequencies (10-183 GHz) and an active radar with Ku- and Ka-band frequencies. Combined with the 65o inclination of the GPM Core satellite, these instruments allow for the GPM Core to sense and retrieve information about falling snow and light rain in regions of the earth where snow is common. The GPM Core's comprehensive active and passive channel set will also allow it to serve as a unifying reference for GPM constellation radiometer satellites. Since falling snow from space is the next precipitation measurement challenge from space, information is needed to guide retrieval algorithm development for these current and future missions. This information includes thresholds of detection for various sensor channel configurations, sensitivity to macroscale snow event system characteristics, and sensitivity to microscale snowflake particle characteristics. While the work in this area will continue for many years to come, our group has made substantial progress in this area by identifying minimum detectable melted rates of ~0.5 mm hr-1. Results

  12. Relationship between skeletal muscle satellite cells and exercise%骨骼肌卫星细胞生长因子与运动训练的关系

    Institute of Scientific and Technical Information of China (English)

    谢永涛; 蓝岚

    2011-01-01

    BACKGROUND: High intensity of exercise can lead to injury to fine structure of skeletal muscle tissue, and the activation,proliferation and differentiation of skeletal muscle satellite cells are closely related to muscle tissue injury.OBJECTIVE: Based on the thinking that training can cause muscle structural damage and repair is needed, this study proposed a dependent relationship between repair of skeletal muscle structure and skeletal muscle satellite cells.METHODS: A computer-based retrieval was performed by the first author to search manuscripts in CNKI and Medline database published between 2000 and 2010 with the key words “skeletal muscle satellite cells, growth factor, exercise, and skeletal muscle ultrastructure” in English and Chinese languages. A total of 97 manuscripts were retrieved. Following inclusion and exclusion criteria, 23 manuscripts were included in the final analysis. The mechanism underlying skeletal tissue repair and skeletal muscle satellite cell activation was summarized, and the relationship between these two was analyzed.RESULTS AND CONCLUSION: High intensity of exercise can result in injury to skeletal muscle tissue, satellite cells are the key toskeletal muscle repair and the growth factors of satellite cells are also related to exercise methods. At present, the relationship between skeletal muscle satellite cells growth factors and exercise lacks of sufficient recognition and research.%背景:大运动量训练可以导致骨骼肌组织微细结构的损伤性变化,而骨骼肌卫星细胞的激活、增殖与分化和肌肉组织损伤的修复有密切关系.目的:文章从训练导致肌肉组织结构性损伤需要修复的客观实际出发,提出运动后骨骼肌结构的修复与骨骼肌卫星细胞生长因子之间存在某种依赖关系.方法:由第一作者通过计算机网络检索中国期刊全文数据库(CNKI)和Medline数据库(2000/2010),检索词分别为"骨骼肌卫星细胞,生长因子,运动训

  13. Design and experiments of an active isolator for satellite micro-vibration

    Institute of Scientific and Technical Information of China (English)

    Li Weipeng; Huang Hai; Zhou Xubin; Zheng Xintao; Bai Yang

    2014-01-01

    In this paper, a soft active isolator (SAI) derived from a voice coil motor is studied to determine its abilities as a micro-vibration isolation device for sensitive satellite payloads. Firstly, the two most important parts of the SAI, the mechanical unit and the low-noise driver, are designed and manufactured. Then, a rigid-flexible coupling dynamic model of the SAI is built, and a dynamic analysis is conducted. Furthermore, a controller with a sky-hook damper is designed. Finally, results from the performance tests of the mechanical/electronic parts and the isolation experiments are presented. The SAI attenuations are found to be more than ?20 dB above 5 Hz, and the control effect is stable.

  14. Design and experiments of an active isolator for satellite micro-vibration

    Directory of Open Access Journals (Sweden)

    Li Weipeng

    2014-12-01

    Full Text Available In this paper, a soft active isolator (SAI derived from a voice coil motor is studied to determine its abilities as a micro-vibration isolation device for sensitive satellite payloads. Firstly, the two most important parts of the SAI, the mechanical unit and the low-noise driver, are designed and manufactured. Then, a rigid-flexible coupling dynamic model of the SAI is built, and a dynamic analysis is conducted. Furthermore, a controller with a sky-hook damper is designed. Finally, results from the performance tests of the mechanical/electronic parts and the isolation experiments are presented. The SAI attenuations are found to be more than −20 dB above 5 Hz, and the control effect is stable.

  15. Capturing the fingerprint of Etna volcano activity in gravity and satellite radar data.

    Science.gov (United States)

    Del Negro, Ciro; Currenti, Gilda; Solaro, Giuseppe; Greco, Filippo; Pepe, Antonio; Napoli, Rosalba; Pepe, Susi; Casu, Francesco; Sansosti, Eugenio

    2013-10-30

    Long-term and high temporal resolution gravity and deformation data move us toward a better understanding of the behavior of Mt Etna during the June 1995 - December 2011 period in which the volcano exhibited magma charging phases, flank eruptions and summit crater activity. Monthly repeated gravity measurements were coupled with deformation time series using the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique on two sequences of interferograms from ERS/ENVISAT and COSMO-SkyMed satellites. Combining spatiotemporal gravity and DInSAR observations provides the signature of three underlying processes at Etna: (i) magma accumulation in intermediate storage zones, (ii) magmatic intrusions at shallow depth in the South Rift area, and (iii) the seaward sliding of the volcano's eastern flank. Here we demonstrate the strength of the complementary gravity and DInSAR analysis in discerning among different processes and, thus, in detecting deep magma uprising in months to years before the onset of a new Etna eruption.

  16. Internet-Based Laboratory Activities Designed for Studying the Sun with Satellites

    Science.gov (United States)

    Slater, T. F.

    1998-12-01

    Yohkoh Public Outreach Project (YPOP) is a collaborative industry, university, and K-16 project bringing fascinating and dynamic images of the Sun to the public in real-time. Partners have developed an extensive public access and educational WWW site containing more than 100 pages of vibrant images with current information that focuses on movies of the X-ray output of our Sun taken by the Yohkoh Satellite. More than 5 Gb of images and movies are available on the WWW site from the Yohkoh satellite, a joint project of the Institute for Space and Astronautical Sciences (ISAS) and NASA. Using a movie theater motif, the site was created by teams working at Lockheed Martin Advanced Technology Center, Palo Alto, CA in the Solar and Astrophysics Research Group, the Montana State University Solar Physics Research Group, and the Montana State University Conceptual Astronomy and Physics Education Research Group with funding from the NASA Learning Technology Project (LTP) program (NASA LTP SK30G4410R). The Yohkoh Movie Theater Internet Site is found at URL: http://www.lmsal.com/YPOP/ and mirrored at URL: http://solar.physics.montana.edu/YPOP/. In addition to being able to request automated movies for any dates in a 5 Gb on-line database, the user can view automatically updated daily images and movies of our Sun over the last 72 hours. Master science teachers working with the NASA funded Yohkoh Public Outreach Project have developed nine technology-based on-line lessons for K-16 classrooms. These interdisciplinary science, mathematics, and technology lessons integrate Internet resources, real-time images of the Sun, and extensive NASA image databases. Instructors are able to freely access each of the classroom-ready activities. The activities require students to use scientific inquiry skills and manage electronic information to solve problems consistent with the emphasis of the NRC National Science Education Standards.

  17. ESA activities on satellite laser ranging to non-cooperative objects

    Science.gov (United States)

    Flohrer, Tim; Krag, Holger; Funke, Quirin; Jilete, Beatriz; Mancas, Alexandru

    2016-07-01

    Satellite laser ranging (SLR) to non-cooperative objects is an emerging technology that can contribute significantly to operational, modelling and mitigation needs set by the space debris population. ESA is conducting various research and development activities in SLR to non-cooperative objects. ESA's Space Situational Awareness (SSA) program supports specific activities in the Space Surveillance and Tracking (SST) segment. Research and development activities with operational aspects are run by ESA's Space Debris Office. At ESA SSA/SST comprises detecting, cataloguing and predicting the objects orbiting the Earth, and the derived applications. SST aims at facilitating research and development of sensor and data processing technologies and of related common components while staying complementary with, and in support of, national and multi-national European initiatives. SST promotes standardisation and interoperability of the technology developments. For SLR these goals are implemented through researching, developing, and deploying an expert centre. This centre shall coordinate the contribution of system-external loosely connected SLR sensors, and shall provide back calibration and expert evaluation support to the sensors. The Space Debris Office at ESA is responsible for all aspects related to space debris in the Agency. It is in charge of providing operational support to ESA and third party missions. Currently, the office studies the potential benefits of laser ranging to space debris objects to resolve close approaches to active satellites, to improve re-entry predictions of time and locations, and the more general SLR support during contingency situations. The office studies the determination of attitude and attitude motion of uncooperative objects with special focus on the combination of SLR, light-curve, and radar imaging data. Generating sufficiently precise information to allow for the acquisition of debris objects by a SLR sensor in a stare

  18. Micro space power system using MEMS fuel cell for nano-satellites

    Science.gov (United States)

    Lee, Jongkwang; Kim, Taegyu

    2014-08-01

    A micro space power system using micro fuel cell was developed for nano-satellites. The power system was fabricated using microelectromechanical system (MEMS) fabrication technologies. Polymer electrolyte membrane (PEM) fuel cell was selected in consideration of space environment. Sodium borohydride (NaBH4) was selected as a hydrogen source while hydrogen peroxide (H2O2) was selected as an oxygen source. The power system consists of a micro fuel cell, micro-reactor, micro-pump, and fuel cartridges. The micro fuel cell was fabricated on a light-weight and corrosion-resistant glass plates. The micro-reactor was used to generate hydrogen from NaBH4 alkaline solution via a catalytic hydrolysis reaction. All components such as micro-pump, fuel cartridges, and auxiliary battery were integrated for a complete power system. The storability of NaBH4 solution was evaluated at -25 °C and the performance of the micro power system was measured at various operating conditions. The power output of micro power system reasonably followed up the given electric load conditions.

  19. Gravitational mechanism of active life of the Earth, planets and satellites

    Science.gov (United States)

    Barkin, Yury

    2010-05-01

    From positions of geodynamic model of the forced gravitational swing, wobble and displacements of shells of a planet are studied and fundamental problems of geodynamics, geology, geophysics, planetary sciences are solved etc.: 1) The mechanism of cyclic variations of activity of natural processes in various time scales. 2) The power of endogenous activity of planetary natural processes on planets and satellites. 3) The phenomenon of polar inversion of natural processes on planets and satellites. 4) Spasmodic and catastrophic changes of activity of natural processes. 5) The phenomenon of twisting of hemispheres (latitude zones or belts) of celestial bodies. 6) Formation of the pear-shaped form of celestial bodies and the mechanism of its change. 7) The ordered planetary structures of geological formations. 8) The phenomena of bipolarity of celestial bodies and antipodality of geology formations. Mechanism. The fundamental feature of a structure of celestial bodies is their shell structure. The most investigated is the internal structure of the Earth. For the Moon and wide set of other bodies of solar system models of an internal structure have been constructed on the basis of the data of observations obtained at studying of their gravitational fields as a result of realization of the appropriate space missions. The basic components for the majority of celestial bodies are the core, the mantle and the crust. To other shells we concern atmospheres (for example, at Venus, Mars, the Titan etc.) and oceanic shells (the Titan, the Earth, Enceladus etc.). Shells are the complex (composite) formations. Planets and satellites are not spherical celestial bodies. The centers of mass of shells of the given planet (or the satellite) and their appropriate principal axes of inertia do not coincide. Accordingly, all their shells are characterized by the certain dynamic oblatenesses. Differences of dynamical oblatenesses results in various forced influences of external celestial

  20. Management and climate contributions to satellite-derived active fire trends in the contiguous United States

    Science.gov (United States)

    Lin, Hsiao-Wen; McCarty, Jessica L.; Wang, Dongdong; Rogers, Brendan M.; Morton, Douglas C.; Collatz, G. James; Jin, Yufang; Randerson, James T.

    2014-04-01

    Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001-2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001-2010. Active fires in croplands, in contrast, increased at a rate of 3.4% per year. Cropland and prescribed/other fire types combined were responsible for 77% of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9% per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems.

  1. Injection of duck recombinant follistatin fusion protein into duck muscle tissues stimulates satellite cell proliferation and muscle fiber hypertrophy.

    Science.gov (United States)

    Liu, He-he; Wang, Ji-wen; Yu, Hai-yue; Zhang, Rong-ping; Chen, Xi; Jin, Hai-bo; Dai, Fei; Li, Liang; Xu, Feng

    2012-06-01

    Follistatin (FST) can inhibit the expression of myostatin, which is a predominant inhibitor of muscle development. The potential application of myostatin-based technology has been prompted in different ways in agriculture. We previously constructed an expression vector of duck FST and isolated the FST fusion protein. After the protein was purified and refolded, it was added to the medium of duck myoblasts cultured in vitro. The results show that the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide value of the myoblasts in the duck FST treatment group is higher than that in the control group, which indicates that the duck FST fusion protein exhibits the biological activities that can accelerate myoblast proliferation. To further investigate the roles of duck FST on muscle development, we injected the protein into the duck muscle tissues in vivo. The results show that both the duck muscle fiber cross-sectional area and the satellite cell activation frequency are influenced more in the FST treatment group than they are in the control group. In addition to these phenomena, expression of MyoD and Myf5 were increased, and the expression of myostatin was decreased. Together, these results suggest the potential for using duck FST fusion protein to inhibit myostatin activity and subsequently to enhance muscle growth in vivo. The mechanism by which FST regulates muscle development in the duck is similar to that in mammals and fishes.

  2. Muscle Fiber Characteristics, Satellite Cells and Soccer Performance in Young Athletes

    Directory of Open Access Journals (Sweden)

    Thomas I. Metaxas, Athanasios Mandroukas, Efstratios Vamvakoudis, Kostas Kotoglou, Björn Ekblom, Konstantinos Mandroukas

    2014-09-01

    Full Text Available This study is aimed to examine the muscle fiber type, composition and satellite cells in young male soccer players and to correlate them to cardiorespiratory indices and muscle strength. The participants formed three Groups: Group A (n = 13, 11.2 ± 0.4yrs, Group B (n=10, 13.1 ± 0.5yrs and Group C (n = 9, 15.2 ± 0.6yrs. Muscle biopsies were obtained from the vastus lateralis. Peak torque values of the quadriceps and hamstrings were recorded and VO2max was measured on the treadmill. Group C had lower type I percentage distribution compared to A by 21.3% (p < 0.01, while the type IIA relative percentage was higher by 18.1% and 18.4% than in Groups A and B (p < 0.05. Groups B and C had higher cross-sectional area (CSA values in all fiber types than in Group A (0.05 < p < 0.001. The number of satellite cells did not differ between the groups. Groups B and C had higher peak torque at all angular velocities and absolute VO2max in terms of ml·min-1 than Group A (0.05 < p < 0.001. It is concluded that the increased percentage of type IIA muscle fibers noticed in Group C in comparison to the Groups A and B should be mainly attributed to the different workload exercise and training programs. The alteration of myosin heavy chain (MHC isoforms composition even in children is an important mechanism for skeletal muscle characteristics. Finally, CSA, isokinetic muscle strength and VO2max values seems to be expressed according to age.

  3. Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro.

    Science.gov (United States)

    Chal, Jérome; Al Tanoury, Ziad; Hestin, Marie; Gobert, Bénédicte; Aivio, Suvi; Hick, Aurore; Cherrier, Thomas; Nesmith, Alexander P; Parker, Kevin K; Pourquié, Olivier

    2016-10-01

    Progress toward finding a cure for muscle diseases has been slow because of the absence of relevant cellular models and the lack of a reliable source of muscle progenitors for biomedical investigation. Here we report an optimized serum-free differentiation protocol to efficiently produce striated, millimeter-long muscle fibers together with satellite-like cells from human pluripotent stem cells (hPSCs) in vitro. By mimicking key signaling events leading to muscle formation in the embryo, in particular the dual modulation of Wnt and bone morphogenetic protein (BMP) pathway signaling, this directed differentiation protocol avoids the requirement for genetic modifications or cell sorting. Robust myogenesis can be achieved in vitro within 1 month by personnel experienced in hPSC culture. The differentiating culture can be subcultured to produce large amounts of myogenic progenitors amenable to numerous downstream applications. Beyond the study of myogenesis, this differentiation method offers an attractive platform for the development of relevant in vitro models of muscle dystrophies and drug screening strategies, as well as providing a source of cells for tissue engineering and cell therapy approaches.

  4. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...... activation through coculture with T cells activated by anti-T-cell receptor or anti-CD3 antibodies suggest that cellular interaction with T cells, independent of antigen presentation or lymphokine secretion, induces or triggers B cells to become responsive to T-derived lymphokines, and that this may...

  5. Nutational Stability of a Satellite Equipped with an Active Magnetic Momentum Wheel

    OpenAIRE

    Inoue, Masao; Tsuchiya, Kazuo; Nakajima, Atsushi; MURAKAMI, Chikara

    1988-01-01

    This paper deals with an influence of the magnetically suspended rotor on the satellite motion; although cross-feedbacks in the magnetic bearing provide stability margin to the rotor gyroscopic motion, they may destabilize the satellite nutation. Stability analyses about the dynamical interaction between the satellite and the magnetically suspended rotor whose controller used three types of (proportional, integral and derivative) cross-feedbacks were performed. The results indicated that they...

  6. An Assessment of the Capabilities of the ERS Satellites' Active Microwave Instruments for Monitoring Soil Moisture Change

    Directory of Open Access Journals (Sweden)

    K. Blyth

    1997-01-01

    Full Text Available The launch of the European Remote sensing Satellite (ERS-1 in July 1991 represented an important turning point in the development of Earth observation as it was the first of a series of satellites which would carry high resolution active microwave (radar sensors which could operate through the thickest cloudeover and provide continuity of data for at least a decade. This was of particular relevance to hydrological applications, such as soil moisture monitoring, which generally require frequent satellite observations to monitor changes in state. ERS-1 and its successor ERS-2 carry the active microwave instrument (AMI which operates in 3 modes (synthetic aperture radar, wind scatterometer and wave seatterometer together with the radar altimeter which may all be useful for the observation of soil moisture. This paper assesses the utility of these sensors through a comprehensive review of work in this field. Two approaches to soil moisture retrieval are identified: 1 inversion modelling, where the physical effects of vegetation and soil roughness on radar backscatter are quantified through the use of multi-frequency and/or multi-polarization sensors and 2 change detection where these effects are normalized through frequent satellite observation, the residual effects being attributed to short-term changes in soil moisture. Both approaches will be better supported by the future European Envisat-l satellite which will provide both multi-polarization SAR and low resolution products which should facilitate more frequent temporal observation.

  7. Delay in post-ovariectomy estrogen replacement negates estrogen-induced augmentation of post-exercise muscle satellite cell proliferation.

    Science.gov (United States)

    Mangan, Gary; Iqbal, Sobia; Hubbard, Andrew; Hamilton, Victoria; Bombardier, Eric; Tiidus, Peter M

    2015-11-01

    This study examined the effects of a delay in post-ovariectomy replacement of 17β-estradiol (estrogen) on the post-exercise proliferation of muscle satellite cells. Nine-week-old, ovariectomized, female Sprague-Dawley rats (n = 64) were distributed among 8 groups based on estrogen status (0.25 mg estrogen pellet or sham), exercise status (90 min run at 17 m·min(-1) and a grade of -13.5° or unexercised), and estrogen replacement ("proximal", estrogen replacement within 2 weeks; or "delayed", estrogen replacement at 11 weeks following ovariectomy). Significant increases in satellite cells were found in the soleus and white gastrocnemius muscle (immunofluorescent colocalization of nuclei with Pax7) 72 h following eccentric exercise (p exercised groups. Proximal E2 replacement resulted in a further augmentation of muscle satellite cells in exercised rats (p estrogen replacement group. Expression of PI3K was unaltered and phosphorylation of Akt relative to total Akt increased following estrogen supplementation and exercise. Exercise alone did not alter the expression levels of Akt. An 11 week delay in post-ovariectomy estrogen replacement negated the augmenting influence seen with proximal (2 week delay) post-ovariectomy estrogen replacement on post-exercise muscle satellite cell proliferation. This effect appears to be independent of the PI3K-Akt signaling pathway.

  8. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Directory of Open Access Journals (Sweden)

    Matthew Emerson Randolph

    2015-10-01

    Full Text Available The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies, such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some muscular dystrophies. The biology of muscle stem cells varies depending on their embryologic origins and the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.

  9. Spatial-Temporal Analyses of Lightning Activities over Pakistan using Satellite Remote Sensing

    Science.gov (United States)

    Qaiser, Saddam; Imran Shahzad, Muhammad

    2016-07-01

    Lightning is a naturally occurring spectacular and powerful phenomenon often accompanied by thunder. Regardless, it's hazardous and responsible for thousands of deaths and property loss all over the globe.In Pakistan, this hazardous phenomenon mostly occurs in monsoon and pre-monsoon seasons. To prevent or at least minimize the unforeseen property damages and human casuality, we need to identify the vulnerable locations to lightning in Pakistan, but yet there have not been done any detailed study regarding the lightning hazards yet for Pakistan. In the present study for the years 2001 - 2014 lightning density mapping has been done by means of satellite Remote Sensing techniques. Lightning Image Sensor (LIS) datasets of locations and Time of Occurrence (TOA) are used to identify the lightning prone locations all over Pakistan. Efforts have been made to develop a technique that is helpful in generating the hazard maps of lighting in Pakistan on temporal basis by using spatio-temporal satellite images. These maps show frequency distribution trends of lightning in many regions of Pakistan that enable us to locate high, moderate and low lightning-susceptible areas. Results demonstrate that thunderstorm frequency is comparatively higher over the mountain and sub-mountain regions in the Punjab, Federally Administered Tribal Areas (FATA) and Khyber Pakhtoon Khwa (KPK) provinces. Interestingly lightning data showed a strong correlation between the FlashesYear and the El Niño and La Niña years. It is observed that about 40.1 % of lightning activities occurred during the monsoon followed by pre-monsoon with 39.7 %, which can possibly create synergistic and devastating effects in combination with heavy seasonal rainfall. A severe lightning event with 4559 flashes in just 3.08 seconds is also recorded on 8-Oct-2005 in Pakistan-India border near Azad Jammu Kashmir (AJK) and Jammu Kashmir. However, it is to be noted that on the same date Pakistan was hit by a major Earthquake

  10. Perineuronal satellite neuroglia in the telencephalon of New Caledonian crows and other Passeriformes: evidence of satellite glial cells in the central nervous system of healthy birds?

    Directory of Open Access Journals (Sweden)

    Felipe S. Medina

    2013-07-01

    Full Text Available Glia have been implicated in a variety of functions in the central nervous system, including the control of the neuronal extracellular space, synaptic plasticity and transmission, development and adult neurogenesis. Perineuronal glia forming groups around neurons are associated with both normal and pathological nervous tissue. Recent studies have linked reduction in the number of perineuronal oligodendrocytes in the prefrontal cortex with human schizophrenia and other psychiatric disorders. Therefore, perineuronal glia may play a decisive role in homeostasis and normal activity of the human nervous system.Here we report on the discovery of novel cell clusters in the telencephala of five healthy Passeriforme, one Psittaciform and one Charadriiforme bird species, which we refer to as Perineuronal Glial Clusters (PGCs. The aim of this study is to describe the structure and distribution of the PGCs in a number of avian species.PGCs were identified with the use of standard histological procedures. Heterochromatin masses visible inside the nuclei of these satellite glia suggest that they may correspond to oligodendrocytes. PGCs were found in the brains of nine New Caledonian crows, two Japanese jungle crows, two Australian magpies, two Indian mynah, three zebra finches (all Passeriformes, one Southern lapwing (Charadriiformes and one monk parakeet (Psittaciformes. Microscopic survey of the brain tissue suggests that the largest PGCs are located in the hyperpallium densocellulare and mesopallium. No clusters were found in brain sections from one Gruiform (purple swamphen, one Strigiform (barn owl, one Trochiliform (green-backed firecrown, one Falconiform (chimango caracara, one Columbiform (pigeon and one Galliform (chick.Our observations suggest that PGCs in Aves are brain region- and taxon-specific and that the presence of perineuronal glia in healthy human brains and the similar PGCs in avian gray matter is the result of convergent evolution. The

  11. Satellite geodetic monitoring of the Vladikavkaz active fault zone: First results

    Science.gov (United States)

    Milyukov, V. K.; Mironov, A. P.; Steblov, G. M.; Ovsyuchenko, A. N.; Rogozhin, E. A.; Drobyshev, V. N.; Kusraev, A. G.; Khubaev, Kh. M.; Torchinov, Kh.-M. Z.

    2017-07-01

    A geodetic network of Global Satellite Navigation System (GNSS) observation sites was organized in 2014-2015 for studying the contemporary crustal motions in the zone of the Vladikavkaz deep fault (Milyukov et al., 2014; 2015). The measurements were conducted and the first velocity estimates obtained testifying to the consistency of crustal motions in the Vladikavkaz fault zone and the Ossetian region overall in the ITRG2008 system. The first results show that the velocities and directions of horizontal motions do not change upon the transition of the fault zone. In correspondence with the northeastern orientation of the site displacement vectors and sublatitudinal trend of the disjunctive zone, the presence of left-lateral strike-slip displacements along the branches of an active fault should be expected. However, the signs pointing to the activation of motion in the fault zone are absent. Besides, even the manifestation of weak seismicity has not been observed within the high-magnitude seismogenic Vladikavkaz zone associated with this fault for more than 25 years. This suggests the passive present state of this structure, one of the largest disjunctive structures of the Northern Caucasus. In order to verify this conclusion and revealing the kinematic pattern of the displacements associated with the fault structure it is reasonable to continue the measurements.

  12. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    OpenAIRE

    Matthew Emerson Randolph; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies, such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in t...

  13. Effect of MSTN Propeptide and shRNA Co-expression Vector on Proliferation of Skeletal Muscle Satellite Cells

    Institute of Scientific and Technical Information of China (English)

    Feng Lin-he; Wang Xin; Lu Ming; Tong Hui-li; Li Shu-feng; Yan Yun-qin

    2014-01-01

    Myostatin (MSTN) is a negative regulator of skeletal muscle growth, in order to study the effect of inhibition MSTN expression on the proliferation of bovine skeletal muscle satellite cells, we constructed co-expression vector pcDNA3.1-Pro-MSTNshRNA, transfected it into muscle satellite cells by Liposome 2000, and detected cell proliferation changes by CCK-8 method and flow cytometry after 48 h. The expressions of P21 and CDK2 were detected by Western blot and real-time PCR. The results showed that the cell vitality of experimental groups significantly increased than that of the negative control, and cells in S phase also increased significantly (P<0.05). After knocked down MSTN gene, P21 expression decreased (P<0.05), but CDK2 gene expression increased (P<0.05). These results indicated that MSTN gene expression was associated with P21 and CDK2, the proliferation of skeletal muscle satellite cells could be promoted while MSTN was inhibited, which provided a theoretical basis for the study on transgenic cattle.

  14. The Change Indices of Solar and Geomagnetic Activity and Their Influence on the Dynamics of Drag of Artificial Satellite

    Science.gov (United States)

    Komendant, V. H.; Koshkin, N. I.; Ryabov, M. I.; Sukharev, A. L.

    2016-12-01

    The time-frequency and multiple regression analysis of the orbital parameter characterizing the drag of satellites on circular and elliptical orbits with different perigees and orbital inclinations in the atmosphere of the Earth was being conducted in 23-24 cycles of solar activity. Among the factors influencing braking dynamics of satellites were taken: W - Wolf numbers; Sp - the total area of sunspot groups of the northern and southern hemispheres of the Sun, F10.7 - the solar radio flux at 10,7 cm; E - electron flux with energies more than 0,6 MeV è 2 MeV; planetary, high latitude and middle latitude geomagnetic index Ap. In the atmospheric drag dynamics of satellites, the following periods were detected: 6-year, 2.1-year, annual, semi-annual, 27-days, 13- and 11-days. Similar periods are identified in indexes of solar and geomagnetic activity. Dependence of the periods of satellites motion on extremes of solar activities and space weather conditions was conducted.

  15. Satellite glial cells can promote the extension of neuronal axons in vitro

    Institute of Scientific and Technical Information of China (English)

    Jiu-Hong Zhao; Yi-Di Huang; Xi-Nan Yi; Quan-Peng Zhang; Xian-Fang Zhang; Xu Dong; Gang Luo; Hai-Ying Zhang; Kun-Ju Wang; Mei-Li Lao

    2015-01-01

    Objective: To study the influence of satellite glial cells (SGCs) on the outgrowth of neuronal neurite and the role of Slit1 protein and the contact with neurons in this process, in vitro. Methods: Neurons culture and SGC-neuron co-culture were used as the cell models. The length of axons and dendrites were measured via immunofluorescence to observe the influence of SGCs on the outgrowth of neuronal neurite. The Slit1 protein was added into SGC-neuron co-culture model. The length of dendrites was measured via immunofluorescence at different point times. Result: The anatomical relationship between neurons and SGCs changed as culture period expand. At 12 h after culture, SGCs all surrounded neurons; by 72 h after culture, SGCs were all off neurons. SGCs can promote the growth of neuronal axos, but inhibit the growth of its dendrites; when SGCs closely contact with neurons, the effect of Slit1 on promoting the dendritic growth is not obvious, but when SGCs were off neurons, the effect of Slit1 on promoting the dendritic growth is significant. Conclusion: SGCs can promote the growth of neuronal axos, but inhibit the growth of its dendrites; Slit- Robo signaling pathways and contact with neurons play a role in this process.

  16. Tropical Cyclone Activity in the North Atlantic Basin During the Weather Satellite Era, 1960-2014

    Science.gov (United States)

    Wilson, Robert M.

