WorldWideScience

Sample records for satellite ccd pixels

  1. Active Pixel Sensors: Are CCD's Dinosaurs?

    Science.gov (United States)

    Fossum, Eric R.

    1993-01-01

    Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.

  2. Noise Originating from Intra-pixel Structure and Satellite Attitude Jitter on COROT

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Arentoft, Torben; Kjeldsen, Hans

    2006-01-01

    We present a study on noise in space-based photometry originating from sensitivity variations within individual pixels, known as intra-pixel variations, and satellite attitude jitter. We have measured the intra-pixel structure on an e2v 47-20 CCD and made simulations of the effects these structur...

  3. Measuring a narrow Bessel beam spot by scanning a charge-coupled device (CCD) pixel

    International Nuclear Information System (INIS)

    Tiwari, S K; Ram, S P; Jayabalan, J; Mishra, S R

    2010-01-01

    By scanning a charge-coupled device (CCD) camera transverse to the beam axis and observing the variation in counts on a marked pixel, we demonstrate that we can measure a laser beam spot size smaller than the size of the CCD-pixel. We find this method particularly attractive for measuring the size of central spot of a Bessel beam, for which the established scanning knife-edge method does not work appropriately because of the large contribution of the rings surrounding the central spot to the signal

  4. Ultrahigh-speed, high-sensitivity color camera with 300,000-pixel single CCD

    Science.gov (United States)

    Kitamura, K.; Arai, T.; Yonai, J.; Hayashida, T.; Ohtake, H.; Kurita, T.; Tanioka, K.; Maruyama, H.; Namiki, J.; Yanagi, T.; Yoshida, T.; van Kuijk, H.; Bosiers, Jan T.; Etoh, T. G.

    2007-01-01

    We have developed an ultrahigh-speed, high-sensitivity portable color camera with a new 300,000-pixel single CCD. The 300,000-pixel CCD, which has four times the number of pixels of our initial model, was developed by seamlessly joining two 150,000-pixel CCDs. A green-red-green-blue (GRGB) Bayer filter is used to realize a color camera with the single-chip CCD. The camera is capable of ultrahigh-speed video recording at up to 1,000,000 frames/sec, and small enough to be handheld. We also developed a technology for dividing the CCD output signal to enable parallel, highspeed readout and recording in external memory; this makes possible long, continuous shots up to 1,000 frames/second. As a result of an experiment, video footage was imaged at an athletics meet. Because of high-speed shooting, even detailed movements of athletes' muscles were captured. This camera can capture clear slow-motion videos, so it enables previously impossible live footage to be imaged for various TV broadcasting programs.

  5. Case study of atmospheric correction on CCD data of HJ-1 satellite based on 6S model

    International Nuclear Information System (INIS)

    Xue, Xiaoiuan; Meng, Oingyan; Xie, Yong; Sun, Zhangli; Wang, Chang; Zhao, Hang

    2014-01-01

    In this study, atmospheric radiative transfer model 6S was used to simulate the radioactive transfer process in the surface-atmosphere-sensor. An algorithm based on the look-up table (LUT) founded by 6S model was used to correct (HJ-1) CCD image pixel by pixel. Then, the effect of atmospheric correction on CCD data of HJ-1 satellite was analyzed in terms of the spectral curves and evaluated against the measured reflectance acquired during HJ-1B satellite overpass, finally, the normalized difference vegetation index (NDVI) before and after atmospheric correction were compared. The results showed: (1) Atmospheric correction on CCD data of HJ-1 satellite can reduce the ''increase'' effect of the atmosphere. (2) Apparent reflectance are higher than those of surface reflectance corrected by 6S model in band1∼band3, but they are lower in the near-infrared band; the surface reflectance values corrected agree with the measured reflectance values well. (3)The NDVI increases significantly after atmospheric correction, which indicates the atmospheric correction can highlight the vegetation information

  6. Criteria for setting the width of CCD front end transistor to reach minimum pixel noise

    International Nuclear Information System (INIS)

    Fasoli, L.; Sampietro, M.

    1996-01-01

    The paper gives the criteria to calculate the width of the front end transistor integrated next to the charge sensing electrode of CCD's or, in general, of semiconductor detectors, in order to reach the minimum noise in the readout of the signal charge. The paper, for the first time, accounts for white, series and parallel, and 1/f noise contribution. In addition, it points out two different design criteria depending whether a JFET or a MOSFET is used. The attention given to the JFET is due to a lower 1/f noise component, which makes these transistors more and more appealing as input devices in very high resolution detectors. The paper shows that there is a characteristic width of the FET gate that practically doesn't depend on the noise sources but depends only on the capacitance seen by the charge sensing electrode of the detector, making possible the optimum design of the transistor prior to the knowledge of the real values of the spectral density of the noise sources, which are usually precisely known only at the end of the fabrication process. The paper shows that the pixel noise raises sharply as the transistor gate width departs from its optimum value

  7. Characterization of a 512x512-pixel 8-output full-frame CCD for high-speed imaging

    Science.gov (United States)

    Graeve, Thorsten; Dereniak, Eustace L.

    1993-01-01

    The characterization of a 512 by 512 pixel, eight-output full frame CCD manufactured by English Electric Valve under part number CCD13 is discussed. This device is a high- resolution Silicon-based array designed for visible imaging applications at readout periods as low as two milliseconds. The characterization of the device includes mean-variance analysis to determine read noise and dynamic range, as well as charge transfer efficiency, MTF, and quantum efficiency measurements. Dark current and non-uniformity issues on a pixel-to-pixel basis and between individual outputs are also examined. The characterization of the device is restricted by hardware limitations to a one MHz pixel rate, corresponding to a 40 ms readout time. However, subsections of the device have been operated at up to an equivalent 100 frames per second. To maximize the frame rate, the CCD is illuminated by a synchronized strobe flash in between frame readouts. The effects of the strobe illumination on the imagery obtained from the device is discussed.

  8. Modelling of the over-exposed pixel area of CCD cameras caused by laser dazzling

    NARCIS (Netherlands)

    Benoist, K.W.; Schleijpen, R.M.A.

    2014-01-01

    A simple model has been developed and implemented in Matlab code, predicting the over-exposed pixel area of cameras caused by laser dazzling. Inputs of this model are the laser irradiance on the front optics of the camera, the Point Spread Function (PSF) of the used optics, the integration time of

  9. Calculating Viewing Angles Pixel by Pixel in Optical Remote Sensing Satellite Imagery Using the Rational Function Model

    OpenAIRE

    Kai Xu; Guo Zhang; Qingjun Zhang; Deren Li

    2018-01-01

    In studies involving the extraction of surface physical parameters using optical remote sensing satellite imagery, sun-sensor geometry must be known, especially for sensor viewing angles. However, while pixel-by-pixel acquisitions of sensor viewing angles are of critical importance to many studies, currently available algorithms for calculating sensor-viewing angles focus only on the center-point pixel or are complicated and are not well known. Thus, this study aims to provide a simple and ge...

  10. Discriminação de variedades de citros em imagens CCD/CBERS-2 Discrimination of citrus varieties using CCD/CBERS-2 satellite imagery

    Directory of Open Access Journals (Sweden)

    Ieda Del'Arco Sanches

    2008-02-01

    Full Text Available O presente trabalho teve o objetivo de avaliar as imagens CCD/CBERS-2 quanto à possibilidade de discriminarem variedades de citros. A área de estudo localiza-se em Itirapina (SP e, para este estudo, foram utilizadas imagens CCD de três datas (30/05/2004, 16/08/2004 e 11/09/2004. Um modelo que integra os elementos componentes da cena citrícola sensoriada é proposto com o objetivo de explicar a variabilidade das respostas das parcelas de citros em imagens orbitais do tipo CCD/CBERS-2. Foram feitas classificações pelos algoritmos Isoseg e Maxver e, de acordo com o índice kappa, concluiu-se que é possível obterem-se exatidões qualificadas como muito boas, sendo que as melhores classificações foram conseguidas com imagens da estação seca.This paper was aimed at evaluating the possibility of discriminating citrus varieties in CCD imageries from CBERS-2 satellite ("China-Brazil Earth Resouces Satellite". The study area is located in Itirapina, São Paulo State. For this study, three CCD images from 2004 were acquired (May 30, August 16, and September 11. In order to acquire a better understanding and for explaining the variability of the spectral behavior of the citrus areas in orbital images (like as the CCD/CBERS-2 images a model that integrates the elements of the citrus scene is proposed and discussed. The images were classified by Isoseg and MaxVer classifiers. According to kappa index, it was possible to obtain classifications qualified as 'very good'. The best results were obtained with the images from the dry season.

  11. Determining the Pixel-to-Pixel Uncertainty in Satellite-Derived SST Fields

    Directory of Open Access Journals (Sweden)

    Fan Wu

    2017-08-01

    Full Text Available The primary measure of the quality of sea surface temperature (SST fields obtained from satellite-borne infrared sensors has been the bias and variance of matchups with co-located in-situ values. Because such matchups tend to be widely separated, these bias and variance estimates are not necessarily a good measure of small scale (several pixels gradients in these fields because one of the primary contributors to the uncertainty in satellite retrievals is atmospheric contamination, which tends to have large spatial scales compared with the pixel separation of infrared sensors. Hence, there is not a good measure to use in selecting SST fields appropriate for the study of submesoscale processes and, in particular, of processes associated with near-surface fronts, both of which have recently seen a rapid increase in interest. In this study, two methods are examined to address this problem, one based on spectra of the SST data and the other on their variograms. To evaluate the methods, instrument noise was estimated in Level-2 Visible-Infrared Imager-Radiometer Suite (VIIRS and Advanced Very High Resolution Radiometer (AVHRR SST fields of the Sargasso Sea. The two methods provided very nearly identical results for AVHRR: along-scan values of approximately 0.18 K for both day and night and along-track values of 0.21 K for day and night. By contrast, the instrument noise estimated for VIIRS varied by method, scan geometry and day-night. Specifically, daytime, along-scan (along-track, spectral estimates were found to be approximately 0.05 K (0.08 K and the corresponding nighttime values of 0.02 K (0.03 K. Daytime estimates based on the variogram were found to be 0.08 K (0.10 K with the corresponding nighttime values of 0.04 K (0.06 K. Taken together, AVHRR instrument noise is significantly larger than VIIRS instrument noise, along-track noise is larger than along-scan noise and daytime levels are higher than nighttime levels. Given the similarity of

  12. Reconstruction of Missing Pixels in Satellite Images Using the Data Interpolating Empirical Orthogonal Function (DINEOF)

    Science.gov (United States)

    Liu, X.; Wang, M.

    2016-02-01

    For coastal and inland waters, complete (in spatial) and frequent satellite measurements are important in order to monitor and understand coastal biological and ecological processes and phenomena, such as diurnal variations. High-frequency images of the water diffuse attenuation coefficient at the wavelength of 490 nm (Kd(490)) derived from the Korean Geostationary Ocean Color Imager (GOCI) provide a unique opportunity to study diurnal variation of the water turbidity in coastal regions of the Bohai Sea, Yellow Sea, and East China Sea. However, there are lots of missing pixels in the original GOCI-derived Kd(490) images due to clouds and various other reasons. Data Interpolating Empirical Orthogonal Function (DINEOF) is a method to reconstruct missing data in geophysical datasets based on Empirical Orthogonal Function (EOF). In this study, the DINEOF is applied to GOCI-derived Kd(490) data in the Yangtze River mouth and the Yellow River mouth regions, the DINEOF reconstructed Kd(490) data are used to fill in the missing pixels, and the spatial patterns and temporal functions of the first three EOF modes are also used to investigate the sub-diurnal variation due to the tidal forcing. In addition, DINEOF method is also applied to the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (SNPP) satellite to reconstruct missing pixels in the daily Kd(490) and chlorophyll-a concentration images, and some application examples in the Chesapeake Bay and the Gulf of Mexico will be presented.

  13. Backthinned TDI CCD image sensor design and performance for the Pleiades high resolution Earth observation satellites

    Science.gov (United States)

    Materne, A.; Bardoux, A.; Geoffray, H.; Tournier, T.; Kubik, P.; Morris, D.; Wallace, I.; Renard, C.

    2017-11-01

    The PLEIADES-HR Earth observing satellites, under CNES development, combine a 0.7m resolution panchromatic channel, and a multispectral channel allowing a 2.8 m resolution, in 4 spectral bands. The 2 satellites will be placed on a sun-synchronous orbit at an altitude of 695 km. The camera operates in push broom mode, providing images across a 20 km swath. This paper focuses on the specifications, design and performance of the TDI detectors developed by e2v technologies under CNES contract for the panchromatic channel. Design drivers, derived from the mission and satellite requirements, architecture of the sensor and measurement results for key performances of the first prototypes are presented.

  14. Fusion of Pixel-based and Object-based Features for Road Centerline Extraction from High-resolution Satellite Imagery

    Directory of Open Access Journals (Sweden)

    CAO Yungang

    2016-10-01

    Full Text Available A novel approach for road centerline extraction from high spatial resolution satellite imagery is proposed by fusing both pixel-based and object-based features. Firstly, texture and shape features are extracted at the pixel level, and spectral features are extracted at the object level based on multi-scale image segmentation maps. Then, extracted multiple features are utilized in the fusion framework of Dempster-Shafer evidence theory to roughly identify the road network regions. Finally, an automatic noise removing algorithm combined with the tensor voting strategy is presented to accurately extract the road centerline. Experimental results using high-resolution satellite imageries with different scenes and spatial resolutions showed that the proposed approach compared favorably with the traditional methods, particularly in the aspect of eliminating the salt noise and conglutination phenomenon.

  15. Extrapolation of contrail investigations by LIDAR to larger scale measurements. Analysis and calibration of CCD camera and satellite images

    Energy Technology Data Exchange (ETDEWEB)

    Sussmann, R.; Homburg, F.; Freudenthaler, V.; Jaeger, H. [Frauenhofer Inst. fuer Atmosphaerische Umweltforschung, Garmisch-Partenkirchen (Germany)

    1997-12-31

    The CCD image of a persistent contrail and the coincident LIDAR measurement are presented. To extrapolate the LIDAR derived optical thickness to the video field of view an anisotropy correction and calibration has to be performed. Observed bright halo components result from highly regular oriented hexagonal crystals with sizes of 200 {mu}m-2 mm. This explained by measured ambient humidities below the formation threshold of natural cirrus. Optical thickness from LIDAR shows significant discrepancies to the result from coincident NOAA-14 data. Errors result from anisotropy correction and parameterized relations between AVHRR channels and optical properties. (author) 28 refs.

  16. Image differencing using masked CCD

    International Nuclear Information System (INIS)

    Rushbrooke, J.G.; Ansorge, R.E.; Webber, C.J. St. J.

    1987-01-01

    A charge coupled device has some of its ''pixels'' masked by a material which is opaque to the radiation to which the device is to be exposed, each masked region being employed as a storage zone into which the charge pattern from the unmasked pixels can be transferred to enable a subsequent charge pattern to be established on further exposure of the unmasked pixels. The components of the resulting video signal corresponding to the respective charge patterns read-out from the CCD are subtracted to produce a video signal corresponding to the difference between the two images which formed the respective charge patterns. Alternate rows of pixels may be masked, or chequer-board pattern masking may be employed. In an X-ray imaging system the CCD is coupled to image intensifying and converting means. (author)

  17. Effects of Per-Pixel Variability on Uncertainties in Bathymetric Retrievals from High-Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Elizabeth J. Botha

    2016-05-01

    Full Text Available Increased sophistication of high spatial resolution multispectral satellite sensors provides enhanced bathymetric mapping capability. However, the enhancements are counter-acted by per-pixel variability in sunglint, atmospheric path length and directional effects. This case-study highlights retrieval errors from images acquired at non-optimal geometrical combinations. The effects of variations in the environmental noise on water surface reflectance and the accuracy of environmental variable retrievals were quantified. Two WorldView-2 satellite images were acquired, within one minute of each other, with Image 1 placed in a near-optimal sun-sensor geometric configuration and Image 2 placed close to the specular point of the Bidirectional Reflectance Distribution Function (BRDF. Image 2 had higher total environmental noise due to increased surface glint and higher atmospheric path-scattering. Generally, depths were under-estimated from Image 2, compared to Image 1. A partial improvement in retrieval error after glint correction of Image 2 resulted in an increase of the maximum depth to which accurate depth estimations were returned. This case-study indicates that critical analysis of individual images, accounting for the entire sun elevation and azimuth and satellite sensor pointing and geometry as well as anticipated wave height and direction, is required to ensure an image is fit for purpose for aquatic data analysis.

  18. Correction of sub-pixel topographical effects on land surface albedo retrieved from geostationary satellite (FengYun-2D) observations

    International Nuclear Information System (INIS)

    Roupioz, L; Nerry, F; Jia, L; Menenti, M

    2014-01-01

    The Qinghai-Tibetan Plateau is characterised by a very strong relief which affects albedo retrieval from satellite data. The objective of this study is to highlight the effects of sub-pixel topography and to account for those effects when retrieving land surface albedo from geostationary satellite FengYun-2D (FY-2D) data with 1.25km spatial resolution using the high spatial resolution (30 m) data of the Digital Elevation Model (DEM) from ASTER. The methodology integrates the effects of sub-pixel topography on the estimation of the total irradiance received at the surface, allowing the computation of the topographically corrected surface reflectance. Furthermore, surface albedo is estimated by applying the parametric BRDF (Bidirectional Reflectance Distribution Function) model called RPV (Rahman-Pinty-Verstraete) to the terrain corrected surface reflectance. The results, evaluated against ground measurements collected over several experimental sites on the Qinghai-Tibetan Plateau, document the advantage of integrating the sub-pixel topography effects in the land surface reflectance at 1km resolution to estimate the land surface albedo. The results obtained after using sub-pixel topographic correction are compared with the ones obtained after using pixel level topographic correction. The preliminary results imply that, in highly rugged terrain, the sub-pixel topography correction method gives more accurate results. The pixel level correction tends to overestimate surface albedo

  19. High-resolution CCD imaging alternatives

    Science.gov (United States)

    Brown, D. L.; Acker, D. E.

    1992-08-01

    High resolution CCD color cameras have recently stimulated the interest of a large number of potential end-users for a wide range of practical applications. Real-time High Definition Television (HDTV) systems are now being used or considered for use in applications ranging from entertainment program origination through digital image storage to medical and scientific research. HDTV generation of electronic images offers significant cost and time-saving advantages over the use of film in such applications. Further in still image systems electronic image capture is faster and more efficient than conventional image scanners. The CCD still camera can capture 3-dimensional objects into the computing environment directly without having to shoot a picture on film develop it and then scan the image into a computer. 2. EXTENDING CCD TECHNOLOGY BEYOND BROADCAST Most standard production CCD sensor chips are made for broadcast-compatible systems. One popular CCD and the basis for this discussion offers arrays of roughly 750 x 580 picture elements (pixels) or a total array of approximately 435 pixels (see Fig. 1). FOR. A has developed a technique to increase the number of available pixels for a given image compared to that produced by the standard CCD itself. Using an inter-lined CCD with an overall spatial structure several times larger than the photo-sensitive sensor areas each of the CCD sensors is shifted in two dimensions in order to fill in spatial gaps between adjacent sensors.

  20. Sun glitter imaging analysis of submarine sand waves in HJ-1A/B satellite CCD images

    Science.gov (United States)

    Zhang, Huaguo; He, Xiekai; Yang, Kang; Fu, Bin; Guan, Weibing

    2014-11-01

    Submarine sand waves are a widespread bed-form in tidal environment. Submarine sand waves induce current convergence and divergence that affect sea surface roughness thus become visible in sun glitter images. These sun glitter images have been employed for mapping sand wave topography. However, there are lots of effect factors in sun glitter imaging of the submarine sand waves, such as the imaging geometry and dynamic environment condition. In this paper, several sun glitter images from HJ-1A/B in the Taiwan Banks are selected. These satellite sun glitter images are used to discuss sun glitter imaging characteristics in different sensor parameters and dynamic environment condition. To interpret the imaging characteristics, calculating the sun glitter radiance and analyzing its spatial characteristics of the sand wave in different images is the best way. In this study, a simulated model based on sun glitter radiation transmission is adopted to certify the imaging analysis in further. Some results are drawn based on the study. Firstly, the sun glitter radiation is mainly determined by sensor view angle. Second, the current is another key factor for the sun glitter. The opposite current direction will cause exchanging of bright stripes and dark stripes. Third, brightness reversal would happen at the critical angle. Therefore, when using sun glitter image to obtain depth inversion, one is advised to take advantage of image properties of sand waves and to pay attention to key dynamic environment condition and brightness reversal.

  1. Noise characteristics of neutron images obtained by cooled CCD device

    International Nuclear Information System (INIS)

    Taniguchi, Ryoichi; Sasaki, Ryoya; Okuda, Shuichi; Okamoto, Ken-Ichi; Ogawa, Yoshihiro; Tsujimoto, Tadashi

    2009-01-01

    The noise characteristics of a cooled CCD device induced by neutron and gamma ray irradiation have been investigated. In the cooled CCD images, characteristic white spot noises (CCD noise) frequently appeared, which have a shape like a pixel in most cases and their brightness is extremely high compared with that of the image pattern. They could be divided into the two groups, fixed pattern noise (FPN) and random noise. The former always appeared in the same position in the image and the latter appeared at any position. In the background image, nearly all of the CCD noises were found to be the FPN, while many of them were the random noise during the irradiation. The random CCD noises increased with irradiation and decreased soon after the irradiation. In the case of large irradiation, a part of the CCD noise remained as the FPN. These facts suggest that the CCD noise is a phenomenon strongly relating to radiation damage of the CCD device.

  2. A GRAPH READER USING A CCD IMAGE SENSOR

    African Journals Online (AJOL)

    2008-01-18

    Jan 18, 2008 ... using a stepper motor controlled by a software program in a ... Keywords: CCD sensor, microcontrollen stepper motor and microcomputer. 1. ... commercial applications (Awcock and ... on-chip amplifier, one pixel at a tirtjie.

  3. Charge diffusion in CCD X-ray detectors

    International Nuclear Information System (INIS)

    Pavlov, George G.; Nousek, John A.

    1999-01-01

    Critical to the detection of X-rays by CCDs, is the detailed process of charge diffusion and drift within the device. We reexamine the prescriptions currently used in the modeling of X-ray CCD detectors to provide analytic expressions for the charge distribution over the CCD pixels which are suitable for use in numerical simulations of CCD response. Our treatment results in models which predict charge distributions which are more centrally peaked and have flatter wings than the Gaussian shapes predicted by previous work and adopted in current CCD modeling codes

  4. Adaptation of an aerosol retrieval algorithm using multi-wavelength and multi-pixel information of satellites (MWPM) to GOSAT/TANSO-CAI

    Science.gov (United States)

    Hashimoto, M.; Takenaka, H.; Higurashi, A.; Nakajima, T.

    2017-12-01

    Aerosol in the atmosphere is an important constituent for determining the earth's radiation budget, so the accurate aerosol retrievals from satellite is useful. We have developed a satellite remote sensing algorithm to retrieve the aerosol optical properties using multi-wavelength and multi-pixel information of satellite imagers (MWPM). The method simultaneously derives aerosol optical properties, such as aerosol optical thickness (AOT), single scattering albedo (SSA) and aerosol size information, by using spatial difference of wavelegths (multi-wavelength) and surface reflectances (multi-pixel). The method is useful for aerosol retrieval over spatially heterogeneous surface like an urban region. In this algorithm, the inversion method is a combination of an optimal method and smoothing constraint for the state vector. Furthermore, this method has been combined with the direct radiation transfer calculation (RTM) numerically solved by each iteration step of the non-linear inverse problem, without using look up table (LUT) with several constraints. However, it takes too much computation time. To accelerate the calculation time, we replaced the RTM with an accelerated RTM solver learned by neural network-based method, EXAM (Takenaka et al., 2011), using Rster code. And then, the calculation time was shorternd to about one thouthandth. We applyed MWPM combined with EXAM to GOSAT/TANSO-CAI (Cloud and Aerosol Imager). CAI is a supplement sensor of TANSO-FTS, dedicated to measure cloud and aerosol properties. CAI has four bands, 380, 674, 870 and 1600 nm, and observes in 500 meters resolution for band1, band2 and band3, and 1.5 km for band4. Retrieved parameters are aerosol optical properties, such as aerosol optical thickness (AOT) of fine and coarse mode particles at a wavelenth of 500nm, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength by combining a minimum reflectance method and Fukuda et al. (2013). We will show

  5. Advanced CCD camera developments

    Energy Technology Data Exchange (ETDEWEB)

    Condor, A. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  6. Soft x-ray imager (SXI) onboard the NeXT satellite

    Science.gov (United States)

    Tsuru, Takeshi Go; Takagi, Shin-Ichiro; Matsumoto, Hironori; Inui, Tatsuya; Ozawa, Midori; Koyama, Katsuji; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Miyata, Emi; Ozawa, Hideki; Touhiguchi, Masakuni; Matsuura, Daisuke; Dotani, Tadayasu; Ozaki, Masanobu; Murakami, Hiroshi; Kohmura, Takayoshi; Kitamoto, Shunji; Awaki, Hisamitsu

    2006-06-01

    We give overview and the current status of the development of the Soft X-ray Imager (SXI) onboard the NeXT satellite. SXI is an X-ray CCD camera placed at the focal plane detector of the Soft X-ray Telescopes for Imaging (SXT-I) onboard NeXT. The pixel size and the format of the CCD is 24 x 24μm (IA) and 2048 x 2048 x 2 (IA+FS). Currently, we have been developing two types of CCD as candidates for SXI, in parallel. The one is front illumination type CCD with moderate thickness of the depletion layer (70 ~ 100μm) as a baseline plan. The other one is the goal plan, in which we develop back illumination type CCD with a thick depletion layer (200 ~ 300μm). For the baseline plan, we successfully developed the proto model 'CCD-NeXT1' with the pixel size of 12μm x 12μm and the CCD size of 24mm x 48mm. The depletion layer of the CCD has reached 75 ~ 85μm. The goal plan is realized by introduction of a new type of CCD 'P-channel CCD', which collects holes in stead of electrons in the common 'N-channel CCD'. By processing a test model of P-channel CCD we have confirmed high quantum efficiency above 10 keV with an equivalent depletion layer of 300μm. A back illumination type of P-channel CCD with a depletion layer of 200μm with aluminum coating for optical blocking has been also successfully developed. We have been also developing a thermo-electric cooler (TEC) with the function of the mechanically support of the CCD wafer without standoff insulators, for the purpose of the reduction of thermal input to the CCD through the standoff insulators. We have been considering the sensor housing and the onboard electronics for the CCD clocking, readout and digital processing of the frame date.

  7. CCD developed for scientific application by Hamamatsu

    CERN Document Server

    Miyaguchi, K; Dezaki, J; Yamamoto, K

    1999-01-01

    We have developed CCDs for scientific applications that feature a low readout noise of less than 5 e-rms and low dark current of 10-25 pA/cm sup 2 at room temperature. CCDs with these characteristics will prove extremely useful in applications such as spectroscopic measurement and dental radiography. In addition, a large-area CCD of 2kx4k pixels and 15 mu m square pixel size has recently been completed for optical use in astronomical observations. Applications to X-ray astronomy require the most challenging device performance in terms of deep depletion, high CTE, and focal plane size, among others. An abuttable X-ray CCD, having 1024x1024 pixels and 24 mu m square pixel size, is to be installed in an international space station (ISS). We are now striving to achieve the lowest usable cooling temperature by means of a built-in TEC with limited power consumption. Details on the development status are described in this report. We would also like to present our future plans for a large active area and deep depleti...

  8. A new approach to modelling radiation noise in CCD's

    International Nuclear Information System (INIS)

    Chugg, A.; Hopkinson, G.

    1998-01-01

    The energy depositions reported by Monte Carlo electron-photon irradiation transport codes are subject to a random error due to the finite number of particle histories used to generate the results. These statistical variations, normally a nuisance, may also be identified with the real radiation noise effects experienced by CCD pixels in persistent radiation environments. This paper explores the practicability of such radiation noise modelling by applying the ACCEPT code from the ITS suite to the case of a shielded CCD exposed to an electron flux. The results are compared with those obtained in a subsequent electron irradiation of the CCD by a Van de Graaff accelerator

  9. Custom CCD for adaptive optics applications

    Science.gov (United States)

    Downing, Mark; Arsenault, Robin; Baade, Dietrich; Balard, Philippe; Bell, Ray; Burt, David; Denney, Sandy; Feautrier, Philippe; Fusco, Thierry; Gach, Jean-Luc; Diaz Garcia, José Javier; Guillaume, Christian; Hubin, Norbert; Jorden, Paul; Kasper, Markus; Meyer, Manfred; Pool, Peter; Reyes, Javier; Skegg, Michael; Stadler, Eric; Suske, Wolfgang; Wheeler, Patrick

    2006-06-01

    ESO and JRA2 OPTICON have funded e2v technologies to develop a compact packaged Peltier cooled 24 μm square 240x240 pixels split frame transfer 8-output back-illuminated L3Vision CCD3, L3Vision CCD for Adaptive Optic Wave Front Sensor (AO WFS) applications. The device is designed to achieve sub-electron read noise at frame rates from 25 Hz to 1,500 Hz and dark current lower than 0.01 e-/pixel/frame. The development has many unique features. To obtain high frame rates, multi-output EMCCD gain registers and metal buttressing of row clock lines are used. The baseline device is built in standard silicon. In addition, a split wafer run has enabled two speculative variants to be built; deep depletion silicon devices to improve red response and devices with an electronic shutter to extend use to Rayleigh and Pulsed Laser Guide Star applications. These are all firsts for L3Vision CCDs. The designs of the CCD and Peltier package have passed their reviews and fabrication has begun. This paper will describe the progress to date, the requirements and the design of the CCD and compact Peltier package, technology trade-offs, schedule and proposed test plan. High readout speed, low noise and compactness (requirement to fit in confined spaces) provide special challenges to ESO's AO variant of its NGC, New General detector Controller to drive this CCD. This paper will describe progress made on the design of the controller to meet these special needs.

  10. Development of X-ray CCD camera system with high readout rate using ASIC

    International Nuclear Information System (INIS)

    Nakajima, Hiroshi; Matsuura, Daisuke; Anabuki, Naohisa; Miyata, Emi; Tsunemi, Hiroshi; Doty, John P.; Ikeda, Hirokazu; Katayama, Haruyoshi

    2009-01-01

    We report on the development of an X-ray charge-coupled device (CCD) camera system with high readout rate using application-specific integrated circuit (ASIC) and Camera Link standard. The distinctive ΔΣ type analog-to-digital converter is introduced into the chip to achieve effective noise shaping and to obtain a high resolution with relatively simple circuits. The unit test proved moderately low equivalent input noise of 70μV with a high readout pixel rate of 625 kHz, while the entire chip consumes only 100 mW. The Camera Link standard was applied for the connectivity between the camera system and frame grabbers. In the initial test of the whole system, we adopted a P-channel CCD with a thick depletion layer developed for X-ray CCD camera onboard the next Japanese X-ray astronomical satellite. The characteristic X-rays from 109 Cd were successfully read out resulting in the energy resolution of 379(±7)eV (FWHM) at 22.1 keV, that is, ΔE/E=1.7% with a readout rate of 44 kHz.

  11. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  12. THE KEPLER PIXEL RESPONSE FUNCTION

    International Nuclear Information System (INIS)

    Bryson, Stephen T.; Haas, Michael R.; Dotson, Jessie L.; Koch, David G.; Borucki, William J.; Tenenbaum, Peter; Jenkins, Jon M.; Chandrasekaran, Hema; Caldwell, Douglas A.; Klaus, Todd; Gilliland, Ronald L.

    2010-01-01

    Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Kepler's optical point-spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a star's flux value on any pixel given the star's pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurements of the PRF across the Kepler field of view are described. Two uses of the PRF are presented: the selection of pixels for each star that maximizes the photometric signal-to-noise ratio for that star, and PRF-fitted centroids which provide robust and accurate stellar positions on the CCD, primarily used for attitude and plate scale tracking. Good knowledge of the PRF has been a critical component for the successful collection of high-precision photometry by Kepler.

  13. Optimization of polarimetry sensitivity for X-ray CCD

    CERN Document Server

    Hayashida, K; Tsunemi, H; Hashimoto, Y; Ohtani, M

    1999-01-01

    X-ray polarimetry with CCD has been performed using a polarized X-ray beam from an electron impact X-ray source. The standard data reduction method employing double-pixel events yields the modulation factor M of 0.14 at 27 keV and 0.24 at 43 keV for the 12 mu m pixel size CCD chip. We develop a new data reduction method, in which multi-pixel events are employed, and which approximates the charge spread as an oval shape. We optimize the reduction parameters, so that we improve the P sub m sub i sub n (minimum detectable polarization degree) by factor of three from the value obtained through the usual double-pixel event method.

  14. Pixel Experiments

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Augustesen, Christina

    2015-01-01

    Pixel Experiments The term pixel is traditionally defined as any of the minute elements that together constitute a larger context or image. A pixel has its own form and is the smallest unit seen within a larger structure. In working with the potentials of LED technology in architectural lighting...... for using LED lighting in lighting design practice. The speculative experiments that have been set-up have aimed to clarify the variables that can be used as parameters in the design of lighting applications; including, for example, the structuring and software control of light. The experiments also...... elucidate and exemplify already well-known problems in relation to the experience of vertical and horizontal lighting. Pixel Experiments exist as a synergy between speculative test setups and lighting design in practice. This book is one of four books that is published in connection with the research...

  15. CCD-based vertex detectors

    CERN Document Server

    Damerell, C J S

    2005-01-01

    Over the past 20 years, CCD-based vertex detectors have been used to construct some of the most precise 'tracking microscopes' in particle physics. They were initially used by the ACCMOR collaboration for fixed target experiments in CERN, where they enabled the lifetimes of some of the shortest-lived charm particles to be measured precisely. The migration to collider experiments was accomplished in the SLD experiment, where the original 120 Mpixel detector was later upgraded to one with 307 Mpixels. This detector was used in a range of physics studies which exceeded the capability of the LEP detectors, including the most precise limit to date on the Bs mixing parameter. This success, and the high background hit densities that will inevitably be encountered at the future TeV-scale linear collider, have established the need for a silicon pixel-based vertex detector at this machine. The technical options have now been broadened to include a wide range of possible silicon imaging technologies as well as CCDs (mon...

  16. CCD's at TPC

    International Nuclear Information System (INIS)

    Zeller, M.E.

    1977-01-01

    The CCD, Charge Coupled Device, is an analog shift register for which application to the readout of particle detectors has recently been realized. These devices can be used to detect optical information directly, providing an automated readout for streamer or other optical chambers, or as a single input shift register, acting in this instance as a delay line for analog information. A description is given of the latter mode of operation and its utility as a readout method for drift chambers. Most of the information contained herein has been obtained from tests performed in connection with PEP TPC project, PEP-4. That detector will employ approximately 10 4 CCD's making it a reasonable testing ground for ISABELLE size detectors

  17. Pixel Experiments

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Augustesen, Christina

    2015-01-01

    Pixel Experiments The term pixel is traditionally defined as any of the minute elements that together constitute a larger context or image. A pixel has its own form and is the smallest unit seen within a larger structure. In working with the potentials of LED technology in architectural lighting...... lighting design in practice, one quickly experiences and realises that there are untapped potentials in the attributes of LED technology. In this research, speculative studies have been made working with the attributes of LEDs in architectural contexts, with the ambition to ascertain new strategies...... for using LED lighting in lighting design practice. The speculative experiments that have been set-up have aimed to clarify the variables that can be used as parameters in the design of lighting applications; including, for example, the structuring and software control of light. The experiments also...

  18. CMOS Active Pixel Sensor Star Tracker with Regional Electronic Shutter

    Science.gov (United States)

    Yadid-Pecht, Orly; Pain, Bedabrata; Staller, Craig; Clark, Christopher; Fossum, Eric

    1996-01-01

    The guidance system in a spacecraft determines spacecraft attitude by matching an observed star field to a star catalog....An APS(active pixel sensor)-based system can reduce mass and power consumption and radiation effects compared to a CCD(charge-coupled device)-based system...This paper reports an APS (active pixel sensor) with locally variable times, achieved through individual pixel reset (IPR).

  19. Multi-spectral CCD camera system for ocean water color and seacoast observation

    Science.gov (United States)

    Zhu, Min; Chen, Shiping; Wu, Yanlin; Huang, Qiaolin; Jin, Weiqi

    2001-10-01

    One of the earth observing instruments on HY-1 Satellite which will be launched in 2001, the multi-spectral CCD camera system, is developed by Beijing Institute of Space Mechanics & Electricity (BISME), Chinese Academy of Space Technology (CAST). In 798 km orbit, the system can provide images with 250 m ground resolution and a swath of 500 km. It is mainly used for coast zone dynamic mapping and oceanic watercolor monitoring, which include the pollution of offshore and coast zone, plant cover, watercolor, ice, terrain underwater, suspended sediment, mudflat, soil and vapor gross. The multi- spectral camera system is composed of four monocolor CCD cameras, which are line array-based, 'push-broom' scanning cameras, and responding for four spectral bands. The camera system adapts view field registration; that is, each camera scans the same region at the same moment. Each of them contains optics, focal plane assembly, electrical circuit, installation structure, calibration system, thermal control and so on. The primary features on the camera system are: (1) Offset of the central wavelength is better than 5 nm; (2) Degree of polarization is less than 0.5%; (3) Signal-to-noise ratio is about 1000; (4) Dynamic range is better than 2000:1; (5) Registration precision is better than 0.3 pixel; (6) Quantization value is 12 bit.

  20. EVALUATION OF RATIONAL FUNCTION MODEL FOR GEOMETRIC MODELING OF CHANG'E-1 CCD IMAGES

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2012-08-01

    Full Text Available Rational Function Model (RFM is a generic geometric model that has been widely used in geometric processing of high-resolution earth-observation satellite images, due to its generality and excellent capability of fitting complex rigorous sensor models. In this paper, the feasibility and precision of RFM for geometric modeling of China's Chang'E-1 (CE-1 lunar orbiter images is presented. The RFM parameters of forward-, nadir- and backward-looking CE-1 images are generated though least squares solution using virtual control points derived from the rigorous sensor model. The precision of the RFM is evaluated by comparing with the rigorous sensor model in both image space and object space. Experimental results using nine images from three orbits show that RFM can precisely fit the rigorous sensor model of CE-1 CCD images with a RMS residual error of 1/100 pixel level in image space and less than 5 meters in object space. This indicates that it is feasible to use RFM to describe the imaging geometry of CE-1 CCD images and spacecraft position and orientation. RFM will enable planetary data centers to have an option to supply RFM parameters of orbital images while keeping the original orbit trajectory data confidential.

  1. Transmission electron microscope CCD camera

    Science.gov (United States)

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  2. Intelligent error correction method applied on an active pixel sensor based star tracker

    Science.gov (United States)

    Schmidt, Uwe

    2005-10-01

    Star trackers are opto-electronic sensors used on-board of satellites for the autonomous inertial attitude determination. During the last years star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The active pixel sensor (APS) technology, introduced in the early 90-ties, allows now the beneficial replacement of CCD detectors by APS detectors with respect to performance, reliability, power, mass and cost. The company's heritage in star tracker design started in the early 80-ties with the launch of the worldwide first fully autonomous star tracker system ASTRO1 to the Russian MIR space station. Jena-Optronik recently developed an active pixel sensor based autonomous star tracker "ASTRO APS" as successor of the CCD based star tracker product series ASTRO1, ASTRO5, ASTRO10 and ASTRO15. Key features of the APS detector technology are, a true xy-address random access, the multiple windowing read out and the on-chip signal processing including the analogue to digital conversion. These features can be used for robust star tracking at high slew rates and under worse conditions like stray light and solar flare induced single event upsets. A special algorithm have been developed to manage the typical APS detector error contributors like fixed pattern noise (FPN), dark signal non-uniformity (DSNU) and white spots. The algorithm works fully autonomous and adapts to e.g. increasing DSNU and up-coming white spots automatically without ground maintenance or re-calibration. In contrast to conventional correction methods the described algorithm does not need calibration data memory like full image sized calibration data sets. The application of the presented algorithm managing the typical APS detector error contributors is a key element for the design of star trackers for long term satellite applications like

  3. STIS-01 CCD Functional

    Science.gov (United States)

    Valenti, Jeff

    2001-07-01

    This activity measures the baseline performance and commandability of the CCD subsystem. Only primary amplifier D is used. Bias, Dark, and Flat Field exposures are taken in order to measure read noise, dark current, CTE, and gain. Numerous bias frames are taken to permit construction of "superbias" frames in which the effects of read noise have been rendered negligible. Dark exposures are made outside the SAA. Full frame and binned observations are made, with binning factors of 1x1 and 2x2. Finally, tungsten lamp exposures are taken through narrow slits to confirm the slit positions in the current database. All exposures are internals. This is a reincarnation of SM3A proposal 8502 with some unnecessary tests removed from the program.

  4. Programmable CCD imaging system for synchrotron radiation studies

    International Nuclear Information System (INIS)

    Rodricks, B.; Brizard, C.

    1992-01-01

    A real-time imaging system for x-ray detection has been developed. The CAMAC-based system has a Charge Coupled Device (CCD) as its active detection element. The electronics consist of a CAMAC-crate-based dedicated microprocessor coupled to arbitrary waveform generators, programmable timing, and ADC modules. The hardware flexibility achievable through this system enables one to use virtually any commercially available CCD. A dedicated CAMAC-based display driver allows for real-time imaging on a high-resolution color monitor. An optional front end consisting of a fiber-optic taper and a focusing optical lens system coupled to a phosphor screen allows for large area imaging. Further, programming flexibility, in which the detector can be used in different read-out modes, enables it to be exploited for time-resolved experiments. In one mode, sections of the CCD can be read-out with millisecond time-resolution and, in another, the use of the CCD as a storage device is exploited resulting in microsecond time-resolution. Three different CCDs with radically different read-out timings and waveforms have been tested: the TI 4849, a 39Ox584 pixel array; TC 215, a 1024x1O24 pixel array; and the TH 7883, a 576x384 pixel array. The TC 215 and TI 4849 are single-phase CCDs manufactured by Texas Instruments, and the TH 7883 is a four-phase device manufactured by Thomson-CSF. The CCD characterized for uniformity, charge transfer efficiency (CTE), linearity, and sensitivity is the TC215

  5. Development of CCD Imaging System Using Thermoelectric Cooling Method

    Directory of Open Access Journals (Sweden)

    Youngsik Park

    2000-06-01

    Full Text Available We developed low light CCD imaging system using thermoelectric cooling method collaboration with a company to design a commercial model. It consists of Kodak KAF-0401E (768x512 pixels CCD chip,thermoelectric module manufactured by Thermotek. This TEC system can reach an operative temperature of -25deg. We employed an Uniblitz VS25S shutter and it has capability a minimum exposure time 80ms. The system components are an interface card using a Korea Astronomy Observatory (hereafter KAO ISA bus controller, image acquisition with AD9816 chip, that is 12bit video processor. The performance test with this imaging system showed good operation within the initial specification of our design. It shows a dark current less than 0.4e-/pixel/sec at a temperature of -10deg, a linearity 99.9+/-0.1%, gain 4.24e-adu, and system noise is 25.3e- (rms. For low temperature CCD operation, we designed a TEC, which uses a one-stage peltier module and forced air heat exchanger. This TEC imaging system enables accurate photometry (+/-0.01mag even though the CCD is not at 'conventional' cryogenic temperatures (140K. The system can be a useful instrument for any other imaging applications. Finally, with this system, we obtained several images of astronomical objects for system performance tests.

  6. Intra-pixel variability in satellite tropospheric NO2 column densities derived from simultaneous space-borne and airborne observations over the South African Highveld

    Science.gov (United States)

    Broccardo, Stephen; Heue, Klaus-Peter; Walter, David; Meyer, Christian; Kokhanovsky, Alexander; van der A, Ronald; Piketh, Stuart; Langerman, Kristy; Platt, Ulrich

    2018-05-01

    Aircraft measurements of NO2 using an imaging differential optical absorption spectrometer (iDOAS) instrument over the South African Highveld region in August 2007 are presented and compared to satellite measurements from OMI and SCIAMACHY. In situ aerosol and trace-gas vertical profile measurements, along with aerosol optical thickness and single-scattering albedo measurements from the Aerosol Robotic Network (AERONET), are used to devise scenarios for a radiative transfer modelling sensitivity study. Uncertainty in the air-mass factor due to variations in the aerosol and NO2 profile shape is constrained and used to calculate vertical column densities (VCDs), which are compared to co-located satellite measurements. The lower spatial resolution of the satellites cannot resolve the detailed plume structures revealed in the aircraft measurements. The airborne DOAS in general measured steeper horizontal gradients and higher peak NO2 vertical column density. Aircraft measurements close to major sources, spatially averaged to the satellite resolution, indicate NO2 column densities more than twice those measured by the satellite. The agreement between the high-resolution aircraft instrument and the satellite instrument improves with distance from the source, this is attributed to horizontal and vertical dispersion of NO2 in the boundary layer. Despite the low spatial resolution, satellite images reveal point sources and plumes that retain their structure for several hundred kilometres downwind.

  7. Enhanced performance CCD output amplifier

    Science.gov (United States)

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  8. High-Voltage Clock Driver for Photon-Counting CCD Characterization

    Science.gov (United States)

    Baker, Robert

    2013-01-01

    A document discusses the CCD97 from e2v technologies as it is being evaluated at Goddard Space Flight Center's Detector Characterization Laboratory (DCL) for possible use in ultra-low background noise space astronomy applications, such as Terrestrial Planet Finder Coronagraph (TPF-C). The CCD97 includes a photoncounting mode where the equivalent output noise is less than one electron. Use of this mode requires a clock signal at a voltage level greater than the level achievable by the existing CCD (charge-coupled-device) electronics. A high-voltage waveform generator has been developed in code 660/601 to support the CCD97 evaluation. The unit generates required clock waveforms at voltage levels from -20 to +50 V. It deals with standard and arbitrary waveforms and supports pixel rates from 50 to 500 kHz. The system is designed to interface with existing Leach CCD electronics.

  9. CCD and IR array controllers

    Science.gov (United States)

    Leach, Robert W.; Low, Frank J.

    2000-08-01

    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  10. A large area cooled-CCD detector for electron microscopy

    International Nuclear Information System (INIS)

    Faruqi, A.R.; Andrews, H.N.; Raeburn, C.

    1994-01-01

    Large area cooled-CCDs are an excellent medium for (indirectly) recording electron images and electron diffraction patterns in real time and for use in electron tomography; real-time imaging is extremely useful in making rapid adjustments in the electron microscope. CCDs provide high sensitivity (useful for minimising dosage to radiation-sensitive biological specimen), good resolution, stable performance, excellent dynamic range and linearity and a reasonably fast readout.We have built an electron imaging device based on the EEV 1152 by 814 pixel CCD which is controlled from a unix based SUN Sparcstation operating under X-Windows. The incident 100 kV electrons are converted to visible light in a 0.5 mm thick YAG single crystal which is imaged through a lens on to the CCD.The CCD electronics is designed to be as flexible as possible and allows a wide variation in the readout speed to cater for the relatively fast application where readout noise is less critical and low readout noise applications where the extra few seconds of readout time are not significant. The CCD electronics is built in VME format which is controlled through a S-bus to VME driver. With two parallel channels of readout the whole image can be read out in similar 1 s (using the faster readout speed) with 16 bit precision and the image is displayed under X-Windows in a few seconds. The present readout works at 500 kHz and has a noise of similar 30 e rms per pixel. With a Peltier cooling device we can operate the CCD at similar -40 circle C which reduces the dark current adequately to allow exposures of up to several minutes. Several examples of patterns collected with the system on a Philips CM12 microscope will be presented. ((orig.))

  11. Atmospheric radiation environment analyses based-on CCD camera at various mountain altitudes and underground sites

    Directory of Open Access Journals (Sweden)

    Li Cavoli Pierre

    2016-01-01

    Full Text Available The purpose of this paper is to discriminate secondary atmospheric particles and identify muons by measuring the natural radiative environment in atmospheric and underground locations. A CCD camera has been used as a cosmic ray sensor. The Low Noise Underground Laboratory of Rustrel (LSBB, France gives the access to a unique low-noise scientific environment deep enough to ensure the screening from the neutron and proton radiative components. Analyses of the charge levels in pixels of the CCD camera induced by radiation events and cartographies of the charge events versus the hit pixel are proposed.

  12. Pixel detectors for x-ray imaging spectroscopy in space

    International Nuclear Information System (INIS)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L

    2009-01-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  13. Pixel detectors for x-ray imaging spectroscopy in space

    Science.gov (United States)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  14. Pixel detectors for x-ray imaging spectroscopy in space

    Energy Technology Data Exchange (ETDEWEB)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, D-81739 Munich (Germany)], E-mail: jft@hll.mpg.de

    2009-03-15

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  15. The development of high-speed 100 fps CCD camera

    International Nuclear Information System (INIS)

    Hoffberg, M.; Laird, R.; Lenkzsus, F.; Liu, C.; Rodricks, B.

    1997-01-01

    This paper describes the development of a high-speed CCD digital camera system. The system has been designed to use CCDs from various manufacturers with minimal modifications. The first camera built on this design utilizes a Thomson 512 x 512 pixel CCD as its sensor, which is read out from two parallel outputs at a speed of 15 MHz/pixel/output. The data undergo correlated double sampling after which it is digitized into 12 bits. The throughput of the system translates into 60 MB/second, which is either stored directly in a PC or transferred to a custom-designed VXI module. The PC data acquisition version of the camera can collect sustained data in real time that is limited to the memory installed in the PC. The VXI version of the camera, also controlled by a PC, stores 512 MB of real-time data before it must be read out to the PC disk storage. The uncooled CCD can be used either with lenses for visible light imaging or with a phosphor screen for X-ray imaging. This camera has been tested with a phosphor screen coupled to a fiber-optic face plate for high-resolution, high-speed X-ray imaging. The camera is controlled through a custom event-driven user-friendly Windows package. The pixel clock speed can be changed from 1 to 15 MHz. The noise was measured to be 1.05 bits at a 13.3 MHz pixel clock. This paper will describe the electronics, software, and characterizations that have been performed using both visible and X-ray photons. (orig.)

  16. A programmable CCD driver circuit for multiphase CCD operation

    International Nuclear Information System (INIS)

    Ewin, A.J.; Reed, K.V.

    1989-01-01

    A programmable CCD driver circuit was designed to drive CCD's in multiphased modes. The purpose of the drive electronics was to operate developmental CCD imaging arrays for NASA's Moderate Resolution Imaging Spectrometer - Tiltable (MODIS-T). Five prototype arrays were designed. Valid's Graphics Editor (GED) was used to design the driver. With this driver design, any of the five arrays can be readout. Designing the driver with GED allowed functional simulation, timing verification, and certain packaging analyses to be done on the design before fabrication. The driver verified its function with the master clock running up to 10 MHz. This suggests a maximum rate of 400 Kpixels/sec. Timing and packaging parameters were verified. the design uses 54 TTL component chips

  17. CCD image sensor induced error in PIV applications

    Science.gov (United States)

    Legrand, M.; Nogueira, J.; Vargas, A. A.; Ventas, R.; Rodríguez-Hidalgo, M. C.

    2014-06-01

    The readout procedure of charge-coupled device (CCD) cameras is known to generate some image degradation in different scientific imaging fields, especially in astrophysics. In the particular field of particle image velocimetry (PIV), widely extended in the scientific community, the readout procedure of the interline CCD sensor induces a bias in the registered position of particle images. This work proposes simple procedures to predict the magnitude of the associated measurement error. Generally, there are differences in the position bias for the different images of a certain particle at each PIV frame. This leads to a substantial bias error in the PIV velocity measurement (˜0.1 pixels). This is the order of magnitude that other typical PIV errors such as peak-locking may reach. Based on modern CCD technology and architecture, this work offers a description of the readout phenomenon and proposes a modeling for the CCD readout bias error magnitude. This bias, in turn, generates a velocity measurement bias error when there is an illumination difference between two successive PIV exposures. The model predictions match the experiments performed with two 12-bit-depth interline CCD cameras (MegaPlus ES 4.0/E incorporating the Kodak KAI-4000M CCD sensor with 4 megapixels). For different cameras, only two constant values are needed to fit the proposed calibration model and predict the error from the readout procedure. Tests by different researchers using different cameras would allow verification of the model, that can be used to optimize acquisition setups. Simple procedures to obtain these two calibration values are also described.

