WorldWideScience

Sample records for satellite based wireless

  1. The Emerging Trends in Satellite and Wireless Communications ...

    Indian Academy of Sciences (India)

    Table of contents. The Emerging Trends in Satellite and Wireless Communications Technologies · Satellite Communications · Communications Satellites for Global Coverage · Satellite Transponders · The Four Generations Of Commercial Communication Geo-Sat · PowerPoint Presentation · An Indian Scenario INSAT ...

  2. Wireless electricity (Power) transmission using solar based power satellite technology

    International Nuclear Information System (INIS)

    Maqsood, M; Nasir, M Nauman

    2013-01-01

    In the near future due to extensive use of energy, limited supply of resources and the pollution in environment from present resources e.g. (wood, coal, fossil fuel) etc, alternative sources of energy and new ways to generate energy which are efficient, cost effective and produce minimum losses are of great concern. Wireless electricity (Power) transmission (WET) has become a focal point as research point of view and nowadays lies at top 10 future hot burning technologies that are under research these days. In this paper, we present the concept of transmitting power wirelessly to reduce transmission and distribution losses. The wired distribution losses are 70 – 75% efficient. We cannot imagine the world without electric power which is efficient, cost effective and produce minimum losses is of great concern. This paper tells us the benefits of using WET technology specially by using Solar based Power satellites (SBPS) and also focuses that how we make electric system cost effective, optimized and well organized. Moreover, attempts are made to highlight future issues so as to index some emerging solutions.

  3. Energy-Efficient Optimal Power Allocation in Integrated Wireless Sensor and Cognitive Satellite Terrestrial Networks.

    Science.gov (United States)

    Shi, Shengchao; Li, Guangxia; An, Kang; Gao, Bin; Zheng, Gan

    2017-09-04

    This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach's method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint.

  4. WIRELESS TECHNOLOGIES for LOCATION-BASED SERVICES

    Directory of Open Access Journals (Sweden)

    Dewi Wirastuti

    2012-06-01

    Full Text Available This paper presents an overview of wireless technologies that support location-based services (LBS. Satellite and cellular networks have exploited their communication infrastructure to offer LBS. The rapid deployment of mobile broadband wireless networks has offered another appealing application area. Key to the realisation of LBS is an efficient and accurate positioning technique with various methods and offering different performance levels. So far, Global Positioning System (GPS has offered the best accuracy at a low cost but it is challenged by poor indoor coverage. With the rapid deployment of broadband wireless access ubiquitously, Mobile WiMAX (Worldwide Interoperability for Microwave Access is seen as a potential positioning option for LBS. Some key features of WiMAX, i.e., broadband benefit, high speed and large coverage area; it will be exploited to provide LBS.

  5. A Space Based Solar Power Satellite System

    Science.gov (United States)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    (SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one

  6. Design of on-board Bluetooth wireless network system based on fault-tolerant technology

    Science.gov (United States)

    You, Zheng; Zhang, Xiangqi; Yu, Shijie; Tian, Hexiang

    2007-11-01

    In this paper, the Bluetooth wireless data transmission technology is applied in on-board computer system, to realize wireless data transmission between peripherals of the micro-satellite integrating electronic system, and in view of the high demand of reliability of a micro-satellite, a design of Bluetooth wireless network based on fault-tolerant technology is introduced. The reliability of two fault-tolerant systems is estimated firstly using Markov model, then the structural design of this fault-tolerant system is introduced; several protocols are established to make the system operate correctly, some related problems are listed and analyzed, with emphasis on Fault Auto-diagnosis System, Active-standby switch design and Data-Integrity process.

  7. Modeling and Performance Analysis of 10 Gbps Inter-satellite Optical Wireless Communication Link

    Science.gov (United States)

    Singh, Mehtab

    2017-12-01

    Free-space optical (FSO) communication has the advantages of two of the most predominant data transmission technologies - optical fiber communication and wireless communication. Most of the technical aspects of FSO are similar to that of optical fiber communication, with major difference in the information signal propagation medium which is free space in case of FSO rather than silica glass in optical fiber communication. One of the most important applications of FSO is inter-satellite optical wireless communication (IsOWC) links which will be deployed in the future in space. The IsOWC links have many advantages over the previously existing microwave satellite communication technologies such as higher bandwidth, lower power consumption, low cost of implementation, light size, and weight. In this paper, modeling and performance analysis of a 10-Gbps inter-satellite communication link with two satellites separated at a distance of 1,200 km has been done using OPTISYSTEM simulation software. Performance has been analyzed on the basis of quality factor, signal to noise ratio (SNR), and total power of the received signal.

  8. A Hybrid TDMA/CSMA-Based Wireless Sensor and Data Transmission Network for ORS Intra-Microsatellite Applications.

    Science.gov (United States)

    Wang, Long; Liu, Yong; Yin, Zengshan

    2018-05-12

    To achieve launch-on-demand for Operationally Responsive Space (ORS) missions, in this article, an intra-satellite wireless network (ISWN) is presented. It provides a wireless and modularized scheme for intra-spacecraft sensing and data buses. By removing the wired data bus, the commercial off-the-shelf (COTS) based wireless modular architecture will reduce both the volume and weight of the satellite platform, thus achieving rapid design and cost savings in development and launching. Based on the on-orbit data demand analysis, a hybrid time division multiple access/carrier sense multiple access (TDMA/CSMA) protocol is proposed. It includes an improved clear channel assessment (CCA) mechanism and a traffic adaptive slot allocation method. To analyze the access process, a Markov model is constructed. Then a detailed calculation is given in which the unsaturated cases are considered. Through simulations, the proposed protocol is proved to commendably satisfy the demands and performs better than existing schemes. It helps to build a full-wireless satellite instead of the current wired ones, and will contribute to provide dynamic space capabilities for ORS missions.