    2016-01-01

    This Technical Publication (TP) represents an extension of previous work concerning the tropical cyclone activity in the North Atlantic basin during the weather satellite era, 1960-2014, in particular, that of an article published in The Journal of the Alabama Academy of Science. With the launch of the TIROS-1 polar-orbiting satellite in April 1960, a new era of global weather observation and monitoring began. Prior to this, the conditions of the North Atlantic basin were determined only from ship reports, island reports, and long-range aircraft reconnaissance. Consequently, storms that formed far from land, away from shipping lanes, and beyond the reach of aircraft possibly could be missed altogether, thereby leading to an underestimate of the true number of tropical cyclones forming in the basin. Additionally, new analysis techniques have come into use which sometimes has led to the inclusion of one or more storms at the end of a nominal hurricane season that otherwise would not have been included. In this TP, examined are the yearly (or seasonal) and 10-year moving average (10-year moving average) values of the (1) first storm day (FSD), last storm day (LSD), and length of season (LOS); (2) frequencies of tropical cyclones (by class); (3) average peak 1-minute sustained wind speed () and average lowest pressure (); (4) average genesis location in terms of north latitudinal () and west longitudinal () positions; (5) sum and average power dissipation index (); (6) sum and average accumulated cyclone energy (); (7) sum and average number of storm days (); (8) sum of the number of hurricane days (NHD) and number of major hurricane days (NMHD); (9) net tropical cyclone activity index (NTCA); (10) largest individual storm (LIS) PWS, LP, PDI, ACE, NSD, NHD, NMHD; and (11) number of category 4 and 5 hurricanes (N4/5). Also examined are the December-May (D-M) and June-November (J-N) averages and 10-year moving average values of several climatic factors, including the (1

  17. Relationships between lightning activity and various thundercloud parameters: satellite and modelling studies

    Science.gov (United States)

    Baker, M. B.; Blyth, A. M.; Christian, H. J.; Latham, J.; Miller, K. L.; Gadian, A. M.

    The lightning frequency model developed by Baker et al. [Baker, M.B., Christian, H.J., Latham, J., 1995. A computational study of the relationships linking lightning frequency and other thundercloud parameters, Q. J. R. Meteorol. Soc., 121, 1525-1548] has been refined and extended, in an effort to provide a more realistic framework from which to examine computationally the relationships that might exist between lightning frequency f (which is now being routinely measured from a satellite, using the NASA/MSFC Optical Transient Detector (OTD)) and a variety of cloud physical parameters. Specifically, superior or more comprehensive representations were utilised of: (1) glaciation via the Hallett-Mossop (H-M) process; (2) the updraught structure of the model cloud; (3) the liquid-water-content structure of the model cloud; (4) the role of the reversal temperature Trev in influencing lightning characteristics; (5) the critical breakdown field for lightning initiation; and (6) the electrical characteristics of the ice crystal anvil of the model cloud. Although our extended studies yielded some new insights into the problem, the basic pattern of relationships between f and the other parameters was very close to that reported by Baker et al. (1995). The more elaborate treatment of Trev restricted somewhat the range of conditions under which reverse-polarity lightning could be produced if the cloud glaciated via H-M, but confirmed the earlier conclusion that such lightning would not occur if the glaciation was of the Fletcher type. The computations yielded preliminary support for the hypothesis that satellite measurements of f might be used to determine values of the ice-content of cumulonimbus anvils: a parameter of climatological importance. The successful launch and continuing satisfactory functioning of the OTD [Christian, H.J., Goodman, S., 1992. Global observations of lightning from space, Proc. 9th Int. Conf. on Atmospheric Electricity, St. Petersburg, pp. 316

  18. Mechanisms of cell propulsion by active stresses

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, A E, E-mail: aec@wustl.edu [Department of Physics, Washington University, Campus Box 1105, One Brookings Drive, St. Louis, MO 63130 (United States)

    2011-07-15

    The mechanisms by which cytoskeletal flows and cell-substrate interactions interact to generate cell motion are explored by using a simplified model of the cytoskeleton as a viscous gel containing active stresses. This model yields explicit general results relating cell speed and traction forces to the distributions of active stress and cell-substrate friction. It is found that (i) the cell velocity is given by a function that quantifies the asymmetry of the active-stress distribution, (ii) gradients in cell-substrate friction can induce motion even when the active stresses are symmetrically distributed, (iii) the traction-force dipole is enhanced by protrusive stresses near the cell edges or contractile stresses near the center of the cell and (iv) the cell velocity depends biphasically on the cell-substrate adhesion strength if active stress is enhanced by adhesion. Specific experimental tests of the calculated dependences are proposed.

  19. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...... includes multipoint intermolecular interactions that probably involve aggregation of both polymorphic and monomorphic T cell surface molecules. Such aggregations have been shown in vitro to markedly enhance and, in some cases, induce T cell activation. The production of T-derived lymphokines that have been...... implicated in B cell activation is dependent on the T cell receptor for antigen and its associated CD3 signalling complex. T-dependent help for B cell activation is therefore similarly MHC-restricted and involves T-B intercellular interaction. Recent reports that describe antigen-independent B cell...

  20. Scientific Satellites

    Science.gov (United States)

    1967-01-01

    followed Hale’s into orbit. In 1879, Jules Verne wrote about launching small satellites with a gun possessing a muzzle velocity of 10 000 m/sec (ref. 3...was activated in 1950.11 It was located only a few tens of miles from the spot where Jules Verne had his Baltimore Gun Club fire a manned projectile to...principle, satellites can be launched by a single impulse applied at the Earth’s surface-say, with a large cannon, & la Jules Verne (sec. 8-3). In

  1. Application of satellite precipitation data to analyse and model arbovirus activity in the tropics

    Directory of Open Access Journals (Sweden)

    Corner Robert J

    2011-01-01

    Full Text Available Abstract Background Murray Valley encephalitis virus (MVEV is a mosquito-borne Flavivirus (Flaviviridae: Flavivirus which is closely related to Japanese encephalitis virus, West Nile virus and St. Louis encephalitis virus. MVEV is enzootic in northern Australia and Papua New Guinea and epizootic in other parts of Australia. Activity of MVEV in Western Australia (WA is monitored by detection of seroconversions in flocks of sentinel chickens at selected sample sites throughout WA. Rainfall is a major environmental factor influencing MVEV activity. Utilising data on rainfall and seroconversions, statistical relationships between MVEV occurrence and rainfall can be determined. These relationships can be used to predict MVEV activity which, in turn, provides the general public with important information about disease transmission risk. Since ground measurements of rainfall are sparse and irregularly distributed, especially in north WA where rainfall is spatially and temporally highly variable, alternative data sources such as remote sensing (RS data represent an attractive alternative to ground measurements. However, a number of competing alternatives are available and careful evaluation is essential to determine the most appropriate product for a given problem. Results The Tropical Rainfall Measurement Mission (TRMM Multi-satellite Precipitation Analysis (TMPA 3B42 product was chosen from a range of RS rainfall products to develop rainfall-based predictor variables and build logistic regression models for the prediction of MVEV activity in the Kimberley and Pilbara regions of WA. Two models employing monthly time-lagged rainfall variables showed the strongest discriminatory ability of 0.74 and 0.80 as measured by the Receiver Operating Characteristics area under the curve (ROC AUC. Conclusions TMPA data provide a state-of-the-art data source for the development of rainfall-based predictive models for Flavivirus activity in tropical WA. Compared to

  2. Aged Muscle Demonstrates Fiber-Type Adaptations in Response to Mechanical Overload, in the Absence of Myofiber Hypertrophy, Independent of Satellite Cell Abundance.

    Science.gov (United States)

    Lee, Jonah D; Fry, Christopher S; Mula, Jyothi; Kirby, Tyler J; Jackson, Janna R; Liu, Fujun; Yang, Lin; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2016-04-01

    Although sarcopenia, age-associated loss of muscle mass and strength, is neither accelerated nor exacerbated by depletion of muscle stem cells, satellite cells, we hypothesized that adaptation in sarcopenic muscle would be compromised. To test this hypothesis, we depleted satellite cells with tamoxifen treatment of Pax7(CreER)-DTA mice at 4 months of age, and 20 months later subjected the plantaris muscle to 2 weeks of mechanical overload. We found myofiber hypertrophy was impaired in aged mice regardless of satellite cell content. Even in the absence of growth, vehicle-treated mice mounted a regenerative response, not apparent in tamoxifen-treated mice. Further, myonuclear accretion occurred in the absence of growth, which was prevented by satellite cell depletion, demonstrating that myonuclear addition is insufficient to drive myofiber hypertrophy. Satellite cell depletion increased extracellular matrix content of aged muscle that was exacerbated by overload, potentially limiting myofiber growth. These results support the idea that satellite cells regulate the muscle environment, and that their loss during aging may contribute to fibrosis, particularly during periods of remodeling. Overload induced a fiber-type composition improvement, independent of satellite cells, suggesting that aged muscle is very responsive to exercise-induced enhancement in oxidative capacity, even with an impaired hypertrophic response. © The Author 2015. Published by Oxford University Press on behalf of the Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Community effect triggers terminal differentiation of myogenic cells derived from muscle satellite cells by quenching Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Michiko [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Aging Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 (Japan); Mukai, Atsushi; Shiomi, Kosuke [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Song, Si-Yong [Institute of Neuroscience, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki-shi, Kagawa 769-2193 (Japan); Hashimoto, Naohiro, E-mail: nao@ncgg.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2011-01-15

    A high concentration of bone morphogenetic proteins (BMPs) stimulates myogenic progenitor cells to undergo heterotopic osteogenic differentiation. However, the physiological role of the Smad signaling pathway during terminal muscle differentiation has not been resolved. We report here that Smad1/5/8 was phosphorylated and activated in undifferentiated growing mouse myogenic progenitor Ric10 cells without exposure to any exogenous BMPs. The amount of phosphorylated Smad1/5/8 was severely reduced during precocious myogenic differentiation under the high cell density culture condition even in growth medium supplemented with a high concentration of serum. Inhibition of the Smad signaling pathway by dorsomorphin, an inhibitor of Smad activation, or noggin, a specific antagonist of BMP, induced precocious terminal differentiation of myogenic progenitor cells in a cell density-dependent fashion even in growth medium. In addition, Smad1/5/8 was transiently activated in proliferating myogenic progenitor cells during muscle regeneration in rats. The present results indicate that the Smad signaling pathway is involved in a critical switch between growth and differentiation of myogenic progenitor cells both in vitro and in vivo. Furthermore, precocious cell density-dependent myogenic differentiation suggests that a community effect triggers the terminal muscle differentiation of myogenic cells by quenching the Smad signaling.

  4. Sentinel-1 Data System at the Alaska Satellite Facility Distributed Active Archive Center

    Science.gov (United States)

    Wolf, V. G.

    2014-12-01

    The Alaska Satellite Facility Distributed Active Archive Center (ASF DAAC) has a long history of supporting international collaborations between NASA and foreign flight agencies to promote access to Synthetic Aperture Radar (SAR) data for US science research. Based on the agreement between the US and the EC, data from the Sentinel missions will be distributed by NASA through archives that mirror those established by ESA. The ASF DAAC is the designated archive and distributor for Sentinel-1 data. The data will be copied from the ESA archive to a rolling archive at the NASA Goddard center, and then pushed to a landing area at the ASF DAAC. The system at ASF DAAC will take the files as they arrive and put them through an ingest process. Ingest will populate the database with the information required to enable search and download of the data through Vertex, the ASF DAAC user interface. Metadata will be pushed to the NASA Common Metadata Repository, enabling data discovery through clients that utilize the repository. Visual metadata will be pushed to the NASA GIBS system for visualization through clients linked to that system. Data files will be archived in the DataDirect Networks (DDN) device that is the primary storage device for the ASF DAAC. A backup copy of the data will be placed in a second DDN device that serves as the disaster recovery solution for the ASF DAAC.

  5. Capturing the fingerprint of Etna volcano activity in gravity and satellite radar data

    Science.gov (United States)

    Negro, Ciro Del; Currenti, Gilda; Solaro, Giuseppe; Greco, Filippo; Pepe, Antonio; Napoli, Rosalba; Pepe, Susi; Casu, Francesco; Sansosti, Eugenio

    2013-01-01

    Long-term and high temporal resolution gravity and deformation data move us toward a better understanding of the behavior of Mt Etna during the June 1995 – December 2011 period in which the volcano exhibited magma charging phases, flank eruptions and summit crater activity. Monthly repeated gravity measurements were coupled with deformation time series using the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique on two sequences of interferograms from ERS/ENVISAT and COSMO-SkyMed satellites. Combining spatiotemporal gravity and DInSAR observations provides the signature of three underlying processes at Etna: (i) magma accumulation in intermediate storage zones, (ii) magmatic intrusions at shallow depth in the South Rift area, and (iii) the seaward sliding of the volcano's eastern flank. Here we demonstrate the strength of the complementary gravity and DInSAR analysis in discerning among different processes and, thus, in detecting deep magma uprising in months to years before the onset of a new Etna eruption. PMID:24169569

  6. First satellite measurements of chemical changes in coincidence with sprite activity

    Science.gov (United States)

    Arnone, Enrico; São Sabbas, Fernanda; Kero, Antti; Soula, Serge; Carlotti, Massimo; Chanrion, Olivier; Dinelli, Bianca Maria; Papandrea, Enzo; Castelli, Elisa; Neubert, Torsten

    2010-05-01

    The last twenty years have seen the discovery of electric discharges in the Earth's atmosphere above thunderstorms, the so-called sprites and jets. It has been suggested that they impact the atmospheric chemistry and possibly affect the ozone layer through their repeated occurrence. Whereas theoretical studies and laboratory experiments suggest enhancement of such gasses as nitrogen oxides by up to hundreds of percent within sprites, a definitive detection of their chemical effects have to date been unsuccessful. In this paper, we report on the first measurements of atmospheric chemical perturbations recorded in coincidence with sprite activity. A striking event occurred on 25 August 2003 when the MIPAS spectrometer onboard the Envisat satellite recorded spectroscopic measurements soon after a sequence of 11 sprites observed above Corsica (France) by Eurosprite ground facilities (details of the convective system are discussed in a companion paper by São Sabbas et al.). The measurements show an enhancement of ambient nitrous oxide by 80% at 52 km altitude in the region above the parent thunderstorm. The recorded chemical changes imply sprites can exert significant modification of the atmospheric chemistry at a regional scale, confirming model and laboratory predictions of sprite-chemistry, and requiring a new estimate of their global impact. The results of the analysis and their implications are discussed.

  7. SPACeMAN -a Satellite to Actively Reduce Sub-Centimeter Debris

    Science.gov (United States)

    Knirsch, Uli

    In-orbit fragmentation events, whether accidental or intentional, are bound to increase the population of space debris. "Critical debris" ranging between 1 and 10mm are numerous and can be lethal to both satellites and inhabited structures. This in turn creates further debris, potentially leading to a chain reaction ("Kessler syndrome"). In first approximation, collecting sub-centimeter debris appears impractical since rendezvous maneuvers are prohibitively expensive in terms of delta v and hardware complexity. One possible solution is to fly a spacecraft with a small constant vertical thrust. As a result, it will move somewhat faster than other, passive objects in its orbit -such as space debris. This "non-Keplerian orbit" thus creates a small chance of accidental collision. The sPACeMAN is designed to withstand impacts, capturing the debris. Since the probability of capture is low, some active control, particularly of the vertical thrust, can be instituted. The sPACeMAN concept was developed to reduce the population of NaK droplets in critical orbits. However, it can be extended to other debris as well. Since its effectiveness is greatest in areas of relatively high population densities of space debris, it would be best suited for quick responses, such as after a fragmentation event.

  8. Identification of genes differentially expressed in myogenin knock-down bovine muscle satellite cells during differentiation through RNA sequencing analysis.

    Directory of Open Access Journals (Sweden)

    Eun Ju Lee

    Full Text Available BACKGROUND: The expression of myogenic regulatory factors (MRFs consisting of MyoD, Myf5, myogenin (MyoG and MRF4 characterizes various phases of skeletal muscle development including myoblast proliferation, cell-cycle exit, cell fusion and the maturation of myotubes to form myofibers. Although it is well known that the function of MyoG cannot be compensated for other MRFs, the molecular mechanism by which MyoG controls muscle cell differentiation is still unclear. Therefore, in this study, RNA-Seq technology was applied to profile changes in gene expression in response to MyoG knock-down (MyoGkd in primary bovine muscle satellite cells (MSCs. RESULTS: About 61-64% of the reads of over 42 million total reads were mapped to more than 13,000 genes in the reference bovine genome. RNA-Seq analysis identified 8,469 unique genes that were differentially expressed in MyoGkd. Among these genes, 230 were up-regulated and 224 were down-regulated by at least four-fold. DAVID Functional Annotation Cluster (FAC and pathway analysis of all up- and down-regulated genes identified overrepresentation for cell cycle and division, DNA replication, mitosis, organelle lumen, nucleoplasm and cytosol, phosphate metabolic process, phosphoprotein phosphatase activity, cytoskeleton and cell morphogenesis, signifying the functional implication of these processes and pathways during skeletal muscle development. The RNA-Seq data was validated by real time RT-PCR analysis for eight out of ten genes as well as five marker genes investigated. CONCLUSIONS: This study is the first RNA-Seq based gene expression analysis of MyoGkd undertaken in primary bovine MSCs. Computational analysis of the differentially expressed genes has identified the significance of genes such as SAP30-like (SAP30L, Protein lyl-1 (LYL1, various matrix metalloproteinases, and several glycogenes in myogenesis. The results of the present study widen our knowledge of the molecular basis of skeletal muscle

  9. IGF-1,bFGF EXPRESSION AND VASCULAR REGENERATION IN ACUTE INFARCTED CANINE MYOCARDIUM AFTER AUTOLOGUS SKELETAL MUSCLE SATELLITE CELL IMPLANTATION

    Institute of Scientific and Technical Information of China (English)

    朱洪生; 钟竑; 张臻

    2003-01-01

    Objective To study the cell growth factor secretion and vascular regeneration in acute infarcted myocardium after autologous skeletal muscle satellite cell implantation.MethodsAutologous skeletal muscle satellite cells from adult mongrel canine were implanted into the acute myocardial infarct site via the ligated left anterior descending (LAD) artery. Specimens were harvested at 2, 4, 8 weeks after implantation for the expression of insulin like growth factor-1 (IGF-1), basic fibroblast growth factor (Bfgf) and the vascular density.ResultsThe expression of IGF-1, Bfgf and the vascular density in skeletal muscle satellite cell implant group were higher than that in the control group.ConclusionThe skeletal muscle satellite cells, after being implanted into the acute myocardial infarction, not only showed myocardial regeneration, but also showed the ability to secrete the cell factors, hence representing a positive effect on the regeneration of the infarcted myocardium.

  10. The Spindle Assembly Checkpoint Safeguards Genomic Integrity of Skeletal Muscle Satellite Cells

    Directory of Open Access Journals (Sweden)

    Swapna Kollu

    2015-06-01

    Full Text Available To ensure accurate genomic segregation, cells evolved the spindle assembly checkpoint (SAC, whose role in adult stem cells remains unknown. Inducible perturbation of a SAC kinase, Mps1, and its downstream effector, Mad2, in skeletal muscle stem cells shows the SAC to be critical for normal muscle growth, repair, and self-renewal of the stem cell pool. SAC-deficient muscle stem cells arrest in G1 phase of the cell cycle with elevated aneuploidy, resisting differentiation even under inductive conditions. p21CIP1 is responsible for these SAC-deficient phenotypes. Despite aneuploidy’s correlation with aging, we find that aged proliferating muscle stem cells display robust SAC activity without elevated aneuploidy. Thus, muscle stem cells have a two-step mechanism to safeguard their genomic integrity. The SAC prevents chromosome missegregation and, if it fails, p21CIP1-dependent G1 arrest limits cellular propagation and tissue integration. These mechanisms ensure that muscle stem cells with compromised genomes do not contribute to tissue homeostasis.

  11. Fiber Type-Specific Satellite Cell Content in Cyclists Following Heavy Training with Carbohydrate and Carbohydrate-Protein Supplementation

    Science.gov (United States)

    McKenzie, Alec I.; D'Lugos, Andrew C.; Saunders, Michael J.; Gworek, Keith D.; Luden, Nicholas D.

    2016-01-01

    The central purpose of this study was to evaluate the fiber type-specific satellite cell and myonuclear responses of endurance-trained cyclists to a block of intensified training, when supplementing with carbohydrate (CHO) vs. carbohydrate-protein (PRO). In a crossover design, endurance-trained cyclists (n = 8) performed two consecutive training periods, once supplementing with CHO (de facto “control” condition) and the other with PRO. Each training period consisted of 10 days of intensified cycle training (ICT–120% increase in average training duration) followed by 10 days of recovery (RVT–reduced volume training; 33% volume reduction vs. normal training). Skeletal muscle biopsies were obtained from the vastus lateralis before and after ICT and again following RVT. Immunofluorescent microscopy was used to quantify SCs (Pax7+), myonuclei (DAPI+), and myosin heavy chain I (MyHC I). Data are expressed as percent change ± 90% confidence limits. The 10-day block of ICTCHO increased MyHC I SC content (35 ± 28%) and myonuclear density (16 ± 6%), which remained elevated following RVTCHO (SC = 69 ± 50% vs. PRE; Nuclei = 17 ± 15% vs. PRE). MyHC II SC and myonuclei were not different following ICTCHO, but were higher following RVTCHO (SC = +33 ± 31% vs. PRE; Nuclei = 15 ± 14% vs. PRE), indicating a delayed response compared to MyHC I fibers. The MyHC I SC pool increased following ICTPRO (37 ± 37%), but without a concomitant increase in myonuclei. There were no changes in MyHC II SC or myonuclei following ICTPRO. Collectively, these trained endurance cyclists possessed a relatively large pool of SCs that facilitated rapid (MyHC I) and delayed (MyHC II) satellite cell proliferation and myonuclear accretion under carbohydrate conditions. The current findings strengthen the growing body of evidence demonstrating alterations in satellite cell number in the absence of hypertrophy. Satellite cell pool expansion is typically viewed as an advantageous response to

  12. Satellite observations of fumarole activity at Aluto volcano, Ethiopia: Implications for geothermal monitoring and volcanic hazard

    Science.gov (United States)

    Braddock, Mathilde; Biggs, Juliet; Watson, Iain M.; Hutchison, William; Pyle, David M.; Mather, Tamsin A.

    2017-07-01

    Fumaroles are the surface manifestation of hydrothermal circulation and can be influenced by magmatic, hydrothermal, hydrological and tectonic processes. This study investigates the temporal changes in fumarole temperatures and spatial extent on Aluto, a restless volcano in the Main Ethiopian Rift (MER), in order to better understand the controls on fluid circulation and the interaction between the magmatic and hydrothermal systems. Thermal infrared (TIR) satellite images, acquired by the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) over the period of 2004 to 2016, are used to generate time series of the fumarole temperatures and areas. The thermal anomalies identified in the ASTER images coincide with known fumaroles with temperatures > 80 °C and are located on or close to fault structures, which provide a pathway for the rising fluids. Most of the fumaroles, including those along the major zone of hydrothermal upwelling, the Artu Jawe Fault Zone, have pixel-integrated temperature variations of only 2 ± 1.5 °C. The exception are the Bobesa fumaroles located on a hypothesised caldera ring fault which show pixel-integrated temperature changes of up to 9 °C consistent with a delayed response of the hydrothermal system to precipitation. We conclude that fumaroles along major faults are strongly coupled to the magmatic-hydrothermal system and are relatively stable with time, whereas those along shallower structures close to the rift flank are more strongly influenced by seasonal variations in groundwater flow. The use of remote sensing data to monitor the thermal activity of Aluto provides an important contribution towards understanding the behaviour of this actively deforming volcano. This method could be used at other volcanoes around the world for monitoring and geothermal exploration.

  13. Photosynthetically active radiation retrieval based on HJ-1A/B satellite data

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Photosynthetically active radiation(PAR) is essential for plant photosynthesis and carbon cycle,and is also important for meteorological and environmental monitoring.To advance China’s disaster and environmental monitoring capabilities,the HJ-1A/B satellites have been placed in Earth orbit.One of their environmental monitoring objectives is the study of PAR.We simulated direct solar,scattered and environment radiation between 400 and 700 nm under different atmospheric parameters(solar zenith angle,atmospheric water vapor,atmospheric ozone,aerosol optical thickness,surface elevation and surface albedo),and then established a look-up table between these input parameters and PAR.Based on the look-up table,we used HJ-1A/B aerosol and surface albedo outputs to derive the corresponding PAR.Validation of inversed instantaneous and observed PAR values using HJ-1 Heihe experimental data had a root mean square error of 25.2 W m-2,with a relative error of 5.9%.The root mean square error for accumulated daily PAR and observed values was 0.49 MJ m-2,with a relative error of 3.5%.Our approach improved significantly the computational efficiency,compared with using directly radiation transfer equations.We also studied the sensitivity of various input parameters to photosynthetically active radiation,and found that solar zenith angle and atmospheric aerosols were sensitive PAR parameters.Surface albedo had some effect on PAR,but water vapor and ozone had minimal impact on PAR.

  14. A Micro Fluorescent Activated Cell Sorter for Astrobiology Applications

    Science.gov (United States)

    Platt, Donald W.; Hoover, Richard B.

    2009-01-01

    A micro-scale Fluorescent Activated Cell Sorter (microFACS) for astrobiology applications is under development. This device is designed to have a footprint of 7 cm x 7 cm x 4 cm and allow live-dead counts and sorting of cells that have fluorescent characteristics from staining. The FACS system takes advantage of microfluidics to create a cell sorter that can fit in the palm of the hand. A micron-scale channel allows cells to pass by a blue diode which causes emission of marker-expressed cells which are detected by a filtered photodetector. A small microcontroller then counts cells and operates high speed valves to select which chamber the cell is collected in (a collection chamber or a waste chamber). Cells with the expressed characteristic will be collected in the collection chamber. This system has been built and is currently being tested. We are also designing a system with integrated MEMS-based pumps and valves for a small and compact unit to fly on small satellite-based biology experiments.

  15. Smad3 signaling is required for satellite cell function and myogenic differentiation of myoblasts

    Institute of Scientific and Technical Information of China (English)

    Xiaojia Ge; Ravi Kambadur; Craig McFarlane; Anuradha Vajjala; Sudarsanareddy Lokireddy; Zhi Hui Ng; Chek Kun Tan; Nguan Soon Tan; Walter Wahli; Mridula Sharma

    2011-01-01

    TGF-β and myostatin are the two most important regulators of muscle growth.Both growth factors have been shown to signal through a Smad3-dependent pathway.However to date,the role of Smad3 in muscle growth and differentiation is not investigated.Here,we demonstrate that Smad3-null mice have decreased muscle mass and pronounced skeletal muscle atrophy.Consistent with this,we also find increased protein ubiquitination and elevated levels of the ubiquitin E3 ligase MuRF1 in muscle tissue isolated from Smad3-null mice.Loss of Smad3 also led to defective satellite cell (SC) functionality.Smad3-null SCs showed reduced propensity for self-renewal,which may lead to a progressive loss of SC number.Indeed,decreased SC number was observed in skeletal muscle from Smad3- null mice showing signs of severe muscle wasting.Further in vitro analysis of primary myoblast cultures identified that Smad3-nuil myoblasts exhibit impaired proliferation,differentiation and fusion,resulting in the formation of atrophied myotubes.A search for the molecular mechanism revealed that loss of Smad3 results in increased myostatin expression in Smad3-null muscle and myoblasts.Given that myostatin is a negative regulator,we hypothesize that increased myostatin levels are responsible for the atrophic phenotype in Smad3-null mice.Consistent with this theory,inactivation of myostatin in Smad3-null mice rescues the muscle atrophy phenotype.

  16. Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise.

    Science.gov (United States)

    Farup, Jean; Rahbek, Stine Klejs; Knudsen, Inge Skovgaard; de Paoli, Frank; Mackey, Abigail L; Vissing, Kristian

    2014-11-01

    Human skeletal muscle satellite cells (SCs) are essential for muscle regeneration and remodeling processes in healthy and clinical conditions involving muscle breakdown. However, the potential influence of protein supplementation on post-exercise SC regulation in human skeletal muscle has not been well investigated. In a comparative human study, we investigated the effect of hydrolyzed whey protein supplementation following eccentric exercise on fiber type-specific SC accumulation. Twenty-four young healthy subjects received either hydrolyzed whey protein + carbohydrate (whey, n = 12) or iso-caloric carbohydrate (placebo, n = 12) during post-exercise recovery from 150 maximal unilateral eccentric contractions. Prior to and 24, 48 and 168 h post-exercise, muscle biopsies were obtained from the exercise leg and analyzed for fiber type-specific SC content. Maximal voluntary contraction (MVC) and serum creatine kinase (CK) were evaluated as indices of recovery from muscle damage. In type II fiber-associated SCs, the whey group increased SCs/fiber from 0.05 [0.02; 0.07] to 0.09 [0.06; 0.12] (p eccentric exercise.

  17. Cell division activity during apical hook development

    NARCIS (Netherlands)

    Raz, V.; Koornneef, M.

    2001-01-01

    Growth during plant development is predominantly governed by the combined activities of cell division and cell elongation. The relative contribution of both activities controls the growth of a tissue. A fast change in growth is exhibited at the apical hypocotyl of etiolated seedlings where cells

  18. Cell division activity during apical hook development

    NARCIS (Netherlands)

    Raz, V.; Koornneef, M.

    2001-01-01

    Growth during plant development is predominantly governed by the combined activities of cell division and cell elongation. The relative contribution of both activities controls the growth of a tissue. A fast change in growth is exhibited at the apical hypocotyl of etiolated seedlings where cells gro

  19. Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires.

    Science.gov (United States)

    Lin, Hsiao-Wen; Jin, Yufang; Giglio, Louis; Foley, Jonathan A; Randerson, James T

    2012-06-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CH4 and N2O from these fires annually. In this study, we evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries, and the consistency of emissions inventories among different countries. We also evaluated the success of individual countries in capturing interannual variability and long-term trends in agricultural fire activity. In our approach, we combined global high-resolution maps of crop harvest area and production, derived from satellite maps and ground-based census data, with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) measurements of active fires. At a global scale, we found that adding ground nuts (e.g., peanuts), cocoa, cotton and oil palm, and removing potato, oats, rye, and pulse other from the list of 14 crops targeted by the UNFCCC increased the percentage of active fires covered by the reporting system by 9%. Optimization led to a different recommended list for Annex 1 countries, requiring the addition of sunflower, cotton, rapeseed, and alfalfa and the removal of beans, sugarcane, pulse others, and tuber-root others. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 6% to 15%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico, and Nigeria) would capture over 55% of active fires in croplands worldwide. Analyses of interannual trends from the United States and Australia showed the importance of both intensity of fire use and crop production in controlling year

  20. An automated processing chains for surface temperature monitoring on Earth's most active volcanoes by optical data from multiple satellites

    Science.gov (United States)

    Silvestri, Malvina; Musacchio, Massimo; Fabrizia Buongiorno, Maria

    2017-04-01

    The Geohazards Exploitation Platform, or GEP is one of six Thematic Exploitation Platforms developed by ESA to serve data user communities. As a new element of the ground segment delivering satellite results to users, these cloud-based platforms provide an online environment to access information, processing tools, computing resources for community collaboration. The aim is to enable the easy extraction of valuable knowledge from vast quantities of satellite-sensed data now being produced by Europe's Copernicus programme and other Earth observation satellites. In this context, the estimation of surface temperature on active volcanoes around the world is considered. E2E processing chains have been developed for different satellite data (ASTER, Landsat8 and Sentinel 3 missions) using thermal infrared (TIR) channels by applying specific algorithms. These chains have been implemented on the GEP platform enabling the use of EO missions and the generation of added value product such as surface temperature map, from not skilled users. This solution will enhance the use of satellite data and improve the dissemination of the results saving valuable time (no manual browsing, downloading or processing is needed) and producing time series data that can be speedily extracted from a single co-registered pixel, to highlight gradual trends within a narrow area. Moreover, thanks to the high-resolution optical imagery of Sentinel 2 (MSI), the detection of lava maps during an eruption can be automatically obtained. The proposed lava detection method is based on a contextual algorithm applied to Sentinel-2 NIR (band 8 - 0.8 micron) and SWIR (band 12 - 2.25 micron) data. Examples derived by last eruptions on active volcanoes are showed.