  18. CCD image sensor induced error in PIV applications

    International Nuclear Information System (INIS)

    Legrand, M; Nogueira, J; Vargas, A A; Ventas, R; Rodríguez-Hidalgo, M C

    2014-01-01

    The readout procedure of charge-coupled device (CCD) cameras is known to generate some image degradation in different scientific imaging fields, especially in astrophysics. In the particular field of particle image velocimetry (PIV), widely extended in the scientific community, the readout procedure of the interline CCD sensor induces a bias in the registered position of particle images. This work proposes simple procedures to predict the magnitude of the associated measurement error. Generally, there are differences in the position bias for the different images of a certain particle at each PIV frame. This leads to a substantial bias error in the PIV velocity measurement (∼0.1 pixels). This is the order of magnitude that other typical PIV errors such as peak-locking may reach. Based on modern CCD technology and architecture, this work offers a description of the readout phenomenon and proposes a modeling for the CCD readout bias error magnitude. This bias, in turn, generates a velocity measurement bias error when there is an illumination difference between two successive PIV exposures. The model predictions match the experiments performed with two 12-bit-depth interline CCD cameras (MegaPlus ES 4.0/E incorporating the Kodak KAI-4000M CCD sensor with 4 megapixels). For different cameras, only two constant values are needed to fit the proposed calibration model and predict the error from the readout procedure. Tests by different researchers using different cameras would allow verification of the model, that can be used to optimize acquisition setups. Simple procedures to obtain these two calibration values are also described. (paper)

  19. Characterization of a pnCCD for applications with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Send, S., E-mail: send@physik.uni-siegen.de [University of Siegen, Department of Physics, Walter-Flex-Straße 3, 57068 Siegen (Germany); Abboud, A. [University of Siegen, Department of Physics, Walter-Flex-Straße 3, 57068 Siegen (Germany); Hartmann, R.; Huth, M. [PNSensor GmbH, Römerstraße 28, 80803 München (Germany); Leitenberger, W. [University of Potsdam, Department of Physics, Karl-Liebknecht-Straße 24/25, 14476 Potsdam (Germany); Pashniak, N. [University of Siegen, Department of Physics, Walter-Flex-Straße 3, 57068 Siegen (Germany); Schmidt, J. [PNSensor GmbH, Römerstraße 28, 80803 München (Germany); Strüder, L. [University of Siegen, Department of Physics, Walter-Flex-Straße 3, 57068 Siegen (Germany); PNSensor GmbH, Römerstraße 28, 80803 München (Germany); Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, 85748 Garching (Germany); Pietsch, U. [University of Siegen, Department of Physics, Walter-Flex-Straße 3, 57068 Siegen (Germany)

    2013-05-21

    In this work we study the response of a pnCCD by means of X-ray spectroscopy in the energy range between 6 keV and 20 keV and by Laue diffraction techniques. The analyses include measurements of characteristic detector parameters like energy resolution, count rate capability and effects of different gain settings. The limit of a single photon counting operation in white beam X-ray diffraction experiments is discussed with regard to the occurrence of pile-up events, for which the energy information about individual photons is lost. In case of monochromatic illumination the pnCCD can be used as a fast conventional CCD with a charge handling capacity (CHC) of about 300,000 electrons per pixel. If the CHC is exceeded, any surplus charge will spill to neighboring pixels perpendicular to the transfer direction due to electrostatic repulsion. The possibilities of increasing the number of storable electrons are investigated for different voltage settings by exposing a single pixel with X-rays generated by a microfocus X-ray source. The pixel binning mode is tested as an alternative approach that enables a pnCCD operation with significantly shorter readout times. -- Highlights: ► The pnCCD acts as a four-dimensional detector for white X-rays. ► Its performance for applications with synchrotron radiation is investigated. ► The pnCCD can be used for single photon counting and photon integration. ► The operation mode depends on the local frequencies of pile-up events. ► The pnCCD can be optimized for X-ray spectroscopy and X-ray imaging.

  20. Comparison of a CCD and an APS for soft x-ray diffraction

    OpenAIRE

    Stewart, G.; Bates, R.; Blue, A.; Clark, A.; Dhesi, S.S.; Maneuski, D.; Marchal, J.; Steadman, P.; Tartoni, N.; Turchetta, R.

    2011-01-01

    We compare a new CMOS Active Pixel Sensor (APS) to a Princeton Instruments PIXIS-XO: 2048B Charge Coupled Device (CCD) with soft X-rays tested in a synchrotron beam line at the Diamond Light Source (DLS). Despite CCDs being established in the field of scientific imaging, APS are an innovative technology that offers advantages over CCDs. These include faster readout, higher operational temperature, in-pixel electronics for advanced image processing and reduced manufacturing cost.\\ud \\ud The AP...

  1. Pixels and patterns: A satellite-based investigation of changes to urban features in the Sanya Region, Hainan Special Economic Zone, China

    Science.gov (United States)

    Millward, Andrew Allan

    Throughout most of China, and particularly in the coastal areas of its south, ecological resources and traditional culture are viewed by many to be negatively impacted by accelerating urbanization. As a result, achieving an appropriate balance between development and environmental protection has become a significant problem facing policy-makers in these urbanizing areas. The establishment of a Special Economic Zone in the Chinese Province of Hainan has made its coastal areas attractive locations for business and commerce. Development activities that support a burgeoning tourism industry, but which are damaging the environment, are now prominent components of the landscape in the Sanya Region of Hainan. In this study, patterns of urban growth in the Sanya Region of Hainan Province are investigated. Specifically, using several forms of satellite imagery, statistical tools and ancillary data, urban morphology and changes to the extent and spatial arrangement of urban features are researched and documented. A twelve-year chronology of data was collected which consists of four dates of satellite imagery (1987, 1991, 1997, 1999) acquired by three different satellite sensors (SPOT 2 HRV, Landsat 5 TM, Landsat 7 ETM+). A method of assessing inter-temporal variance in unchanged features is developed as a surrogate for traditional evaluations of change detection that require spatially accurate and time-specific data. Results reveal that selective PCA using visible bands with the exclusion of an ocean mask yield the most interpretable components representative of landscape urbanization in the Sanya Region. The geostatistical approach of variography is employed to measure spatial dependence and to test for the presence of directional change in urban morphology across a time series of satellite images. Interpreted time-series geostatistics identify and quantify landscape structure, and changes to structure, and provide a valuable quantitative description of landscape change

  2. CCD characterization and measurements automation

    Czech Academy of Sciences Publication Activity Database

    Kotov, I.V.; Frank, J.; Kotov, A.I.; Kubánek, Petr; O´Connor, P.; Prouza, Michael; Radeka, V.; Takacs, P.

    2012-01-01

    Roč. 695, Dec (2012), 188-192 ISSN 0168-9002 R&D Projects: GA MŠk ME09052 Institutional research plan: CEZ:AV0Z10100502 Keywords : CCD * characterization * test automation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.142, year: 2012

  3. Single-Pulse Dual-Energy Mammography Using a Binary Screen Coupled to Dual CCD Cameras

    Science.gov (United States)

    1999-08-01

    Fossum, "Active pixel sensors—Are CCD’s Dinosaurs ?," Proc. SPIE 1900, 2-14 (1993). "S. Mendis, S. E. Kemeny, R. Gee, B. Pain, and E. R. Fossum, "Progress...Clin Oncol 13:1470-1477, 1995 12. Wahl RL, Zasadny K, Helvie M, et al: Metabolic monitoring of breast cancer chemohormonotherapy using posi- tron

  4. First Light with a 67-Million-Pixel WFI Camera

    Science.gov (United States)

    1999-01-01

    tests with the WFI in order to arrive at the optimum adjustment of the camera at the telescope. We show here two of these that illustrate the great potential of this new facility. Spiral Galaxy NGC 253 ESO PR Photo 02a/99 ESO PR Photo 02a/99 [Preview - JPEG: 800x850 pix - 205k] [High-Res - JPEG: 4000 x 4252 pix - 3.0Mb] ESO PR Photo 02b/99 ESO PR Photo 02b/99 [Preview - JPEG: 800x870 pix - 353k] [High-Res - JPEG: 2200 x 2393 pix - 2.0Mb] Caption to PR Photos 02a/99 and 02b/99 : These photos show a sky field around the Spiral Galaxy NGC 253 (Type Sc) seen nearly edge-on. It is located in the southern constellation Sculptor at a distance of about 8 million light-years. The image is the sum of five 5-min exposures through a blue (B-band) optical filtre. They were slightly offset with respect to each other so that the small gaps between the eight CCD's of the mosaic are no longer visible. This image also shows the faint trails of 2 artificial satellites. In PR Photo 02a/99 , the full WFI field-of-view is reproduced, while the sub-field in PR Photo 02b/99 contains some fainter and smaller background galaxies. Many of the quite numerous and small, slightly fuzzy objects are undoubtedly globular clusters of NGC 253. Technical information: The image processing consisted of de-biassing, flat-fielding, and removal (by interpolation) of some bad columns. The full-width-half-maximum (FWHM) of stellar images is about 1.0 arcsec. PR Photo 02a/99 was rebinned (2x2) to 4kx4k size and sampling 0.48 arcsec/pixel. PR Photo 02b/99 is a subimage of the former, but at the full original sampling of 0.24 arcsec/pixel. It covers about 2kx2k, or about 1/16 of the full field. North is up and East is left. The observations were made on December 17, 1998. The Waning Moon ESO PR Photo 02c/99 ESO PR Photo 02c/99 [Preview - JPEG: 800 x 1245 pix - 242k] [High-Res - JPEG: 3000 x 4667 pix - 2.3Mb] ESO PR Photo 02d/99 ESO PR Photo 02d/99 [Preview - JPEG: 800 x 1003 pix - 394k] [High-Res - JPEG: 3000 x

  5. Chromatic Modulator for High Resolution CCD or APS Devices

    Science.gov (United States)

    Hartley, Frank T. (Inventor); Hull, Anthony B. (Inventor)

    2003-01-01

    A system for providing high-resolution color separation in electronic imaging. Comb drives controllably oscillate a red-green-blue (RGB) color strip filter system (or otherwise) over an electronic imaging system such as a charge-coupled device (CCD) or active pixel sensor (APS). The color filter is modulated over the imaging array at a rate three or more times the frame rate of the imaging array. In so doing, the underlying active imaging elements are then able to detect separate color-separated images, which are then combined to provide a color-accurate frame which is then recorded as the representation of the recorded image. High pixel resolution is maintained. Registration is obtained between the color strip filter and the underlying imaging array through the use of electrostatic comb drives in conjunction with a spring suspension system.

  6. Chromatic Modulator for a High-Resolution CCD or APS

    Science.gov (United States)

    Hartley, Frank; Hull, Anthony

    2008-01-01

    A chromatic modulator has been proposed to enable the separate detection of the red, green, and blue (RGB) color components of the same scene by a single charge-coupled device (CCD), active-pixel sensor (APS), or similar electronic image detector. Traditionally, the RGB color-separation problem in an electronic camera has been solved by use of either (1) fixed color filters over three separate image detectors; (2) a filter wheel that repeatedly imposes a red, then a green, then a blue filter over a single image detector; or (3) different fixed color filters over adjacent pixels. The use of separate image detectors necessitates precise registration of the detectors and the use of complicated optics; filter wheels are expensive and add considerably to the bulk of the camera; and fixed pixelated color filters reduce spatial resolution and introduce color-aliasing effects. The proposed chromatic modulator would not exhibit any of these shortcomings. The proposed chromatic modulator would be an electromechanical device fabricated by micromachining. It would include a filter having a spatially periodic pattern of RGB strips at a pitch equal to that of the pixels of the image detector. The filter would be placed in front of the image detector, supported at its periphery by a spring suspension and electrostatic comb drive. The spring suspension would bias the filter toward a middle position in which each filter strip would be registered with a row of pixels of the image detector. Hard stops would limit the excursion of the spring suspension to precisely one pixel row above and one pixel row below the middle position. In operation, the electrostatic comb drive would be actuated to repeatedly snap the filter to the upper extreme, middle, and lower extreme positions. This action would repeatedly place a succession of the differently colored filter strips in front of each pixel of the image detector. To simplify the processing, it would be desirable to encode information on

  7. Diamond Pixel Detectors

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L.; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.

    2001-01-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles

  8. Diamond Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L. E-mail: perera@physics.rutgers.edu; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  9. Radiation damage of the PCO Pixelfly VGA CCD camera of the BES system on KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Náfrádi, Gábor, E-mail: nafradi@reak.bme.hu [NTI, BME, EURATOM Association, H-1111 Budapest (Hungary); Kovácsik, Ákos, E-mail: kovacsik.akos@reak.bme.hu [NTI, BME, EURATOM Association, H-1111 Budapest (Hungary); Pór, Gábor, E-mail: por@reak.bme.hu [NTI, BME, EURATOM Association, H-1111 Budapest (Hungary); Lampert, Máté, E-mail: lampert.mate@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary); Un Nam, Yong, E-mail: yunam@nfri.re.kr [NFRI, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Zoletnik, Sándor, E-mail: zoletnik.sandor@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary)

    2015-01-11

    A PCO Pixelfly VGA CCD camera which is part a of the Beam Emission Spectroscopy (BES) diagnostic system of the Korea Superconducting Tokamak Advanced Research (KSTAR) used for spatial calibrations, suffered from serious radiation damage, white pixel defects have been generated in it. The main goal of this work was to identify the origin of the radiation damage and to give solutions to avoid it. Monte Carlo N-Particle eXtended (MCNPX) model was built using Monte Carlo Modeling Interface Program (MCAM) and calculations were carried out to predict the neutron and gamma-ray fields in the camera position. Besides the MCNPX calculations pure gamma-ray irradiations of the CCD camera were carried out in the Training Reactor of BME. Before, during and after the irradiations numerous frames were taken with the camera with 5 s long exposure times. The evaluation of these frames showed that with the applied high gamma-ray dose (1.7 Gy) and dose rate levels (up to 2 Gy/h) the number of the white pixels did not increase. We have found that the origin of the white pixel generation was the neutron-induced thermal hopping of the electrons which means that in the future only neutron shielding is necessary around the CCD camera. Another solution could be to replace the CCD camera with a more radiation tolerant one for example with a suitable CMOS camera or apply both solutions simultaneously.

  10. Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD

    Science.gov (United States)

    Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; Essig, Rouven; Guardincerri, Yann; Holland, Steve; Volansky, Tomer; Yu, Tien-Tien

    2017-09-01

    We have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e- rms /pixel . This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime. Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.

  11. PIXEL 2010 - A Resume

    International Nuclear Information System (INIS)

    Wermes, N.

    2011-01-01

    The Pixel 2010 conference focused on semiconductor pixel detectors for particle tracking/vertexing as well as for imaging, in particular for synchrotron light sources and XFELs. The big LHC hybrid pixel detectors have impressively started showing their capabilities. X-ray imaging detectors, also using the hybrid pixel technology, have greatly advanced the experimental possibilities for diffraction experiments. Monolithic or semi-monolithic devices like CMOS active pixels and DEPFET pixels have now reached a state such that complete vertex detectors for RHIC and superKEKB are being built with these technologies. Finally, new advances towards fully monolithic active pixel detectors, featuring full CMOS electronics merged with efficient signal charge collection, exploiting standard CMOS technologies, SOI and/or 3D integration, show the path for the future. This resume attempts to extract the main statements of the results and developments presented at this conference.

  12. The OCA CCD Camera Controller

    Science.gov (United States)

    1996-01-01

    multi CCD arrays for wide field telescopes with an array of 8x8 1K CCDs in use at Las Campanas Observatory in Chile . The same group is also involved...Verify key EPROM -292H VIH . VIH Program security bitl 1 29AH . VPP Program security’ bit 2 *. .298H -Vpp Verify security bits - 9HVIH ViI NOTE: 1...Pulsed from V.. to VIL and returned to VIH . EPROM PROGRAMMING AND VERIFICATION ..t= 21’C to-+27 ’rC:-VCC= 5V ±10%VS3 = OV. SYMBOL I .-- PARAMETER MIN MAX

  13. Intensified CCD for ultrafast diagnostics

    International Nuclear Information System (INIS)

    Cheng, J.; Tripp, G.; Coleman, L.

    1978-01-01

    Many of the present laser fusion diagnostics are recorded on either ultrafast streak cameras or on oscilloscopes. For those experiments in which a large volume of data is accumulated, direct computer processing of the information becomes important. We describe an approach which uses a RCA 52501 back-thinned CCD sensor to obtain direct electron readouts for both the streak camera and the CRT. Performance of the 100 GHz streak camera and the 4 GHz CRT are presented. Design parameters and computer interfacing for both systems are described in detail

  14. A CCD-based area detector for X-ray crystallography using synchrotron and laboratory sources

    International Nuclear Information System (INIS)

    Phillips, W.C.; Li Youli; Stanton, M.; Xie Yuanhui; O'Mara, D.; Kalata, K.

    1993-01-01

    The design and characteristics of a CCD-based area detector suitable for X-ray crystallographic studies using both synchrotron and laboratory sources are described. The active area is 75 mm in diameter, the FWHM of the point response function is 0.20 mm, and for Bragg peaks the dynamic range is 900 and the DQE ∼0.3. The 1320x1035-pixel Kodak CCD is read out into an 8 Mbyte memory system in 0.14 s and digitized to 12 bits. X-ray crystallographic data collected at the NSLS synchrotron from cubic insulin crystals are presented. (orig.)

  15. Optimum color filters for CCD digital cameras

    Science.gov (United States)

    Engelhardt, Kai; Kunz, Rino E.; Seitz, Peter; Brunner, Harald; Knop, Karl

    1993-12-01

    As part of the ESPRIT II project No. 2103 (MASCOT) a high performance prototype color CCD still video camera was developed. Intended for professional usage such as in the graphic arts, the camera provides a maximum resolution of 3k X 3k full color pixels. A high colorimetric performance was achieved through specially designed dielectric filters and optimized matrixing. The color transformation was obtained by computer simulation of the camera system and non-linear optimization which minimized the perceivable color errors as measured in the 1976 CIELUV uniform color space for a set of about 200 carefully selected test colors. The color filters were designed to allow perfect colorimetric reproduction in principle and at the same time with imperceptible color noise and with special attention to fabrication tolerances. The camera system includes a special real-time digital color processor which carries out the color transformation. The transformation can be selected from a set of sixteen matrices optimized for different illuminants and output devices. Because the actual filter design was based on slightly incorrect data the prototype camera showed a mean colorimetric error of 2.7 j.n.d. (CIELUV) in experiments. Using correct input data in the redesign of the filters, a mean colorimetric error of only 1 j.n.d. (CIELUV) seems to be feasible, implying that it is possible with such an optimized color camera to achieve such a high colorimetric performance that the reproduced colors in an image cannot be distinguished from the original colors in a scene, even in direct comparison.

  16. One method for HJ-1-A HSI and CCD data fusion

    International Nuclear Information System (INIS)

    Xiong, Wencheng; Shao, Yun; Shen, Wenming; Xiao, Rulin; Fu, Zhuo; Shi, Yuanli

    2014-01-01

    HJ-1-A satellite, developed by China independently, was equipped with two sensors of Hyper Spectral Imager (HSI) and multispectral sensor (CCD). In this paper, we examine the benefits of combining data from CCD data (high-spatial-resolution, low-spectral-resolution image) with HSI data (low -spatial-resolution, high -spectral-resolution image). Due to the same imaging time and similar spectral regime, the CCD and HSI data can be registered with each other well, and the difference between CCD and HSI data mainly is systematic bias. The approach we have been investigating compares the spectral information present in the multispectral image to the spectral content in the hyperspectral image, and derives a set of equations to approximately acquire the systematic bias between the two sensors. The systematic bias is then applied to the interpolated high-spectral CCD image to produce a fused product. This fused image has the spectral resolution of the hyperspectral image (HSI) and the spatial resolution of the multispectral image (CCD). It is capable of full exploitation as a hyperspectral image. We evaluate this technique using the data of Honghe wetland and show both good spectral and visual fidelity. An analysis of SAM classification test case shows good result when compared to original image. All in all, the approach we developed here provides a means for fusing data from HJ-1-A satellite to produce a spatial-resolution-enhanced hyperspectral data cube that can be further analyzed by spectral classification and detection algorithms

  17. CCD research. [design, fabrication, and applications

    Science.gov (United States)

    Gassaway, J. D.

    1976-01-01

    The fundamental problems encountered in designing, fabricating, and applying CCD's are reviewed. Investigations are described and results and conclusions are given for the following: (1) the development of design analyses employing computer aided techniques and their application to the design of a grapped structure; (2) the role of CCD's in applications to electronic functions, in particular, signal processing; (3) extending the CCD to silicon films on sapphire (SOS); and (4) all aluminum transfer structure with low noise input-output circuits. Related work on CCD imaging devices is summarized.

  18. Status of the digital pixel array detector for protein crystallography

    CERN Document Server

    Datte, P; Beuville, E; Endres, N; Druillole, F; Luo, L; Millaud, J E; Xuong, N H

    1999-01-01

    A two-dimensional photon counting digital pixel array detector is being designed for static and time resolved protein crystallography. The room temperature detector will significantly enhance monochromatic and polychromatic protein crystallographic through-put data rates by more than three orders of magnitude. The detector has an almost infinite photon counting dynamic range and exhibits superior spatial resolution when compared to present crystallographic phosphor imaging plates or phosphor coupled CCD detectors. The detector is a high resistivity N-type Si with a pixel pitch of 150x150 mu m, and a thickness of 300 mu m, and is bump bonded to an application specific integrated circuit. The event driven readout of the detector is based on the column architecture and allows an independent pixel hit rate above 1 million photons/s/pixel. The device provides energy discrimination and sparse data readout which yields minimal dead-time. This type of architecture allows a continuous (frameless) data acquisition, a f...

  19. CCD photometry of NGC 2419

    International Nuclear Information System (INIS)

    Christian, C.A.; Heasley, J.N.

    1988-01-01

    The properties of the globular cluster NGC 2419 are reexamined using CCD photometry deepened to the vicinity of the main-sequence turnoff. A new color-magnitude diagram is derived that extends to V = 24.5 mag. It is concluded that NGC 2419 is an outer-halo analog of the metal-poor globulars closer to the Galactic center. NGC 2419 is probably nearly the same age as M15 and differs only slightly, if at all, in metallicity. NGC 2419 has many similarities with the clusters NGC 5466, M15, and M92. Comparison of the data with the isochrones of VandenBerg and Bell (1985) implies a distance modulus of 20.1 with Delta (B-V) = 0.18 mag. Oxygen-rich models can be fit to the data; such a comparison yields a lower limit to the acceptable distance modulus of the cluster. 26 references

  20. CCD characterization and measurements automation

    International Nuclear Information System (INIS)

    Kotov, I.V.; Frank, J.; Kotov, A.I.; Kubanek, P.; O'Connor, P.; Prouza, M.; Radeka, V.; Takacs, P.

    2012-01-01

    Modern mosaic cameras have grown both in size and in number of sensors. The required volume of sensor testing and characterization has grown accordingly. For camera projects as large as the LSST, test automation becomes a necessity. A CCD testing and characterization laboratory was built and is in operation for the LSST project. Characterization of LSST study contract sensors has been performed. The characterization process and its automation are discussed, and results are presented. Our system automatically acquires images, populates a database with metadata information, and runs express analysis. This approach is illustrated on 55 Fe data analysis. 55 Fe data are used to measure gain, charge transfer efficiency and charge diffusion. Examples of express analysis results are presented and discussed.

  1. High-performance visible/UV CCD focal plane technology for spacebased applications

    Science.gov (United States)

    Burke, B. E.; Mountain, R. W.; Gregory, J. A.; Huang, J. C. M.; Cooper, M. J.; Savoye, E. D.; Kosicki, B. B.

    1993-01-01

    We describe recent technology developments aimed at large CCD imagers for space based applications in the visible and UV. Some of the principal areas of effort include work on reducing device degradation in the natural space-radiation environment, improvements in quantum efficiency in the visible and UV, and larger-device formats. One of the most serious hazards for space based CCD's operating at low signal levels is the displacement damage resulting from bombardment by energetic protons. Such damage degrades charge-transfer efficiency and increases dark current. We have achieved improved hardness to proton-induced displacement damage by selective ion implants into the CCD channel and by reduced temperature of operation. To attain high quantum efficiency across the visible and UV we have developed a technology for back-illuminated CCD's. With suitable antireflection (AR) coatings such devices have quantum efficiencies near 90 percent in the 500-700-nm band. In the UV band from 200 to 400 nm, where it is difficult to find coatings that are sufficiently transparent and can provide good matching to the high refractive index of silicon, we have been able to substantially increase the quantum efficiency using a thin film of HfO2 as an AR coating. These technology efforts were applied to a 420 x 420-pixel frame-transfer imager, and future work will be extended to a 1024 x 1024-pixel device now under development.

  2. LIFTING THE VEIL OF DUST FROM NGC 0959: THE IMPORTANCE OF A PIXEL-BASED TWO-DIMENSIONAL EXTINCTION CORRECTION

    International Nuclear Information System (INIS)

    Tamura, K.; Jansen, R. A.; Windhorst, R. A.; Eskridge, P. B.; Cohen, S. H.

    2010-01-01

    We present the results of a study of the late-type spiral galaxy NGC 0959, before and after application of the pixel-based dust extinction correction described in Tamura et al. (Paper I). Galaxy Evolution Explorer far-UV, and near-UV, ground-based Vatican Advanced Technology Telescope, UBVR, and Spitzer/Infrared Array Camera 3.6, 4.5, 5.8, and 8.0 μm images are studied through pixel color-magnitude diagrams and pixel color-color diagrams (pCCDs). We define groups of pixels based on their distribution in a pCCD of (B - 3.6 μm) versus (FUV - U) colors after extinction correction. In the same pCCD, we trace their locations before the extinction correction was applied. This shows that selecting pixel groups is not meaningful when using colors uncorrected for dust. We also trace the distribution of the pixel groups on a pixel coordinate map of the galaxy. We find that the pixel-based (two-dimensional) extinction correction is crucial for revealing the spatial variations in the dominant stellar population, averaged over each resolution element. Different types and mixtures of stellar populations, and galaxy structures such as a previously unrecognized bar, become readily discernible in the extinction-corrected pCCD and as coherent spatial structures in the pixel coordinate map.

  3. A design of optical modulation system with pixel-level modulation accuracy

    Science.gov (United States)

    Zheng, Shiwei; Qu, Xinghua; Feng, Wei; Liang, Baoqiu

    2018-01-01

    Vision measurement has been widely used in the field of dimensional measurement and surface metrology. However, traditional methods of vision measurement have many limits such as low dynamic range and poor reconfigurability. The optical modulation system before image formation has the advantage of high dynamic range, high accuracy and more flexibility, and the modulation accuracy is the key parameter which determines the accuracy and effectiveness of optical modulation system. In this paper, an optical modulation system with pixel level accuracy is designed and built based on multi-points reflective imaging theory and digital micromirror device (DMD). The system consisted of digital micromirror device, CCD camera and lens. Firstly we achieved accurate pixel-to-pixel correspondence between the DMD mirrors and the CCD pixels by moire fringe and an image processing of sampling and interpolation. Then we built three coordinate systems and calculated the mathematic relationship between the coordinate of digital micro-mirror and CCD pixels using a checkerboard pattern. A verification experiment proves that the correspondence error is less than 0.5 pixel. The results show that the modulation accuracy of system meets the requirements of modulation. Furthermore, the high reflecting edge of a metal circular piece can be detected using the system, which proves the effectiveness of the optical modulation system.

  4. A Binary Offset Effect in CCD Readout and Its Impact on Astronomical Data

    Science.gov (United States)

    Boone, K.; Aldering, G.; Copin, Y.; Dixon, S.; Domagalski, R. S.; Gangler, E.; Pecontal, E.; Perlmutter, S.

    2018-06-01

    We have discovered an anomalous behavior of CCD readout electronics that affects their use in many astronomical applications. An offset in the digitization of the CCD output voltage that depends on the binary encoding of one pixel is added to pixels that are read out one, two, and/or three pixels later. One result of this effect is the introduction of a differential offset in the background when comparing regions with and without flux from science targets. Conventional data reduction methods do not correct for this offset. We find this effect in 16 of 22 instruments investigated, covering a variety of telescopes and many different front-end electronics systems. The affected instruments include LRIS and DEIMOS on the Keck telescopes, WFC3 UVIS and STIS on HST, MegaCam on CFHT, SNIFS on the UH88 telescope, GMOS on the Gemini telescopes, HSC on Subaru, and FORS on VLT. The amplitude of the introduced offset is up to 4.5 ADU per pixel, and it is not directly proportional to the measured ADU level. We have developed a model that can be used to detect this “binary offset effect” in data, and correct for it. Understanding how data are affected and applying a correction for the effect is essential for precise astronomical measurements.

  5. UCAC3 PIXEL PROCESSING

    International Nuclear Information System (INIS)

    Zacharias, Norbert

    2010-01-01

    The third US Naval Observatory CCD Astrograph Catalog, UCAC3, was released at the IAU General Assembly on 2009 August 10. It is a highly accurate, all-sky astrometric catalog of about 100 million stars in the R = 8-16 mag range. Recent epoch observations are based on over 270,000 CCD exposures, which have been re-processed for the UCAC3 release applying traditional and new techniques. Challenges in the data have been high dark current and asymmetric image profiles due to the poor charge transfer efficiency of the detector. Non-Gaussian image profile functions were explored and correlations are found for profile fit parameters with properties of the CCD frames. These were utilized to constrain the image profile fit models and adequately describe the observed point-spread function of stellar images with a minimum number of free parameters. Using an appropriate model function, blended images of double stars could be fit successfully. UCAC3 positions are derived from two-dimensional image profile fits with a five-parameter, symmetric Lorentz profile model. Internal precisions of about 5 mas per coordinate and single exposure are found, which are degraded by the atmosphere to about 10 mas. However, systematic errors exceeding 100 mas are present in the x, y data which have been corrected in the astrometric reductions following the x, y data reduction step described here.

  6. Comparison of a CCD and an APS for soft X-ray diffraction

    International Nuclear Information System (INIS)

    Stewart, Graeme; Bates, R; Blue, A; Maneuski, D; Clark, A; Turchetta, R; Dhesi, S S; Marchal, J; Steadman, P; Tartoni, N

    2011-01-01

    We compare a new CMOS Active Pixel Sensor (APS) to a Princeton Instruments PIXIS-XO: 2048B Charge Coupled Device (CCD) with soft X-rays tested in a synchrotron beam line at the Diamond Light Source (DLS). Despite CCDs being established in the field of scientific imaging, APS are an innovative technology that offers advantages over CCDs. These include faster readout, higher operational temperature, in-pixel electronics for advanced image processing and reduced manufacturing cost. The APS employed was the Vanilla sensor designed by the MI3 collaboration and funded by an RCUK Basic technology grant. This sensor has 520 x 520 square pixels, of size 25 μm on each side. The sensor can operate at a full frame readout of up to 20 Hz. The sensor had been back-thinned, to the epitaxial layer. This was the first time that a back-thinned APS had been demonstrated at a beam line at DLS. In the synchrotron experiment soft X-rays with an energy of approximately 708 eV were used to produce a diffraction pattern from a permalloy sample. The pattern was imaged at a range of integration times with both sensors. The CCD had to be operated at a temperature of -55°C whereas the Vanilla was operated over a temperature range from 20°C to -10°C. We show that the APS detector can operate with frame rates up to two hundred times faster than the CCD, without excessive degradation of image quality. The signal to noise of the APS is shown to be the same as that of the CCD at identical integration times and the response is shown to be linear, with no charge blooming effects. The experiment has allowed a direct comparison of back thinned APS and CCDs in a real soft x-ray synchrotron experiment.

  7. Comparison of a CCD and an APS for soft X-ray diffraction

    Science.gov (United States)

    Stewart, Graeme; Bates, R.; Blue, A.; Clark, A.; Dhesi, S. S.; Maneuski, D.; Marchal, J.; Steadman, P.; Tartoni, N.; Turchetta, R.

    2011-12-01

    We compare a new CMOS Active Pixel Sensor (APS) to a Princeton Instruments PIXIS-XO: 2048B Charge Coupled Device (CCD) with soft X-rays tested in a synchrotron beam line at the Diamond Light Source (DLS). Despite CCDs being established in the field of scientific imaging, APS are an innovative technology that offers advantages over CCDs. These include faster readout, higher operational temperature, in-pixel electronics for advanced image processing and reduced manufacturing cost. The APS employed was the Vanilla sensor designed by the MI3 collaboration and funded by an RCUK Basic technology grant. This sensor has 520 x 520 square pixels, of size 25 μm on each side. The sensor can operate at a full frame readout of up to 20 Hz. The sensor had been back-thinned, to the epitaxial layer. This was the first time that a back-thinned APS had been demonstrated at a beam line at DLS. In the synchrotron experiment soft X-rays with an energy of approximately 708 eV were used to produce a diffraction pattern from a permalloy sample. The pattern was imaged at a range of integration times with both sensors. The CCD had to be operated at a temperature of -55°C whereas the Vanilla was operated over a temperature range from 20°C to -10°C. We show that the APS detector can operate with frame rates up to two hundred times faster than the CCD, without excessive degradation of image quality. The signal to noise of the APS is shown to be the same as that of the CCD at identical integration times and the response is shown to be linear, with no charge blooming effects. The experiment has allowed a direct comparison of back thinned APS and CCDs in a real soft x-ray synchrotron experiment.

  8. Gossip: Gaseous pixels

    Science.gov (United States)

    Koffeman, E. N.

    2007-12-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a 55Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated.

  9. Gossip: Gaseous pixels

    Energy Technology Data Exchange (ETDEWEB)

    Koffeman, E.N. [Nikhef, Kruislaan 409, 1098 SJ Amsterdam (Netherlands)], E-mail: d77@nikhef.nl

    2007-12-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a {sup 55}Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated.

  10. Gossip: Gaseous pixels

    International Nuclear Information System (INIS)

    Koffeman, E.N.

    2007-01-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a 55 Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated

  11. CMS Pixel Detector Upgrade

    CERN Document Server

    INSPIRE-00038772

    2011-01-01

    The present Compact Muon Solenoid silicon pixel tracking system has been designed for a peak luminosity of 1034cm-2s-1 and total dose corresponding to two years of the Large Hadron Collider (LHC) operation. With the steady increase of the luminosity expected at the LHC, a new pixel detector with four barrel layers and three endcap disks is being designed. We will present the key points of the design: the new geometry, which minimizes the material budget and increases the tracking points, and the development of a fast digital readout architecture, which ensures readout efficiency even at high rate. The expected performances for tracking and vertexing of the new pixel detector are also addressed.

  12. The ATLAS Pixel Detector

    CERN Document Server

    Huegging, Fabian

    2006-06-26

    The contruction of the ATLAS Pixel Detector which is the innermost layer of the ATLAS tracking system is prgressing well. Because the pixel detector will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability for all parts, combined with a low material budget. The final detector layout, new results from production modules and the status of assembly are presented.

  13. Characterization of Pixel Sensors

    CERN Document Server

    Oliveira, Felipe Ferraz

    2017-01-01

    It was commissioned at CERN ATLAS pixel group a fluorescence setup for characterization of pixel sensors. The idea is to measure the energies of different targets to calibrate your sensor. It was measured four matrices (80, 95, 98 and 106) of the Investigator1 sensor with different deep PW using copper, iron and titanium as target materials. The matrix 80 has a higher gain (0.065 ± 0.002) and matrix 106 has a better energy resolution (0.05 ± 0.04). The noise of the setup is around 3.6 mV .

  14. The DELPHI pixels

    International Nuclear Information System (INIS)

    Becks, K.H.; Brunet, J.M.

    1997-01-01

    To improve tracking in the very forward direction for running at LEP200, the angular acceptance of the DELPHI Vertex detector has been extended from 45 to 11 with respect to the beam axis. Pixel detector crowns cover the region between 25 and 13 . Due to very tight space and material thickness constraints it was necessary to develop new techniques (integrated busses in the detector substrate, high density layout on Kapton, etc.). About 1000 cm 2 of pixels are already installed and working in DELPHI. Techniques, tests and production of these detectors will be described, as well as the main problems encountered during this work. (orig.)

  15. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    Science.gov (United States)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2013-12-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these

  16. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  17. ATLAS Pixel Detector Upgrade

    CERN Document Server

    Flick, T; The ATLAS collaboration

    2009-01-01

    The first upgrade for higher luminosity at LHC for the ATLAS pixel detector is the insertion of a forth layer, the IBL. The talk gives an overview about what the IBL is and how it will be set up, as well as to give a status of the research and develoment work.

  18. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  19. Gas pixel detectors

    International Nuclear Information System (INIS)

    Bellazzini, R.; Baldini, L.; Brez, A.; Cavalca, F.; Latronico, L.; Massai, M.M.; Minuti, M.; Omodei, N.; Pesce-Rollins, M.; Sgro, C.; Spandre, G.; Costa, E.; Soffitta, P.

    2007-01-01

    With the Gas Pixel Detector (GPD), the class of micro-pattern gas detectors has reached a complete integration between the gas amplification structure and the read-out electronics. To obtain this goal, three generations of application-specific integrated circuit of increased complexity and improved functionality has been designed and fabricated in deep sub-micron CMOS technology. This implementation has allowed manufacturing a monolithic device, which realizes, at the same time, the pixelized charge-collecting electrode and the amplifying, shaping and charge measuring front-end electronics of a GPD. A big step forward in terms of size and performances has been obtained in the last version of the 0.18 μm CMOS analog chip, where over a large active area of 15x15 mm 2 a very high channel density (470 pixels/mm 2 ) has been reached. On the top metal layer of the chip, 105,600 hexagonal pixels at 50 μm pitch have been patterned. The chip has customable self-trigger capability and includes a signal pre-processing function for the automatic localization of the event coordinates. In this way, by limiting the output signal to only those pixels belonging to the region of interest, it is possible to reduce significantly the read-out time and data volume. In-depth tests performed on a GPD built up by coupling this device to a fine pitch (50 μm) gas electron multiplier are reported. Matching of the gas amplification and read-out pitch has let to obtain optimal results. A possible application of this detector for X-ray polarimetry of astronomical sources is discussed

  20. pnCCD for photon detection from near-infrared to X-rays

    International Nuclear Information System (INIS)

    Meidinger, Norbert; Andritschke, Robert; Hartmann, Robert; Herrmann, Sven; Holl, Peter; Lutz, Gerhard; Strueder, Lothar

    2006-01-01

    A pnCCD is a special type of charge-coupled device developed for spectroscopy and imaging of X-rays with high time resolution and quantum efficiency. Its most famous application is the operation on the XMM-Newton satellite, an X-ray astronomy mission that was launched by the European space agency in 1999. The excellent performance of the focal plane camera has been maintained for more than 6 years in orbit. The energy resolution in particular has shown hardly any degradation since launch. In order to satisfy the requirements of future X-ray astronomy missions as well as those of ground-based experiments, a new type of pnCCD has been developed. This 'frame-store pnCCD' shows an enhanced performance compared to the XMM-Newton type of pnCCD. Now, more options in device design and operation are available to tailor the detector to its respective application. Part of this concept is a programmable analog signal processor, which has been developed for the readout of the CCD signals. The electronic noise of the new detector has a value of only 2 electrons equivalent noise charge (ENC), which is less than half of the figure achieved for the XMM-Newton-type pnCCD. The energy resolution for the Mn-K α line at 5.9 keV is approximately 130 eV FWHM. We have close to 100% quantum efficiency for both low- and high-energy photon detection (e.g. the C-K line at 277 eV, and the Ge-K α line at 10 keV, respectively). Very high frame rates of 1000 images/s have been achieved due to the ultra-fast readout accomplished by the parallel architecture of the pnCCD and the analog signal processor. Excellent spectroscopic performance is shown even at the relatively high operating temperature of -25 deg. C that can be achieved by a Peltier cooler. The applications of the low-noise and fast pnCCD detector are not limited to the detection of X-rays. With an anti-reflective coating deposited on the photon entrance window, we achieve high quantum efficiency also for near-infrared and optical

  1. THE ACCURACY OF Hβ CCD PHOTOMETRY

    Directory of Open Access Journals (Sweden)

    C. Kim

    1994-12-01

    Full Text Available We have undertaken CCD observations of field standard stars with Hβ photometric system to investigate the reliability of Hβ CCD photometry. Flat fielding with dome flat and sky flat for Hβw and Hβn filter was compared with that of B filter in UBV system and, from these, we have not found any difference. It was confirmed that there is a good linear relationship between our Hβ values observed with 2.3m reflector and standard values. However, Hβ values observed with 60cm reflector at Sobaeksan Astronomy Observatory showed very poor relationship. To investigate the accuracy of Hβ CCD photometry for fainter objects, open cluster NGC2437 was observed and reduced with DoPHOT, and the results were compared with those for photoelectric photometry of Stetson (1981.

  2. The study of interferometer spectrometer based on DSP and linear CCD

    Science.gov (United States)

    Kang, Hua; Peng, Yuexiang; Xu, Xinchen; Xing, Xiaoqiao

    2010-11-01

    In this paper, general theory of Fourier-transform spectrometer and polarization interferometer is presented. A new design is proposed for Fourier-transform spectrometer based on polarization interferometer with Wollaston prisms and linear CCD. Firstly, measured light is changed into linear polarization light by polarization plate. And then the light can be split into ordinary and extraordinary lights by going through one Wollaston prism. At last, after going through another Wollaston prism and analyzer, interfering fringes can be formed on linear CCD behind the analyzer. The linear CCD is driven by CPLD to output amplitude of interfering fringes and synchronous signals of frames and pixels respectively. DSP is used to collect interference pattern signals from CCD and the digital data of interfering fringes are processed by using 2048-point-FFT. Finally, optical spectrum of measured light can be display on LCD connected to DSP with RS232. The spectrometer will possess the features of firmness, portability and the ability of real-time analyzing. The work will provide a convenient and significant foundation for application of more high accuracy of Fourier-transform spectrometer.

  3. Typical effects of laser dazzling CCD camera

    Science.gov (United States)

    Zhang, Zhen; Zhang, Jianmin; Shao, Bibo; Cheng, Deyan; Ye, Xisheng; Feng, Guobin

    2015-05-01

    In this article, an overview of laser dazzling effect to buried channel CCD camera is given. The CCDs are sorted into staring and scanning types. The former includes the frame transfer and interline transfer types. The latter includes linear and time delay integration types. All CCDs must perform four primary tasks in generating an image, which are called charge generation, charge collection, charge transfer and charge measurement. In camera, the lenses are needed to input the optical signal to the CCD sensors, in which the techniques for erasing stray light are used. And the electron circuits are needed to process the output signal of CCD, in which many electronic techniques are used. The dazzling effects are the conjunct result of light distribution distortion and charge distribution distortion, which respectively derive from the lens and the sensor. Strictly speaking, in lens, the light distribution is not distorted. In general, the lens are so well designed and fabricated that its stray light can be neglected. But the laser is of much enough intensity to make its stray light obvious. In CCD image sensors, laser can induce a so large electrons generation. Charges transfer inefficiency and charges blooming will cause the distortion of the charge distribution. Commonly, the largest signal outputted from CCD sensor is restricted by capability of the collection well of CCD, and can't go beyond the dynamic range for the subsequent electron circuits maintaining normal work. So the signal is not distorted in the post-processing circuits. But some techniques in the circuit can make some dazzling effects present different phenomenon in final image.

  4. An LOD with improved breakdown voltage in full-frame CCD devices

    Science.gov (United States)

    Banghart, Edmund K.; Stevens, Eric G.; Doan, Hung Q.; Shepherd, John P.; Meisenzahl, Eric J.

    2005-02-01

    In full-frame image sensors, lateral overflow drain (LOD) structures are typically formed along the vertical CCD shift registers to provide a means for preventing charge blooming in the imager pixels. In a conventional LOD structure, the n-type LOD implant is made through the thin gate dielectric stack in the device active area and adjacent to the thick field oxidation that isolates the vertical CCD columns of the imager. In this paper, a novel LOD structure is described in which the n-type LOD impurities are placed directly under the field oxidation and are, therefore, electrically isolated from the gate electrodes. By reducing the electrical fields that cause breakdown at the silicon surface, this new structure permits a larger amount of n-type impurities to be implanted for the purpose of increasing the LOD conductivity. As a consequence of the improved conductance, the LOD width can be significantly reduced, enabling the design of higher resolution imaging arrays without sacrificing charge capacity in the pixels. Numerical simulations with MEDICI of the LOD leakage current are presented that identify the breakdown mechanism, while three-dimensional solutions to Poisson's equation are used to determine the charge capacity as a function of pixel dimension.

  5. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  6. CMS pixel upgrade project

    CERN Document Server

    Kaestli, Hans-Christian

    2010-01-01

    The LHC machine at CERN finished its first year of pp collisions at a center of mass energy of 7~TeV. While the commissioning to exploit its full potential is still ongoing, there are plans to upgrade its components to reach instantaneous luminosities beyond the initial design value after 2016. A corresponding upgrade of the innermost part of the CMS detector, the pixel detector, is needed. A full replacement of the pixel detector is planned in 2016. It will not only address limitations of the present system at higher data rates, but will aggressively lower the amount of material inside the fiducial tracking volume which will lead to better tracking and b-tagging performance. This article gives an overview of the project and illuminates the motivations and expected improvements in the detector performance.

  7. CMS pixel upgrade project

    CERN Document Server

    INSPIRE-00575876

    2011-01-01

    The LHC machine at CERN finished its first year of pp collisions at a center of mass energy of 7 TeV. While the commissioning to exploit its full potential is still ongoing, there are plans to upgrade its components to reach instantaneous luminosities beyond the initial design value after 2016. A corresponding upgrade of the innermost part of the CMS detector, the pixel detector, is needed. A full replacement of the pixel detector is planned in 2016. It will not only address limitations of the present system at higher data rates, but will aggressively lower the amount of material inside the fiducial tracking volume which will lead to better tracking and b-tagging performance. This article gives an overview of the project and illuminates the motivations and expected improvements in the detector performance.

  8. Measuring high-resolution sky luminance distributions with a CCD camera.

    Science.gov (United States)

    Tohsing, Korntip; Schrempf, Michael; Riechelmann, Stefan; Schilke, Holger; Seckmeyer, Gunther

    2013-03-10

    We describe how sky luminance can be derived from a newly developed hemispherical sky imager (HSI) system. The system contains a commercial compact charge coupled device (CCD) camera equipped with a fish-eye lens. The projection of the camera system has been found to be nearly equidistant. The luminance from the high dynamic range images has been calculated and then validated with luminance data measured by a CCD array spectroradiometer. The deviation between both datasets is less than 10% for cloudless and completely overcast skies, and differs by no more than 20% for all sky conditions. The global illuminance derived from the HSI pictures deviates by less than 5% and 20% under cloudless and cloudy skies for solar zenith angles less than 80°, respectively. This system is therefore capable of measuring sky luminance with the high spatial and temporal resolution of more than a million pixels and every 20 s respectively.

  9. VXD3: The SLD vertex detector upgrade based on a 307 Mpixel CCD system

    International Nuclear Information System (INIS)

    1995-07-01

    The SLD Collaboration is building a new CCD vertex detector (VXD3) comprising 96 3.2 Mpixel CCDs of 13 cm 2 each for a total of 307 million pixels. This system is an upgrade of the Pioneering CCD vertex detector VXD2 which has operated in SLD since 1992. The CCDs of VXD3 are mounted on beryllium ladders in three cylinders, providing three space point measurements along each track of about 5 microns resolution in all three coordinates. The design and construction of VXD3 builds on three years of successful performance of VXD2. Significant improvements are achieved with VXD3 in impact parameters resolution (about a factor of two) and acceptance (∼20%) through optimized geometry and reduced material. New readout electronics have been developed for this system. This new vertex detector will be installed in late 1995 for the future runs of SLD

  10. Efficient Photometry In-Frame Calibration (EPIC) Gaussian Corrections for Automated Background Normalization of Rate-Tracked Satellite Imagery

    Science.gov (United States)

    Griesbach, J.; Wetterer, C.; Sydney, P.; Gerber, J.

    Photometric processing of non-resolved Electro-Optical (EO) images has commonly required the use of dark and flat calibration frames that are obtained to correct for charge coupled device (CCD) dark (thermal) noise and CCD quantum efficiency/optical path vignetting effects respectively. It is necessary to account/calibrate for these effects so that the brightness of objects of interest (e.g. stars or resident space objects (RSOs)) may be measured in a consistent manner across the CCD field of view. Detected objects typically require further calibration using aperture photometry to compensate for sky background (shot noise). For this, annuluses are measured around each detected object whose contained pixels are used to estimate an average background level that is subtracted from the detected pixel measurements. In a new photometric calibration software tool developed for AFRL/RD, called Efficient Photometry In-Frame Calibration (EPIC), an automated background normalization technique is proposed that eliminates the requirement to capture dark and flat calibration images. The proposed technique simultaneously corrects for dark noise, shot noise, and CCD quantum efficiency/optical path vignetting effects. With this, a constant detection threshold may be applied for constant false alarm rate (CFAR) object detection without the need for aperture photometry corrections. The detected pixels may be simply summed (without further correction) for an accurate instrumental magnitude estimate. The noise distribution associated with each pixel is assumed to be sampled from a Poisson distribution. Since Poisson distributed data closely resembles Gaussian data for parameterized means greater than 10, the data may be corrected by applying bias subtraction and standard-deviation division. EPIC performs automated background normalization on rate-tracked satellite images using the following technique. A deck of approximately 50-100 images is combined by performing an independent median

  11. Protein diffraction experiments with Atlas CCD detector

    Czech Academy of Sciences Publication Activity Database

    Dohnálek, Jan; Kovaľ, Tomáš; Dušek, Michal

    2008-01-01

    Roč. 64, Suppl. - abstracts (2008), C192 ISSN 0108-7673. [Congress of the International Union of Crystallography (IUCr) /21./. 23.08.2008-31.08.2008, Osaka] Institutional research plan: CEZ:AV0Z10100521 Keywords : x-ray data collection * CCD detectors * protein crystallography applications Subject RIV: BM - Solid Matter Physics ; Magnetism

  12. Macromolecular crystallographic results obtained using a 2048x2048 CCD detector at CHESS

    International Nuclear Information System (INIS)

    Thiel, D.J.; Ealick, S.E.; Tate, M.W.; Gruner, S.M.; Eikenberry, E.F.

    1996-01-01

    We present results of macromolecular crystallographic experiments performed at the Cornell High Energy Synchrotron Source (CHESS) with a new CCD-based detector. This detector, installed in January 1995, complements a 1024x1024 CCD detector that has been in continuous operation at CHESS since December 1993. The new detector is based on a 4-port, 2048x2048 pixel CCD that is directly coupled to a Gd 2 O 2 S:Tb phosphor by a 3:1 tapered fiber optic. The active area of the phosphor is a square 82 mm on an edge. The readout time is 7 seconds. In the standard mode of operation, the pixel size at the active area is 41 μm on the edge leading to the capability of resolving approximately 200 orders of diffraction across the detector face. The detector also operates in a 1024x1024 mode in which the pixel size is electronically increased by a factor of 4 in area resulting in smaller data files and faster detector readout but at the expense of spatial resolution. Most of the data that has been collected by this detector has been collected in this mode. Dozens of data sets have been collected by many experimenters using this detector at CHESS during the four month period from its installation until the start of the six-month down period of the storage ring. The capabilities of the detector will be illustrated with results from various crystallographic measurements including experiments in which the recorded diffraction patterns extend in resolution as far as 1 A. The results demonstrate that this detector is capable of collecting data of quality at least equal to that of imaging plates but, in many circumstances, with much greater beamline efficiency. copyright 1996 American Institute of Physics

  13. Fotometría de imágenes CCD insuficientemente muestreadas

    Science.gov (United States)

    Ostrov, P. G.

    Se enfrenta el problema de la fotometría de imágenes CCD con una escala inadecuada (fwhm menor o igual que el tamaño de un pixel) y psf fuertemente variable con la posición. Se analiza, en particular, la aplicabilidad de una táctica propuesta por Massey, consistente en eliminar las vecinas débiles (utilizando una psf rudimentaria) para luego efectuar una fotometría de apertura sobre las estrellas brillantes. Se determina, mediante experimentos numéricos, la precisión alcanzada mediante esta técnica.

  14. The ALICE Pixel Detector

    International Nuclear Information System (INIS)

    Mercado-Perez, Jorge

    2002-01-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well

  15. Active pixel sensors: The sensor of choice for future space applications

    OpenAIRE

    Leijtens, J.; Theuwissen, A.; Rao, P.R.; Wang, X.; Xie, N.

    2007-01-01

    It is generally known that active pixel sensors (APS) have a number of advantages over CCD detectors if it comes to cost for mass production, power consumption and ease of integration. Nevertheless, most space applications still use CCD detectors because they tend to give better performance and have a successful heritage. To this respect a change may be at hand with the advent of deep sub-micron processed APS imagers (< 0.25-micron feature size). Measurements performed on test structures at t...

  16. Fully depleted back-illuminated p-channel CCD development

    Energy Technology Data Exchange (ETDEWEB)

    Bebek, Chris J.; Bercovitz, John H.; Groom, Donald E.; Holland, Stephen E.; Kadel, Richard W.; Karcher, Armin; Kolbe, William F.; Oluseyi, Hakeem M.; Palaio, Nicholas P.; Prasad, Val; Turko, Bojan T.; Wang, Guobin

    2003-07-08

    An overview of CCD development efforts at Lawrence Berkeley National Laboratory is presented. Operation of fully-depleted, back-illuminated CCD's fabricated on high resistivity silicon is described, along with results on the use of such CCD's at ground-based observatories. Radiation damage and point-spread function measurements are described, as well as discussion of CCD fabrication technologies.

  17. Measuring neutron fluences and gamma/x-ray fluxes with CCD cameras

    International Nuclear Information System (INIS)

    Yates, G.J.; Smith, G.W.; Zagarino, P.; Thomas, M.C.

    1991-01-01

    Volume and area measurements of transient radiation-induced pixel charge in English Electric Valve (EEV) Frame Transfer (FT) charge coupled devices (CCDs) from irradiation with pulsed neutrons (14 MeV) and Bremsstrahlung photons (16-MeV endpoint) are utilized to calibrate the devices as radiometric imaging sensors capable of distinguishing between the two types of ionizing radiation. Measurements indicate ∼0.5 V/rad responsivity with ≥1 rad required for saturation from photon irradiation. Neutron-generated localized charge centers or ''peaks'' binned by area and amplitude as functions of fluence in the 10 5 to 10 7 n/cm 2 range indicate smearing over ∼1 to 10% of CCD array with charge per pixel ranging between noise and saturation levels. 9 refs., 12 figs., 4 tabs

  18. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager.

    Science.gov (United States)

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2011-10-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm(2) at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm(2). Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm(2) while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt.