  9. Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios

    Science.gov (United States)

    Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming

    2015-01-01

    This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN. PMID:26593919

  10. Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios.

    Science.gov (United States)

    Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming

    2015-11-17

    This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN.

  11. Challenge Study: A Project-Based Learning on a Wireless Communication System at Technical High School

    Science.gov (United States)

    Terasawa, Ikuo

    2016-01-01

    The challenge study is a project based learning curriculum at Technical High School aimed at the construction of a wireless communication system. The first period was engineering issues in the construction of an artificial satellite and the second period was a positional locating system based on the general purpose wire-less device--ZigBee device.…

  12. NASA Lunar Base Wireless System Propagation Analysis

    Science.gov (United States)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  13. Wireless mesh networks.

    Science.gov (United States)

    Wang, Xinheng

    2008-01-01

    Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.

  14. End-to-end network models encompassing terrestrial, wireless, and satellite components

    Science.gov (United States)

    Boyarko, Chandler L.; Britton, John S.; Flores, Phil E.; Lambert, Charles B.; Pendzick, John M.; Ryan, Christopher M.; Shankman, Gordon L.; Williams, Ramon P.

    2004-08-01

    Development of network models that reflect true end-to-end architectures such as the Transformational Communications Architecture need to encompass terrestrial, wireless and satellite component to truly represent all of the complexities in a world wide communications network. Use of best-in-class tools including OPNET, Satellite Tool Kit (STK), Popkin System Architect and their well known XML-friendly definitions, such as OPNET Modeler's Data Type Description (DTD), or socket-based data transfer modules, such as STK/Connect, enable the sharing of data between applications for more rapid development of end-to-end system architectures and a more complete system design. By sharing the results of and integrating best-in-class tools we are able to (1) promote sharing of data, (2) enhance the fidelity of our results and (3) allow network and application performance to be viewed in the context of the entire enterprise and its processes.

  15. Telescope Array Control System Based on Wireless Touch Screen Platform

    Science.gov (United States)

    Fu, Xia-nan; Huang, Lei; Wei, Jian-yan

    2017-10-01

    Ground-based Wide Angle Cameras (GMAC) are the ground-based observational facility for the SVOM (Space Variable Object Monitor) astronomical satellite of Sino-French cooperation, and Mini-GWAC is the pathfinder and supplement of GWAC. In the context of the Mini-GWAC telescope array, this paper introduces the design and implementation of a kind of telescope array control system based on the wireless touch screen platform. We describe the development and implementation of the system in detail in terms of control system principle, system hardware structure, software design, experiment, and test etc. The system uses a touch-control PC which is based on the Windows CE system as the upper computer, while the wireless transceiver module and PLC (Programmable Logic Controller) are taken as the system kernel. It has the advantages of low cost, reliable data transmission, and simple operation. And the control system has been applied to the Mini-GWAC successfully.

  16. Resilient Disaster Network Based on Software Defined Cognitive Wireless Network Technology

    Directory of Open Access Journals (Sweden)

    Goshi Sato

    2015-01-01

    Full Text Available In order to temporally recover the information network infrastructure in disaster areas from the Great East Japan Earthquake in 2011, various wireless network technologies such as satellite IP network, 3G, and Wi-Fi were effectively used. However, since those wireless networks are individually introduced and installed but not totally integrated, some of networks were congested due to the sudden network traffic generation and unbalanced traffic distribution, and eventually the total network could not effectively function. In this paper, we propose a disaster resilient network which integrates various wireless networks into a cognitive wireless network that users can use as an access network to the Internet at the serious disaster occurrence. We designed and developed the disaster resilient network based on software defined network (SDN technology to automatically select the best network link and route among the possible access networks to the Internet by periodically monitoring their network states and evaluate those using extended AHP method. In order to verify the usefulness of our proposed system, a prototype system is constructed and its performance is evaluated.

  17. Spread Spectrum Techniques and their Applications to Wireless Communications

    DEFF Research Database (Denmark)

    Prasad, Ramjee; Cianca, E.

    2005-01-01

    Spread Spectrum (SS) radio communications is on the verge of potentially explosive commercial development An SS-based multiple access, such as CDMA, has been chosen for 3G wireless communications. Other current applications of SS techniues are in Wireless LANs and Satellite Navigation Systems...

  18. Research of the key technology in satellite communication networks

    Science.gov (United States)

    Zeng, Yuan

    2018-02-01

    According to the prediction, in the next 10 years the wireless data traffic will be increased by 500-1000 times. Not only the wireless data traffic will be increased exponentially, and the demand for diversified traffic will be increased. Higher requirements for future mobile wireless communication system had brought huge market space for satellite communication system. At the same time, the space information networks had been greatly developed with the depth of human exploration of space activities, the development of space application, the expansion of military and civilian application. The core of spatial information networks is the satellite communication. The dissertation presented the communication system architecture, the communication protocol, the routing strategy, switch scheduling algorithm and the handoff strategy based on the satellite communication system. We built the simulation platform of the LEO satellites networks and simulated the key technology using OPNET.

  19. A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks.

    Science.gov (United States)

    Cui, Xuerong; Li, Juan; Wu, Chunlei; Liu, Jian-Hang

    2015-11-13

    Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS) are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU) vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR) environments.

  20. A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks

    Directory of Open Access Journals (Sweden)

    Xuerong Cui

    2015-11-01

    Full Text Available Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR environments.