  1. Viral Evasion of Natural Killer Cell Activation

    OpenAIRE

    Yi Ma; Xiaojuan Li; Ersheng Kuang

    2016-01-01

    Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral...

  2. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth.

    Science.gov (United States)

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon; Vendelbo, Mikkel Holm; Paoli, Frank de; Vissing, Kristian

    2014-10-15

    Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type-specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P hypertrophy correlated with whole muscle hypertrophy exclusively following Conc training (P eccentric resistance training while type II fiber hypertrophy was accentuated when combining concentric resistance training with whey protein supplementation.

  3. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training

    DEFF Research Database (Denmark)

    Olsen, Steen; Aagaard, Per; Kadi, Fawzi

    2006-01-01

    ). Furthermore, timed protein/placebo intake were administered at all training sessions. Muscle biopsies were obtained at week 0, 4, 8 (week 8 not CON) and 16 of resistance training (3 days per week). Satellite cells were identified by immunohistochemistry. Muscle mean fibre (MFA) area was determined after...... histochemical analysis. All training regimes were found to increase the proportion of satellite cells, but significantly greater enhancements were observed with creatine supplementation at week 4 (compared to STR-CON) and at week 8 (compared to STR-PRO and STR-CON) (P... number was no longer elevated in STR-CRE, while it remained elevated in STR-PRO and STR-CON. Furthermore, creatine supplementation resulted in an increased number of myonuclei per fibre and increases of 14-17% in MFA at week 4, 8 and 16 (Pincrease in MFA only...

  4. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon

    2014-01-01

    -specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose......Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type......) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P

  5. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    Science.gov (United States)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  6. Robust Fault-Tolerant Control for Satellite Attitude Stabilization Based on Active Disturbance Rejection Approach with Artificial Bee Colony Algorithm

    OpenAIRE

    Fei Song; Shiyin Qin

    2014-01-01

    This paper proposed a robust fault-tolerant control algorithm for satellite stabilization based on active disturbance rejection approach with artificial bee colony algorithm. The actuating mechanism of attitude control system consists of three working reaction flywheels and one spare reaction flywheel. The speed measurement of reaction flywheel is adopted for fault detection. If any reaction flywheel fault is detected, the corresponding fault flywheel is isolated and the spare reaction flywhe...

  7. Combining Satellite Observations of Fire Activity and Numerical Weather Prediction to Improve the Prediction of Smoke Emissions

    Science.gov (United States)

    Peterson, D. A.; Wang, J.; Hyer, E. J.; Ichoku, C. M.

    2012-12-01

    Smoke emissions estimates used in air quality and visibility forecasting applications are currently limited by the information content of satellite fire observations, and the lack of a skillful short-term forecast of changes in fire activity. This study explores the potential benefits of a recently developed sub-pixel-based calculation of fire radiative power (FRPf) from the MODerate Resolution Imaging Spectroradiometer (MODIS), which provides more precise estimates of the radiant energy (over the retrieved fire area) that in turn, improves estimates of the thermal buoyancy of smoke plumes and may be helpful characterizing the meteorological effects on fire activity for large fire events. Results show that unlike the current FRP product, the incorporation of FRPf produces a statistically significant correlation (R = 0.42) with smoke plume height data provided by the Multi-angle Imaging SpectroRadiometer (MISR) and several meteorological variables, such as surface wind speed and temperature, which may be useful for discerning cases where smoke was injected above the boundary layer. Drawing from recent advances in numerical weather prediction (NWP), this study also examines the meteorological conditions characteristic of fire ignition, growth, decay, and extinction, which are used to develop an automated, 24-hour prediction of satellite fire activity. Satellite fire observations from MODIS and geostationary sensors show that the fire prediction model is an improvement (RMSE reduction of 13 - 20%) over the forecast of persistence commonly used by near-real-time fire emission inventories. The ultimate goal is to combine NWP data and satellite fire observations to improve both analysis and prediction of biomass-burning emissions, through improved understanding of the interactions between fire activity and weather at scales appropriate for operational modeling. This is a critical step toward producing a global fire prediction model and improving operational forecasts of

  8. The molecular responses of skeletal muscle satellite cells to continuous expression of IGF-1: implications for the rescue of induced muscular atrophy in aged rats

    Science.gov (United States)

    Chakravarthy, M. V.; Booth, F. W.; Spangenburg, E. E.

    2001-01-01

    Approximately 50% of humans older than 85 years have physical frailty due to weak skeletal muscles. This indicates a need for determining mechanisms to combat this problem. A critical cellular factor for postnatal muscle growth is a population of myogenic precursor cells called satellite cells. Given the complex process of sarcopenia, it has been postulated that, at some point in this process, a limited satellite cell proliferation potential could become rate-limiting to the regrowth of old muscles. It is conceivable that if satellite cell proliferative capacity can be maintained or enhanced with advanced age, sarcopenia could potentially be delayed or prevented. Therefore, the purposes of this paper are to describe whether IGF-I can prevent muscular atrophy induced by repeated cycles of hindlimb immobilization, increase the in vitro proliferation in satellite cells from these muscles and, if so, the molecular mechanisms by which IGF-I mediates this increased proliferation. Our results provide evidence that IGF-I can enhance aged muscle regrowth possibly through increased satellite cell proliferation. The results also suggest that IGF-I enhances satellite cell proliferation by decreasing the cell cycle inhibitor, p27Kip1, through the PI3'-K/Akt pathway. These data provide molecular evidence for IGF-I's rescue effect upon aging-associated skeletal muscle atrophy.

  9. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration

    OpenAIRE

    Alessandra Castiglioni; Gianfranca Corna; Elena Rigamonti; Veronica Basso; Michela Vezzoli; Antonella Monno; Almada, Albert E; Anna Mondino; Wagers, Amy J.; Angelo A. Manfredi; Patrizia Rovere-Querini

    2015-01-01

    Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the musc...

  10. Change in the acceleration of artificial satellites during enhanced geomagnetic activity

    Energy Technology Data Exchange (ETDEWEB)

    Chepurnoy, V.N.; Charina, G.A.

    1975-01-01

    Analysis of disturbances in the acceleration (decrease in the period of rotation) of several artificial satellites during the strong magnetic storms of November 1960 showed that the disturbances occurred at the same time all over the world and coincided approximately with the time of the maximum of geomagnetic disturbances. Use of data on variations in the acceleration of satellites with a large balistic coefficient (ratio of transverse cross section to mass) made a more detailed study of acceleration disturbances during magnetic storms possible. It was found that acceleration disturbances lag approximately 5 hours behind the a/sub p/ indexes and their amplitude increases with height. This suggested global heating of the atmosphere above 200 km in proportion with the a/sub p/ index, leading to an increase in intensity and in satellite drag.

  11. Mast cell activation syndromes presenting as anaphylaxis.

    Science.gov (United States)

    Akin, Cem

    2015-05-01

    Anaphylaxis results from severe systemic mast cell activation. In addition to IgE-mediated and physical triggers, it may occur with a clonal mast cell disease and in an idiopathic fashion without clear provoking factors. Disorders of mast cell activation are classified into primary (clonal), secondary, and idiopathic. Mast cell activation syndrome (MCAS) is a multisystem disorder characterized by objective documentation of elevated mast cell mediators during attacks and a favorable response to antimediator therapy. It should be considered in the differential diagnosis of patients presenting with recurrent anaphylaxis without a clear cause. This article discusses the diagnosis of MCAS.

  12. Galileo satellite antenna modeling

    Science.gov (United States)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  13. Mycobacterium ulcerans infections cause progressive muscle atrophy and dysfunction, and mycolactone impairs satellite cell proliferation.

    Science.gov (United States)

    Houngbédji, Germain Mabèrou; Bouchard, Patrice; Frenette, Jérôme

    2011-03-01

    Clinical observations from Buruli ulcer (BU) patients in West Africa suggest that severe Mycobacterium ulcerans infections can cause skeletal muscle contracture and atrophy leading to significant impairment in function. In the present study, male mice C57BL/6 were subcutaneously injected with M. ulcerans in proximity to the right biceps muscle, avoiding direct physical contact between the infectious agent and the skeletal muscle. The histological, morphological, and functional properties of the muscles were assessed at different times after the injection. On day 42 postinjection, the isometric tetanic force and the cross-sectional area of the myofibers were reduced by 31% and 29%, respectively, in the proximate-infected muscles relative to the control muscles. The necrotic areas of the proximate-infected muscles had spread to 7% of the total area by day 42 postinjection. However, the number of central nucleated fibers and myogenic regulatory factors (MyoD and myogenin) remained stable and low. Furthermore, Pax-7 expression did not increase significantly in mycolactone-injected muscles, indicating that the satellite cell proliferation is abrogated by the toxin. In addition, the fibrotic area increased progressively during the infection. Lastly, muscle-specific RING finger protein 1 (MuRF-1) and atrogin-1/muscle atrophy F-box protein (atrogin-1/MAFbx), two muscle-specific E3 ubiquitin ligases, were upregulated in the presence of M. ulcerans. These findings confirmed that skeletal muscle is affected in our model of subcutaneous infection with M. ulcerans and that a better understanding of muscle contractures and weakness is essential to develop a therapy to minimize loss of function and promote the autonomy of BU patients.

  14. Reduced masticatory function is related to lower satellite cell numbers in masseter muscle.

    Science.gov (United States)

    Kuijpers, M A R; Grefte, S; Bronkhorst, E M; Carels, C E L; Kiliaridis, S; Von den Hoff, J W

    2014-06-01

    The physiology of masseter muscles is known to change in response to functional demands, but the effect on the satellite cell (SC) population is not known. In this study, the hypothesis is tested that a decreased functional demand of the masseter muscle causes a reduction of SCs. To this end, twelve 5-week-old male Sprague-Dawley rats were put on a soft diet (SD, n = 6) or a hard diet (HD, n = 6) and sacrificed after 14 days. Paraffin sections of the superficial masseter and the m. digastricus (control muscle) were stained with haematoxylin and eosin for tissue survey and with anti-myosin heavy chain (MHC) for slow and fast fibres. Frozen sections of both muscles were double-stained for collagen type IV and Pax7. Slow MHC fibres were equally distributed in the m. digastricus but only localized in a small area of the m. masseter. No differences between HD or SD for the m. digastricus were found. The m. masseter had more SCs per fibre in HD than in SD (0.093 ± 0.007 and 0.081 ± 0.008, respectively; P = 0.027). The m. masseter had more fibres per surface area than the m. digastricus in rats with an SD group (758.1 ± 101.6 and 568.4 ± 85.6, P = 0.047) and a HD group (737.7 ± 32.6 and 592.2 ± 82.2; P = 0.007). The m. digastricus had more SCs per fibre than the m. masseter in the SD group (0.094 ± 0.01 and 0.081 ± 0.008; P = 0.039). These results suggest that reduced masseter muscle function is related to a lower number of SCs. Reduced muscle function might decrease microdamage and hence the requirement of SCs in the muscle fibres.

  15. Akirin2 regulates proliferation and differentiation of porcine skeletal muscle satellite cells via ERK1/2 and NFATc1 signaling pathways

    Science.gov (United States)

    Chen, Xiaoling; Luo, Yanliu; Huang, Zhiqing; Jia, Gang; Liu, Guangmang; Zhao, Hua

    2017-01-01

    Akirin2, a novel nuclear factor, plays an important role in myogenesis. To investigate the role of Akirin2 in proliferation and differentiation of porcine skeletal muscle satellite cells, Akirin2 overexpression and Akirin2 silence technologies were employed. Our results showed that overexpression of Akirin2 markedly enhanced the proliferation and differentiation of porcine skeletal muscle satellite cells, whereas silencing of Akirin2 got the opposite results. Furthermore, our results showed that Akirin2 affected proliferation and differentiation of porcine skeletal muscle satellite cells through extracellular-signal regulated kinase-1/2 (ERK1/2) and NFATc1 signaling pathways. These results indicate that Akirin2 can effectively promote skeletal muscle satellite cells proliferation and differentiation, acting through ERK1/2- and NFATc1-dependent mechanisms. PMID:28327665

  16. Enobosarm (GTx-024) Modulates Adult Skeletal Muscle Mass Independently of the Androgen Receptor in the Satellite Cell Lineage.

    Science.gov (United States)

    Dubois, Vanessa; Simitsidellis, Ioannis; Laurent, Michaël R; Jardi, Ferran; Saunders, Philippa T K; Vanderschueren, Dirk; Claessens, Frank

    2015-12-01

    Androgens increase skeletal muscle mass, but their clinical use is hampered by a lack of tissue selectivity and subsequent side effects. Selective androgen receptor modulators elicit muscle-anabolic effects while only sparingly affecting reproductive tissues. The selective androgen receptor modulator, GTx-024 (enobosarm), is being investigated for cancer cachexia, sarcopenia, and muscle wasting diseases. Here we investigate the role of muscle androgen receptor (AR) in the anabolic effect of GTx-024. In mice lacking AR in the satellite cell lineage (satARKO), the weight of the androgen-sensitive levator ani muscle was lower but was decreased further upon orchidectomy. GTx-024 was as effective as DHT in restoring levator ani weights to sham levels. Expression of the muscle-specific, androgen-responsive genes S-adenosylmethionine decarboxylase and myostatin was decreased by orchidectomy and restored by GTx-024 and DHT in control mice, whereas the expression was low and unaffected by androgen status in satARKO. In contrast, insulin-like growth factor 1Ea expression was not different between satARKO and control muscle, decreased upon castration, and was restored by DHT and GTx-024 in both genotypes. These data indicate that GTx-024 does not selectively modulate AR in the satellite cell lineage and that cells outside this lineage remain androgen responsive in satARKO muscle. Indeed, residual AR-positive cells were present in satARKO muscle, coexpressing the fibroblast-lineage marker vimentin. AR positive, muscle-resident fibroblasts could therefore be involved in the indirect effects of androgens on muscle. In conclusion, both DHT and GTx-024 target AR pathways in the satellite cell lineage, but cells outside this lineage also contribute to the anabolic effects of androgens.

  17. Choreography of MAGUKs during T cell activation.

    Science.gov (United States)

    Rincón, Mercedes; Davis, Roger J

    2007-02-01

    T cell receptor activation requires the membrane-associated guanylate kinase CARMA1. A new study finds that a second such kinase, Dlgh1, is also required specifically for activation of the alternative p38 kinase pathway.

  18. Active cell mechanics: Measurement and theory.

    Science.gov (United States)

    Ahmed, Wylie W; Fodor, Étienne; Betz, Timo

    2015-11-01

    Living cells are active mechanical systems that are able to generate forces. Their structure and shape are primarily determined by biopolymer filaments and molecular motors that form the cytoskeleton. Active force generation requires constant consumption of energy to maintain the nonequilibrium activity to drive organization and transport processes necessary for their function. To understand this activity it is necessary to develop new approaches to probe the underlying physical processes. Active cell mechanics incorporates active molecular-scale force generation into the traditional framework of mechanics of materials. This review highlights recent experimental and theoretical developments towards understanding active cell mechanics. We focus primarily on intracellular mechanical measurements and theoretical advances utilizing the Langevin framework. These developing approaches allow a quantitative understanding of nonequilibrium mechanical activity in living cells. This article is part of a Special Issue entitled: Mechanobiology.

  19. Towards Reduced Nickel-Cadmium Battery Cost for Micro Satellites

    OpenAIRE

    1994-01-01

    This paper presents the two Nickel-Cadmium technologies offered by Saft for satellites applications: the space-qualified VOS prismatic cells designed for long term LEO and GEO missions, and the VRE cylindrical cell devoted to launcher activities and to short life LEO missions for mini and micro satellites. It also details Saft's effort to minimize the cost for these cells - in strict compliance with customer's specification and without any changes to the existing product manufacturing process.

  20. Satellite Communication.

    Science.gov (United States)

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  1. Cell death sensitization of leukemia cells by opioid receptor activation

    Science.gov (United States)

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  2. "Real time analysis" of the ion density measured by the satellite DEMETER in relation with the seismic activity

    Directory of Open Access Journals (Sweden)

    M. Li

    2012-09-01

    Full Text Available This paper is related to the study of the ion density recorded by the low altitude satellite DEMETER. In a first time there is an automatic search for ionospheric perturbations in the complete satellite data set of ion densities. Then perturbations due to known ionospheric phenomena (for example, solar activity are eliminated as well as perturbations not above a seismic zone. In a second time, there is a search to know if each selected perturbation corresponds to a future earthquake. The earthquakes have been classified depending on their magnitude and depth. This attempt to predict earthquakes of course generates false alarms and wrong detections. The results of this statistical analysis are presented as function of various parameters. It is shown that the number of false alarms is very important, because the ionosphere has variations not only linked to the seismic activity. The number of wrong detections is also important and can be explained by the fact that the satellite is above a seismic area only a few minutes per day and we do not expect continuous perturbations from a given earthquake. The more important results of this study is that the ratio between detected earthquakes and earthquakes to be detected increases with the magnitude of the earthquakes which intuitively makes sense.

  3. Error sources in passive and active microwave satellite soil moisture over Australia

    Science.gov (United States)

    Development of a long-term climate record of soil moisture (SM) involves combining historic and present satellite-retrieved SM data sets. This in turn requires a consistent characterization and deep understanding of the systematic differences and errors in the individual data sets, which vary due to...

  4. Viewing marine bacteria, their activity and response to environmental drivers from orbit: satellite remote sensing of bacteria.

    Science.gov (United States)

    Grimes, D Jay; Ford, Tim E; Colwell, Rita R; Baker-Austin, Craig; Martinez-Urtaza, Jaime; Subramaniam, Ajit; Capone, Douglas G

    2014-04-01

    Satellite-based remote sensing of marine microorganisms has become a useful tool in predicting human health risks associated with these microscopic targets. Early applications were focused on harmful algal blooms, but more recently methods have been developed to interrogate the ocean for bacteria. As satellite-based sensors have become more sophisticated and our ability to interpret information derived from these sensors has advanced, we have progressed from merely making fascinating pictures from space to developing process models with predictive capability. Our understanding of the role of marine microorganisms in primary production and global elemental cycles has been vastly improved as has our ability to use the combination of remote sensing data and models to provide early warning systems for disease outbreaks. This manuscript will discuss current approaches to monitoring cyanobacteria and vibrios, their activity and response to environmental drivers, and will also suggest future directions.

  5. Isolation, Culture, and Immunostaining of Skeletal Muscle Myofibers from Wildtype and Nestin-GFP Mice as a Means to Analyze Satellite Cell.

    Science.gov (United States)

    Stuelsatz, Pascal; Keire, Paul; Yablonka-Reuveni, Zipora

    2017-01-01

    Multinucleated myofibers, the functional contractile units of adult skeletal muscle, harbor mononuclear Pax7(+) myogenic progenitors on their surface between the myofiber basal lamina and plasmalemma. These progenitors, known as satellite cells, are the primary myogenic stem cells in adult muscle. This chapter describes our laboratory protocols for isolating, culturing, and immunostaining intact myofibers from mouse skeletal muscle as a means for studying satellite cell dynamics. The first protocol discusses myofiber isolation from the flexor digitorum brevis (FDB) muscle. These short myofibers are plated in dishes coated with PureCol collagen (formerly known as Vitrogen) and maintained in a mitogen-poor medium (± supplemental growth factors). Employing such conditions, satellite cells remain at the surface of the parent myofiber while synchronously undergoing a limited number of proliferative cycles and rapidly differentiate. The second protocol discusses the isolation of longer myofibers from the extensor digitorum longus (EDL) muscle. These EDL myofibers are routinely plated individually as adherent myofibers in wells coated with Matrigel and maintained in a mitogen-rich medium, conditions in which satellite cells migrate away from the parent myofiber, proliferate extensively, and generate numerous differentiating progeny. Alternatively, these EDL myofibers can be plated as non-adherent myofibers in uncoated wells and maintained in a mitogen-poor medium (± supplemental growth factors), conditions that retain satellite cell progeny at the myofiber niche similar to the FDB myofiber cultures. However, the adherent myofiber format is our preferred choice for monitoring satellite cells in freshly isolated (Time 0) myofibers. We conclude this chapter by promoting the Nestin-GFP transgenic mouse as an efficient tool for direct analysis of satellite cells in isolated myofibers. While satellite cells have been often detected by their expression of the Pax7 protein or

  6. Volcview: A Web-Based Platform for Satellite Monitoring of Volcanic Activity and Eruption Response

    Science.gov (United States)

    Schneider, D. J.; Randall, M.; Parker, T.

    2014-12-01

    The U.S. Geological Survey (USGS), in cooperation with University and State partners, operates five volcano observatories that employ specialized software packages and computer systems to process and display real-time data coming from in-situ geophysical sensors and from near-real-time satellite sources. However, access to these systems both inside and from outside the observatory offices are limited in some cases by factors such as software cost, network security, and bandwidth. Thus, a variety of Internet-based tools have been developed by the USGS Volcano Science Center to: 1) Improve accessibility to data sources for staff scientists across volcano monitoring disciplines; 2) Allow access for observatory partners and for after-hours, on-call duty scientists; 3) Provide situational awareness for emergency managers and the general public. Herein we describe VolcView (volcview.wr.usgs.gov), a freely available, web-based platform for display and analysis of near-real-time satellite data. Initial geographic coverage is of the volcanoes in Alaska, the Russian Far East, and the Commonwealth of the Northern Mariana Islands. Coverage of other volcanoes in the United States will be added in the future. Near-real-time satellite data from NOAA, NASA and JMA satellite systems are processed to create image products for detection of elevated surface temperatures and volcanic ash and SO2 clouds. VolcView uses HTML5 and the canvas element to provide image overlays (volcano location and alert status, annotation, and location information) and image products that can be queried to provide data values, location and measurement capabilities. Use over the past year during the eruptions of Pavlof, Veniaminof, and Cleveland volcanoes in Alaska by the Alaska Volcano Observatory, the National Weather Service, and the U.S. Air Force has reinforced the utility of shared situational awareness and has guided further development. These include overlay of volcanic cloud trajectory and

  7. The acute satellite cell response and skeletal muscle hypertrophy following resistance training.

    Directory of Open Access Journals (Sweden)

    Leeann M Bellamy

    Full Text Available The extent of skeletal muscle hypertrophy in response to resistance training is highly variable in humans. The main objective of this study was to explain the nature of this variability. More specifically, we focused on the myogenic stem cell population, the satellite cell (SC as a potential mediator of hypertrophy. Twenty-three males (aged 18-35 yrs participated in 16 wk of progressive, whole body resistance training, resulting in changes of 7.9±1.6% (range of -1.9-24.7% and 21.0±4.0% (range of -7.0 to 51.7% in quadriceps volume and myofibre cross-sectional area (CSA, respectively. The SC response to a single bout of resistance exercise (80% 1RM, analyzed via immunofluorescent staining resulted in an expansion of type II fibre associated SC 72 h following exercise (pre: 11.3±0.9; 72 h: 14.8±1.4 SC/type II fibre; p<0.05. Training resulted in an expansion of the SC pool associated with type I (pre: 10.7±1.1; post: 12.1±1.2 SC/type I fibre; p<0.05 and type II fibres (pre: 11.3±0.9; post: 13.0±1.2 SC/type II fibre; p<0.05. Analysis of individual SC responses revealed a correlation between the relative change in type I associated SC 24 to 72 hours following an acute bout of resistance exercise and the percentage increase in quadriceps lean tissue mass assessed by MRI (r2 = 0.566, p = 0.012 and the relative change in type II associated SC following 16 weeks of resistance training and the percentage increase in quadriceps lean tissue mass assessed by MRI (r2 = 0.493, p = 0.027. Our results suggest that the SC response to resistance exercise is related to the extent of muscular hypertrophy induced by training.

  8. Guidance, Navigation, and Control Techniques and Technologies for Active Satellite Removal

    Science.gov (United States)

    Ortega Hernando, Guillermo; Erb, Sven; Cropp, Alexander; Voirin, Thomas; Dubois-Matra, Olivier; Rinalducci, Antonio; Visentin, Gianfranco; Innocenti, Luisa; Raposo, Ana

    2013-09-01

    This paper shows an internal feasibility analysis to de- orbit a non-functional satellite of big dimensions by the Technical Directorate of the European Space Agency ESA. The paper focuses specifically on the design of the techniques and technologies for the Guidance, Navigation, and Control (GNC) system of the spacecraft mission that will capture the satellite and ultimately will de-orbit it on a controlled re-entry.The paper explains the guidance strategies to launch, rendezvous, close-approach, and capture the target satellite. The guidance strategy uses chaser manoeuvres, hold points, and collision avoidance trajectories to ensure a safe capture. It also details the guidance profile to de-orbit it in a controlled re-entry.The paper continues with an analysis of the required sensing suite and the navigation algorithms to allow the homing, fly-around, and capture of the target satellite. The emphasis is placed around the design of a system to allow the rendezvous with an un-cooperative target, including the autonomous acquisition of both the orbital elements and the attitude of the target satellite.Analysing the capture phase, the paper provides a trade- off between two selected capture systems: the net and the tentacles. Both are studied from the point of view of the GNC system.The paper analyses as well the advanced algorithms proposed to control the final compound after the capture that will allow the controlled de-orbiting of the assembly in a safe place in the Earth.The paper ends proposing the continuation of this work with the extension to the analysis of the destruction process of the compound in consecutive segments starting from the entry gate to the rupture and break up.

  9. Evaluating Biosphere Model Estimates of the Start of the Vegetation Active Season in Boreal Forests by Satellite Observations

    Directory of Open Access Journals (Sweden)

    Kristin Böttcher

    2016-07-01

    Full Text Available The objective of this study was to assess the performance of the simulated start of the photosynthetically active season by a large-scale biosphere model in boreal forests in Finland with remote sensing observations. The start of season for two forest types, evergreen needle- and deciduous broad-leaf, was obtained for the period 2003–2011 from regional JSBACH (Jena Scheme for Biosphere–Atmosphere Hamburg runs, driven with climate variables from a regional climate model. The satellite-derived start of season was determined from daily Moderate Resolution Imaging Spectrometer (MODIS time series of Fractional Snow Cover and the Normalized Difference Water Index by applying methods that were targeted to the two forest types. The accuracy of the satellite-derived start of season in deciduous forest was assessed with bud break observations of birch and a root mean square error of seven days was obtained. The evaluation of JSBACH modelled start of season dates with satellite observations revealed high spatial correspondence. The bias was less than five days for both forest types but showed regional differences that need further consideration. The agreement with satellite observations was slightly better for the evergreen than for the deciduous forest. Nonetheless, comparison with gross primary production (GPP determined from CO2 flux measurements at two eddy covariance sites in evergreen forest revealed that the JSBACH-simulated GPP was higher in early spring and led to too-early simulated start of season dates. Photosynthetic activity recovers differently in evergreen and deciduous forests. While for the deciduous forest calibration of phenology alone could improve the performance of JSBACH, for the evergreen forest, changes such as seasonality of temperature response, would need to be introduced to the photosynthetic capacity to improve the temporal development of gross primary production.

  10. The nanofibrous PAN-PANi scaffold as an efficient substrate for skeletal muscle differentiation using satellite cells.

    Science.gov (United States)

    Hosseinzadeh, Simzar; Mahmoudifard, Matin; Mohamadyar-Toupkanlou, Farzaneh; Dodel, Masomeh; Hajarizadeh, Atena; Adabi, Mahdi; Soleimani, Masoud

    2016-07-01

    Among polymers, polyaniline (PANi) has been introduced as a good candidate for muscle regeneration due to high conductivity and also biocompatibility. Herein, for the first time, we report the use of electrospun nanofibrous membrane of PAN-PANi as efficient scaffold for muscle regeneration. The prepared PAN-PANi electrospun nanofibrous membrane was characterized by scanning electron microscopy (SEM), Attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR) and tensile examination. The softer scaffolds of non-composite electrospun nanofibrous PAN govern a higher rate of cell growth in spite of lower differentiation value. On the other hand, PAN-PANi electrospun nanofibrous membrane exposed high cell proliferation and also differentiation value. Thank to the conductive property and higher Young's modulus of composite type due to the employment of PANi, satellite cells were induced into more matured form as analyzed by Real-Time PCR. On the other hand, grafting of composite nanofibrous electrospun scaffold with gelatin increased the surface stiffness directing satellite cells into lower cell proliferation and highest value of differentiation. Our results for first time showed the significant role of combination between conductivity, mechanical property and surface modification of PAN-PANi electrospun nanofibers and provid new insights into most biocompatible scaffolds for muscle tissue engineering. The schematic figure conveys the effective combination of conductive and surface stiffness on muscle tissue engineering.

  11. Multi-Grid-Cell Validation of Satellite Aerosol Property Retrievals in INTEX/ITCT/ICARTT 2004

    Science.gov (United States)

    Russell, P. B.; Livingston, J. M.; Redemann, J.; Schmid, B.; Ramirez, S. A.; Eilers, J.; Kahn, R.; Chu, D. A.; Remer, L.; Quinn, P. K.; Rood, M. J.; Wang, W.