  19. A self triggered intensified Ccd (Stic)

    International Nuclear Information System (INIS)

    Charon, Y.; Laniece, P.; Bendali, M.

    1990-01-01

    We are developing a new device based on the results reported previously of the successfull coincidence detection of β- particles with a high spatial resolution [1]. The novelty of the device consists in triggering an intensified CCD, i.e. a CCD coupled to an image intensifier (II), by an electrical signal collected from the II itself. This is a suitable procedure for detecting with high efficiency and high resolution low light rare events. The trigger pulse is obtained from the secondary electrons produced by multiplication in a double microchannel plate (MCP) and collected on the aluminized layer protecting the phosphor screen in the II. Triggering efficiencies up to 80% has been already achieved

  20. Recording of radiation-induced optical density changes in doped agarose gels with a CCD camera

    International Nuclear Information System (INIS)

    Tarte, B.J.; Jardine, P.A.; Van Doorn, T.

    1996-01-01

    Full text: Spatially resolved dose measurement with iron-doped agarose gels is continuing to be investigated for applications in radiotherapy dosimetry. It has previously been proposed to use optical methods, rather than MRI, for dose measurement with such gels and this has been investigated using a spectrophotometer (Appleby A and Leghrouz A, Med Phys, 18:309-312, 1991). We have previously studied the use of a pencil beam laser for such optical density measurement of gels and are currently investigating charge-coupled devices (CCD) camera imaging for the same purpose but with the advantages of higher data acquisition rates and potentially greater spatial resolution. The gels used in these studies were poured, irradiated and optically analysed in Perspex casts providing gel sections 1 cm thick and up to 20 cm x 30 cm in dimension. The gels were also infused with a metal indicator dye (xylenol orange) to render the radiation induced oxidation of the iron in the gel sensitive to optical radiation, specifically in the green spectral region. Data acquisition with the CCD camera involved illumination of the irradiated gel section with a diffuse white light source, with the light from the plane of the gel section focussed to the CCD array with a manual zoom lens. The light was also filtered with a green colour glass filter to maximise the contrast between unirradiated and irradiated gels. The CCD camera (EG and G Reticon MC4013) featured a 1024 x 1024 pixel array and was interfaced to a PC via a frame grabber acquisition board with 8 bit resolution. The performance of the gel dosimeter was appraised in mapping of physical and dynamic wedged 6 MV X-ray fields. The results from the CCD camera detection system were compared with both ionisation chamber data and laser based optical density measurements of the gels. Cross beam profiles were extracted from each measurement system at a particular depth (eg. 2.3 cm for the physical wedge field) for direct comparison. A

  1. Modelling charge storage in Euclid CCD structures

    International Nuclear Information System (INIS)

    Clarke, A S; Holland, A; Hall, D J; Burt, D

    2012-01-01

    The primary aim of ESA's proposed Euclid mission is to observe the distribution of galaxies and galaxy clusters, enabling the mapping of the dark architecture of the universe [1]. This requires a high performance detector, designed to endure a harsh radiation environment. The e2v CCD204 image sensor was redesigned for use on the Euclid mission [2]. The resulting e2v CCD273 has a narrower serial register electrode and transfer channel compared to its predecessor, causing a reduction in the size of charge packets stored, thus reducing the number of traps encountered by the signal electrons during charge transfer and improving the serial Charge Transfer Efficiency (CTE) under irradiation [3]. The proposed Euclid CCD has been modelled using the Silvaco TCAD software [4], to test preliminary calculations for the Full Well Capacity (FWC) and the channel potential of the device and provide indications of the volume occupied by varying signals. These results are essential for the realisation of the mission objectives and for radiation damage studies, with the aim of producing empirically derived formulae to approximate signal-volume characteristics in the devices. These formulae will be used in the radiation damage (charge trapping) models. The Silvaco simulations have been tested against real devices to compare the experimental measurements to those predicted in the models. Using these results, the implications of this study on the Euclid mission can be investigated in more detail.

  2. The Advanced Stellar Compass onboard the Oersted satellite

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Eisenman, Allan R.; Liebe, Carl Christian

    1997-01-01

    In 1997 the first Danish satellite will be launched. The primarily scientific objective of the satellite is to map the magnetic field of the Earth. The attitude of the satellite is determined by an advanced stellar compass (star tracker). An advanced stellar compass consists of a CCD camera...

  3. Harmonics rejection in pixelated interferograms using spatio-temporal demodulation.

    Science.gov (United States)

    Padilla, J M; Servin, M; Estrada, J C

    2011-09-26

    Pixelated phase-mask interferograms have become an industry standard in spatial phase-shifting interferometry. These pixelated interferograms allow full wavefront encoding using a single interferogram. This allows the study of fast dynamic events in hostile mechanical environments. Recently an error-free demodulation method for ideal pixelated interferograms was proposed. However, non-ideal conditions in interferometry may arise due to non-linear response of the CCD camera, multiple light paths in the interferometer, etc. These conditions generate non-sinusoidal fringes containing harmonics which degrade the phase estimation. Here we show that two-dimensional Fourier demodulation of pixelated interferograms rejects most harmonics except the complex ones at {-3(rd), +5(th), -7(th), +9(th), -11(th),…}. We propose temporal phase-shifting to remove these remaining harmonics. In particular, a 2-step phase-shifting algorithm is used to eliminate the -3(rd) and +5(th) complex harmonics, while a 3-step one is used to remove the -3(rd), +5harmonics. © 2011 Optical Society of America

  4. Pixel Interpolation Methods

    OpenAIRE

    Mintěl, Tomáš

    2009-01-01

    Tato diplomová práce se zabývá akcelerací interpolačních metod s využitím GPU a architektury NVIDIA (R) CUDA TM. Grafický výstup je reprezentován demonstrační aplikací pro transformaci obrazu nebo videa s použitím vybrané interpolace. Časově kritické části kódu jsou přesunuty na GPU a vykonány paralelně. Pro práci s obrazem a videem jsou použity vysoce optimalizované algoritmy z knihovny OpenCV, od firmy Intel. This master's thesis deals with acceleration of pixel interpolation methods usi...

  5. The ALICE pixel detector

    CERN Document Server

    Mercado Perez, J

    2002-01-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well. (3 refs).

  6. CCD [charge-coupled device] sensors in synchrotron x-ray detectors

    International Nuclear Information System (INIS)

    Strauss, M.G.; Naday, I.; Sherman, I.S.; Kraimer, M.R.; Westbrook, E.M.; Zaluzec, N.J.

    1987-01-01

    The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron x-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ∼1 CCD electron/x-ray photon, a peak saturation capacity of >10 6 x rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 x 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode x-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at the rate of ∼1 frame/s or a complete 3-dimensional data set from a single crystal in ∼2 min. 16 refs., 16 figs., 2 tabs

  7. Optical Cloud Pixel Recovery via Machine Learning

    Directory of Open Access Journals (Sweden)

    Subrina Tahsin

    2017-05-01

    Full Text Available Remote sensing derived Normalized Difference Vegetation Index (NDVI is a widely used index to monitor vegetation and land use change. NDVI can be retrieved from publicly available data repositories of optical sensors such as Landsat, Moderate Resolution Imaging Spectro-radiometer (MODIS and several commercial satellites. Studies that are heavily dependent on optical sensors are subject to data loss due to cloud coverage. Specifically, cloud contamination is a hindrance to long-term environmental assessment when using information from satellite imagery retrieved from visible and infrared spectral ranges. Landsat has an ongoing high-resolution NDVI record starting from 1984. Unfortunately, this long time series NDVI data suffers from the cloud contamination issue. Though both simple and complex computational methods for data interpolation have been applied to recover cloudy data, all the techniques have limitations. In this paper, a novel Optical Cloud Pixel Recovery (OCPR method is proposed to repair cloudy pixels from the time-space-spectrum continuum using a Random Forest (RF trained and tested with multi-parameter hydrologic data. The RF-based OCPR model is compared with a linear regression model to demonstrate the capability of OCPR. A case study in Apalachicola Bay is presented to evaluate the performance of OCPR to repair cloudy NDVI reflectance. The RF-based OCPR method achieves a root mean squared error of 0.016 between predicted and observed NDVI reflectance values. The linear regression model achieves a root mean squared error of 0.126. Our findings suggest that the RF-based OCPR method is effective to repair cloudy pixels and provides continuous and quantitatively reliable imagery for long-term environmental analysis.

  8. Multiple image encryption scheme based on pixel exchange operation and vector decomposition

    Science.gov (United States)

    Xiong, Y.; Quan, C.; Tay, C. J.

    2018-02-01

    We propose a new multiple image encryption scheme based on a pixel exchange operation and a basic vector decomposition in Fourier domain. In this algorithm, original images are imported via a pixel exchange operator, from which scrambled images and pixel position matrices are obtained. Scrambled images encrypted into phase information are imported using the proposed algorithm and phase keys are obtained from the difference between scrambled images and synthesized vectors in a charge-coupled device (CCD) plane. The final synthesized vector is used as an input in a random phase encoding (DRPE) scheme. In the proposed encryption scheme, pixel position matrices and phase keys serve as additional private keys to enhance the security of the cryptosystem which is based on a 4-f system. Numerical simulations are presented to demonstrate the feasibility and robustness of the proposed encryption scheme.

  9. Measuring neutron fluences and gamma/x-ray fluxes with CCD cameras

    International Nuclear Information System (INIS)

    Yates, G.J.; Smith, G.W.; Zagarino, P.; Thomas, M.C.

    1991-01-01

    The capability to measure bursts of neutron fluences and gamma/x-ray fluxes directly with charge coupled device (CCD) cameras while being able to distinguish between the video signals produced by these two types of radiation, even when they occur simultaneously, has been demonstrated. Volume and area measurements of transient radiation-induced pixel charge in English Electric Valve (EEV) Frame Transfer (FT) charge coupled devices (CCDs) from irradiation with pulsed neutrons (14 MeV) and Bremsstrahlung photons (4--12 MeV endpoint) are utilized to calibrate the devices as radiometric imaging sensors capable of distinguishing between the two types of ionizing radiation. Measurements indicate ∼.05 V/rad responsivity with ≥1 rad required for saturation from photon irradiation. Neutron-generated localized charge centers or ''peaks'' binned by area and amplitude as functions of fluence in the 10 5 to 10 7 n/cm 2 range indicate smearing over ∼1 to 10% of CCD array with charge per pixel ranging between noise and saturation levels

  10. Improving quantum efficiency and spectral resolution of a CCD through direct manipulation of the depletion region

    Science.gov (United States)

    Brown, Craig; Ambrosi, Richard M.; Abbey, Tony; Godet, Olivier; O'Brien, R.; Turner, M. J. L.; Holland, Andrew; Pool, Peter J.; Burt, David; Vernon, David

    2008-07-01

    Future generations of X-ray astronomy instruments will require position sensitive detectors in the form of charge-coupled devices (CCDs) for X-ray spectroscopy and imaging with the ability to probe the X-ray universe with greater efficiency. This will require the development of CCDs with structures that will improve their quantum efficiency over the current state of the art. The quantum efficiency improvements would have to span a broad energy range (0.2 keV to >15 keV). These devices will also have to be designed to withstand the harsh radiation environments associated with orbits that extend beyond the Earth's magnetosphere. This study outlines the most recent work carried out at the University of Leicester focused on improving the quantum efficiency of an X-ray sensitive CCD through direct manipulation of the device depletion region. It is also shown that increased spectral resolution is achieved using this method due to a decrease in the number of multi-pixel events. A Monte Carlo and analytical models of the CCD have been developed and used to determine the depletion depths achieved through variation of the device substrate voltage, Vss. The models are also used to investigate multi-pixel event distributions and quantum efficiency as a function of depletion depth.

  11. High-performance dual-speed CCD camera system for scientific imaging

    Science.gov (United States)

    Simpson, Raymond W.

    1996-03-01

    Traditionally, scientific camera systems were partitioned with a `camera head' containing the CCD and its support circuitry and a camera controller, which provided analog to digital conversion, timing, control, computer interfacing, and power. A new, unitized high performance scientific CCD camera with dual speed readout at 1 X 106 or 5 X 106 pixels per second, 12 bit digital gray scale, high performance thermoelectric cooling, and built in composite video output is described. This camera provides all digital, analog, and cooling functions in a single compact unit. The new system incorporates the A/C converter, timing, control and computer interfacing in the camera, with the power supply remaining a separate remote unit. A 100 Mbyte/second serial link transfers data over copper or fiber media to a variety of host computers, including Sun, SGI, SCSI, PCI, EISA, and Apple Macintosh. Having all the digital and analog functions in the camera made it possible to modify this system for the Woods Hole Oceanographic Institution for use on a remote controlled submersible vehicle. The oceanographic version achieves 16 bit dynamic range at 1.5 X 105 pixels/second, can be operated at depths of 3 kilometers, and transfers data to the surface via a real time fiber optic link.

  12. Improving the resolution in soft X-ray emission spectrometers through photon-counting using an Electron Multiplying CCD

    International Nuclear Information System (INIS)

    Hall, D J; Soman, M; Tutt, J; Murray, N; Holland, A; Schmitt, T; Raabe, J; Strocov, V N; Schmitt, B

    2012-01-01

    In 2007, a study of back-illuminated Charge-Coupled Devices (CCDs) for soft X-ray photon detection demonstrated the improvements that could be brought over more traditional micro-channel plate detectors for X-ray spectrometers based on diffraction gratings and position sensitive detectors. Whilst the spatial resolution was reported to be improved dramatically, an intrinsic limit of approximately 25 micrometers was found due to the spreading of the charge cloud generated in the CCD across several pixels. To overcome this resolution limit, it is necessary to move away from the current integrated imaging methods and consider a photon-counting approach, recording the photon interaction locations to the sub-pixel level. To make use of photon-counting techniques it is important that the individual events are separable. To maintain the throughput of the spectrometer for high intensity lines, higher frame rates and therefore higher readout speeds are required. With CCD based systems, the increased noise at high readout speeds can limit the photon-counting performance. The Electron-Multiplying CCD shares a similar architecture with the standard CCD but incorporates a g ain register . This novel addition allows controllable gain to be applied to the signal before the read noise is introduced, therefore allowing individual events to be resolved above the noise even at much higher readout rates. In the past, the EM-CCD has only been available with imaging areas too small to be practical in soft X-ray emission spectrometers. The current drive for large area Electron-Multiplying CCDs is opening this technology to new photon-counting applications, requiring in-depth analysis of the processes and techniques involved. Early results indicate that through the introduction of photon-counting techniques the resolution in such systems can be dramatically improved.

  13. Autonomous star tracker based on active pixel sensors (APS)

    Science.gov (United States)

    Schmidt, U.

    2017-11-01

    Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.

  14. New design for the UCO/Lick Observatory CCD guide camera

    Science.gov (United States)

    Wei, Mingzhi; Stover, Richard J.

    1996-03-01

    A new CCD based field acquisition and telescope guiding camera is being designed and built at UCO/Lick Observatory. Our goal is a camera which is fully computer controllable, compact in size, versatile enough to provide a wide variety of image acquisition modes, and able to operate with a wide variety of CCD detectors. The camera will improve our remote-observing capabilities since it will be easy to control the camera and obtain images over the Observatory computer network. To achieve the desired level of operating flexibility, the design incorporates state-of-the-art technologies such as high density, high speed programmable logic devices and non-volatile static memory. Various types of CCDs can be used in this system without major modification of the hardware or software. Though fully computer controllable, the camera can be operated as a stand-alone unit with most operating parameters set locally. A stand-alone display subsystem is also available. A thermoelectric device is used to cool the CCD to about -45c. Integration times can be varied over a range of 0.1 to 1000 seconds. High speed pixel skipping in both horizontal and vertical directions allows us to quickly access a selected subarea of the detector. Three different read out speeds allow the astronomer to select between high-speed/high-noise and low-speed/low-noise operation. On- chip pixel binning and MPP operation are also selectable options. This system can provide automatic sky level measurement and subtraction to accommodate dynamically changing background levels.

  15. Detecting potential ship objects from satellite pictures

    International Nuclear Information System (INIS)

    Luo, B.; Yang, C.C.; Chang, S.K.; Yang, M.C.K.

    1984-01-01

    Heuristic techniques are presented to detect potential ship objects from satellite pictures. These techniques utilize some noise structures of the pixel gray levels, and certain inherent features of a ship in a satellite picture. The scheme has been implemented and successfully tested on SEASAT satellite pictures. A general approach for database-oriented object detection is also suggested

  16. Applications of a pnCCD detector coupled to columnar structure CsI(Tl) scintillator system in ultra high energy X-ray Laue diffraction

    Science.gov (United States)

    Shokr, M.; Schlosser, D.; Abboud, A.; Algashi, A.; Tosson, A.; Conka, T.; Hartmann, R.; Klaus, M.; Genzel, C.; Strüder, L.; Pietsch, U.

    2017-12-01

    Most charge coupled devices (CCDs) are made of silicon (Si) with typical active layer thicknesses of several microns. In case of a pnCCD detector the sensitive Si thickness is 450 μm. However, for silicon based detectors the quantum efficiency for hard X-rays drops significantly for photon energies above 10 keV . This drawback can be overcome by combining a pixelated silicon-based detector system with a columnar scintillator. Here we report on the characterization of a low noise, fully depleted 128×128 pixels pnCCD detector with 75×75 μm2 pixel size coupled to a 700 μm thick columnar CsI(Tl) scintillator in the photon range between 1 keV to 130 keV . The excellent performance of the detection system in the hard X-ray range is demonstrated in a Laue type X-ray diffraction experiment performed at EDDI beamline of the BESSY II synchrotron taken at a set of several GaAs single crystals irradiated by white synchrotron radiation. With the columnar structure of the scintillator, the position resolution of the whole system reaches a value of less than one pixel. Using the presented detector system and considering the functional relation between indirect and direct photon events Laue diffraction peaks with X-ray energies up to 120 keV were efficiently detected. As one of possible applications of the combined CsI-pnCCD system we demonstrate that the accuracy of X-ray structure factors extracted from Laue diffraction peaks can be significantly improved in hard X-ray range using the combined CsI(Tl)-pnCCD system compared to a bare pnCCD.

  17. CCD Photometry Using Multiple Comparison Stars

    Directory of Open Access Journals (Sweden)

    Yonggi Kim

    2004-09-01

    Full Text Available The accuracy of CCD observations obtained at the Korean 1.8 m telescope has been studied. Seventeen comparison stars in the vicinity of the cataclysmic variable BG CMi have been measured. The ``artificial" star has been used instead of the ``control" star, what made possible to increase accuracy estimates by a factor of 1.3-2.1 times for ``good" and ``cloudy" nights, respectively. The algorithm of iterative determination of accuracy and weights of few comparison stars contributing to the artificial star, has been presented. The accuracy estimates for 13-mag stars are around 0.002 m mag for exposure times of 30 sec.

  18. The Pixelated Revolution

    Directory of Open Access Journals (Sweden)

    Marko Stamenković

    2014-05-01

    Full Text Available The text foregrounds the relationship between three main elements: gaze, image and violence. Framed by the theoretical propositions in the selected texts by Marie-José Mondzain and Jean-Luc Nancy, this relationship is considered in the context of the current socio-political realities in the Middle East (Syria but also in the broader, global sense. I take contemporary visual practice as my starting point and consider “The Pixelated Revolution” (the project by the Lebanese artist Rabih Mroué as exemplary in this context in order to engage with the following phenomenon - recording one’s own death in the revolutionary and wartime conditions, at a level that connects several key elements of the debate: the visual character of mobile (phone technology, image-producing operations, the concept of self-sacrifice, and the mobilization of communities towards radical transformations. The purpose of this text is to encourage future reflections about the role images perform nowadays (in particular those created under the conditions of lethal threat and violence and about the implications of an external observer in this process, when looking at such images in the exhibition context from a ‘lateral’ (i.e., supposedly safe and neutral perspective.

  19. Diamond pixel modules

    International Nuclear Information System (INIS)

    Asner, D.; Barbero, M.; Bellini, V.; Belyaev, V.; Brom, J-M.; Bruzzi, M.; Chren, D.; Cindro, V.; Claus, G.; Cristinziani, M.; Costa, S.; D'Alessandro, R.; Boer, W. de; Dobos, D.; Dolenc, I.; Dulinski, W.; Duris, J.; Eremin, V.; Eusebi, R.; Frais-Koelbl, H.

    2011-01-01

    With the commissioning of the LHC in 2010 and upgrades expected in 2015, ATLAS and CMS are planning to upgrade their innermost tracking layers with radiation hard technologies. Chemical Vapor Deposition diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle, CDF and all LHC experiments. This material is now being considered as a sensor material for use very close to the interaction region where the most extreme radiation conditions exist. Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences expected at the super-LHC. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8x10 16 protons/cm 2 illustrating that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve. We also present beam test results of irradiated complete diamond pixel modules.

  20. Diamond pixel modules

    Energy Technology Data Exchange (ETDEWEB)

    Asner, D. [Carleton University, Ottawa (Canada); Barbero, M. [Universitaet Bonn (Germany); Bellini, V. [INFN/University of Catania (Italy); Belyaev, V. [MEPHI Institute, Moscow (Russian Federation); Brom, J-M. [IPHC, Strasbourg (France); Bruzzi, M. [INFN/University of Florence (Italy); Chren, D. [Czech Technical University, Prague (Czech Republic); Cindro, V. [Jozef Stefan Institute, Ljubljana (Slovenia); Claus, G. [IPHC, Strasbourg (France); Cristinziani, M. [Universitaet Bonn (Germany); Costa, S. [INFN/University of Catania (Italy); D' Alessandro, R. [Department of Energetics/INFN Florence (Italy); Boer, W. de [Universitaet Karlsruhe, Karlsruhe (Germany); Dobos, D. [CERN, Geneva (Switzerland); Dolenc, I. [Jozef Stefan Institute, Ljubljana (Slovenia); Dulinski, W. [IPHC, Strasbourg (France); Duris, J. [UCLA, Los Angeles, CA (United States); Eremin, V. [Ioffe Institute, St. Petersburg (Russian Federation); Eusebi, R. [FNAL, Batavia (United States); Frais-Koelbl, H. [Fachhochschule fuer Wirtschaft und Technik, Wiener Neustadt (Austria)

    2011-04-21

    With the commissioning of the LHC in 2010 and upgrades expected in 2015, ATLAS and CMS are planning to upgrade their innermost tracking layers with radiation hard technologies. Chemical Vapor Deposition diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle, CDF and all LHC experiments. This material is now being considered as a sensor material for use very close to the interaction region where the most extreme radiation conditions exist. Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences expected at the super-LHC. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8x10{sup 16} protons/cm{sup 2} illustrating that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve. We also present beam test results of irradiated complete diamond pixel modules.

  1. ATLAS Pixel Detector Operational Experience

    CERN Document Server

    Di Girolamo, B; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.9% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  2. Absence of satellites of asteroids

    International Nuclear Information System (INIS)

    Gehrels, T.; Drummond, J.D.; Levenson, N.A.

    1987-01-01

    The absence of satellites within 0.1-7.0 arcmin of minor planets noted in the present CCD imaging survey is judged consistent with previous theoretical studies of collisions in which it is held that satellites would have to be larger than about 30 km in order to be collisionally stable. In view of tidal stability, the only main belt asteroid satellites which could conceivably possess stability over eons are near-contact binaries. Any recent collisional debris would be chaotic and collisionally unstable. 15 references

  3. New Design Concept for Universal CCD Controller

    Directory of Open Access Journals (Sweden)

    Wonyong Han

    1994-06-01

    Full Text Available Currently, the CCDs are widely used in astronomical observations either in direct imaging use or spectroscopic mode. However according to the recent technical advances, new large format CCDs are rapidly developed which have better performances with higher quantum efficiency and sensitivity. In many cases, some microprocessors have been adopted to deal with necessary digital logic for a CCD imaging system. This could often lack the flexibility of a system for a user to upgrade with new devices, especially of it is a commercial product. A new design concept has been explored which could provide the opportunity to deal with any format of devices from ant manufactures effectively for astronomical purposes. Recently available PLD (Programmable Logic Devices technology makes it possible to develop such digital circuit design, which can be integrated into a single component, instead of using microprocessors. The design concept could dramatically increase the efficiency and flexibility of a CCD imaging system, particularly when new or large format devices are available and to upgrade the performance of a system. Some variable system control parameters can be selected by a user with a wider range of choice. The software can support such functional requirements very conveniently. This approach can be applied not only to astronomical purpose, but also to some related fields, such as remote sensing and industrial applications.

  4. From Pixels to Planets

    Science.gov (United States)

    Brownston, Lee; Jenkins, Jon M.

    2015-01-01

    The Kepler Mission was launched in 2009 as NASAs first mission capable of finding Earth-size planets in the habitable zone of Sun-like stars. Its telescope consists of a 1.5-m primary mirror and a 0.95-m aperture. The 42 charge-coupled devices in its focal plane are read out every half hour, compressed, and then downlinked monthly. After four years, the second of four reaction wheels failed, ending the original mission. Back on earth, the Science Operations Center developed the Science Pipeline to analyze about 200,000 target stars in Keplers field of view, looking for evidence of periodic dimming suggesting that one or more planets had crossed the face of its host star. The Pipeline comprises several steps, from pixel-level calibration, through noise and artifact removal, to detection of transit-like signals and the construction of a suite of diagnostic tests to guard against false positives. The Kepler Science Pipeline consists of a pipeline infrastructure written in the Java programming language, which marshals data input to and output from MATLAB applications that are executed as external processes. The pipeline modules, which underwent continuous development and refinement even after data started arriving, employ several analytic techniques, many developed for the Kepler Project. Because of the large number of targets, the large amount of data per target and the complexity of the pipeline algorithms, the processing demands are daunting. Some pipeline modules require days to weeks to process all of their targets, even when run on NASA's 128-node Pleiades supercomputer. The software developers are still seeking ways to increase the throughput. To date, the Kepler project has discovered more than 4000 planetary candidates, of which more than 1000 have been independently confirmed or validated to be exoplanets. Funding for this mission is provided by NASAs Science Mission Directorate.

  5. CMS Barrel Pixel Detector Overview

    CERN Document Server

    Kästli, H C; Erdmann, W; Gabathuler, K; Hörmann, C; Horisberger, Roland Paul; König, S; Kotlinski, D; Meier, B; Robmann, P; Rohe, T; Streuli, S

    2007-01-01

    The pixel detector is the innermost tracking device of the CMS experiment at the LHC. It is built from two independent sub devices, the pixel barrel and the end disks. The barrel consists of three concentric layers around the beam pipe with mean radii of 4.4, 7.3 and 10.2 cm. There are two end disks on each side of the interaction point at 34.5 cm and 46.5 cm. This article gives an overview of the pixel barrel detector, its mechanical support structure, electronics components, services and its expected performance.

  6. Energy dependent charge spread function in a dedicated synchrotron beam pnCCD detector

    International Nuclear Information System (INIS)

    Yousef, Hazem

    2011-01-01

    A scan on the pixel edges is the method which is used to resolve the electron cloud size in the pixel array of the pnCCD detector. The EDR synchrotron radiation in BESSY is the source of the X-ray photons which are used in the scans. The radius of the electron cloud as a function of the impinging photon energy is analyzed. The angle of incidence of the X-ray beam is employed in the measurements. The measurements are validated by the numerical simulation models. The inclined X-ray track leads to distribute the electron clouds in a certain number of pixels according to the incident angle of the X-ray beam. The pixels detect different electron clouds according to their generation position in the detector bulk. A collimated X-ray beam of 12.14 keV is used in the measurements with 30 and 40 entrance angles. It is shown that the two factors that leads to expand the electron clouds namely the diffusion and the mutual electrostatic repulsion can be separated from the measured electron clouds. It is noticed as well that the influence of the mutual electrostatic repulsion dominates the cloud expansion over the diffusion process in the collection time of the detector. The perpendicular X-ray track leads to determine the average radius of the electron cloud per photon energy. The results show that the size of the electron clouds (RMS) in the energy range of [5.0-21.6] keV is smaller than the pixel size. (orig.)

  7. Energy dependent charge spread function in a dedicated synchrotron beam pnCCD detector

    Energy Technology Data Exchange (ETDEWEB)

    Yousef, Hazem

    2011-05-20

    A scan on the pixel edges is the method which is used to resolve the electron cloud size in the pixel array of the pnCCD detector. The EDR synchrotron radiation in BESSY is the source of the X-ray photons which are used in the scans. The radius of the electron cloud as a function of the impinging photon energy is analyzed. The angle of incidence of the X-ray beam is employed in the measurements. The measurements are validated by the numerical simulation models. The inclined X-ray track leads to distribute the electron clouds in a certain number of pixels according to the incident angle of the X-ray beam. The pixels detect different electron clouds according to their generation position in the detector bulk. A collimated X-ray beam of 12.14 keV is used in the measurements with 30 and 40 entrance angles. It is shown that the two factors that leads to expand the electron clouds namely the diffusion and the mutual electrostatic repulsion can be separated from the measured electron clouds. It is noticed as well that the influence of the mutual electrostatic repulsion dominates the cloud expansion over the diffusion process in the collection time of the detector. The perpendicular X-ray track leads to determine the average radius of the electron cloud per photon energy. The results show that the size of the electron clouds (RMS) in the energy range of [5.0-21.6] keV is smaller than the pixel size. (orig.)

  8. Fallow land mapping for better crop monitoring in Huang-Huai-Hai Plain using HJ-1 CCD data

    International Nuclear Information System (INIS)

    Zhang, Miao; Wu, Bingfang; Meng, Jihua; Dong, Taifeng; You, Xingzhi

    2014-01-01

    The prediction of grain production is essential for socio-economic development planning, guidance and control of macro cropping structure adjustment. Fallow areas should be identified each growing season which is critical for grain production prediction. This paper focuses on fallow arable land monitoring during summer grain season in the Huang-Huai-Hai Plain using China Environment Satellite HJ-1 CCD data. With the two satellites HJ-1A and HJ-1B, high temporal Normalized Difference Vegetation Index (NDVI) can be obtained. HJ-1 CCD data were acquired from early March to early June in 2010 over the Huang-Huai-Hai Plain. Multi-temporal HJ-1 CCD data were pre-processed and time series of NDVI were derived. An algorithm for separating cropped and fallow areas was developed based on three key periods of NDVI in early-March, mid-April and mid-May, 2010. The influence of fallow arable lands to yield estimation and crop condition monitoring over the Huang-Huai-Hai Plain were also investigated and analyzed. Preliminary results in this paper showed that HJ-1 CCD data are capable for fallow land monitoring. Information of fallow arable lands is an essential part of crop monitoring and it should be incorporated into crop monitoring systems. In the future, the fallow lands over autumn grain season should also be identified and information of fallow arable lands should be generated yearly in order to get more reliable production prediction

  9. Parallel encoders for pixel detectors

    International Nuclear Information System (INIS)

    Nikityuk, N.M.

    1991-01-01

    A new method of fast encoding and determining the multiplicity and coordinates of fired pixels is described. A specific example construction of parallel encodes and MCC for n=49 and t=2 is given. 16 refs.; 6 figs.; 2 tabs

  10. PIXEL: Japanese InSAR community for crustal deformation research

    Science.gov (United States)

    Furuya, M.; Shimada, M.; Ozawa, T.; Fukushima, Y.; Aoki, Y.; Miyagi, Y.; Kitagawa, S.

    2007-12-01

    In anticipation of the launch of ALOS (Advanced Land Observation Satellite) by JAXA (Japan Aerospace eXploration Agency), and in order to expand and bolster the InSAR community for crustal deformation research in Japan, a couple of scientists established a consortium, PIXEL, in November 2005 in a completely bottom-up fashion. PIXEL stands for Palsar Interferometry Consortium to Study our Evolving Land. Formally, it is a research contract between JAXA and Earthquake Research Institute (ERI), University of Tokyo. As ERI is a shared institute of the Japanese universities and research institutes, every scientist at all Japanese universities and institutes can participate in this consortium. The activity of PIXEL includes information exchange by mailing list, tutorial workshop for InSAR software, research workshop, and PALSAR data sharing. After the launch of ALOS, we have already witnessed several earthquakes and volcanic activities using PALSAR interferometry. We will briefly show and digest some of those observation results.

  11. BVRI CCD photometry of Omega Centauri

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.

    1987-01-01

    Color-magnitude diagrams (CMDs) of V vs B-V, V vs V-I, and V vs B-I have been constructed based on 179 BVRI CCD frames of two adjoining 4x2.5-arcmin fields in Omega Cen (NGC 5139) obtained with the 1.54-m Danish La Silla telescope. The spread in the main sequences noted in the three CMDs indicates that the wide range in chemical composition among the evolved stars in this cluster persists as well in the unevolved stars. This result suggests that the abundance variations are primordial. A difference in magnitude between the turnoff and the horizontal branch of 3.8 + or - 0.15 is found which is greater than a previous value. 38 references

  12. Programmable Clock Waveform Generation for CCD Readout

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J. de; Castilla, J.; Martinez, G.; Marin, J.

    2006-07-01

    Charge transfer efficiency in CCDs is closely related to the clock waveform. In this paper, an experimental framework to explore different FPGA based clock waveform generator designs is described. Two alternative design approaches for controlling the rise/fall edge times and pulse width of the CCD clock signal have been implemented: level-control and time-control. Both approaches provide similar characteristics regarding the edge linearity and noise. Nevertheless, dissimilarities have been found with respect to the area and frequency range of application. Thus, while the time-control approach consumes less area, the level control approach provides a wider range of clock frequencies since it does not suffer capacitor discharge effect. (Author) 8 refs.

  13. On-Orbit Solar Dynamics Observatory (SDO) Star Tracker Warm Pixel Analysis

    Science.gov (United States)

    Felikson, Denis; Ekinci, Matthew; Hashmall, Joseph A.; Vess, Melissa

    2011-01-01

    This paper describes the process of identification and analysis of warm pixels in two autonomous star trackers on the Solar Dynamics Observatory (SDO) mission. A brief description of the mission orbit and attitude regimes is discussed and pertinent star tracker hardware specifications are given. Warm pixels are defined and the Quality Index parameter is introduced, which can be explained qualitatively as a manifestation of a possible warm pixel event. A description of the algorithm used to identify warm pixel candidates is given. Finally, analysis of dumps of on-orbit star tracker charge coupled devices (CCD) images is presented and an operational plan going forward is discussed. SDO, launched on February 11, 2010, is operated from the NASA Goddard Space Flight Center (GSFC). SDO is in a geosynchronous orbit with a 28.5 inclination. The nominal mission attitude points the spacecraft X-axis at the Sun, with the spacecraft Z-axis roughly aligned with the Solar North Pole. The spacecraft Y-axis completes the triad. In attitude, SDO moves approximately 0.04 per hour, mostly about the spacecraft Z-axis. The SDO star trackers, manufactured by Galileo Avionica, project the images of stars in their 16.4deg x 16.4deg fields-of-view onto CCD detectors consisting of 512 x 512 pixels. The trackers autonomously identify the star patterns and provide an attitude estimate. Each unit is able to track up to 9 stars. Additionally, each tracker calculates a parameter called the Quality Index, which is a measure of the quality of the attitude solution. Each pixel in the CCD measures the intensity of light and a warns pixel is defined as having a measurement consistently and significantly higher than the mean background intensity level. A warns pixel should also have lower intensity than a pixel containing a star image and will not move across the field of view as the attitude changes (as would a dim star image). It should be noted that the maximum error introduced in the star tracker

  14. Further applications for mosaic pixel FPA technology

    Science.gov (United States)

    Liddiard, Kevin C.

    2011-06-01

    In previous papers to this SPIE forum the development of novel technology for next generation PIR security sensors has been described. This technology combines the mosaic pixel FPA concept with low cost optics and purpose-designed readout electronics to provide a higher performance and affordable alternative to current PIR sensor technology, including an imaging capability. Progressive development has resulted in increased performance and transition from conventional microbolometer fabrication to manufacture on 8 or 12 inch CMOS/MEMS fabrication lines. A number of spin-off applications have been identified. In this paper two specific applications are highlighted: high performance imaging IRFPA design and forest fire detection. The former involves optional design for small pixel high performance imaging. The latter involves cheap expendable sensors which can detect approaching fire fronts and send alarms with positional data via mobile phone or satellite link. We also introduce to this SPIE forum the application of microbolometer IR sensor technology to IoT, the Internet of Things.

  15. Dynamic Mapping of Rice Growth Parameters Using HJ-1 CCD Time Series Data

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2016-11-01

    Full Text Available The high temporal resolution (4-day charge-coupled device (CCD cameras onboard small environment and disaster monitoring and forecasting satellites (HJ-1A/B with 30 m spatial resolution and large swath (700 km have substantially increased the availability of regional clear sky optical remote sensing data. For the application of dynamic mapping of rice growth parameters, leaf area index (LAI and aboveground biomass (AGB were considered as plant growth indicators. The HJ-1 CCD-derived vegetation indices (VIs showed robust relationships with rice growth parameters. Cumulative VIs showed strong performance for the estimation of total dry AGB. The cross-validation coefficient of determination ( R C V 2 was increased by using two machine learning methods, i.e., a back propagation neural network (BPNN and a support vector machine (SVM compared with traditional regression equations of LAI retrieval. The LAI inversion accuracy was further improved by dividing the rice growth period into before and after heading stages. This study demonstrated that continuous rice growth monitoring over time and space at field level can be implemented effectively with HJ-1 CCD 10-day composite data using a combination of proper VIs and regression models.

  16. CCD camera eases the control of a soda recovery boiler; CCD-kamera helpottaa soodakattilan valvontaa

    Energy Technology Data Exchange (ETDEWEB)

    Kinnunen, L.

    2001-07-01

    Fortum Technology has developed a CCD firebox camera, based on semiconductor technology, enduring hard conditions of soda recovery boiler longer than traditional cameras. The firebox camera air- cooled and the same air is pressed over the main lens so it remains clean despite of the alkaline liquor splashing around in the boiler. The image of the boiler is transferred through the main lens, image transfer lens and a special filter, mounted inside the camera tube, into the CCD camera. The first CCD camera system has been in use since 1999 in Sunila pulp mill in Kotka, owned by Myllykoski Oy and Enso Oyj. The mill has two medium-sized soda recovery boilers. The amount of black liquor, formed daily, is about 2000 tons DS, which is more than enough for the heat generation. Even electric power generation exceeds sometimes the demand, so the surplus power can be sold out. Black liquor is sprayed inside the soda recovery boiler with high pressure. The liquor form droplets in the boiler, the temperature of which is over 1000 deg C. A full-hot pile is formed at the bottom of the boiler after burning. The size and shape of the pile effect on the efficiency and the emissions of the boiler. The camera has operated well.

  17. 15 CFR 740.19 - Consumer Communications Devices (CCD).

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Consumer Communications Devices (CCD... EXCEPTIONS § 740.19 Consumer Communications Devices (CCD). (a) Authorization. This License Exception... controllers designed for chemical processing) designated EAR99; (4) Graphics accelerators and graphics...

  18. Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source (HTPD 08 paper)

    International Nuclear Information System (INIS)

    Haugh, M; Schneider, M B

    2008-01-01

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 (micro)m square pixels, and 15 (micro)m thick. A multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE ∼ 10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager

  19. Synchrotron applications of pixel and strip detectors at Diamond Light Source

    International Nuclear Information System (INIS)

    Marchal, J.; Tartoni, N.; Nave, C.

    2009-01-01

    A wide range of position-sensitive X-ray detectors have been commissioned on the synchrotron X-ray beamlines operating at the Diamond Light Source in UK. In addition to mature technologies such as image-plates, CCD-based detectors, multi-wire and micro-strip gas detectors, more recent detectors based on semiconductor pixel or strip sensors coupled to CMOS read-out chips are also in use for routine synchrotron X-ray diffraction and scattering experiments. The performance of several commercial and developmental pixel/strip detectors for synchrotron studies are discussed with emphasis on the image quality achieved with these devices. Examples of pixel or strip detector applications at Diamond Light Source as well as the status of the commissioning of these detectors on the beamlines are presented. Finally, priorities and ideas for future developments are discussed.

  20. Flat Field Anomalies in an X-Ray CCD Camera Measured Using a Manson X-Ray Source

    International Nuclear Information System (INIS)

    Michael Haugh

    2008-01-01

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. It determines how accurately NIF can point the laser beams and is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 (micro)m square pixels, and 15 (micro)m thick. A multi-anode Manson X-ray source, operating up to 10kV and 2mA, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE ∼ 12. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1.5% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. The efficiency pattern follows the properties of Si. The maximum quantum efficiency is 0.71. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation was >8% at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was less than the measurement uncertainty below 4 keV. We were also able to observe debris on the CCD chip. The debris showed maximum contrast at the lowest energy used, 930 eV, and disappeared by 4 keV. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager

  1. BVI CCD photometry of 47 Tucanae

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.

    1987-01-01

    CCD BVI main-sequence photometry of 47 Tuc is presented, matched to the recent BVI isochrones of VandenBerg and Bell (1985). The main-sequence turnoffs are found to be at V = 17.60 + or - 0.1, B-V = 0.56 + or - 0.02; V-I = 0.68 + or - 0.02, and B-I = 1.24 + or - 0.02. The magnitude difference between the main-sequence turnoff and the horizontal branch is 3.55 + or - 0.15 for all three color indices. A consistent age for 47 Tuc of 17 Gyr and a consistent distance modulus of (m-M)v = 13.2 are obtained for all three indices, and an absolute magnitude of Mv = 0.85 is determined for the horizontal branch stars. The results also favor the adoption of (Fe/H) near -0.5 as the best abundance value for 47 Tuc. 38 references

  2. Design and implementation of fast bipolar clock drivers for CCD imaging systems in space applications

    Science.gov (United States)

    Jayarajan, Jayesh; Kumar, Nishant; Verma, Amarnath; Thaker, Ramkrishna

    2016-05-01

    Drive electronics for generating fast, bipolar clocks, which can drive capacitive loads of the order of 5-10nF are indispensable for present day Charge Coupled Devices (CCDs). Design of these high speed bipolar clocks is challenging because of the capacitive loads that have to be driven and a strict constraint on the rise and fall times. Designing drive electronics circuits for space applications becomes even more challenging due to limited number of available discrete devices, which can survive in the harsh radiation prone space environment. This paper presents the design, simulations and test results of a set of such high speed, bipolar clock drivers. The design has been tested under a thermal cycle of -15 deg C to +55 deg C under vacuum conditions and has been designed using radiation hardened components. The test results show that the design meets the stringent rise/fall time requirements of 50+/-10ns for Multiple Vertical CCD (VCCD) clocks and 20+/-5ns for Horizontal CCD (HCCD) clocks with sufficient design margins across full temperature range, with a pixel readout rate of 6.6MHz. The full design has been realized in flexi-rigid PCB with package volume of 140x160x50 mm3.

  3. Systems approach to the design of the CCD sensors and camera electronics for the AIA and HMI instruments on solar dynamics observatory

    Science.gov (United States)

    Waltham, N.; Beardsley, S.; Clapp, M.; Lang, J.; Jerram, P.; Pool, P.; Auker, G.; Morris, D.; Duncan, D.

    2017-11-01

    Solar Dynamics Observatory (SDO) is imaging the Sun in many wavelengths near simultaneously and with a resolution ten times higher than the average high-definition television. In this paper we describe our innovative systems approach to the design of the CCD cameras for two of SDO's remote sensing instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI). Both instruments share use of a custom-designed 16 million pixel science-grade CCD and common camera readout electronics. A prime requirement was for the CCD to operate with significantly lower drive voltages than before, motivated by our wish to simplify the design of the camera readout electronics. Here, the challenge lies in the design of circuitry to drive the CCD's highly capacitive electrodes and to digitize its analogue video output signal with low noise and to high precision. The challenge is greatly exacerbated when forced to work with only fully space-qualified, radiation-tolerant components. We describe our systems approach to the design of the AIA and HMI CCD and camera electronics, and the engineering solutions that enabled us to comply with both mission and instrument science requirements.

  4. Direct and indirect signal detection of 122 keV photons with a novel detector combining a pnCCD and a CsI(Tl) scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, D.M., E-mail: dieter.schlosser@pnsensor.de [PNSensor GmbH, Sckellstraße 3, 81667 München (Germany); Huth, M.; Hartmann, R. [PNSensor GmbH, Sckellstraße 3, 81667 München (Germany); Abboud, A.; Send, S. [Universität Siegen, Walter-Flex-Straße 3, 57072 Siegen (Germany); Conka-Nurdan, T. [Türkisch-Deutsche Universität, Sakinkaya Cad. 86, Beykoz, 34820 Istanbul (Turkey); Shokr, M.; Pietsch, U. [Universität Siegen, Walter-Flex-Straße 3, 57072 Siegen (Germany); Strüder, L. [PNSensor GmbH, Sckellstraße 3, 81667 München (Germany); Universität Siegen, Walter-Flex-Straße 3, 57072 Siegen (Germany)

    2016-01-01

    By combining a low noise fully depleted pnCCD detector with a CsI(Tl) scintillator, an energy-dispersive area detector can be realized with a high quantum efficiency (QE) in the range from below 1 keV to above 100 keV. In direct detection mode the pnCCD exhibits a relative energy resolution of 1% at 122 keV and spatial resolution of less than 75 µm, the pixel size of the pnCCD. In the indirect detection mode, i.e. conversion of the incoming X-rays in the scintillator, the measured energy resolution was about 9–13% at 122 keV, depending on the depth of interaction in the scintillator, while the position resolution, extracted with the help of simulations, was 30 µm only. We show simulated data for incident photons of 122 keV and compare the various interaction processes and relevant physical parameters to experimental results obtained with a radioactive {sup 57}Co source. - Highlights: • Position and energy resolving pnCCD+CsI(Tl) detector for energies from 1-150 keV • Detection in the pnCCD (122keV): 1% energy and <75µm spatial resolution • Detection in the scintillator (122keV): 9-12% energy and ~30µm spatial resolution.

  5. Scalable Track Detection in SAR CCD Images

    Energy Technology Data Exchange (ETDEWEB)

    Chow, James G [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Quach, Tu-Thach [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    Existing methods to detect vehicle tracks in coherent change detection images, a product of combining two synthetic aperture radar images ta ken at different times of the same scene, rely on simple, fast models to label track pixels. These models, however, are often too simple to capture natural track features such as continuity and parallelism. We present a simple convolutional network architecture consisting of a series of 3-by-3 convolutions to detect tracks. The network is trained end-to-end to learn natural track features entirely from data. The network is computationally efficient and improves the F-score on a standard dataset to 0.988, up fr om 0.907 obtained by the current state-of-the-art method.

  6. CCD camera system for use with a streamer chamber

    International Nuclear Information System (INIS)

    Angius, S.A.; Au, R.; Crawley, G.C.; Djalali, C.; Fox, R.; Maier, M.; Ogilvie, C.A.; Molen, A. van der; Westfall, G.D.; Tickle, R.S.

    1988-01-01

    A system based on three charge-coupled-device (CCD) cameras is described here. It has been used to acquire images from a streamer chamber and consists of three identical subsystems, one for each camera. Each subsystem contains an optical lens, CCD camera head, camera controller, an interface between the CCD and a microprocessor, and a link to a minicomputer for data recording and on-line analysis. Image analysis techniques have been developed to enhance the quality of the particle tracks. Some steps have been made to automatically identify tracks and reconstruct the event. (orig.)

  7. CCTV from light to pixels

    CERN Document Server

    Damjanovski, Vlado

    2013-01-01

    The new edition of CCTV, a high-level professional reference, is expanded to cover all video compression techniques used in the ever-increasing assortment of digital video recorders (DVRs) available on the market today. In addition to demystifying DVR technology, the third edition also clarifies the technology of data networking and explains various compression techniques. Along with all this, the book retains the particulars that made the previous editions convenient and valuable, including details of CCD cameras, lenses, coaxial cables, fiber-optics, and system design. Updated to address d

  8. Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites

    KAUST Repository

    Bruno, Mark

    2016-09-29

    The Arabidopsis carotenoid cleavage dioxygenase 4 (AtCCD4) is a negative regulator of the carotenoid content of seeds and has recently been suggested as a candidate for the generation of retrograde signals that are thought to derive from the cleavage of poly-cis-configured carotene desaturation intermediates. In this work, we investigated the activity of AtCCD4 in vitro and used dynamic modeling to determine its substrate preference. Our results document strict regional specificity for cleavage at the C9–C10 double bond in carotenoids and apocarotenoids, with preference for carotenoid substrates and an obstructing effect on hydroxyl functions, and demonstrate the specificity for all-trans-configured carotenes and xanthophylls. AtCCD4 cleaved substrates with at least one ionone ring and did not convert acyclic carotene desaturation intermediates, independent of their isomeric states. These results do not support a direct involvement of AtCCD4 in generating the supposed regulatory metabolites. In contrast, the strigolactone biosynthetic enzyme AtCCD7 converted 9-cis-configured acyclic carotenes, such as 9-cis-ζ-carotene, 9\\'-cis-neurosporene, and 9-cis-lycopene, yielding 9-cis-configured products and indicating that AtCCD7, rather than AtCCD4, is the candidate for forming acyclic retrograde signals.

  9. Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites

    KAUST Repository

    Bruno, Mark; Koschmieder, Julian; Wuest, Florian; Schaub, Patrick; Fehling-Kaschek, Mirjam; Timmer, Jens; Beyer, Peter; Al-Babili, Salim

    2016-01-01

    The Arabidopsis carotenoid cleavage dioxygenase 4 (AtCCD4) is a negative regulator of the carotenoid content of seeds and has recently been suggested as a candidate for the generation of retrograde signals that are thought to derive from the cleavage of poly-cis-configured carotene desaturation intermediates. In this work, we investigated the activity of AtCCD4 in vitro and used dynamic modeling to determine its substrate preference. Our results document strict regional specificity for cleavage at the C9–C10 double bond in carotenoids and apocarotenoids, with preference for carotenoid substrates and an obstructing effect on hydroxyl functions, and demonstrate the specificity for all-trans-configured carotenes and xanthophylls. AtCCD4 cleaved substrates with at least one ionone ring and did not convert acyclic carotene desaturation intermediates, independent of their isomeric states. These results do not support a direct involvement of AtCCD4 in generating the supposed regulatory metabolites. In contrast, the strigolactone biosynthetic enzyme AtCCD7 converted 9-cis-configured acyclic carotenes, such as 9-cis-ζ-carotene, 9'-cis-neurosporene, and 9-cis-lycopene, yielding 9-cis-configured products and indicating that AtCCD7, rather than AtCCD4, is the candidate for forming acyclic retrograde signals.

  10. Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites

    Science.gov (United States)

    Bruno, Mark; Koschmieder, Julian; Wuest, Florian; Schaub, Patrick; Fehling-Kaschek, Mirjam; Timmer, Jens; Beyer, Peter; Al-Babili, Salim

    2016-01-01

    The Arabidopsis carotenoid cleavage dioxygenase 4 (AtCCD4) is a negative regulator of the carotenoid content of seeds and has recently been suggested as a candidate for the generation of retrograde signals that are thought to derive from the cleavage of poly-cis-configured carotene desaturation intermediates. In this work, we investigated the activity of AtCCD4 in vitro and used dynamic modeling to determine its substrate preference. Our results document strict regional specificity for cleavage at the C9–C10 double bond in carotenoids and apocarotenoids, with preference for carotenoid substrates and an obstructing effect on hydroxyl functions, and demonstrate the specificity for all-trans-configured carotenes and xanthophylls. AtCCD4 cleaved substrates with at least one ionone ring and did not convert acyclic carotene desaturation intermediates, independent of their isomeric states. These results do not support a direct involvement of AtCCD4 in generating the supposed regulatory metabolites. In contrast, the strigolactone biosynthetic enzyme AtCCD7 converted 9-cis-configured acyclic carotenes, such as 9-cis-ζ-carotene, 9'-cis-neurosporene, and 9-cis-lycopene, yielding 9-cis-configured products and indicating that AtCCD7, rather than AtCCD4, is the candidate for forming acyclic retrograde signals. PMID:27811075

  11. An optical test bench for the precision characterization of absolute quantum efficiency for the TESS CCD detectors

    International Nuclear Information System (INIS)

    Krishnamurthy, A.; Villasenor, J.; Kissel, S.; Ricker, G.; Vanderspek, R.

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright stars with Ic ∼< 13. TESS has been selected by NASA for launch in 2018 as an Astrophysics Explorer mission, and is expected to discover a thousand or more planets that are smaller in size than Neptune. TESS will employ four wide-field optical charge-coupled device (CCD) cameras with a band-pass of 650 nm–1050 nm to detect temporary drops in brightness of stars due to planetary transits. The 1050 nm limit is set by the quantum efficiency (QE) of the CCDs. The detector assembly consists of four back-illuminated MIT Lincoln Laboratory CCID-80 devices. Each CCID-80 device consists of 2048×2048 imaging array and 2048×2048 frame store regions. Very precise on-ground calibration and characterization of CCD detectors will significantly assist in the analysis of the science data obtained in space. The characterization of the absolute QE of the CCD detectors is a crucial part of the characterization process because QE affects the performance of the CCD significantly over the redder wavelengths at which TESS will be operating. An optical test bench with significantly high photometric stability has been developed to perform precise QE measurements. The design of the test setup along with key hardware, methodology, and results from the test campaign are presented.