  1. Bluetooth-based wireless sensor networks

    Science.gov (United States)

    You, Ke; Liu, Rui Qiang

    2007-11-01

    In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.

  2. Radio propagation and adaptive antennas for wireless communication networks

    CERN Document Server

    Blaunstein, Nathan

    2014-01-01

    Explores novel wireless networks beyond 3G, and advanced 4G technologies, such as MIMO, via propagation phenomena and the fundamentals of adapted antenna usage.Explains how adaptive antennas can improve GoS and QoS for any wireless channel, with specific examples and applications in land, aircraft and satellite communications.Introduces new stochastic approach based on several multi-parametric models describing various terrestrial scenarios, which have been experimentally verified in different environmental conditionsNew chapters on fundamentals of wireless networks, cellular and non-cellular,

  3. Experiment of Wireless Sensor Network to Monitor Field Data

    Directory of Open Access Journals (Sweden)

    Kwang Sik Kim

    2009-08-01

    Full Text Available Recently the mobile wireless network has been drastically enhanced and one of the most efficient ways to realize the ubiquitous network will be to develop the converged network by integrating the mobile wireless network with other IP fixed network like NGN (Next Generation Network. So in this paper the term of the wireless ubiquitous network is used to describe this approach. In this paper, first, the wireless ubiquitous network architecture is described based on IMS which has been standardized by 3GPP (3rd Generation Partnership Program. Next, the field data collection system to match the satellite data using location information is proposed based on the concept of the wireless ubiquitous network architecture. The purpose of the proposed system is to provide more accurate analyzing method with the researchers in the remote sensing area.

  4. Detection test of wireless network signal strength and GPS positioning signal in underground pipeline

    Science.gov (United States)

    Li, Li; Zhang, Yunwei; Chen, Ling

    2018-03-01

    In order to solve the problem of selecting positioning technology for inspection robot in underground pipeline environment, the wireless network signal strength and GPS positioning signal testing are carried out in the actual underground pipeline environment. Firstly, the strength variation of the 3G wireless network signal and Wi-Fi wireless signal provided by China Telecom and China Unicom ground base stations are tested, and the attenuation law of these wireless signals along the pipeline is analyzed quantitatively and described. Then, the receiving data of the GPS satellite signal in the pipeline are tested, and the attenuation of GPS satellite signal under underground pipeline is analyzed. The testing results may be reference for other related research which need to consider positioning in pipeline.

  5. Satellite Communications

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Satellite Communications. Arthur C Clarke wrote a seminal paper in 1945 in wireless world. Use three satellites in geo-synchronous orbit to enable intercontinental communications. System could be realised in '50 to 100 years'

  6. A highly accurate wireless digital sun sensor based on profile detecting and detector multiplexing technologies

    Science.gov (United States)

    Wei, Minsong; Xing, Fei; You, Zheng

    2017-01-01

    The advancing growth of micro- and nano-satellites requires miniaturized sun sensors which could be conveniently applied in the attitude determination subsystem. In this work, a profile detecting technology based high accurate wireless digital sun sensor was proposed, which could transform a two-dimensional image into two-linear profile output so that it can realize a high update rate under a very low power consumption. A multiple spots recovery approach with an asymmetric mask pattern design principle was introduced to fit the multiplexing image detector method for accuracy improvement of the sun sensor within a large Field of View (FOV). A FOV determination principle based on the concept of FOV region was also proposed to facilitate both sub-FOV analysis and the whole FOV determination. A RF MCU, together with solar cells, was utilized to achieve the wireless and self-powered functionality. The prototype of the sun sensor is approximately 10 times lower in size and weight compared with the conventional digital sun sensor (DSS). Test results indicated that the accuracy of the prototype was 0.01° within a cone FOV of 100°. Such an autonomous DSS could be equipped flexibly on a micro- or nano-satellite, especially for highly accurate remote sensing applications.

  7. Computer-Based Wireless Advertising Communication System

    Directory of Open Access Journals (Sweden)

    Anwar Al-Mofleh

    2009-10-01

    Full Text Available In this paper we developed a computer based wireless advertising communication system (CBWACS that enables the user to advertise whatever he wants from his own office to the screen in front of the customer via wireless communication system. This system consists of two PIC microcontrollers, transmitter, receiver, LCD, serial cable and antenna. The main advantages of the system are: the wireless structure and the system is less susceptible to noise and other interferences because it uses digital communication techniques.

  8. Design and Evaluation of 10-Gbps Inter-satellite Optical Wireless Communication Link for Improved Performance

    Science.gov (United States)

    Gupta, Amit; Nagpal, Shaina

    2017-05-01

    Inter-satellite optical wireless communication (IsOWC) systems can be chosen over existing microwave satellite systems for deploying in space in the future due to their high bandwidth, small size, light weight, low power and low cost. However, the IsOWC system suffers from various attenuations due to weather conditions, turbulence or scintillations which limit its performance and decreases its availability. So, in order to improve the performance, IsOWC system using directly modulated laser source is proposed in this work. The system is designed and evaluated to be suitable for high data rate transmissions up to 10 Gbps. The performance of the system is investigated in order to reduce the cost and complexity of link and improving the quality of information signal. Further the proposed IsOWC system is analysed using BER analyser, power meter and oscilloscope Visualizer.

  9. Tradeoff Analysis for Combat Service Support Wireless Communications Alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Burnette, John R.; Thibodeau, Christopher C.; Greitzer, Frank L.