    2007-01-01

    Aerosol transport off the US Northeast coast during the Summer 2004 International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) Intercontinental Chemical Transport Experiment (INTEX) and Intercontinental Transport and Chemical Transformation (ITCT) experiments produced a wide range of aerosol types and aerosol optical depth (AOD) values, often with strong horizontal AOD gradients. In these conditions we flew the 14-channel NASA Ames Airborne Tracking Sun photometer (AATS) on a Jetstream 31 (J31) aircraft. Legs flown at low altitude (usually less than 100 m ASL) provided comparisons of AATS AOD spectra to retrievals for 90 grid cells of the satellite radiometers MODIS-Terra, MODIS-Aqua, and MISR, all over the ocean. Characterization of the retrieval environment was aided by using vertical profiles by the J31 (showing aerosol vertical structure) and, on occasion, shipboard measurements of light scattering and absorption. AATS provides AOD at 13 wavelengths lambda from 354 to 2138 nm, spanning the range of aerosol retrieval wavelengths for MODIS over ocean (466-2119 nm) and MISR (446-866 nm). Midvisible AOD on low-altitude J31 legs in satellite grid cells ranged from 0.05 to 0.9, with horizontal gradients often in the range 0.05 to 0.13 per 10 km. When possible, we used ship measurements of humidified aerosol scattering and absorption to estimate AOD below the J31. In these cases, which had J31 altitudes 60-110 m ASL (typical of J31 low-altitude transects), estimated midvisible AOD below the J31 ranged from 0.003 to 0.013, with mean 0.009 and standard deviation 0.003. These values averaged 6 percent of AOD above the 53 1. MISR-AATS comparisons on 29 July 2004 in 8 grid cells (each -17.6 km x 17.6 km) show that MISR versions 15 and 16 captured the AATS-measured AOD gradient (correlation coefficient R2 = 0.87 to 0.92), but the MISR gradient was somewhat weaker than the AATS gradient. The large AOD (midvisible values up to -0.9) and

  12. Monitoring volcanic activity with satellite remote sensing to reduce aviation hazard and mitigate the risk: application to the North Pacific

    Science.gov (United States)

    Webley, P. W.; Dehn, J.

    2012-12-01

    Volcanic activity across the North Pacific (NOPAC) occurs on a daily basis and as such monitoring needs to occur on a 24 hour, 365 days a year basis. The risk to the local population and aviation traffic is too high for this not to happen. Given the size and remoteness of the NOPAC region, satellite remote sensing has become an invaluable tool to monitor the ground activity from the regions volcanoes as well as observe, detect and analyze the volcanic ash clouds that transverse across the Pacific. Here, we describe the satellite data collection, data analysis, real-time alert/alarm systems, observational database and nearly 20-year archive of both automated and manual observations of volcanic activity. We provide examples of where satellite remote sensing has detected precursory activity at volcanoes, prior to the volcanic eruption, as well as different types of eruptive behavior that can be inferred from the time series data. Additionally, we illustrate how the remote sensing data be used to detect volcanic ash in the atmosphere, with some of the pro's and con's to the method as applied to the NOPAC, and how the data can be used with other volcano monitoring techniques, such as seismic monitoring and infrasound, to provide a more complete understanding of a volcanoes behavior. We focus on several large volcanic events across the region, since our archive started in 1993, and show how the system can detect both these large scale events as well as the smaller in size but higher in frequency type events. It's all about how to reduce the risk, improve scenario planning and situational awareness and at the same time providing the best and most reliable hazard assessment from any volcanic activity.

  13. Early-age feed restriction affects viability and gene expression of satellite cells isolated from the gastrocnemius muscle of broiler chicks

    Directory of Open Access Journals (Sweden)

    Li Yue

    2012-11-01

    Full Text Available Abstract Background Muscle growth depends on the fusion of proliferate satellite cells to existing myofibers. We reported previously that 0–14 day intermittent feeding led to persistent retardation in myofiber hypertrophy. However, how satellite cells respond to such nutritional insult has not been adequately elucidated. Results One-day-old broiler chicks were allocated to control (Con, ad libitum feeding, intermittent feeding (IF, feed provided on alternate days and re-feeding (RF, 2 days ad libitum feeding after 12 days of intermittent feeding groups. Chickens were killed on Day 15 and satellite cells were isolated. When cultured, satellite cells from the IF group demonstrated significant retardation in proliferation and differentiation potential, while RF partly restored the proliferation rate and differentiation potential of the satellite cells. Significant up-regulation of insulin like growth factor I receptor (IGF-IR (P0.05 and thyroid hormone receptor α (TRα (P0.05, and down-regulation of growth hormone receptor (GHR (P0.01 and IGF-I (P0.01 mRNA expression was observed in freshly isolated IF satellite cells when compared with Con cells. In RF cells, the mRNA expression of IGF-I was higher (P0.05 and of TRα was lower (P0.01 than in IF cells, suggesting that RF restored the mRNA expression of TRα and IGF-I, but not of GHR and IGF-IR. The Bax/Bcl-2 ratio tended to increase in the IF group, which was reversed in the RF group (P0.05, indicating that RF reduced the pro-apoptotic influence of IF. Moreover, no significant effect of T3 was detected on cell survival in IF cells compared with Con (PP0.05 cells. Conclusions These data suggest that early-age feed restriction inhibits the proliferation and differentiation of satellite cells, induces changes in mRNA expression of the GH/IGF-I and thyroid hormone receptors in satellite cells, as well as blunted sensitivity of satellite cells to T3, and that RF partially reverses these effects. Thus

  14. Measurement of myeloid cell immune suppressive activity.

    Science.gov (United States)

    Dolcetti, Luigi; Peranzoni, Elisa; Bronte, Vincenzo

    2010-11-01

    This unit presents simple methods to assess the immunosuppressive properties of immunoregulatory cells of myeloid origin, such as myeloid-derived suppressor cells (MDSCs), both in vitro and in vivo. These methods are general and could be adapted to test the impact of different suppressive populations on T cell activation, proliferation, and cytotoxic activity; moreover they could be useful to assess the influence exerted on immune suppressive pathways by genetic modifications, chemical inhibitors, and drugs.

  15. Glucagon like peptide-1-induced glucose metabolism in differentiated human muscle satellite cells is attenuated by hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Charlotte J Green

    Full Text Available BACKGROUND: Glucagon like peptide-1 (GLP-1 stimulates insulin secretion from the pancreas but also has extra-pancreatic effects. GLP-1 may stimulate glucose uptake in cultured muscle cells but the mechanism is not clearly defined. Furthermore, while the pancreatic effects of GLP-1 are glucose-dependent, the glucose-dependency of its extra-pancreatic effects has not been examined. METHODS: Skeletal muscle satellite cells isolated from young (22.5 ± 0.97 yr, lean (BMI 22.5 ± 0.6 kg/m(2, healthy males were differentiated in media containing either 22.5 mM (high or 5 mM (normal glucose for 7 days in the absence or presence of insulin and/or various GLP-1 concentrations. Myocellular effects of GLP-1, insulin and glucose were assessed by western-blot, glucose uptake and glycogen synthesis. RESULTS: We firstly show that the GLP-1 receptor protein is expressed in differentiated human muscle satellite cells (myocytes. Secondly, we show that in 5 mM glucose media, exposure of myocytes to GLP-1 results in a dose dependent increase in glucose uptake, GLUT4 amount and subsequently glycogen synthesis in a PI3K dependent manner, independent of the insulin signaling cascade. Importantly, we provide evidence that differentiation of human satellite cells in hyperglycemic (22.5 mM glucose conditions increases GLUT1 expression, and renders the cells insulin resistant and interestingly GLP-1 resistant in terms of glucose uptake and glycogen synthesis. Hyperglycemic conditions did not affect the ability of insulin to phosphorylate downstream targets, PKB or GSK3. Interestingly we show that at 5 mM glucose, GLP-1 increases GLUT4 protein levels and that this effect is abolished by hyperglycemia. CONCLUSIONS: GLP-1 increases glucose uptake and glycogen synthesis into fully-differentiated human satellite cells in a PI3-K dependent mechanism potentially through increased GLUT4 protein levels. The latter occurs independently of the insulin signaling pathway. Attenuation

  16. A decadal satellite record of gravity wave activity in the lower stratosphere to study polar stratospheric cloud formation

    Science.gov (United States)

    Hoffmann, Lars; Spang, Reinhold; Orr, Andrew; Alexander, M. Joan; Holt, Laura A.; Stein, Olaf

    2017-02-01

    Atmospheric gravity waves yield substantial small-scale temperature fluctuations that can trigger the formation of polar stratospheric clouds (PSCs). This paper introduces a new satellite record of gravity wave activity in the polar lower stratosphere to investigate this process. The record is comprised of observations of the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite from January 2003 to December 2012. Gravity wave activity is measured in terms of detrended and noise-corrected 15 µm brightness temperature variances, which are calculated from AIRS channels that are the most sensitive to temperature fluctuations at about 17-32 km of altitude. The analysis of temporal patterns in the data set revealed a strong seasonal cycle in wave activity with wintertime maxima at mid- and high latitudes. The analysis of spatial patterns indicated that orography as well as jet and storm sources are the main causes of the observed waves. Wave activity is closely correlated with 30 hPa zonal winds, which is attributed to the AIRS observational filter. We used the new data set to evaluate explicitly resolved temperature fluctuations due to gravity waves in the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis. It was found that the analysis reproduces orographic and non-orographic wave patterns in the right places, but that wave amplitudes are typically underestimated by a factor of 2-3. Furthermore, in a first survey of joint AIRS and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite observations, nearly 50 gravity-wave-induced PSC formation events were identified. The survey shows that the new AIRS data set can help to better identify such events and more generally highlights the importance of the process for polar ozone chemistry.

  17. Expression of cassini, a murine gamma-satellite sequence conserved in evolution, is regulated in normal and malignant hematopoietic cells

    Directory of Open Access Journals (Sweden)

    Arutyunyan Anna

    2012-08-01

    Full Text Available Abstract Background Acute lymphoblastic leukemia (ALL cells treated with drugs can become drug-tolerant if co-cultured with protective stromal mouse embryonic fibroblasts (MEFs. Results We performed transcriptional profiling on these stromal fibroblasts to investigate if they were affected by the presence of drug-treated ALL cells. These mitotically inactivated MEFs showed few changes in gene expression, but a family of sequences of which transcription is significantly increased was identified. A sequence related to this family, which we named cassini, was selected for further characterization. We found that cassini was highly upregulated in drug-treated ALL cells. Analysis of RNAs from different normal mouse tissues showed that cassini expression is highest in spleen and thymus, and can be further enhanced in these organs by exposure of mice to bacterial endotoxin. Heat shock, but not other types of stress, significantly induced the transcription of this locus in ALL cells. Transient overexpression of cassini in human 293 embryonic kidney cells did not increase the cytotoxic or cytostatic effects of chemotherapeutic drugs but provided some protection. Database searches revealed that sequences highly homologous to cassini are present in rodents, apicomplexans, flatworms and primates, indicating that they are conserved in evolution. Moreover, CASSINI RNA was induced in human ALL cells treated with vincristine. Surprisingly, cassini belongs to the previously reported murine family of γ-satellite/major satellite DNA sequences, which were not known to be present in other species. Conclusions Our results show that the transcription of at least one member of these sequences is regulated, suggesting that this has a function in normal and transformed immune cells. Expression of these sequences may protect cells when they are exposed to specific stress stimuli.

  18. Expression of cassini, a murine gamma-satellite sequence conserved in evolution, is regulated in normal and malignant hematopoietic cells.

    Science.gov (United States)

    Arutyunyan, Anna; Stoddart, Sonia; Yi, Sun-ju; Fei, Fei; Lim, Min; Groffen, Paula; Feldhahn, Niklas; Groffen, John; Heisterkamp, Nora

    2012-08-23

    Acute lymphoblastic leukemia (ALL) cells treated with drugs can become drug-tolerant if co-cultured with protective stromal mouse embryonic fibroblasts (MEFs). We performed transcriptional profiling on these stromal fibroblasts to investigate if they were affected by the presence of drug-treated ALL cells. These mitotically inactivated MEFs showed few changes in gene expression, but a family of sequences of which transcription is significantly increased was identified. A sequence related to this family, which we named cassini, was selected for further characterization. We found that cassini was highly upregulated in drug-treated ALL cells. Analysis of RNAs from different normal mouse tissues showed that cassini expression is highest in spleen and thymus, and can be further enhanced in these organs by exposure of mice to bacterial endotoxin. Heat shock, but not other types of stress, significantly induced the transcription of this locus in ALL cells. Transient overexpression of cassini in human 293 embryonic kidney cells did not increase the cytotoxic or cytostatic effects of chemotherapeutic drugs but provided some protection. Database searches revealed that sequences highly homologous to cassini are present in rodents, apicomplexans, flatworms and primates, indicating that they are conserved in evolution. Moreover, CASSINI RNA was induced in human ALL cells treated with vincristine. Surprisingly, cassini belongs to the previously reported murine family of γ-satellite/major satellite DNA sequences, which were not known to be present in other species. Our results show that the transcription of at least one member of these sequences is regulated, suggesting that this has a function in normal and transformed immune cells. Expression of these sequences may protect cells when they are exposed to specific stress stimuli.

  19. Implantation of muscle satellite cells overexpressing myogenin improves denervated muscle atrophy in rats

    Directory of Open Access Journals (Sweden)

    H. Shen

    2016-01-01

    Full Text Available This study evaluated the effect of muscle satellite cells (MSCs overexpressing myogenin (MyoG on denervated muscle atrophy. Rat MSCs were isolated and transfected with the MyoG-EGFP plasmid vector GV143. MyoG-transfected MSCs (MTMs were transplanted into rat gastrocnemius muscles at 1 week after surgical denervation. Controls included injections of untransfected MSCs or the vehicle only. Muscles were harvested and analyzed at 2, 4, and 24 weeks post-transplantation. Immunofluorescence confirmed MyoG overexpression in MTMs. The muscle wet weight ratio was significantly reduced at 2 weeks after MTM injection (67.17±6.79 compared with muscles injected with MSCs (58.83±5.31 or the vehicle (53.00±7.67; t=2.37, P=0.04 and t=3.39, P=0.007, respectively. The muscle fiber cross-sectional area was also larger at 2 weeks after MTM injection (2.63×103±0.39×103 compared with MSC injection (1.99×103±0.58×103 or the vehicle only (1.57×103±0.47×103; t=2.24, P=0.049 and t=4.22, P=0.002, respectively. At 4 and 24 weeks post-injection, the muscle mass and fiber cross-sectional area were similar across all three experimental groups. Immunohistochemistry showed that the MTM group had larger MyoG-positive fibers. The MTM group (3.18±1.13 also had higher expression of MyoG mRNA than other groups (1.41±0.65 and 1.03±0.19 at 2 weeks after injection (t=2.72, P=0.04. Transplanted MTMs delayed short-term atrophy of denervated muscles. This approach can be optimized as a novel stand-alone therapy or as a bridge to surgical re-innervation of damaged muscles.

  20. Implantation of muscle satellite cells overexpressing myogenin improves denervated muscle atrophy in rats.

    Science.gov (United States)

    Shen, H; Lv, Y; Shen, X Q; Xu, J H; Lu, H; Fu, L C; Duan, T

    2016-02-01

    This study evaluated the effect of muscle satellite cells (MSCs) overexpressing myogenin (MyoG) on denervated muscle atrophy. Rat MSCs were isolated and transfected with the MyoG-EGFP plasmid vector GV143. MyoG-transfected MSCs (MTMs) were transplanted into rat gastrocnemius muscles at 1 week after surgical denervation. Controls included injections of untransfected MSCs or the vehicle only. Muscles were harvested and analyzed at 2, 4, and 24 weeks post-transplantation. Immunofluorescence confirmed MyoG overexpression in MTMs. The muscle wet weight ratio was significantly reduced at 2 weeks after MTM injection (67.17±6.79) compared with muscles injected with MSCs (58.83±5.31) or the vehicle (53.00±7.67; t=2.37, P=0.04 and t=3.39, P=0.007, respectively). The muscle fiber cross-sectional area was also larger at 2 weeks after MTM injection (2.63×10³±0.39×10³) compared with MSC injection (1.99×10³±0.58×10³) or the vehicle only (1.57×10³±0.47×10³; t=2.24, P=0.049 and t=4.22, P=0.002, respectively). At 4 and 24 weeks post-injection, the muscle mass and fiber cross-sectional area were similar across all three experimental groups. Immunohistochemistry showed that the MTM group had larger MyoG-positive fibers. The MTM group (3.18±1.13) also had higher expression of MyoG mRNA than other groups (1.41±0.65 and 1.03±0.19) at 2 weeks after injection (t=2.72, P=0.04). Transplanted MTMs delayed short-term atrophy of denervated muscles. This approach can be optimized as a novel stand-alone therapy or as a bridge to surgical re-innervation of damaged muscles.

  1. Towards an Autonomous Turbidimeter Network for Multi-Mission Ocean Colour Satellite Data Validation Activities

    Science.gov (United States)

    Dogliotti, A. I.; Nechad, B.; Ruddick, K. G.; Gossn, J. I.

    2016-08-01

    Satellite-based optical sensors such as MODIS/Aqua, Sentinel-2, Sentinel-3, Landsat-8, Pléiades, SABIA/Mar, PROBA-V , etc. can be used to map turbidity and suspended particulate matter in coastal, estuarine and inland waters as support for water quality monitoring, sediment transport applications such as dredging and fisheries science. However, data quality is a critical problem and in situ data must be gathered from a wide range of test sites in order to provide validation for the diverse range of conditions that can be encountered all over the world. In this context, a network to validate satellite turbidity products called TURBINET is proposed with the goal to establish a long-term (autonomous) international network of collaboration and data-sharing. Joint measurements of turbidity, reflectance and in-water side/back-scattering have been performed in Belgium and Argentina in 2015. Instrument comparisons showed that comparable values could be retrieved using different sensors and field measurements were used to validate a Pléiades high resolution image (2m). The results presented in this work demonstrate the feasibility and usefulness of setting up a network to validate satellite turbidity products.

  2. Robust Fault-Tolerant Control for Satellite Attitude Stabilization Based on Active Disturbance Rejection Approach with Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Fei Song

    2014-01-01

    Full Text Available This paper proposed a robust fault-tolerant control algorithm for satellite stabilization based on active disturbance rejection approach with artificial bee colony algorithm. The actuating mechanism of attitude control system consists of three working reaction flywheels and one spare reaction flywheel. The speed measurement of reaction flywheel is adopted for fault detection. If any reaction flywheel fault is detected, the corresponding fault flywheel is isolated and the spare reaction flywheel is activated to counteract the fault effect and ensure that the satellite is working safely and reliably. The active disturbance rejection approach is employed to design the controller, which handles input information with tracking differentiator, estimates system uncertainties with extended state observer, and generates control variables by state feedback and compensation. The designed active disturbance rejection controller is robust to both internal dynamics and external disturbances. The bandwidth parameter of extended state observer is optimized by the artificial bee colony algorithm so as to improve the performance of attitude control system. A series of simulation experiment results demonstrate the performance superiorities of the proposed robust fault-tolerant control algorithm.

  3. Activated protein C modulates the proinflammatory activity of dendritic cells

    Directory of Open Access Journals (Sweden)

    Matsumoto T

    2015-05-01

    Full Text Available Takahiro Matsumoto,1,2* Yuki Matsushima,1* Masaaki Toda,1 Ziaurahman Roeen,1 Corina N D'Alessandro-Gabazza,1,5 Josephine A Hinneh,1 Etsuko Harada,1,3 Taro Yasuma,4 Yutaka Yano,4 Masahito Urawa,1,5 Tetsu Kobayashi,5 Osamu Taguchi,5 Esteban C Gabazza1 1Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, 2BONAC Corporation, BIO Factory 4F, Fukuoka, 3Iwade Research Institute of Mycology, 4Department of Endocrinology, Diabetes and Metabolism, 5Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, Japan *These authors contributed equally to this work Background: Previous studies have demonstrated the beneficial activity of activated protein C in allergic diseases including bronchial asthma and rhinitis. However, the exact mechanism of action of activated protein C in allergies is unclear. In this study, we hypothesized that pharmacological doses of activated protein C can modulate allergic inflammation by inhibiting dendritic cells. Materials and methods: Dendritic cells were prepared using murine bone marrow progenitor cells and human peripheral monocytes. Bronchial asthma was induced in mice that received intratracheal instillation of ovalbumin-pulsed dendritic cells. Results: Activated protein C significantly increased the differentiation of tolerogenic plasmacytoid dendritic cells and the secretion of type I interferons, but it significantly reduced lipopolysaccharide-mediated maturation and the secretion of inflammatory cytokines in myeloid dendritic cells. Activated protein C also inhibited maturation and the secretion of inflammatory cytokines in monocyte-derived dendritic cells. Activated protein C-treated dendritic cells were less effective when differentiating naïve CD4 T-cells from Th1 or Th2 cells, and the cellular effect of activated protein C was mediated by its receptors. Mice that received adoptive transfer of activated protein C

  4. Activated gammadelta T cells promote the activation of uveitogenic T cells and exacerbate EAU development.

    Science.gov (United States)

    Nian, Hong; Shao, Hui; O'Brien, Rebecca L; Born, Willi K; Kaplan, Henry J; Sun, Deming

    2011-07-29

    To determine how the activation of γδ T cells affects the generation of uveitogenic αβ T cells and the development of experimental autoimmune uveitis (EAU). γδ T cells were isolated from B6 mice immunized with the uveitogenic peptide IRBP(1-20) and αβ T cells from immunized TCR-δ(-/-) mice. Resting γδ T cells were prepared by culture of separated γδ T cells in cytokine-free medium for 3 to 5 days, when they showed downregulation of CD69 expression. Activated γδ T cells were prepared by incubating resting γδ T cells with anti-γδ TCR (GL3) for 2 days. Responder αβ T cells were cocultured with immunizing antigen and antigen-presenting cells. The numbers of antigen-specific T cells expressing IL-17 or IFN-γ were determined by intracellular staining followed by FACS analysis after stimulation, with or without the addition of purified γδ T cells. The cytokines in the culture medium were measured by ELISA. Highly enriched γδ T cells exert widely different effects on autoreactive αβ T cells in EAU, depending on the activation status of the γδ T cells. Whereas nonactivated γδ T cells had little effect on the activation of interphotoreceptor retinoid-binding protein-specific αβ T cells in vitro and in vivo, activated γδ T cells promoted the generation of uveitogenic T cells and exacerbated the development of EAU. The functional ability of γδ T cells is greatly influenced by their activation status. Activated γδ T cells exacerbate EAU through increased activation of uveitogenic T cells.

  5. Active Gel Model of Amoeboid Cell Motility

    CERN Document Server

    Callan-Jones, A C

    2013-01-01

    We develop a model of amoeboid cell motility based on active gel theory. Modeling the motile apparatus of a eukaryotic cell as a confined layer of finite length of poroelastic active gel permeated by a solvent, we first show that, due to active stress and gel turnover, an initially static and homogeneous layer can undergo a contractile-type instability to a polarized moving state in which the rear is enriched in gel polymer. This agrees qualitatively with motile cells containing an actomyosin-rich uropod at their rear. We find that the gel layer settles into a steadily moving, inhomogeneous state at long times, sustained by a balance between contractility and filament turnover. In addition, our model predicts an optimal value of the gel-susbstrate adhesion leading to maximum layer speed, in agreement with cell motility assays. The model may be relevant to motility of cells translocating in complex, confining environments that can be mimicked experimentally by cell migration through microchannels.

  6. Study and modeling of the most energetic Active Galactic Nuclei with the Fermi satellite; Etude et modelisation des noyaux actifs de galaxie les plus energetiques avec le satellite Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, D.

    2010-06-15

    The Fermi satellite was launched in June 2008. The onboard LAT detector is dedicated to the study of galactic and extra-galactic gamma sources with an energy comprised between 200 MeV and 300 GeV. 1451 sources have been detected in less than 11 months. This document is divided into 6 chapters: 1) gamma astronomy, 2) the Fermi satellite, 3) the active galactic nuclei (NAG), 4) the observation of several blazars (PKS-2155-304 and PG-1553+113) and its simulation, 5) the observation of PKS-2155-304 with both RXTE and Fermi, and 6) conclusion

  7. Analysis of innovative scenarios and key technologies to perform active debris removal with satellite modules

    OpenAIRE

    Savioli, Livia / LS

    2015-01-01

    It has surely happened sometimes to look at the night sky and catch sight of a small, brighting spot moving like an airplane, but without ashing as usually airplane lights do: it was a satellite. It is always amazing to think that there are objects that continously orbit around Earth, so far from us. Maybe, it is not well-known that they are a lot...thousands...more or less 17,000 those closer to the Earth, to be precise. It is difficult to imagine how so much objects can orbit without touchi...

  8. Syndecans: synergistic activators of cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1998-01-01

    Cell-surface proteoglycans participate in cell adhesion, growth-factor signalling, lipase activity and anticoagulation. Until recently, only the roles of the glycosaminoglycan chains were investigated. Now, with molecular characterization of several core proteins, the roles of each individual...... molecules modulating integrin-based adhesion....

  9. Transiently Active Wnt/β-Catenin Signaling Is Not Required but Must Be Silenced for Stem Cell Function during Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    Malea M. Murphy

    2014-09-01

    Full Text Available Adult muscle’s exceptional capacity for regeneration is mediated by muscle stem cells, termed satellite cells. As with many stem cells, Wnt/β-catenin signaling has been proposed to be critical in satellite cells during regeneration. Using new genetic reagents, we explicitly test in vivo whether Wnt/β-catenin signaling is necessary and sufficient within satellite cells and their derivatives for regeneration. We find that signaling is transiently active in transit-amplifying myoblasts, but is not required for regeneration or satellite cell self-renewal. Instead, downregulation of transiently activated β-catenin is important to limit the regenerative response, as continuous regeneration is deleterious. Wnt/β-catenin activation in adult satellite cells may simply be a vestige of their developmental lineage, in which β-catenin signaling is critical for fetal myogenesis. In the adult, surprisingly, we show that it is not activation but rather silencing of Wnt/β-catenin signaling that is important for muscle regeneration.

  10. Solar photovoltaic research and development program of the Air Force Aero Propulsion Laboratory. [silicon solar cell applicable to satellite power systems

    Science.gov (United States)

    Wise, J.

    1979-01-01

    Progress is reported in the following areas: laser weapon effects, solar silicon solar cell concepts, and high voltage hardened, high power system technology. Emphasis is placed on solar cells with increased energy conversion efficiency and radiation resistance characteristics for application to satellite power systems.

  11. Active oxygen and cell death in cereal aleurone cells.

    Science.gov (United States)

    Fath, Angelika; Bethke, Paul; Beligni, Veronica; Jones, Russell

    2002-05-01

    The cereal aleurone layer is a secretory tissue whose function is regulated by gibberellic acid (GA) and abscisic acid (ABA). Aleurone cells lack functional chloroplasts, thus excluding photosynthesis as a source of active oxygen species (AOS) in cell death. Incubation of barley aleurone layers or protoplasts in GA initiated the cell death programme, but incubation in ABA delays programmed cell death (PCD). Light, especially blue and UV-A light, and H(2)O(2) accelerate PCD of GA-treated aleurone cells, but ABA-treated aleurone cells are refractory to light and H(2)O(2) and are not killed. It was shown that light elevated intracellular H(2)O(2), and that the rise in H(2)O(2) was greater in GA-treated cells compared to cells in ABA. Experiments with antioxidants show that PCD in aleurone is probably regulated by AOS. The sensitivity of GA-treated aleurone to light and H(2)O(2) is a result of lowered amounts of enzymes that metabolize AOS. mRNAs encoding catalase, ascorbate peroxidase and superoxide dismutase are all reduced during 6-18 h of incubation in GA, but these mRNAs were present in higher amounts in cells incubated in ABA. The amounts of protein and enzyme activities encoded by these mRNAs were also dramatically reduced in GA-treated cells. Aleurone cells store and metabolize neutral lipids via the glyoxylate cycle in response to GA, and glyoxysomes are one potential source of AOS in the GA-treated cells. Mitochondria are another potential source of AOS in GA-treated cells. AOS generated by these organelles bring about membrane rupture and cell death.

  12. A comparison of cloud layers from ground and satellite active remote sensing at the Southern Great Plains ARM site

    Science.gov (United States)

    Zhang, Jinqiang; Xia, Xiang'ao; Chen, Hongbin

    2017-03-01

    Using the data collected over the Southern Great Plains ARM site from 2006 to 2010, the surface Active Remote Sensing of Cloud (ARSCL) and CloudSat-CALIPSO satellite (CC) retrievals of total cloud and six specified cloud types [low, mid-low (ML), high-mid-low (HML), mid, high-mid (HM) and high] were compared in terms of cloud fraction (CF), cloud-base height (CBH), cloud-top height (CTH) and cloud thickness (CT), on different temporal scales, to identify their respective advantages and limitations. Good agreement between the two methods was exhibited in the total CF. However, large discrepancies were found between the cloud distributions of the two methods at a high (240-m) vertical grid spacing. Compared to the satellites, ARSCL retrievals detected more boundary layer clouds, while they underestimated high clouds. In terms of the six specific cloud types, more low- and mid-level clouds but less HML- and high-level clouds were detected by ARSCL than by CC. In contrast, the ARSCL retrievals of ML- and HM-level clouds agreed more closely with the estimations from the CC product. Lower CBHs tended to be reported by the surface data for low-, ML- and HML-level clouds; however, higher CTHs were often recorded by the satellite product for HML-, HM- and high-level clouds. The mean CTs for low- and ML-level cloud were similar between the two products; however, the mean CTs for HML-, mid-, HM- and high-level clouds from ARSCL were smaller than those from CC.

  13. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kazuya, E-mail: asuno10k@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Wada, Eiji, E-mail: gacchu1@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Zammit, Peter S., E-mail: peter.zammit@kcl.ac.uk [Randall Division of Cell and Molecular Biophysics, King' s College London, London SE1 1UL (United Kingdom); Shiozuka, Masataka, E-mail: cmuscle@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Matsuda, Ryoichi, E-mail: cmatsuda@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan)

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.

  14. Bursts of activity in collective cell migration

    CERN Document Server

    Chepizhko, Oleksandr; Mastrapasqua, Eleonora; Nourazar, Mehdi; Ascagni, Miriam; Sugni, Michela; Fascio, Umberto; Leggio, Livio; Malinverno, Chiara; Scita, Giorgio; Santucci, Stephane; Alava, Mikko J; Zapperi, Stefano; La Porta, Caterina A M

    2016-01-01

    Dense monolayers of living cells display intriguing relaxation dynamics, reminiscent of soft and glassy materials close to the jamming transition, and migrate collectively when space is available, as in wound healing or in cancer invasion. Here we show that collective cell migration occurs in bursts that are similar to those recorded in the propagation of cracks, fluid fronts in porous media and ferromagnetic domain walls. In analogy with these systems, the distribution of activity bursts displays scaling laws that are universal in different cell types and for cells moving on different substrates. The main features of the invasion dynamics are quantitatively captured by a model of interacting active particles moving in a disordered landscape. Our results illustrate that collective motion of living cells is analogous to the corresponding dynamics in driven, but inanimate, systems.

  15. Primary cortical brain cells influence osteoblast activity.

    Science.gov (United States)

    Anissian, Lucas; Kirby, Michael; Stark, André

    2009-12-18

    The presence of neuropeptides and neuroreceptors in the bone have been reported in several studies. Bone turn-over seems to be controlled by the nervous system. The actual pathway or the control mechanism is still under investigation. In this study we investigate the changes in osteoblast cells if they are in co-culture with primary cortical brain cells. After seven days in co-culture with the primary fetal brain cells the osteoblast cells exhibited hypertrophic morphological changes and showed stronger ALP activity.