  12. Active pixel sensors: the sensor of choice for future space applications?

    Science.gov (United States)

    Leijtens, Johan; Theuwissen, Albert; Rao, Padmakumar R.; Wang, Xinyang; Xie, Ning

    2007-10-01

    It is generally known that active pixel sensors (APS) have a number of advantages over CCD detectors if it comes to cost for mass production, power consumption and ease of integration. Nevertheless, most space applications still use CCD detectors because they tend to give better performance and have a successful heritage. To this respect a change may be at hand with the advent of deep sub-micron processed APS imagers (< 0.25-micron feature size). Measurements performed on test structures at the University of Delft have shown that the imagers are very radiation tolerant even if made in a standard process without the use of special design rules. Furthermore it was shown that the 1/f noise associated with deep sub-micron imagers is reduced as compared to previous generations APS imagers due to the improved quality of the gate oxides. Considering that end of life performance will have to be guaranteed, limited budget for adding shielding metal will be available for most applications and lower power operations is always seen as a positive characteristic in space applications, deep sub-micron APS imagers seem to have a number of advantages over CCD's that will probably cause them to replace CCD's in those applications where radiation tolerance and low power operation are important

  13. Micrometer and CCD measurements of double stars (Series 51

    Directory of Open Access Journals (Sweden)

    Popović G.M.

    1998-01-01

    Full Text Available 36 micrometric measurements of 20 double or multiple systems carried out with the Zeiss 65/1055 cm Refractor of Belgrade Observatory are communicated. Also 35 CCD measurements of 15 double or multiple systems are included.

  14. Experience in CCD Photometry at the Tartu Observatory

    Directory of Open Access Journals (Sweden)

    Tuvikene T.

    2003-12-01

    Full Text Available We give overview of the CCD instrumentation and data reduction techniques used at the Tartu Observatory. The first results from photometric observations of the peculiar variable V838 Mon are presented.

  15. Correlation and image compression for limited-bandwidth CCD.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Douglas G.

    2005-07-01

    As radars move to Unmanned Aerial Vehicles with limited-bandwidth data downlinks, the amount of data stored and transmitted with each image becomes more significant. This document gives the results of a study to determine the effect of lossy compression in the image magnitude and phase on Coherent Change Detection (CCD). We examine 44 lossy compression types, plus lossless zlib compression, and test each compression method with over 600 CCD image pairs. We also derive theoretical predictions for the correlation for most of these compression schemes, which compare favorably with the experimental results. We recommend image transmission formats for limited-bandwidth programs having various requirements for CCD, including programs which cannot allow performance degradation and those which have stricter bandwidth requirements at the expense of CCD performance.

  16. Follow-up study of children with cerebral coordination disturbance (CCD, Vojta).

    Science.gov (United States)

    Imamura, S; Sakuma, K; Takahashi, T

    1983-01-01

    713 children (from newborn to 12-month-old) with delayed motor development were carefully examined and classified into normal, very light cerebral coordination disturbance (CCD, Vojta), light CCD, moderate CCD, severe CCD, suspected cerebral palsy (CP) and other diseases at their first visit, and were followed up carefully. Finally, 89.0% of very light CCD, 71.4% of light CCD, 56.0% of moderate CCD and 30.0% of severe CCD developed into normal. 59.5% of moderate CCD and 45.5% of severe CCD among children who were given Vojta's physiotherapy developed into normal. The classification of cases with delayed motor development into very light, light, moderate and severe CCD based on the extent of abnormality in their postural reflexes is useful and well correlated with their prognosis. Treatment by Vojta's method seems to be efficient and helpful for young children with delayed motor development.

  17. Design and Calibration of a Novel Bio-Inspired Pixelated Polarized Light Compass

    Directory of Open Access Journals (Sweden)

    Guoliang Han

    2017-11-01

    Full Text Available Animals, such as Savannah sparrows and North American monarch butterflies, are able to obtain compass information from skylight polarization patterns to help them navigate effectively and robustly. Inspired by excellent navigation ability of animals, this paper proposes a novel image-based polarized light compass, which has the advantages of having a small size and being light weight. Firstly, the polarized light compass, which is composed of a Charge Coupled Device (CCD camera, a pixelated polarizer array and a wide-angle lens, is introduced. Secondly, the measurement method of a skylight polarization pattern and the orientation method based on a single scattering Rayleigh model are presented. Thirdly, the error model of the sensor, mainly including the response error of CCD pixels and the installation error of the pixelated polarizer, is established. A calibration method based on iterative least squares estimation is proposed. In the outdoor environment, the skylight polarization pattern can be measured in real time by our sensor. The orientation accuracy of the sensor increases with the decrease of the solar elevation angle, and the standard deviation of orientation error is 0 . 15 ∘ at sunset. Results of outdoor experiments show that the proposed polarization navigation sensor can be used for outdoor autonomous navigation.

  18. Active pixel sensor array as a detector for electron microscopy.

    Science.gov (United States)

    Milazzo, Anna-Clare; Leblanc, Philippe; Duttweiler, Fred; Jin, Liang; Bouwer, James C; Peltier, Steve; Ellisman, Mark; Bieser, Fred; Matis, Howard S; Wieman, Howard; Denes, Peter; Kleinfelder, Stuart; Xuong, Nguyen-Huu

    2005-09-01

    A new high-resolution recording device for transmission electron microscopy (TEM) is urgently needed. Neither film nor CCD cameras are systems that allow for efficient 3-D high-resolution particle reconstruction. We tested an active pixel sensor (APS) array as a replacement device at 200, 300, and 400 keV using a JEOL JEM-2000 FX II and a JEM-4000 EX electron microscope. For this experiment, we used an APS prototype with an area of 64 x 64 pixels of 20 microm x 20 microm pixel pitch. Single-electron events were measured by using very low beam intensity. The histogram of the incident electron energy deposited in the sensor shows a Landau distribution at low energies, as well as unexpected events at higher absorbed energies. After careful study, we concluded that backscattering in the silicon substrate and re-entering the sensitive epitaxial layer a second time with much lower speed caused the unexpected events. Exhaustive simulation experiments confirmed the existence of these back-scattered electrons. For the APS to be usable, the back-scattered electron events must be eliminated, perhaps by thinning the substrate to less than 30 microm. By using experimental data taken with an APS chip with a standard silicon substrate (300 microm) and adjusting the results to take into account the effect of a thinned silicon substrate (30 microm), we found an estimate of the signal-to-noise ratio for a back-thinned detector in the energy range of 200-400 keV was about 10:1 and an estimate for the spatial resolution was about 10 microm.

  19. The FPGA Pixel Array Detector

    International Nuclear Information System (INIS)

    Hromalik, Marianne S.; Green, Katherine S.; Philipp, Hugh T.; Tate, Mark W.; Gruner, Sol M.

    2013-01-01

    A proposed design for a reconfigurable x-ray Pixel Array Detector (PAD) is described. It operates by integrating a high-end commercial field programmable gate array (FPGA) into a 3-layer device along with a high-resistivity diode detection layer and a custom, application-specific integrated circuit (ASIC) layer. The ASIC layer contains an energy-discriminating photon-counting front end with photon hits streamed directly to the FPGA via a massively parallel, high-speed data connection. FPGA resources can be allocated to perform user defined tasks on the pixel data streams, including the implementation of a direct time autocorrelation function (ACF) with time resolution down to 100 ns. Using the FPGA at the front end to calculate the ACF reduces the required data transfer rate by several orders of magnitude when compared to a fast framing detector. The FPGA-ASIC high-speed interface, as well as the in-FPGA implementation of a real-time ACF for x-ray photon correlation spectroscopy experiments has been designed and simulated. A 16×16 pixel prototype of the ASIC has been fabricated and is being tested. -- Highlights: ► We describe the novelty and need for the FPGA Pixel Array Detector. ► We describe the specifications and design of the Diode, ASIC and FPGA layers. ► We highlight the Autocorrelation Function (ACF) for speckle as an example application. ► Simulated FPGA output calculates the ACF for different input bitstreams to 100 ns. ► Reduced data transfer rate by 640× and sped up real-time ACF by 100× other methods.

  20. Low complexity pixel-based halftone detection

    Science.gov (United States)

    Ok, Jiheon; Han, Seong Wook; Jarno, Mielikainen; Lee, Chulhee

    2011-10-01

    With the rapid advances of the internet and other multimedia technologies, the digital document market has been growing steadily. Since most digital images use halftone technologies, quality degradation occurs when one tries to scan and reprint them. Therefore, it is necessary to extract the halftone areas to produce high quality printing. In this paper, we propose a low complexity pixel-based halftone detection algorithm. For each pixel, we considered a surrounding block. If the block contained any flat background regions, text, thin lines, or continuous or non-homogeneous regions, the pixel was classified as a non-halftone pixel. After excluding those non-halftone pixels, the remaining pixels were considered to be halftone pixels. Finally, documents were classified as pictures or photo documents by calculating the halftone pixel ratio. The proposed algorithm proved to be memory-efficient and required low computation costs. The proposed algorithm was easily implemented using GPU.

  1. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    Science.gov (United States)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M. (Inventor); Hancock, Bruce R. (Inventor)

    2017-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  2. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Djama, Fares; The ATLAS collaboration

    2017-01-01

    Run 2 of the LHC collider sets new challenges to track and vertex reconstruction because of its higher energy, pileup and luminosity. The ATLAS tracking performance relies critically on the Pixel Detector. Therefore, in view of Run 2, the ATLAS collaboration has constructed the first 4-layer pixel detector in Particle Physics by installing a new pixel layer, called Insertable B-Layer (IBL). Operational experience and performance of the 4-layer Pixel Detector during Run 2 are presented.

  3. CVD diamond pixel detectors for LHC experiments

    CERN Document Server

    Wedenig, R; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Wagner, A; Walsh, A M; Weilhammer, Peter; White, C; Zeuner, W; Ziock, H J; Zöller, M

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described. (9 refs).

  4. CVD diamond pixel detectors for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  5. CVD diamond pixel detectors for LHC experiments

    International Nuclear Information System (INIS)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N.

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described

  6. CMS has a heart of pixels

    CERN Multimedia

    2003-01-01

    In the immediate vicinity of the collision point, CMS will be equipped with pixel detectors consisting of no fewer than 50 million pixels measuring 150 microns along each side. Each of the pixels, which receive the signal, is connected to its own electronic circuit by a tiny sphere (seen here in the electron microscope image) measuring 15 to 20 microns in diameter.

  7. A 20 Mfps high frame-depth CMOS burst-mode imager with low power in-pixel NMOS-only passive amplifier

    Science.gov (United States)

    Wu, L.; San Segundo Bello, D.; Coppejans, P.; Craninckx, J.; Wambacq, P.; Borremans, J.

    2017-02-01

    This paper presents a 20 Mfps 32 × 84 pixels CMOS burst-mode imager featuring high frame depth with a passive in-pixel amplifier. Compared to the CCD alternatives, CMOS burst-mode imagers are attractive for their low power consumption and integration of circuitry such as ADCs. Due to storage capacitor size and its noise limitations, CMOS burst-mode imagers usually suffer from a lower frame depth than CCD implementations. In order to capture fast transitions over a longer time span, an in-pixel CDS technique has been adopted to reduce the required memory cells for each frame by half. Moreover, integrated with in-pixel CDS, an in-pixel NMOS-only passive amplifier alleviates the kTC noise requirements of the memory bank allowing the usage of smaller capacitors. Specifically, a dense 108-cell MOS memory bank (10fF/cell) has been implemented inside a 30μm pitch pixel, with an area of 25 × 30μm2 occupied by the memory bank. There is an improvement of about 4x in terms of frame depth per pixel area by applying in-pixel CDS and amplification. With the amplifier's gain of 3.3, an FD input-referred RMS noise of 1mV is achieved at 20 Mfps operation. While the amplification is done without burning DC current, including the pixel source follower biasing, the full pixel consumes 10μA at 3.3V supply voltage at full speed. The chip has been fabricated in imec's 130nm CMOS CIS technology.

  8. CCD Astrophotography High-Quality Imaging from the Suburbs

    CERN Document Server

    Stuart, Adam

    2006-01-01

    This is a reference book for amateur astronomers who have become interested in CCD imaging. Those glorious astronomical images found in astronomy magazines might seem out of reach to newcomers to CCD imaging, but this is not the case. Great pictures are attainable with modest equipment. Adam Stuart’s many beautiful images, reproduced in this book, attest to the quality of – initially – a beginner’s efforts. Chilled-chip astronomical CCD-cameras and software are also wonderful tools for cutting through seemingly impenetrable light-pollution. CCD Astrophotography from the Suburbs describes one man’s successful approach to the problem of getting high-quality astronomical images under some of the most light-polluted conditions. Here is a complete and thoroughly tested program that will help every CCD-beginner to work towards digital imaging of the highest quality. It is equally useful to astronomers who have perfect observing conditions, as to those who have to observe from light-polluted city skies.

  9. Purification and crystallization of Vibrio fischeri CcdB and its complexes with fragments of gyrase and CcdA

    Energy Technology Data Exchange (ETDEWEB)

    De Jonge, Natalie, E-mail: ndejonge@vub.ac.be; Buts, Lieven; Vangelooven, Joris [Department of Molecular and Cellular Interactions, VIB, Pleinlaan 2, 1050 Brussels (Belgium); Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); Mine, Natacha; Van Melderen, Laurence [Laboratoire de Génétique des Procaryotes, Institut de Biologie et de Médecine, Université Libre de Bruxelles, Gosselies (Belgium); Wyns, Lode; Loris, Remy [Department of Molecular and Cellular Interactions, VIB, Pleinlaan 2, 1050 Brussels (Belgium); Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium)

    2007-04-01

    A CcdB homologue from V. fischeri was overexpressed in E. coli and purified. The free protein was crystallized, as were its complexes with fragments of E. coli and V. fischeri gyrase and with the F-plasmid CcdA C-terminal domain. The ccd toxin–antitoxin module from the Escherichia coli F plasmid has a homologue on the Vibrio fischeri integron. The homologue of the toxin (CcdB{sub Vfi}) was crystallized in two different crystal forms. The first form belongs to space group I23 or I2{sub 1}3, with unit-cell parameter a = 84.5 Å, and diffracts to 1.5 Å resolution. The second crystal form belongs to space group C2, with unit-cell parameters a = 58.5, b = 43.6, c = 37.5 Å, β = 110.0°, and diffracts to 1.7 Å resolution. The complex of CcdB{sub Vfi} with the GyrA14{sub Vfi} fragment of V. fischeri gyrase crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.5, b = 94.6, c = 58.1 Å, and diffracts to 2.2 Å resolution. The corresponding mixed complex with E. coli GyrA14{sub Ec} crystallizes in space group C2, with unit-cell parameters a = 130.1, b = 90.8, c = 58.1 Å, β = 102.6°, and diffracts to 1.95 Å. Finally, a complex between CcdB{sub Vfi} and part of the F-plasmid antitoxin CcdA{sub F} crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 46.9, b = 62.6, c = 82.0 Å, and diffracts to 1.9 Å resolution.

  10. Purification and crystallization of Vibrio fischeri CcdB and its complexes with fragments of gyrase and CcdA

    International Nuclear Information System (INIS)

    De Jonge, Natalie; Buts, Lieven; Vangelooven, Joris; Mine, Natacha; Van Melderen, Laurence; Wyns, Lode; Loris, Remy

    2007-01-01

    A CcdB homologue from V. fischeri was overexpressed in E. coli and purified. The free protein was crystallized, as were its complexes with fragments of E. coli and V. fischeri gyrase and with the F-plasmid CcdA C-terminal domain. The ccd toxin–antitoxin module from the Escherichia coli F plasmid has a homologue on the Vibrio fischeri integron. The homologue of the toxin (CcdB Vfi ) was crystallized in two different crystal forms. The first form belongs to space group I23 or I2 1 3, with unit-cell parameter a = 84.5 Å, and diffracts to 1.5 Å resolution. The second crystal form belongs to space group C2, with unit-cell parameters a = 58.5, b = 43.6, c = 37.5 Å, β = 110.0°, and diffracts to 1.7 Å resolution. The complex of CcdB Vfi with the GyrA14 Vfi fragment of V. fischeri gyrase crystallizes in space group P2 1 2 1 2 1 , with unit-cell parameters a = 53.5, b = 94.6, c = 58.1 Å, and diffracts to 2.2 Å resolution. The corresponding mixed complex with E. coli GyrA14 Ec crystallizes in space group C2, with unit-cell parameters a = 130.1, b = 90.8, c = 58.1 Å, β = 102.6°, and diffracts to 1.95 Å. Finally, a complex between CcdB Vfi and part of the F-plasmid antitoxin CcdA F crystallizes in space group P2 1 2 1 2 1 , with unit-cell parameters a = 46.9, b = 62.6, c = 82.0 Å, and diffracts to 1.9 Å resolution

  11. Pixel-by-pixel mean transit time without deconvolution.

    Science.gov (United States)

    Dobbeleir, Andre A; Piepsz, Amy; Ham, Hamphrey R

    2008-04-01

    Mean transit time (MTT) within a kidney is given by the integral of the renal activity on a well-corrected renogram between time zero and time t divided by the integral of the plasma activity between zero and t, providing that t is close to infinity. However, as the data acquisition of a renogram is finite, the MTT calculated using this approach might result in the underestimation of the true MTT. To evaluate the degree of this underestimation we conducted a simulation study. One thousand renograms were created by convoluting various plasma curves obtained from patients with different renal clearance levels with simulated retentions curves having different shapes and mean transit times. For a 20 min renogram, the calculated MTT started to underestimate the MTT when the MTT was higher than 6 min. The longer the MTT, the greater was the underestimation. Up to a MTT value of 6 min, the error on the MTT estimation is negligible. As normal cortical transit is less than 2 min, this approach is used for patients to calculate pixel-to-pixel cortical mean transit time and to create a MTT parametric image without deconvolution.

  12. The astro-geodetic use of CCD for gravity field refinement

    Science.gov (United States)

    Gerstbach, G.

    1996-07-01

    The paper starts with a review of geoid projects, where vertical deflections are more effective than gravimetry. In alpine regions the economy of astrogeoids is at least 10 times higher, but many countries do not make use of this fact - presumably because the measurements are not fully automated up to now. Based upon the experiences of astrometry of high satellites and own tests the author analyses the use of CCD for astro-geodetic measurements. Automation and speeding up will be possible in a few years, the latter depending on the observation scheme. Sensor characteristics, cooling and reading out of the devices should be harmonized. Using line sensors in small prism astrolabes, the CCD accuracy will reach the visual one (±0.2″) within 5-10 years. Astrogeoids can be combined ideally with geological data, because vertical variation of rock densities does not cause systematic effects (contrary to gravimetry). So a geoid of ±5 cm accuracy (achieved in Austria and other alpine countries by 5-10 points per 1000 km 2) can be improved to ±2 cm without additional observations and border effects.

  13. Multiband CCD Image Compression for Space Camera with Large Field of View

    Directory of Open Access Journals (Sweden)

    Jin Li

    2014-01-01

    Full Text Available Space multiband CCD camera compression encoder requires low-complexity, high-robustness, and high-performance because of its captured images information being very precious and also because it is usually working on the satellite where the resources, such as power, memory, and processing capacity, are limited. However, the traditional compression approaches, such as JPEG2000, 3D transforms, and PCA, have the high-complexity. The Consultative Committee for Space Data Systems-Image Data Compression (CCSDS-IDC algorithm decreases the average PSNR by 2 dB compared with JPEG2000. In this paper, we proposed a low-complexity compression algorithm based on deep coupling algorithm among posttransform in wavelet domain, compressive sensing, and distributed source coding. In our algorithm, we integrate three low-complexity and high-performance approaches in a deeply coupled manner to remove the spatial redundant, spectral redundant, and bit information redundancy. Experimental results on multiband CCD images show that the proposed algorithm significantly outperforms the traditional approaches.

  14. Inversion of CDOM and COD in water using HJ-1/CCD data

    International Nuclear Information System (INIS)

    Huang, Miaofen; Xing, Xufeng; Zhao, Zulong; Li, Zhanqiang; Wang, Xinxing

    2014-01-01

    With the in-situ measurement data including the absorption coefficient of the CDOM, apparent optical properties and the COD, a regression model was established for retrieving ag(440) based on the remote sensing reflectance of the first and the third band of the environment satellite HJ-1/CCD. The measurement data were obtained at the regions of Panjin, Liaoning province in May 2008 and August 2009. Secondly, the remote sensing regression model was created based on the correlation of the CDOM optical properties and the COD. Finally, using the HJ-1/CCD data from 2009 to 2011 in Liaodong bay, the thematic snapshots of water environmental parameters in coastal waters, such as the CDOM and the COD, were calculated and analyzed. The results showed that: (1) the distribution of the CDOM tends to decrease from offshore areas to distant sea with some zonated character; (2) Most of the retrieved CDOM values vary between 0.2–1.7m-1, which is consistent with the measured value in 2009 and 2010 years; (3) the spatial distribution of the COD has good consistency with the CDOM, also shows a certain zonated distribution in coastal-offshore areas; (4) in September 2009 and September 2011, the values of the COD was basically below 40 mg/L while the values of the COD in September 2010 are relatively higher, mostly above 55 mg/L; (5) in June 2011 and May 2010, the COD values are nearly all larger than 55 mg/L

  15. Noise analysis for CCD-based ultraviolet and visible spectrophotometry.

    Science.gov (United States)

    Davenport, John J; Hodgkinson, Jane; Saffell, John R; Tatam, Ralph P

    2015-09-20

    We present the results of a detailed analysis of the noise behavior of two CCD spectrometers in common use, an AvaSpec-3648 CCD UV spectrometer and an Ocean Optics S2000 Vis spectrometer. Light sources used include a deuterium UV/Vis lamp and UV and visible LEDs. Common noise phenomena include source fluctuation noise, photoresponse nonuniformity, dark current noise, fixed pattern noise, and read noise. These were identified and characterized by varying light source, spectrometer settings, or temperature. A number of noise-limiting techniques are proposed, demonstrating a best-case spectroscopic noise equivalent absorbance of 3.5×10(-4)  AU for the AvaSpec-3648 and 5.6×10(-4)  AU for the Ocean Optics S2000 over a 30 s integration period. These techniques can be used on other CCD spectrometers to optimize performance.

  16. Investigation of radiation damage effects in neutron irradiated CCD

    International Nuclear Information System (INIS)

    Brau, James E.; Igonkina, Olga; Potter, Chris T.; Sinev, Nikolai B.

    2005-01-01

    A Charge Coupled Devices (CCD)-based vertex detector is a leading option for vertex detection at the future linear collider. A major issue for this application is the radiation hardness of such devices. Tests of radiation hardness of CCDs used in the SLD vertex detector, VXD3, have been reported earlier. The first measurements of 1998 involved a spare VXD3 CCD that was irradiated with neutrons from a radioactive source (Pu-Be), and from a nuclear reactor. In 2003, we had the opportunity to disassemble the VXD3 detector and study the nature of the radiation damage it incurred during 3 years of operation at SLC. In the preparation for this study, additional experiments with the spare VXD3 CCD were performed. These included measurements of trapping times in neutron irradiated CCDs. Results, reported here, will help us better understand the mechanism of radiation damage effects and develop techniques to minimize performance degradation due to radiation damage

  17. Serial powering of pixel modules

    International Nuclear Information System (INIS)

    Stockmanns, Tobias; Fischer, Peter; Huegging, Fabian; Peric, Ivan; Runolfsson, O.; Wermes, Norbert

    2003-01-01

    Modern pixel detectors for the next generation of high-energy collider experiments like LHC use readout electronics in deep sub-micron technology. Chips in this technology need a low supply voltage of 2-2.5 V alongside high current consumption to achieve the desired performance. The high supply current leads to significant voltage drops in the long and low mass supply cables so that voltage fluctuations at the chips are induced, when the supply current changes. This problem scales with the number of modules when connected in parallel to the power supplies. An alternative powering scheme connects several modules in series resulting in a higher supply voltage but a lower current consumption of the chain and therefore a much lower voltage drop in the cables. In addition the amount of cables needed to supply the detector is vastly reduced. The concept and features of serial powering are presented and studies of the implementation of this technology as an alternative for the ATLAS pixel detector are shown. In particular, it is shown that the potential risk of powering in series can be addressed and eliminated

  18. Serial powering of pixel modules

    CERN Document Server

    Stockmanns, Tobias; Hügging, Fabian Georg; Peric, I; Runólfsson, O; Wermes, Norbert

    2003-01-01

    Modern pixel detectors for the next generation of high-energy collider experiments like LHC use readout electronics in deep sub- micron technology. Chips in this technology need a low supply voltage of 2-2.5 V alongside high current consumption to achieve the desired performance. The high supply current leads to significant voltage drops in the long and low mass supply cables so that voltage fluctuations at the chips are induced, when the supply current changes. This problem scales with the number of modules when connected in parallel to the power supplies. An alternative powering scheme connects several modules in series resulting in a higher supply voltage but a lower current consumption of the chain and therefore a much lower voltage drop in the cables. In addition the amount of cables needed to supply the detector is vastly reduced. The concept and features of serial powering are presented and studies of the implementation of this technology as an alternative for the ATLAS pixel detector are shown. In par...

  19. Precise CCD positions of Triton in 2014-2016 from the Gaia DR1

    Science.gov (United States)

    Wang, N.; Peng, Q. Y.; Peng, H. W.; Zhang, Q. F.

    2018-04-01

    755 CCD observations during the years 2014-2016 have been reduced to derive the precise positions of Triton, the first satellite of Neptune. The observations were made by the 1 m telescope at Yunnan Observatory over 15 nights during the years 2014-2016. The theoretical position of Triton was retrieved from the Jet Propulsion Laboratory Horizons system. Our results show that when the newest Gaia catalogue (Gaia DR1) is referred to the mean O-Cs (observed minus computed) residuals are about 0.042 and -0.006 arcsec, the dispersions are 0.012 and 0.012 arcsec in right ascension and declination, respectively. The dispersions are improved very significantly when the Gaia DR1 is referred to. However, the agreement in right ascension is not so good as that in declination, the reason might come from the uncertainty of planet ephemeris. More observations are needed to confirm this.

  20. Stroboscope Based Synchronization of Full Frame CCD Sensors.

    Science.gov (United States)

    Shen, Liang; Feng, Xiaobing; Zhang, Yuan; Shi, Min; Zhu, Dengming; Wang, Zhaoqi

    2017-04-07

    The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD) consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equipment, the proposed approach greatly reduces the cost by using inexpensive CCD cameras and one stroboscope. The results show that our method could reach a high accuracy much better than the frame-level synchronization of traditional software methods.

  1. Digital Printing Quality Detection and Analysis Technology Based on CCD

    Science.gov (United States)

    He, Ming; Zheng, Liping

    2017-12-01

    With the help of CCD digital printing quality detection and analysis technology, it can carry out rapid evaluation and objective detection of printing quality, and can play a certain control effect on printing quality. It can be said CDD digital printing quality testing and analysis of the rational application of technology, its digital printing and printing materials for a variety of printing equipments to improve the quality of a very positive role. In this paper, we do an in-depth study and discussion based on the CCD digital print quality testing and analysis technology.

  2. On-ground and in-orbit characterisation plan for the PLATO CCD normal cameras

    Science.gov (United States)

    Gow, J. P. D.; Walton, D.; Smith, A.; Hailey, M.; Curry, P.; Kennedy, T.

    2017-11-01

    PLAnetary Transits and Ocillations (PLATO) is the third European Space Agency (ESA) medium class mission in ESA's cosmic vision programme due for launch in 2026. PLATO will carry out high precision un-interrupted photometric monitoring in the visible band of large samples of bright solar-type stars. The primary mission goal is to detect and characterise terrestrial exoplanets and their systems with emphasis on planets orbiting in the habitable zone, this will be achieved using light curves to detect planetary transits. PLATO uses a novel multi- instrument concept consisting of 26 small wide field cameras The 26 cameras are made up of a telescope optical unit, four Teledyne e2v CCD270s mounted on a focal plane array and connected to a set of Front End Electronics (FEE) which provide CCD control and readout. There are 2 fast cameras with high read-out cadence (2.5 s) for magnitude ~ 4-8 stars, being developed by the German Aerospace Centre and 24 normal (N) cameras with a cadence of 25 s to monitor stars with a magnitude greater than 8. The N-FEEs are being developed at University College London's Mullard Space Science Laboratory (MSSL) and will be characterised along with the associated CCDs. The CCDs and N-FEEs will undergo rigorous on-ground characterisation and the performance of the CCDs will continue to be monitored in-orbit. This paper discusses the initial development of the experimental arrangement, test procedures and current status of the N-FEE. The parameters explored will include gain, quantum efficiency, pixel response non-uniformity, dark current and Charge Transfer Inefficiency (CTI). The current in-orbit characterisation plan is also discussed which will enable the performance of the CCDs and their associated N-FEE to be monitored during the mission, this will include measurements of CTI giving an indication of the impact of radiation damage in the CCDs.

  3. Active pixel sensor with intra-pixel charge transfer

    Science.gov (United States)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2004-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  4. Development of pixellated Ir-TESs

    Science.gov (United States)

    Zen, Nobuyuki; Takahashi, Hiroyuki; Kunieda, Yuichi; Damayanthi, Rathnayaka M. T.; Mori, Fumiakira; Fujita, Kaoru; Nakazawa, Masaharu; Fukuda, Daiji; Ohkubo, Masataka

    2006-04-01

    We have been developing Ir-based pixellated superconducting transition edge sensors (TESs). In the area of material or astronomical applications, the sensor with few eV energy resolution and over 1000 pixels imaging property is desired. In order to achieve this goal, we have been analyzing signals from pixellated TESs. In the case of a 20 pixel array of Ir-TESs, with 45 μm×45 μm pixel sizes, the incident X-ray signals have been classified into 16 groups. We have applied numerical signal analysis. On the one hand, the energy resolution of our pixellated TES is strongly degraded. However, using pulse shape analysis, we can dramatically improve the resolution. Thus, we consider that the pulse signal analysis will lead this device to be used as a practical photon incident position identifying TES.

  5. Development of pixellated Ir-TESs

    International Nuclear Information System (INIS)

    Zen, Nobuyuki; Takahashi, Hiroyuki; Kunieda, Yuichi; Dayanthi, Rathnayaka M.T.; Mori, Fumiakira; Fujita, Kaoru; Nakazawa, Masaharu; Fukuda, Daiji; Ohkubo, Masataka

    2006-01-01

    We have been developing Ir-based pixellated superconducting transition edge sensors (TESs). In the area of material or astronomical applications, the sensor with few eV energy resolution and over 1000 pixels imaging property is desired. In order to achieve this goal, we have been analyzing signals from pixellated TESs. In the case of a 20 pixel array of Ir-TESs, with 45 μmx45 μm pixel sizes, the incident X-ray signals have been classified into 16 groups. We have applied numerical signal analysis. On the one hand, the energy resolution of our pixellated TES is strongly degraded. However, using pulse shape analysis, we can dramatically improve the resolution. Thus, we consider that the pulse signal analysis will lead this device to be used as a practical photon incident position identifying TES

  6. Dead pixel replacement in LWIR microgrid polarimeters.

    Science.gov (United States)

    Ratliff, Bradley M; Tyo, J Scott; Boger, James K; Black, Wiley T; Bowers, David L; Fetrow, Matthew P

    2007-06-11

    LWIR imaging arrays are often affected by nonresponsive pixels, or "dead pixels." These dead pixels can severely degrade the quality of imagery and often have to be replaced before subsequent image processing and display of the imagery data. For LWIR arrays that are integrated with arrays of micropolarizers, the problem of dead pixels is amplified. Conventional dead pixel replacement (DPR) strategies cannot be employed since neighboring pixels are of different polarizations. In this paper we present two DPR schemes. The first is a modified nearest-neighbor replacement method. The second is a method based on redundancy in the polarization measurements.We find that the redundancy-based DPR scheme provides an order-of-magnitude better performance for typical LWIR polarimetric data.

  7. Advanced pixel architectures for scientific image sensors

    CERN Document Server

    Coath, R; Godbeer, A; Wilson, M; Turchetta, R

    2009-01-01

    We present recent developments from two projects targeting advanced pixel architectures for scientific applications. Results are reported from FORTIS, a sensor demonstrating variants on a 4T pixel architecture. The variants include differences in pixel and diode size, the in-pixel source follower transistor size and the capacitance of the readout node to optimise for low noise and sensitivity to small amounts of charge. Results are also reported from TPAC, a complex pixel architecture with ~160 transistors per pixel. Both sensors were manufactured in the 0.18μm INMAPS process, which includes a special deep p-well layer and fabrication on a high resistivity epitaxial layer for improved charge collection efficiency.

  8. STAR PIXEL detector mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Wieman, H H; Anderssen, E; Greiner, L; Matis, H S; Ritter, H G; Sun, X; Szelezniak, M [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: hhwieman@lbl.gov

    2009-05-15

    A high resolution pixel detector is being designed for the STAR [1] experiment at RHIC. This device will use MAPS as the detector element and will have a pointing accuracy of {approx}25 microns. We will be reporting on the mechanical design required to support this resolution. The radiation length of the first layer ({approx}0.3% X{sub 0}) and its distance from the interaction point (2.5 cm) determines the resolution. The design makes use of air cooling and thin carbon composite structures to limit the radiation length. The mechanics are being developed to achieve spatial calibrations and stability to 20 microns and to permit rapid detector replacement in event of radiation damage or other potential failures from operation near the beam.

  9. Calibration of the CCD photonic measuring system for railway inspection

    Science.gov (United States)

    Popov, D. V.; Ryabichenko, R. B.; Krivosheina, E. A.

    2005-08-01

    Increasing of traffic speed is the most important task in Moscow Metro. Requirements for traffic safety grow up simultaneously with the speed increasing. Currently for track inspection in Moscow Metro is used track measurement car has built in 1954. The main drawbacks of this system are absence of automated data processing and low accuracy. Non-contact photonic measurement system (KSIR) is developed for solving this problem. New track inspection car will be built in several months. This car will use two different track inspection systems and car locating subsystem based on track circuit counting. The KSIR consists of four subsystems: rail wear, height and track gauge measurement (BFSM); rail slump measurement (FIP); contact rail measurement (FKR); speed, level and car locating (USI). Currently new subsystem for wheel flange wear (IRK) is developed. The KSIR carry out measurements in real-time mode. The BFSM subsystem contains 4 matrix CCD cameras and 4 infrared stripe illuminators. The FIP subsystem contains 4 line CCD cameras and 4 spot illuminators. The FKR subsystem contains 2 matrix CCD cameras and 2 stripe illuminators. The IRK subsystem contains 2 CCD cameras and 2 stripe illuminators. Each system calibration was carried out for their adjustment. On the first step KSIR obtains data from photonic sensors which is valued in internal measurement units. Due to the calibration on the second step non-contact system converts the data to metric measurement system.

  10. A CCD portrait of Comet P/Tempel 2

    International Nuclear Information System (INIS)

    Jewitt, D.; Luu, J.

    1989-01-01

    The development of activity in Comet P/Tempel 2 is studied from aphelion (R = 4 AU) to perihelion (R = 1.4 AU) using extensive time-series CCD photometry and CCD spectra. The comet undergoes a profound morphological change at R of about 2-2.5 AU, from a bare nucleus at larger distances to an active comet supporting a coma of gas and dust. Cyclic photometric variations with the period T = 8.95 + or - 0.01 hr. are present at all R, and are attributed to the rotation of the nucleus at this period. The nucleus is prolate (axes a:b:c = 1.9:1:1), a property shared with other nuclei studied using CCD photometry. Novel results include a limit on the bulk density of the nucleus, rho above 300 kg/cu m, and a 20-A-resolution CCD spectrum of the nucleus. Spatially and temporally resolved photometry is used to study the effects of nucleus rotation on the coma. The coma does not share the dramatic photometric variations shown by the nucleus. It possesses a steep surface-brightness distribution, which is attributable to progressive destruction of the coma grains with increasing space exposure. 41 refs

  11. The possibilities of CCD photometry of optical afterglows of GRBs

    Czech Academy of Sciences Publication Activity Database

    Šimon, Vojtěch; Polášek, Cyril; Jelínek, M.; Hudec, René; Štrobl, Jan

    -, č. 125 (2010), s. 24-28 ISSN 1801-5964. [Conference on Variable Stars Research /41./. Prague, 27.11.2009-29.11.2009] Institutional research plan: CEZ:AV0Z10030501 Keywords : gamma-ray bursts * optical afterglows * CCD photometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  12. Flatfielding Errors in Strömvil CCD Photometry

    Directory of Open Access Journals (Sweden)

    Boyle R. P.

    2003-12-01

    Full Text Available The importance of determining the error of the flat field in CCD photometry is detailed and our methods of doing this are described. We now have reached a precision of 1-1.5 % in our photometry. Color-magnitude diagrams of the open cluster M67 (ours and Laugalys et al. 2003 are compared.

  13. BVRI CCD photometry of the globular cluster NGC 2808

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.; Alvarado, F.; Wenderoth, E.

    1990-01-01

    As a part of a continuing program, CCD color-magnitude diagrams are presented for the bright globular cluster NGC 2808 in the four colors comprising BVRI. From a comparison of four different CMDs with theoretical isochrones, an age of 16 + or - 2 Gyr is obtained, assuming a value for Fe/H near -1.3. 28 refs

  14. Research of optical coherence tomography microscope based on CCD detector

    Science.gov (United States)

    Zhang, Hua; Xu, Zhongbao; Zhang, Shuomo

    2008-12-01

    The reference wave phase was modulated with a sinusoidal vibrating mirror attached to a Piezoelectric Transducer (PZT), the integration was performed by a CCD, and the charge storage period of the CCD image sensor was one-quarter period of the sinusoidal phase modulation. With the frequency- synchronous detection technique, four images (four frames of interference pattern) were recorded during one period of the phase modulation. In order to obtain the optimum modulation parameter, the values of amplitude and phase of the sinusoidal phase modulation were determined by considering the measurement error caused by the additive noise contained in the detected values. The PZT oscillation was controlled by a closed loop control system based on PID controller. An ideal discrete digital sine function at 50Hz with adjustable amplitude was used to adjust the vibrating of PZT, and a digital phase shift techniques was used to adjust vibrating phase of PZT so that the phase of the modulation could reach their optimum values. The CCD detector was triggered with software at 200Hz. Based on work above a small coherent signal masked by the preponderant incoherent background with a CCD detector was obtained.

  15. Technical challenges and recent progress in CCD imagers

    International Nuclear Information System (INIS)

    Bosiers, Jan T.; Peters, Inge M.; Draijer, Cees; Theuwissen, Albert

    2006-01-01

    This paper gives a review of the performance of charge-coupled device (CCD) imagers for use in consumer, professional and scientific applications. An overview of recent developments and the current state-of-the-art are presented. An extensive list of references is included

  16. A data-acquisition system for high speed linear CCD

    International Nuclear Information System (INIS)

    Liu Zhiyan; Chen Xiangcai; Jiang Xiaoshan; Zhang Hongyu; Liang Zhongwang; Xiang Haisheng; Hu Jun

    2010-01-01

    A data-acquisition system for high speed linear CCD (Charge Coupled device) is mainly introduced. The optical fiber transmission technology is used. The data is sent to PC through USB or PCI interface. The construction of the system, the design of the PCI interface hardware, software design and the design of the control program running on host computer are also introduced. (authors)

  17. CCD photometry of apparent dwarf galaxies in Fornax

    International Nuclear Information System (INIS)

    Phillipps, S.; Grimley, P.L.; Disney, M.J.; Cawson, M.G.M.; Kibblewhite, E.J.

    1986-01-01

    Blue and red CCD surface photometry of two apparent dwarf galaxies in the Fornax cluster region is presented. Luminosity profiles are derived and their form discussed. The fainter galaxy resembles an archetypal diffuse dwarf elliptical but the brighter of the pair is either an unusual red dwarf or a background galaxy in chance juxtaposition. (author)

  18. Measurements of 42 Wide CPM Pairs with a CCD

    Science.gov (United States)

    Harshaw, Richard

    2015-11-01

    This paper addresses the use of a Skyris 618C color CCD camera as a means of obtaining data for analysis in the measurement of wide common proper motion stars. The equipment setup is described and data collection procedure outlined. Results of the measures of 42 CPM stars are presented, showing the Skyris is a reliable device for the measurement of double stars.

  19. A method for optical ground station reduce alignment error in satellite-ground quantum experiments

    Science.gov (United States)

    He, Dong; Wang, Qiang; Zhou, Jian-Wei; Song, Zhi-Jun; Zhong, Dai-Jun; Jiang, Yu; Liu, Wan-Sheng; Huang, Yong-Mei

    2018-03-01

    A satellite dedicated for quantum science experiments, has been developed and successfully launched from Jiuquan, China, on August 16, 2016. Two new optical ground stations (OGSs) were built to cooperate with the satellite to complete satellite-ground quantum experiments. OGS corrected its pointing direction by satellite trajectory error to coarse tracking system and uplink beacon sight, therefore fine tracking CCD and uplink beacon optical axis alignment accuracy was to ensure that beacon could cover the quantum satellite in all time when it passed the OGSs. Unfortunately, when we tested specifications of the OGSs, due to the coarse tracking optical system was commercial telescopes, the change of position of the target in the coarse CCD was up to 600μrad along with the change of elevation angle. In this paper, a method of reduce alignment error between beacon beam and fine tracking CCD is proposed. Firstly, OGS fitted the curve of target positions in coarse CCD along with the change of elevation angle. Secondly, OGS fitted the curve of hexapod secondary mirror positions along with the change of elevation angle. Thirdly, when tracking satellite, the fine tracking error unloaded on the real-time zero point position of coarse CCD which computed by the firstly calibration data. Simultaneously the positions of the hexapod secondary mirror were adjusted by the secondly calibration data. Finally the experiment result is proposed. Results show that the alignment error is less than 50μrad.

  20. The ALICE Silicon Pixel Detector System (SPD)

    CERN Document Server

    Kluge, A; Antinori, Federico; Burns, M; Cali, I A; Campbell, M; Caselle, M; Ceresa, S; Dima, R; Elias, D; Fabris, D; Krivda, Marian; Librizzi, F; Manzari, Vito; Morel, M; Moretto, Sandra; Osmic, F; Pappalardo, G S; Pepato, Adriano; Pulvirenti, A; Riedler, P; Riggi, F; Santoro, R; Stefanini, G; Torcato De Matos, C; Turrisi, R; Tydesjo, H; Viesti, G; PH-EP

    2007-01-01

    The ALICE silicon pixel detector (SPD) comprises the two innermost layers of the ALICE inner tracker system. The SPD includes 120 detector modules (half-staves) each consisting of 10 ALICE pixel chips bump bonded to two silicon sensors and one multi-chip read-out module. Each pixel chip contains 8192 active cells, so that the total number of pixel cells in the SPD is ≈ 107. The on-detector read-out is based on a multi-chip-module containing 4 ASICs and an optical transceiver module. The constraints on material budget and detector module dimensions are very demanding.

  1. Pixelated coatings and advanced IR coatings

    Science.gov (United States)

    Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé

    2017-09-01

    Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.

  2. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Lantzsch, Kerstin; The ATLAS collaboration

    2016-01-01

    Run 2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). In addition the Pixel detector was refurbished with new service quarter panels to recover about 3% of defective modules lost during run 1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning, operation and performance of the 4-layer Pixel Detector will be presented.

  3. Study of x-ray CCD image sensor and application

    Science.gov (United States)

    Wang, Shuyun; Li, Tianze

    2008-12-01

    In this paper, we expounded the composing, specialty, parameter, its working process, key techniques and methods for charge coupled devices (CCD) twice value treatment. Disposal process for CCD video signal quantification was expatiated; X-ray image intensifier's constitutes, function of constitutes, coupling technique of X-ray image intensifier and CCD were analyzed. We analyzed two effective methods to reduce the harm to human beings when X-ray was used in the medical image. One was to reduce X-ray's radiation and adopt to intensify the image penetrated by X-ray to gain the same effect. The other was to use the image sensor to transfer the images to the safe area for observation. On this base, a new method was presented that CCD image sensor and X-ray image intensifier were combined organically. A practical medical X-ray photo electricity system was designed which can be used in the records and time of the human's penetrating images. The system was mainly made up with the medical X-ray, X-ray image intensifier, CCD vidicon with high resolution, image processor, display and so on. Its characteristics are: change the invisible X-ray into the visible light image; output the vivid images; short image recording time etc. At the same time we analyzed the main aspects which affect the system's resolution. Medical photo electricity system using X-ray image sensor can reduce the X-ray harm to human sharply when it is used in the medical diagnoses. At last we analyzed and looked forward the system's application in medical engineering and the related fields.

  4. Digital mammography with high-resolution storage plates (CR) versus full-field digital mammography (CCD) (DR) for microcalcifications and focal lesions - a retrospective clinical histologic analysis (n = 102)

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Lell, M.; Wenkel, E.; Boehner, C.; Dassel, M.S.; Bautz, W.

    2005-01-01

    Purpose: to determine the diagnostic accuracy of microcalcifications and focal lesions in a retrospective clinical-histological study using high-resolution digital phosphor storage plates (hard copy) and full-field digital mammography (hard copy). Materials and methods: from May 2003 to September 2003, 102 patients underwent digital storage plate mammography (CR), using a mammography unit (Mammomat 3000 N, Siemens) in combination with a high resolution (9 lp/mm) digital storage phosphor plate system (pixel size 50 μm) (Fuji/Siemens). After diagnosis and preoperative wire localization, full-field digital mammography (CCD) (DR) was performed with the same exposure parameters. The full-field digital mammography used a CCD-detector (SenoScan) (fisher imaging) with a resolution of 10 Ip/mm and a pixel size of 50 μm. Five investigators determined the diagnosis (BI-RADS trademark I-V) retrospectively after the operation from randomly distributed mediolateral views (hard copy reading). These results were correlated with the final histology. Results: the diagnostic accuracy of digital storage plate mammography (CR) and full-field digital mammography (CCD) (DR) was 73% and 71% for all findings (n = 102), 73% and 71% for microcalcifications (n = 51), and 72% and 70% for focal lesions (n = 51). The overall results showed no difference. Conclusion: our findings indicate the equivalence of high-resolution digital phosphor storage plate mammography (CR) and full-field digital mammography (CCD) (DR). (orig.)

  5. Removing cosmic rays and other randomly positioned spurious events from CCD images by taking the lesser image -statistical theory for the general case

    International Nuclear Information System (INIS)

    Kay, L.

    1992-01-01

    If two optical images of the same scene are obtained using a charged-coupled device (CCD), a third image (called the lesser image) may be formed in computer memory by taking the lesser of the two counts in each pixel. The process may be used to remove, or greatly reduce, the effect of spurious events such as cosmic rays. A complete statistical theory of the lesser image is given for the general case, thereby facilitating recovery of the true image from the lesser image. (author)

  6. Gaining efficiency and resolution in soft X-ray emission spectrometers thanks to directly illuminated CCD detectors

    International Nuclear Information System (INIS)

    Dinardo, M.E.; Piazzalunga, A.; Braicovich, L.; Bisogni, V.; Dallera, C.; Giarda, K.; Marcon, M.; Tagliaferri, A.; Ghiringhelli, G.

    2007-01-01

    The back-illuminated charge coupled devices (CCD) are suitable for soft X-ray photon detection. Their nominal performances suggest that they can boost both efficiency and resolving power of X-ray spectrometers based on diffraction gratings and two-dimensional position sensitive detectors. We tested the performances of two commercially available CCDs, intended to replace a more traditional microchannel plate (MCP) detector. Our tests show that the devices have excellent performances in terms of dark current, response linearity, detection efficiency and spatial resolution. We observed that the CCDs have better efficiency (more than 10 times) and better resolution (∼3 times) than the MCP. Moreover we found an intrinsic limit for the spatial resolution, which is almost independent of the detector pixel size and is estimated around 25 μm

  7. Development of the monitoring system of plasma behavior using a CCD camera in the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Kawano, Hirokazu; Nakashima, Yousuke; Higashizono, Yuta

    2007-01-01

    In the central-cell of the GAMMA 10 tandem mirror, a medium-speed camera (CCD camera, 400 frames per second, 216 x 640 pixel) has been installed for the observation of plasma behavior. This camera system is designed for monitoring the plasma position and movement in the whole discharge duration. The captured two-dimensional (2-D) images are automatically displayed just after the plasma shot and stored sequentially shot by shot. This system has been established as a helpful tool for optimizing the plasma production and heating systems by measuring the plasma behavior in several experimental conditions. The camera system shows that the intensity of the visible light emission on the central-cell limiter accompanied by central electron cyclotron heating (C-ECH) correlate with the wall conditioning and immersion length of a movable limiter (iris limiter) in the central cell. (author)

  8. On-board event processing algorithms for a CCD-based space borne X-ray spectrometer

    International Nuclear Information System (INIS)

    Chun, H.J.; Bowles, J.A.; Branduardi-Raymont, G.; Gowen, R.A.

    1996-01-01

    This paper describes two alternative algorithms which are applied to reduce the telemetry requirements for a Charge Coupled Device (CCD) based, space-borne, X-ray spectrometer by on-board reconstruction of the X-ray events split over two or more adjacent pixels. The algorithms have been developed for the Reflection Grating Spectrometer (RGS) on the X-ray multi-mirror (XMM) mission, the second cornerstone project in the European Space Agency's Horizon 2000 programme. The overall instrument and some criteria which provide the background of the development of the algorithms, implemented in Tartan ADA on an MA31750 microprocessor, are described. The on-board processing constraints and requirements are discussed, and the performances of the algorithms are compared. Test results are presented which show that the recursive implementation is faster and has a smaller executable file although it uses more memory because of its stack requirements. (orig.)

  9. Optical CT scanning of PRESAGETM polyurethane samples with a CCD-based readout system

    International Nuclear Information System (INIS)

    Doran, S J; Krstajic, N; Adamovics, J; Jenneson, P M

    2004-01-01

    This article demonstrates the resolution capabilities of the CCD scanner under ideal circumstances and describes the first CCD-based optical CT experiments on a new class of dosimeter, known as PRESAGE TM (Heuris Pharma, Skillman, NJ)

  10. Hot pixel generation in active pixel sensors: dosimetric and micro-dosimetric response

    Science.gov (United States)

    Scheick, Leif; Novak, Frank

    2003-01-01

    The dosimetric response of an active pixel sensor is analyzed. heavy ions are seen to damage the pixel in much the same way as gamma radiation. The probability of a hot pixel is seen to exhibit behavior that is not typical with other microdose effects.

  11. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Rossi, Leonardo Paolo; The ATLAS collaboration

    2018-01-01

    The upgrade of the ATLAS experiment for the operation at the High Luminosity Large Hadron Collider requires a new and more performant inner tracker, the ITk. The innermost part of this tracker will be built using silicon pixel detectors. This paper describes the ITk pixel project, which, after few years of design and test e ort, is now defined in detail.

  12. Building CMS Pixel Barrel Detectur Modules

    CERN Document Server

    König, S; Horisberger, R.; Meier, B.; Rohe, T.; Streuli, S.; Weber, R.; Kastli, H.Chr.; Erdmann, W.

    2007-01-01

    For the barrel part of the CMS pixel tracker about 800 silicon pixel detector modules are required. The modules are bump bonded, assembled and tested at the Paul Scherrer Institute. This article describes the experience acquired during the assembly of the first ~200 modules.

  13. Technological aspects of gaseous pixel detectors fabrication

    NARCIS (Netherlands)

    Blanco Carballo, V.M.; Salm, Cora; Smits, Sander M.; Schmitz, Jurriaan; Melai, J.; Chefdeville, M.A.; van der Graaf, H.

    2007-01-01

    Integrated gaseous pixel detectors consisting of a metal punctured foil suspended in the order of 50μm over a pixel readout chip by means by SU-8 insulating pillars have been fabricated. SU-8 is used as sacrificial layer but metallization over uncrosslinked SU-8 presents adhesion and stress

  14. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The bump-bonded silicon pixel detector, developed at CERN by the EP-MIC group, is shown here in its ceramic carrier. Both represent the ISPA-tube anode. The chip features between 1024 (called OMEGA-1) and 8196 (ALICE-1) active pixels.

  15. Evaluation of a 32 x 32 InSb CCD for use in astronomy

    Science.gov (United States)

    Forrest, W. J.; Pipher, J. L.

    1983-01-01

    We have been fortunate to receive several infrared CCD array detectors on loan from Santa Barbara Research Center. The devices are evaluation samples, not commercially available at this time. Dr. Alan Hoffman of SBRC has made the arrangements for this loan and provided considerable technical support to this project. One aim of this project has been to evaluate the performance potential of this array technology, using astronomical objects. A quick summary of our findings is given. In short, we have found the imaging properties to be excellent under both low and high background conditions and the sensitivity to be quite good (each pixel is competitive with current InSb single-detector systems in use for astronomy). We anticipate improved low-background performance when we run these detectors at a lower and more stable temperature. The device characteristics are described, laboratory testing is summarized, and the first astronomical imaging is presented. Various circuits developed (clocks, clock drivers, DC supplies, clamp-amplifier, and a real time display system) are given.

  16. CCD observations of the spatial structure of the hydrogen Balmer-alpha (Hα) diffuse galactic background

    International Nuclear Information System (INIS)

    Brinkmann, J.V.

    1987-01-01

    Images of hydrogen Balmer alpha emission were obtained in the galactic plane at the Orion arm rest velocity at longitudes of 66, 96, and 114 0 and at the Perseus arm velocity at 114 0 . These directions were chosen because of their lack of birth nebular emission and their high [Sll]6731/Hα ratio, a characteristic of the faint galactic emission-line background. The narrow band (0.26A) images were obtained during June and August 1985, and June 1986, with a newly-constructed RCA SID501DX CCD camera used with the existing 15-cm Fabry-Perot spectrometer at the Physical Sciences Laboratory of the University of Wisconsin, Madison. The field of view was 0. 0 75, with each binned pixel covering about two arc minutes. All images show a significant variation in detected Hα emission at the third-of-half-degree scale. The emission intensity varies by a factor of two over each field of view. Comparison of Orion arm and Perseus arm results indicates extinction is the most-likely cause of the observed spatial structure but star counts taken from the blue plate of Palomar Sky Survey show little spatial correlation with the α emission. This dilemma may be resolved by further investigations using IRAS images, which were not available in time for inclusion in this thesis

  17. CCD[charge-coupled device]-based synchrotron x-ray detector for protein crystallography: Performance projected from an experiment

    International Nuclear Information System (INIS)

    Strauss, M.G.; Naday, I.; Sherman, I.S.; Kraimer, M.R.; Westbrook, E.M.