    2002-02-28

    As the Army moves toward more mobile and agile forces and continued sustainment of numerous high-cost legacy logistics management systems, the requirement for wireless connectivity and a wireless network to supporting organizations has become ever more critical. There are currently several Army communications initiatives underway to resolve this wireless connectivity issue. However, to fully appreciate and understand the value of these initiatives, a Tradeoff Analysis is needed. The present study seeks to identify and assess solutions. The analysis identified issues that impede Interim Brigade Combat Team (IBCT) communication system integration and outlined core requirements for sharing of logistics data between the field and Army battle command systems. Then, the analysis examined wireless communication alternatives as possible solutions for IBCT logistics communications problems. The current baseline system was compared with possible alternatives involving tactical radio systems, wireless/near term digital radio, cellular satellite, and third-generation (3G) wireless technologies. Cellular satellite and 3G wireless technologies offer clear advantages and should be considered for later IBCTs.

  10. OWLS as platform technology in OPTOS satellite

    Science.gov (United States)

    Rivas Abalo, J.; Martínez Oter, J.; Arruego Rodríguez, I.; Martín-Ortega Rico, A.; de Mingo Martín, J. R.; Jiménez Martín, J. J.; Martín Vodopivec, B.; Rodríguez Bustabad, S.; Guerrero Padrón, H.

    2017-12-01

    The aim of this work is to show the Optical Wireless Link to intraSpacecraft Communications (OWLS) technology as a platform technology for space missions, and more specifically its use within the On-Board Communication system of OPTOS satellite. OWLS technology was proposed by Instituto Nacional de Técnica Aeroespacial (INTA) at the end of the 1990s and developed along 10 years through a number of ground demonstrations, technological developments and in-orbit experiments. Its main benefits are: mass reduction, flexibility, and simplification of the Assembly, Integration and Tests phases. The final step was to go from an experimental technology to a platform one. This step was carried out in the OPTOS satellite, which makes use of optical wireless links in a distributed network based on an OLWS implementation of the CAN bus. OPTOS is the first fully wireless satellite. It is based on the triple configuration (3U) of the popular Cubesat standard, and was completely built at INTA. It was conceived to procure a fast development, low cost, and yet reliable platform to the Spanish scientific community, acting as a test bed for space born science and technology. OPTOS presents a distributed OBDH architecture in which all satellite's subsystems and payloads incorporate a small Distributed On-Board Computer (OBC) Terminal (DOT). All DOTs (7 in total) communicate between them by means of the OWLS-CAN that enables full data sharing capabilities. This collaboration allows them to perform all tasks that would normally be carried out by a centralized On-Board Computer.

  11. Energy and bandwidth-efficient wireless transmission

    CERN Document Server

    Gao, Wei

    2017-01-01

    This book introduces key modulation and predistortion techniques for approaching energy and spectrum-efficient transmission for wireless communication systems. The book presents a combination of theoretical principles, practical implementations, and actual tests. It focuses on spectrum-efficient modulation and energy-efficient transmission techniques in the portable wireless communication systems, and introduces currently developed and designed RF transceivers in the latest wireless markets. Most materials, design examples, and design strategies used are based on the author’s two decades of work in the digital communication fields, especially in the areas of the digital modulations, demodulations, digital signal processing, and linearization of power amplifiers. The applications of these practical products and equipment cover the satellite communications on earth station systems, microwave communication systems, 2G GSM and 3G WCDMA mobile communication systems, and 802.11 WLAN systems.

  12. Automated mode shape estimation in agent-based wireless sensor networks

    Science.gov (United States)

    Zimmerman, Andrew T.; Lynch, Jerome P.

    2010-04-01

    Recent advances in wireless sensing technology have made it possible to deploy dense networks of sensing transducers within large structural systems. Because these networks leverage the embedded computing power and agent-based abilities integral to many wireless sensing devices, it is possible to analyze sensor data autonomously and in-network. In this study, market-based techniques are used to autonomously estimate mode shapes within a network of agent-based wireless sensors. Specifically, recent work in both decentralized Frequency Domain Decomposition and market-based resource allocation is leveraged to create a mode shape estimation algorithm derived from free-market principles. This algorithm allows an agent-based wireless sensor network to autonomously shift emphasis between improving mode shape accuracy and limiting the consumption of certain scarce network resources: processing time, storage capacity, and power consumption. The developed algorithm is validated by successfully estimating mode shapes using a network of wireless sensor prototypes deployed on the mezzanine balcony of Hill Auditorium, located on the University of Michigan campus.

  13. A Nodes Deployment Algorithm in Wireless Sensor Network Based on Distribution

    Directory of Open Access Journals (Sweden)

    Song Yuli

    2014-07-01

    Full Text Available Wireless sensor network coverage is a basic problem of wireless sensor network. In this paper, we propose a wireless sensor network node deployment algorithm base on distribution in order to form an efficient wireless sensor network. The iteratively greedy algorithm is used in this paper to choose priority nodes into active until the entire network is covered by wireless sensor nodes, the whole network to multiply connected. The simulation results show that the distributed wireless sensor network node deployment algorithm can form a multiply connected wireless sensor network.

  14. Wireless vibration-based SHM of caisson-type breakwater under foundation damage

    Science.gov (United States)

    Lee, So-Young; Nguyen, Khac-Duy; Kim, Jeong-Tae; Yi, Jin-Hak

    2012-04-01

    This paper presents a vibration-based structural health monitoring (SHM) technique using a high sensitive wireless sensor node for caisson-type breakwater. To achieve the objective, the following approaches are implemented. Firstly, vibration-based SHM method is selected for caisson-type breakwater. The feasibility of the vibration-based SHM method is examined for the caisson structure by FE analysis. Foundation loss damage is considered as the damage of caisson-type breakwater. Secondly, a wireless SHM system with a high sensitive wireless sensor node is designed. The sensor node is built on an imote2 platform. The vibration-based SHM method is embedded on the sensor node. Finally, the performance of the wireless SHM technique is estimated from experimental tests on a lab-scaled caisson. The vibration responses and damage monitoring results are compared with the proposed wireless system and conventional wired system.