  16. Satellite cells in slow and fast rat muscles differ in respect to acetylcholinesterase regulation mechanisms they convey to their descendant myofibers during regeneration.

    Science.gov (United States)

    Dolenc, I; Crne-Finderle, N; Erzen, I; Sketelj, J

    1994-02-01

    The hypothesis of satellite cell diversity in slow and fast mammalian muscles was tested by examining acetylcholinesterase (AChE) regulation in muscles regenerating 1) under conditions of muscle disuse (tenotomy, leg immobilization) in which the pattern of neural stimulation is changed, and 2) after cross-transplantation when the regenerating muscle develops under a foreign neural stimulation pattern. Soleus (SOL) and extensor digitorum longus (EDL) muscles of the rat were allowed to regenerate after ischemic-toxic injury either in their own sites or had been cross-transplanted to the site of the other muscle. Molecular forms of AChE in regenerating muscles were analyzed by velocity sedimentation in linear sucrose gradients. Neither tenotomy nor limb immobilization significantly affected the characteristic pattern of AChE molecular forms in regenerating SOL muscles, suggesting that the neural stimulation pattern is probably not decisive for its induction. During an early phase of regeneration, the general pattern of AChE molecular forms in the cross-transplanted regenerating muscle was predominantly determined by the type of its muscle of origin, and much less by the innervating nerve which exerted only a modest modifying effect. However, alkali-resistant myofibrillar ATPase activity on which the separation of muscle fibers into type I and type II is based, was determined predominantly by the motor nerve innervating the regenerating muscle. Mature regenerated EDL muscles (13 weeks after injury) which had been innervated by the SOL nerve became virtually indistinguishable from the SOL muscles in regard to their pattern of AChE molecular forms. However, AChE patterns of mature regenerated SOL muscles that had been innervated by the EDL nerve still displayed some features of the SOL pattern. In regard to AChE regulation, muscle satellite cells from slow or fast rat muscles convey to their descendant myotubes the information shifting their initial development in the

  17. Short-term ursolic acid promotes skeletal muscle rejuvenation through enhancing of SIRT1 expression and satellite cells proliferation.

    Science.gov (United States)

    Bakhtiari, Nuredin; Hosseinkhani, Saman; Soleimani, Masoud; Hemmati, Roohullah; Noori-Zadeh, Ali; Javan, Mohammad; Tashakor, Amin

    2016-03-01

    Ursolic acid (UA) is a triterpenoid compound, which exerts its influences on the skeletal muscles. However, the mechanisms underlying these effects are still unclear. In this study, muscle satellite cells were isolated and purified by high-throughput pre-plating method (∼>60%) from 10 days old mice skeletal muscles. Evaluation of paired-box 7 (Pax7) expressions then confirmed the purification. Treatment of the cells with UA showed that UA up-regulated SIRT1 (∼35 folds) and overexpressed PGC-1α (∼175 folds) gene significantly. Moreover, the number of muscle satellite cells, which accompanied by initiation of neomyogenesis in the animal skeletal muscles, was increased (∼3.4 times). We also evaluated UA-mediated changes in the cellular energy status in the skeletal muscles. The results revealed that in the UA-treated mice, ATP and ADP contents in the various skeletal muscle tissue types, including: Gastrocnemius (Gas), Tibialis Anterior (Tib) and Gluteus Maximus (Glu) have been significantly decreased (P≤0.001); 2.2, 3.2, 2 times for ATP, and 9.6, 35.7, 11.6 times for ADP, respectively; however to compensate this process mitochondrial biogenesis occurred (12.33%±1.5 times). Furthermore, a rise in ATP/ADP ratio was observed 2.5, 4.5, 2.05 times for Gas, Tib and Glu muscles, respectively (P≤0.001). Alternatively, UA enhanced the expression of myoglobin (∼2 folds) in concert with remodeling of glycolytic muscle fibers to mainly fast IIA (∼30%) and slow-twitch (∼4%) types as well. Finally, our study indicated that UA indirectly mimicked beneficial effects of short-term calorie restriction and exercise (fast-oxidative) by directing the skeletal muscle composition toward oxidative metabolism.

  18. T cell activation in APECED patients

    OpenAIRE

    Mannerström, Helga

    2013-01-01

    Autoimmune polyendocrinopathy-candidasis-ectodermal dystrophy, APECED, is a rare monogenic autoimmune disease in humans, which is caused by loss-of-function mutation in Autoimmune Regulator gene, AIRE. Previous results have shown impairments in the circulating T cells of the APECED patients. In this study we wanted to look closer on the disturbance in the T cell receptor development of APECED patients. By studying the TCR-mediated responsiveness of CD3 stimulation and comparing the activation...

  19. Entangled active matter: From cells to ants

    Science.gov (United States)

    Hu, D. L.; Phonekeo, S.; Altshuler, E.; Brochard-Wyart, F.

    2016-07-01

    Both cells and ants belong to the broad field of active matter, a novel class of non-equilibrium materials composed of many interacting units that individually consume energy and collectively generate motion or mechanical stresses. However cells and ants differ from fish and birds in that they can support static loads. This is because cells and ants can be entangled, so that individual units are bound by transient links. Entanglement gives cells and ants a set of remarkable properties usually not found together, such as the ability to flow like a fluid, spring back like an elastic solid, and self-heal. In this review, we present the biology, mechanics and dynamics of both entangled cells and ants. We apply concepts from soft matter physics and wetting to characterize these systems as well as to point out their differences, which arise from their differences in size. We hope that our viewpoints will spur further investigations into cells and ants as active materials, and inspire the fabrication of synthetic active matter.

  20. Raman activated cell ejection for isolation of single cells.

    Science.gov (United States)

    Wang, Yun; Ji, Yuetong; Wharfe, Emma S; Meadows, Roger S; March, Peter; Goodacre, Royston; Xu, Jian; Huang, Wei E

    2013-11-19

    We have optimized a Raman microscope to obtain a single cell Raman spectrum (SCRS) with 0.1 s acquisition time. SCRS with such short acquisition time has sufficient discriminatory ability and spectral reproducibility to differentiate cells incorporated with (13)C and (15)N and to classify five different types of bacteria isolated from the oral cavity. We also developed Raman activated cell ejection (RACE) that is assisted by laser induced forward transfer (LIFT). We have shown, for the first time, that the single cells of interest can be identified and then accurately isolated from complex microbial communities based on their SCRS. This approach can be used to sort single cells of target traits from complex samples (e.g., biofilms, soils, sludge, tissues).

  1. Critical telomerase activity for uncontrolled cell growth

    Science.gov (United States)

    Wesch, Neil L.; Burlock, Laura J.; Gooding, Robert J.

    2016-08-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed.

  2. Satellite orbit determination and gravity field recovery from satellite-to-satellite tracking

    Science.gov (United States)

    Wakker, K. F.; Ambrosius, B. A. C.; Leenman, H.

    1989-07-01

    Studies on satellite-to-satellite tracking (SST) with POPSAT (a geodetic satellite concept) and a ERS-class (Earth observation) satellite, a Satellite-to-Satellite Tracking (SST) gravity mission, and precise gravity field determination methods and mission requirements are reported. The first two studies primarily address the application of SST between the high altitude POPSAT and an ERS-class or GRM (Geopotential Research Mission) satellite to the orbit determination of the latter two satellites. Activities focussed on the determination of the tracking coverage of the lower altitude satellite by ground based tracking systems and by POPSAT, orbit determination error analysis and the determination of the surface forces acting on GRM. The third study surveys principles of SST, uncertainties of existing drag models, effects of direct luni-solar attraction and tides on orbit and the gravity gradient observable. Detailed ARISTOTELES (which replaced POPSAT) orbit determination error analyses were performed for various ground based tracking networks.

  3. Telelibrary: Library Services via Satellite.

    Science.gov (United States)

    Liu, Rosa

    1979-01-01

    Investigates the provision of library services via satellite, explains briefly the operation and advantages of communication satellites, and discusses the various telecommunications equipment and services which, when coupled with satellite transmission, will enhance library activities. Demand trend projections for telecommunications services…

  4. HP1 recruits activity-dependent neuroprotective protein to H3K9me3 marked pericentromeric heterochromatin for silencing of major satellite repeats.

    Directory of Open Access Journals (Sweden)

    Kerstin Mosch

    Full Text Available H3 lysine 9 trimethylation (H3K9me3 is a histone posttranslational modification (PTM that has emerged as hallmark of pericentromeric heterochromatin. This constitutive chromatin domain is composed of repetitive DNA elements, whose transcription is differentially regulated. Mammalian cells contain three HP1 proteins, HP1α, HP1β and HP1γ These have been shown to bind to H3K9me3 and are thought to mediate the effects of this histone PTM. However, the mechanisms of HP1 chromatin regulation and the exact functional role at pericentromeric heterochromatin are still unclear. Here, we identify activity-dependent neuroprotective protein (ADNP as an H3K9me3 associated factor. We show that ADNP does not bind H3K9me3 directly, but that interaction is mediated by all three HP1 isoforms in vitro. However, in cells ADNP localization to areas of pericentromeric heterochromatin is only dependent on HP1α and HP1β. Besides a PGVLL sequence patch we uncovered an ARKS motif within the ADNP homeodomain involved in HP1 dependent H3K9me3 association and localization to pericentromeric heterochromatin. While knockdown of ADNP had no effect on HP1 distribution and heterochromatic histone and DNA modifications, we found ADNP silencing major satellite repeats. Our results identify a novel factor in the translation of H3K9me3 at pericentromeric heterochromatin that regulates transcription.

  5. Intracellular mechanisms of lymphoid cell activation.

    Science.gov (United States)

    Fresa, K; Hameed, M; Cohen, S

    1989-01-01

    Activation of lymphocytes for proliferation is associated with the appearance of an intracellular factor (ADR) that can induce DNA synthesis in isolated quiescent nuclei. ADR plays a role in the sequence of intracellular events leading to activation for IL-2-mediated proliferation. Because of the nature of the defining assay, the locus of ADR action appears to be near the terminal end of the transduction pathway. Interestingly, although lymphocytes from aged individuals respond poorly to proliferative stimuli, they appear to produce normal to above-normal levels of ADR. In contrast, their nuclei are only poorly responsive to stimulation by ADR. Preparations rich in ADR activity have proteolytic activity as well. In addition, aprotinin, as well as a variety of other protease inhibitors, suppresses ADR-induced DNA synthesis in a dose-dependent manner. ADR activity can be removed from active extracts by absorption with aprotinin-conjugated agarose beads, and can be removed from the beads by elution at pH 5.0. This latter suggests that ADR itself is a protease. However, its endogenous substrate is not yet known. We have also detected an inhibitor of ADR activity in the cytoplasm of resting lymphocytes. This is a heat-stable protein of approximately 60,000 Da. In addition to suppressing the interaction of ADR with quiescent nuclei, the inhibitor can suppress DNA synthetic activity of replicative nuclei isolated from mitogen-activated lymphocytes. Interestingly, these preparations had little or no activity on replicative nuclei derived from several neoplastic cell lines. The resistance of tumor cell nuclei to spontaneously occurring cytoplasmic inhibitory factors such as the one described here may provide one explanation for the loss of growth control in neoplastic cells.

  6. Testosterone inhibits transforming growth factor-β signaling during myogenic differentiation and proliferation of mouse satellite cells: potential role of follistatin in mediating testosterone action.

    Science.gov (United States)

    Braga, Melissa; Bhasin, Shalender; Jasuja, Ravi; Pervin, Shehla; Singh, Rajan

    2012-03-05

    Testosterone (T) administration is associated with increased satellite cell number and skeletal muscle hypertrophy, although there is considerable heterogeneity in the response of different skeletal muscle groups to T in vivo. We investigated the effects of T on the growth and differentiation of satellite cells isolated from levator ani (LA) and gastrocnemius (gastroc) muscles. T up regulated follistatin (Fst) expression, but down regulated the mRNA and protein expression of a number of genes in the transforming growth factor-beta (TGF-β)-signaling pathway. Inhibition of Fst expression by small interfering RNA (siRNA) inhibited myogenic differentiation and blocked the pro-myogenic effects of T. Treatment of satellite cells with T or Fst up regulated the expression of Pax7 and PCNA, and increased their proliferation. T and Fst blocked TGF-β induced inhibition of growth and myogenic differentiation and down regulated TGF-β-dependent transcriptome in both LA and gastroc cells. We conclude that T stimulation of satellite cell proliferation and myogenic differentiation are associated with up regulation of Fst and inhibition of TGF-β-signaling.

  7. Mapping bathymetry in an active surf zone with the WorldView2 multispectral satellite

    Science.gov (United States)

    Trimble, S. M.; Houser, C.; Brander, R.; Chirico, P.

    2015-12-01

    Rip currents are strong, narrow seaward flows of water that originate in the surf zones of many global beaches. They are related to hundreds of international drownings each year, but exact numbers are difficult to calculate due to logistical difficulties in obtaining accurate incident reports. Annual average rip current fatalities are estimated to be ~100, 53 and 21 in the United States (US), Costa Rica, and Australia respectively. Current warning systems (e.g. National Weather Service) do not account for fine resolution nearshore bathymetry because it is difficult to capture. The method shown here could provide frequent, high resolution maps of nearshore bathymetry at a scale required for improved rip prediction and warning. This study demonstrates a method for mapping bathymetry in the surf zone (20m deep and less), specifically within rip channels, because rips form at topographically low spots in the bathymetry as a result of feedback amongst waves, substrate, and antecedent bathymetry. The methods employ the Digital Globe WorldView2 (WV2) multispectral satellite and field measurements of depth to generate maps of the changing bathymetry at two embayed, rip-prone beaches: Playa Cocles, Puerto Viejo de Talamanca, Costa Rica, and Bondi Beach, Sydney, Australia. WV2 has a 1.1 day pass-over rate with 1.84m ground pixel resolution of 8 bands, including 'yellow' (585-625 nm) and 'coastal blue' (400-450 nm). The data is used to classify bottom type and to map depth to the return in multiple bands. The methodology is tested at each site for algorithm consistency between dates, and again for applicability between sites.

  8. Active mechanics and geometry of adherent cells and cell colonies

    Science.gov (United States)

    Banerjee, Shiladitya

    2014-03-01

    Measurements of traction stresses exerted by adherent cells or cell colonies on elastic substrates have yielded new insight on how the mechanical and geometrical properties of the substrate regulate cellular force distribution, mechanical energy, spreading, morphology or stress ber architecture. We have developed a generic mechanical model of adherent cells as an active contractile gel mechanically coupled to an elastic substrate and to neighboring cells in a tissue. The contractile gel model accurately predicts the distribution of cellular and traction stresses as observed in single cell experiments, and captures the dependence of cell shape, traction stresses and stress ber polarization on the substrate's mechanical and geometrical properties. The model further predicts that the total strain energy of an adherent cell is solely regulated by its spread area, in agreement with recent experiments on micropatterned substrates with controlled geometry. When used to describe the behavior of colonies of adherent epithelial cells, the model demonstrates the crucial role of the mechanical cross-talk between intercellular and extracellular adhesion in regulating traction force distribution. Strong intercellular mechanical coupling organizes traction forces to the colony periphery, whereas weaker intercellular coupling leads to the build up of traction stresses at intercellular junctions. Furthermore, in agreement with experiments on large cohesive keratinocyte colonies, the model predicts a linear scaling of traction forces with the colony size. This scaling suggests the emergence of an effective surface tension as a scale-free material property of the adherent tissue, originating from actomyosin contractility.

  9. Volcanic and Tectonic Activity in the Red Sea Region (2004-2013): Insights from Satellite Radar Interferometry and Optical Imagery

    KAUST Repository

    Xu, Wenbin

    2015-04-01

    Studying recent volcanic and tectonic events in the Red Sea region is important for improving our knowledge of the Red Sea plate boundary and for regional geohazard assessments. However, limited information has been available about the past activity due to insufficient in-situ data and remoteness of some of the activity. In this dissertation, I have used satellite remote sensing to derive new information about several recent volcanic and tectonic events in the Red Sea region. I first report on three volcanic eruptions in the southern Red Sea, the 2007-8 Jebel at Tair eruption and the 2011-12 & 2013 Zubair eruptions, which resulted in formation of two new islands. Series of high- resolution optical images were used to map the extent of lava flows and to observe and analyze the growth and destructive processes of the new islands. I used Interferometric Synthetic Aperture Radar (InSAR) data to study the evolution of lava flows, to estimate their volumes, as well as to generate ground displacements maps, which were used to model the dikes that fed the eruptions. I then report on my work of the 2009 Harrat Lunayyir dike intrusion and the 2004 Tabuk earthquake sequence in western Saudi Arabia. I used InSAR observations and stress calculations to study the intruding dike at Harrat Lunayyir, while I combined InSAR data and Bayesian estimation to study the Tabuk earthquake activity. The key findings of the thesis are: 1) The recent volcanic eruptions in the southern Red Sea indicate that the area is magmatically more active than previously acknowledged and that a rifting episode has been taken place in the southern Red Sea; 2) Stress interactions between an ascending dike intrusion and normal faulting on graben-bounding faults above the dike can inhibit vertical propagation of magma towards the surface; 3) InSAR observations can improve locations of shallow earthquakes and fault model uncertainties are useful to associate earthquake activity with mapped faults; 4). The

  10. Optical and Radar Satellite Remote Sensing for Large Area Analysis of Landslide Activity in Southern Kyrgyzstan, Central Asia

    Science.gov (United States)

    Roessner, S.; Behling, R.; Teshebaeva, K. O.; Motagh, M.; Wetzel, H. U.

    2014-12-01

    The presented work has been investigating the potential of optical and radar satellite remote sensing for the spatio-temporal analysis of landslide activity at a regional scale along the eastern rim of the Fergana Basin representing the area of highest landslide activity in Kyrgyzstan. For this purpose a multi-temporal satellite remote sensing database has been established for a 12.000 km2 study area in Southern Kyrgyzstan containing a multitude of optical data acquired during the last 28 years as well as TerraSAR-X and ALOS-PALSAR acquired since 2007. The optical data have been mainly used for creating a multi-temporal inventory of backdated landslide activity. For this purpose an automated approach for object-oriented multi-temporal landslide detection has been developed which is based on the analysis of temporal NDVI-trajectories complemented by relief information to separate landslide-related surface changes from other land cover changes. Applying the approach to the whole study area using temporal high resolution RapidEye time series data has resulted in the automated detection of 612 landslide objects covering a total area of approx. 7.3 km². Currently, the approach is extended to the whole multi-sensor time-series database for systematic analysis of longer-term landslide occurrence at a regional scale. Radar remote sensing has been focussing on SAR Interferometry (InSAR) to detect landslide related surface deformation. InSAR data were processed by repeat-pass interferometry using the DORIS and SARScape software. To better assess ground deformation related to individual landslide objects, InSAR time-series analysis has been applied using the Small Baseline Subset (SBAS) method. Analysis of the results in combination with optical data and DEM information has revealed that most of the derived deformations are caused by slow movements in areas of already existing landslides indicating the reactivation of older slope failures. This way, InSAR analysis can

  11. Mechanically activated artificial cell by using microfluidics.

    Science.gov (United States)

    Ho, Kenneth K Y; Lee, Lap Man; Liu, Allen P

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.

  12. Mechanically activated artificial cell by using microfluidics

    Science.gov (United States)

    Ho, Kenneth K. Y.; Lee, Lap Man; Liu, Allen P.

    2016-09-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.

  13. Mechanically activated artificial cell by using microfluidics

    Science.gov (United States)

    Ho, Kenneth K. Y.; Lee, Lap Man; Liu, Allen P.

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  14. Simultaneous measurements from the Millstone Hill radar and the Active satellite during the SAID/SAR arc event of the March 1990 CEDAR storm

    Directory of Open Access Journals (Sweden)

    M. Förster

    Full Text Available During a nearby passage of the Active satellite above the Millstone Hill radar on 21 March 1990 at local sunset, the satellite and the radar performed simultaneous measurements of upper ionospheric parameters in nearly the same spatial volume. For this purpose the radar carried out a special azimuth-elevation scan to track the satellite. Direct comparisons of radar data and in situ satellite measurements have been carried out quite rarely. In this case, the coincidence of co-ordinated measurements and active ionospheric-magnetospheric processes during an extended storm recovery phase presents a unique occasion resulting in a very valuable data set. The measurements show generally good agreement both during quiet prestorm and storm conditions and the combination of radar and satellite observations gives a more comprehensive picture of the physical processes involved. We find a close relationship between the rapid westward ion drift peak at subauroral latitudes (SAID event and the occurrence of a stable auroral red (SAR arc observed after sunset by an all-sky imager and reported in an earlier study of this event. The SAID electric field is caused by the penetration of energetic ions with energies between about 1 keV and 100 keV into the outer plasmasphere to a latitude equatorward of the extent of the plasmasheet electrons. Charge separation results in the observed polarisation field and the SAID. Unusually high molecular ion densities measured by the satellite at altitudes of 700-870 km at subauroral and auroral latitudes point on strong upward-directed ion acceleration processes and an intense neutral gas upwelling. These structures are collocated with a narrow trough in electron density and an electron temperature peak as observed simultaneously by the radar and the satellite probes.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; plasma temperature and density; Magnetospheric physics (plasmasphere.

  15. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity

    OpenAIRE

    D’Angelo, Rosemarie C.; Ouzounova, Maria; Davis, April; Choi, Daejin; Tchuenkam, Stevie M.; Kim, Gwangil; Luther, Tahra; Quraishi, Ahmed A.; Senbabaoglu, Yasin; Conley, Sarah J; Shawn G Clouthier; Hassan, Khaled A.; Wicha, Max S; Korkaya, Hasan

    2015-01-01

    Developmental pathways such as Notch play a pivotal role in tissue specific stem cell self-renewal as well as in tumor development. However, the role of Notch signaling in breast cancer stem cells (CSC) remains to be determined. We utilized a lentiviral Notch reporter system to identify a subset of cells with a higher Notch activity (Notch+) or reduced activity (Notch-) in multiple breast cancer cell lines. Using in vitro and mouse xenotransplantation assays we investigated the role of Notch ...

  16. Epigenetic Changes during Hepatic Stellate Cell Activation.

    Directory of Open Access Journals (Sweden)

    Silke Götze

    Full Text Available Hepatic stellate cells (HSC, which can participate in liver regeneration and fibrogenesis, have recently been identified as liver-resident mesenchymal stem cells. During their activation HSC adopt a myofibroblast-like phenotype accompanied by profound changes in the gene expression profile. DNA methylation changes at single genes have been reported during HSC activation and may participate in the regulation of this process, but comprehensive DNA methylation analyses are still missing. The aim of the present study was to elucidate the role of DNA methylation during in vitro activation of HSC.The analysis of DNA methylation changes by antibody-based assays revealed a strong decrease in the global DNA methylation level during culture-induced activation of HSC. To identify genes which may be regulated by DNA methylation, we performed a genome-wide Methyl-MiniSeq EpiQuest sequencing comparing quiescent and early culture-activated HSC. Approximately 400 differentially methylated regions with a methylation change of at least 20% were identified, showing either hypo- or hypermethylation during activation. Further analysis of selected genes for DNA methylation and expression were performed revealing a good correlation between DNA methylation changes and gene expression. Furthermore, global DNA demethylation during HSC activation was investigated by 5-bromo-2-deoxyuridine assay and L-mimosine treatment showing that demethylation was independent of DNA synthesis and thereby excluding a passive DNA demethylation mechanism.In summary, in vitro activation of HSC initiated strong DNA methylation changes, which were associated with gene regulation. These results indicate that epigenetic mechanisms are important for the control of early HSC activation. Furthermore, the data show that global DNA demethylation during activation is based on an active DNA demethylation mechanism.

  17. VL51ES (Generation 6 Li-Ion Cell for Satellites

    Directory of Open Access Journals (Sweden)

    Defer M.

    2017-01-01

    Full Text Available This paper presents the design of Saft’s VL51ES (Generation 6 Li-Ion cell, the main challenges in the course of the development, the main BOL characteristics and performances achieved during the development program. Finally, it also describes how this cell fits in Saft’s battery range and the benefits of it.

  18. MicroRNA-1 and MicroRNA-206 Improve Differentiation Potential of Human Satellite Cells : A Novel Approach for Tissue Engineering of Skeletal Muscle

    NARCIS (Netherlands)

    Koning, Merel; Werker, Paul M. N.; van der Schaft, Daisy W. J.; Bank, Ruud A.; Harmsen, Martin C.

    2012-01-01

    Innovative strategies based on regenerative medicine, in particular tissue engineering of skeletal muscle, are promising for treatment of patients with skeletal muscle damage. However, the efficiency of satellite cell differentiation in vitro is suboptimal. MicroRNAs are involved in the regulation o

  19. Shape memory polymers for active cell culture.

    Science.gov (United States)

    Davis, Kevin A; Luo, Xiaofan; Mather, Patrick T; Henderson, James H

    2011-07-04

    Shape memory polymers (SMPs) are a class of "smart" materials that have the ability to change from a fixed, temporary shape to a pre-determined permanent shape upon the application of a stimulus such as heat(1-5). In a typical shape memory cycle, the SMP is first deformed at an elevated temperature that is higher than its transition temperature, T(trans;) [either the melting temperature (T(m;)) or the glass transition temperature (T(g;))]. The deformation is elastic in nature and mainly leads to a reduction in conformational entropy of the constituent network chains (following the rubber elasticity theory). The deformed SMP is then cooled to a temperature below its T(trans;) while maintaining the external strain or stress constant. During cooling, the material transitions to a more rigid state (semi-crystalline or glassy), which kinetically traps or "freezes" the material in this low-entropy state leading to macroscopic shape fixing. Shape recovery is triggered by continuously heating the material through T(trans;) under a stress-free (unconstrained) condition. By allowing the network chains (with regained mobility) to relax to their thermodynamically favored, maximal-entropy state, the material changes from the temporary shape to the permanent shape. Cells are capable of surveying the mechanical properties of their surrounding environment(6). The mechanisms through which mechanical interactions between cells and their physical environment control cell behavior are areas of active research. Substrates of defined topography have emerged as powerful tools in the investigation of these mechanisms. Mesoscale, microscale, and nanoscale patterns of substrate topography have been shown to direct cell alignment, cell adhesion, and cell traction forces(7-14). These findings have underscored the potential for substrate topography to control and assay the mechanical interactions between cells and their physical environment during cell culture, but the substrates used to date

  20. Satellite RNAs and Satellite Viruses.

    Science.gov (United States)

    Palukaitis, Peter

    2016-03-01

    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.

  1. Satellite NG2 progenitor cells share common glutamatergic inputs with associated interneurons in the mouse dentate gyrus.

    Science.gov (United States)

    Mangin, Jean-Marie; Kunze, Albrecht; Chittajallu, Ramesh; Gallo, Vittorio

    2008-07-23

    Several studies have provided evidence that NG2-expressing (NG2(+)) progenitor cells are anatomically associated to neurons in gray matter areas. By analyzing the spatial distribution of NG2(+) cells in the hilus of the mouse dentate gyrus, we demonstrate that NG2(+) cells are indeed closely associated to interneurons. To define whether this anatomical proximity reflected a specific physiological interaction, we performed patch-clamp recordings on hilar NG2(+) cells and interneurons between 3 and 21 postnatal days. We first observed that hilar NG2(+) cells exhibit spontaneous glutamatergic EPSCs (sEPSCs) whose frequency and amplitude increase during the first 3 postnatal weeks. At the same time, the rise time and decay time of sEPSCs significantly decreased, suggesting that glutamatergic synapses in NG2(+) cells undergo a maturation process that is reminiscent of what has been reported in neurons during the same time period. We also observed that hilar interneurons and associated NG2(+) cells are similarly integrated into the local network, receiving excitatory inputs from both granule cells and CA3 pyramidal neurons. By performing pair recordings, we found that bursts of activity induced by GABAergic antagonists were strongly synchronized between both cell types and that the amplitude of these bursts was positively correlated. Finally, by applying carbachol to increase EPSC activity, we observed that closely apposed cells were more likely to exhibit synchronized EPSCs than cells separated by >200 microm. The finding that NG2(+) cells are sensing patterns of activity arising in closely associated neurons suggests that NG2(+) cell function is finely regulated by the local network.

  2. Resistance Training Enhances Skeletal Muscle Innervation Without Modifying the Number of Satellite Cells or their Myofiber Association in Obese Older Adults.

    Science.gov (United States)

    Messi, María Laura; Li, Tao; Wang, Zhong-Min; Marsh, Anthony P; Nicklas, Barbara; Delbono, Osvaldo

    2016-10-01

    Studies in humans and animal models provide compelling evidence for age-related skeletal muscle denervation, which may contribute to muscle fiber atrophy and loss. Skeletal muscle denervation seems relentless; however, long-term, high-intensity physical activity appears to promote muscle reinnervation. Whether 5-month resistance training (RT) enhances skeletal muscle innervation in obese older adults is unknown. This study found that neural cell-adhesion molecule, NCAM+ muscle area decreased with RT and was inversely correlated with muscle strength. NCAM1 and RUNX1 gene transcripts significantly decreased with the intervention. Type I and type II fiber grouping in the vastus lateralis did not change significantly but increases in leg press and knee extensor strength inversely correlated with type I, but not with type II, fiber grouping. RT did not modify the total number of satellite cells, their number per area, or the number associated with specific fiber subtypes or innervated/denervated fibers. Our results suggest that RT has a beneficial impact on skeletal innervation, even when started late in life by sedentary obese older adults.