    1986-01-01

    The intense x radiation from a synchrotron source could, with a suitable detector, provide a complete set of diffraction images from a protein crystal before the crystal is damaged by radiation (2 to 3 min). An area detector consisting of a 40 mm dia. x-ray fluorescing phosphor, coupled with an image intensifier and lens to a CCD image sensor, was developed to determine the effectiveness of such a detector in protein crystallography. The detector was used in an experiment with a rotating anode x-ray generator. Diffraction patterns from a lysozyme crystal obtained with this detector are compared to those obtained with film. The two images appear to be virtually identical. The flux of 10 4 x-ray photons/s was observed on the detector at the rotating anode generator. At the 6-GeV synchrotron being designed at Argonne, the flux on an 80 x 80 mm 2 detector is expected to be >10 9 photons/s. The projected design of such a synchrotron detector shows that a diffraction-peak count >10 6 could be obtained in ∼0.5 s. With an additional ∼0.5 s readout time of a 512 x 512 pixel CCD, the data acquisition time per frame would be ∼1 s so that ninety 1 0 diffraction images could be obtained, with approximately 1% precision, in less than 3 min

  18. Operational experience with the ATLAS Pixel Detector

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost element of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  19. Operational experience of the ATLAS Pixel detector

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  20. Operational experience of the ATLAS Pixel Detector

    CERN Document Server

    Marcisovsky, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  1. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Djama, Fares; The ATLAS collaboration

    2017-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction imposed by the higher collision energy, pileup and luminosity that are being delivered. The ATLAS tracking performance relies critically on the Pixel Detector, therefore, in view of Run-2 of LHC, the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and an additional optical link per module was added to overcome in some layers the readout bandwidth limitation when LHC will exceed the nominal peak luminosity by almost a factor of 3. The key features and challenges met during the IBL project will be presented, as well as its operational experience and Pixel Detector performance in LHC.

  2. Entirely saturated unilateral smear of laser spot in CCD

    International Nuclear Information System (INIS)

    Zhang Zhen; Zhou Menglian; Zhang Jianmin; Lin Xinwei

    2013-01-01

    In the video of linear CCD camera being irradiated by 532 nm CW laser, the entirely saturated unilateral smear of laser spot was found. The smear area does not represent the distribution of laser. Since this smear lies merely in one side of laser spot, it can not be induced by light leaking or carriers blooming, and it may be induced by charge transfer loss. However, the feature that the smear area is entirely saturated can not be explained by the current constant model of charge transfer inefficiency. Based on the inner structure and operating principle of buried channel CCD, a new model of charge transfer inefficiency that varies with charge quantity is proposed, which can explain the entirely saturated unilateral smear of laser spot. (authors)

  3. Two-dimensional spectrophotometry of planetary nebulae by CCD imaging

    International Nuclear Information System (INIS)

    Jacoby, G.H.; Africano, J.L.; Quigley, R.J.; Western Washington Univ., Bellingham, WA)

    1987-01-01

    The spatial distribution of the electron temperature and density and the ionic abundances of O(+), O(2+), N(+), and S(+) have been derived from CCD images of the planetary nebulae NGC 40 and NGC 6826 taken in the important emission lines of forbidden O II, forbidden O III, H-beta, forbidden N II, and forbidden S II. The steps required in the derivation of the absolute fluxes, line, ratios, and ionic abundances are outlined and then discussed in greater detail. The results show that the CCD imaging technique for two-dimensional spectrophotometry can effectively compete with classical spectrophotometry, providing the added benefits of complete spatial coverage at seeing-disk spatial resolution. The multiplexing in the spatial dimension, however, results in a loss of spectral information, since only one emission line is observed at any one time. 37 references

  4. Stroboscope Based Synchronization of Full Frame CCD Sensors

    Directory of Open Access Journals (Sweden)

    Liang Shen

    2017-04-01

    Full Text Available The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equipment, the proposed approach greatly reduces the cost by using inexpensive CCD cameras and one stroboscope. The results show that our method could reach a high accuracy much better than the frame-level synchronization of traditional software methods.

  5. CCD-based thermoreflectance microscopy: principles and applications

    International Nuclear Information System (INIS)

    Farzaneh, M; Maize, K; Shakouri, A; Lueerssen, D; Summers, J A; Hudgings, Janice A; Mayer, P M; Ram, R J; Raad, P E; Pipe, K P

    2009-01-01

    CCD-based thermoreflectance microscopy has emerged as a high resolution, non-contact imaging technique for thermal profiling and performance and reliability analysis of numerous electronic and optoelectronic devices at the micro-scale. This thermography technique, which is based on measuring the relative change in reflectivity of the device surface as a function of change in temperature, provides high-resolution thermal images that are useful for hot spot detection and failure analysis, mapping of temperature distribution, measurement of thermal transient, optical characterization of photonic devices and measurement of thermal conductivity in thin films. In this paper we review the basic physical principle behind thermoreflectance as a thermography tool, discuss the experimental setup, resolutions achieved, signal processing procedures and calibration techniques, and review the current applications of CCD-based thermoreflectance microscopy in various devices. (topical review)

  6. Stroboscope Based Synchronization of Full Frame CCD Sensors

    OpenAIRE

    Shen, Liang; Feng, Xiaobing; Zhang, Yuan; Shi, Min; Zhu, Dengming; Wang, Zhaoqi

    2017-01-01

    The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD) consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equi...

  7. CCD photometry of Cepheid sequences in four nearby galaxies

    International Nuclear Information System (INIS)

    Metcalfe, N.; Shanks, T.

    1991-01-01

    We present Isaac Newton Telescope B and V CCD observations of deep photometric sequences in the vicinity of Cepheid variable stars in three nearby galaxies - M31, M33 and NGC 2403. We have also checked the photometry of the brightest stars in M81 and its dwarf companion, Holmberg IX. We use our data, combined with other recent results, to re-analyse the Cepheid distances to these galaxies. (author)

  8. Ultraviolet downconverting phosphor for use with silicon CCD imagers

    Science.gov (United States)

    Blouke, M. M.; Cowens, M. W.; Hall, J. E.; Westphal, J. A.; Christensen, A. B.

    1980-01-01

    The properties and application of a UV downconverting phosphor (coronene) to silicon charge coupled devices are discussed. Measurements of the absorption spectrum have been extended to below 1000 A, and preliminary results indicate the existence of useful response to at least 584 A. The average conversion efficiency of coronene was measured to be approximately 20% at 2537 A. Imagery at 3650 A using a backside illuminated 800 x 800 CCD coated with coronene is presented.

  9. CCD Photometry of W UMa Type Binary TY UMa

    Directory of Open Access Journals (Sweden)

    Young Woon Kang

    2001-06-01

    Full Text Available We present VRI CCD photometry of W UMa type binary TY UMa. The light curves show that the secondary minimum is deeper than theprimary minimum and the maximum I (0.p25 is 0.m023 brighter than the maximum II (0.p75. The V light curve has beenanalyzed and the photometric solutions have been determined by the method of Wilson & Devinney differential correction. Weadopted the spot model to explain the asymetric light curve.

  10. STARL -- a Program to Correct CCD Image Defects

    Science.gov (United States)

    Narbutis, D.; Vanagas, R.; Vansevičius, V.

    We present a program tool, STARL, designed for automatic detection and correction of various defects in CCD images. It uses genetic algorithm for deblending and restoring of overlapping saturated stars in crowded stellar fields. Using Subaru Telescope Suprime-Cam images we demonstrate that the program can be implemented in the wide-field survey data processing pipelines for production of high quality color mosaics. The source code and examples are available at the STARL website.

  11. A CCD fitted to the UV Prime spectrograph: Performance

    International Nuclear Information System (INIS)

    Boulade, O.

    1986-10-01

    A CCD camera was fitted to the 3.6 m French-Canadian telescope in Hawai. Performance of the system and observations of elliptic galaxies (stellar content and galactic evolution in a cluster) and quasars (absorption lines in spectra) are reported. In spite of its resolution being only average, the extremely rapid optics of the UV spectrograph gives good signal to noise ratios enabling redshifts and velocity scatter to be calculated with an accuracy better than 30 km/sec [fr

  12. High-Altitude, Long-Endurance UAVs vs. Satellites: Potential Benefits for U.S. Army Applications

    Science.gov (United States)

    2009-05-01

    Beginning-of-Life BOS Battlefield Operating Systems bpp Bits per Pixel C2 Command and Control CBRN Chemical, Biological, Radiological and Nuclear CCD...based on resolution and dynamic range requirements and can range from one to thirty- two bits per pixel ( bpp ), 1 bpp being the minimum required for a...binary (black-and-white) image; 8 bpp allows for a 256 color image but tend to produce grainy pictures; 16 bpp provide 65,536 distinct colors and is

  13. A Bridge Deflection Monitoring System Based on CCD

    Directory of Open Access Journals (Sweden)

    Baohua Shan

    2016-01-01

    Full Text Available For long-term monitoring of the midspan deflection of Songjiazhuang cloverleaf junction on 309 national roads in Zibo city, this paper proposes Zhang’s calibration-based DIC deflection monitoring method. CCD cameras are used to track the change of targets’ position, Zhang’s calibration algorithm is introduced to acquire the intrinsic and extrinsic parameters of CCD cameras, and the DIC method is combined with Zhang’s calibration algorithm to measure bridge deflection. The comparative test between Zhang’s calibration and scale calibration is conducted in lab, and experimental results indicate that the proposed method has higher precision. According to the deflection monitoring scheme, the deflection monitoring software for Songjiazhuang cloverleaf junction is developed by MATLAB, and a 4-channel CCD deflection monitoring system for Songjiazhuang cloverleaf junction is integrated in this paper. This deflection monitoring system includes functions such as image preview, simultaneous collection, camera calibration, deflection display, and data storage. In situ deflection curves show a consistent trend; this suggests that the proposed method is reliable and is suitable for the long-term monitoring of bridge deflection.

  14. Stellar CCD Photometry: New Approach, Principles and Application

    Science.gov (United States)

    El-Bassuny Alawy, A.

    A new approach is proposed and developed to handle pre-processed CCD frames in order to identify stellar images and derive their relevant parameters. It relies on: 1) Identifying stellar images and assigning approximate positions of their centres using an artificial intelligence technique, (Knowledge Based System), 2) Accurate determination of the centre co-ordinates applying an elementary statistical concept and 3) Estimating the image peak intensity as a stellar magnitude measure employing simple numerical analysis approach. The method has been coded for personal computer users. A CCD frame of the star cluster M67 was adopted as a test case. The results obtained are discussed in comparison with the DAOPHOTII ones and the corresponding published data. Exact coincidence has been found between both results except in very few cases. These exceptions have been discussed in the light of the basis of both methods and the cluster plates. It has been realised that the method suggested represents a very simple, extremely fast, high precision method of stellar CCD photometry. Moreover, it is more capable than DAOPHOTII of handling blended and distorted stellar images. These characteristics show the usefulness of the present method in some astronomical applications, such as auto-focusing and auto-guiding, beside the main purpose, viz. stellar photometry.

  15. A new technique of characterization of the intra-pixel response of astronomical detectors

    International Nuclear Information System (INIS)

    Ketchazo, C.; Boulade, O.; Moreau, V.; Dubreuil, D.; Ronayette, S.; Berthe, M.

    2014-01-01

    This paper is devoted to the presentation of a new technique of characterization of the Intra-Pixel Sensitivity Variations (IPSVs) of astronomical detectors. The IPSV is the spatial variation of the sensitivity within a pixel and it was demonstrated that this variation can contribute to the instrument global error. Then IPSV has not to be neglected especially in the case of under-sampled instruments for high quality imaging and accurate photometry. The common approaches to measure the IPSV consist in determining the pixel response function (PRF) by scanning an optical probe through the detector. These approaches require high-aperture optics, high precision mechanical devices and are time consuming. The original approach we will present in this paper consists in projecting high-resolution periodic patterns onto the whole sensor without classic optics but using the self-imaging property (the Talbot effect) of a Continuously Self Imaging Grating (CSIG) illuminated by a plane wave. This paper describes the test bench and its design rules. The methodology of the measurement is also presented. Two measurement procedures are available: global and local. In the global procedure, the mean PRF corresponding to the whole Focal Plane Array (FPA) or a sub-area of the FPA is evaluated. The results obtained applying this procedure on e2v CCD 204 are presented and discussed in detail. In the local procedure, a CSIG is moved in front of each pixel and a pixel PRF is reconstructed by resolving the inverse problem. The local procedure is presented and validated by simulations. (authors)

  16. Development of a thinned back-illuminated CMOS active pixel sensor for extreme ultraviolet spectroscopy and imaging in space science

    International Nuclear Information System (INIS)

    Waltham, N.R.; Prydderch, M.; Mapson-Menard, H.; Pool, P.; Harris, A.

    2007-01-01

    We describe our programme to develop a large-format, science-grade, monolithic CMOS active pixel sensor for future space science missions, and in particular an extreme ultraviolet (EUV) spectrograph for solar physics studies on ESA's Solar Orbiter. Our route to EUV sensitivity relies on adapting the back-thinning and rear-illumination techniques first developed for CCD sensors. Our first large-format sensor consists of 4kx3k 5 μm pixels fabricated on a 0.25 μm CMOS imager process. Wafer samples of these sensors have been thinned by e2v technologies with the aim of obtaining good sensitivity at EUV wavelengths. We present results from both front- and back-illuminated versions of this sensor. We also present our plans to develop a new sensor of 2kx2k 10 μm pixels, which will be fabricated on a 0.35 μm CMOS process. In progress towards this goal, we have designed a test-structure consisting of six arrays of 512x512 10 μm pixels. Each of the arrays has been given a different pixel design to allow verification of our models, and our progress towards optimizing a design for minimal system readout noise and maximum dynamic range. These sensors will also be back-thinned for characterization at EUV wavelengths

  17. Estimating Daily Evapotranspiration Based on A Model of Evapotranspiration Fraction (EF) for Mixed Pixels

    Science.gov (United States)

    Xin, X.; Li, F.; Peng, Z.; Qinhuo, L.

    2017-12-01

    Land surface heterogeneities significantly affect the reliability and accuracy of remotely sensed evapotranspiration (ET), and it gets worse for lower resolution data. At the same time, temporal scale extrapolation of the instantaneous latent heat flux (LE) at satellite overpass time to daily ET are crucial for applications of such remote sensing product. The purpose of this paper is to propose a simple but efficient model for estimating daytime evapotranspiration considering heterogeneity of mixed pixels. In order to do so, an equation to calculate evapotranspiration fraction (EF) of mixed pixels was derived based on two key assumptions. Assumption 1: the available energy (AE) of each sub-pixel equals approximately to that of any other sub-pixels in the same mixed pixel within acceptable margin of bias, and as same as the AE of the mixed pixel. It's only for a simpification of the equation, and its uncertainties and resulted errors in estimated ET are very small. Assumption 2: EF of each sub-pixel equals to the EF of the nearest pure pixel(s) of same land cover type. This equation is supposed to be capable of correcting the spatial scale error of the mixed pixels EF and can be used to calculated daily ET with daily AE data.The model was applied to an artificial oasis in the midstream of Heihe River. HJ-1B satellite data were used to estimate the lumped fluxes at the scale of 300 m after resampling the 30-m resolution datasets to 300 m resolution, which was used to carry on the key step of the model. The results before and after correction were compare to each other and validated using site data of eddy-correlation systems. Results indicated that the new model is capable of improving accuracy of daily ET estimation relative to the lumped method. Validations at 12 sites of eddy-correlation systems for 9 days of HJ-1B overpass showed that the R² increased to 0.82 from 0.62; the RMSE decreased to 1.60 MJ/m² from 2.47MJ/m²; the MBE decreased from 1.92 MJ/m² to 1

  18. Satellite monitoring of cyanobacterial harmful algal bloom ...

    Science.gov (United States)

    Cyanobacterial harmful algal blooms (cyanoHABs) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern because of their dense biomass and the risk of exposure to toxins in both recreational waters and drinking source waters. Successful cyanoHAB assessment by satellites may provide a first-line of defense indicator for human and ecological health protection. In this study, assessment methods were developed to determine the utility of satellite technology for detecting cyanoHAB occurrence frequency at locations of potential management interest. The European Space Agency's MEdium Resolution Imaging Spectrometer (MERIS) was evaluated to prepare for the equivalent Sentinel-3 Ocean and Land Colour Imager (OLCI) launched in 2016. Based on the 2012 National Lakes Assessment site evaluation guidelines and National Hydrography Dataset, there were 275,897 lakes and reservoirs greater than 1 hectare in the 48 U.S. states. Results from this evaluation show that 5.6 % of waterbodies were resolvable by satellites with 300 m single pixel resolution and 0.7 % of waterbodies were resolvable when a 3x3 pixel array was applied based on minimum Euclidian distance from shore. Satellite data was also spatially joined to US public water surface intake (PWSI) locations, where single pixel resolution resolved 57% of PWSI and a 3x3 pixel array resolved 33% of

  19. Applying Statistical Mechanics to pixel detectors

    International Nuclear Information System (INIS)

    Pindo, Massimiliano

    2002-01-01

    Pixel detectors, being made of a large number of active cells of the same kind, can be considered as significant sets to which Statistical Mechanics variables and methods can be applied. By properly redefining well known statistical parameters in order to let them match the ones that actually characterize pixel detectors, an analysis of the way they work can be performed in a totally new perspective. A deeper understanding of pixel detectors is attained, helping in the evaluation and comparison of their intrinsic characteristics and performance

  20. LISe pixel detector for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Elan; Hamm, Daniel [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Wiggins, Brenden [Technology Development, Y-12 National Security Complex, Oak Ridge, TN (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Milburn, Rob [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Burger, Arnold [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Department of Life and Physical Sciences, Fisk University, Nashville, TN (United States); Bilheux, Hassina [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Santodonato, Louis [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Chvala, Ondrej [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Stowe, Ashley [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Technology Development, Y-12 National Security Complex, Oak Ridge, TN (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Lukosi, Eric, E-mail: elukosi@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States)

    2016-10-11

    Semiconducting lithium indium diselenide, {sup 6}LiInSe{sub 2} or LISe, has promising characteristics for neutron detection applications. The 95% isotopic enrichment of {sup 6}Li results in a highly efficient thermal neutron-sensitive material. In this study, we report on a proof-of-principle investigation of a semiconducting LISe pixel detector to demonstrate its potential as an efficient neutron imager. The LISe pixel detector had a 4×4 of pixels with a 550 µm pitch on a 5×5×0.56 mm{sup 3} LISe substrate. An experimentally verified spatial resolution of 300 µm was observed utilizing a super-sampling technique.

  1. Pixelated CdZnTe drift detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2005-01-01

    A technique, the so-called Drift Strip Method (DSM), for improving the CdZnTe detector energy response to hard X-rays and gamma-rays was applied as a pixel geometry. First tests have confirmed that this detector type provides excellent energy resolution and imaging performance. We specifically...... report on the performance of 3 mm thick prototype CZT drift pixel detectors fabricated using material from eV-products. We discuss issues associated with detector module performance. Characterization results obtained from several prototype drift pixel detectors are presented. Results of position...

  2. C.C.D. readout of a picosecond streak camera with an intensified C.C.D

    International Nuclear Information System (INIS)

    Lemonier, M.; Richard, J.C.; Cavailler, C.; Mens, A.; Raze, G.

    1984-08-01

    This paper deals with a digital streak camera readout device. The device consists in a low light level television camera made of a solid state C.C.D. array coupled to an image intensifier associated to a video-digitizer coupled to a micro-computer system. The streak camera images are picked-up as a video signal, digitized and stored. This system allows the fast recording and the automatic processing of the data provided by the streak tube

  3. Saturn satellites

    International Nuclear Information System (INIS)

    Ruskol, E.L.

    1981-01-01

    The characteristics of the Saturn satellites are discussed. The satellites close to Saturn - Janus, Mimas, Enceladus, Tethys, Dione and Rhea - rotate along the circular orbits. High reflectivity is attributed to them, and the density of the satellites is 1 g/cm 3 . Titan is one of the biggest Saturn satellites. Titan has atmosphere many times more powerful than that of Mars. The Titan atmosphere is a peculiar medium with a unique methane and hydrogen distribution in the whole Solar system. The external satellites - Hyperion, Japetus and Phoebe - are poorly investigated. Neither satellite substance density, nor their composition are known. The experimental data on the Saturn rings obtained on the ''Pioneer-11'' and ''Voyager-1'' satellites are presented [ru

  4. The OmegaCAM 16K x 16K CCD detector system for the ESO VLT Survey Telescope (VST)

    Science.gov (United States)

    Iwert, Olaf; Baade, D.; Balestra, A.; Baruffolo, A.; Bortolussi, A.; Christen, F.; Cumani, C.; Deiries, S.; Downing, M.; Geimer, C.; Hess, G.; Hess, J.; Kuijken, K.; Lizon, J.; Muschielok, B.; Nicklas, H.; Reiss, R.; Reyes, J.; Silber, A.; Thillerup, J.; Valentijn, E.

    2006-06-01

    A 16K x 16K, 1 degree x 1 degree field, detector system was developed by ESO for the OmegaCAM instrument for use on the purpose built ESO VLT Survey Telescope (VST). The focal plane consists of an 8 x 4 mosaic of 2K x 4K 15um pixel e2v CCDs and four 2K x 4K CCDs on the periphery for the opto-mechanical control of the telescope. The VST is a single instrument telescope. This placed stringent reliability requirements on the OmegaCAM detector system such as 10 years lifetime and maximum downtime of 1.5 %. Mounting at Cassegrain focus required a highly autonomous self-contained cooling system that could deliver 65 W of cooling power. Interface space for the detector head was severely limited by the way the instrument encloses the CCD cryostat. The detector system features several novel ideas tailored to meet these requirements and described in this paper: Key design drivers of the detector head were the easily separable but precisely aligned connections to the optical field flattener on the top and the cooling system at the bottom. Material selection, surface treatment, specialized coatings and in-situ plasma cleaning were crucial to prevent contamination of the detectors. Inside the cryostat, cryogenic and electrical connections were disentangled to keep the configuration modular, integration friendly and the detectors in a safe condition during all mounting steps. A compact unit for logging up to 125 Pt100 temperature sensors and associated thermal control loops was developed (ESO's new housekeeping unit PULPO 2), together with several new modular Pt100 packaging and mounting concepts. The electrical grouping of CCDs based on process parameters and test results is explained. Three ESO standardized FIERA CCD controllers in different configurations are used. Their synchronization mechanism for read-out is discussed in connection with the CCD grouping scheme, the shutter, and the integrated guiding and image analysis facility with four independent 2K x 4K CCDs. An

  5. Plasmonic nanospherical dimers for color pixels

    KAUST Repository

    Alrasheed, Salma; Di Fabrizio, Enzo M.

    2018-01-01

    Display technologies are evolving more toward higher resolution and miniaturization. Plasmonic color pixels can offer solutions to realize such technologies due to their sharp resonances and selective scattering and absorption at particular

  6. Developments of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Andreazza, Attilio

    2004-01-01

    The ATLAS silicon pixel detector is the innermost tracking device of the ATLAS experiment at the Large Hardon Collider, consisting of more than 1700 modules for a total sensitive area of about 1.7m2 and over 80 million pixel cells. The concept is a hybrid of front-end chips bump bonded to the pixel sensor. The elementary pixel cell has 50μmx400μm size, providing pulse height information via the time over threshold technique. Prototype devices with oxygenated silicon sensor and rad-hard electronics built in the IBM 0.25μm process have been tested and maintain good resolution, efficiency and timing performances even after receiving the design radiation damage of 1015neq/cm2

  7. Characterization of Ir/Au pixel TES

    International Nuclear Information System (INIS)

    Kunieda, Y.; Takahashi, H.; Zen, N.; Damayanthi, R.M.T.; Mori, F.; Fujita, K.; Nakazawa, M.; Fukuda, D.; Ohkubo, M.

    2006-01-01

    Signal shapes and noise characteristics of an asymmetrical ten-pixel Ir/Au-TES have been studied. The asymmetric design may be effective to realize an imaging spectrometer. Distinct two exponential decays observed for X-ray events are consistent with a two-step R-T curve. A theoretical thermal model for noise in multi-pixel devices reasonably explains the experimental data

  8. Comparative Analysis of Chinese HJ-1 CCD, GF-1 WFV and ZY-3 MUX Sensor Data for Leaf Area Index Estimations for Maize

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2018-01-01

    Full Text Available In recent years, China has developed and launched several satellites with high spatial resolutions, such as the resources satellite No. 3 (ZY-3 with a multi-spectral camera (MUX and 5.8 m spatial resolution, the satellite GaoFen No. 1 (GF-1 with a wide field of view (WFV camera and 16 m spatial resolution, and the environment satellite (HJ-1A/B with a charge-coupled device (CCD sensor and 30 m spatial resolution. First, to analyze the potential application of ZY-3 MUX, GF-1 WFV, and HJ-1 CCD to extract the leaf area index (LAI at the regional scale, this study estimated LAI from the relationships between physical model-based spectral vegetation indices (SVIs and LAI values that were generated from look-up tables (LUTs, simulated from the combination of the PROSPECT-5B leaf model and the scattering by arbitrarily inclined leaves with the hot-spot effect (SAILH canopy reflectance model. Second, to assess the surface reflectance quality of these sensors after data preprocessing, the well-processed surface reflectance products of the Landsat-8 operational land imager (OLI sensor with a convincing data quality were used to compare the performances of ZY-3 MUX, GF-1 WFV, and HJ-1 CCD sensors both in theory and reality. Apart from several reflectance fluctuations, the reflectance trends were coincident, and the reflectance values of the red and near-infrared (NIR bands were comparable among these sensors. Finally, to analyze the accuracy of the LAI estimated from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD, the LAI estimations from these sensors were validated based on LAI field measurements in Huailai, Hebei Province, China. The results showed that the performance of the LAI that was inversed from ZY-3 MUX was better than that from GF-1 WFV, and HJ-1 CCD, both of which tended to be systematically underestimated. In addition, the value ranges and accuracies of the LAI inversions both decreased with decreasing spatial resolution.

  9. The SMILE Soft X-ray Imager (SXI) CCD design and development

    Science.gov (United States)

    Soman, M. R.; Hall, D. J.; Holland, A. D.; Burgon, R.; Buggey, T.; Skottfelt, J.; Sembay, S.; Drumm, P.; Thornhill, J.; Read, A.; Sykes, J.; Walton, D.; Branduardi-Raymont, G.; Kennedy, T.; Raab, W.; Verhoeve, P.; Agnolon, D.; Woffinden, C.

    2018-01-01

    SMILE, the Solar wind Magnetosphere Ionosphere Link Explorer, is a joint science mission between the European Space Agency and the Chinese Academy of Sciences. The spacecraft will be uniquely equipped to study the interaction between the Earth's magnetosphere-ionosphere system and the solar wind on a global scale. SMILE's instruments will explore this science through imaging of the solar wind charge exchange soft X-ray emission from the dayside magnetosheath, simultaneous imaging of the UV northern aurora and in-situ monitoring of the solar wind and magnetosheath plasma and magnetic field conditions. The Soft X-ray Imager (SXI) is the instrument being designed to observe X-ray photons emitted by the solar wind charge exchange process at photon energies between 200 eV and 2000 eV . X-rays will be collected using a focal plane array of two custom-designed CCDs, each consisting of 18 μm square pixels in a 4510 by 4510 array. SMILE will be placed in a highly elliptical polar orbit, passing in and out of the Earth's radiation belts every 48 hours. Radiation damage accumulated in the CCDs during the mission's nominal 3-year lifetime will degrade their performance (such as through decreases in charge transfer efficiency), negatively impacting the instrument's ability to detect low energy X-rays incident on the regions of the CCD image area furthest from the detector outputs. The design of the SMILE-SXI CCDs is presented here, including features and operating methods for mitigating the effects of radiation damage and expected end of life CCD performance. Measurements with a PLATO device that has not been designed for soft X-ray signal levels indicate a temperature-dependent transfer efficiency performance varying between 5×10-5 and 9×10-4 at expected End of Life for 5.9 keV photons, giving an initial set of measurements from which to extrapolate the performance of the SXI CCDs.

  10. OP09O-OP404-9 Wide Field Camera 3 CCD Quantum Efficiency Hysteresis

    Science.gov (United States)

    Collins, Nick

    2009-01-01

    The HST/Wide Field Camera (WFC) 3 UV/visible channel CCD detectors have exhibited an unanticipated quantum efficiency hysteresis (QEH) behavior. At the nominal operating temperature of -83C, the QEH feature contrast was typically 0.1-0.2% or less. The behavior was replicated using flight spare detectors. A visible light flat-field (540nm) with a several times full-well signal level can pin the detectors at both optical (600nm) and near-UV (230nm) wavelengths, suppressing the QEH behavior. We are characterizing the timescale for the detectors to become unpinned and developing a protocol for flashing the WFC3 CCDs with the instrument's internal calibration system in flight. The HST/Wide Field Camera 3 UV/visible channel CCD detectors have exhibited an unanticipated quantum efficiency hysteresis (QEH) behavior. The first observed manifestation of QEH was the presence in a small percentage of flat-field images of a bowtie-shaped contrast that spanned the width of each chip. At the nominal operating temperature of -83C, the contrast observed for this feature was typically 0.1-0.2% or less, though at warmer temperatures contrasts up to 5% (at -50C) have been observed. The bowtie morphology was replicated using flight spare detectors in tests at the GSFC Detector Characterization Laboratory by power cycling the detector while cold. Continued investigation revealed that a clearly-related global QE suppression at the approximately 5% level can be produced by cooling the detector in the dark; subsequent flat-field exposures at a constant illumination show asymptotically increasing response. This QE "pinning" can be achieved with a single high signal flat-field or a series of lower signal flats; a visible light (500-580nm) flat-field with a signal level of several hundred thousand electrons per pixel is sufficient for QE pinning at both optical (600nm) and near-UV (230nm) wavelengths. We are characterizing the timescale for the detectors to become unpinned and developing a

  11. Crystallization of the C-terminal domain of the addiction antidote CcdA in complex with its toxin CcdB

    International Nuclear Information System (INIS)

    Buts, Lieven; De Jonge, Natalie; Loris, Remy; Wyns, Lode; Dao-Thi, Minh-Hoa

    2005-01-01

    The CcdA C-terminal domain was crystallized in complex with CcdB in two crystal forms that diffract to beyond 2.0 Å resolution. CcdA and CcdB are the antidote and toxin of the ccd addiction module of Escherichia coli plasmid F. The CcdA C-terminal domain (CcdA C36 ; 36 amino acids) was crystallized in complex with CcdB (dimer of 2 × 101 amino acids) in three different crystal forms, two of which diffract to high resolution. Form II belongs to space group P2 1 2 1 2 1 , with unit-cell parameters a = 37.6, b = 60.5, c = 83.8 Å and diffracts to 1.8 Å resolution. Form III belongs to space group P2 1 , with unit-cell parameters a = 41.0, b = 37.9, c = 69.6 Å, β = 96.9°, and diffracts to 1.9 Å resolution

  12. Overview of the CMS Pixel Detector

    CERN Document Server

    Cerati, Giuseppe B

    2008-01-01

    The Compact Muon Solenoid Experiment (CMS) will start taking data at the Large Hadron Collider (LHC) in 2009. It will investigate the proton-proton collisions at $14~TeV$. A robust tracking combined with a precise vertex reconstruction is crucial to address the physics challenge of proton collisions at this energy. To this extent an all-silicon tracking system with very fine granularity has been built and now is in the final commissioning phase. It represents the largest silicon tracking detector ever built. The system is composed by an outer part, made of micro-strip detectors, and an inner one, made of pixel detectors. The pixel detector consists of three pixel barrel layers and two forward disks at each side of the interaction region. Each pixel sensor, both for the barrel and forward detectors, has $100 \\times 150$ $\\mu m^2$ cells for a total of 66 million pixels covering a total area of about $1~m^2$. The pixel detector will play a crucial role in the pattern recognition and the track reconstruction both...

  13. Steganography based on pixel intensity value decomposition

    Science.gov (United States)

    Abdulla, Alan Anwar; Sellahewa, Harin; Jassim, Sabah A.

    2014-05-01

    This paper focuses on steganography based on pixel intensity value decomposition. A number of existing schemes such as binary, Fibonacci, Prime, Natural, Lucas, and Catalan-Fibonacci (CF) are evaluated in terms of payload capacity and stego quality. A new technique based on a specific representation is proposed to decompose pixel intensity values into 16 (virtual) bit-planes suitable for embedding purposes. The proposed decomposition has a desirable property whereby the sum of all bit-planes does not exceed the maximum pixel intensity value, i.e. 255. Experimental results demonstrate that the proposed technique offers an effective compromise between payload capacity and stego quality of existing embedding techniques based on pixel intensity value decomposition. Its capacity is equal to that of binary and Lucas, while it offers a higher capacity than Fibonacci, Prime, Natural, and CF when the secret bits are embedded in 1st Least Significant Bit (LSB). When the secret bits are embedded in higher bit-planes, i.e., 2nd LSB to 8th Most Significant Bit (MSB), the proposed scheme has more capacity than Natural numbers based embedding. However, from the 6th bit-plane onwards, the proposed scheme offers better stego quality. In general, the proposed decomposition scheme has less effect in terms of quality on pixel value when compared to most existing pixel intensity value decomposition techniques when embedding messages in higher bit-planes.

  14. Simulation study of pixel detector charge digitization

    Science.gov (United States)

    Wang, Fuyue; Nachman, Benjamin; Sciveres, Maurice; Lawrence Berkeley National Laboratory Team

    2017-01-01

    Reconstruction of tracks from nearly overlapping particles, called Tracking in Dense Environments (TIDE), is an increasingly important component of many physics analyses at the Large Hadron Collider as signatures involving highly boosted jets are investigated. TIDE makes use of the charge distribution inside a pixel cluster to resolve tracks that share one of more of their pixel detector hits. In practice, the pixel charge is discretized using the Time-over-Threshold (ToT) technique. More charge information is better for discrimination, but more challenging for designing and operating the detector. A model of the silicon pixels has been developed in order to study the impact of the precision of the digitized charge distribution on distinguishing multi-particle clusters. The output of the GEANT4-based simulation is used to train neutral networks that predict the multiplicity and location of particles depositing energy inside one cluster of pixels. By studying the multi-particle cluster identification efficiency and position resolution, we quantify the trade-off between the number of ToT bits and low-level tracking inputs. As both ATLAS and CMS are designing upgraded detectors, this work provides guidance for the pixel module designs to meet TIDE needs. Work funded by the China Scholarship Council and the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231.

  15. Charge sharing in silicon pixel detectors

    CERN Document Server

    Mathieson, K; Seller, P; Prydderch, M L; O'Shea, V; Bates, R L; Smith, K M; Rahman, M

    2002-01-01

    We used a pixellated hybrid silicon X-ray detector to study the effect of the sharing of generated charge between neighbouring pixels over a range of incident X-ray energies, 13-36 keV. The system is a room temperature, energy resolving detector with a Gaussian FWHM of 265 eV at 5.9 keV. Each pixel is 300 mu m square, 300 mu m deep and is bump bonded to matching read out electronics. The modelling packages MEDICI and MCNP were used to model the complete X-ray interaction and the subsequent charge transport. Using this software a model is developed which reproduces well the experimental results. The simulations are then altered to explore smaller pixel sizes and different X-ray energies. Charge sharing was observed experimentally to be 2% at 13 keV rising to 4.5% at 36 keV, for an energy threshold of 4 keV. The models predict that up to 50% of charge may be lost to the neighbouring pixels, for an X-ray energy of 36 keV, when the pixel size is reduced to 55 mu m.

  16. Focal plane array with modular pixel array components for scalability

    Science.gov (United States)

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  17. CCD Development Progress at Lawrence Berkeley National Laboratory

    OpenAIRE

    Kolbe, W.F.; Holland, S.E.; Bebek, C.J.

    2006-01-01

    P-channel CCD imagers, 200-300um thick, fully depleted, and back-illuminat ed are being developed for scientific applications including ground- and space-based astronomy and x-ray detection. These thick devices have extended IR response, good point-spread function (PSF) and excellent radiation tolerance. Initially, these CCDs were made in-house at LBNL using 100 mm diameter wafers. Fabrication on high-resistivity 150 mm wafers is now proceeding according to a model in which the wafers are fir...

  18. A luminescence imaging system based on a CCD camera

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.; Markey, B.G.

    1997-01-01

    Stimulated luminescence arising from naturally occurring minerals is likely to be spatially heterogeneous. Standard luminescence detection systems are unable to resolve this variability. Several research groups have attempted to use imaging photon detectors, or image intensifiers linked...... to photographic systems, in order to obtain spatially resolved data. However, the former option is extremely expensive and it is difficult to obtain quantitative data from the latter. This paper describes the use of a CCD camera for imaging both thermoluminescence and optically stimulated luminescence. The system...

  19. Neutral-beam performance analysis using a CCD camera

    International Nuclear Information System (INIS)

    Hill, D.N.; Allen, S.L.; Pincosy, P.A.

    1986-01-01

    We have developed an optical diagnostic system suitable for characterizing the performance of energetic neutral beams. An absolutely calibrated CCD video camera is used to view the neutral beam as it passes through a relatively high pressure (10 -5 Torr) region outside the neutralizer: collisional excitation of the fast deuterium atoms produces H/sub proportional to/ emission (lambda = 6561A) that is proportional to the local atomic current density, independent of the species mix of accelerated ions over the energy range 5 to 20 keV. Digital processing of the video signal provides profile and aiming information for beam optimization. 6 refs., 3 figs

  20. A FORTRAN realization of the block adjustment of CCD frames

    Science.gov (United States)

    Yu, Yong; Tang, Zhenghong; Li, Jinling; Zhao, Ming

    A FORTRAN version realization of the block adjustment (BA) of overlapping CCD frames is developed. The flowchart is introduced including (a) data collection, (b) preprocessing, and (c) BA and object positioning. The subroutines and their functions are also demonstrated. The program package is tested by simulated data with/without the application of white noises. It is also preliminarily applied to the reduction of optical positions of four extragalactic radio sources. The results show that because of the increase in the sky coverage and number of reference stars, the precision of deducted positions is improved compared with single plate adjustment.

  1. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  2. Spatial clustering of pixels of a multispectral image

    Science.gov (United States)

    Conger, James Lynn

    2014-08-19

    A method and system for clustering the pixels of a multispectral image is provided. A clustering system computes a maximum spectral similarity score for each pixel that indicates the similarity between that pixel and the most similar neighboring. To determine the maximum similarity score for a pixel, the clustering system generates a similarity score between that pixel and each of its neighboring pixels and then selects the similarity score that represents the highest similarity as the maximum similarity score. The clustering system may apply a filtering criterion based on the maximum similarity score so that pixels with similarity scores below a minimum threshold are not clustered. The clustering system changes the current pixel values of the pixels in a cluster based on an averaging of the original pixel values of the pixels in the cluster.

  3. Post launch calibration and testing of the Geostationary Lightning Mapper on GOES-R satellite

    Science.gov (United States)

    Rafal, Marc; Clarke, Jared T.; Cholvibul, Ruth W.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 μs) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  4. Spatial distribution analysis of the OMI aerosol layer height: a pixel-by-pixel comparison to CALIOP observations

    Science.gov (United States)

    Chimot, Julien; Pepijn Veefkind, J.; Vlemmix, Tim; Levelt, Pieternel F.

    2018-04-01

    A global picture of atmospheric aerosol vertical distribution with a high temporal resolution is of key importance not only for climate, cloud formation, and air quality research studies but also for correcting scattered radiation induced by aerosols in absorbing trace gas retrievals from passive satellite sensors. Aerosol layer height (ALH) was retrieved from the OMI 477 nm O2 - O2 band and its spatial pattern evaluated over selected cloud-free scenes. Such retrievals benefit from a synergy with MODIS data to provide complementary information on aerosols and cloudy pixels. We used a neural network approach previously trained and developed. Comparison with CALIOP aerosol level 2 products over urban and industrial pollution in eastern China shows consistent spatial patterns with an uncertainty in the range of 462-648 m. In addition, we show the possibility to determine the height of thick aerosol layers released by intensive biomass burning events in South America and Russia from OMI visible measurements. A Saharan dust outbreak over sea is finally discussed. Complementary detailed analyses show that the assumed aerosol properties in the forward modelling are the key factors affecting the accuracy of the results, together with potential cloud residuals in the observation pixels. Furthermore, we demonstrate that the physical meaning of the retrieved ALH scalar corresponds to the weighted average of the vertical aerosol extinction profile. These encouraging findings strongly suggest the potential of the OMI ALH product, and in more general the use of the 477 nm O2 - O2 band from present and future similar satellite sensors, for climate studies as well as for future aerosol correction in air quality trace gas retrievals.

  5. Spatial distribution analysis of the OMI aerosol layer height: a pixel-by-pixel comparison to CALIOP observations

    Directory of Open Access Journals (Sweden)

    J. Chimot

    2018-04-01

    Full Text Available A global picture of atmospheric aerosol vertical distribution with a high temporal resolution is of key importance not only for climate, cloud formation, and air quality research studies but also for correcting scattered radiation induced by aerosols in absorbing trace gas retrievals from passive satellite sensors. Aerosol layer height (ALH was retrieved from the OMI 477 nm O2 − O2 band and its spatial pattern evaluated over selected cloud-free scenes. Such retrievals benefit from a synergy with MODIS data to provide complementary information on aerosols and cloudy pixels. We used a neural network approach previously trained and developed. Comparison with CALIOP aerosol level 2 products over urban and industrial pollution in eastern China shows consistent spatial patterns with an uncertainty in the range of 462–648 m. In addition, we show the possibility to determine the height of thick aerosol layers released by intensive biomass burning events in South America and Russia from OMI visible measurements. A Saharan dust outbreak over sea is finally discussed. Complementary detailed analyses show that the assumed aerosol properties in the forward modelling are the key factors affecting the accuracy of the results, together with potential cloud residuals in the observation pixels. Furthermore, we demonstrate that the physical meaning of the retrieved ALH scalar corresponds to the weighted average of the vertical aerosol extinction profile. These encouraging findings strongly suggest the potential of the OMI ALH product, and in more general the use of the 477 nm O2 − O2 band from present and future similar satellite sensors, for climate studies as well as for future aerosol correction in air quality trace gas retrievals.

  6. Where can pixel counting area estimates meet user-defined accuracy requirements?

    Science.gov (United States)

    Waldner, François; Defourny, Pierre

    2017-08-01

    Pixel counting is probably the most popular way to estimate class areas from satellite-derived maps. It involves determining the number of pixels allocated to a specific thematic class and multiplying it by the pixel area. In the presence of asymmetric classification errors, the pixel counting estimator is biased. The overarching objective of this article is to define the applicability conditions of pixel counting so that the estimates are below a user-defined accuracy target. By reasoning in terms of landscape fragmentation and spatial resolution, the proposed framework decouples the resolution bias and the classifier bias from the overall classification bias. The consequence is that prior to any classification, part of the tolerated bias is already committed due to the choice of the spatial resolution of the imagery. How much classification bias is affordable depends on the joint interaction of spatial resolution and fragmentation. The method was implemented over South Africa for cropland mapping, demonstrating its operational applicability. Particular attention was paid to modeling a realistic sensor's spatial response by explicitly accounting for the effect of its point spread function. The diagnostic capabilities offered by this framework have multiple potential domains of application such as guiding users in their choice of imagery and providing guidelines for space agencies to elaborate the design specifications of future instruments.

  7. CCD Camera Lens Interface for Real-Time Theodolite Alignment

    Science.gov (United States)

    Wake, Shane; Scott, V. Stanley, III

    2012-01-01

    Theodolites are a common instrument in the testing, alignment, and building of various systems ranging from a single optical component to an entire instrument. They provide a precise way to measure horizontal and vertical angles. They can be used to align multiple objects in a desired way at specific angles. They can also be used to reference a specific location or orientation of an object that has moved. Some systems may require a small margin of error in position of components. A theodolite can assist with accurately measuring and/or minimizing that error. The technology is an adapter for a CCD camera with lens to attach to a Leica Wild T3000 Theodolite eyepiece that enables viewing on a connected monitor, and thus can be utilized with multiple theodolites simultaneously. This technology removes a substantial part of human error by relying on the CCD camera and monitors. It also allows image recording of the alignment, and therefore provides a quantitative means to measure such error.

  8. Fast event recorder utilizing a CCD analog shift register

    International Nuclear Information System (INIS)

    Ducar, R.J.; McIntyre, P.M.

    1978-01-01

    A system of electronics has been developed to allow the capture and recording of relatively fast, low-amplitude analog events. The heart of the system is a dual 455-cell analog shift register charge-coupled device, Fairchild CCD321ADC-3. The CCD is operated in a dual clock mode. The input is sampled at a selectable clock rate of .25-20 MHz. The stored analog data is then clocked out at a slower rate, typically about .25 MHz. The time base expansion of the analog data allows for analog-to-digital conversion and memory storage using conventional medium-speed devices. The digital data is sequentially loaded into a static RAM and may then be block transferred to a computer. The analog electronics are housed in a single-width NIM module, and the RAM memory in a single-width CAMAC module. Each pair of modules provides six parallel channels. Cost is about $200.00 per channel. Applications are described for ionization imaging (TPC, IRC) and long-drift calorimetry in liquid argon

  9. Coded aperture detector: an image sensor with sub 20-nm pixel resolution.

    Science.gov (United States)

    Miyakawa, Ryan; Mayer, Rafael; Wojdyla, Antoine; Vannier, Nicolas; Lesser, Ian; Aron-Dine, Shifrah; Naulleau, Patrick

    2014-08-11

    We describe the coded aperture detector, a novel image sensor based on uniformly redundant arrays (URAs) with customizable pixel size, resolution, and operating photon energy regime. In this sensor, a coded aperture is scanned laterally at the image plane of an optical system, and the transmitted intensity is measured by a photodiode. The image intensity is then digitally reconstructed using a simple convolution. We present results from a proof-of-principle optical prototype, demonstrating high-fidelity image sensing comparable to a CCD. A 20-nm half-pitch URA fabricated by the Center for X-ray Optics (CXRO) nano-fabrication laboratory is presented that is suitable for high-resolution image sensing at EUV and soft X-ray wavelengths.

  10. PIXEL PATTERN BASED STEGANOGRAPHY ON IMAGES

    Directory of Open Access Journals (Sweden)

    R. Rejani

    2015-02-01

    Full Text Available One of the drawback of most of the existing steganography methods is that it alters the bits used for storing color information. Some of the examples include LSB or MSB based steganography. There are also various existing methods like Dynamic RGB Intensity Based Steganography Scheme, Secure RGB Image Steganography from Pixel Indicator to Triple Algorithm etc that can be used to find out the steganography method used and break it. Another drawback of the existing methods is that it adds noise to the image which makes the image look dull or grainy making it suspicious for a person about existence of a hidden message within the image. To overcome these shortcomings we have come up with a pixel pattern based steganography which involved hiding the message within in image by using the existing RGB values whenever possible at pixel level or with minimum changes. Along with the image a key will also be used to decrypt the message stored at pixel levels. For further protection, both the message stored as well as the key file will be in encrypted format which can have same or different keys or decryption. Hence we call it as a RGB pixel pattern based steganography.

  11. SVM Pixel Classification on Colour Image Segmentation

    Science.gov (United States)

    Barui, Subhrajit; Latha, S.; Samiappan, Dhanalakshmi; Muthu, P.

    2018-04-01

    The aim of image segmentation is to simplify the representation of an image with the help of cluster pixels into something meaningful to analyze. Segmentation is typically used to locate boundaries and curves in an image, precisely to label every pixel in an image to give each pixel an independent identity. SVM pixel classification on colour image segmentation is the topic highlighted in this paper. It holds useful application in the field of concept based image retrieval, machine vision, medical imaging and object detection. The process is accomplished step by step. At first we need to recognize the type of colour and the texture used as an input to the SVM classifier. These inputs are extracted via local spatial similarity measure model and Steerable filter also known as Gabon Filter. It is then trained by using FCM (Fuzzy C-Means). Both the pixel level information of the image and the ability of the SVM Classifier undergoes some sophisticated algorithm to form the final image. The method has a well developed segmented image and efficiency with respect to increased quality and faster processing of the segmented image compared with the other segmentation methods proposed earlier. One of the latest application result is the Light L16 camera.

  12. Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Hardware

    Directory of Open Access Journals (Sweden)

    Y.-W. Kang

    2007-12-01

    Full Text Available We designed and developed a multi-purpose CCD camera system for three kinds of CCDs; KAF-0401E(768×512, KAF-1602E(1536×1024, KAF-3200E(2184×1472 made by KODAK Co.. The system supports fast USB port as well as parallel port for data I/O and control signal. The packing is based on two stage circuit boards for size reduction and contains built-in filter wheel. Basic hardware components include clock pattern circuit, A/D conversion circuit, CCD data flow control circuit, and CCD temperature control unit. The CCD temperature can be controlled with accuracy of approximately 0.4° C in the max. range of temperature, Δ 33° C. This CCD camera system has with readout noise 6 e^{-}, and system gain 5 e^{-}/ADU. A total of 10 CCD camera systems were produced and our tests show that all of them show passable performance.

  13. Pixels, Blocks of Pixels, and Polygons: Choosing a Spatial Unit for Thematic Accuracy Assessment

    Science.gov (United States)

    Pixels, polygons, and blocks of pixels are all potentially viable spatial assessment units for conducting an accuracy assessment. We develop a statistical population-based framework to examine how the spatial unit chosen affects the outcome of an accuracy assessment. The populati...

  14. Satellite Communications

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Satellite Communications. Arthur C Clarke wrote a seminal paper in 1945 in wireless world. Use three satellites in geo-synchronous orbit to enable intercontinental communications. System could be realised in '50 to 100 years'

  15. Imaging quality evaluation method of pixel coupled electro-optical imaging system

    Science.gov (United States)

    He, Xu; Yuan, Li; Jin, Chunqi; Zhang, Xiaohui

    2017-09-01

    With advancements in high-resolution imaging optical fiber bundle fabrication technology, traditional photoelectric imaging system have become ;flexible; with greatly reduced volume and weight. However, traditional image quality evaluation models are limited by the coupling discrete sampling effect of fiber-optic image bundles and charge-coupled device (CCD) pixels. This limitation substantially complicates the design, optimization, assembly, and evaluation image quality of the coupled discrete sampling imaging system. Based on the transfer process of grayscale cosine distribution optical signal in the fiber-optic image bundle and CCD, a mathematical model of coupled modulation transfer function (coupled-MTF) is established. This model can be used as a basis for following studies on the convergence and periodically oscillating characteristics of the function. We also propose the concept of the average coupled-MTF, which is consistent with the definition of traditional MTF. Based on this concept, the relationships among core distance, core layer radius, and average coupled-MTF are investigated.

  16. The pin pixel detector--neutron imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Rhodes, N J; Schooneveld, E M; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a neutron gas pixel detector intended for application in neutron diffraction studies is reported. Using standard electrical connector pins as point anodes, the detector is based on a commercial 100 pin connector block. A prototype detector of aperture 25.4 mmx25.4 mm has been fabricated, giving a pixel size of 2.54 mm which matches well to the spatial resolution typically required in a neutron diffractometer. A 2-Dimensional resistive divide readout system has been adapted to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics. The timing properties of the device match well to the requirements of the ISIS-pulsed neutron source.

  17. Performance of active edge pixel sensors

    Science.gov (United States)

    Bomben, M.; Ducourthial, A.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Calderini, G.; D'Eramo, L.; Giacomini, G.; Marchiori, G.; Zorzi, N.; Rummler, A.; Weingarten, J.

    2017-05-01

    To cope with the High Luminosity LHC harsh conditions, the ATLAS inner tracker has to be upgraded to meet requirements in terms of radiation hardness, pile up and geometrical acceptance. The active edge technology allows to reduce the insensitive area at the border of the sensor thanks to an ion etched trench which avoids the crystal damage produced by the standard mechanical dicing process. Thin planar n-on-p pixel sensors with active edge have been designed and produced by LPNHE and FBK foundry. Two detector module prototypes, consisting of pixel sensors connected to FE-I4B readout chips, have been tested with beams at CERN and DESY. In this paper the performance of these modules are reported. In particular the lateral extension of the detection volume, beyond the pixel region, is investigated and the results show high hit efficiency also at the detector edge, even in presence of guard rings.

  18. Dense Iterative Contextual Pixel Classification using Kriging

    DEFF Research Database (Denmark)

    Ganz, Melanie; Loog, Marco; Brandt, Sami

    2009-01-01

    have been proposed to this end, e.g., iterative contextual pixel classification, iterated conditional modes, and other approaches related to Markov random fields. A problem of these methods, however, is their computational complexity, especially when dealing with high-resolution images in which......In medical applications, segmentation has become an ever more important task. One of the competitive schemes to perform such segmentation is by means of pixel classification. Simple pixel-based classification schemes can be improved by incorporating contextual label information. Various methods...... relatively long range interactions may play a role. We propose a new method based on Kriging that makes it possible to include such long range interactions, while keeping the computations manageable when dealing with large medical images....