  15. Satellite Communications Using Commercial Protocols

    Science.gov (United States)

    Ivancic, William D.; Griner, James H.; Dimond, Robert; Frantz, Brian D.; Kachmar, Brian; Shell, Dan

    2000-01-01

    NASA Glenn Research Center has been working with industry, academia, and other government agencies in assessing commercial communications protocols for satellite and space-based applications. In addition, NASA Glenn has been developing and advocating new satellite-friendly modifications to existing communications protocol standards. This paper summarizes recent research into the applicability of various commercial standard protocols for use over satellite and space- based communications networks as well as expectations for future protocol development. It serves as a reference point from which the detailed work can be readily accessed. Areas that will be addressed include asynchronous-transfer-mode quality of service; completed and ongoing work of the Internet Engineering Task Force; data-link-layer protocol development for unidirectional link routing; and protocols for aeronautical applications, including mobile Internet protocol routing for wireless/mobile hosts and the aeronautical telecommunications network protocol.

  16. The field portable gamma-ray spectrometer based on wireless communication

    International Nuclear Information System (INIS)

    Wang Guangxi; Lai Wanchang; Ge Liangquan; Li Dan; Yu Xinhua; Gu Shuiliang

    2009-01-01

    It introduces a potable multi-channel γ spectrometry based on wireless communication. The author discussed the existed inconvenience in field measurement, designed the separate structure of host and detector, developed the digital γ spectrometry detector and the application software based on PDA, and completed the short-haul wireless communication between detector and host based on bluetooth technology. The entire current of the detector is less than 180 mA through test, the distance of wireless transmission can be up to 10 meters, and the speed and functions of processing spectrum are further enhanced. (authors)

  17. Physical parameters collection based on wireless senor network

    Science.gov (United States)

    Chen, Xin; Wu, Hong; Ji, Lei

    2013-12-01

    With the development of sensor technology, wireless senor network has been applied in the medical, military, entertainment field and our daily life. But the existing available wireless senor networks applied in human monitoring system still have some problems, such as big power consumption, low security and so on. To improve senor network applied in health monitoring system, the paper introduces a star wireless senor networks based on msp430 and DSP. We design a low-cost heart-rate monitor senor node. The communication between senor node and sink node is realized according to the newest protocol proposed by the IEEE 802.15.6 Task Group. This wireless senor network will be more energy-efficient and faster compared to traditional senor networks.

  18. 78 FR 13895 - Certain Wireless Communications Base Stations and Components Thereof; Institution of...

    Science.gov (United States)

    2013-03-01

    ... the sale within the United States after importation of certain wireless communications base stations... United States after importation of certain wireless communications base stations and components thereof... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-871] Certain Wireless Communications Base...

  19. Hadoop-Based Healthcare Information System Design and Wireless Security Communication Implementation

    Directory of Open Access Journals (Sweden)

    Hongsong Chen

    2015-01-01

    Full Text Available Human health information from healthcare system can provide important diagnosis data and reference to doctors. However, continuous monitoring and security storage of human health data are challenging personal privacy and big data storage. To build secure and efficient healthcare application, Hadoop-based healthcare security communication system is proposed. In wireless biosensor network, authentication and key transfer should be lightweight. An ECC (Elliptic Curve Cryptography based lightweight digital signature and key transmission method are proposed to provide wireless secure communication in healthcare information system. Sunspot wireless sensor nodes are used to build healthcare secure communication network; wireless nodes and base station are assigned different tasks to achieve secure communication goal in healthcare information system. Mysql database is used to store Sunspot security entity table and measure entity table. Hadoop is used to backup and audit the Sunspot security entity table. Sqoop tool is used to import/export data between Mysql database and HDFS (Hadoop distributed file system. Ganglia is used to monitor and measure the performance of Hadoop cluster. Simulation results show that the Hadoop-based healthcare architecture and wireless security communication method are highly effective to build a wireless healthcare information system.

  20. Design of a search and rescue terminal based on the dual-mode satellite and CDMA network

    Science.gov (United States)

    Zhao, Junping; Zhang, Xuan; Zheng, Bing; Zhou, Yubin; Song, Hao; Song, Wei; Zhang, Meikui; Liu, Tongze; Zhou, Li

    2010-12-01

    The current goal is to create a set of portable terminals with GPS/BD2 dual-mode satellite positioning, vital signs monitoring and wireless transmission functions. The terminal depends on an ARM processor to collect and combine data related to vital signs and GPS/BD2 location information, and sends the message to headquarters through the military CDMA network. It integrates multiple functions as a whole. The satellite positioning and wireless transmission capabilities are integrated into the motherboard, and the vital signs sensors used in the form of belts communicate with the board through Bluetooth. It can be adjusted according to the headquarters' instructions. This kind of device is of great practical significance for operations during disaster relief, search and rescue of the wounded in wartime, non-war military operations and other special circumstances.