  3. 大鼠骨骼肌卫星细胞的原代培养鉴定和体外分化特点%Study on culture, identification and differentiation of primary rat skeletal muscle satellite cells

    Institute of Scientific and Technical Information of China (English)

    冯永强; 李峥; 褚万立; 郁永辉; 马丽; 柴家科

    2016-01-01

    目的 建立骨骼肌卫星细胞(SMSC)的体外分离、原代培养、鉴定方法,观察细胞的成肌分化特点.方法 采用组织块法结合差速贴壁法获得SMSC.采用免疫荧光和流式细胞仪以Pax7为标志物鉴定分离获得的卫星细胞纯度,用分化培养基诱导SMSC的体外分化,实时定量PCR法检测分化标志基因成肌决定因子(MyoD)和生肌素的mRNA相对表达量.结果 组织块法培养约1周,可见细胞从组织块边缘爬出.经差速贴壁法纯化后,流式细胞仪检测所获得的原代SMSC纯度可达97.6%.细胞体外诱导分化后,MyoD和生肌素基因呈时序性表达.结论 组织块法可成功获得高纯度的SMSC,在体外具有良好的分化能力.%Objective To establish the isolation,culture and identification methods of primary rat skeletal muscle satellite cells (SMSC) and observe its characterization of differentiation in vitro.Methods Skeletal muscle satellite cells were obtained by tissue block culture method in combination with pre-plating techniques,and the purity of these cells was detected by both immunocytochemistry and fluorescence activated cell sorter (FACS) with Pax7 as marker of SMSC.Myogenesis of these cells was induced in differentiation medium and the mRNA expressions of myogenic differentiation gene (MyoD) and Myogenin were determined by Real-time polymerase chain reaction (PCR).Results Cells crawled out from the edge of tissue blocks after 1 week of culture.After purification by pre-plating techniques,more than 97.6% of the cells expressed Pax7,a unique marker of satellite cells.The mRNA of MyoD and Myogenin showed timespecific expression in the myogenesis induction process in vitro.Conclusion Skeletal muscle satellite cells with high purity and strong differentiation ability can be obtained by means of tissue block culture method.

  4. The relation between solar and seismic activity based on satellite and ground-based data

    Science.gov (United States)

    Kirov, B.; Georgieva, K.; Atanasov, D.; Haiakawa, M.

    It has been noted that a significant correlation exists between solar and seismic activity on different time-scales, from centennial (Gleissberg) to the 11-year solar cycle, however the solar activity agent and the mechanism for this influence remained unclear. As two well expressed maxima of the number of earthquakes are observed in the 11-year solar cycle, one coinciding with sunspot maximum, and the other with solar coronal holes maximum, it has been supposed that the agent triggering seismic activity could be the high-speed solar wind. Data from numerous spacecraft monitoring solar wind parameters have been used compiled in OMNI data-base, and it has been found that the number of earthquakes in the days of the arrival of high speed solar wind and the days following right after them is significantly greater than in all other days. Further, we use data for the Earth rotation rate from the International Earth Rotation Service, and for the atmospheric circulation from meteorological stations worldwide. We find that they are both related to seismic activity, and discuss a possible mechanism of solar activity influences on the number of earthquakes through solar wind influences on the Earth and atmospheric dynamics.

  5. Activation-Induced Cell Death in T Cells and Autoimmunity

    Institute of Scientific and Technical Information of China (English)

    Jian Zhang; Xuemei Xu; Yong Liu

    2004-01-01

    Activation-induced cell death (AICD), which results from the interaction between Fas and Fas ligand, is responsible for maintaining tolerance to self-antigen. A defect in AICD may lead to development of autoimmunity. During the last several years, much progress has been made in understanding the mechanism(s) of AICD and its potential role in the pathogenesis of autoimmune diseases. In this review, we summarize the most recent progress on the regulation of the susceptibility of T cells to AICD and its possible involvement in autoimmune diseases.

  6. Satellite Cell Functional Alterations Following Cutaneous Burn in rats Include an Increase in Their Osteogenic Potential

    Science.gov (United States)

    2013-10-07

    skeletal muscle hypertrophy and atrophy. Nat Cell Biol 2003;5:87. [6] Brack AS, Rando TA. Intrinsic changes and extrinsic influences of myogenic stem...Skeletal muscle Muscle precursor cell Thermal injury Atrophy Heterotopic ossification a b s t r a c t Background: Significant consequences of severe burn...include skeletal muscle atrophy and heterotopic ossification (HO). The cellular mechanisms underlying either of these condi- tions are not known

  7. Decidual cell polyploidization necessitates mitochondrial activity.

    Directory of Open Access Journals (Sweden)

    Xinghong Ma

    Full Text Available Cellular polyploidy has been widely reported in nature, yet its developmental mechanism and function remain poorly understood. In the present study, to better define the aspects of decidual cell polyploidy, we isolated pure polyploid and non-polyploid decidual cell populations from the in vivo decidual bed. Three independent RNA pools prepared for each population were then subjected to the Affymetrix gene chip analysis for the whole mouse genome transcripts. Our data revealed up-regulation of 1015 genes and down-regulation of 1207 genes in the polyploid populations, as compared to the non-polyploid group. Comparative RT-PCR and in situ hybridization results indeed confirmed differential expressional regulation of several genes between the two populations. Based on functional enrichment analyses, up-regulated polyploidy genes appeared to implicate several functions, which primarily include cell/nuclear division, ATP binding, metabolic process, and mitochondrial activity, whereas that of down-regulated genes primarily included apoptosis and immune processes. Further analyses of genes that are related to mitochondria and bi-nucleation showed differential and regional expression within the decidual bed, consistent with the pattern of polyploidy. Consistently, studies revealed a marked induction of mitochondrial mass and ATP production in polyploid cells. The inhibition of mitochondrial activity by various pharmacological inhibitors, as well as by gene-specific targeting using siRNA-mediated technology showed a dramatic attenuation of polyploidy and bi-nucleation development during in vitro stromal cell decidualization, suggesting mitochondria play a major role in positive regulation of decidual cell polyploidization. Collectively, analyses of unique polyploidy markers and molecular signaling networks may be useful to further characterize functional aspects of decidual cell polyploidy at the site of implantation.

  8. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  9. In situ hybridization of the feline major satellite DNA FA-SAT in feline fibrosarcoma cell lines and feline fibrosarcoma tissue sections

    OpenAIRE

    Alfaro Alarcón, Alejandro

    2009-01-01

    Feline fibrosarcomas are the most common skin tumors of cats. Despite this high frequency and the publication of different hypotheses for their pathogenesis by several authors, the alterations accompanying the development of this tumor are still not completely understood. We studied the feline major satellite DNA (FA-SAT) hybridization pattern by FISH in four fibrosarcoma cell lines and one normal embryonic fibroblastic cell line as well as in 30 fibrosarcomas from 28 cats. Of the latter, ...

  10. Semi-active Attitude Control and Off-line Attitude Determination for the SEETI-Express Student Micro-satellite

    DEFF Research Database (Denmark)

    Alminde, Lars

    This paper concerns the development of the Attitude Determination and Control System (ADCS) for the SSETI-Express micro-satellite mission. The mission is an educational project involving 14 universities and the European Space Agency (ESA). The satellite has been designed and built, by students...

  11. Semi-active Attitude Control and Off-line Attitude Determination for the SSETI-Express Student Micro-satellite

    DEFF Research Database (Denmark)

    Alminde, Lars

    2005-01-01

    This paper concerns the development of the Attitude Determination and Control System (ADCS) for the SSETI-Express micro-satellite mission. The mission is an educational project involving 14 universities and the European Space Agency (ESA). The satellite has been designed and built, by students...

  12. Melanocyte and Melanoma Cell Activation by Calprotectin

    Directory of Open Access Journals (Sweden)

    Stephanie H. Shirley

    2014-01-01

    Full Text Available Calprotectin, a heterodimer of S100A8 and S100A9, is a proinflammatory cytokine released from ultraviolet radiation-exposed keratinocytes. Calprotectin binds to Toll-like receptor 4, the receptor for advanced glycation end-products, and extracellular matrix metalloproteinase inducer on target cells to stimulate migration. Melanocytes and melanoma cells produce little if any calprotectin, but they do express receptors for the cytokine. Thus, keratinocyte-derived calprotectin has the potential to activate melanocytes and melanoma cells within the epidermis in a paracrine manner. We examined the ability of calprotectin to stimulate proliferation and migration in normal human melanocytes and melanoma cells in vitro. We first showed, by immunofluorescence and quantitative RT-PCR, that the melanocytic cells employed expressed a calprotectin receptor, the receptor for advanced end-products. We then demonstrated that calprotectin significantly enhanced proliferation, migration, and Matrigel invasion in both normal human melanocytes and melanoma cells. Thus, calprotectin is one of the numerous paracrine factors released by ultraviolet radiation-exposed keratinocytes that may promote melanomagenesis and is a potential target for melanoma prevention or therapy.

  13. Constraints from atmospheric CO2 and satellite-based vegetation activity observations on current land carbon cycle trends

    Directory of Open Access Journals (Sweden)

    S. Zaehle

    2012-11-01

    Full Text Available Terrestrial ecosystem models used for Earth system modelling show a significant divergence in future patterns of ecosystem processes, in particular carbon exchanges, despite a seemingly common behaviour for the contemporary period. An in-depth evaluation of these models is hence of high importance to achieve a better understanding of the reasons for this disagreement. Here, we develop an extension for existing benchmarking systems by making use of the complementary information contained in the observational records of atmospheric CO2 and remotely-sensed vegetation activity to provide a firm set of diagnostics of ecosystem responses to climate variability in the last 30 yr at different temporal and spatial scales. The selection of observational characteristics (traits specifically considers the robustness of information given the uncertainties in both data and evaluation analysis. In addition, we provide a baseline benchmark, a minimum test that the model under consideration has to pass, to provide a more objective, quantitative evaluation framework. The benchmarking strategy can be used for any land surface model, either driven by observed meteorology or coupled to a climate model. We apply this framework to evaluate the offline version of the MPI-Earth system model's land surface scheme JSBACH. We demonstrate that the complementary use of atmospheric CO2 and satellite based vegetation activity data allows to pinpoint specific model failures that would not be possible by the sole use of atmospheric CO2 observations.

  14. Satellite theory

    Science.gov (United States)

    Kozai, Y.

    1981-04-01

    The dynamical characteristics of the natural satellite of Mars, Jupiter, Saturn, Uranus and Neptune are analyzed on the basis of the solar tidal perturbation factor and the oblateness factor of the primary planet for each satellite. For the inner satellites, for which the value of the solar tidal factor is much smaller than the planetary oblateness factor, it is shown that the eccentricity and inclination of satellite orbits are generally very small and almost constant; several pairs of inner satellites are also found to exhibit commensurable mean motions, or secular accelerations in mean longitude. In the case of the outer satellites, for which solar perturbations are dominant, secular perturbations and long-period perturbations may be derived by the solution of equations of motion reduced to one degree of freedom. The existence of a few satellites, termed intermediary satellites, for which the solar tidal perturbation is on the order of the planetary oblateness factor, is also observed, and the pole of the orbital plane of the satellite is noted to execute a complex motion around the pole of the planet or the orbital plane of the planet.

  15. Fluorescence activated cell sorting of plant protoplasts.

    Science.gov (United States)

    Bargmann, Bastiaan O R; Birnbaum, Kenneth D

    2010-02-18

    High-resolution, cell type-specific analysis of gene expression greatly enhances understanding of developmental regulation and responses to environmental stimuli in any multicellular organism. In situ hybridization and reporter gene visualization can to a limited extent be used to this end but for high resolution quantitative RT-PCR or high-throughput transcriptome-wide analysis the isolation of RNA from particular cell types is requisite. Cellular dissociation of tissue expressing a fluorescent protein marker in a specific cell type and subsequent Fluorescence Activated Cell Sorting (FACS) makes it possible to collect sufficient amounts of material for RNA extraction, cDNA synthesis/amplification and microarray analysis. An extensive set of cell type-specific fluorescent reporter lines is available to the plant research community. In this case, two marker lines of the Arabidopsis thaliana root are used: P(SCR;)::GFP (endodermis and quiescent center) and P(WOX5;)::GFP (quiescent center). Large numbers (thousands) of seedlings are grown hydroponically or on agar plates and harvested to obtain enough root material for further analysis. Cellular dissociation of plant material is achieved by enzymatic digestion of the cell wall. This procedure makes use of high osmolarity-induced plasmolysis and commercially available cellulases, pectinases and hemicellulases to release protoplasts into solution. FACS of GFP-positive cells makes use of the visualization of the green versus the red emission spectra of protoplasts excited by a 488 nm laser. GFP-positive protoplasts can be distinguished by their increased ratio of green to red emission. Protoplasts are typically sorted directly into RNA extraction buffer and stored for further processing at a later time. This technique is revealed to be straightforward and practicable. Furthermore, it is shown that it can be used without difficulty to isolate sufficient numbers of cells for transcriptome analysis, even for very scarce

  16. Activated allogeneic NK cells preferentially kill poor prognosis B-cell chronic lymphocytic leukemia cells

    Directory of Open Access Journals (Sweden)

    Diego Sanchez-Martinez

    2016-10-01

    Full Text Available Mutational status of TP53 together with expression of wild type (wt IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL patients. Adoptive cell therapy using allogeneic HLA mismatched Natural Killer (NK cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cells eliminate hematological cancer cell lines with multidrug resistance acquired by mutations in the apoptotic machinery. This effect depends on the activation protocol, being B-lymphoblastoid cell lines (LCLs the most effective stimulus to activate NK cells. Here we have further analyzed the molecular determinants involved in allogeneic NK cell recognition and elimination of B-CLL cells, including the expression of ligands of the main NK cell activating receptors (NKG2D and NCRs and HLA mismatch. We present preliminary data suggesting that B-CLL susceptibility significantly correlates with HLA mismatch between NK cell donor and B-CLL patient. Moreover, we show that the sensitivity of B-CLL cells to NK cells depends on the prognosis based on TP53 and IGHV mutational status. Cells from patients with worse prognosis (mutated TP53 and wt IGHV are the most susceptible to activated NK cells. Hence, B-CLL prognosis may predict the efficacy of allogenic activated NK cells and, thus, NK cell transfer represents a good alternative to treat poor prognosis B-CLL patients who present a very short life expectancy due to lack of effective treatments.□

  17. Temporal changes in glycogenolytic enzyme mRNAs during myogenesis of primary porcine satellite cells

    DEFF Research Database (Denmark)

    Henckel, Poul; Theil, Peter Kappel; Sørensen, Inge Lise

    2007-01-01

    , phosphorylase kinase, phosphorylase and glycogen debranching enzyme, and no alterations of the transporter molecule GLUT4, clearly indicate that glycogenolytic enzymes of potential importance to meat quality development are regulated at the gene level during myogenesis, and are heavily involved in muscle cell...... and muscle fibre development. The genes, however, are not influenced by insulin, and the lack of response to insulin of expression of gene-encoding enzymes involved in the formation and degradation of glycogen may question the applicability of porcine cell culture systems, like the one applied, as a model...

  18. Extracellular Vesicles: Satellites of Information Transfer in Cancer and Stem Cell Biology.

    Science.gov (United States)

    Desrochers, Laura M; Antonyak, Marc A; Cerione, Richard A

    2016-05-23

    The generation and shedding of extracellular vesicles (EVs), including exosomes and microvesicles (MVs), by cells has emerged as a form of intercellular communication with important roles in several physiological processes and diseases such as cancer. These membrane-enclosed packets can transfer specific proteins, RNA transcripts, microRNAs, and even DNA to target cells, thereby altering their function. Despite the exponential growth of the EV field, a great deal remains unclear about the mechanisms that regulate exosome and MV biogenesis, as well as about how to isolate different classes of EVs and how to best take advantage of them for clinical applications.

  19. Neuromodulation of Natural Killer Cell Activity

    Science.gov (United States)

    1989-01-01

    between the pineal gland As we have seen, NK cell function is ex- and the mitotic activity of some tissues. Arch Sci Biol tremely sensitive to many...34 New York: Alan R. Liss. Inc,. pp 151 - plasis. BriJ Med psychol 43:313-331. 160. Das Gupta TIC. Terz J (1967): Infuence of pineal gland Hochman PS...1968; Baron and D Gupta, 1970). responsiveness in patients with cerebral tu- Chemical sympathectomy renders rats highly mors (Brooks et al., 1972

  20. Statistical Analysis of the Correlation between Microwave Emission Anomalies and Seismic Activity Based on AMSR-E Satellite Data

    Science.gov (United States)

    qin, kai; Wu, Lixin; De Santis, Angelo; Zhang, Bin

    2016-04-01

    Pre-seismic thermal IR anomalies and ionosphere disturbances have been widely reported by using the Earth observation system (EOS). To investigate the possible physical mechanisms, a series of detecting experiments on rock loaded to fracturing were conducted. Some experiments studies have demonstrated that microwave radiation energy will increase under the loaded rock in specific frequency and the feature of radiation property can reflect the deformation process of rock fracture. This experimental result indicates the possibility that microwaves are emitted before earthquakes. Such microwaves signals are recently found to be detectable before some earthquake cases from the brightness temperature data obtained by the microwave-radiometer Advanced Microwave-Scanning Radiometer for the EOS (AMSR-E) aboard the satellite Aqua. This suggested that AMSR-E with vertical- and horizontal-polarization capability for six frequency bands (6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz) would be feasible to detect an earthquake which is associated with rock crash or plate slip. However, the statistical analysis of the correlation between satellite-observed microwave emission anomalies and seismic activity are firstly required. Here, we focus on the Kamchatka peninsula to carry out a statistical study, considering its high seismicity activity and the dense orbits covering of AMSR-E in high latitudes. 8-years (2003-2010) AMSR-E microwave brightness temperature data were used to reveal the spatio-temporal association between microwave emission anomalies and 17 earthquake events (M>5). Firstly, obvious spatial difference of microwave brightness temperatures between the seismic zone at the eastern side and the non-seismic zone the western side within the Kamchatka peninsula are found. Secondly, using both vertical- and horizontal-polarization to extract the temporal association, it is found that abnormal changes of microwave brightness temperatures appear generally 2 months before the

  1. Sclerosing mediastinitis and mast cell activation syndrome.

    Science.gov (United States)

    Afrin, Lawrence B

    2012-03-15

    Sclerosing mediastinitis (ScM) is a rare, potentially life-threatening disorder, idiopathic in roughly half the cases. Systemic symptoms not attributable to sclerosis often appear in idiopathic ScM. Mast cell activation disease (MCAD) is a potential cause of these symptoms and also can cause sclerosis. ScM has not previously been associated with MCAD. Presented here are the first two cases of ScM associated with MCAD, specifically mast cell activation syndrome (MCAS). CASE 1: A 58-year-old chronically polymorbid woman developed ScM following matched sibling allogeneic stem cell transplantation. Eight years later MCAS, likely underlying most of her chronic issues, was identified. CASE 2: A 30-year-old chronically polymorbid woman presented with superior vena cava syndrome and was diagnosed with ScM. On further evaluation, MCAS was identified. Treatment promptly effected symptomatic improvement; sclerosis has been stable. Non-compliance yielded symptomatic relapse; restored compliance re-achieved symptomatic remission. Different MCAS presentations reflect elaboration of different mediators, some of which can induce inflammation and fibrosis. Thus, MCAS may have directly and/or indirectly driven ScM in these patients. MCAS should be considered in ScM presenting with comorbidities better explained by mast cell mediator release. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. Impaired metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes

    DEFF Research Database (Denmark)

    Baraibar, Martin; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina;

    2014-01-01

    leading to increased mobilization of non-carbohydrate substrates as branched chain amino acids or long chain fatty acids was observed in senescent cells. In addition, phospho-and glycerolipids metabolism was altered. Increased levels of acyl-carnitines indicated augmented turnover of storage and membrane...

  3. Ionospheric Disturbances Recorded by DEMETER Satellite over Active Volcanoes: From August 2004 to December 2010

    Directory of Open Access Journals (Sweden)

    Jacques Zlotnicki

    2013-01-01

    Full Text Available The study analyzes electromagnetic data and plasma characteristics in the ionosphere recorded by DEMETER microsatellite over erupting volcanoes during the life of the mission: from August 2004 to December 2010. The time window in which anomalous changes are searched brackets the onset of the eruptive activity from 60 days before to 15 days after the period during which most pre- and posteruptive phenomena are amplified. 73 volcanoes have entered into eruption. For 58 of them, 269 anomalies were found in relation to 89 eruptions. They are distributed in 5 types, similarly to the ones observed above impeding earthquakes. The two main types are electrostatic turbulence (type 1, 23.4% and electromagnetic emissions (type 2, 69.5%. The maximum number of types 1 and 2 anomalies is recorded between 30 and 15 days before the surface activity, corresponding to the period of accelerating phenomena. The amount of anomalies seems related to the powerfulness of the eruptions. The appearance seems dependant on the likelihood to release bursts of gases during the preparatory eruptive phase. For the huge centenary October 26, 2010, Merapi (Indonesia eruption, 9 ionospheric type 2 anomalies appeared before the eruption. They mainly emerge during the mechanical fatigue stage during which microfracturing occurs.

  4. Study for urbanization corresponding to socio-economic activities in Savannaket, Laos using satellite remote sensing

    Science.gov (United States)

    Kimijiama, S.; Nagai, M.

    2014-06-01

    In Greater Mekong Sub-region (GMS), economic liberalization and deregulation facilitated by GMS Regional Economic Corporation Program (GMS-ECP) has triggered urbanization in the region. However, the urbanization rate and its linkage to socio-economic activities are ambiguous. The objectives of this paper are to: (a) determine the changes in urban area from 1972 to 2013 using remote sensing data, and (b) analyse the relationships between urbanization with respect to socio-economic activities in central Laos. The study employed supervised classification and human visible interpretation to determine changes in urbanization rate. Regression analysis was used to analyze the correlation between the urbanization rate and socio-economic variables. The result shows that the urban area increased significantly from 1972 to 2013. The socio-economic variables such as school enrollment, labour force, mortality rate, water source and sanitation highly correlated with the rate of urbanization during the period. The study concluded that identifying the highly correlated socio-economic variables with urbanization rate could enable us to conduct a further urbanization simulation. The simulation helps in designing policies for sustainable development.

  5. Using the Global Navigation Satellite System (GNSS) data for Hazard Estimation in Some Active Regions in Egypt

    Science.gov (United States)

    Sayed Mohamed, Abdel-Monem

    2016-07-01

    Egypt rapidly growing development is accompanied by increasing levels of standard living particular in its urban areas. However, there is a limited experience in quantifying the sources of risk management in Egypt and in designing efficient strategies to keep away serious impacts of earthquakes. From the historical point of view and recent instrumental records, there are some seismo-active regions in Egypt, where some significant earthquakes had occurred in different places. The special tectonic features in Egypt: Aswan, Greater Cairo, Red Sea and Sinai Peninsula regions are the territories of a high seismic risk, which have to be monitored by up-to date technologies. The investigations of the seismic events and interpretations led to evaluate the seismic hazard for disaster prevention and for the safety of the dense populated regions and the vital national projects as the High Dam. In addition to the monitoring of the recent crustal movements, the most powerful technique of satellite geodesy GNSS are used where geodetic networks are covering such seismo-active regions. The results from the data sets are compared and combined in order to determine the main characteristics of the deformation and hazard estimation for specified regions. The final compiled output from the seismological and geodetic analysis threw lights upon the geodynamical regime of these seismo-active regions and put Aswan and Greater Cairo under the lowest class according to horizontal crustal strains classifications. This work will serve a basis for the development of so-called catastrophic models and can be further used for catastrophic risk management. Also, this work is trying to evaluate risk of large catastrophic losses within the important regions including the High Dam, strategic buildings and archeological sites. Studies on possible scenarios of earthquakes and losses are a critical issue for decision making in insurance as a part of mitigation measures.

  6. Human Immunodeficiency Syndromes Affecting Human Natural Killer Cell Cytolytic Activity

    OpenAIRE

    Ham, Hyoungjun; Billadeau, Daniel D.

    2014-01-01

    Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synaps...

  7. Differential rotation of the active G5V star Kappa1 Ceti: Photometry from the MOST satellite

    CERN Document Server

    Rucinski, S M; Matthews, J M; Kuschnig, R; Shkolnik, E; Marchenko, S; Bohlender, D A; Günther, D B; Moffat, A F J; Sasselov, D; Weiss, W W; Rucinski, Slavek M.; Walker, Gordon A.H.; Matthews, Jaymie M.; Kuschnig, Rainer; Shkolnik, Evgenya; Marchenko, Sergey; Bohlender, David A.; Moffat, Anthony F.J.; Sasselov, Dimitar; Weiss, Werner W.

    2004-01-01

    About 30.5 days of nearly uninterrupted broadband photometry of the solar-type star Kappa1 Ceti, obtained with the MOST (Microvariability & Oscillations of STars) satellite, shows evidence for two large starspots with different rotation periods of 8.9 and approximately 9.3 days (DeltaOmega/Omega~4%). Ground based measurements in 2002 and 2003 of Ca II H & K emission reveal variations in chromospheric activity with a period of about 9.3 days. The data were obtained during the MOST commissioning phase. When the data are combined with historical observations, they indicate that the 9.3-day spot has been stable in its period for over 30 years. The photometry, with a sampling rate of approximately once per minute, was also used to search for acoustic (p-mode) oscillations in the star. We detect no clear evidence for p-modes in the Kappa1 Ceti photometry, with a noise level around 7-9 mu_mag at frequencies in the range 0.5-4 mHz (3-sigma detection limit of 21 - 27 mu_mag). There were no flares or planetary ...

  8. Myogenic-specific ablation of Fgfr1 impairs FGF2-mediated proliferation of satellite cells at the myofiber niche but does not abolish the capacity for muscle regeneration

    Directory of Open Access Journals (Sweden)

    Zipora eYablonka-Reuveni

    2015-05-01

    Full Text Available Skeletal muscle satellite cells (SCs are Pax7+ myogenic stem cells that reside between the basal lamina and the plasmalemma of the myofiber. In mature muscles, SCs are typically quiescent, but can be activated in response to muscle injury. Depending on the magnitude of tissue trauma, SCs may divide minimally to repair subtle damage within individual myofibers or produce a larger progeny pool that forms new myofibers in cases of overt muscle injury. SC transition through proliferation, differentiation and renewal is governed by the molecular blueprint of the cells as well as by the extracellular milieu at the SC niche. In particular, the role of the fibroblast growth factor (FGF family in regulating SCs during growth and aging is well recognized. Of the several FGFs shown to affect SCs, FGF1, FGF2 and FGF6 proteins have been documented in adult skeletal muscle. These prototypic paracrine FGFs transmit their mitogenic effect through the FGFRs, which are transmembrane tyrosine kinase receptors. Using the mouse model, we show here that of the four FGFRs, only Fgfr1 and Fgfr4 are expressed at relatively high levels in quiescent SCs and their proliferating progeny. To further investigate the role of FGFR1 in adult myogenesis, we have employed a genetic (Cre/loxP approach for myogenic-specific (MyoDCre-driven ablation of Fgfr1. Neither muscle histology nor muscle regeneration following cardiotoxin-induced injury were overtly affected in Fgfr1-ablated mice. This suggests that FGFR1 is not obligatory for SC performance in this acute muscle trauma model, where compensatory growth factor/cytokine regulatory cascades may exist. However, the SC mitogenic response to FGF2 is drastically repressed in isolated myofibers prepared from Fgfr1-ablated mice. Collectively, our study indicates that FGFR1 is important for FGF-mediated proliferation of SCs and its mitogenic role is not compensated by FGFR4 that is also highly expressed in SCs.

  9. GPS and Satellite InSAR Observations of Landslide Activity at the Sinking Canyon in South Central Idaho

    Science.gov (United States)

    Aly, M. H.; Glenn, N. F.; Thackray, G. D.

    2014-12-01

    Multiple rotational, transitional, and lateral spread landslides have occurred in south central Idaho where basalt lava flows overly unconsolidated lake and fluvial sediments at the Sinking Canyon. The canyon is about 0.1 km deep and 0.25-1 km wide along a 4-km segment of the Salmon Falls Creek (SFC). Local topography and hydrological conditions are most likely the major triggering factors that have initiated landslides by increasing the gravitational stresses and weakening the canyon wall materials. Landslide activity has created natural dams of SFC, which in turn has resulted in forming large lakes with a potential flooding hazard to life and property downstream. In this study, we use campaign Global Positioning System (GPS) measurements of 2003-2004 and Synthetic Aperture Radar Interferometric (InSAR) data acquired during 1992-2007 by the European radar satellites (ERS-1 and ERS-2) to identify, monitor, and analyze recent landslide activity at SFC. Results show that three main landslides have been active during the period of observation: the Salmon Falls landslide (SFL) that has been first reported in 1999, the historical 1937 landslide, and a third unnamed landslide to the north of the 1937 slide. InSAR measurements indicate that the SFL has been active during the period of our earliest interferogram (1992-1993) whereas the slide head has detached and has moved away from the eastern canyon wall about 3 cm. Over the years, the SFL body and toe have been pushed westward repetitively at rates of about 3-7 cm/yr. The toe is confined by the western canyon wall and thus is pushed upward in some years causing slight uplift (2-3 cm). Our field observations reveal many transverse and radial cracks associated with the deformation pattern caused by recurring motions. The historic 1937 slide is the largest mass wasting and is the least active landslide in the study area. The unnamed slide shows episodic activity with varying rates (0-4 cm/yr) of line-of-sight motions. This

  10. Variations of VLF/LF signals observed on the ground and satellite during a seismic activity in Japan region in May–June 2008

    Directory of Open Access Journals (Sweden)

    A. Rozhnoi

    2010-03-01

    Full Text Available Signals of two Japanese transmitters (22.2 kHz and 40 kHz recorded on the ground VLF/LF station in Petropavlovsk-Kamchatsky and on board the DEMETER French satellite have been analyzed during a seismic activity in Japan in May–June 2008. The period of analysis was from 18 April to 27 June. During this time two rather large earthquakes occurred in the north part of Honshu Island – 7 May (M=6.8 and 13 June (M=6.9. The ground and satellite data were processed by a method based on the difference between the real signal in nighttime and the model one. For ground observations a clear decrease in both signals has been found several days before the first earthquake. For the second earthquake anomalies were detected only in JJI signal. The epicenters of earthquakes were in reliable reception zone of 40 kHz signal on board the DEMETER. Signal enhancement above the seismic active region and significant signal intensity depletion in the magnetically conjugate area has been found for satellite observation before the first earthquake. Anomalies in satellite data coincide in time with those in the ground-based observation.

  11. Fluorescence-Activated Cell Sorting Analysis of Heterotypic Cell-in-Cell Structures.

    Science.gov (United States)

    He, Meifang; Huang, Hongyan; Wang, Manna; Chen, Ang; Ning, Xiangkai; Yu, Kaitao; Li, Qihong; Li, Wen; Ma, Li; Chen, Zhaolie; Wang, Xiaoning; Sun, Qiang

    2015-04-27

    Cell-in-cell structures (CICs), characterized by the presence of one or more viable cells inside another one, were recently found important player in development, immune homeostasis and tumorigenesis etc. Incompatible with ever-increasing interests on this unique phenomenon, reliable methods available for high throughput quantification and systemic investigation are lacking. Here, we report a flow cytometry-based method for rapid analysis and sorting of heterotypic CICs formed between lymphocytes and tumor cells. In this method, cells were labeled with fluorescent dyes for fluorescence-activated cell sorting (FACS) by flow cytometry, conditions for reducing cell doublets were optimized such that high purity (>95%) of CICs could be achieved. By taking advantage of this method, we analyzed CICs formation between different cell pairs, and found that factors from both internalized effector cells and engulfing target cells affect heterotypic CICs formation. Thus, flow cytometry-based FACS analysis would serve as a high throughput method to promote systemic researches on CICs.