  19. Commissioning of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Golling, Tobias

    2008-01-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented

  20. Wafer-scale pixelated detector system

    Science.gov (United States)

    Fahim, Farah; Deptuch, Grzegorz; Zimmerman, Tom

    2017-10-17

    A large area, gapless, detection system comprises at least one sensor; an interposer operably connected to the at least one sensor; and at least one application specific integrated circuit operably connected to the sensor via the interposer wherein the detection system provides high dynamic range while maintaining small pixel area and low power dissipation. Thereby the invention provides methods and systems for a wafer-scale gapless and seamless detector systems with small pixels, which have both high dynamic range and low power dissipation.

  1. Technology development for SOI monolithic pixel detectors

    International Nuclear Information System (INIS)

    Marczewski, J.; Domanski, K.; Grabiec, P.; Grodner, M.; Jaroszewicz, B.; Kociubinski, A.; Kucharski, K.; Tomaszewski, D.; Caccia, M.; Kucewicz, W.; Niemiec, H.

    2006-01-01

    A monolithic detector of ionizing radiation has been manufactured using silicon on insulator (SOI) wafers with a high-resistivity substrate. In our paper the integration of a standard 3 μm CMOS technology, originally designed for bulk devices, with fabrication of pixels in the bottom wafer of a SOI substrate is described. Both technological sequences have been merged minimizing thermal budget and providing suitable properties of all the technological layers. The achieved performance proves that fully depleted monolithic active pixel matrix might be a viable option for a wide spectrum of future applications

  2. Operational Experience with the CMS Pixel Detector

    CERN Document Server

    INSPIRE-00205212

    2015-05-15

    In the first LHC running period the CMS-pixel detector had to face various operational challenges and had to adapt to the rapidly changing beam conditions. In order to maximize the physics potential and the quality of the data, online and offline calibrations were performed on a regular basis. The detector performed excellently with an average hit efficiency above 99\\% for all layers and disks. In this contribution the operational challenges of the silicon pixel detector in the first LHC run and the current long shutdown are summarized and the expectations for 2015 are discussed.

  3. Technical Note: Range verification system using edge detection method for a scintillator and a CCD camera system

    Energy Technology Data Exchange (ETDEWEB)

    Saotome, Naoya, E-mail: naosao@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke; Mizushima, Kota; Tansho, Ryohei; Saraya, Yuichi; Shirai, Toshiyuki; Noda, Koji [Department of Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2016-04-15

    Purpose: Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors’ facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. Methods: A cylindrical plastic scintillator block and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. Results: The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. Conclusions: The results of this study demonstrate that the authors’ range check system is capable of quick and easy range verification with sufficient accuracy.

  4. First-light instrument for the 3.6-m Devasthal Optical Telescope: 4Kx4K CCD Imager

    Science.gov (United States)

    Pandey, Shashi Bhushan; Yadav, Rama Kant Singh; Nanjappa, Nandish; Yadav, Shobhit; Reddy, Bheemireddy Krishna; Sahu, Sanjit; Srinivasan, Ramaiyengar

    2018-04-01

    As a part of in-house instrument developmental activity at ARIES, the 4Kx4K CCD Imager is designed and developed as a first-light instrument for the axial port of the 3.6-m Devasthal Optical Telescope (DOT). The f/9 beam of the telescope having a plate-scale of 6.4"/mm is utilized to conduct deeper photom-etry within the central 10' field of view. The pixel size of the blue-enhanced liquid nitrogen cooled STA4150 4Kx4K CCD chip is 15 μm, with options to select gain and speed values to utilize the dynamic range. Using the Imager, it is planned to image the central 6.5'x6.5' field of view of the telescope for various science goals by getting deeper images in several broad-band filters for point sources and objects with low surface brightness. The fully assembled Imager along with automated filter wheels having Bessel UBV RI and SDSS ugriz filters was tested in late 2015 at the axial port of the 3.6-m DOT. This instrument was finally mounted at the axial port of the 3.6-m DOT on 30 March 2016 when the telescope was technically activated jointly by the Prime Ministers of India and Belgium. It is expected to serve as a general purpose multi-band deep imaging instrument for a variety of science goals including studies of cosmic transients, active galaxies, star clusters and optical monitoring of X-ray sources discovered by the newly launched Indian space-mission called ASTROSAT, and follow-up of radio bright objects discovered by the Giant Meterwave Radio Telescope.

  5. SU-C-207A-03: Development of Proton CT Imaging System Using Thick Scintillator and CCD Camera

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S; Uesaka, M [The University of Tokyo, Tokyo (Japan); Nishio, T; Tsuneda, M [Hiroshima University, Hiroshima (Japan); Matsushita, K [Rikkyo University, Tokyo (Japan); Kabuki, S [Tokai University, Isehara (Japan)

    2016-06-15

    Purpose: In the treatment planning of proton therapy, Water Equivalent Length (WEL), which is the parameter for the calculation of dose and the range of proton, is derived by X-ray CT (xCT) image and xCT-WEL conversion. However, about a few percent error in the accuracy of proton range calculation through this conversion has been reported. The purpose of this study is to construct a proton CT (pCT) imaging system for an evaluation of the error. Methods: The pCT imaging system was constructed with a thick scintillator and a cooled CCD camera, which acquires the two-dimensional image of integrated value of the scintillation light toward the beam direction. The pCT image is reconstructed by FBP method using a correction between the light intensity and residual range of proton beam. An experiment for the demonstration of this system was performed with 70-MeV proton beam provided by NIRS cyclotron. The pCT image of several objects reconstructed from the experimental data was evaluated quantitatively. Results: Three-dimensional pCT images of several objects were reconstructed experimentally. A finestructure of approximately 1 mm was clearly observed. The position resolution of pCT image was almost the same as that of xCT image. And the error of proton CT pixel value was up to 4%. The deterioration of image quality was caused mainly by the effect of multiple Coulomb scattering. Conclusion: We designed and constructed the pCT imaging system using a thick scintillator and a CCD camera. And the system was evaluated with the experiment by use of 70-MeV proton beam. Three-dimensional pCT images of several objects were acquired by the system. This work was supported by JST SENTAN Grant Number 13A1101 and JSPS KAKENHI Grant Number 15H04912.

  6. Technical Note: Range verification system using edge detection method for a scintillator and a CCD camera system

    International Nuclear Information System (INIS)

    Saotome, Naoya; Furukawa, Takuji; Hara, Yousuke; Mizushima, Kota; Tansho, Ryohei; Saraya, Yuichi; Shirai, Toshiyuki; Noda, Koji

    2016-01-01

    Purpose: Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors’ facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. Methods: A cylindrical plastic scintillator block and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. Results: The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. Conclusions: The results of this study demonstrate that the authors’ range check system is capable of quick and easy range verification with sufficient accuracy.

  7. Dynamic imaging with a triggered and intensified CCD camera system in a high-intensity neutron beam

    International Nuclear Information System (INIS)

    Vontobel, P.; Frei, G.; Brunner, J.; Gildemeister, A.E.; Engelhardt, M.

    2005-01-01

    When time-dependent processes within metallic structures should be inspected and visualized, neutrons are well suited due to their high penetration through Al, Ag, Ti or even steel. Then it becomes possible to inspect the propagation, distribution and evaporation of organic liquids as lubricants, fuel or water. The principle set-up of a suited real-time system was implemented and tested at the radiography facility NEUTRA of PSI. The highest beam intensity there is 2x10 7 cm -2 s -1 , which enables to observe sequences in a reasonable time and quality. The heart of the detection system is the MCP intensified CCD camera PI-Max with a Peltier cooled chip (1300x1340 pixels). The intensifier was used for both gating and image enhancement, where as the information was accumulated over many single frames on the chip before readout. Although, a 16-bit dynamic range is advertised by the camera manufacturers, it must be less due to the inherent noise level from the intensifier. The obtained result should be seen as the starting point to go ahead to fit the different requirements of car producers in respect to fuel injection, lubricant distribution, mechanical stability and operation control. Similar inspections will be possible for all devices with repetitive operation principle. Here, we report about two measurements dealing with the lubricant distribution in a running motorcycle motor turning at 1200rpm. We were monitoring the periodic stationary movements of piston, valves and camshaft with a micro-channel plate intensified CCD camera system (PI-Max 1300RB, Princeton Instruments) triggered at exactly chosen time points

  8. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  9. Using multi-disciplinary optimization and numerical simulation on the transiting exoplanet survey satellite

    Science.gov (United States)

    Stoeckel, Gerhard P.; Doyle, Keith B.

    2017-08-01

    The Transiting Exoplanet Survey Satellite (TESS) is an instrument consisting of four, wide fieldof- view CCD cameras dedicated to the discovery of exoplanets around the brightest stars, and understanding the diversity of planets and planetary systems in our galaxy. Each camera utilizes a seven-element lens assembly with low-power and low-noise CCD electronics. Advanced multivariable optimization and numerical simulation capabilities accommodating arbitrarily complex objective functions have been added to the internally developed Lincoln Laboratory Integrated Modeling and Analysis Software (LLIMAS) and used to assess system performance. Various optical phenomena are accounted for in these analyses including full dn/dT spatial distributions in lenses and charge diffusion in the CCD electronics. These capabilities are utilized to design CCD shims for thermal vacuum chamber testing and flight, and verify comparable performance in both environments across a range of wavelengths, field points and temperature distributions. Additionally, optimizations and simulations are used for model correlation and robustness optimizations.

  10. First tests with fully depleted PN-CCD's

    International Nuclear Information System (INIS)

    Strueder, L.; Lutz, G.; Sterzik, M.; Holl, P.; Kemmer, J.; Prechtel, U.; Ziemann, T.; Rehak, P.

    1987-01-01

    We have fabricated 280 μm thick fully depletable pn CCD's on high resistivity silicon (/rho/ ∼ 2.5 kΩcm). Its operation is based on the semiconductor drift chamber principle proposed by Gatti and Rheak. They are designed as energy and position sensitive radiation detector for (minimum) ionizing particles and X-ray imaging. Two dimensional semiconductor device modeling demonstrates the basic charge transer mechanisms. Prototypes of the detectors have been tested in static and dynamic conditions. A preliminary charge transfer inefficiency was determined to 6 x 10/sup/minus/3/. The charge loss during the transfer is discussed and as a consequence we have developed an improved design for a second fabrication iteration which is now being produced. 4 refs., 15 figs

  11. BV photographic and CCD photometry of IC 4651

    International Nuclear Information System (INIS)

    Anthony-Twarog, B.J.; Mukherjee, K.; Twarog, B.A.; Caldwell, N.

    1988-01-01

    A BV photometric survey in IC 4651 based on photographic and CCD material calibrated with photoelectric photometry from Eggen (1971) and Anthony-Twarog and Twarog (1987) has been completed. The color-magnitude diagram is consistent with an age of 2.4 + or - 0.3 x 10 to the 9th yr derived by comparison with the isochrones of VandenBerg (1985) if the apparent distance modulus and reddening derived from uvby photometry in Anthony-Twarog and Twarog (1987) are employed. While evidence is found of a hook in the upper main sequence, no evidence is found of a significantly bifurcated main sequence for this cluster, although it is similar in age to NGC 752 and NGC 3680, where this phenomenon has been noted. Finally, the survey has not resolved the apparent deficit of main-sequence stars fainter than V = 14.5 noted in Anthony-Twarog and Twarog (1987). 16 references

  12. A CCD camera probe for a superconducting cyclotron

    International Nuclear Information System (INIS)

    Marti, F.; Blue, R.; Kuchar, J.; Nolen, J.A.; Sherrill, B.; Yurkon, J.

    1991-01-01

    The traditional internal beam probes in cyclotrons have consisted of a differential element, a wire or thin strip, and a main probe with several fingers to determine the vertical distribution of the beam. The resolution of these probes is limited, especially in the vertical direction. The authors have developed a probe for their K1200 superconducting cyclotron based on a CCD TV camera that works in a 6 T magnetic field. The camera looks at the beam spot on a scintillating screen. The TV image is processed by a frame grabber that digitizes and displays the image in pseudocolor in real time. This probe has much better resolution than traditional probes. They can see beams with total currents as low as 0.1 pA, with position resolution of about 0.05 mm

  13. CCD photometry of the distant young open cluster NGC 7510

    International Nuclear Information System (INIS)

    Sagar, R.; Bonn Univ.; Griffiths, W.K.

    1991-01-01

    CCD observations in B, V and I passbands have been used to generate deep V, (B-V) and V,(V-I) colour-magnitude diagrams for the open cluster NGC 7510. The sample consists of 592 stars reaching down to V=21 mag. There appears to be non-uniform extinction over the face of the cluster with the value of colour excess, E(B-V), ranging from 1.0 to 1.3 mag. The law of interstellar extinction in the direction of the cluster is found to be normal. A broad main sequence is clearly visible in both colour-magnitude diagrams. From the bluest part of the colour-magnitude diagrams, the true distance modulus to the cluster has been estimated as 12.5±0.3 mag and an upper limit of 10 Myr has been assigned for the cluster age. (author)

  14. Method to implement the CCD timing generator based on FPGA

    Science.gov (United States)

    Li, Binhua; Song, Qian; He, Chun; Jin, Jianhui; He, Lin

    2010-07-01

    With the advance of the PFPA technology, the design methodology of digital systems is changing. In recent years we develop a method to implement the CCD timing generator based on FPGA and VHDL. This paper presents the principles and implementation skills of the method. Taking a developed camera as an example, we introduce the structure, input and output clocks/signals of a timing generator implemented in the camera. The generator is composed of a top module and a bottom module. The bottom one is made up of 4 sub-modules which correspond to 4 different operation modes. The modules are implemented by 5 VHDL programs. Frame charts of the architecture of these programs are shown in the paper. We also describe implementation steps of the timing generator in Quartus II, and the interconnections between the generator and a Nios soft core processor which is the controller of this generator. Some test results are presented in the end.

  15. Electromagnetic Compatibility Assessment of CCD Detector Acquisition Chains not Synchronized

    Science.gov (United States)

    Nicoletto, M.; Boschetti, D.; Ciancetta, E.; Maiorano, E.; Stagnaro, L.

    2016-05-01

    Euclid is a space observatory managed by the European Space Agency; it is the second medium class mission (see Figure 1) in the frame of Cosmic Vision 2015-2025 program.In the frame of this project, the electromagnetic interference between two different and not synchronized Charge Coupled Device (CCD) (see Figure 2) acquisition chains has been evaluated. The key parameter used for this assessment is the electromagnetic noise induced on each other. Taking into account the specificity of the issue, radiation coupling at relative low frequency and in near field conditions, classical approach based on simulations and testing on qualification model cannot be directly applied. Based on that, it has been decided to investigate the issue by test in an incremental way.

  16. DOUBLE STARS IN THE USNO CCD ASTROGRAPHIC CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Hartkopf, William I.; Mason, Brian D.; Finch, Charlie T.; Zacharias, Norbert; Wycoff, Gary L.; Hsu, Danley, E-mail: wih@usno.navy.mil, E-mail: bdm@usno.navy.mil, E-mail: finch@usno.navy.mil, E-mail: nz@usno.navy.mil [US Naval Observatory, Washington, DC 20392 (United States)

    2013-10-01

    The newly completed Fourth USNO CCD Astrographic Catalog (UCAC4) has proven to be a rich source of double star astrometry and photometry. Following initial comparisons of UCAC4 results against those obtained by speckle interferometry, the UCAC4 catalog was matched against known double stars in the Washington Double Star Catalog in order to provide additional differential astrometry and photometry for these pairs. Matches to 58,131 pairs yielded 61,895 astrometric and 68,935 photometric measurements. Finally, a search for possible new common proper motion (CPM) pairs was made using new UCAC4 proper motion data; this resulted in 4755 new potential CPM doubles (and an additional 27,718 astrometric and photometric measures from UCAC and other sources)

  17. From hybrid to CMOS pixels ... a possibility for LHC's pixel future?

    International Nuclear Information System (INIS)

    Wermes, N.

    2015-01-01

    Hybrid pixel detectors have been invented for the LHC to make tracking and vertexing possible at all in LHC's radiation intense environment. The LHC pixel detectors have meanwhile very successfully fulfilled their promises and R and D for the planned HL-LHC upgrade is in full swing, targeting even higher ionising doses and non-ionising fluences. In terms of rate and radiation tolerance hybrid pixels are unrivaled. But they have disadvantages as well, most notably material thickness, production complexity, and cost. Meanwhile also active pixel sensors (DEPFET, MAPS) have become real pixel detectors but they would by far not stand the rates and radiation faced from HL-LHC. New MAPS developments, so-called DMAPS (depleted MAPS) which are full CMOS-pixel structures with charge collection in a depleted region have come in the R and D focus for pixels at high rate/radiation levels. This goal can perhaps be realised exploiting HV technologies, high ohmic substrates and/or SOI based technologies. The paper covers the main ideas and some encouraging results from prototyping R and D, not hiding the difficulties

  18. Optimal CCD readout by digital correlated double sampling

    Science.gov (United States)

    Alessandri, C.; Abusleme, A.; Guzman, D.; Passalacqua, I.; Alvarez-Fontecilla, E.; Guarini, M.

    2016-01-01

    Digital correlated double sampling (DCDS), a readout technique for charge-coupled devices (CCD), is gaining popularity in astronomical applications. By using an oversampling ADC and a digital filter, a DCDS system can achieve a better performance than traditional analogue readout techniques at the expense of a more complex system analysis. Several attempts to analyse and optimize a DCDS system have been reported, but most of the work presented in the literature has been experimental. Some approximate analytical tools have been presented for independent parameters of the system, but the overall performance and trade-offs have not been yet modelled. Furthermore, there is disagreement among experimental results that cannot be explained by the analytical tools available. In this work, a theoretical analysis of a generic DCDS readout system is presented, including key aspects such as the signal conditioning stage, the ADC resolution, the sampling frequency and the digital filter implementation. By using a time-domain noise model, the effect of the digital filter is properly modelled as a discrete-time process, thus avoiding the imprecision of continuous-time approximations that have been used so far. As a result, an accurate, closed-form expression for the signal-to-noise ratio at the output of the readout system is reached. This expression can be easily optimized in order to meet a set of specifications for a given CCD, thus providing a systematic design methodology for an optimal readout system. Simulated results are presented to validate the theory, obtained with both time- and frequency-domain noise generation models for completeness.

  19. THE THIRD US NAVAL OBSERVATORY CCD ASTROGRAPH CATALOG (UCAC3)

    International Nuclear Information System (INIS)

    Zacharias, N.; Finch, C.; Wycoff, G.; Zacharias, M. I.; Corbin, T.; Dutta, S.; Gaume, R.; Gauss, S.; Hall, D.; Hartkopf, W.; Hsu, D.; Holdenried, E.; Makarov, V.; Mason, B.; Girard, T.; Hambly, N.; Castillo, D.; DiVittorio, M.; Germain, M.; Martines, M.

    2010-01-01

    The third US Naval Observatory (USNO) CCD Astrograph Catalog, UCAC3, was released at the IAU General Assembly on 2009 August 10. It is the first all-sky release in this series and contains just over 100 million objects, about 95 million of them with proper motions, covering about R = 8-16 mag. Current epoch positions are obtained from the observations with the 20 cm aperture USNO Astrograph's 'red lens', equipped with a 4k x 4k CCD. Proper motions are derived by combining these observations with over 140 ground- and space-based catalogs, including Hipparcos/Tycho and the AC2000.2, as well as unpublished measures of over 5000 plates from other astrographs. For most of the faint stars in the southern hemisphere, the Yale/San Juan first epoch plates from the Southern Proper Motion (SPM) program (YSJ1) form the basis for proper motions. These data are supplemented by all-sky Schmidt plate survey astrometry and photometry obtained from the SuperCOSMOS project, as well as 2MASS near-IR photometry. Major differences of UCAC3 data as compared with UCAC2 include a completely new raw data reduction with improved control over systematic errors in positions, significantly improved photometry, slightly deeper limiting magnitude, coverage of the north pole region, greater completeness by inclusion of double stars, and weak detections. This of course leads to a catalog which is not as 'clean' as UCAC2 and problem areas are outlined for the user in this paper. The positional accuracy of stars in UCAC3 is about 15-100 mas per coordinate, depending on magnitude, while the errors in proper motions range from 1 to 10 mas yr -1 depending on magnitude and observing history, with a significant improvement over UCAC2 achieved due to the re-reduced SPM data and inclusion of more astrograph plate data unavailable at the time of UCAC2.

  20. Contribution of the Chromosomal ccdAB Operon to Bacterial Drug Tolerance.

    Science.gov (United States)

    Gupta, Kritika; Tripathi, Arti; Sahu, Alishan; Varadarajan, Raghavan

    2017-10-01

    One of the first identified and best-studied toxin-antitoxin (TA) systems in Escherichia coli is the F-plasmid-based CcdAB system. This system is involved in plasmid maintenance through postsegregational killing. More recently, ccdAB homologs have been found on the chromosome, including in pathogenic strains of E. coli and other bacteria. However, the functional role of chromosomal ccdAB genes, if any, has remained unclear. We show that both the native ccd operon of the E. coli O157 strain ( ccd O157 ) and the ccd operon from the F plasmid ( ccd F ), when inserted on the E. coli chromosome, lead to protection from cell death under multiple antibiotic stress conditions through formation of persisters, with the O157 operon showing higher protection. While the plasmid-encoded CcdB toxin is a potent gyrase inhibitor and leads to bacterial cell death even under fully repressed conditions, the chromosomally encoded toxin leads to growth inhibition, except at high expression levels, where some cell death is seen. This was further confirmed by transiently activating the chromosomal ccd operon through overexpression of an active-site inactive mutant of F-plasmid-encoded CcdB. Both the ccd F and ccd O157 operons may share common mechanisms for activation under stress conditions, eventually leading to multidrug-tolerant persister cells. This study clearly demonstrates an important role for chromosomal ccd systems in bacterial persistence. IMPORTANCE A large number of free-living and pathogenic bacteria are known to harbor multiple toxin-antitoxin systems, on plasmids as well as on chromosomes. The F-plasmid CcdAB system has been extensively studied and is known to be involved in plasmid maintenance. However, little is known about the function of its chromosomal counterpart, found in several pathogenic E. coli strains. We show that the native chromosomal ccd operon of the E. coli O157 strain is involved in drug tolerance and confers protection from cell death under multiple

  1. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Macchiolo, Anna; The ATLAS collaboration

    2018-01-01

    The new ATLAS ITk pixel system will be installed during the LHC Phase-II shutdown, to better take advantage of the increased luminosity of the HL-LHC. The detector will consist of 5 layers of stave-like support structures in the most central region and ring-shaped supports in the endcap regions, covering up to |η| < 4. While the outer 3 layers of the Pixel Detector are designed to operate for the full HL-LHC data taking period, the innermost 2 layers of the detector will be replaced around half of the lifetime. The ITk pixel detector will be instrumented with new sensors and readout electronics to provide improved tracking performance and radiation hardness compared to the current detector. Sensors will be read out by new ASICs based on the chip developed by the RD53 Collaboration. The pixel off-detector readout electronics will be implemented in the framework of the general ATLAS trigger and DAQ system with a readout speed of up to 5 Gb/s per data link for the innermost layers. Results of extensive tests...

  2. Sensor development for the CMS pixel detector

    CERN Document Server

    Bölla, G; Horisberger, R P; Kaufmann, R; Rohe, T; Roy, A

    2002-01-01

    The CMS experiment which is currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will contain a pixel detector which provides in its final configuration three space points per track close to the interaction point of the colliding beams. Because of the harsh radiation environment of the LHC, the technical realization of the pixel detector is extremely challenging. The readout chip as the most damageable part of the system is believed to survive a particle fluence of 6x10 sup 1 sup 4 n sub e sub q /cm sup 2 (All fluences are normalized to 1 MeV neutrons and therefore all components of the hybrid pixel detector have to perform well up to at least this fluence. As this requires a partially depleted operation of the silicon sensors after irradiation-induced type inversion of the substrate, an ''n in n'' concept has been chosen. In order to perform IV-tests on wafer level and to hold accidentally unconnected pixels close to ground potential, a resistive path between the pixe...

  3. Plasmonic nanospherical dimers for color pixels

    KAUST Repository

    Alrasheed, Salma

    2018-04-20

    Display technologies are evolving more toward higher resolution and miniaturization. Plasmonic color pixels can offer solutions to realize such technologies due to their sharp resonances and selective scattering and absorption at particular wavelengths. Metal nanosphere dimers are capable of supporting plasmon resonances that can be tuned to span the entire visible spectrum. In this article, we demonstrate numerically bright color pixels that are highly polarized and broadly tuned using periodic arrays of metal nanosphere dimers on a glass substrate. We show that it is possible to obtain RGB pixels in the reflection mode. The longitudinal plasmon resonance of nanosphere dimers along the axis of the dimer is the main contributor to the color of the pixel, while far-field diffractive coupling further enhances and tunes the plasmon resonance. The computational method used is the finite-difference time-domain method. The advantages of this approach include simplicity of the design, bright coloration, and highly polarized function. In addition, we show that it is possible to obtain different colors by varying the angle of incidence, the periodicity, the size of the dimer, the gap, and the substrate thickness.

  4. ATLAS Pixel Group - Photo Gallery from Irradiation

    CERN Multimedia

    2001-01-01

    Photos 1,2,3,4,5,6,7 - Photos taken before irradiation of Pixel Test Analog Chip and Pmbars (April 2000) Photos 8,9,10,11 - Irradiation of VDC chips (May 2000) Photos 12, 13 - Irradiation of Passive Components (June 2000) Photos 14,15, 16 - Irradiation of Marebo Chip (November 1999)

  5. What's A Pixel Particle Sensor Chip?

    CERN Multimedia

    2008-01-01

    ATLAS particle physics experiment aided with collaboration ON Semiconductor was recently honored by the European Council for Nuclear Research (CERN), with an Industrial Award recognizing the company's contribution in supplying complex "Pixel Particle Sensor" chips for use in CERN's ATLAS particle physics experiment.

  6. Access To The PMM's Pixel Database

    Science.gov (United States)

    Monet, D.; Levine, S.

    1999-12-01

    The U.S. Naval Observatory Flagstaff Station is in the process of enabling access to the Precision Measuring Machine (PMM) program's pixel database. The initial release will include the pixels from the PMM's scans of the Palomar Observatory Sky Survey I (POSS-I) -O and -E surveys, the Whiteoak Extension, the European Southern Observatory-R survey, the Science and Engineering Council-J, -EJ, and -ER surveys, and the Anglo- Australian Observatory-R survey. (The SERC-ER and AAO-R surveys are currently incomplete.) As time allows, access to the POSS-II -J, -F, and -N surveys, the Palomar Infrared Milky Way Atlas, the Yale/San Juan Southern Proper Motion survey, and plates rejected by various surveys will be added. (POSS-II -J and -F are complete, but -N was never finished.) Eventually, some 10 Tbytes of pixel data will be available. Due to funding and technology limitations, the initial interface will have only limited functionality, and access time will be slow since the archive is stored on Digital Linear Tape (DLT). Usage of the pixel data will be restricted to non-commercial, scientific applications, and agreements on copyright issues have yet to be finalized. The poster presentation will give the URL.

  7. JPL CMOS Active Pixel Sensor Technology

    Science.gov (United States)

    Fossum, E. R.

    1995-01-01

    This paper will present the JPL-developed complementary metal- oxide-semiconductor (CMOS) active pixel sensor (APS) technology. The CMOS APS has achieved performance comparable to charge coupled devices, yet features ultra low power operation, random access readout, on-chip timing and control, and on-chip analog to digital conversion. Previously published open literature will be reviewed.

  8. Planar pixel sensors in commercial CMOS technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)

    2015-07-01

    For the upgrade of the ATLAS experiment at the high luminosity LHC, an all-silicon tracker is foreseen to cope with the increased rate and radiation levels. Pixel and strip detectors will have to cover an area of up to 200m2. To produce modules in high number at reduced costs, new sensor and bonding technologies have to be investigated. Commercial CMOS technologies on high resistive substrates can provide significant advantages in this direction. They offer cost effective, large volume sensor production. In addition to this, production is done on 8'' wafers allowing wafer-to-wafer bonding to the electronics, an interconnection technology substantially cheaper than the bump bonding process used for hybrid pixel detectors at the LHC. Both active and passive n-in-p pixel sensor prototypes have been submitted in a 150 nm CMOS technology on a 2kΩ cm substrate. The passive sensor design will be used to characterize sensor properties and to investigate wafer-to-wafer bonding technologies. This first prototype is made of a matrix of 36 x 16 pixels of size compatible with the FE-I4 readout chip (i.e. 50 μm x 250 μm). Results from lab characterization of this first submission are shown together with TCAD simulations. Work towards a full size FE-I4 sensor for wafer-to-wafer bonding is discussed.

  9. CMS has a heart of pixels

    CERN Multimedia

    2003-01-01

    At the core of CMS, particles will come into contact with tiny detector components, known as pixels, which are almost invisible to the naked eye. With these elementary cells measuring a mere 150 microns (or about 1/10 of a millimetre) along each side, a real technological leap has been made.

  10. Satellite myths

    Science.gov (United States)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  11. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  12. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  13. Feasibility study of multi-pixel retrieval of optical thickness and droplet effective radius of inhomogeneous clouds using deep learning

    Science.gov (United States)

    Okamura, Rintaro; Iwabuchi, Hironobu; Schmidt, K. Sebastian

    2017-12-01

    Three-dimensional (3-D) radiative-transfer effects are a major source of retrieval errors in satellite-based optical remote sensing of clouds. The challenge is that 3-D effects manifest themselves across multiple satellite pixels, which traditional single-pixel approaches cannot capture. In this study, we present two multi-pixel retrieval approaches based on deep learning, a technique that is becoming increasingly successful for complex problems in engineering and other areas. Specifically, we use deep neural networks (DNNs) to obtain multi-pixel estimates of cloud optical thickness and column-mean cloud droplet effective radius from multispectral, multi-pixel radiances. The first DNN method corrects traditional bispectral retrievals based on the plane-parallel homogeneous cloud assumption using the reflectances at the same two wavelengths. The other DNN method uses so-called convolutional layers and retrieves cloud properties directly from the reflectances at four wavelengths. The DNN methods are trained and tested on cloud fields from large-eddy simulations used as input to a 3-D radiative-transfer model to simulate upward radiances. The second DNN-based retrieval, sidestepping the bispectral retrieval step through convolutional layers, is shown to be more accurate. It reduces 3-D radiative-transfer effects that would otherwise affect the radiance values and estimates cloud properties robustly even for optically thick clouds.

  14. Small Aperture Telescope Observations of Co-located Geostationary Satellites

    Science.gov (United States)

    Scott, R.; Wallace, B.

    As geostationary orbit (GEO) continues to be populated, satellite operators are increasing usage of co-location techniques to maximize usage of fewer GEO longitude slots. Co-location is an orbital formation strategy where two or more geostationary satellites reside within one GEO stationkeeping box. The separation strategy used to prevent collision between the co-located satellites generally uses eccentricity (radial separation) and inclination (latitude separation) vector offsets. This causes the satellites to move in relative motion ellipses about each other as the relative longitude drift between the satellites is near zero. Typical separations between the satellites varies from 1 to 100 kilometers. When co-located satellites are observed by optical ground based space surveillance sensors the participants appear to be separated by a few minutes of arc or less in angular extent. Under certain viewing geometries, these satellites appear to visually conjunct even though the satellites are, in fact, well separated spatially. In situations where one of the co-located satellites is more optically reflective than the other, the reflected sunglint from the more reflective satellite can overwhelm the other. This less frequently encountered issue causes the less reflective satellite to be glint masked in the glare of the other. This paper focuses on space surveillance observations on co-located Canadian satellites using a small optical telescope operated by Defence R&D Canada - Ottawa. The two above mentioned problems (cross tagging and glint masking) are investigated and we quantify the results for Canadian operated geostationary satellites. The performance of two line element sets when making in-frame CCD image correlation between the co-located satellites is also examined. Relative visual magnitudes between the co-located members are also inspected and quantified to determine the susceptibility of automated telescopes to glint masking of co-located satellite members.

  15. Converting structures to optimize the Synchrotron X radiation detection by CCD systems

    International Nuclear Information System (INIS)

    Zanella, G.; Zannoni, R.

    1987-01-01

    It is pointed out how the quantum efficiency of X ray detection for CCD detecting system can be improved enlarging their sensivity range by means of heavy element converting structures. So the problem of fabricating CCD with a deep emptying layer is avoided

  16. Timing generator of scientific grade CCD camera and its implementation based on FPGA technology

    Science.gov (United States)

    Si, Guoliang; Li, Yunfei; Guo, Yongfei

    2010-10-01

    The Timing Generator's functions of Scientific Grade CCD Camera is briefly presented: it generates various kinds of impulse sequence for the TDI-CCD, video processor and imaging data output, acting as the synchronous coordinator for time in the CCD imaging unit. The IL-E2TDI-CCD sensor produced by DALSA Co.Ltd. use in the Scientific Grade CCD Camera. Driving schedules of IL-E2 TDI-CCD sensor has been examined in detail, the timing generator has been designed for Scientific Grade CCD Camera. FPGA is chosen as the hardware design platform, schedule generator is described with VHDL. The designed generator has been successfully fulfilled function simulation with EDA software and fitted into XC2VP20-FF1152 (a kind of FPGA products made by XILINX). The experiments indicate that the new method improves the integrated level of the system. The Scientific Grade CCD camera system's high reliability, stability and low power supply are achieved. At the same time, the period of design and experiment is sharply shorted.

  17. Design of offline measuring system for radiation damage effects on linear CCD

    International Nuclear Information System (INIS)

    Zhang Yong; Tang Benqi; Xiao Zhigang; Wang Zujun; Huang Fang; Huang Shaoyan

    2004-01-01

    The paper discusses the hardware design of offline measuring system for radiation damage effects on linear CCD. Some credible results were achieved by using this system. The test results indicate that the system is available for the study of the radiation damage effects on linear CCD. (authors)

  18. 2D Sub-Pixel Disparity Measurement Using QPEC / Medicis

    Directory of Open Access Journals (Sweden)

    M. Cournet

    2016-06-01

    Full Text Available In the frame of its earth observation missions, CNES created a library called QPEC, and one of its launcher called Medicis. QPEC / Medicis is a sub-pixel two-dimensional stereo matching algorithm that works on an image pair. This tool is a block matching algorithm, which means that it is based on a local method. Moreover it does not regularize the results found. It proposes several matching costs, such as the Zero mean Normalised Cross-Correlation or statistical measures (the Mutual Information being one of them, and different match validation flags. QPEC / Medicis is able to compute a two-dimensional dense disparity map with a subpixel precision. Hence, it is more versatile than disparity estimation methods found in computer vision literature, which often assume an epipolar geometry. CNES uses Medicis, among other applications, during the in-orbit image quality commissioning of earth observation satellites. For instance the Pléiades-HR 1A & 1B and the Sentinel-2 geometric calibrations are based on this block matching algorithm. Over the years, it has become a common tool in ground segments for in-flight monitoring purposes. For these two kinds of applications, the two-dimensional search and the local sub-pixel measure without regularization can be essential. This tool is also used to generate automatic digital elevation models, for which it was not initially dedicated. This paper deals with the QPEC / Medicis algorithm. It also presents some of its CNES applications (in-orbit commissioning, in flight monitoring or digital elevation model generation. Medicis software is distributed outside the CNES as well. This paper finally describes some of these external applications using Medicis, such as ground displacement measurement, or intra-oral scanner in the dental domain.

  19. First large DEPFET pixel modules for the Belle II Pixel Detector

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Felix; Avella, Paola; Kiesling, Christian; Koffmane, Christian; Moser, Hans-Guenther; Valentan, Manfred [Max-Planck-Institut fuer Physik, Muenchen (Germany); Andricek, Ladislav; Richter, Rainer [Halbleiterlabor der Max-Planck-Gesellschaft, Muenchen (Germany); Collaboration: Belle II-Collaboration

    2016-07-01

    DEPFET pixel detectors offer excellent signal to noise ratio, resolution and low power consumption with a low material budget. They will be used at Belle II and are a candidate for an ILC vertex detector. The pixels are integrated in a monolithic piece of silicon which also acts as PCB providing the signal and control routings for the ASICs on top. The first prototype DEPFET sensor modules for Belle II have been produced. The modules have 192000 pixels and are equipped with SMD components and three different kinds of ASICs to control and readout the pixels. The entire readout chain has to be studied; the metal layer interconnectivity and routings need to be verified. The modules are fully characterized, and the operation voltages and control sequences of the ASICs are investigated. An overview of the DEPFET concept and first characterization results is presented.

  20. PROTON RADIOGRAPHY WITH THE PIXEL DETECTOR TIMEPIX

    Directory of Open Access Journals (Sweden)

    Václav Olšanský

    2016-12-01

    Full Text Available This article presents the processing of radiographic data acquired using the position-sensitive hybrid semiconductor pixel detector Timepix. Measurements were made on thin samples at the medical ion-synchrotron HIT [1] in Heidelberg (Germany with a 221 MeV proton beam. The charge is energy by the particles crossing the sample is registered for generation of image contrast. Experimental data from the detector were processed for derivation of the energy loss of each proton using calibration matrices. The interaction point of the protons on the detector were determined with subpixel resolution by model fitting of the individual signals in the pixelated matrix. Three methods were used for calculation of these coordinates: Hough transformation, 2D Gaussian fitting and estimate the 2D mean. Parameters of calculation accuracy and calculation time are compared for each method. The final image was created by method with best parameters.

  1. ATLAS Pixel IBL: Stave Quality Assurance

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    For Run 2 of the LHC a fourth innermost Pixel Detector layer on a smaller radius beam pipe has been installed in the ATLAS Detector to add redundancy against radiation damage of the current Pixel Detector and to ensure a high quality tracking and b-tagging performance of the Inner Detector over the coming years until the High Luminosity Upgrade. State of the art components have been produced and assembled onto support structures known as staves over the last two years. In total, 20 staves have been built and qualified in a designated Quality Assurance setup at CERN of which 14 have been integrated onto the beam pipe. Results from the testing are presented.

  2. Upgrade of ATLAS ITk Pixel Detector

    CERN Document Server

    Huegging, Fabian; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current inner detector will be replaced with an entirely-silicon inner tracker (ITk) which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation levels are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors and low mass global and local support structures. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the ITk ATLAS Pixel detector developments as well as different layout options will be reviewed.

  3. Chandra ACIS Sub-pixel Resolution

    Science.gov (United States)

    Kim, Dong-Woo; Anderson, C. S.; Mossman, A. E.; Allen, G. E.; Fabbiano, G.; Glotfelty, K. J.; Karovska, M.; Kashyap, V. L.; McDowell, J. C.

    2011-05-01

    We investigate how to achieve the best possible ACIS spatial resolution by binning in ACIS sub-pixel and applying an event repositioning algorithm after removing pixel-randomization from the pipeline data. We quantitatively assess the improvement in spatial resolution by (1) measuring point source sizes and (2) detecting faint point sources. The size of a bright (but no pile-up), on-axis point source can be reduced by about 20-30%. With the improve resolution, we detect 20% more faint sources when embedded on the extended, diffuse emission in a crowded field. We further discuss the false source rate of about 10% among the newly detected sources, using a few ultra-deep observations. We also find that the new algorithm does not introduce a grid structure by an aliasing effect for dithered observations and does not worsen the positional accuracy

  4. Radiation hardness of CMS pixel barrel modules

    International Nuclear Information System (INIS)

    Rohe, T.; Bean, A.; Erdmann, W.; Kaestli, H.-C.; Khalatyan, S.; Meier, B.; Radicci, V.; Sibille, J.

    2010-01-01

    Pixel detectors are used in the innermost part of the multi purpose experiments at the LHC and are therefore exposed to the highest fluences of ionising radiation, which in this part of the detectors consists mainly of charged pions. The radiation hardness of all detector components has been thoroughly tested up to the fluences expected at the LHC. In case of an LHC upgrade, the fluence will be much higher and it is not yet clear how long the present pixel modules will stay operative in such a harsh environment. The aim of this study was to establish such a limit as a benchmark for other possible detector concepts considered for the upgrade. As the sensors and the readout chip are the parts most sensitive to radiation damage, samples consisting of a small pixel sensor bump-bonded to a CMS-readout chip (PSI46V2.1) have been irradiated with positive 200 MeV pions at PSI up to 6x10 14 n eq /cm 2 and with 21 GeV protons at CERN up to 5x10 15 n eq /cm 2 . After irradiation the response of the system to beta particles from a 90 Sr source was measured to characterise the charge collection efficiency of the sensor. Radiation induced changes in the readout chip were also measured. The results show that the present pixel modules can be expected to be still operational after a fluence of 2.8x10 15 n eq /cm 2 . Samples irradiated up to 5x10 15 n eq /cm 2 still see the beta particles. However, further tests are needed to confirm whether a stable operation with high particle detection efficiency is possible after such a high fluence.

  5. The Belle II DEPFET pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Hans-Günther, E-mail: moser@mpp.mpg.de

    2016-09-21

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55–60) μm in the first layer and between 50 μm×(70–85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the ‘internal gate’ modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X{sub 0}). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO{sub 2} system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  6. Production chain of CMS pixel modules

    CERN Multimedia

    2006-01-01

    The pictures show the production chain of pixel modules for the CMS detector. Fig.1: overview of the assembly procedure. Fig.2: bump bonding with ReadOut Chip (ROC) connected to the sensor. Fig.3: glueing a raw module onto the baseplate strips. Fig.4: glueing of the High Density Interconnect (HDI) onto a raw module. Fig.5: pull test after heat reflow. Fig.6: wafer sensor processing, Indium evaporation.

  7. Satellite observations and modeling of oil spill trajectories in the Bohai Sea

    DEFF Research Database (Denmark)

    Xu, Qing; Li, Xiaofeng; Wei, Yongliang

    2013-01-01

    On June 4 and 17, 2011, separate oil spill accidents occurred at two oil platforms in the Bohai Sea, China. The oil spills were subsequently observed on different types of satellite images including SAR (Synthetic Aperture Radar), Chinese HJ-1-B CCD and NASA MODIS. To illustrate the fate of the oil...

  8. CMOS Active Pixel Sensor Technology and Reliability Characterization Methodology

    Science.gov (United States)

    Chen, Yuan; Guertin, Steven M.; Pain, Bedabrata; Kayaii, Sammy

    2006-01-01

    This paper describes the technology, design features and reliability characterization methodology of a CMOS Active Pixel Sensor. Both overall chip reliability and pixel reliability are projected for the imagers.

  9. The ATLAS Pixel Detector operation and performance

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2010-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately $80 imes 10^6$~electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region. The complete Pixel Detector has been taking part in cosmic-ray data-taking since 2008. Since November 2009 it has been operated with LHC colliding beams at $sqrt{s}=900$~GeV, 2.36~TeV and 7 TeV. The detector operated with an active fraction of 97.2% at a threshold of 3500~$e$, showing a noise occupancy rate better than $10^{-9}$~hit/pixel/BC and a track association efficiency of 99%. The Lorentz angle for electrons in silicon is measured to be $ heta_mathrm{L}=12.11^circ pm 0.09^circ$ and its temperature dependence has been verified. The pulse height information from the time-over-threshold technique allows to improve the point resolution using charge sharing and to perform parti...

  10. ATLAS ITk and new pixel sensors technologies

    CERN Document Server

    Gaudiello, A

    2016-01-01

    During the 2023–2024 shutdown, the Large Hadron Collider (LHC) will be upgraded to reach an instantaneous luminosity up to 7×10$^{34}$ cm$^{−2}$s$^{−1}$. This upgrade of the accelerator is called High-Luminosity LHC (HL-LHC). The ATLAS detector will be changed to meet the challenges of HL-LHC: an average of 200 pile-up events in every bunch crossing, and an integrated luminosity of 3000 fb $^{−1}$ over ten years. The HL-LHC luminosity conditions are too extreme for the current silicon (pixel and strip) detectors and straw tube transition radiation tracker (TRT) of the current ATLAS tracking system. Therefore the ATLAS inner tracker is being completely rebuilt for data-taking and the new system is called Inner Tracker (ITk). During this upgrade the TRT will be removed in favor of an all-new all-silicon tracker composed only by strip and pixel detectors. An overview of new layouts in study will be reported and the new pixel sensor technologies in development will be explained.

  11. Readout Architecture for Hybrid Pixel Readout Chips

    CERN Document Server

    AUTHOR|(SzGeCERN)694170; Westerlund, Tomi; Wyllie, Ken

    The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99 % with half the output rate as a bus-based system. The network-based solution avoids ``broken'' columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of $>$ 10 % to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling ($TLM$) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of $>$ 10 in run-time...

  12. Baryon Acoustic Oscillations reconstruction with pixels

    Energy Technology Data Exchange (ETDEWEB)

    Obuljen, Andrej [SISSA—International School for Advanced Studies, Via Bonomea 265, 34136 Trieste (Italy); Villaescusa-Navarro, Francisco [Center for Computational Astrophysics, 160 5th Ave, New York, NY, 10010 (United States); Castorina, Emanuele [Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720 (United States); Viel, Matteo, E-mail: aobuljen@sissa.it, E-mail: fvillaescusa@simonsfoundation.org, E-mail: ecastorina@berkeley.edu, E-mail: viel@oats.inaf.it [INAF, Osservatorio Astronomico di Trieste, via Tiepolo 11, I-34131 Trieste (Italy)

    2017-09-01

    Gravitational non-linear evolution induces a shift in the position of the baryon acoustic oscillations (BAO) peak together with a damping and broadening of its shape that bias and degrades the accuracy with which the position of the peak can be determined. BAO reconstruction is a technique developed to undo part of the effect of non-linearities. We present and analyse a reconstruction method that consists of displacing pixels instead of galaxies and whose implementation is easier than the standard reconstruction method. We show that this method is equivalent to the standard reconstruction technique in the limit where the number of pixels becomes very large. This method is particularly useful in surveys where individual galaxies are not resolved, as in 21cm intensity mapping observations. We validate this method by reconstructing mock pixelated maps, that we build from the distribution of matter and halos in real- and redshift-space, from a large set of numerical simulations. We find that this method is able to decrease the uncertainty in the BAO peak position by 30-50% over the typical angular resolution scales of 21 cm intensity mapping experiments.

  13. Radiation hardness of CMS pixel barrel modules

    CERN Document Server

    Rohe, T; Erdmann, W; Kästli, H C; Khalatyan, S; Meier, B; Radicci, V; Sibille, J

    2010-01-01

    Pixel detectors are used in the innermost part of the multi purpose experiments at LHC and are therefore exposed to the highest fluences of ionising radiation, which in this part of the detectors consists mainly of charged pions. The radiation hardness of all detector components has thoroughly been tested up to the fluences expected at the LHC. In case of an LHC upgrade, the fluence will be much higher and it is not yet clear how long the present pixel modules will stay operative in such a harsh environment. The aim of this study was to establish such a limit as a benchmark for other possible detector concepts considered for the upgrade. As the sensors and the readout chip are the parts most sensitive to radiation damage, samples consisting of a small pixel sensor bump-bonded to a CMS-readout chip (PSI46V2.1) have been irradiated with positive 200 MeV pions at PSI up to 6E14 Neq and with 21 GeV protons at CERN up to 5E15 Neq. After irradiation the response of the system to beta particles from a Sr-90 source w...

  14. Characterization of the CMS Pixel Detectors

    CERN Document Server

    Gu, Weihua

    2002-01-01

    In 2005 the Large Hadron Collider (LHC) will start the pp collisions at a high luminosity and at a center of mass energy of 14 TeV. The primary goal of the experimental programme is the search of the Higgs boson(s) and the supersymmetric particles. The programme is also proposed to detect a range of diverse signatures in order to provide guidance for future physics. The pixel detector system makes up the innermost part of the CMS experiment, which is one of the two general purpose detectors at the LHC. The main tasks of the system are vertex detection and flavor tagging. The high luminosity and the high particle multiplicity as well as the small bunch spacing at the LHC impose great challenges on the pixel detectors: radiation hardness of sensors and electronics, fast signal processing and a high granularity are the essential requirements. This thesis concentrates on the study of the suitability of two test stands, which are implemented to characterize the CMS pixel detectors: one is con-cerned with test puls...

  15. Pixel electronics for the ATLAS experiment

    International Nuclear Information System (INIS)

    Fischer, P.

    2001-01-01

    The ATLAS experiment at LHC will use 3 barrel layers and 2x5 disks of silicon pixel detectors as the innermost elements of the semiconductor tracker. The basic building blocks are pixel modules with an active area of 16.4 mmx60.8 mm which include an n + on n-type silicon sensor and 16 VLSI front-end (FE) chips. Every FE chip contains a low power, high speed charge sensitive preamplifier, a fast discriminator, and a readout system which operates at the 40 MHz rate of LHC. The addresses of hit pixels (as well as a low resolution pulse height information) are stored on the FE chips until arrival of a level 1 trigger signal. Hits are then transferred to a module controller chip (MCC) which collects the data of all 16 FE chips, builds complete events and sends the data through two optical links to the data acquisition system. The MCC receives clock and data through an additional optical link and provides timing and configuration information for the FE chips. Two additional chips are used to amplify and decode the pin diode signal and to drive the VCSEL laser diodes of the optical links

  16. Photometric Study of Uranian Satellites

    Science.gov (United States)

    Kesten, Philip R.

    1998-01-01

    The best summary of my work at NASA is expressed in the following abstract, submitted the Division for Planetary Science of the American Astronomical Society and to be presented at the annual meeting in Madison in October. We report photometric measurements of Uranian satellites Miranda, Ariel, Umbriel and Titania (10.4 Aug. 1995), and Neptune's satellite Triton (21.2 Sept. 1995) with the infrared camera (IRCAM) and standard J (1.13 - 1.42 microns), H (1.53 - 1.81 microns), and K (2.00 - 2.41 microns) filters at the 3.8-m UKIRT telescope on Mauna Kea. The individual images frames are 256 x 256 pixels with a platescale of .286 arcsec/pixel, resulting in a 1.22 arc min field of view. This summer brought the IR photometry measurements nearly to a close. As indicated by the abstract above, I will present this work at the annual DPS meeting in October. In anticipation of the opening of the new Carl Sagan Laboratory for Cosmochemisty, of which I will be a participating member, I also devoted a considerable fraction of the summer to learning the biochemistry which underlies the experiments to be conducted. To put the end of the summary close to the beginning, it was a most productive summer.

  17. Upgrade of ESO's FIERA CCD Controller and PULPO Subsystem

    Science.gov (United States)

    Reyes-Moreno, J.; Geimer, C.; Balestra, A.; Haddad, N.

    An overview of FIERA is presented with emphasis on its recent upgrade to PCI. The PCI board hosts two DSPs, one for real time control of the camera and another for on-the-fly processing of the incoming video data. In addition, the board is able to make DMA transfers, to synchronize to other boards alike, to be synchronized by a TIM bus and to control PULPO via RS232. The design is based on the IOP480 chip from PLX, for which we have developed a device driver for both Solaris and Linux. One computer is able to host more than one board and therefore can control an array of FIERA detector electronics. PULPO is a multifunctional subsystem widely used at ESO for the housekeeping of CCD cryostat heads and for shutter control. The upgrade of PULPO is based on an embedded PC running Linux. The upgraded PULPO is able to handle 29 temperature sensors, control 8 heaters and one shutter, read out one vacuum sensor and log any combination of parameters.

  18. BVI CCD photometry of the globular cluster M4

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.; Alvarado, F.

    1988-01-01

    CCD BV1 main-sequence (MS) photometry of M4, the globular cluster closest to the sun, is presented. The photometry is matched to the BVI isochrones of VandenBerg and Bell (1985). The MS turnoffs are found to be at V = 16.90 + or - 0.05, B-V = 0.81 + or - 0.02, V-I = 0.96 + or - 0.02, and B - I = 1.77 + or - 0.02. The magnitude difference between the MS turnoff and the horizontal branch is Delta M(V) = 3.52 + or - 0.1 for all three color indices. Using Y = 0.2, (Fe/H) = - 1.27, and alpha = 1.65, with a distance modulus of (m-M)V = 12.7 and E(B-V) = 0.41, a consistent age for M4 is deduced in all three color indices of 17 + or - 1.5 Gyr. 34 references

  19. Deep CCD photometry in globular clusters. VII. M30

    International Nuclear Information System (INIS)

    Richer, H.B.; Fahlman, G.G.; Vandenberg, D.A.

    1988-01-01

    New UBV CCD photometry in a single field of the globular cluster M30 was obtained, and the data were used to obtain the color magnitude diagram (CMD) of the cluster, its luminosity function, and to derive fundamental cluster parameters. No blue stragglers were found, nor any evidence of a binary sequence in the data even though the field under study is only 21 core radii from the cluster center. The cluster reddening is observed to be 0.068 + or - 0.035, significantly higher than that adopted in most current papers on M30. An intercomparison of the CMDs of three very metal-poor clusters clearly shows that there is no evidence for any age difference between them. The age of M30 itself is found to be about 14 Gyr. The luminosity function of M30 is determined to be M(V) = 8. Comparison of this function with one found by Bolte (1987) at 65 core radii shows clear evidence of mass segregation in the low-mass stars. 44 references

  20. Deep CCD photometry in globular clusters III. M15

    International Nuclear Information System (INIS)

    Fahlman, G.G.; Richer, H.B.; Vandenberg, D.A.