  1. Proportional fair scheduling algorithm based on traffic in satellite communication system

    Science.gov (United States)

    Pan, Cheng-Sheng; Sui, Shi-Long; Liu, Chun-ling; Shi, Yu-Xin

    2018-02-01

    In the satellite communication network system, in order to solve the problem of low system capacity and user fairness in multi-user access to satellite communication network in the downlink, combined with the characteristics of user data service, an algorithm study on throughput capacity and user fairness scheduling is proposed - Proportional Fairness Algorithm Based on Traffic(B-PF). The algorithm is improved on the basis of the proportional fairness algorithm in the wireless communication system, taking into account the user channel condition and caching traffic information. The user outgoing traffic is considered as the adjustment factor of the scheduling priority and presents the concept of traffic satisfaction. Firstly,the algorithm calculates the priority of the user according to the scheduling algorithm and dispatches the users with the highest priority. Secondly, when a scheduled user is the business satisfied user, the system dispatches the next priority user. The simulation results show that compared with the PF algorithm, B-PF can improve the system throughput, the business satisfaction and fairness.

  2. The Optimization Based Dynamic and Cyclic Working Strategies for Rechargeable Wireless Sensor Networks with Multiple Base Stations and Wireless Energy Transfer Devices

    Science.gov (United States)

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-01-01

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305

  3. The optimization based dynamic and cyclic working strategies for rechargeable wireless sensor networks with multiple base stations and wireless energy transfer devices.

    Science.gov (United States)

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-03-16

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper.

  4. Compressive sensing based wireless sensor for structural health monitoring

    Science.gov (United States)

    Bao, Yuequan; Zou, Zilong; Li, Hui

    2014-03-01

    Data loss is a common problem for monitoring systems based on wireless sensors. Reliable communication protocols, which enhance communication reliability by repetitively transmitting unreceived packets, is one approach to tackle the problem of data loss. An alternative approach allows data loss to some extent and seeks to recover the lost data from an algorithmic point of view. Compressive sensing (CS) provides such a data loss recovery technique. This technique can be embedded into smart wireless sensors and effectively increases wireless communication reliability without retransmitting the data. The basic idea of CS-based approach is that, instead of transmitting the raw signal acquired by the sensor, a transformed signal that is generated by projecting the raw signal onto a random matrix, is transmitted. Some data loss may occur during the transmission of this transformed signal. However, according to the theory of CS, the raw signal can be effectively reconstructed from the received incomplete transformed signal given that the raw signal is compressible in some basis and the data loss ratio is low. This CS-based technique is implemented into the Imote2 smart sensor platform using the foundation of Illinois Structural Health Monitoring Project (ISHMP) Service Tool-suite. To overcome the constraints of limited onboard resources of wireless sensor nodes, a method called random demodulator (RD) is employed to provide memory and power efficient construction of the random sampling matrix. Adaptation of RD sampling matrix is made to accommodate data loss in wireless transmission and meet the objectives of the data recovery. The embedded program is tested in a series of sensing and communication experiments. Examples and parametric study are presented to demonstrate the applicability of the embedded program as well as to show the efficacy of CS-based data loss recovery for real wireless SHM systems.

  5. Future of wireless communication

    Energy Technology Data Exchange (ETDEWEB)

    Barker, M

    1996-12-31

    This document reproduces slides from a conference presentation giving an overview of current and upcoming wireless communication methods of interest to Canadian electric utilities. Both voice and data communication methods are considered, including cellular telephone, satellite communications, personal communication services, regulated licensed arrowband data systems, and integrated services.

  6. IEEE 802.11-Based Wireless Sensor System for Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Yutaka Uchimura

    2010-01-01

    Full Text Available Network-based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard-based TSF-counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on synchronization accuracy and evaluated the effect by taking beacon collisions into account. The scalability issue by numerical simulations is also studied. This paper also introduces a newly developed wireless sensing system and the hardware and software specifications are introduced. The experiments were conducted in a reinforced concrete building to evaluate synchronization accuracy. The developed system was also applied for a vibration measurement of a 22-story steel structured high rise building. The experimental results showed that the system performed more than sufficiently.

  7. Global Mobile Satellite Service Interference Analysis for the AeroMACS

    Science.gov (United States)

    Wilson, Jeffrey D.; Apaza, Rafael D.; Hall, Ward; Phillips, Brent

    2013-01-01

    The AeroMACS (Aeronautical Mobile Airport Communications System), which is based on the IEEE 802.16-2009 mobile wireless standard, is envisioned as the wireless network which will cover all areas of airport surfaces for next generation air transportation. It is expected to be implemented in the 5091-5150 MHz frequency band which is also occupied by mobile satellite service uplinks. Thus the AeroMACS must be designed to avoid interference with this incumbent service. Simulations using Visualyse software were performed utilizing a global database of 6207 airports. Variations in base station and subscriber antenna distribution and gain pattern were examined. Based on these simulations, recommendations for global airport base station and subscriber antenna power transmission limitations are provided.

  8. Mitigation of the ground reflection effect in real-time locating systems based on wireless sensor networks by using artificial neural networks

    OpenAIRE

    de Paz Santana, Juan F.; Tapia Martínez, Dante I.; Alonso Rincón, Ricardo S.; Pinzón, Cristian; Bajo Pérez, Javier; Corchado Rodríguez, Juan M.

    2017-01-01

    Wireless sensor networks (WSNs) have become much more relevant in recent years, mainly because they can be used in a wide diversity of applications. Real-time locating systems (RTLSs) are one of the most promising applications based on WSNs and represent a currently growing market. Specifically, WSNs are an ideal alternative to develop RTLSs aimed at indoor environments where existing global navigation satellite systems, such as the global positioning system, do not work correctly due to the ...