  12. Activated allogeneic NK cells preferentially kill poor prognosis B-cell chronic lymphocytic leukemia cells

    OpenAIRE

    2016-01-01

    Mutational status of TP53 together with expression of wild type (wt) IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL) patients. Adoptive cell therapy using allogeneic HLA mismatched Natural Killer (NK) cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cell...

  13. Semi-active Attitude Control and Off-line Attitude Determination for the SSETI-Express Student Micro-satellite

    OpenAIRE

    Alminde, Lars

    2005-01-01

    This paper concerns the development of the Attitude Determination and Control System (ADCS) for the SSETI-Express micro-satellite mission. The mission is an educational project involving 14 universities and the European Space Agency (ESA). The satellite has been designed and built, by students, over a period of only 18 months. This paper emphasises on the trade-offs required to build an operational ADCS system within such a rapidly developing project.

  14. Active, passive and satellite borne spectroscopic measurements of tropospheric BrO during the OASIS 2009 campaign in Barrow, Alaska

    Science.gov (United States)

    Friess, U.; Sihler, H.; Wagner, T.; Platt, U.

    2009-12-01

    Bromine activation plays an important role in the chemistry of the springtime Arctic boundary layer. The presence of elevated BrO levels, leading to the destruction of near-surface ozone down to undetectable concentrations, is a widespread phenomenon over the sea-ice covered Arctic Ocean. BrO is thought to be released from saline surfaces, such as brine and frost flowers, by autocatalytic reaction cycles leading to the exponential increase of reactive bromine in the gas phase - the so-called bromine explosion. However, the direct sources of reactive bromine and the recycling mechanisms taking place at aerosol particles and snow surfaces are still not entirely understood, and the current knowledge on the BrO vertical distribution is very limited. Here we present synergistic multi-platform spectroscopic measurements of BrO performed during the OASIS 2009 field campaign in Barrow, Alaska. Active Long-Path Differential Optical Absorption Spectroscopy (DOAS) measurements of BrO and other trace gases (e.g., ozone, NO2, SO2, formaldehyde) directly yield the average near-surface concentration along a light path of several kilometers along the coast using an artificial light source. Simultaneously a passive Multi-Axis DOAS instrument collected scattered skylight from different viewing directions between zenith and close to the horizon, making it very sensitive for the overall tropospheric BrO vertical column density. Furthermore, Multi-Axis DOAS measurements contain information on the vertical distribution of trace gases, allowing the retrieval of BrO vertical profiles. Our ground-based measurements will be compared with BrO vertical column densities from the GOME-2 instrument onboard the MetOp satellite. At high latitudes, this instrument has the capability to scan each location several times a day, allowing for the comparison of the diurnal variation of BrO with the ground-based observations.

  15. Communications satellites - The experimental years

    Science.gov (United States)

    Edelson, B. I.

    1983-10-01

    Only eight years after the launc of Sputnik-1 by the Soviet Union, the first commercial satellite, 'Early Bird', entered service. In just twelve years commercial satellite service extended around the earth and became profitable. The reasons for the successful development of the communications satellite services in a comparatively short time are considered. These reasons are related to the presence of three ingredients, taking into account technology to create the system, communications requirements to form a market, and a management structure to implement the system. The formation of the concept of using earth orbiting satellites for telecommunications is discussed. It is pointed out that the years from 1958 to 1964 were the true 'experimental years' for satellite communications. The rapid development of technology during this crucial period is described, giving attention to passive satellites, active systems, and development satellites.

  16. Effects of Dexamethasone on Satellite Cells and Tissue Engineered Skeletal Muscle Units.

    Science.gov (United States)

    Syverud, Brian C; VanDusen, Keith W; Larkin, Lisa M

    2016-03-01

    Tissue engineered skeletal muscle has potential for application as a graft source for repairing soft tissue injuries, a model for testing pharmaceuticals, and a biomechanical actuator system for soft robots. However, engineered muscle to date has not produced forces comparable to native muscle, limiting its potential for repair and for use as an in vitro model for pharmaceutical testing. In this study, we examined the trophic effects of dexamethasone (DEX), a glucocorticoid that stimulates myoblast differentiation and fusion into myotubes, on our tissue engineered three-dimensional skeletal muscle units (SMUs). Using our established SMU fabrication protocol, muscle isolates were cultured with three experimental DEX concentrations (5, 10, and 25 nM) and compared to untreated controls. Following seeding onto a laminin-coated Sylgard substrate, the administration of DEX was initiated on day 0 or day 6 in growth medium or on day 9 after the switch to differentiation medium and was sustained until the completion of SMU fabrication. During this process, total cell proliferation was measured with a BrdU assay, and myogenesis and structural advancement of muscle cells were observed through immunostaining for MyoD, myogenin, desmin, and α-actinin. After SMU formation, isometric tetanic force production was measured to quantify function. The histological and functional assessment of the SMU showed that the administration of 10 nM DEX beginning on either day 0 or day 6 yielded optimal SMUs. These optimized SMUs exhibited formation of advanced sarcomeric structure and significant increases in myotube diameter and myotube fusion index, compared with untreated controls. Additionally, the optimized SMUs matured functionally, as indicated by a fivefold rise in force production. In conclusion, we have demonstrated that the addition of DEX to our process of engineering skeletal muscle tissue improves myogenesis, advances muscle structure, and increases force production in the

  17. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  18. Sertoli cells maintain Leydig cell number and peritubular myoid cell activity in the adult mouse testis.

    Directory of Open Access Journals (Sweden)

    Diane Rebourcet

    Full Text Available The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health.

  19. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity.

    Science.gov (United States)

    D'Angelo, Rosemarie C; Ouzounova, Maria; Davis, April; Choi, Daejin; Tchuenkam, Stevie M; Kim, Gwangil; Luther, Tahra; Quraishi, Ahmed A; Senbabaoglu, Yasin; Conley, Sarah J; Clouthier, Shawn G; Hassan, Khaled A; Wicha, Max S; Korkaya, Hasan

    2015-03-01

    Developmental pathways such as Notch play a pivotal role in tissue-specific stem cell self-renewal as well as in tumor development. However, the role of Notch signaling in breast cancer stem cells (CSC) remains to be determined. We utilized a lentiviral Notch reporter system to identify a subset of cells with a higher Notch activity (Notch(+)) or reduced activity (Notch(-)) in multiple breast cancer cell lines. Using in vitro and mouse xenotransplantation assays, we investigated the role of the Notch pathway in breast CSC regulation. Breast cancer cells with increased Notch activity displayed increased sphere formation as well as expression of breast CSC markers. Interestingly Notch(+) cells displayed higher Notch4 expression in both basal and luminal breast cancer cell lines. Moreover, Notch(+) cells demonstrated tumor initiation capacity at serial dilutions in mouse xenografts, whereas Notch(-) cells failed to generate tumors. γ-Secretase inhibitor (GSI), a Notch blocker but not a chemotherapeutic agent, effectively targets these Notch(+) cells in vitro and in mouse xenografts. Furthermore, elevated Notch4 and Hey1 expression in primary patient samples correlated with poor patient survival. Our study revealed a molecular mechanism for the role of Notch-mediated regulation of breast CSCs and provided a compelling rationale for CSC-targeted therapeutics.

  20. Advances in satellite oceanography

    Science.gov (United States)

    Brown, O. B.; Cheney, R. E.

    1983-01-01

    Technical advances and recent applications of active and passive satellite remote sensing techniques to the study of oceanic processes are summarized. The general themes include infrared and visible radiometry, active and passive microwave sensors, and buoy location systems. The surface parameters of sea surface temperature, windstream, sea state, altimetry, color, and ice are treated as applicable under each of the general methods.

  1. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites........ The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...

  2. Single-event and total-dose effects in geo-stationary transfer orbit during solar-activity maximum period measured by the Tsubasa satellite

    Science.gov (United States)

    Koshiishi, H.; Kimoto, Y.; Matsumoto, H.; Goka, T.

    The Tsubasa satellite developed by the Japan Aerospace Exploration Agency was launched in Feb 2002 into Geo-stationary Transfer Orbit GTO Perigee 500km Apogee 36000km and had been operated well until Sep 2003 The objective of this satellite was to verify the function of commercial parts and new technologies of bus-system components in space Thus the on-board experiments were conducted in the more severe radiation environment of GTO rather than in Geo-stationary Earth Orbit GEO or Low Earth Orbit LEO The Space Environment Data Acquisition equipment SEDA on board the Tsubasa satellite had the Single-event Upset Monitor SUM and the DOSimeter DOS to evaluate influences on electronic devices caused by radiation environment that was also measured by the particle detectors of the SEDA the Standard DOse Monitor SDOM for measurements of light particles and the Heavy Ion Telescope HIT for measurements of heavy ions The SUM monitored single-event upsets and single-event latch-ups occurred in the test sample of two 64-Mbit DRAMs The DOS measured accumulated radiation dose at fifty-six locations in the body of the Tsubasa satellite Using the data obtained by these instruments single-event and total-dose effects in GTO during solar-activity maximum period especially their rapid changes due to solar flares and CMEs in the region from L 1 1 through L 11 is discussed in this paper

  3. The distribution of satellites around massive galaxies at 1 < z < 3 in ZFOURGE/CANDELS: Dependence on star formation activity

    Energy Technology Data Exchange (ETDEWEB)

    Kawinwanichakij, Lalitwadee; Papovich, Casey; Quadri, Ryan F.; Tran, Kim-Vy H.; Mehrtens, Nicola [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Spitler, Lee R.; Cowley, Michael [Department of Physics and Astronomy, Faculty of Sciences, Macquarie University, Sydney, NSW 2109 (Australia); Kacprzak, Glenn G.; Glazebrook, Karl; Nanayakkara, Themiya [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Labbé, Ivo; Straatman, Caroline M. S. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Allen, Rebecca [Australian Astronomical Observatories, P.O. Box 915, North Ryde, NSW 1670 (Australia); Davé, Romeel [University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hartley, W. G. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Koo, David C. [University of California Observatories/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lu, Yu, E-mail: kawinwanichakij@physics.tamu.edu [Kavli Institute for Particle Astrophysics and Cosmology, 452 Lomita Mall, Stanford, CA 94305 (United States); and others

    2014-09-10

    We study the statistical distribution of satellites around star-forming and quiescent central galaxies at 1 < z < 3 using imaging from the FourStar Galaxy Evolution Survey and the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey. The deep near-IR data select satellites down to log (M/M {sub ☉}) > 9 at z < 3. The radial satellite distribution around centrals is consistent with a projected Navarro-Frenk-White profile. Massive quiescent centrals, log (M/M {sub ☉}) > 10.78, have ∼2 times the number of satellites compared to star-forming centrals with a significance of 2.7σ even after accounting for differences in the centrals' stellar-mass distributions. We find no statistical difference in the satellite distributions of intermediate-mass quiescent and star-forming centrals, 10.48 < log (M/M {sub ☉}) < 10.78. Compared to the Guo et al. semi-analytic model, the excess number of satellites indicates that quiescent centrals have halo masses 0.3 dex larger than star-forming centrals, even when the stellar-mass distributions are fixed. We use a simple toy model that relates halo mass and quenching, which roughly reproduces the observed quenched fractions and the differences in halo mass between star-forming and quenched galaxies only if galaxies have a quenching probability that increases with halo mass from ∼0 for log (M{sub h} /M {sub ☉}) ∼ 11 to ∼1 for log (M{sub h} /M {sub ☉}) ∼ 13.5. A single halo-mass quenching threshold is unable to reproduce the quiescent fraction and satellite distribution of centrals. Therefore, while halo quenching may be an important mechanism, it is unlikely to be the only factor driving quenching. It remains unclear why a high fraction of centrals remain star-forming even in relatively massive halos.

  4. Severe thunderstorm activity over Bihar on 21st April, 2015: a simulation study by satellite based Nowcasting technique

    Science.gov (United States)

    Goyal, Suman; Kumar, Ashish; Sangar, Ghansham; Mohapatra, M.

    2016-05-01

    Satellite based Nowcasting technique is customized version of Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC), it uses the extrapolation technique that allows for the tracking of Mesoscale convective systems (MCS) radiative and morphological properties and forecasts the evolution of these properties (based on cloud-top brightness temperature and area of the cloud cluster) up to 360 minutes, using infrared satellite imagery. The Thermal Infrared (TIR) channel of the weather satellite has been broadly used to study the behaviour of the cloud systems associated with deep convection. The main advantage of this approach is that for most of the globe the best statistics can only be obtained from satellite observations. Such a satellite survey would provide the statistics of MCSs covering the range of meteorological conditions needed to generalize the result and on the other hand only satellite observations can cover the very large range of space and time scale. The algorithm script is taken from Brazilian Scientist Dr. Danial Vila and implemented it into the Indian environment and made compatible with INSAT-3D hdf5 data format. For Indian region it utilizes the INSAT-3D satellite data of TIR1 (10.8 μm) channel and creates nowcast. The output is made compatible with GUI based software MIAS by generating the output in hdf5 format for better understanding and analysis of forecast. The main features of this algorithm are detection of Cloud Cluster based on Cloud Top Brightness Temperature (CTBT) and area i.e. ≤235 ºK and ≥2400 km2 respectively. The tracking technique based on MCS overlapping areas in successive images. The script has been automized in Auxiliary Data Processing System (ADPS) and generating the forecast file in every half an hour and convert the output file in geotiff format. The geotiff file is easily converted into KMZ file format using ArcGIS software to overlay it on google map and hosted on the web server.

  5. Kinase Activity Studied in Living Cells Using an Immunoassay

    Science.gov (United States)

    Bavec, Aljos?a

    2014-01-01

    This laboratory exercise demonstrates the use of an immunoassay for studying kinase enzyme activity in living cells. The advantage over the classical method, in which students have to isolate the enzyme from cell material and measure its activity in vitro, is that enzyme activity is modulated and measured in living cells, providing a more…

  6. Enhanced casein kinase II activity in human tumour cell cultures

    DEFF Research Database (Denmark)

    Prowald, K; Fischer, H; Issinger, O G

    1984-01-01

    Casein kinase II (CKII) activity is enhanced as much as 2-3 fold in established and 4-5-fold in transformed human cell lines when compared to that of fibroblasts and primary human tumour cell cultures where CKII activity never exceeded a basic level. The high activity of CKII in transformed cells...

  7. Satellite (Natural)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    In its most general sense, any celestial object in orbit around a similar larger object. Thus, for example, the Magellanic Clouds are satellite galaxies of our own Milky Way galaxy. Without qualification, the term is used to mean a body in orbit around a planet; an alternative term is moon. The term natural satellite distinguishes these bodies from artificial satellites—spacecraft placed in orbi...

  8. Random mitotic activities across human embryonic stem cell colonies.

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Q.; Duggan, R.; Dasa, S.; Li, F.; Chen, L. (Biosciences Division)

    2010-08-01

    A systemic and quantitative study was performed to examine whether different levels of mitotic activities, assessed by the percentage of S-phase cells at any given time point, existed at different physical regions of human embryonic stem (hES) cell colonies at 2, 4, 6 days after cell passaging. Mitotically active cells were identified by the positive incorporation of 5-bromo-2-deoxyuridine (BrdU) within their newly synthesized DNA. Our data indicated that mitotically active cells were often distributed as clusters randomly across the colonies within the examined growth period, presumably resulting from local deposition of newly divided cells. This latter notion was further demonstrated by the confined growth of enhanced green florescence protein (EGFP) expressing cells amongst non-GFP expressing cells. Furthermore, the overall percentage of mitotically active cells remained constantly at about 50% throughout the 6-day culture period, indicating mitotic activities of hES cell cultures were time-independent under current growth conditions.

  9. Testosterone and trenbolone enanthate increase mature myostatin protein expression despite increasing skeletal muscle hypertrophy and satellite cell number in rodent muscle.

    Science.gov (United States)

    Dalbo, V J; Roberts, M D; Mobley, C B; Ballmann, C; Kephart, W C; Fox, C D; Santucci, V A; Conover, C F; Beggs, L A; Balaez, A; Hoerr, F J; Yarrow, J F; Borst, S E; Beck, D T

    2017-04-01

    The androgen-induced alterations in adult rodent skeletal muscle fibre cross-sectional area (fCSA), satellite cell content and myostatin (Mstn) were examined in 10-month-old Fisher 344 rats (n = 41) assigned to Sham surgery, orchiectomy (ORX), ORX + testosterone (TEST; 7.0 mg week(-1) ) or ORX + trenbolone (TREN; 1.0 mg week(-1) ). After 29 days, animals were euthanised and the levator ani/bulbocavernosus (LABC) muscle complex was harvested for analyses. LABC muscle fCSA was 102% and 94% higher in ORX + TEST and ORX + TREN compared to ORX (p TREN increased satellite cell numbers by 181% and 178% compared to ORX, respectively (p TREN compared to ORX (p TREN (p = .043), although there were no between-treatment effects regarding phosphorylated SMAD2/3. Mstn, ActrIIb and Mighty mRNAs were lower in ORX, ORX + TEST and ORX + TREN compared to SHAM (p < .05). Testosterone and trenbolone administration increased muscle fCSA and satellite cell number without increasing myonuclei number, and increased Mstn protein levels. Several genes and signalling proteins related to myostatin signalling were differentially regulated by ORX or androgen therapy.

  10. Frequency based detection and monitoring of small scale explosive activity by comparing satellite and ground based infrared observations at Stromboli Volcano, Italy

    Science.gov (United States)

    Worden, Anna; Dehn, Jonathan; Ripepe, Maurizio; Donne, Dario Delle

    2014-08-01

    Thermal activity is a common precursor to explosive volcanic activity. The ability to use these thermal precursors to monitor the volcano and obtain early warning about upcoming activity is beneficial for both human safety and infrastructure security. By using a very reliably active volcano, Stromboli Volcano in Italy, a method has been developed and tested to look at changes in the frequency of small scale explosive activity and how this activity changes prior to larger, ash producing explosive events. Thermal camera footage was used to designate parameters for typical explosions at Stromboli (size of spatter field, cooling rate, frequency of explosions) and this information was applied to characterize explosions in satellite imagery. Satellite data from The National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer (MODIS) and US/Japan designed Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) for numerous periods in 2002 to 2009 were analyzed for thermal features which were used to calculate an estimate of the level of activity during the given time period. The results at Stromboli showed a high level of small scale explosions which stop completely prior to large paroxysmal eruptive episodes. This activity also corresponds well to seismic and infrasonic records at Stromboli, indicating that this thermal infrared monitoring method may be used in conjunction with other detection methods where available, and also indicates that it may be a useful method for volcano monitoring when other methods (e.g. seismic instrumentation, infrasound arrays, etc.) are not available.

  11. Src activity increases and Yes activity decreases during mitosis of human colon carcinoma cells.

    OpenAIRE

    Park, J.; Cartwright, C A

    1995-01-01

    Src and Yes protein-tyrosine kinase activities are elevated in malignant and premalignant tumors of the colon. To determine whether Src activity is elevated throughout the human colon carcinoma cell cycle as it is in polyomavirus middle T antigen- or F527 Src-transformed cells, and whether Yes activity, which is lower than that of Src in the carcinoma cells, is regulated differently, we measured their activities in cycling cells. We observed that the activities of both kinases were higher thr...

  12. Muscle Stem Cell Fate Is Controlled by the Cell-Polarity Protein Scrib

    Directory of Open Access Journals (Sweden)

    Yusuke Ono

    2015-02-01

    Full Text Available Satellite cells are resident skeletal muscle stem cells that supply myonuclei for homeostasis, hypertrophy, and repair in adult muscle. Scrib is one of the major cell-polarity proteins, acting as a potent tumor suppressor in epithelial cells. Here, we show that Scrib also controls satellite-cell-fate decisions in adult mice. Scrib is undetectable in quiescent cells but becomes expressed during activation. Scrib is asymmetrically distributed in dividing daughter cells, with robust accumulation in cells committed to myogenic differentiation. Low Scrib expression is associated with the proliferative state and preventing self-renewal, whereas high Scrib levels reduce satellite cell proliferation. Satellite-cell-specific knockout of Scrib in mice causes a drastic and insurmountable defect in muscle regeneration. Thus, Scrib is a regulator of tissue stem cells, controlling population expansion and self-renewal with Scrib expression dynamics directing satellite cell fate.

  13. Lecithin:Cholesterol Acyltransferase (LCAT) Deficiency Promotes Differentiation of Satellite Cells to Brown Adipocytes in a Cholesterol-dependent Manner.

    Science.gov (United States)

    Nesan, Dinushan; Tavallaee, Ghazaleh; Koh, Deborah; Bashiri, Amir; Abdin, Rawand; Ng, Dominic S

    2015-12-18

    Our laboratory previously reported that lecithin:cholesterol acyltransferase (LCAT) and LDL receptor double knock-out mice (Ldlr(-/-)xLcat(-/-) or DKO) spontaneously develop functioning ectopic brown adipose tissue (BAT) in skeletal muscle, putatively contributing to protection from the diet-induced obesity phenotype. Here we further investigated their developmental origin and the mechanistic role of LCAT deficiency. Gene profiling of skeletal muscle in DKO newborns and adults revealed a classical lineage. Primary quiescent satellite cells (SC) from chow-fed DKO mice, not in Ldlr(-/-)xLcat(+/+) single-knock-out (SKO) or C57BL/6 wild type, were found to (i) express exclusively classical BAT-selective genes, (ii) be primed to express key functional BAT genes, and (iii) exhibit markedly increased ex vivo adipogenic differentiation into brown adipocytes. This gene priming effect was abrogated upon feeding the mice a 2% high cholesterol diet in association with accumulation of excess intracellular cholesterol. Ex vivo cholesterol loading of chow-fed DKO SC recapitulated the effect, indicating that cellular cholesterol is a key regulator of SC-to-BAT differentiation. Comparing adipogenicity of Ldlr(+/+)xLcat(-/-) (LCAT-KO) SC with DKO SC identified a role for LCAT deficiency in priming SC to express BAT genes. Additionally, we found that reduced cellular cholesterol is important for adipogenic differentiation, evidenced by increased induction of adipogenesis in cholesterol-depleted SC from both LCAT-KO and SKO mice. Taken together, we conclude that ectopic BAT in DKO mice is classical in origin, and its development begins in utero. We further showed complementary roles of LCAT deficiency and cellular cholesterol reduction in the SC-to-BAT adipogenesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Stand-up exercise training facilitates muscle recovery from disuse atrophy by stimulating myogenic satellite cell proliferation in mice.

    Science.gov (United States)

    Itoh, Yuta; Hayakawa, Kimihide; Mori, Tomohiro; Agata, Nobuhide; Inoue-Miyazu, Masumi; Murakami, Taro; Sokabe, Masahiro; Kawakami, Keisuke

    2014-11-01

    Determining the cellular and molecular recovery processes in inactivity - or unloading -induced atrophied muscles should improve rehabilitation strategies. We assessed the effects of stand-up exercise (SE) training on the recovery of atrophied skeletal muscles in male mice. Mice were trained to stand up and press an elevated lever in response to a light-tone cue preceding an electric foot shock and then subjected to tail suspension (TS) for 2 weeks to induce disuse atrophy in hind limb muscles. After release from TS, mice were divided into SE-trained (SE cues: 25 times per set, two sets per day) and non-SE-trained groups. Seven days after the training, average myofiber cross-sectional area (CSA) of the soleus muscle was significantly greater in the SE-trained group than in the non-SE-trained group (1843 ± 194 μm(2) vs. 1315 ± 153 μm(2)). Mean soleus muscle CSA in the SE trained group was not different from that in the CON group subjected to neither TS nor SE training (2005 ± 196 μm(2)), indicating that SE training caused nearly complete recovery from muscle atrophy. The number of myonuclei per myofiber was increased by ~60% in the SE-trained group compared with the non-SE-trained and CON groups (0.92 ± 0.03 vs. 0.57 ± 0.03 and 0.56 ± 0.11, respectively). The number of proliferating myonuclei, identified by 5-ethynyl-2'-deoxyuridine staining, increased within the first few days of SE training. Thus, it is highly likely that myogenic satellite cells proliferated rapidly in atrophied muscles in response to SE training and fused with existing myofibers to reestablish muscle mass.

  15. Nylon wool purification alters the activation of T cells.

    Science.gov (United States)

    Wohler, Jillian E; Barnum, Scott R

    2009-02-01

    Purification of lymphocytes, particularly T cells, is commonly performed using nylon wool. This enrichment method selectively retains B cells and some myeloid cells allowing a significantly more pure T cell population to flow through a nylon wool column. T cells purified in this fashion are assumed to be unaltered and functionally naïve, however some studies have suggested aberrant in vitro T cell responses after nylon wool treatment. We found that nylon wool purification significantly altered T cell proliferation, expression of activation markers and production of cytokines. Our results suggest that nylon wool treatment modifies T cell activation responses and that caution should be used when choosing this purification method.

  16. Natural killer cell activity during premedication, anaesthesia and surgery

    DEFF Research Database (Denmark)

    Tønnesen, E; Mickley, H; Grunnet, N

    1983-01-01

    Natural killer (NK) cell activity of peripheral blood mononuclear cells was measured against K-562 target cells in a 51Cr release assay in eight patients undergoing total hip replacement surgery. Eight consecutive blood samples were taken from each patient. A significant increase of NK cell...... days. The findings of this study indicate that premedication, anaesthesia and surgery cause a rapid and transient increase in NK cell activity, followed by a decline in activity postoperatively. The transient increase in activity may be explained by mobilization of natural killer cells from extravasal...... activity was observed after premedication with diazepam per os. The activity increased further during a combined anaesthesia (thiopentone + N2O + O2 + buprenorphene + pancuronium) and remained increased during surgery. Postoperatively, NK cell activity fell and remained depressed for a period of at least 5...

  17. Pancreatic and pulmonary mast cells activation during experimental acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Inmaculada; Lopez-Font; Sabrina; Gea-Sorlí; Enrique; de-Madaria; Luis; M; Gutiérrez; Miguel; Pérez-Mateo; Daniel; Closa

    2010-01-01

    AIM:To study the activation of pancreatic and pulmonary mast cells and the effect of mast cell inhibition on the activation of peritoneal and alveolar macrophages during acute pancreatitis.METHODS:Pancreatitis was induced by intraductal infusion of 5% sodium taurodeoxycholate in rats.The mast cell inhibitor cromolyn was administered intraperitoneally(i.p.) 30 min before pancreatitis induction.The pancreatic and pulmonary tissue damage was evaluated histologically and mast cells and their state of activation...

  18. Antitumor Activity of Propolis on Differantiated Cancer Cell Lines

    OpenAIRE

    , Neşe Ersöz Gülçelik, Dilara Zeybek, Fige; Zeybek, Dilara; Kaymaz, Figen; Gencay, Ömür; Salih, Bekir; Asan, Esin; Sorkun, Kadriye; Usman, Aydan

    2014-01-01

    Propolis is a natural bee product with several pharmacological activities. Nowadays, it is also investigated for its antitumor properties. There are contraversies on the antitumor activity of propolis, not all tumour cells seem to respond to propolis treatment. The aim of our study is to evaluate the activity of propolis on differantiated thyroid cancer cell lines. Tyripan blue test and MTT assay were performed to evaluate the cell viability of B-CPAP cells after propolis treatment and compar...

  19. Antitumor Activity of Propolis on Differantiated Cancer Cell Lines

    OpenAIRE

    , Neşe Ersöz Gülçelik, Dilara Zeybek, Fige

    2012-01-01

    Propolis is a natural bee product with several pharmacological activities. Nowadays, it is also investigated for its antitumor properties. There are contraversies on the antitumor activity of propolis, not all tumour cells seem to respond to propolis treatment. The aim of our study is to evaluate the activity of propolis on differantiated thyroid cancer cell lines. Tyripan blue test and MTT assay were performed to evaluate the cell viability of B-CPAP cells after propolis treatment and compar...

  20. AMPKα, C/EBPβ, CPT1β, GPR43, PPARγ, and SCD Gene Expression in Single- and Co-cultured Bovine Satellite Cells and Intramuscular Preadipocytes Treated with Palmitic, Stearic, Oleic, and Linoleic Acid

    OpenAIRE

    Choi, S H; Park, S. K.; B. J. Johnson; Chung, K. Y.; Choi, C. W.; Kim, K. H.; Kim, W. Y.; Smith, B.

    2015-01-01

    We previously demonstrated that bovine subcutaneous preadipocytes promote adipogenic gene expression in muscle satellite cells in a co-culture system. Herein we hypothesize that saturated fatty acids would promote adipogenic/lipogenic gene expression, whereas mono- and polyunsaturated fatty acids would have the opposite effect. Bovine semimembranosus satellite cells (BSC) and intramuscular preadipocytes (IPA) were isolated from crossbred steers and cultured with 10% fetal bovine serum (FBS)/D...

  1. High-sensitive bioorthogonal SERS tag for live cancer cell imaging by self-assembling core-satellites structure gold-silver nanocomposite.

    Science.gov (United States)

    Chen, Meng; Zhang, Ling; Gao, Mingxia; Zhang, Xiangmin

    2017-09-01

    A novel, high-sensitivity, biocompatible SERS tag with core-shell structure based on gold nanoparticles containing alkynyl molecule core -silver nanoparticle satellites shell was fabricated for the first time to be used for live cancer cells Surface enhanced Raman scattering (SERS) imaging. (E)-2-((4-(phenylethynyl)benzylidene) amino) ethanethiol (PBAT) synthesized facilely in our lab is the Raman-silence region reporter which is advantage for bioorthogonal SERS cell imaging. In order to enhance the intensity of the Raman tags for live cancer cell imaging, a series of news measures have been adopted. Firstly, reporter molecules of the PBAT were added twice, which is embedded in the gold core with the reduction of tetrachloroaurate and then PBAT is conjugated again on disperse gold nanoparticles (PBAT-Au). Furthermore, numerous Ag nanoparticles self-assembly were densely arranged around PBAT-Au core surface (PBAT- Au@Ag), just like a circle of satellites cluster, which produce obvious "hot spots" effects enhancing the signal of the Raman tags enormously. Finally, Bovine serum albumin (BSA) and polydopamine (PDA) coated on the PBAT- Au@Ag successively, defined as (PBAT-Au@Ag@BSA@PDA), which make as-synthesized nanocomposites own features of bio-compatibility and facilitates antibody modification. Compared with Au@PBAT@PDA, PBAT-Au@Ag@BSA@PDA with core-shell satellites structure showed 10-fold increase in the Raman signals intensity. Moreover, PBAT-Au@Ag@BSA@PDA nanocomposites were successfully applied in the Raman imaging of human glioma cells (U251) by the recognition of the anti-epidermal growth factor receptor (EGFR). All experimental results demonstrated that the nanocomposites have high value and huge potential application in the live cancer cells imaging and biomedical diagnostics in the near future. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M;

    1998-01-01

    induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  3. Depressed natural killer cell activity in acute myocardial infarction

    DEFF Research Database (Denmark)

    Klarlund, K; Pedersen, B K; Theander, T G

    1987-01-01

    Natural killer (NK) cell activity against K562 target cells was measured in patients within 24 h of acute myocardial infarction (AMI) and regularly thereafter for 6 weeks. NK cell activity was suppressed on days 1, 3, and 7 (P less than 0.01), day 14 (P less than 0.05) and at 6 weeks (P = 0...