    1985-01-01

    CCD photometry in U, B, and V is presented for a 5' x 3' field in the globular cluster M15. The location of the main sequence in the color-magnitude diagram is found here to be significantly bluer than previous studies have indicated. The luminosity function of the cluster is studied down to V = 22.8 (Mroughly-equal7.5) and shown to be consistent with a power-law mass function, n(M) = QM/sup -alpha/ with α = 2.5 +- 1.0, to the limit of our data. The field star population brighter than V = 21.5, is examined in some detail. There appears to be about 50% more stars belonging to the disk in the field as compared with the Bahcall-Soneira standard galaxy model. The reddening to the cluster is found to be E(B-V) = 0.11 +- 0.04 from nine bright field stars. A new value for the ultraviolet excess of the cluster main-sequence stars is obtained, delta(0.6) = 0.25 +- 0.02, and confirms the well-known fact that M15 is among the metal poorest of the globular clusters

  1. LAMOST CCD camera-control system based on RTS2

    Science.gov (United States)

    Tian, Yuan; Wang, Zheng; Li, Jian; Cao, Zi-Huang; Dai, Wei; Wei, Shou-Lin; Zhao, Yong-Heng

    2018-05-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device (CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2nd Version (RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-framework-based control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.

  2. CCD imaging technology and the war on crime

    Science.gov (United States)

    McNeill, Glenn E.

    1992-08-01

    Linear array based CCD technology has been successfully used in the development of an Automatic Currency Reader/Comparator (ACR/C) system. The ACR/C system is designed to provide a method for tracking US currency in the organized crime and drug trafficking environments where large amounts of cash are involved in illegal transactions and money laundering activities. United States currency notes can be uniquely identified by the combination of the denomination serial number and series year. The ACR/C system processes notes at five notes per second using a custom transport a stationary linear array and optical character recognition (OCR) techniques to make such identifications. In this way large sums of money can be " marked" (using the system to read and store their identifiers) and then circulated within various crime networks. The system can later be used to read and compare confiscated notes to the known sets of identifiers from the " marked" set to document a trail of criminal activities. With the ACR/C law enforcement agencies can efficiently identify currency without actually marking it. This provides an undetectable means for making each note individually traceable and facilitates record keeping for providing evidence in a court of law. In addition when multiple systems are used in conjunction with a central data base the system can be used to track currency geographically. 1.

  3. Deep CCD survey - galaxy luminosity and color evolution

    International Nuclear Information System (INIS)

    Tyson, J.A.

    1988-01-01

    Imaging and photometric observations of a statistically complete sample of galaxies in 12 high-latitude fields, obtained in the BJ (360-520 nm), R (580-720 nm) and I (780-1100 nm) bands using CCD detectors on the 4-m telescopes at CTIO and KPNO, are reported. The data are presented in extensive graphs and sample images and analyzed in detail with reference to theoretical models of galactic origin and evolution. The galaxy number-count slopes, d(log N)/dm, are found to be sub-Euclidean, varying from 0.34 in the I band to 0.45 in the BJ band, where the corrected counts appear to saturate at about 27 mag. The predictions of no-evolution models are shown to underpredict the counts at 25 mag (BJ) by a factor of 5-15 and the extragalactic background light from all galaxies (6.8 x 10 to the -6th erg/sq cm sec sr micron at 450 nm) by a factor greater than 2. 114 references

  4. CCD Parallaxes for 309 Late-type Dwarfs and Subdwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Dahn, Conard C.; Harris, Hugh C.; Subasavage, John P.; Ables, Harold D.; Guetter, Harry H.; Harris, Fred H.; Luginbuhl, Christian B.; Monet, Alice B.; Monet, David G.; Munn, Jeffrey A.; Pier, Jeffrey R.; Stone, Ronald C.; Vrba, Frederick J.; Walker, Richard L.; Tilleman, Trudy M. [US Naval Observatory, Flagstaff Station, 10391 W. Naval Observatory Road, Flagstaff, AZ 86005-8521 (United States); Canzian, Blaise J. [L-3 Communications/Brashear, 615 Epsilon Drive, Pittsburgh, PA 15238-2807 (United States); Henden, Arne H. [AAVSO, Cambridge, MA 02138 (United States); Leggett, S. K. [Gemini Observatory, Northern Operations Center, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Levine, Stephen E., E-mail: jsubasavage@nofs.navy.mil [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001-4499 (United States)

    2017-10-01

    New, updated, and/or revised CCD parallaxes determined with the Strand Astrometric Reflector at the Naval Observatory Flagstaff Station are presented. Included are results for 309 late-type dwarf and subdwarf stars observed over the 30+ years that the program operated. For 124 of the stars, parallax determinations from other investigators have already appeared in the literature and we compare the different results. Also included here are new or updated VI photometry on the Johnson–Kron-Cousins system for all but a few of the faintest targets. Together with 2MASS JHK{sub s} near-infrared photometry, a sample of absolute magnitude versus color and color versus color diagrams are constructed. Because large proper motion was a prime criterion for targeting the stars, the majority turn out to be either M-type subdwarfs or late M-type dwarfs. The sample also includes 50 dwarf or subdwarf L-type stars, and four T dwarfs. Possible halo subdwarfs are identified in the sample based on tangential velocity, subluminosity, and spectral type. Residuals from the solutions for parallax and proper motion for several stars show evidence of astrometric perturbations.

  5. The best printing methods to print satellite images

    OpenAIRE

    G.A. Yousif; R.Sh. Mohamed

    2011-01-01

    Printing systems operate in general as a system of color its color scale is limited as compared with the system color satellite images. Satellite image is building from very small cell named pixel, which represents the picture element and the unity of color when the image is displayed on the screen, this unit becomes lesser in size and called screen point. This unit posseses different size and shape from the method of printing to another, depending on the output resolution, tools and material...

  6. Solution structure and elevator mechanism of the membrane electron transporter CcdA.

    Science.gov (United States)

    Zhou, Yunpeng; Bushweller, John H

    2018-02-01

    Membrane oxidoreductase CcdA plays a central role in supplying reducing equivalents from the bacterial cytoplasm to the envelope. It transports electrons across the membrane using a single pair of cysteines by a mechanism that has not yet been elucidated. Here we report an NMR structure of the Thermus thermophilus CcdA (TtCcdA) in an oxidized and outward-facing state. CcdA consists of two inverted structural repeats of three transmembrane helices (2 × 3-TM). We computationally modeled and experimentally validated an inward-facing state, which suggests that CcdA uses an elevator-type movement to shuttle the reactive cysteines across the membrane. CcdA belongs to the LysE superfamily, and thus its structure may be relevant to other LysE clan transporters. Structure comparisons of CcdA, semiSWEET, Pnu, and major facilitator superfamily (MFS) transporters provide insights into membrane transporter architecture and mechanism.

  7. 4T CMOS Active Pixel Sensors under Ionizing Radiation

    NARCIS (Netherlands)

    Tan, J.

    2013-01-01

    This thesis investigates the ionizing radiation effects on 4T pixels and the elementary in-pixel test devices with regard to the electrical performance and the optical performance. In addition to an analysis of the macroscopic pixel parameter degradation, the radiation-induced degradation mechanisms

  8. Satellite Radio

    Indian Academy of Sciences (India)

    Satellites have been a highly effective platform for multi- form broadcasts. This has led to a ... diversity offormats, languages, genre, and a universal reach that cannot be met by .... programs can be delivered to whom it is intended. In the case of.

  9. A model for measurement of noise in CCD digital-video cameras

    International Nuclear Information System (INIS)

    Irie, K; Woodhead, I M; McKinnon, A E; Unsworth, K

    2008-01-01

    This study presents a comprehensive measurement of CCD digital-video camera noise. Knowledge of noise detail within images or video streams allows for the development of more sophisticated algorithms for separating true image content from the noise generated in an image sensor. The robustness and performance of an image-processing algorithm is fundamentally limited by sensor noise. The individual noise sources present in CCD sensors are well understood, but there has been little literature on the development of a complete noise model for CCD digital-video cameras, incorporating the effects of quantization and demosaicing

  10. Retrieval of Cloud Properties for Partially Cloud-Filled Pixels During CRYSTAL-FACE

    Science.gov (United States)

    Nguyen, L.; Minnis, P.; Smith, W. L.; Khaiyer, M. M.; Heck, P. W.; Sun-Mack, S.; Uttal, T.; Comstock, J.

    2003-12-01

    Partially cloud-filled pixels can be a significant problem for remote sensing of cloud properties. Generally, the optical depth and effective particle sizes are often too small or too large, respectively, when derived from radiances that are assumed to be overcast but contain radiation from both clear and cloud areas within the satellite imager field of view. This study presents a method for reducing the impact of such partially cloud field pixels by estimating the cloud fraction within each pixel using higher resolution visible (VIS, 0.65mm) imager data. Although the nominal resolution for most channels on the Geostationary Operational Environmental Satellite (GOES) imager and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra are 4 and 1 km, respectively, both instruments also take VIS channel data at 1 km and 0.25 km, respectively. Thus, it may be possible to obtain an improved estimate of cloud fraction within the lower resolution pixels by using the information contained in the higher resolution VIS data. GOES and MODIS multi-spectral data, taken during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE), are analyzed with the algorithm used for the Atmospheric Radiation Measurement Program (ARM) and the Clouds and Earth's Radiant Energy System (CERES) to derive cloud amount, temperature, height, phase, effective particle size, optical depth, and water path. Normally, the algorithm assumes that each pixel is either entirely clear or cloudy. In this study, a threshold method is applied to the higher resolution VIS data to estimate the partial cloud fraction within each low-resolution pixel. The cloud properties are then derived from the observed low-resolution radiances using the cloud cover estimate to properly extract the radiances due only to the cloudy part of the scene. This approach is applied to both GOES and MODIS data to estimate the improvement in the retrievals for each

  11. How many pixels does it take to make a good 4"×6" print? Pixel count wars revisited

    Science.gov (United States)

    Kriss, Michael A.

    2011-01-01

    In the early 1980's the future of conventional silver-halide photographic systems was of great concern due to the potential introduction of electronic imaging systems then typified by the Sony Mavica analog electronic camera. The focus was on the quality of film-based systems as expressed in the number of equivalent number pixels and bits-per-pixel, and how many pixels would be required to create an equivalent quality image from a digital camera. It was found that 35-mm frames, for ISO 100 color negative film, contained equivalent pixels of 12 microns for a total of 18 million pixels per frame (6 million pixels per layer) with about 6 bits of information per pixel; the introduction of new emulsion technology, tabular AgX grains, increased the value to 8 bit per pixel. Higher ISO speed films had larger equivalent pixels, fewer pixels per frame, but retained the 8 bits per pixel. Further work found that a high quality 3.5" x 5.25" print could be obtained from a three layer system containing 1300 x 1950 pixels per layer or about 7.6 million pixels in all. In short, it became clear that when a digital camera contained about 6 million pixels (in a single layer using a color filter array and appropriate image processing) that digital systems would challenge and replace conventional film-based system for the consumer market. By 2005 this became the reality. Since 2005 there has been a "pixel war" raging amongst digital camera makers. The question arises about just how many pixels are required and are all pixels equal? This paper will provide a practical look at how many pixels are needed for a good print based on the form factor of the sensor (sensor size) and the effective optical modulation transfer function (optical spread function) of the camera lens. Is it better to have 16 million, 5.7-micron pixels or 6 million 7.8-micron pixels? How does intrinsic (no electronic boost) ISO speed and exposure latitude vary with pixel size? A systematic review of these issues will

  12. Active pixel sensor pixel having a photodetector whose output is coupled to an output transistor gate

    Science.gov (United States)

    Fossum, Eric R. (Inventor); Nakamura, Junichi (Inventor); Kemeny, Sabrina E. (Inventor)

    2005-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. A Simple Floating Gate (SFG) pixel structure could also be employed in the imager to provide a non-destructive readout and smaller pixel sizes.

  13. Detection of land cover change using an Artificial Neural Network on a time-series of MODIS satellite data

    CSIR Research Space (South Africa)

    Olivier, JC

    2007-11-01

    Full Text Available An Artificial Neural Network (ANN) is proposed to detect human-induced land cover change using a sliding window through a time-series of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite surface reflectance pixel values. Training...

  14. BVRI CCD photometry of the globular cluster NGC 6362

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.

    1986-01-01

    We have obtained 78 BVRI CCD frames with the 1.54 m Danish telescope at ESO, La Silla, and have constructed V vs B-V, V vs V-R, V vs R-I, V vs V-I, and V vs B-I color-magnitude diagrams in a 4' x 2X5 field of the globular cluster NGC 6362. From these five CMDs we find that the main-sequence turnoffs are all close to the same magnitude, namely V/sub TO/ = 18.75 +- 0.1, and the color turn- offs at B-V = 0.50 +- 0.02, V-R = 0.31 +- 0.02, R-I = 0.35 +- 0.02, V-I = 0.68 +- 0.02, and B-I = 1.18 +- 0.03. The magnitude difference between the turnoff and the horizontal branch for the five diagrams is ΔM/sub V/ = 3.40 +- 0.15 in excellent agreement with the value given by Sandage (1982). Using Y = 0.2, Z = 0.001 ([Fe/H] = -1.27), α = 1.65, a distance modulus of (m-M)/sub V/ = 14.74, and E(B-V) = 0.10, we find that the VandenBerg and Bell isochrones (1985) yield a consistent age for NGC 6362 in all colors indexes of 16 +- 1.5 x 10 9 yr. The solar distance to the cluster is 7.7 kpc and the galactic distance is 5.6 kpc assuming R 0 = 9 kpc

  15. Pixel 2010: A résumé

    CERN Document Server

    Wermes, Norbert

    2011-01-01

    The Pixel 2010 conference focused on semiconductor pixel detectors for particle tracking/vertexing as well as for imaging, in particular for synchrotron light sources and XFELs. The big LHC hybrid pixel detectors have impressively started showing their capabilities. X-ray imaging detectors, also using the hybrid pixel technology, have greatly advanced the experimental possibilities for diffraction experiments. Monolithic or semi-monolithic devices like CMOS active pixels and DEPFET pixels have now reached a state such that complete vertex detectors for RHIC and superKEKB are being built with these technologies. Finally, new advances towards fully monolithic active pixel detectors, featuring full CMOS electronics merged with efficient signal charge collection, exploiting standard CMOS technologies, SOI and/or 3D integration, show the path for the future. This résumé attempts to extract the main statements of the results and developments presented at this conference.

  16. Active pixel sensor array with electronic shuttering

    Science.gov (United States)

    Fossum, Eric R. (Inventor)

    2002-01-01

    An active pixel cell includes electronic shuttering capability. The cell can be shuttered to prevent additional charge accumulation. One mode transfers the current charge to a storage node that is blocked against accumulation of optical radiation. The charge is sampled from a floating node. Since the charge is stored, the node can be sampled at the beginning and the end of every cycle. Another aspect allows charge to spill out of the well whenever the charge amount gets higher than some amount, thereby providing anti blooming.

  17. Elixir - how to handle 2 trillion pixels

    Science.gov (United States)

    Magnier, Eugene A.; Cuillandre, Jean-Charles

    2002-12-01

    The Elixir system at CFHT provides automatic data quality assurance and calibration for the wide-field mosaic imager camera CFH12K. Elixir consists of a variety of tools, including: a real-time analysis suite which runs at the telescope to provide quick feedback to the observers; a detailed analysis of the calibration data; and an automated pipeline for processing data to be distributed to observers. To date, 2.4 × 1012 night-time sky pixels from CFH12K have been processed by the Elixir system.

  18. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The ISPA tube is a position-sensitive photon detector. It belongs to the family of hybrid photon detectors (HPD), recently developed by CERN and INFN with leading photodetector firms. HPDs confront in a vacuum envelope a photocathode and a silicon detector. This can be a single diode or a pixelized detector. The electrons generated by the photocathode are efficiently detected by the silicon anode by applying a high-voltage difference between them. ISPA tube can be used in high-energy applications as well as bio-medical and imaging applications.

  19. Pixel-based dust-extinction mapping in nearby galaxies: A new approach to lifting the veil of dust

    Science.gov (United States)

    Tamura, Kazuyuki

    In the first part of this dissertation, I explore a new approach to mapping dust extinction in galaxies, using the observed and estimated dust-free flux- ratios of optical V -band and mid-IR 3.6 micro-meter emission. Inferred missing V -band flux is then converted into an estimate of dust extinction. While dust features are not clearly evident in the observed ground-based images of NGC 0959, the target of my pilot study, the dust-map created with this method clearly traces the distribution of dust seen in higher resolution Hubble images. Stellar populations are then analyzed through various pixel Color- Magnitude Diagrams and pixel Color-Color Diagrams (pCCDs), both before and after extinction correction. The ( B - 3.6 microns) versus (far-UV - U ) pCCD proves particularly powerful to distinguish pixels that are dominated by different types of or mixtures of stellar populations. Mapping these pixel- groups onto a pixel-coordinate map shows that they are not distributed randomly, but follow genuine galactic structures, such as a previously unrecognized bar. I show that selecting pixel-groups is not meaningful when using uncorrected colors, and that pixel-based extinction correction is crucial to reveal the true spatial variations in stellar populations. This method is then applied to a sample of late-type galaxies to study the distribution of dust and stellar population as a function of their morphological type and absolute magnitude. In each galaxy, I find that dust extinction is not simply decreasing radially, but that is concentrated in localized clumps throughout a galaxy. I also find some cases where star-formation regions are not associated with dust. In the second part, I describe the application of astronomical image analysis tools for medical purposes. In particular, Source Extractor is used to detect nerve fibers in the basement membrane images of human skin-biopsies of obese subjects. While more development and testing is necessary for this kind of work

  20. A tilted fiber-optic plate coupled CCD detector for high resolution neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongyul; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Jongyul; Hwy, Limchang; Kim, Taejoo; Lee, Kyehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Seungwook [Pusan National Univ., Pusan (Korea, Republic of)

    2013-05-15

    One of these efforts is that a tilted scintillator geometry and lens coupled CCD detector for neutron imaging system were used to improve spatial resolution in one dimension. The increased spatial resolution in one dimension was applied to fuel cell study. However, a lens coupled CCD detector has lower sensitivity than a fiber-optic plate coupled CCD detector due to light loss. In this research, a tilted detector using fiber-optic plate coupled CCD detector was developed to improve resolution and sensitivity. In addition, a tilted detector can prevent an image sensor from direct radiation damage. Neutron imaging has been used for fuel cell study, lithium ion battery study, and many scientific applications. High quality neutron imaging is demanded for more detailed studies of applications, and spatial resolution should be considered to get high quality neutron imaging. Therefore, there were many efforts to improve spatial resolution.

  1. Evaluation of the Accuracy of the Dark Frame Subtraction Method in CCD Image Processing

    National Research Council Canada - National Science Library

    Levesque, Martin P; Lelievre, Mario

    2007-01-01

    .... This method is frequently used for removing the image background gradient (a thermal artefact) in CCD images. This report demonstrates that this method may not be suitable for the detection of objects with very low signal-to-noise ratio...

  2. Researchers develop CCD image sensor with 20ns per row parallel readout time

    CERN Multimedia

    Bush, S

    2004-01-01

    "Scientists at the Rutherford Appleton Laboratory (RAL) in Oxfordshire have developed what they claim is the fastest CCD (charge-coupled device) image sensor, with a readout time which is 20ns per row" (1/2 page)

  3. The interaction of DNA gyrase with the bacterial toxin CcdB

    DEFF Research Database (Denmark)

    Kampranis, S C; Howells, A J; Maxwell, A

    1999-01-01

    CcdB is a bacterial toxin that targets DNA gyrase. Analysis of the interaction of CcdB with gyrase reveals two distinct complexes. An initial complex (alpha) is formed by direct interaction between GyrA and CcdB; this complex can be detected by affinity column and gel-shift analysis, and has...... of this initial complex with ATP in the presence of GyrB and DNA slowly converts it to a second complex (beta), which has a lower rate of ATP hydrolysis and is unable to catalyse supercoiling. The efficiency of formation of this inactive complex is dependent on the concentrations of ATP and CcdB. We suggest...

  4. Performance of an area variable MOS varicap weighted programmable CCD transversal filter

    OpenAIRE

    Bhattacharyya, A.B.; Shankarnarayan, L.; Kapur, N.; Wallinga, Hans

    1981-01-01

    The performance of an electrically programmable CCD transversal filter (PTF) is presented in which tap-weight multiplication is performed by a novel and compact on chip voltage controlled area variable MOS varicap.

  5. CCD-based X-ray detectors for X-ray diffraction studies

    International Nuclear Information System (INIS)

    Ito, K.; Amemiya, Y.

    1999-01-01

    CCD-based X-ray detectors are getting to be used for X-ray diffraction studies especially in the studies where real time (automated) measurements and time-resolved measurements are required. Principles and designs of two typical types of CCD-based detectors are described; one is ths system in which x-ray image intensifiers are coupled to maximize the detective quantum efficiency for time-resolved measurements, and the other is the system in which tapered optical fibers are coupled for the reduction of the image into the CCD, which is optimized for automated measurements for protein crystallography. These CCD-based X-ray detectors have an image distortion and non-uniformity of response to be corrected by software. Correction schemes which we have developed are also described. (author)

  6. Software design of control system of CCD side-scatter lidar

    Science.gov (United States)

    Kuang, Zhiqiang; Liu, Dong; Deng, Qian; Zhang, Zhanye; Wang, Zhenzhu; Yu, Siqi; Tao, Zongming; Xie, Chenbo; Wang, Yingjian

    2018-03-01

    Because of the existence of blind zone and transition zone, the application of backscattering lidar in near-ground is limited. The side-scatter lidar equipped with the Charge Coupled Devices (CCD) can separate the transmitting and receiving devices to avoid the impact of the geometric factors which is exited in the backscattering lidar and, detect the more precise near-ground aerosol signals continuously. Theories of CCD side-scatter lidar and the design of control system are introduced. The visible control of laser and CCD and automatic data processing method of the side-scatter lidar are developed by using the software of Visual C #. The results which are compared with the calibration of the atmospheric aerosol lidar data show that signals from the CCD side- scatter lidar are convincible.

  7. A new method to improve multiplication factor in micro-pixel avalanche photodiodes with high pixel density

    Energy Technology Data Exchange (ETDEWEB)

    Sadygov, Z. [National Nuclear Research Center, Baku (Azerbaijan); Joint Institute for Nuclear Research, Dubna (Russian Federation); Ahmadov, F. [National Nuclear Research Center, Baku (Azerbaijan); Khorev, S. [Zecotek Photonics Inc., Vancouver (Canada); Sadigov, A., E-mail: saazik@yandex.ru [National Nuclear Research Center, Baku (Azerbaijan); Suleymanov, S. [National Nuclear Research Center, Baku (Azerbaijan); Madatov, R.; Mehdiyeva, R. [Institute of Radiation Problems, Baku (Azerbaijan); Zerrouk, F. [Zecotek Photonics Inc., Vancouver (Canada)

    2016-07-11

    Presented is a new model describing development of the avalanche process in time, taking into account the dynamics of electric field within the depleted region of the diode and the effect of parasitic capacitance shunting individual quenching micro-resistors on device parameters. Simulations show that the effective capacitance of a single pixel, which defines the multiplication factor, is the sum of the pixel capacitance and a parasitic capacitance shunting its quenching micro-resistor. Conclusions obtained as a result of modeling open possibilities of improving the pixel gain in micropixel avalanche photodiodes with high pixel density (or low pixel capacitance).

  8. Reconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and MODIS Data for Crop Monitoring

    Directory of Open Access Journals (Sweden)

    Mingquan Wu

    2015-12-01

    Full Text Available With the recent launch of new satellites and the developments of spatiotemporal data fusion methods, we are entering an era of high spatiotemporal resolution remote-sensing analysis. This study proposed a method to reconstruct daily 30 m remote-sensing data for monitoring crop types and phenology in two study areas located in Xinjiang Province, China. First, the Spatial and Temporal Data Fusion Approach (STDFA was used to reconstruct the time series high spatiotemporal resolution data from the Huanjing satellite charge coupled device (HJ CCD, Gaofen satellite no. 1 wide field-of-view camera (GF-1 WFV, Landsat, and Moderate Resolution Imaging Spectroradiometer (MODIS data. Then, the reconstructed time series were applied to extract crop phenology using a Hybrid Piecewise Logistic Model (HPLM. In addition, the onset date of greenness increase (OGI and greenness decrease (OGD were also calculated using the simulated phenology. Finally, crop types were mapped using the phenology information. The results show that the reconstructed high spatiotemporal data had a high quality with a proportion of good observations (PGQ higher than 0.95 and the HPLM approach can simulate time series Normalized Different Vegetation Index (NDVI very well with R2 ranging from 0.635 to 0.952 in Luntai and 0.719 to 0.991 in Bole, respectively. The reconstructed high spatiotemporal data were able to extract crop phenology in single crop fields, which provided a very detailed pattern relative to that from time series MODIS data. Moreover, the crop types can be classified using the reconstructed time series high spatiotemporal data with overall accuracy equal to 0.91 in Luntai and 0.95 in Bole, which is 0.028 and 0.046 higher than those obtained by using multi-temporal Landsat NDVI data.

  9. Scientific Satellites

    Science.gov (United States)

    1967-01-01

    noise signal level exceeds 10 times the normal background. EXPERIMENTS FOR SATELLITE ASTRONOMY 615 ANTENNA MONOPOLE -., PREAMPLFE = BANDPASS-FILTER...OUTPUT TO AND DETECTOR TELEMETRYCHANNELS (18) CALIBRATION NOISE MATRIX CLOCK NOISE SOURCE ’ON’ SOURCE COMMAND F ROM PROGRAMERP ANTENNA MONOPOLE FIGURE 13...Animal Tempera- ture Sensing for Studying the Effect of Prolonged Orbital Flight on the Circadian Rhythms of Pocket Mice . Unmanned Spacecraft Meeting

  10. Solar satellites

    Energy Technology Data Exchange (ETDEWEB)

    Poher, C.

    1982-01-01

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  11. Solar satellites

    Science.gov (United States)

    Poher, C.

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  12. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology.

    Science.gov (United States)

    vanEngelsdorp, Dennis; Traynor, Kirsten S; Andree, Michael; Lichtenberg, Elinor M; Chen, Yanping; Saegerman, Claude; Cox-Foster, Diana L

    2017-01-01

    Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors

  13. Modeling the impact of preflushing on CTE in proton irradiated CCD-based detectors

    Science.gov (United States)

    Philbrick, R. H.

    2002-04-01

    A software model is described that performs a "real world" simulation of the operation of several types of charge-coupled device (CCD)-based detectors in order to accurately predict the impact that high-energy proton radiation has on image distortion and modulation transfer function (MTF). The model was written primarily to predict the effectiveness of vertical preflushing on the custom full frame CCD-based detectors intended for use on the proposed Kepler Discovery mission, but it is capable of simulating many other types of CCD detectors and operating modes as well. The model keeps track of the occupancy of all phosphorous-silicon (P-V), divacancy (V-V) and oxygen-silicon (O-V) defect centers under every CCD electrode over the entire detector area. The integrated image is read out by simulating every electrode-to-electrode charge transfer in both the vertical and horizontal CCD registers. A signal level dependency on the capture and emission of signal is included and the current state of each electrode (e.g., barrier or storage) is considered when distributing integrated and emitted signal. Options for performing preflushing, preflashing, and including mini-channels are available on both the vertical and horizontal CCD registers. In addition, dark signal generation and image transfer smear can be selectively enabled or disabled. A comparison of the charge transfer efficiency (CTE) data measured on the Hubble space telescope imaging spectrometer (STIS) CCD with the CTE extracted from model simulations of the STIS CCD show good agreement.

  14. Discussion on the fusing methods for HR and CCD images of CBERS

    International Nuclear Information System (INIS)

    Gao Zhangsheng; Zhao Yingjun

    2010-01-01

    CBERS-02B multi-spectral CCD data are different from HR panchromatic data in resolution, which causes difficulty in image fusion. With the method of Pansharping, HPF, Brovey transform, IHS transform, principal component transform, Gram Schmidt (GS) transform and wavelet transform, the authors have tested the fusion methods for CCD data and HR data of CBERS, and the fusion results are discussed and evaluated qualitatively and quantitatively. (authors)

  15. Colony Collapse Disorder (CCD and bee age impact honey bee pathophysiology.

    Directory of Open Access Journals (Sweden)

    Dennis vanEngelsdorp

    Full Text Available Honey bee (Apis mellifera colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions, and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees, we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and

  16. A FORTRAN version implementation of block adjustment of CCD frames and its preliminary application

    Science.gov (United States)

    Yu, Y.; Tang, Z.-H.; Li, J.-L.; Zhao, M.

    2005-09-01

    A FORTRAN version implementation of the block adjustment (BA) of overlapping CCD frames is developed and its flowchart is shown. The program is preliminarily applied to obtain the optical positions of four extragalactic radio sources. The results show that because of the increase in the number and sky coverage of reference stars the precision of optical positions with BA is improved compared with the single CCD frame adjustment.

  17. The Phase II ATLAS ITk Pixel Upgrade

    CERN Document Server

    Terzo, Stefano; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the "ITk" (Inner Tracker). The innermost portion of ITk will consist of a pixel detector with five layers in the barrel region and and ring-shaped supports in the endcap regions. It will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m$^2$ , depending on the final layout choice, which is expected to take place in early 2017. Several layout options are being investigated at the moment, including some with novel inclined support structures in the barrel-endcap overlap region and others with very long innermost barrel layers. Forward coverage could be as high as $|\\eta| < 4$. Supporting structures will be ...

  18. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Flick, Tobias; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the “ITk” (Inner Tracker). The pixel detector will comprise the five innermost layers, and will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m2, depending on the final layout choice, which is expected to take place in early 2017. Four layout options are being investigated at the moment, two with forward coverage to |eta| < 3.2 and two to |eta| < 4. For each coverage option, a layout with long barrel staves and a layout with novel inclined support structures in the barrel-endcap overlap region are considered. All potential layouts include modules mounted on ring-shaped supports in the endcap regions...

  19. ATLAS rewards two pixel detector suppliers

    CERN Multimedia

    2007-01-01

    Peter Jenni, ATLAS spokesperson, presented the ATLAS supplier award to Herbert Reichl, IZM director, and to Simonetta Di Gioia, from the SELEX company.Two of ATLAS’ suppliers were awarded prizes at a ceremony on Wednesday 13 June attended by representatives of the experiment’s management and of CERN. The prizes went to the Fraunhofer Institut für Zuverlässigkeit und Mikrointegration (IZM) in Berlin and the company SELEX Sistemi Integrati in Rome for the manufacture of modules for the ATLAS pixel detector. SELEX supplied 1500 of the modules for the tracker, while IZM produced a further 1300. The modules, each made up of 46080 channels, form the active part of the ATLAS pixel detector. IZM and SELEX received the awards for the excellent quality of their work: the average number of faulty channels per module was less than 2.10-3. They also stayed within budget and on schedule. The difficulty they faced was designing modules based on electronic components and sensor...

  20. Hybrid active pixel sensors in infrared astronomy

    International Nuclear Information System (INIS)

    Finger, Gert; Dorn, Reinhold J.; Meyer, Manfred; Mehrgan, Leander; Stegmeier, Joerg; Moorwood, Alan

    2005-01-01

    Infrared astronomy is currently benefiting from three main technologies providing high-performance hybrid active pixel sensors. In the near infrared from 1 to 5 μm two technologies, both aiming for buttable 2Kx2K mosaics, are competing, namely InSb and HgCdTe grown by LPE or MBE on Al 2 O 3 , Si or CdZnTe substrates. Blocked impurity band Si:As arrays cover the mid infrared spectral range from 8 to 28 μm. Adaptive optics combined with multiple integral field units feeding high-resolution spectrographs drive the requirements for the array format of infrared sensors used at ground-based infrared observatories. The pixel performance is now approaching fundamental limits. In view of this development, a detection limit for the photon flux of the ideal detector will be derived, depending only on the temperature and the impedance of the detector. It will be shown that this limit is approximated by state of the art infrared arrays for long on-chip integrations. Different detector materials are compared and strategies to populate large focal planes are discussed. The need for the development of small-format low noise sensors for adaptive optics and interferometry will be pointed out

  1. Alignment of the upgraded CMS pixel detector

    CERN Document Server

    Schroder, Matthias

    2018-01-01

    The all-silicon tracking system of the CMS experiment provides excellent resolution for charged tracks and an efficient tagging of heavy-flavour jets. After a new pixel detector has been installed during the LHC technical stop at the beginning of 2017, the positions, orientations, and surface curvatures of the sensors needed to be determined with a precision at the order of a few micrometres to ensure the required physics performance. This is far beyond the mechanical mounting precision but can be achieved using a track-based alignment procedure that minimises the track-hit residuals of reconstructed tracks. The results are carefully validated with data-driven methods. In this article, results of the CMS tracker alignment in 2017 from the early detector-commissioning phase and the later operation are presented, that were derived using several million reconstructed tracks in pp-collision and cosmic-ray data. Special emphasis is put on the alignment of the new pixel detector.

  2. Pixel-Tilecal-MDT Combined Test Beam

    CERN Multimedia

    B. Di Girolamo

    A test with many expectations When an additional week of running (from September 11th to 18th) was allocated for the test-beam, it was decided to give priority to a combined run with the participation of the Pixel, Tilecal and MDT sub-detectors. The integration of these three sub-detectors was possible as they all use the baseline (DAQ-1/EF based) DAQ for test beams (as reported in a previous e-news). The tests and the addition of a common trigger and busy were organized in a short timescale by experts from the three sub-detectors and DAQ/EF. The expectations were many; both looking for problems and finding solutions. The setup The setup, shown in the figure, consisted of the Pixel telescope normally used during the sub-detector tests, two Tilecal barrel modules, two Tilecal extended barrel modules, and six MDT barrel chambers. This fully occupied a length of some 30 meters in the H8 line of the SPS North Area. Each sub-detector used their own specialized front-end electronics. The data collected by modu...

  3. Semiconductor pixel detectors for digital mammography

    International Nuclear Information System (INIS)

    Novelli, M.; Amendolia, S.R.; Bisogni, M.G.; Boscardin, M.; Dalla Betta, G.F.; Delogu, P.; Fantacci, M.E.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Venturelli, L.; Zucca, S.

    2003-01-01

    We present some results obtained with silicon and gallium arsenide pixel detectors to be applied in the field of digital mammography. Even though GaAs is suitable for medical imaging applications thanks to its atomic number, which allows a very good detection efficiency, it often contains an high concentrations of traps which decrease the charge collection efficiency (CCE). So we have analysed both electrical and spectroscopic performance of different SI GaAs diodes as a function of concentrations of dopants in the substrate, in order to find a material by which we can obtain a CCE allowing the detection of all the photons that interact in the detector. Nevertheless to be able to detect low contrast details, efficiency and CCE are not the only parameters to be optimized; also the stability of the detection system is fundamental. In the past we have worked with Si pixel detectors; even if its atomic number does not allow a good detection efficiency at standard thickness, it has a very high stability. So keeping in mind the need to increase the Silicon detection efficiency we performed simulations to study the behaviour of the electrical potential in order to find a geometry to avoid the risk of electrical breakdown

  4. Semiconductor pixel detectors for digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, M. E-mail: marzia.novelli@pi.infn.it; Amendolia, S.R.; Bisogni, M.G.; Boscardin, M.; Dalla Betta, G.F.; Delogu, P.; Fantacci, M.E.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Venturelli, L.; Zucca, S

    2003-08-21

    We present some results obtained with silicon and gallium arsenide pixel detectors to be applied in the field of digital mammography. Even though GaAs is suitable for medical imaging applications thanks to its atomic number, which allows a very good detection efficiency, it often contains an high concentrations of traps which decrease the charge collection efficiency (CCE). So we have analysed both electrical and spectroscopic performance of different SI GaAs diodes as a function of concentrations of dopants in the substrate, in order to find a material by which we can obtain a CCE allowing the detection of all the photons that interact in the detector. Nevertheless to be able to detect low contrast details, efficiency and CCE are not the only parameters to be optimized; also the stability of the detection system is fundamental. In the past we have worked with Si pixel detectors; even if its atomic number does not allow a good detection efficiency at standard thickness, it has a very high stability. So keeping in mind the need to increase the Silicon detection efficiency we performed simulations to study the behaviour of the electrical potential in order to find a geometry to avoid the risk of electrical breakdown.

  5. Survey of the ATLAS Pixel Detector Components

    International Nuclear Information System (INIS)

    Andreazza, A.; Kostyukhim, V.; Madaras, R.

    2008-01-01

    This document provides a description of the survey performed on different components of the ATLAS Pixel Detector at different stages of its assembly. During the production of the ATLAS pixel detector great care was put in the geometrical survey of the location of the sensitive area of modules. This had a double purpose: (1) to provide a check of the quality of the assembly procedure and assure tolerances in the geometrical assembly were met; and (2) to provide an initial point for the alignment (the so called 'as-built detector'), better than the ideal geometry. Since direct access to the sensitive area becomes more and more difficult with the progress of the assembly, the survey needed to be performed at different stages: after module loading on the local supports (sectors and staves) and after assembly of the local supports in disks or halfshells. Different techniques were used, including both optical 2D and 3D surveys and mechanical survey. This document summarizes the survey procedures, the analysis done on the collected data and how survey data are stored in case they will need to be accessed in the future

  6. The Pixels system: last but not late!

    CERN Multimedia

    Kevin Einsweiler

    The Pixel Detector for ATLAS is one of the smallest, but most challenging components of the experiment. It lives in the dangerous territory directly outside the beampipe, where the radiation environment is particularly fierce, and it must be roughly one million times more radiation-hard than its human designers. Starting at a radius of just 5cm from the interaction point where the proton beams collide, it occupies a volume of slightly more than one meter in length and a half meter in diameter. In this compact region, there are eighty million channels of electronics (most of the electronics channels in ATLAS!), each capable of measuring the charge deposited by a track in a silicon pixel measuring only 50 microns by 400 microns in size (a volume of 0.005 cubic millimeters). A total cooling capacity of 15 KWatts is available to keep it operating comfortably at -5C. This detector is built around, and provides the support for, the central beampipe of ATLAS. It is supported on carbon fiber rails inside of the Pix...

  7. Design of area array CCD image acquisition and display system based on FPGA

    Science.gov (United States)

    Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming

    2014-09-01

    With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.

  8. A Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Software

    Directory of Open Access Journals (Sweden)

    S. H. Oh

    2007-12-01

    Full Text Available We present a software which we developed for the multi-purpose CCD camera. This software can be used on the all 3 types of CCD - KAF-0401E (768×512, KAF-1602E (15367times;1024, KAF-3200E (2184×1472 made in KODAK Co.. For the efficient CCD camera control, the software is operated with two independent processes of the CCD control program and the temperature/shutter operation program. This software is designed to fully automatic operation as well as manually operation under LINUX system, and is controled by LINUX user signal procedure. We plan to use this software for all sky survey system and also night sky monitoring and sky observation. As our results, the read-out time of each CCD are about 15sec, 64sec, 134sec for KAF-0401E, KAF-1602E, KAF-3200E., because these time are limited by the data transmission speed of parallel port. For larger format CCD, the data transmission is required more high speed. we are considering this control software to one using USB port for high speed data transmission.

  9. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    Science.gov (United States)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  10. Charge Gain, Voltage Gain, and Node Capacitance of the SAPHIRA Detector Pixel by Pixel

    Science.gov (United States)

    Pastrana, Izabella M.; Hall, Donald N. B.; Baker, Ian M.; Jacobson, Shane M.; Goebel, Sean B.

    2018-01-01

    The University of Hawai`i Institute for Astronomy has partnered with Leonardo (formerly Selex) in the development of HgCdTe linear mode avalanche photodiode (L-APD) SAPHIRA detectors. The SAPHIRA (Selex Avalanche Photodiode High-speed Infra-Red Array) is ideally suited for photon-starved astronomical observations, particularly near infrared (NIR) adaptive optics (AO) wave-front sensing. I have measured the stability, and linearity with current, of a 1.7-um (10% spectral bandpass) infrared light emitting diode (IR LED) used to illuminate the SAPHIRA and have then utilized this source to determine the charge gain (in e-/ADU), voltage gain (in uV/ADU), and node capacitance (in fF) for each pixel of the 320x256@24um SAPHIRA. These have previously only been averages over some sub-array. Determined from the ratio of the temporal averaged signal level to variance under constant 1.7-um LED illumination, I present the charge gain pixel-by-pixel in a 64x64 sub-array at the center of the active area of the SAPHIRA (analyzed separately as four 32x32 sub-arrays) to be about 1.6 e-/ADU (σ=0.5 e-/ADU). Additionally, the standard technique of varying the pixel reset voltage (PRV) in 10 mV increments and recording output frames for the same 64x64 subarray found the voltage gain per pixel to be about 11.7 uV/ADU (σ=0.2 uV/ADU). Finally, node capacitance was found to be approximately 23 fF (σ=6 fF) utilizing the aforementioned charge and voltage gain measurements. I further discuss the linearity measurements of the 1.7-um LED used in the charge gain characterization procedure.

  11. Development of pixel detectors for SSC vertex tracking

    International Nuclear Information System (INIS)

    Kramer, G.; Shapiro, S.L.; Arens, J.F.; Jernigan, J.G.; Skubic, P.

    1991-04-01

    A description of hybrid PIN diode arrays and a readout architecture for their use as a vertex detector in the SSC environment is presented. Test results obtained with arrays having 256 x 256 pixels, each 30 μm square, are also presented. The development of a custom readout for the SSC will be discussed, which supports a mechanism for time stamping hit pixels, storing their xy coordinates, and storing the analog information within the pixel. The peripheral logic located on the array, permits the selection of those pixels containing interesting data and their coordinates to be selectively read out. This same logic also resolves ambiguous pixel ghost locations and controls the pixel neighbor read out necessary to achieve high spatial resolution. The thermal design of the vertex tracker and the proposed signal processing architecture will also be discussed. 5 refs., 13 figs., 3 tabs

  12. Sensor Development for the CMS Pixel Detector

    CERN Document Server

    Rohe, T; Chiochia, V; Cremaldi, L M; Cucciarelli, S; Dorkhov, A; Konecki, M; Prokofiev, K; Regenfus, C; Sanders, D A; Son, S; Speer, T; Swartz, M

    2003-01-01

    This paper reports on a current R&D activity for the sensor part of the CMS pixel detector. Devices featuring several design and technology options have been irradiated up to a proton fluence of 1E15 (1MeV Neutron)/cm**2 at the CERN PS. Afterwards they have been bump bonded to unirradiated readout chips. The chip allows a non zero suppressed full analogue readout and therefore a good characterization of the sensors in terms of noise and charge collection properties. The samples have been tested using high energy pions in the H2 beam line of the CERN SPS in June and September 2003. The results of this test beam are presented and the differences between the sensor options are discussed.

  13. Radiation effects on active pixel sensors (APS)

    International Nuclear Information System (INIS)

    Cohen, M.; David, J.P.

    1999-01-01

    Active pixel sensor (APS) is a new generation of image sensors which presents several advantages relatively to charge coupled devices (CCDs) particularly for space applications (APS requires only 1 voltage to operate which reduces considerably current consumption). Irradiation was performed using 60 Co gamma radiation at room temperature and at a dose rate of 150 Gy(Si)/h. 2 types of APS have been tested: photodiode-APS and photoMOS-APS. The results show that photoMOS-APS is more sensitive to radiation effects than photodiode-APS. Important parameters of image sensors like dark currents increase sharply with dose levels. Nevertheless photodiode-APS sensitivity is one hundred time lower than photoMOS-APS sensitivity

  14. Steganography on quantum pixel images using Shannon entropy

    Science.gov (United States)

    Laurel, Carlos Ortega; Dong, Shi-Hai; Cruz-Irisson, M.

    2016-07-01

    This paper presents a steganographical algorithm based on least significant bit (LSB) from the most significant bit information (MSBI) and the equivalence of a bit pixel image to a quantum pixel image, which permits to make the information communicate secretly onto quantum pixel images for its secure transmission through insecure channels. This algorithm offers higher security since it exploits the Shannon entropy for an image.

  15. Dichromatic Gray Pixel for Camera-agnostic Color Constancy

    OpenAIRE

    Qian, Yanlin; Chen, Ke; Nikkanen, Jarno; Kämäräinen, Joni-Kristian; Matas, Jiri

    2018-01-01

    We propose a novel statistical color constancy method, especially suitable for the Camera-agnostic Color Constancy, i.e. the scenario where nothing is known a priori about the capturing devices. The method, called Dichromatic Gray Pixel, or DGP, relies on a novel gray pixel detection algorithm derived using the Dichromatic Reflection Model. DGP is suitable for camera-agnostic color constancy since varying devices are set to make achromatic pixels look gray under standard neutral illumination....

  16. Semiconductor Pixel detectors and their applications in life sciences

    International Nuclear Information System (INIS)

    Jakubek, J

    2009-01-01

    Recent advances in semiconductor technology allow construction of highly efficient and low noise pixel detectors of ionizing radiation. Steadily improving quality of front end electronics enables fast digital signal processing in each pixel which offers recording of more complete information about each detected quantum (energy, time, number of particles). All these features improve an extend applicability of pixel technology in different fields. Some applications of this technology especially for imaging in life sciences will be shown (energy and phase sensitive X-ray radiography and tomography, radiography with heavy charged particles, neutron radiography, etc). On the other hand a number of obstacles can limit the detector performance if not handled. The pixel detector is in fact an array of individual detectors (pixels), each of them has its own efficiency, energy calibration and also noise. The common effort is to make all these parameters uniform for all pixels. However an ideal uniformity can be never reached. Moreover, it is often seen that the signal in one pixel can affect the neighbouring pixels due to various reasons (e.g. charge sharing). All such effects have to be taken into account during data processing to avoid false data interpretation. A brief view into the future of pixel detectors and their applications including also spectroscopy, tracking and dosimetry is given too. Special attention is paid to the problem of detector segmentation in context of the charge sharing effect.

  17. The FE-I4 pixel readout integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sciveres, M., E-mail: mgarcia-sciveres@bl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arutinov, D.; Barbero, M. [University of Bonn, Bonn (Germany); Beccherle, R. [Istituto Nazionale di Fisica Nucleare Sezione di Genova, Genova (Italy); Dube, S.; Elledge, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Fleury, J. [Laboratoire de l' Accelerateur Lineaire, Orsay (France); Fougeron, D.; Gensolen, F. [Centre de Physique des Particules de Marseille, Marseille (France); Gnani, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Gromov, V. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands); Hemperek, T.; Karagounis, M. [University of Bonn, Bonn (Germany); Kluit, R. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands); Kruth, A. [University of Bonn, Bonn (Germany); Mekkaoui, A. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Menouni, M. [Centre de Physique des Particules de Marseille, Marseille (France); Schipper, J.-D. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands)

    2011-04-21

    A new pixel readout integrated circuit denominated FE-I4 is being designed to meet the requirements of ATLAS experiment upgrades. It will be the largest readout IC produced to date for particle physics applications, filling the maximum allowed reticle area. This will significantly reduce the cost of future hybrid pixel detectors. In addition, FE-I4 will have smaller pixels and higher rate capability than the present generation of LHC pixel detectors. Design features are described along with simulation and test results, including low power and high rate readout architecture, mixed signal design strategy, and yield hardening.

  18. Qualification Procedures of the CMS Pixel Barrel Modules

    CERN Document Server

    Starodumov, A; Horisberger, R.; Kastli, H.Chr.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Trueb, P.

    2006-01-01

    The CMS pixel barrel system will consist of three layers built of about 800 modules. One module contains 66560 readout channels and the full pixel barrel system about 48 million channels. It is mandatory to test each channel for functionality, noise level, trimming mechanism, and bump bonding quality. Different methods to determine the bump bonding yield with electrical measurements have been developed. Measurements of several operational parameters are also included in the qualification procedure. Among them are pixel noise, gains and pedestals. Test and qualification procedures of the pixel barrel modules are described and some results are presented.

  19. Application of ASTER SWIR bands in mapping anomaly pixels for Antarctic geological mapping

    International Nuclear Information System (INIS)

    Beiranvand Pour, Amin; Hashim, Mazlan; Park, Yongcheol

    2017-01-01

    Independent component analysis (ICA) was applied to shortwave infrared (SWIR) bands of ASTER satellite data for detailed mapping of alteration mineral zones in the context of polar environments, where little prior information is available. The Oscar II coast area north-eastern Graham Land, Antarctic Peninsula (AP) was selected to conduct a remote sensing satellite-based mapping approach to detect alteration mineral assemblages. Anomaly pixels in the ICA image maps related to spectral features of Al-O-H, Fe, Mg-O-H and CO3 groups were detected using SWIR datasets of ASTER. ICA method provided image maps of alteration mineral assemblages and discriminate lithological units with little available geological data for poorly mapped regions and/or without prior geological information for unmapped regions in northern and southern sectors of Oscar II coast area, Graham Land. The results of this investigation demonstrated the applicability of ASTER spectral data for lithological and alteration mineral mapping in poorly exposed lithologies and inaccessible regions, particularly using the image processing algorithm that are capable to detect anomaly pixels targets in the remotely sensed images, where no prior information is available. (paper)

  20. A hybrid 3D LIDAR imager based on pixel-by-pixel scanning and DS-OCDMA

    Science.gov (United States)

    Kim, Gunzung; Eom, Jeongsook; Park, Yongwan

    2016-03-01

    We propose a new hybrid 3D light detection and ranging (LIDAR) system, which measures a scene with 1280 x 600 pixels at a refresh rate of 60fps. The emitted pulses of each pixel are modulated by direct sequence optical code division multiple access (DS-OCDMA) techniques. The modulated pulses include a unique device identification number, the pixel position in the line, and a checksum. The LIDAR emits the modulated pulses periodically without waiting to receive returning light at the detector. When all the pixels are completely through the process, the travel time, amplitude, width, and speed are used by the pixel-by-pixel scanning LIDAR imager to generate point cloud data as the measured results. We programmed the entire hybrid 3D LIDAR operation in a simulator to observe the functionality accomplished by our proposed model.

  1. Study of plasma charging-induced white pixel defect increase in CMOS active pixel sensor

    International Nuclear Information System (INIS)

    Tokashiki, Ken; Bai, KeunHee; Baek, KyeHyun; Kim, Yongjin; Min, Gyungjin; Kang, Changjin; Cho, Hanku; Moon, Jootae

    2007-01-01

    Plasma process-induced 'white pixel defect' (WPD) of CMOS active pixel sensor (APS) is studied for Si3N4 spacer etch back process by using a magnetically enhanced reactive ion etching (MERIE) system. WPD preferably takes place at the wafer edge region when the magnetized plasma is applied to Si3N4 etch. Plasma charging analysis reveals that the plasma charge-up characteristic is well matching the edge-intensive WPD generation, rather than the UV radiation. Plasma charging on APS transfer gate might lead to a gate leakage, which could play a role in generation of signal noise or WPD. In this article the WPD generation mechanism will be discussed from plasma charging point of view

  2. Evaluation of a single-pixel one-transistor active pixel sensor for fingerprint imaging

    Science.gov (United States)

    Xu, Man; Ou, Hai; Chen, Jun; Wang, Kai

    2015-08-01

    Since it first appeared in iPhone 5S in 2013, fingerprint identification (ID) has rapidly gained popularity among consumers. Current fingerprint-enabled smartphones unanimously consists of a discrete sensor to perform fingerprint ID. This architecture not only incurs higher material and manufacturing cost, but also provides only static identification and limited authentication. Hence as the demand for a thinner, lighter, and more secure handset grows, we propose a novel pixel architecture that is a photosensitive device embedded in a display pixel and detects the reflected light from the finger touch for high resolution, high fidelity and dynamic biometrics. To this purpose, an amorphous silicon (a-Si:H) dual-gate photo TFT working in both fingerprint-imaging mode and display-driving mode will be developed.

  3. Recognition and Matching of Clustered Mature Litchi Fruits Using Binocular Charge-Coupled Device (CCD Color Cameras

    Directory of Open Access Journals (Sweden)

    Chenglin Wang

    2017-11-01

    Full Text Available Recognition and matching of litchi fruits are critical steps for litchi harvesting robots to successfully grasp litchi. However, due to the randomness of litchi growth, such as clustered growth with uncertain number of fruits and random occlusion by leaves, branches and other fruits, the recognition and matching of the fruit become a challenge. Therefore, this study firstly defined mature litchi fruit as three clustered categories. Then an approach for recognition and matching of clustered mature litchi fruit was developed based on litchi color images acquired by binocular charge-coupled device (CCD color cameras. The approach mainly included three steps: (1 calibration of binocular color cameras and litchi image acquisition; (2 segmentation of litchi fruits using four kinds of supervised classifiers, and recognition of the pre-defined categories of clustered litchi fruit using a pixel threshold method; and (3 matching the recognized clustered fruit using a geometric center-based matching method. The experimental results showed that the proposed recognition method could be robust against the influences of varying illumination and occlusion conditions, and precisely recognize clustered litchi fruit. In the tested 432 clustered litchi fruits, the highest and lowest average recognition rates were 94.17% and 92.00% under sunny back-lighting and partial occlusion, and sunny front-lighting and non-occlusion conditions, respectively. From 50 pairs of tested images, the highest and lowest matching success rates were 97.37% and 91.96% under sunny back-lighting and non-occlusion, and sunny front-lighting and partial occlusion conditions, respectively.

  4. CCD-Based Skinning Injury Recognition on Potato Tubers (Solanum tuberosum L.): A Comparison between Visible and Biospeckle Imaging.