  9. A Wildlife Monitoring System Based on Wireless Image Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junguo Zhang

    2014-10-01

    Full Text Available Survival and development of wildlife sustains the balance and stability of the entire ecosystem. Wildlife monitoring can provide lots of information such as wildlife species, quantity, habits, quality of life and habitat conditions, to help researchers grasp the status and dynamics of wildlife resources, and to provide basis for the effective protection, sustainable use, and scientific management of wildlife resources. Wildlife monitoring is the foundation of wildlife protection and management. Wireless Sensor Networks (WSN technology has become the most popular technology in the field of information. With advance of the CMOS image sensor technology, wireless sensor networks combined with image sensors, namely Wireless Image Sensor Networks (WISN technology, has emerged as an alternative in monitoring applications. Monitoring wildlife is one of its most promising applications. In this paper, system architecture of the wildlife monitoring system based on the wireless image sensor networks was presented to overcome the shortcomings of the traditional monitoring methods. Specifically, some key issues including design of wireless image sensor nodes and software process design have been studied and presented. A self-powered rotatable wireless infrared image sensor node based on ARM and an aggregation node designed for large amounts of data were developed. In addition, their corresponding software was designed. The proposed system is able to monitor wildlife accurately, automatically, and remotely in all-weather condition, which lays foundations for applications of wireless image sensor networks in wildlife monitoring.

  10. Chaos-based wireless communication resisting multipath effects

    Science.gov (United States)

    Yao, Jun-Liang; Li, Chen; Ren, Hai-Peng; Grebogi, Celso

    2017-09-01

    In additive white Gaussian noise channel, chaos has been shown to be the optimal coherent communication waveform in the sense of using a very simple matched filter to maximize the signal-to-noise ratio. Recently, Lyapunov exponent spectrum of the chaotic signals after being transmitted through a wireless channel has been shown to be unaltered, paving the way for wireless communication using chaos. In wireless communication systems, inter-symbol interference caused by multipath propagation is one of the main obstacles to achieve high bit transmission rate and low bit-error rate (BER). How to resist the multipath effect is a fundamental problem in a chaos-based wireless communication system (CWCS). In this paper, a CWCS is built to transmit chaotic signals generated by a hybrid dynamical system and then to filter the received signals by using the corresponding matched filter to decrease the noise effect and to detect the binary information. We find that the multipath effect can be effectively resisted by regrouping the return map of the received signal and by setting the corresponding threshold based on the available information. We show that the optimal threshold is a function of the channel parameters and of the information symbols. Practically, the channel parameters are time-variant, and the future information symbols are unavailable. In this case, a suboptimal threshold is proposed, and the BER using the suboptimal threshold is derived analytically. Simulation results show that the CWCS achieves a remarkable competitive performance even under inaccurate channel parameters.

  11. Context-Based Topology Control for Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Pragasen Mudali

    2016-01-01

    Full Text Available Topology Control has been shown to provide several benefits to wireless ad hoc and mesh networks. However these benefits have largely been demonstrated using simulation-based evaluations. In this paper, we demonstrate the negative impact that the PlainTC Topology Control prototype has on topology stability. This instability is found to be caused by the large number of transceiver power adjustments undertaken by the prototype. A context-based solution is offered to reduce the number of transceiver power adjustments undertaken without sacrificing the cumulative transceiver power savings and spatial reuse advantages gained from employing Topology Control in an infrastructure wireless mesh network. We propose the context-based PlainTC+ prototype and show that incorporating context information in the transceiver power adjustment process significantly reduces topology instability. In addition, improvements to network performance arising from the improved topology stability are also observed. Future plans to add real-time context-awareness to PlainTC+ will have the scheme being prototyped in a software-defined wireless mesh network test-bed being planned.

  12. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  13. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  14. Wireless Technology Use Case Requirement Analysis for Future Space Applications

    Science.gov (United States)

    Abedi, Ali; Wilkerson, DeLisa

    2016-01-01

    This report presents various use case scenarios for wireless technology -including radio frequency (RF), optical, and acoustic- and studies requirements and boundary conditions in each scenario. The results of this study can be used to prioritize technology evaluation and development and in the long run help in development of a roadmap for future use of wireless technology. The presented scenarios cover the following application areas: (i) Space Vehicles (manned/unmanned), (ii) Satellites and Payloads, (iii) Surface Explorations, (iv) Ground Systems, and (v) Habitats. The requirement analysis covers two parallel set of conditions. The first set includes the environmental conditions such as temperature, radiation, noise/interference, wireless channel characteristics and accessibility. The second set of requirements are dictated by the application and may include parameters such as latency, throughput (effective data rate), error tolerance, and reliability. This report provides a comprehensive overview of all requirements from both perspectives and details their effects on wireless system reliability and network design. Application area examples are based on 2015 NASA Technology roadmap with specific focus on technology areas: TA 2.4, 3.3, 5.2, 5.5, 6.4, 7.4, and 10.4 sections that might benefit from wireless technology.

  15. Microcontroller-based wireless recorder for biomedical signals.

    Science.gov (United States)

    Chien, C-N; Hsu, H-W; Jang, J-K; Rau, C-L; Jaw, F-S

    2005-01-01

    A portable multichannel system is described for the recording of biomedical signals wirelessly. Instead of using the conversional time-division analog-modulation method, the technique of digital multiplexing was applied to increase the number of signal channels to 4. Detailed design considerations and functional allocation of the system is discussed. The frontend unit was modularly designed to condition the input signal in an optimal manner. Then, the microcontroller handled the tasks of data conversion, wireless transmission, as well as providing the ability of simple preprocessing such as waveform averaging or rectification. The low-power nature of this microcontroller affords the benefit of battery operation and hence, patient isolation of the system. Finally, a single-chip receiver, which compatible with the RF transmitter of the microcontroller, was used to implement a compact interface with the host computer. An application of this portable recorder for low-back pain studies is shown. This device can simultaneously record one ECG and two surface EMG wirelessly, thus, is helpful in relieving patients' anxiety devising clinical measurement. Such an approach, microcontroller-based wireless measurement, could be an important trend for biomedical instrumentation and we help that this paper could be useful for other colleagues.