  4. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  5. Effects of solar and geomagnetic activities on the sub-ionospheric very low frequency transmitter signals received by the DEMETER micro-satellite

    Directory of Open Access Journals (Sweden)

    Günter Stangl

    2012-04-01

    Full Text Available

    In the framework of seismic precursor electromagnetic investigations, we analyzed the very low frequency (VLF amplitude signals recorded by the Instrument Champ Electrique (ICE experiment on board the DEMETER micro-satellite. The sun-synchronous orbits of the micro-satellite allowed us to cover an invariant latitude of between –65° and +65° in a time interval of about 40 min. We considered four transmitter signals emitted by stations in Europe (France, FTU, 18.3 kHz; Germany, DFY, 16.58 kHz, Asia (Japan, JP, 17.8 kHz and Australia (Australia, NWC, 19.8 kHz. We studied the variations of these VLF signals, taking into consideration: the signal-to-noise ratio, sunspots, and the geomagnetic activity. We show that the degree of correlation in periods of high geomagnetic and solar activities is, on average, about 40%. Such effects can be fully neglected in the period of weak activity. We also find that the solar activity can have a more important effect on the VLF transmitter signal than the geomagnetic activity. Our data are combined with models where the coupling between the lithosphere, atmosphere and ionosphere is essential to explain how ionospheric disturbances scatter the VLF transmitter signal.


  6. Creating Better Satellite Conferences.

    Science.gov (United States)

    Horner, Tommy

    1998-01-01

    Presents four ways to improve broadcasts of company satellite conferences, including creative site selection (using facilities at educational institutions rather than hotel rooms); creative programming (using graphics and other interruptions to break up lectures or speeches); creative crew selection; and creative downlink site activities (to…

  7. Non-IgE mediated mast cell activation

    NARCIS (Netherlands)

    Yu, Yingxin; Blokhuis, Bart R; Garssen, Johan; Redegeld, Frank A

    2016-01-01

    Mast cells are crucial effector cells in allergic reactions, where IgE is the best known mechanism to trigger their degranulation and release of a vast array of allergic mediators. However, IgE is not the only component to stimulate these cells to degranulate, while mast cell activation can also res

  8. Non-IgE mediated mast cell activation

    NARCIS (Netherlands)

    Yu, Yingxin; Blokhuis, Bart R; Garssen, Johan; Redegeld, Frank A

    2015-01-01

    Mast cells are crucial effector cells in allergic reactions, where IgE is the best known mechanism to trigger their degranulation and release of a vast array of allergic mediators. However, IgE is not the only component to stimulate these cells to degranulate, while mast cell activation can also res

  9. Mechanism of human natural killer cell activation by Haemophilus ducreyi.

    Science.gov (United States)

    Li, Wei; Janowicz, Diane M; Fortney, Kate R; Katz, Barry P; Spinola, Stanley M

    2009-08-15

    The role of natural killer (NK) cells in the host response to Haemophilus ducreyi infection is unclear. In pustules obtained from infected human volunteers, there was an enrichment of CD56bright NK cells bearing the activation markers CD69 and HLA-DR, compared with peripheral blood. To study the mechanism by which H. ducreyi activated NK cells, we used peripheral blood mononuclear cells from uninfected volunteers. H. ducreyi activated NK cells only in the presence of antigen-presenting cells. H. ducreyi-infected monocytes and monocyte-derived macrophages activated NK cells in a contact- and interleukin-18 (IL-18)-dependent manner, whereas monocyte-derived dendritic cells induced NK activation through soluble IL-12. More lesional NK cells than peripheral blood NK cells produced IFN-gamma in response to IL-12 and IL-18. We conclude that NK cells are recruited to experimental lesions and likely are activated by infected macrophages and dendritic cells. IFN-gamma produced by lesional NK cells may facilitate phagocytosis of H. ducreyi.

  10. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  11. Active unjamming of confluent cell layers

    Science.gov (United States)

    Marchetti, M. Cristina

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. Motivated by these observations, we have studied a model of dense tissues that combines self-propelled particle models and vertex models of confluent cell layers. In this model, referred to as self-propelled Voronoi (SPV), cells are described as polygons in a Voronoi tessellation with directed noisy cell motility and interactions governed by a shape energy that incorporates the effects of cell volume incompressibility, contractility and cell-cell adhesion. Using this model, we have demonstrated a new density-independent solid-liquid transition in confluent tissues controlled by cell motility and a cell-shape parameter measuring the interplay of cortical tension and cell-cell adhesion. An important insight of this work is that the rigidity and dynamics of cell layers depends sensitively on cell shape. We have also used the SPV model to test a new method developed by our group to determine cellular forces and tissue stresses from experimentally accessible cell shapes and traction forces, hence providing the spatio-temporal distribution of stresses in motile dense tissues. This work was done with Dapeng Bi, Lisa Manning and Xingbo Yang. MCM was supported by NSF-DMR-1305184 and by the Simons Foundation.

  12. Satellite oceanography - The instruments

    Science.gov (United States)

    Stewart, R. H.

    1981-01-01

    It is pointed out that no instrument is sensitive to only one oceanographic variable; rather, each responds to a combination of atmospheric and oceanic phenomena. This complicates data interpretation and usually requires that a number of observations, each sensitive to somewhat different phenomena, be combined to provide unambiguous information. The distinction between active and passive instruments is described. A block diagram illustrating the steps necessary to convert data from satellite instruments into oceanographic information is included, as is a diagram illustrating the operation of a radio-frequency radiometer. Attention is also given to the satellites that carry the various oceanographic instruments.

  13. Cooperativity of peptidoglycan synthases active in bacterial cell elongation.

    NARCIS (Netherlands)

    Banzhaf, M.; van den Berg van Saparoea, B.; Terrak, M.; Fraipont, C.; Egan, A.; Philippe, J.; Zapun, A.; Breukink, E.; Nguyen-Distèche, M.; den Blaauwen, T.; Vollmer, W.

    2012-01-01

    Growth of the bacterial cell wall peptidoglycan sacculus requires the co-ordinated activities of peptidoglycan synthases, hydrolases and cell morphogenesis proteins, but the details of these interactions are largely unknown. We now show that the Escherichia coli peptidoglycan

  14. Haematopoietic stem cell transplantation: activities (2014 report) in a ...

    African Journals Online (AJOL)

    Haematopoietic stem cell transplantation: activities (2014 report) in a low resource country (Nigeria) ... PROMOTING ACCESS TO AFRICAN RESEARCH ... Introduction: Hematopoietic Stem Cell transplantation (HSCT) is the only curative ...

  15. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Stefania Bruno

    2016-01-01

    Full Text Available Human liver stem cells (HLSCs are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs, and dendritic cells (DCs in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2 and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs, HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  16. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation.

    Science.gov (United States)

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  17. Solar Cells Active in Complete Darkness

    Energy Technology Data Exchange (ETDEWEB)

    Dharmadasa, I M; Elsherif, O; Tolan, G J, E-mail: Dharme@shu.ac.uk [Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom)

    2011-03-01

    A graded bandgap multi-layer solar cell device structure was designed to absorb UV, visible and IR radiation, and to incorporate impact ionisation and impurity photovoltaic effects within one device. The design was experimentally tested with a well researched material system, MOVPE grown GaAs/AlGaAs. Open circuit voltages of {approx}1175 mV with highest possible FF values (0.83-0.87) and J{sub sc}{approx}12 mAcm{sup -2} have been observed [1,3]. These parameters were independently verified by measuring in five different laboratories in Europe and United States including NREL. While the work is continuing to increase short circuit current density values, these devices were tested to explore the experimental evidence of impurity PV effect, as expected from this design. Responsivity measurements and PV activity in dark conditions have been carried out to investigate impurity PV effect in these devices. Responsivity measurements indicate current collection in the infra-red region confirming the contribution from IR photons. The I-V measurements in dark conditions produce open circuit voltages exceeding 750 mV confirming the contribution from surrounding heat radiation. The new features of graded bandgap devices enable impurity PV effect to dominate and create useful charge carriers, suppressing detrimental recombination process. These experimental results will be presented in this paper.

  18. Advantages of using satellite soil moisture estimates over precipitation products to assess regional vegetation water availability and activity

    Science.gov (United States)

    Chen, Tiexi

    2017-04-01

    To improve the understanding of water-vegetation relationships, direct comparative studies assessing the utility of satellite remotely sensed soil moisture, gridded precipitation products, and land surface model output are needed. A case study was investigated for a water-limited, lateral inflow receiving area in northeastern Australia during December 2008 to May 2009. In January 2009, monthly precipitation showed strong positive anomalies, which led to strong positive soil moisture anomalies. The precipitation anomalies disappeared within a month. In contrast, the soil moisture anomalies persisted for months. Positive anomalies of Normalized Difference Vegetation Index (NDVI) appeared in February, in response to water supply, and then persisted for several months. In addition to these temporal characteristics, the spatial patterns of NDVI anomalies were more similar to soil moisture patterns than to those of precipitation and land surface model output. The long memory of soil moisture mainly relates to the presence of clay-rich soils. Modeled soil moisture from four of five global land surface models failed to capture the memory length of soil moisture and all five models failed to present the influence of lateral inflow. This case study indicates that satellite-based soil moisture is a better predictor of vegetation water availability than precipitation in environments having a memory of several months and thus is able to persistently affect vegetation dynamics. These results illustrate the usefulness of satellite remotely sensed soil moisture in ecohydrology studies. This case study has the potential to be used as a benchmark for global land surface model evaluations. The advantages of using satellite remotely sensed soil moisture over gridded precipitation products are mainly expected in lateral-inflow and/or clay-rich regions worldwide.

  19. P2X7 receptors in satellite glial cells mediate high functional expression of P2X3 receptors in immature dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Chen Yong

    2012-02-01

    Full Text Available Abstract Background The purinergic P2X3 receptor (P2X3R expressed in the dorsal root ganglion (DRG sensory neuron and the P2X7 receptor (P2X7R expressed in the surrounding satellite glial cell (SGC are two major receptors participating in neuron-SGC communication in adult DRGs. Activation of P2X7Rs was found to tonically reduce the expression of P2X3Rs in DRGs, thus inhibiting the abnormal pain behaviors in adult rats. P2X receptors are also actively involved in sensory signaling in developing rodents. However, very little is known about the developmental change of P2X7Rs in DRGs and the interaction between P2X7Rs and P2X3Rs in those animals. We therefore examined the expression of P2X3Rs and P2X7Rs in postnatal rats and determined if P2X7R-P2X3R control exists in developing rats. Findings We immunostained DRGs of immature rats and found that P2X3Rs were expressed only in neurons and P2X7Rs were expressed only in SGCs. Western blot analyses indicated that P2X3R expression decreased while P2X7R expression increased with the age of rats. Electrophysiological studies showed that the number of DRG neurons responding to the stimulation of the P2XR agonist, α,β-meATP, was higher and the amplitudes of α,β-meATP-induced depolarizations were larger in immature DRG neurons. As a result, P2X3R-mediated flinching responses were much more pronounced in immature rats than those found in adult rats. When we reduced P2X7R expression with P2X7R-siRNA in postnatal and adult rats, P2X3R-mediated flinch responses were greatly enhanced in both rat populations. Conclusions These results show that the P2X7R expression increases as rats age. In addition, P2X7Rs in SGCs exert inhibitory control on the P2X3R expression and function in sensory neurons of immature rats, just as observed in adult rats. Regulation of P2X7R expression is likely an effective way to control P2X3R activity and manage pain relief in infants.

  20. Activation mechanisms of natural killer cells during influenza virus infection.

    Directory of Open Access Journals (Sweden)

    Ilwoong Hwang

    Full Text Available During early viral infection, activation of natural killer (NK cells elicits the effector functions of target cell lysis and cytokine production. However, the cellular and molecular mechanisms leading to NK cell activation during viral infections are incompletely understood. In this study, using a model of acute viral infection, we investigated the mechanisms controlling cytotoxic activity and cytokine production in response to influenza (flu virus. Analysis of cytokine receptor deficient mice demonstrated that type I interferons (IFNs, but not IL-12 or IL-18, were critical for the NK cell expression of both IFN-γ and granzyme B in response to flu infection. Further, adoptive transfer experiments revealed that NK cell activation was mediated by type I IFNs acting directly on NK cells. Analysis of signal transduction molecules showed that during flu infection, STAT1 activation in NK cells was completely dependent on direct type I IFN signaling, whereas STAT4 activation was only partially dependent. In addition, granzyme B induction in NK cells was mediated by signaling primarily through STAT1, but not STAT4, while IFN-γ production was mediated by signaling through STAT4, but not STAT1. Therefore, our findings demonstrate the importance of direct action of type I IFNs on NK cells to mount effective NK cell responses in the context of flu infection and delineate NK cell signaling pathways responsible for controlling cytotoxic activity and cytokine production.

  1. Cell cycle activation by plant parasitic nematodes

    NARCIS (Netherlands)

    Goverse, A.; Almeida Engler, de J.; Verhees, J.; Krol, van der S.; Helder, J.; Gheysen, G.

    2000-01-01

    Sedentary nematodes are important pests of crop plants. They are biotrophic parasites that can induce the (re)differentiation of either differentiated or undifferentiated plant cells into specialized feeding cells. This (re)differentiation includes the reactivation of the cell cycle in specific

  2. Cell cycle activation by plant parasitic nematodes

    NARCIS (Netherlands)

    Goverse, A.; Almeida Engler, de J.; Verhees, J.; Krol, van der S.; Helder, J.; Gheysen, G.

    2000-01-01

    Sedentary nematodes are important pests of crop plants. They are biotrophic parasites that can induce the (re)differentiation of either differentiated or undifferentiated plant cells into specialized feeding cells. This (re)differentiation includes the reactivation of the cell cycle in specific plan

  3. Dengue Virus Directly Stimulates Polyclonal B Cell Activation

    Science.gov (United States)

    Papa, Michelle Premazzi; de Morais, Ana Theresa Silveira; Peçanha, Ligia Maria Torres; de Arruda, Luciana Barros

    2015-01-01

    Dengue infection is associated to vigorous inflammatory response, to a high frequency of activated B cells, and to increased levels of circulating cross-reactive antibodies. We investigated whether direct infection of B cells would promote activation by culturing primary human B lymphocytes from healthy donors with DENV in vitro. B cells were susceptible, but poorly permissive to infection. Even though, primary B cells cultured with DENV induced substantial IgM secretion, which is a hallmark of polyclonal B cell activation. Notably, DENV induced the activation of B cells obtained from either DENV immune or DENV naïve donors, suggesting that it was not dependent on DENV-specific secondary/memory response. B cell stimulation was dependent on activation of MAPK and CD81. B cells cultured with DENV also secreted IL-6 and presented increased expression of CD86 and HLA-DR, which might contribute to B lymphocyte co-stimulatory function. Indeed, PBMCs, but not isolated B cells, secreted high amounts of IgG upon DENV culture, suggesting that interaction with other cell types in vivo might promote Ig isotype switching and IgG secretion from different B cell clones. These findings suggest that activation signaling pathways triggered by DENV interaction with non-specific receptors on B cells might contribute to the exacerbated response observed in dengue patients. PMID:26656738

  4. Edible flowers — antioxidant activity and impact on cell viability

    National Research Council Canada - National Science Library

    Kucekova, Zdenka; Mlcek, Jiri; Humpolicek, Petr; Rop, Otakar

    2013-01-01

    The phenolic compound composition, antioxidant activity and impact on cell viability of edible flower extracts of Allium schoenoprasum; Bellis perennis; Cichorium intybus; Rumex acetosa; Salvia pratensis; Sambucus nigra...

  5. Remote Control of T Cell Activation Using Magnetic Janus Particles.

    Science.gov (United States)

    Lee, Kwahun; Yi, Yi; Yu, Yan

    2016-06-20

    We report a strategy for using magnetic Janus microparticles to control the stimulation of T cell signaling with single-cell precision. To achieve this, we designed Janus particles that are magnetically responsive on one hemisphere and stimulatory to T cells on the other side. By manipulating the rotation and locomotion of Janus particles under an external magnetic field, we could control the orientation of the particle-cell recognition and thereby the initiation of T cell activation. This study demonstrates a step towards employing anisotropic material properties of Janus particles to control single-cell activities without the need of complex magnetic manipulation devices.

  6. Lactobacilli Differentially Activate Natural Killer Cells

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    Bacteria translocating across the gastrointestinal mucosa are presumed to gain access to NK cell compartments, as consumption of certain lactic acid bacteria has been shown to increase in vivo NK cytotoxicity. On-going research in our lab aims at describing strain-dependent effects of lactic acid...... bacteria on regulatory functions of NK-cells. Here, we have investigated how human gut flora-derived non-pathogenic lactobacilli affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human peripheral blood NK cells upon bacterial stimulation. CD3-CD56+ NK cells were isolated from...... buffy coats by negative isolation using non-NK lineage specific antibodies and magnetic beads. NK cells were incubated with 10 microg/ml UV-inactivated bacteria for four days. Proliferation was assessed by incorporation of radioactive thymidine into NK cell DNA and cytokine concentrations were...

  7. Cytoskeletal forces during signaling activation in Jurkat T-cells

    Science.gov (United States)

    Hui, King Lam; Balagopalan, Lakshmi; Samelson, Lawrence E.; Upadhyaya, Arpita

    2015-01-01

    T-cells are critical for the adaptive immune response in the body. The binding of the T-cell receptor (TCR) with antigen on the surface of antigen-presenting cells leads to cell spreading and signaling activation. The underlying mechanism of signaling activation is not completely understood. Although cytoskeletal forces have been implicated in this process, the contribution of different cytoskeletal components and their spatial organization are unknown. Here we use traction force microscopy to measure the forces exerted by Jurkat T-cells during TCR activation. Perturbation experiments reveal that these forces are largely due to actin assembly and dynamics, with myosin contractility contributing to the development of force but not its maintenance. We find that Jurkat T-cells are mechanosensitive, with cytoskeletal forces and signaling dynamics both sensitive to the stiffness of the substrate. Our results delineate the cytoskeletal contributions to interfacial forces exerted by T-cells during activation. PMID:25518938

  8. Strength training increases the size of the satellite cell pool in type I and II fibres of chronically painful trapezius muscle in females

    DEFF Research Database (Denmark)

    Mackey, Abigail; Andersen, Lars L; Frandsen, Ulrik

    2011-01-01

    While strength training has been shown to be effective in mediating hypertrophy and reducing pain in trapezius myalgia, responses at the cellular level have not previously been studied. This study investigated the potential of strength training targeting the affected muscles (SST, n = 18......) and general fitness training (GFT, n = 16) to augment the satellite cell (SC) and macrophage pools in the trapezius muscles of women diagnosed with trapezius myalgia. A group receiving general health information (REF, n = 8) served as a control. Muscle biopsies were collected from the trapezius muscles...... hypertrophy (r = -0.669, P = 0.005). SST also resulted in a 74% enhancement of the trapezius macrophage content (P

  9. Wave activity (planetary, tidal) throughout the middle atmosphere (20-100km) over the CUJO network: Satellite (TOMS) and Medium Frequency (MF) radar observations

    OpenAIRE

    Manson, A. H.; Meek, C. E.; Chshyolkova, T.; Avery, S. K.; Thorsen, D.; MacDougall, J.W.; Hocking, W.; Murayama, Y.; Igarashi, K

    2005-01-01

    Planetary and tidal wave activity in the tropopause-lower stratosphere and mesosphere-lower thermosphere (MLT) is studied using combinations of ground-based (GB) and satellite instruments (2000-2002). The relatively new MFR (medium frequency radar) at Platteville (40° N, 105° W) has provided the opportunity to create an operational network of middle-latitude MFRs, stretching from 81° W-142° E, which provides winds and tides 70-100km. CUJO (Canada U.S. Japan Opp...

  10. Satellite cells derived from obese humans with type 2 diabetes and differentiated into myocytes in vitro exhibit abnormal response to IL-6.

    Directory of Open Access Journals (Sweden)

    Camilla Scheele

    Full Text Available Obesity and type 2 diabetes are associated with chronically elevated systemic levels of IL-6, a pro-inflammatory cytokine with a role in skeletal muscle metabolism that signals through the IL-6 receptor (IL-6Rα. We hypothesized that skeletal muscle in obesity-associated type 2 diabetes develops a resistance to IL-6. By utilizing western blot analysis, we demonstrate that IL-6Rα protein was down regulated in skeletal muscle biopsies from obese persons with and without type 2 diabetes. To further investigate the status of IL-6 signaling in skeletal muscle in obesity-associated type 2 diabetes, we isolated satellite cells from skeletal muscle of people that were healthy (He, obese (Ob or were obese and had type 2 diabetes (DM, and differentiated them in vitro into myocytes. Down-regulation of IL-6Rα was conserved in Ob myocytes. In addition, acute IL-6 administration for 30, 60 and 120 minutes, resulted in a down-regulation of IL-6Rα protein in Ob myocytes compared to both He myocytes (P<0.05 and DM myocytes (P<0.05. Interestingly, there was a strong time-dependent regulation of IL-6Rα protein in response to IL-6 (P<0.001 in He myocytes, not present in the other groups. Assessing downstream signaling, DM, but not Ob myocytes demonstrated a trend towards an increased protein phosphorylation of STAT3 in DM myocytes (P = 0.067 accompanied by a reduced SOCS3 protein induction (P<0.05, in response to IL-6 administration. Despite this loss of negative control, IL-6 failed to increase AMPKα2 activity and IL-6 mRNA expression in DM myocytes. There was no difference in fusion capacity of myocytes between cell groups. Our data suggest that negative control of IL-6 signaling is increased in myocytes in obesity, whereas a dysfunctional IL-6 signaling is established further downstream of IL-6Rα in DM myocytes, possibly representing a novel mechanism by which skeletal muscle function is compromised in type 2 diabetes.

  11. Cortisol patterns are associated with T cell activation in HIV.

    Directory of Open Access Journals (Sweden)

    Sarah Patterson

    Full Text Available The level of T cell activation in untreated HIV disease is strongly and independently associated with risk of immunologic and clinical progression. The factors that influence the level of activation, however, are not fully defined. Since endogenous glucocorticoids are important in regulating inflammation, we sought to determine whether less optimal diurnal cortisol patterns are associated with greater T cell activation.We studied 128 HIV-infected adults who were not on treatment and had a CD4(+ T cell count above 250 cells/µl. We assessed T cell activation by CD38 expression using flow cytometry, and diurnal cortisol was assessed with salivary measurements.Lower waking cortisol levels correlated with greater T cell immune activation, measured by CD38 mean fluorescent intensity, on CD4(+ T cells (r = -0.26, p = 0.006. Participants with lower waking cortisol also showed a trend toward greater activation on CD8(+ T cells (r = -0.17, p = 0.08. A greater diurnal decline in cortisol, usually considered a healthy pattern, correlated with less CD4(+ (r = 0.24, p = 0.018 and CD8(+ (r = 0.24, p = 0.017 activation.These data suggest that the hypothalamic-pituitary-adrenal (HPA axis contributes to the regulation of T cell activation in HIV. This may represent an important pathway through which psychological states and the HPA axis influence progression of HIV.

  12. Investigation of Influenza Virus Polymerase Activity in Pig Cells

    Science.gov (United States)

    Moncorgé, Olivier; Long, Jason S.; Cauldwell, Anna V.; Zhou, Hongbo; Lycett, Samantha J.

    2013-01-01

    Reassortant influenza viruses with combinations of avian, human, and/or swine genomic segments have been detected frequently in pigs. As a consequence, pigs have been accused of being a “mixing vessel” for influenza viruses. This implies that pig cells support transcription and replication of avian influenza viruses, in contrast to human cells, in which most avian influenza virus polymerases display limited activity. Although influenza virus polymerase activity has been studied in human and avian cells for many years by use of a minigenome assay, similar investigations in pig cells have not been reported. We developed the first minigenome assay for pig cells and compared the activities of polymerases of avian or human influenza virus origin in pig, human, and avian cells. We also investigated in pig cells the consequences of some known mammalian host range determinants that enhance influenza virus polymerase activity in human cells, such as PB2 mutations E627K, D701N, G590S/Q591R, and T271A. The two typical avian influenza virus polymerases used in this study were poorly active in pig cells, similar to what is seen in human cells, and mutations that adapt the avian influenza virus polymerase for human cells also increased activity in pig cells. In contrast, a different pattern was observed in avian cells. Finally, highly pathogenic avian influenza virus H5N1 polymerase activity was tested because this subtype has been reported to replicate only poorly in pigs. H5N1 polymerase was active in swine cells, suggesting that other barriers restrict these viruses from becoming endemic in pigs. PMID:23077313

  13. Ultramicrostructure and clinical implications of satellite foci in front of the head of pterygium

    Institute of Scientific and Technical Information of China (English)

    LIU Haixia; XIANG Nan; ZHOU Xiongwu; HU Weikun; LI Guigang; ZHANG Hong

    2007-01-01

    In our previous studies,grey satellite foci were found in the front of heads of pterygia.This research was designed to investigate the ultramicrostructure and clinical implications of these satellite foci.The satellite foci were observed and counted under slit lamp biomicroscope.The patients with eye pterygia were divided into groups in terms of occupation,sex,age,length of history,grade of congestion,and size of the heads.The SPSS 13.0 software was used for statistical analysis.The cap areas and satellite foci were ultramicrostructurally examined.Among the total 62 eyes with pterygium,satellite foci were found in 34.The overall incidence of satellite foci was 54.8%.There were no significant differences in incidence among the subjects of different sex,age,and length of history.There were significant differences in incidence among the patients of different occupation,grades of congestion,and size of heads.Higher grades of congestion,outdoor occupations and larger pterygium heads were associated with higher incidence of satellite foci.High grades of congestion and bigger heads were also correlated with the number of satellite foci.Length of history bore no correlation with number of satellite foci.Histologically,the components of the cap areas and the foci were identical,with both consisting of mass of active fibroblasts.The activated fibroblasts existed in the natural tissue planes between Bowman's layer and basal cell layer.The fibroblasts in the satellite foci and the cap areas of a pterygium show some features of tumor cells and may play a vital role in the development and progression of a pterygium.The presence and amount of satellite foci around a pterygium can be used as an indicator for the speed of its growth.

  14. Long-term insulin-like growth factor-I expression in skeletal muscles attenuates the enhanced in vitro proliferation ability of the resident satellite cells in transgenic mice

    Science.gov (United States)

    Chakravarthy, M. V.; Fiorotto, M. L.; Schwartz, R. J.; Booth, F. W.

    2001-01-01

    Insulin-like growth factor-I (IGF-I) overexpression for 1-month in mouse skeletal muscle increases satellite cell proliferation potential. However, it is unknown whether this beneficial enhancement by IGF-I expression would persist over a longer-term duration in aged mice. This is an important issue to address if a prolonged course of IGF-I is to be used clinically in muscle-wasting conditions where satellite cells may become limiting. Using the IGF-I transgenic (IGF-I Tg) mouse that selectively expresses the IGF-I transgene in striated muscles, we found that 18-months of continuous IGF-I overexpression led to a loss in the enhanced in vitro proliferative capacity of satellite cells from Tg skeletal muscles. Also 18-month-old IGF-I Tg satellite cells lost the enhanced BrdU incorporation, greater pRb and Akt phosphorylations, and decreased p27(Kip1) levels initially observed in cells from 1-month-old IGF-I Tg mice. The levels of those biochemical markers reverted to similar values seen in the 18-months WT littermates. These findings, therefore, suggest that there is no further beneficial effect on enhancing satellite cell proliferation ability with persistent long-term expression of IGF-I in skeletal muscles of these transgenic mice.

  15. Long-term insulin-like growth factor-I expression in skeletal muscles attenuates the enhanced in vitro proliferation ability of the resident satellite cells in transgenic mice

    Science.gov (United States)

    Chakravarthy, M. V.; Fiorotto, M. L.; Schwartz, R. J.; Booth, F. W.

    2001-01-01

    Insulin-like growth factor-I (IGF-I) overexpression for 1-month in mouse skeletal muscle increases satellite cell proliferation potential. However, it is unknown whether this beneficial enhancement by IGF-I expression would persist over a longer-term duration in aged mice. This is an important issue to address if a prolonged course of IGF-I is to be used clinically in muscle-wasting conditions where satellite cells may become limiting. Using the IGF-I transgenic (IGF-I Tg) mouse that selectively expresses the IGF-I transgene in striated muscles, we found that 18-months of continuous IGF-I overexpression led to a loss in the enhanced in vitro proliferative capacity of satellite cells from Tg skeletal muscles. Also 18-month-old IGF-I Tg satellite cells lost the enhanced BrdU incorporation, greater pRb and Akt phosphorylations, and decreased p27(Kip1) levels initially observed in cells from 1-month-old IGF-I Tg mice. The levels of those biochemical markers reverted to similar values seen in the 18-months WT littermates. These findings, therefore, suggest that there is no further beneficial effect on enhancing satellite cell proliferation ability with persistent long-term expression of IGF-I in skeletal muscles of these transgenic mice.

  16. Non-IgE mediated mast cell activation.

    Science.gov (United States)

    Yu, Yingxin; Blokhuis, Bart R; Garssen, Johan; Redegeld, Frank A

    2016-05-05

    Mast cells are crucial effector cells in allergic reactions, where IgE is the best known mechanism to trigger their degranulation and release of a vast array of allergic mediators. However, IgE is not the only component to stimulate these cells to degranulate, while mast cell activation can also result in differential release of mediators. There is a plethora of stimuli, such as IgG, complement components, TLR ligands, neuropeptides, cytokines, chemokines and other inflammatory products, that can directly trigger mast cell degranulation, cause selective release of mediators, and stimulate proliferation, differentiation and/or migration. Moreover, some of these stimuli have a synergic effect on the IgE-mediated mast cell activation. Because of the ability to respond to a large repertoire of stimuli, mast cells may act as a versatile cell in various physiological and pathological conditions. In this review, we discuss current knowledge on non-IgE