    Science.gov (United States)

    Gao, Yingwang; Geng, Jinfeng; Rao, Xiuqin; Ying, Yibin

    2016-10-18

    Skinning injury on potato tubers is a kind of superficial wound that is generally inflicted by mechanical forces during harvest and postharvest handling operations. Though skinning injury is pervasive and obstructive, its detection is very limited. This study attempted to identify injured skin using two CCD (Charge Coupled Device) sensor-based machine vision technologies, i.e., visible imaging and biospeckle imaging. The identification of skinning injury was realized via exploiting features extracted from varied ROIs (Region of Interests). The features extracted from visible images were pixel-wise color and texture features, while region-wise BA (Biospeckle Activity) was calculated from biospeckle imaging. In addition, the calculation of BA using varied numbers of speckle patterns were compared. Finally, extracted features were implemented into classifiers of LS-SVM (Least Square Support Vector Machine) and BLR (Binary Logistic Regression), respectively. Results showed that color features performed better than texture features in classifying sound skin and injured skin, especially for injured skin stored no less than 1 day, with the average classification accuracy of 90%. Image capturing and processing efficiency can be speeded up in biospeckle imaging, with captured 512 frames reduced to 125 frames. Classification results obtained based on the feature of BA were acceptable for early skinning injury stored within 1 day, with the accuracy of 88.10%. It is concluded that skinning injury can be recognized by visible and biospeckle imaging during different stages. Visible imaging has the aptitude in recognizing stale skinning injury, while fresh injury can be discriminated by biospeckle imaging.

  5. Model-based satellite image fusion

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Sveinsson, J. R.; Nielsen, Allan Aasbjerg

    2008-01-01

    A method is proposed for pixel-level satellite image fusion derived directly from a model of the imaging sensor. By design, the proposed method is spectrally consistent. It is argued that the proposed method needs regularization, as is the case for any method for this problem. A framework for pixel...... neighborhood regularization is presented. This framework enables the formulation of the regularization in a way that corresponds well with our prior assumptions of the image data. The proposed method is validated and compared with other approaches on several data sets. Lastly, the intensity......-hue-saturation method is revisited in order to gain additional insight of what implications the spectral consistency has for an image fusion method....

  6. Prospects for hybrid pixel detectors in electron microscopy

    International Nuclear Information System (INIS)

    Faruqi, A.R.

    2001-01-01

    The current status of CCD-based detectors for cryo-electron microscopy of membrane and other proteins is described briefly, highlighting the strengths and weaknesses of the technique. Over the past few years CCD detectors have been used extensively in electron crystallography of membrane proteins, and in particular, in the study of the molecular transitions which take place during the photo-cycle of the light-driven proton pump bacteriorhodopsin. Direct-detection methods, which avoid the intermediate stages of converting the electron energy into light, offer the possibility of improved spatial resolution compared to CCD detectors; in addition, photon counting and noise-free readout should improve the signal-to-noise ratio

  7. Design of the driving system for visible near-infrared spatial programmable push-broom remote CCD sensor

    Science.gov (United States)

    Xu, Zhipeng; Wei, Jun; Zhou, Qianting; Weng, Dongshan; Li, Jianwei

    2010-11-01

    VNIR multi-spectral image sensor has wide applications in remote sensing and imaging spectroscopy. An image spectrometer of a spatial remote programmable push-broom sensing satellite requires visible near infrared band ranges from 0.4μm to 1.04μm which is one of the most important bands in remote sensing. This paper introduces a method of design the driving system for 1024x1024 VNIR CCD sensor for programmable push-broom remote sensing. The digital driving signal is generated by the FPGA device. There are seven modules in the FPGA program and all the modules are coded by VHDL. The driving system have five mainly functions: drive the sensor as the demand of timing schedule, control the AD convert device to work, get the parameter via RS232 from control platform, process the data input from the AD device, output the processed data to PCI sample card to display in computer end. All the modules above succeed working on FPGA device APA600. This paper also introduced several important keys when designing the driving system including module synchronization, critical path optimization.

  8. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  9. Centi-pixel accurate real-time inverse distortion correction

    CSIR Research Space (South Africa)

    De Villiers, Johan P

    2008-11-01

    Full Text Available Inverse distortion is used to create an undistorted image from a distorted image. For each pixel in the undistorted image it is required to determine which pixel in the distorted image should be used. However the process of characterizing a lens...

  10. Precision tracking with a single gaseous pixel detector

    NARCIS (Netherlands)

    Tsigaridas, S.; van Bakel, N.; Bilevych, Y.; Gromov, V.; Hartjes, F.; Hessey, N.P.; de Jong, P.; Kluit, R.

    2015-01-01

    The importance of micro-pattern gaseous detectors has grown over the past few years after successful usage in a large number of applications in physics experiments and medicine. We develop gaseous pixel detectors using micromegas-based amplification structures on top of CMOS pixel readout chips.

  11. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    Science.gov (United States)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  12. Phase shifting white light interferometry using colour CCD for optical metrology and bio-imaging applications

    Science.gov (United States)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2018-02-01

    Phase shifting white light interferometry (PSWLI) has been widely used for optical metrology applications because of their precision, reliability, and versatility. White light interferometry using monochrome CCD makes the measurement process slow for metrology applications. WLI integrated with Red-Green-Blue (RGB) CCD camera is finding imaging applications in the fields optical metrology and bio-imaging. Wavelength dependent refractive index profiles of biological samples were computed from colour white light interferograms. In recent years, whole-filed refractive index profiles of red blood cells (RBCs), onion skin, fish cornea, etc. were measured from RGB interferograms. In this paper, we discuss the bio-imaging applications of colour CCD based white light interferometry. The approach makes the measurement faster, easier, cost-effective, and even dynamic by using single fringe analysis methods, for industrial applications.

  13. High performance CCD camera system for digitalisation of 2D DIGE gels.

    Science.gov (United States)

    Strijkstra, Annemieke; Trautwein, Kathleen; Roesler, Stefan; Feenders, Christoph; Danzer, Daniel; Riemenschneider, Udo; Blasius, Bernd; Rabus, Ralf

    2016-07-01

    An essential step in 2D DIGE-based analysis of differential proteome profiles is the accurate and sensitive digitalisation of 2D DIGE gels. The performance progress of commercially available charge-coupled device (CCD) camera-based systems combined with light emitting diodes (LED) opens up a new possibility for this type of digitalisation. Here, we assessed the performance of a CCD camera system (Intas Advanced 2D Imager) as alternative to a traditionally employed, high-end laser scanner system (Typhoon 9400) for digitalisation of differential protein profiles from three different environmental bacteria. Overall, the performance of the CCD camera system was comparable to the laser scanner, as evident from very similar protein abundance changes (irrespective of spot position and volume), as well as from linear range and limit of detection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The development of large-aperture test system of infrared camera and visible CCD camera

    Science.gov (United States)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  15. A fluorescent screen + CCD system for quality assurance of therapeutic scanned ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, E., E-mail: eriuli@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Furukawa, T., E-mail: t_furu@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Inaniwa, T., E-mail: taku@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Sato, S., E-mail: shin_s@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Himukai, T., E-mail: himukai@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Shirai, T., E-mail: t_shirai@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Noda, K., E-mail: noda_k@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan)

    2011-12-15

    A fluorescent screen + a charge coupled device (CCD) system were developed to verify the performance of scanned ion beams at the HIMAC. The fluorescent light from the screen is observed by the CCD camera. Two-dimensional fields, produced by the scanning process, i.e., the position and the size of the beam for each scan, represent of the important issues in scanning irradiation. In the developed system, the two-dimensional relative fluence and the flatness of the irradiation field were measured in a straightforward technique from the luminance distribution on the screen. The position and the size of the beams were obtained from centroid computation results of the brightness. By the good sensitivity and spatial resolution of the fluorescent screen + CCD system, the scanned ion beams were verified as the measurements at the HIMAC prototype scanning system.

  16. A fluorescent screen + CCD system for quality assurance of therapeutic scanned ion beams

    Science.gov (United States)

    Takeshita, E.; Furukawa, T.; Inaniwa, T.; Sato, S.; Himukai, T.; Shirai, T.; Noda, K.

    2011-12-01

    A fluorescent screen + a charge coupled device (CCD) system were developed to verify the performance of scanned ion beams at the HIMAC. The fluorescent light from the screen is observed by the CCD camera. Two-dimensional fields, produced by the scanning process, i.e., the position and the size of the beam for each scan, represent of the important issues in scanning irradiation. In the developed system, the two-dimensional relative fluence and the flatness of the irradiation field were measured in a straightforward technique from the luminance distribution on the screen. The position and the size of the beams were obtained from centroid computation results of the brightness. By the good sensitivity and spatial resolution of the fluorescent screen + CCD system, the scanned ion beams were verified as the measurements at the HIMAC prototype scanning system.

  17. Measurement of phase function of aerosol at different altitudes by CCD Lidar

    Science.gov (United States)

    Sun, Peiyu; Yuan, Ke'e.; Yang, Jie; Hu, Shunxing

    2018-02-01

    The aerosols near the ground are closely related to human health and climate change, the study on which has important significance. As we all know, the aerosol is inhomogeneous at different altitudes, of which the phase function is also different. In order to simplify the retrieval algorithm, it is usually assumed that the aerosol is uniform at different altitudes, which will bring measurement error. In this work, an experimental approach is demonstrated to measure the scattering phase function of atmospheric aerosol particles at different heights by CCD lidar system, which could solve the problem of the traditional CCD lidar system in assumption of phase function. The phase functions obtained by the new experimental approach are used to retrieve the aerosol extinction coefficient profiles. By comparison of the aerosol extinction coefficient retrieved by Mie-scattering aerosol lidar and CCD lidar at night, the reliability of new experimental approach is verified.

  18. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Rossi, Leonardo Paolo; The ATLAS collaboration

    2018-01-01

    The entire tracking system of the ATLAS experiment will be replaced in 2025 during the LHC Phase-II shutdown by an all-silicon detector called the “ITk” (Inner Tracker). The innermost part of ITk will be a pixel detector containing about 12.5m2 of sensitive silicon. The silicon modules are arranged on 5 layers of stave-like support structures in the most central region and ring-shaped supports in the endcap regions covering out to |η| < 4; a mid-eta region (~1 < |η| < ~2) will be occupied by novel inclined support structures which keep the angle of incidence of high-momentum tracks more closely normal to the sensitive silicon. All supports will be based on low mass, highly stable and highly thermally-conductive carbon-based materials cooled by evaporative carbon dioxide flowing in thin-walled titanium pipes. An extensive prototyping programme, including thermal, mechanical and electrical studies, is being carried out on all the types of support structures. The HL-LHC is expected to deliver up t...

  19. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Benoit, Mathieu; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the “ITk” (Inner Tracker). The innermost portion of the ITk will consist of a pixel detector with stave-like support structures in the most central region and ring-shaped supports in the endcap regions; there may also be novel inclined support structures in the barrel-endcap overlap regions. The new detector could have as much as 14 m2 of sensitive silicon. Support structures will be based on low mass, highly stable and highly thermally conductive carbon-based materials cooled by evaporative carbon dioxide. The ITk will be instrumented with new sensors and readout electronics to provide improved tracking performance compared to the current detector. All the module components must be performant enough and robust enough to cope with the expected high particle multiplicity and severe radiation background of the High-Luminosity LHC. Readout...

  20. The ALICE silicon pixel detector system

    International Nuclear Information System (INIS)

    Kapusta, S.

    2009-01-01

    The Large Hadron Collider (LHC) is again reaching its startup phase at the European Organization for Particle Physics (CERN). The LHC started its operation on the 10 th of September, 2008 with huge success managing to sent the the first beam successfully around the entire ring in less than an hour after the first injection in one direction, and later that day in the opposite direction. Unfortunately, on the 19 th of September, an accident occurred during the 5.5 TeV magnet commissioning in Sector 34, which will significantly delay the operation of the LHC. The ALICE experiment will exploit the collisions of accelerated ions produced at the LHC to study strongly interacting matter at extreme densities and high temperatures. e ALICE Silicon Pixel Detector (SPD) represents the two innermost layers of the ALICE Inner Traing System (ITS) located at radii of 3.9 cm and 7.6 cm from the Interaction Point (IP). One of the main tasks of the SPD is to provide precise traing information. is information is fundamental for the study of weak decays of heavy flavor particles, since the corresponding signature is a secondary vertex separated from the primary vertex only by a few hundred micrometers. e tra density could be as high as 80 tracks per cm 2 in the innermost SPD layer as a consequence of a heavy ion collision. The SPD will provide a spatial resolution of around ≅12 μm in the rφ direction and ≅70 μm in the z direction. The expected occupancy of the SPD ranges from 0.4% to 1.5% which makes it an excellent charged particle multiplicity detector in the pseudorapidity region |η| < 2. Furthermore, by combining all possible hits in the SPD, one can get a rough estimate of the position of the primary interaction. One of the challenges is the tight material budget constraint (<1% radiation length per layer) in order to limit the scattering of the traversing particles. e silicon sensor and its readout chip have a total thickness of only 350 μm and the signal lines from the

  1. Status of the CMS Phase I pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Spannagel, S., E-mail: simon.spannagel@desy.de

    2016-09-21

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  2. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  3. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.7% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  4. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lapoire, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  5. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lapoire, C; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as B-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification.

  6. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Keil, M

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including calibration procedures, timing optimization and detector performance. The detector performance is excellent: approximately 97% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  7. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.8% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  8. Operational experience with the ATLAS Pixel detector at the LHC

    CERN Document Server

    Deluca, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5\\% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, ...

  9. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lange, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump- bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, a...

  10. Operational experience with the ATLAS Pixel detector at the LHC

    CERN Document Server

    Deluca, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  11. Status of the CMS Phase I Pixel Detector Upgrade

    CERN Document Server

    Spannagel, Simon

    2016-09-21

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase~I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  12. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including calibration procedures, timing optimization and detector performance. The detector performance is excellent: ~96 % of the pixels are operational, noise occupancy and hit efficiency e...

  13. Realistic full wave modeling of focal plane array pixels.

    Energy Technology Data Exchange (ETDEWEB)

    Campione, Salvatore [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Electromagnetic Theory Dept.; Warne, Larry K. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Electromagnetic Theory Dept.; Jorgenson, Roy E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Electromagnetic Theory Dept.; Davids, Paul [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Applied Photonic Microsystems Dept.; Peters, David W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Applied Photonic Microsystems Dept.

    2017-11-01

    Here, we investigate full-wave simulations of realistic implementations of multifunctional nanoantenna enabled detectors (NEDs). We focus on a 2x2 pixelated array structure that supports two wavelengths of operation. We design each resonating structure independently using full-wave simulations with periodic boundary conditions mimicking the whole infinite array. We then construct a supercell made of a 2x2 pixelated array with periodic boundary conditions mimicking the full NED; in this case, however, each pixel comprises 10-20 antennas per side. In this way, the cross-talk between contiguous pixels is accounted for in our simulations. We observe that, even though there are finite extent effects, the pixels work as designed, each responding at the respective wavelength of operation. This allows us to stress that realistic simulations of multifunctional NEDs need to be performed to verify the design functionality by taking into account finite extent and cross-talk effects.

  14. Characterization of active CMOS sensors for capacitively coupled pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Gonella, Laura; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn (Germany); Peric, Ivan [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2015-07-01

    Active CMOS pixel sensor is one of the most attractive candidates for detectors of upcoming particle physics experiments. In contrast to conventional sensors of hybrid detectors, signal processing circuit can be integrated in the active CMOS sensor. The characterization and optimization of the pixel circuit are indispensable to obtain a good performance from the sensors. The prototype chips of the active CMOS sensor were fabricated in the AMS 180nm and L-Foundry 150 nm CMOS processes, respectively a high voltage and high resistivity technology. Both chips have a charge sensitive amplifier and a comparator in each pixel. The chips are designed to be glued to the FEI4 pixel readout chip. The signals from 3 pixels of the prototype chips are capacitively coupled to the FEI4 input pads. We have performed lab tests and test beams to characterize the prototypes. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  15. Development of radiation hardened pixel sensors for charged particle detection

    CERN Document Server

    Koziel, Michal

    2014-01-01

    CMOS Pixel Sensors are being developed since a few years to equip vertex detectors for future high-energy physics experiments with the crucial advantages of a low material budget and low production costs. The features simultaneously required are a short readout time, high granularity and high tolerance to radiation. This thesis mainly focuses on the radiation tolerance studies. To achieve the targeted readout time (tens of microseconds), the sensor pixel readout was organized in parallel columns restricting in addition the readout to pixels that had collected the signal charge. The pixels became then more complex, and consequently more sensitive to radiation. Different in-pixel architectures were studied and it was concluded that the tolerance to ionizing radiation was limited to 300 krad with the 0.35- m fabrication process currently used, while the targeted value was several Mrad. Improving this situation calls for implementation of the sensors in processes with a smaller feature size which naturally imp...

  16. Application of the CCD Fabry-Perot Annular Summing Technique to Thermospheric O(1)D.

    Science.gov (United States)

    Coakley, Monica Marie

    1995-01-01

    This work will detail the verification of the advantages of the Fabry-Perot charge coupled device (CCD) annular summing technique, the development of the technique for analysis of daysky spectra, and the implications of the resulting spectra for neutral temperature and wind measurements in the daysky thermosphere. The daysky spectral feature of interest is the bright (1 kilo-Rayleigh) thermospheric (OI) emission at 6300 A which had been observed in the nightsky in order to determine winds and temperatures in the vicinity of the altitude of 250 km. In the daysky, the emission line sits on top of a bright Rayleigh scattered continuum background which significantly complicates the observation. With a triple etalon Fabry-Perot spectrometer, the continuum background can be reduced while maintaining high throughput and high resolution. The inclusion of a CCD camera results in significant savings in integration time over the two more standard scanning photomultiplier systems that have made the same wind and temperature measurements in the past. A comparable CCD system can experience an order of magnitude savings in integration time over a PMT system. Laboratory and field tests which address the advantages and limitations of both the Fabry-Perot CCD annular summing technique and the daysky CCD imaging are included in Chap. 2 and Chap. 3. With a sufficiently large throughput associated with the spectrometer and a CCD detector, rapid observations (~4 minute integrations) can be made. Extraction of the line width and line center from the daysky near-continuum background is complicated compared to the nightsky case, but possible. Methods of fitting the line are included in Chap. 4. The daysky O ^1D temperatures are consistent with a lower average emission height than predicted by models. The data and models are discussed in Chap. 5. Although some discrepancies exist between resulting temperatures and models, the observations indicate the potential for other direct measurements

  17. Deflection control system for prestressed concrete bridges by CCD camera. CCD camera ni yoru prestressed concrete kyo no tawami kanri system

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Y.; Nakayama, Y.; Arai, T. (Kawada Construction Co. Ltd., Tokyo (Japan))

    1994-03-15

    For the long-span prestressed concrete bridge (continuous box girder and cable stayed bridge), the design and construction control becomes increasingly complicated as construction proceeds because of its cyclic works. This paper describes the method and operation of an automatic levelling module using CCD camera and the experimental results by this system. For this automatic levelling system, the altitude can be automatically measured by measuring the center location of gravity of the target on the bridge surface using CCD camera. The present deflection control system developed compares the measured value by the automatic levelling system with the design value obtained by the design calculation system, and manages them. From the real-time continuous measurement for the long term, in which the CCD camera was set on the bridge surface, it was found that the stable measurement accuracy can be obtained. Successful application of this system demonstrates that the system is an effective and efficient construction aid. 11 refs., 19 figs., 1 tab.

  18. Construction of a photochemical reactor combining a CCD spectrophotometer and a LED radiation source.

    Science.gov (United States)

    Gombár, Melinda; Józsa, Éva; Braun, Mihály; Ősz, Katalin

    2012-10-01

    An inexpensive photoreactor using LED light sources and a fibre-optic CCD spectrophotometer as a detector was built by designing a special cell holder for standard 1.000 cm cuvettes. The use of this device was demonstrated by studying the aqueous photochemical reaction of 2,5-dichloro-1,4-benzoquinone. The developed method combines the highly quantitative data collection of CCD spectrophotometers with the possibility of illuminating the sample independently of the detecting light beam, which is a substantial improvement of the method using diode array spectrophotometers as photoreactors.

  19. Computer-aided diagnosis of pneumoconiosis abnormalities extracted from chest radiographs scanned with a CCD scanner

    International Nuclear Information System (INIS)

    Abe, Koji; Minami, Masahide; Nakamura, Munehiro

    2011-01-01

    This paper presents a computer-aided diagnosis for pneumoconiosis radiographs obtained with a common charge-coupled devices (CCD) scanner. Since the current computer-aided diagnosis systems of pneumoconiosis are not practical for medical doctors due to high costs of usage for a special scanner, we propose a novel system which measures abnormalities of pneumoconiosis from lung images obtained with a common CCD scanner. Experimental results of discriminations between normal and abnormal cases for 56 right-lung images including 6 standard pneumoconiosis images have shown that the proposed abnormalities are well extracted according to the standards of pneumoconiosis categories. (author)

  20. New low noise CCD cameras for Pi-of-the-Sky project

    Science.gov (United States)

    Kasprowicz, G.; Czyrkowski, H.; Dabrowski, R.; Dominik, W.; Mankiewicz, L.; Pozniak, K.; Romaniuk, R.; Sitek, P.; Sokolowski, M.; Sulej, R.; Uzycki, J.; Wrochna, G.

    2006-10-01

    Modern research trends require observation of fainter and fainter astronomical objects on large areas of the sky. This implies usage of systems with high temporal and optical resolution with computer based data acquisition and processing. Therefore Charge Coupled Devices (CCD) became so popular. They offer quick picture conversion with much better quality than film based technologies. This work is theoretical and practical study of the CCD based picture acquisition system. The system was optimized for "Pi of The Sky" project. But it can be adapted to another professional astronomical researches. The work includes issue of picture conversion, signal acquisition, data transfer and mechanical construction of the device.

  1. Development of online cable eccentricity detection system based on X-ray CCD

    International Nuclear Information System (INIS)

    Chen Jianzhen; Li Bin; Wei Kaixia; Guo Lanying; Qu Guopu

    2008-01-01

    An improved technology of online cable eccentricity detection, based on X-ray CCD, greatly improves the measuring precision and the responding speed. The theory of eccentricity measuring based on X-ray CCD, and the structure of an apparatus are described. The apparatus is composed of scanning drive subsystem, X-ray generation components, data acquiring subsystem and high performance computer system. The measuring results are also presented. The features of this cable eccentricity detection technology are compared with the features of other technologies. (authors)

  2. International Workshop on Semiconductor Pixel Detectors for Particles and Imaging (PIXEL2016)

    CERN Document Server

    Rossi, Leonardo; PIXEL2016

    2016-01-01

    The workshop will cover various topics related to pixel detector technology. Development and applications will be discussed for charged particle tracking in High Energy Physics, Nuclear Physics and Astrophysics, and for X-ray imaging in Astronomy, Biology, Medicine and Material Science. The conference program will also include reports on front and back end electronics, radiation effects, low mass mechanics, environmental control and construction techniques. Emerging technologies, such as monolithic and HV&HR CMOS, will also be treated. Will be published in: http://pos.sissa.it/

  3. ANALYSIS OF MULTIPATH PIXELS IN SAR IMAGES

    Directory of Open Access Journals (Sweden)

    J. W. Zhao

    2016-06-01

    Full Text Available As the received radar signal is the sum of signal contributions overlaid in one single pixel regardless of the travel path, the multipath effect should be seriously tackled as the multiple bounce returns are added to direct scatter echoes which leads to ghost scatters. Most of the existing solution towards the multipath is to recover the signal propagation path. To facilitate the signal propagation simulation process, plenty of aspects such as sensor parameters, the geometry of the objects (shape, location, orientation, mutual position between adjacent buildings and the physical parameters of the surface (roughness, correlation length, permittivitywhich determine the strength of radar signal backscattered to the SAR sensor should be given in previous. However, it's not practical to obtain the highly detailed object model in unfamiliar area by field survey as it's a laborious work and time-consuming. In this paper, SAR imaging simulation based on RaySAR is conducted at first aiming at basic understanding of multipath effects and for further comparison. Besides of the pre-imaging simulation, the product of the after-imaging, which refers to radar images is also taken into consideration. Both Cosmo-SkyMed ascending and descending SAR images of Lupu Bridge in Shanghai are used for the experiment. As a result, the reflectivity map and signal distribution map of different bounce level are simulated and validated by 3D real model. The statistic indexes such as the phase stability, mean amplitude, amplitude dispersion, coherence and mean-sigma ratio in case of layover are analyzed with combination of the RaySAR output.

  4. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    Science.gov (United States)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  5. SU-F-BRA-16: Development of a Radiation Monitoring Device Using a Low-Cost CCD Camera Following Radionuclide Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Taneja, S; Fru, L Che; Desai, V; Lentz, J; Lin, C; Scarpelli, M; Simiele, E; Trestrail, A; Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2015-06-15

    Purpose: It is now commonplace to handle treatments of hyperthyroidism using iodine-131 as an outpatient procedure due to lower costs and less stringent federal regulations. The Nuclear Regulatory Commission has currently updated release guidelines for these procedures, but there is still a large uncertainty in the dose to the public. Current guidelines to minimize dose to the public require patients to remain isolated after treatment. The purpose of this study was to use a low-cost common device, such as a cell phone, to estimate exposure emitted from a patient to the general public. Methods: Measurements were performed using an Apple iPhone 3GS and a Cs-137 irradiator. The charge-coupled device (CCD) camera on the phone was irradiated to exposure rates ranging from 0.1 mR/hr to 100 mR/hr and 30-sec videos were taken during irradiation with the camera lens covered by electrical tape. Interactions were detected as white pixels on a black background in each video. Both single threshold (ST) and colony counting (CC) methods were performed using MATLAB®. Calibration curves were determined by comparing the total pixel intensity output from each method to the known exposure rate. Results: The calibration curve showed a linear relationship above 5 mR/hr for both analysis techniques. The number of events counted per unit exposure rate within the linear region was 19.5 ± 0.7 events/mR and 8.9 ± 0.4 events/mR for the ST and CC methods respectively. Conclusion: Two algorithms were developed and show a linear relationship between photons detected by a CCD camera and low exposure rates, in the range of 5 mR/hr to 100-mR/hr. Future work aims to refine this model by investigating the dose-rate and energy dependencies of the camera response. This algorithm allows for quantitative monitoring of exposure from patients treated with iodine-131 using a simple device outside of the hospital.

  6. Iodine Satellite

    Science.gov (United States)

    Kamhawi, Hani; Dankanich, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Iodine Satellite (iSat) spacecraft will be the first CubeSat to demonstrate high change in velocity from a primary propulsion system by using Hall thruster technology and iodine as a propellant. The mission will demonstrate CubeSat maneuverability, including plane change, altitude change and change in its closest approach to Earth to ensure atmospheric reentry in less than 90 days. The mission is planned for launch in fall 2017. Hall thruster technology is a type of electric propulsion. Electric propulsion uses electricity, typically from solar panels, to accelerate the propellant. Electric propulsion can accelerate propellant to 10 times higher velocities than traditional chemical propulsion systems, which significantly increases fuel efficiency. To enable the success of the propulsion subsystem, iSat will also demonstrate power management and thermal control capabilities well beyond the current state-of-the-art for spacecraft of its size. This technology is a viable primary propulsion system that can be used on small satellites ranging from about 22 pounds (10 kilograms) to more than 1,000 pounds (450 kilograms). iSat's fuel efficiency is ten times greater and its propulsion per volume is 100 times greater than current cold-gas systems and three times better than the same system operating on xenon. iSat's iodine propulsion system consists of a 200 watt (W) Hall thruster, a cathode, a tank to store solid iodine, a power processing unit (PPU) and the feed system to supply the iodine. This propulsion system is based on a 200 W Hall thruster developed by Busek Co. Inc., which was previously flown using xenon as the propellant. Several improvements have been made to the original system to include a compact PPU, targeting greater than 80 percent reduction in mass and volume of conventional PPU designs. The cathode technology is planned to enable heaterless cathode conditioning, significantly increasing total system efficiency. The feed system has been designed to

  7. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    International Nuclear Information System (INIS)

    Giubilato, P.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, L.; Ikemoto, Y.; Kloukinas, K.; Mansuy, S.C.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.

    2013-01-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV 55 Fe double peak at room temperature. To achieve high granularity (10–20 µm pitch pixels) over large detector areas maintaining high readout speed, a completely new compressing architecture has been devised. This architecture departs from the mainstream hybrid pixel sparsification approach, which uses in-pixel logic to reduce data, by using topological compression to minimize pixel area and power consumption

  8. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    International Nuclear Information System (INIS)

    Rubinskiy, Igor

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013–2014). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing Pixel Detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase in the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the Pixel Detector. An overview of the sensor technologies' qualification with particular emphasis on irradiation and beam tests is presented. -- Highlights: ► The ATLAS inner tracker will be extended with a so called Insertable B-Layer (IBL). ► The IBL modules are required to withstand irradiation up to 5×10 15 n eq /cm 2 . ► Two types of silicon pixel detector technologies (Planar and 3D) were tested in beam. ► The irradiated sensor efficiency exceeds 97% both with and without magnetic field. ► The leakage current, power dissipation, module active area ratio requirements are met.

  9. Diamond and silicon pixel detectors in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Jieh-Wen

    2012-10-15

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10{sup 16} particles per cm{sup 2}, which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10{sup 15} particles per cm{sup 2}.

  10. 32 x 16 CMOS smart pixel array for optical interconnects

    Science.gov (United States)

    Kim, Jongwoo; Guilfoyle, Peter S.; Stone, Richard V.; Hessenbruch, John M.; Choquette, Kent D.; Kiamilev, Fouad E.

    2000-05-01

    Free space optical interconnects can increase throughput capacities and eliminate much of the energy consumption required for `all electronic' systems. High speed optical interconnects can be achieved by integrating optoelectronic devices with conventional electronics. Smart pixel arrays have been developed which use optical interconnects. An individual smart pixel cell is composed of a vertical cavity surface emitting laser (VCSEL), a photodetector, an optical receiver, a laser driver, and digital logic circuitry. Oxide-confined VCSELs are being developed to operate at 850 nm with a threshold current of approximately 1 mA. Multiple quantum well photodetectors are being fabricated from AlGaAs for use with the 850 nm VCSELs. The VCSELs and photodetectors are being integrated with complementary metal oxide semiconductor (CMOS) circuitry using flip-chip bonding. CMOS circuitry is being integrated with a 32 X 16 smart pixel array. The 512 smart pixels are serially linked. Thus, an entire data stream may be clocked through the chip and output electrically by the last pixel. Electrical testing is being performed on the CMOS smart pixel array. Using an on-chip pseudo random number generator, a digital data sequence was cycled through the chip verifying operation of the digital circuitry. Although, the prototype chip was fabricated in 1.2 micrometers technology, simulations have demonstrated that the array can operate at 1 Gb/s per pixel using 0.5 micrometers technology.

  11. Diamond and silicon pixel detectors in high radiation environments

    International Nuclear Information System (INIS)

    Tsung, Jieh-Wen

    2012-10-01

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10 16 particles per cm 2 , which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10 15 particles per cm 2 .

  12. E-Beam Effects on CMOS Active Pixel Sensors

    International Nuclear Information System (INIS)

    Kang, Dong Ook; Jo, Gyu Seong; Kim, Hyeon Daek; Kim, Hyunk Taek; Kim, Jong Yeol; Kim, Chan Kyu

    2011-01-01

    Three different CMOS active pixel structures manufactured in a deep submicron process have been evaluated with electron beam. The devices were exposed to 1 MeV electron beam up to 5kGy. Dark current increased after E-beam irradiation differently at each pixel structure. Dark current change is dependent on CMOS pixel structures. CMOS image sensors are now good candidates in demanding applications such as medical image sensor, particle detection and space remote sensing. In these situations, CISs are exposed to high doses of radiation. In fact radiation is known to generate trapped charge in CMOS oxides. It can lead to threshold voltage shifts and current leakages in MOSFETs and dark current increase in photodiodes. We studied ionizing effects in three types of CMOS APSs fabricated by 0.25 CMOS process. The devices were irradiated by a Co 60 source up to 50kGy. All irradiation took place at room temperature. The dark current in the three different pixels exhibits increase with electron beam exposure. From the above figure, the change of dark current is dependent on the pixel structure. Double junction structure has shown relatively small increase of dark current after electron beam irradiation. The dark current in the three different pixels exhibits increase with electron beam exposure. The contribution of the total ionizing dose to the dark current increase is small here, since the devices were left unbiased during the electron beam irradiation. Radiation hardness in dependent on the pixel structures. Pixel2 is relatively vulnerable to radiation exposure. Pixel3 has radiation hardened structure

  13. Opinion rating of comparison photographs of television pictures from CCD cameras under irradiation

    International Nuclear Information System (INIS)

    Reading, V.M.; Dumbreck, A.A.

    1991-01-01

    As part of the development of a general method of testing the effects of gamma radiation on CCD television cameras, this is a report of an experimental study on the optimisation of still photographic representation of video pictures recorded before and during camera irradiation. (author)

  14. Charge loss experiments in surface channel CCD's explained by the McWhorter interface states model

    NARCIS (Netherlands)

    Penning De Vries, R.G.M.; Wallinga, Hans

    1985-01-01

    On the basis of the McWhorter interface states model the CCD charge loss is derived as a function of bias charge, signal charge and channel width. As opposed to existing models, the charge loss is now attributed to interface states in the entire gate area, even for high bias charge levels.

  15. Numerical simulations and analyses of temperature control loop heat pipe for space CCD camera

    Science.gov (United States)

    Meng, Qingliang; Yang, Tao; Li, Chunlin

    2016-10-01

    As one of the key units of space CCD camera, the temperature range and stability of CCD components affect the image's indexes. Reasonable thermal design and robust thermal control devices are needed. One kind of temperature control loop heat pipe (TCLHP) is designed, which highly meets the thermal control requirements of CCD components. In order to study the dynamic behaviors of heat and mass transfer of TCLHP, particularly in the orbital flight case, a transient numerical model is developed by using the well-established empirical correlations for flow models within three dimensional thermal modeling. The temperature control principle and details of mathematical model are presented. The model is used to study operating state, flow and heat characteristics based upon the analyses of variations of temperature, pressure and quality under different operating modes and external heat flux variations. The results indicate that TCLHP can satisfy the thermal control requirements of CCD components well, and always ensure good temperature stability and uniformity. By comparison between flight data and simulated results, it is found that the model is to be accurate to within 1°C. The model can be better used for predicting and understanding the transient performance of TCLHP.

  16. Development of Multiple-Element Flame Emission Spectrometer Using CCD Detection

    Science.gov (United States)

    Seney, Caryn S.; Sinclair, Karen V.; Bright, Robin M.; Momoh, Paul O.; Bozeman, Amelia D.

    2005-01-01

    The full wavelength coverage of charge coupled device (CCD) detector when coupled with an echelle spectrography, the system allows for simultaneously multiple element spectroscopy to be performed. The multiple-element flame spectrometer was built and characterized through the analysis of environmentally significant elements such as Ca, K, Na, Cu,…

  17. Development of a Portable 3CCD Camera System for Multispectral Imaging of Biological Samples

    Science.gov (United States)

    Lee, Hoyoung; Park, Soo Hyun; Noh, Sang Ha; Lim, Jongguk; Kim, Moon S.

    2014-01-01

    Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to accommodate three interference filters that can be easily changed for application-specific multispectral waveband selection in the 400 to 1000 nm region. We also designed and integrated electronic components on printed circuit boards with firmware programming, enabling parallel processing, synchronization, and independent control of the three CCD sensors, to ensure the transfer of data without significant delay or data loss due to buffering. The system can stream 30 frames (3-waveband images in each frame) per second. The potential utility of the 3CCD camera system was demonstrated in the laboratory for detecting defect spots on apples. PMID:25350510

  18. MiCPhot: A prime-focus multicolor CCD photometer on the 85-cm Telescope

    International Nuclear Information System (INIS)

    Zhou Aiying; Jiang Xiaojun; Wei Jianyan; Zhang Yanping

    2009-01-01

    We describe a new BV RI multicolor CCD photometric system situated at the prime focus of the 85-cm telescope at the Xinglong Station of NAOC. Atmospheric extinction effects, photometric accuracy and color calibration dependence of the system are investigated. Additional attention was paid to giving observers guidance in estimating throughput, detection limit, signal-to-noise ratio and exposure time. (invited reviews)

  19. CCD linear image sensor ILX511 arrangment for a technical spectrometer

    Czech Academy of Sciences Publication Activity Database

    Bartoněk, L.; Keprt, Jiří; Vlček, Martin

    2003-01-01

    Roč. 33, 2-3 (2003), s. 548-553 ISSN 0078-5466 Institutional research plan: CEZ:AV0Z1010921 Keywords : CCD linear sensor ILX511 * enhanced parallel port (EPP able IEEE1284) * A/D converter AD9280 Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.221, year: 2003

  20. A New CCD Camera at the Molėtai Observatory

    Directory of Open Access Journals (Sweden)

    Zdanavičius J.

    2003-12-01

    Full Text Available The results of the first testing of a new CCD camera of the Molėtai Observatory are given. The linearity and the flat field corrections of good accuracy are determined by using shifted star field exposures.

  1. Two Herbig-Haro objects discovered by narrow-band CCD imagery

    International Nuclear Information System (INIS)

    Ogura, Katsuo

    1990-01-01

    Two new Herbig-Haro objects, HH 132 and HH 133, have been discovered by CCD imagery behind interference filters on and just off the forbidden S II lines in the red. They are located in Puppis R2 and in Vela R2. Possible locations of their exciting sources are discussed. 12 refs

  2. LHC-rate beam test of CMS pixel barrel modules

    International Nuclear Information System (INIS)

    Erdmann, W.; Hoermann, Ch.; Kotlinski, D.; Horisberger, R.; Kaestli, H. Chr.; Gabathuler, K.; Bertl, W.; Meier, B.; Langenegger, U.; Trueeb, P.; Rohe, T.

    2007-01-01

    Modules for the CMS pixel barrel detector have been operated in a high rate pion beam at PSI in order to verify under LHC-like conditions the final module design for the production. The test beam provided charged particle rates up to 10 8 cm -2 s -1 over the full module area. Bunch structure and randomized high trigger rates simulated realistic operation. A four layer telescope made of single pixel readout chip assemblies provided tracking needed for the determination of the modules hit reconstruction efficiency. The performance of the modules has been shown to be adequate for the CMS pixel barrel

  3. Construction and Tests of Modules for the ATLAS Pixel Detector

    CERN Document Server

    AUTHOR|(CDS)2068490

    2003-01-01

    The ATLAS Pixel Detector is the innermost layer of the ATLAS tracking system and will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the pixel detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability, all combined with a low material budget. The pre-production phase of such pixel modules has nearly finished, yielding fully functional modules. Results are presented of tests with these modules.

  4. Vertically integrated pixel readout chip for high energy physics

    International Nuclear Information System (INIS)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Khalid, Farah; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom

    2011-01-01

    We report on the development of the vertex detector pixel readout chips based on multi-tier vertically integrated electronics for the International Linear Collider. Some testing results of the VIP2a prototype are presented. The chip is the second iteration of the silicon implementation of the prototype, data-pushed concept of the readout developed at Fermilab. The device was fabricated in the 3D MIT-LL 0.15 (micro)m fully depleted SOI process. The prototype is a three-tier design, featuring 30 x 30 (micro)m 2 pixels, laid out in an array of 48 x 48 pixels.

  5. Pixel Detectors for Particle Physics and Imaging Applications

    CERN Document Server

    Wermes, N

    2003-01-01

    Semiconductor pixel detectors offer features for the detection of radiation which are interesting for particle physics detectors as well as for imaging e.g. in biomedical applications (radiography, autoradiography, protein crystallography) or in Xray astronomy. At the present time hybrid pixel detectors are technologically mastered to a large extent and large scale particle detectors are being built. Although the physical requirements are often quite different, imaging applications are emerging and interesting prototype results are available. Monolithic detectors, however, offer interesting features for both fields in future applications. The state of development of hybrid and monolithic pixel detectors, excluding CCDs, and their different suitability for particle detection and imaging, is reviewed.

  6. Design and Performance of the CMS Pixel Detector Readout Chip

    CERN Document Server

    Kästli, H C; Erdmann, W; Hörmann, C; Horisberger, R P; Kotlinski, D; Meier, B; Hoermann, Ch.

    2006-01-01

    The readout chip for the CMS pixel detector has to deal with an enormous data rate. On-chip zero suppression is inevitable and hit data must be buffered locally during the latency of the first level trigger. Dead-time must be kept at a minimum. It is dominated by contributions coming from the readout. To keep it low an analog readout scheme has been adopted where pixel addresses are analog coded. We present the architecture of the final CMS pixel detector readout chip with special emphasis on the analog readout chain. Measurements of its performance are discussed.

  7. Pixelated camouflage patterns from the perspective of hyperspectral imaging

    Science.gov (United States)

    Racek, František; Jobánek, Adam; Baláž, Teodor; Krejčí, Jaroslav

    2016-10-01

    Pixelated camouflage patterns fulfill the role of both principles the matching and the disrupting that are exploited for blending the target into the background. It means that pixelated pattern should respect natural background in spectral and spatial characteristics embodied in micro and macro patterns. The HS imaging plays the similar, however the reverse role in the field of reconnaissance systems. The HS camera fundamentally records and extracts both the spectral and spatial information belonging to the recorded scenery. Therefore, the article deals with problems of hyperspectral (HS) imaging and subsequent processing of HS images of pixelated camouflage patterns which are among others characterized by their specific spatial frequency heterogeneity.

  8. SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato.

    NARCIS (Netherlands)

    Vogel, J.T.; Walter, M.H.; Giavalisco, P.; Lytovchenko, A.; Kohlen, W.; Charnikhova, T.; Simkin, A.J.; Goulet, C.; Strack, D.; Bouwmeester, H.J.; Fernie, A.R.; Klee, H.J.

    2010-01-01

    The regulation of shoot branching is an essential determinant of plant architecture, integrating multiple external and internal signals. One of the signaling pathways regulating branching involves the MAX (more axillary branches) genes. Two of the genes within this pathway, MAX3/CCD7 and MAX4/CCD8,

  9. 77 FR 42713 - Notice of Proposed Information Collection RequestsNPEFS 2011-2014: Common Core of Data (CCD...

    Science.gov (United States)

    2012-07-20

    ... Core of Data (CCD) National Public Education Financial Survey AGENCY: Institute of Education Sciences, Department of Education. SUMMARY: The National Public Education Financial Survey (NPEFS) is an annual... of Data (CCD) National Public Education Financial Survey. OMB Control Number: 1850-0067. [[Page 42714...

  10. The neuron net method for processing the clear pixels and method of the analytical formulas for processing the cloudy pixels of POLDER instrument images

    Science.gov (United States)

    Melnikova, I.; Mukai, S.; Vasilyev, A.

    Data of remote measurements of reflected radiance with the POLDER instrument on board of ADEOS satellite are used for retrieval of the optical thickness, single scattering albedo and phase function parameter of cloudy and clear atmosphere. The method of perceptron neural network that from input values of multiangle radiance and Solar incident angle allows to obtain surface albedo, the optical thickness, single scattering albedo and phase function parameter in case of clear sky. Two last parameters are determined as optical average for atmospheric column. The calculation of solar radiance with using the MODTRAN-3 code with taking into account multiple scattering is accomplished for neural network learning. All mentioned parameters were randomly varied on the base of statistical models of possible measured parameters variation. Results of processing one frame of remote observation that consists from 150,000 pixels are presented. The methodology elaborated allows operative determining optical characteristics as cloudy as clear atmosphere. Further interpretation of these results gives the possibility to extract the information about total contents of atmospheric aerosols and absorbing gases in the atmosphere and create models of the real cloudiness An analytical method of interpretation that based on asymptotic formulas of multiple scattering theory is applied to remote observations of reflected radiance in case of cloudy pixel. Details of the methodology and error analysis were published and discussed earlier. Here we present results of data processing of pixel size 6x6 km In many studies the optical thickness is evaluated earlier in the assumption of the conservative scattering. But in case of true absorption in clouds the large errors in parameter obtained are possible. The simultaneous retrieval of two parameters at every wavelength independently is the advantage comparing with earlier studies. The analytical methodology is based on the transfer theory asymptotic

  11. Asteroid Satellites

    Science.gov (United States)

    Merline, W. J.

    2001-11-01

    Discovery and study of small satellites of asteroids or double asteroids can yield valuable information about the intrinsic properties of asteroids themselves and about their history and evolution. Determination of the orbits of these moons can provide precise masses of the primaries, and hence reliable estimates of the fundamental property of bulk density. This reveals much about the composition and structure of the primary and will allow us to make comparisons between, for example, asteroid taxonomic type and our inventory of meteorites. The nature and prevalence of these systems will also give clues as to the collisional environment in which they formed, and have further implications for the role of collisions in shaping our solar system. A decade ago, binary asteroids were more of a theoretical curiosity. In 1993, the Galileo spacecraft allowed the first undeniable detection of an asteroid moon, with the discovery of Dactyl, a small moon of Ida. Since that time, and particularly in the last year, the number of known binaries has risen dramatically. Previously odd-shaped and lobate near-Earth asteroids, observed by radar, have given way to signatures indicating, almost certainly, that at least four NEAs are binary systems. The tell-tale lightcurves of several other NEAs reveal a high likelihood of being double. Indications are that among the NEAs, there may be a binary frequency of several tens of percent. Among the main-belt asteroids, we now know of 6 confirmed binary systems, although their overall frequency is likely to be low, perhaps a few percent. The detections have largely come about because of significant advances in adaptive optics systems on large telescopes, which can now reduce the blurring of the Earth's atmosphere to compete with the spatial resolution of space-based imaging (which itself, via HST, is now contributing valuable observations). Most of these binary systems have similarities, but there are important exceptions. Searches among other

  12. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  13. Design principles and applications of a cooled CCD camera for electron microscopy.

    Science.gov (United States)

    Faruqi, A R

    1998-01-01

    Cooled CCD cameras offer a number of advantages in recording electron microscope images with CCDs rather than film which include: immediate availability of the image in a digital format suitable for further computer processing, high dynamic range, excellent linearity and a high detective quantum efficiency for recording electrons. In one important respect however, film has superior properties: the spatial resolution of CCD detectors tested so far (in terms of point spread function or modulation transfer function) are inferior to film and a great deal of our effort has been spent in designing detectors with improved spatial resolution. Various instrumental contributions to spatial resolution have been analysed and in this paper we discuss the contribution of the phosphor-fibre optics system in this measurement. We have evaluated the performance of a number of detector components and parameters, e.g. different phosphors (and a scintillator), optical coupling with lens or fibre optics with various demagnification factors, to improve the detector performance. The camera described in this paper, which is based on this analysis, uses a tapered fibre optics coupling between the phosphor and the CCD and is installed on a Philips CM12 electron microscope equipped to perform cryo-microscopy. The main use of the camera so far has been in recording electron diffraction patterns from two dimensional crystals of bacteriorhodopsin--from wild type and from different trapped states during the photocycle. As one example of the type of data obtained with the CCD camera a two dimensional Fourier projection map from the trapped O-state is also included. With faster computers, it will soon be possible to undertake this type of work on an on-line basis. Also, with improvements in detector size and resolution, CCD detectors, already ideal for diffraction, will be able to compete with film in the recording of high resolution images.

  14. Important considerations for radiochromic film dosimetry with flatbed CCD scanners and EBT GAFCHROMIC[reg] film

    International Nuclear Information System (INIS)

    Lynch, Bart D.; Kozelka, Jakub; Ranade, Manisha K.; Li, Jonathan G.; Simon, William E.; Dempsey, James F.

    2006-01-01

    In this study, we present three significant artifacts that have the potential to negatively impact the accuracy and precision of film dosimetry measurements made using GAFCHROMIC[reg] EBT radiochromic film when read out with CCD flatbed scanners. Films were scanned using three commonly employed instruments: a Macbeth TD932 spot densitometer, an Epson Expression 1680 CCD array scanner, and a Microtek ScanMaker i900 CCD array scanner. For the two scanners we assessed the variation in optical density (OD) of GAFCHROMIC EBT film with scanning bed position, angular rotation of the film with respect to the scan line direction, and temperature inside the scanner due to repeated scanning. Scanning uniform radiochromic films demonstrated a distinct bowing effect in profiles in the direction of the CCD array with a nonuniformity of up to 17%. Profiles along a direction orthogonal to the CCD array demonstrated a 7% variation. A strong angular dependence was found in measurements made with the flatbed scanners; the effect could not be reproduced with the spot densitometer. An IMRT quality assurance film was scanned twice rotating the film 90 deg. between the scans. For films scanned on the Epson scanner, up to 12% variation was observed in unirradiated EBT films rotated between 0 deg. and 90 deg. , which decreased to approximately 8% for EBT films irradiated to 300 cGy. Variations of up to 80% were observed for films scanned with the Microtek scanner. The scanners were found to significantly increase the film temperature with repeated scanning. Film temperature between 18 and 33 deg. C caused OD changes of approximately 7%. Considering these effects, we recommend adherence to a strict scanning protocol that includes: maintaining the orientation of films scanned on flatbed scanners, limiting scanning to the central portion of the scanner bed, and limiting the number of consecutive scans to minimize changes in OD caused by film heating

  15. Initial Measurements on Pixel Detector Modules for the ATLAS Upgrades

    CERN Document Server

    Gallrapp, C; The ATLAS collaboration

    2011-01-01

    Delicate conditions in terms of peak and integrated luminosity in the Large Hadron Collider (LHC) will raise the ATLAS Pixel Detector to its performance limits. Silicon planar, silicon 3D and diamond pixel sensors are three possible sensor technologies which could be implemented in the upcoming Pixel Detector upgrades of the ATLAS experiment. Measurements of the IV-behavior and measurements with radioactive Americium-241 and Strontium-90 are used to characterize the sensor properties and to understand the interaction between the ATLAS FE-I4 front-end chip and the sensor. Comparisons of results from before and after irradiation for silicon planar and 3D pixel sensors, which give a first impression on the charge collection properties of the different sensor technologies, are presented.

  16. Planar sensors for the upgrade of the CMS pixel detector

    International Nuclear Information System (INIS)

    Rohe, T.; Bean, A.; Radicci, V.; Sibille, J.

    2011-01-01

    A replacement of the present CMS pixel detector with a better performing light weight four-layer system is foreseen in 2016. In the lifetime of this new system the LHC will reach and exceed its nominal luminosity of 10 34 cm -2 s -1 . Therefore the radiation hardness of all parts of the pixel system has to be reviewed. For the construction of the much larger four-layer pixel system, the replacement of the present double sided sensors by much cheaper single sided ones is considered. However, the construction of pixel modules with such sensors is challenging due to the small geometrical distance of the sensor high voltage and the ground of the readout electronics. This small distance limits the sensor bias to about 500 V in the tested samples.

  17. Small Pixel Hybrid CMOS X-ray Detectors

    Science.gov (United States)

    Hull, Samuel; Bray, Evan; Burrows, David N.; Chattopadhyay, Tanmoy; Falcone, Abraham; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    Concepts for future space-based X-ray observatories call for a large effective area and high angular resolution instrument to enable precision X-ray astronomy at high redshift and low luminosity. Hybrid CMOS detectors are well suited for such high throughput instruments, and the Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors, has recently developed new small pixel hybrid CMOS X-ray detectors. These prototype 128x128 pixel devices have 12.5 micron pixel pitch, 200 micron fully depleted depth, and include crosstalk eliminating CTIA amplifiers and in-pixel correlated double sampling (CDS) capability. We report on characteristics of these new detectors, including the best read noise ever measured for an X-ray hybrid CMOS detector, 5.67 e- (RMS).

  18. Digital column readout architectures for hybrid pixel detector readout chips

    International Nuclear Information System (INIS)

    Poikela, T; Plosila, J; Westerlund, T; Buytaert, J; Campbell, M; Gaspari, M De; Llopart, X; Wyllie, K; Gromov, V; Kluit, R; Beuzekom, M van; Zappon, F; Zivkovic, V; Brezina, C; Desch, K; Fu, Y; Kruth, A

    2014-01-01

    In this paper, two digital column architectures suitable for sparse readout of data from a pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of 256 x 256 pixels with a pixel pitch of 55 μm. The first architecture has been implemented in the Timepix3 chip, and this is presented together with initial measurements. Simulation results and measured data are compared. The second architecture has been designed for Velopix, a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to radiation-induced single-event effects. Results from post-layout simulations are shown with the circuit architectures

  19. Bio-Inspired Asynchronous Pixel Event Tricolor Vision Sensor.

    Science.gov (United States)

    Lenero-Bardallo, Juan Antonio; Bryn, D H; Hafliger, Philipp

    2014-06-01

    This article investigates the potential of the first ever prototype of a vision sensor that combines tricolor stacked photo diodes with the bio-inspired asynchronous pixel event communication protocol known as Address Event Representation (AER). The stacked photo diodes are implemented in a 22 × 22 pixel array in a standard STM 90 nm CMOS process. Dynamic range is larger than 60 dB and pixels fill factor is 28%. The pixels employ either simple pulse frequency modulation (PFM) or a Time-to-First-Spike (TFS) mode. A heuristic linear combination of the chip's inherent pseudo colors serves to approximate RGB color representation. Furthermore, the sensor outputs can be processed to represent the radiation in the near infrared (NIR) band without employing external filters, and to color-encode direction of motion due to an asymmetry in the update rates of the different diode layers.

  20. A passive CMOS pixel sensor for the high luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Daas, Michael; Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Janssen, Jens; Krueger, Hans; Pohl, David-Leon; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2016-07-01

    The high luminosity upgrade for the Large Hadron Collider at CERN requires a new inner tracking detector for the ATLAS experiment. About 200 m{sup 2} of silicon detectors are needed demanding new, low cost hybridization- and sensor technologies. One promising approach is to use commercial CMOS technologies to produce the passive sensor for a hybrid pixel detector design. In this talk a fully functional prototype of a 300 μm thick, backside biased CMOS pixel sensor in 150 nm LFoundry technology is presented. The sensor is bump bonded to the ATLAS FE-I4 with AC and DC coupled pixels. Results like leakage current, noise performance, and charge collection efficiency are presented and compared to the actual ATLAS pixel sensor design.