  16. Design and implementation of location-based wireless targeted advertising

    Science.gov (United States)

    Li, Benjamin; Xu, Deyin

    2001-10-01

    As advertisements are time and location sensitive, a challenge for wireless marketing is to have advertisements delivered when and where they are most convenient. In this paper we introduce a two-stage auction model for location-based wireless targeted advertising. This system extends the notion of location-based service by using location information to target advertising, and does so specifically by enabling advertisers to specify their preferences and bid for advertisement delivery, where those preferences are then used in a subsequent automated auction of actual deliveries to wireless data users. The automated auction in the second stage is especially effective because it can use information about the individual user profile data, including customer relationship management system contents as well as location from the wireless system's location management service, including potentially location history such as current trajectory from recent history and longer-term historical trip records for that user. Through two-stage auction, real-time bidding by advertisers and matching ads contents to mobile users help advertising information reach maximal value.

  17. Communication protocol in chassis detecting wireless transmission system based on WiFi

    Science.gov (United States)

    In chassis detecting wireless transmission system, the wireless network communication protocol plays a key role in the information exchange and synchronization between the host and chassis PDA. This paper presents a wireless network transmission protocol based on TCP/IP which makes the rules of info...

  18. Video-based measurements for wireless capsule endoscope tracking

    International Nuclear Information System (INIS)

    Spyrou, Evaggelos; Iakovidis, Dimitris K

    2014-01-01

    The wireless capsule endoscope is a swallowable medical device equipped with a miniature camera enabling the visual examination of the gastrointestinal (GI) tract. It wirelessly transmits thousands of images to an external video recording system, while its location and orientation are being tracked approximately by external sensor arrays. In this paper we investigate a video-based approach to tracking the capsule endoscope without requiring any external equipment. The proposed method involves extraction of speeded up robust features from video frames, registration of consecutive frames based on the random sample consensus algorithm, and estimation of the displacement and rotation of interest points within these frames. The results obtained by the application of this method on wireless capsule endoscopy videos indicate its effectiveness and improved performance over the state of the art. The findings of this research pave the way for a cost-effective localization and travel distance measurement of capsule endoscopes in the GI tract, which could contribute in the planning of more accurate surgical interventions. (paper)

  19. Video-based measurements for wireless capsule endoscope tracking

    Science.gov (United States)

    Spyrou, Evaggelos; Iakovidis, Dimitris K.

    2014-01-01

    The wireless capsule endoscope is a swallowable medical device equipped with a miniature camera enabling the visual examination of the gastrointestinal (GI) tract. It wirelessly transmits thousands of images to an external video recording system, while its location and orientation are being tracked approximately by external sensor arrays. In this paper we investigate a video-based approach to tracking the capsule endoscope without requiring any external equipment. The proposed method involves extraction of speeded up robust features from video frames, registration of consecutive frames based on the random sample consensus algorithm, and estimation of the displacement and rotation of interest points within these frames. The results obtained by the application of this method on wireless capsule endoscopy videos indicate its effectiveness and improved performance over the state of the art. The findings of this research pave the way for a cost-effective localization and travel distance measurement of capsule endoscopes in the GI tract, which could contribute in the planning of more accurate surgical interventions.

  20. Access control mechanism of wireless gateway based on open flow

    Science.gov (United States)

    Peng, Rong; Ding, Lei

    2017-08-01

    In order to realize the access control of wireless gateway and improve the access control of wireless gateway devices, an access control mechanism of SDN architecture which is based on Open vSwitch is proposed. The mechanism utilizes the features of the controller--centralized control and programmable. Controller send access control flow table based on the business logic. Open vSwitch helps achieve a specific access control strategy based on the flow table.

  1. Bidirectional fiber-wireless and fiber-VLLC transmission system based on an OEO-based BLS and a RSOA.

    Science.gov (United States)

    Lu, Hai-Han; Li, Chung-Yi; Lu, Ting-Chien; Wu, Chang-Jen; Chu, Chien-An; Shiva, Ajay; Mochii, Takao

    2016-02-01

    A bidirectional fiber-wireless and fiber-visible-laser-light-communication (VLLC) transmission system based on an optoelectronic oscillator (OEO)-based broadband light source (BLS) and a reflective semiconductor optical amplifier (RSOA) is proposed and experimentally demonstrated. Through an in-depth observation of such bidirectional fiber-wireless and fiber-VLLC transmission systems, good bit error rate performances are obtained over a 40 km single-mode fiber and a 10 m RF/optical wireless transport. Such a bidirectional fiber-wireless and fiber-VLLC transmission system is an attractive option for providing broadband integrated services.

  2. Development of Arduino based wireless control system

    Science.gov (United States)

    Sun, Zhuoxiong; Dyke, Shirley J.; Pena, Francisco; Wilbee, Alana

    2015-03-01

    Over the past few decades, considerable attention has been given to structural control systems to mitigate structural vibration under natural hazards such as earthquakes and extreme weather conditions. Traditional wired structural control systems often employ a large amount of cables for communication among sensors, controllers and actuators. In such systems, implementation of wired sensors is usually quite complicated and expensive, especially on large scale structures such as bridges and buildings. To reduce the laborious installation and maintenance cost, wireless control systems (WCSs) are considered as a novel approach for structural vibration control. In this work, a WCS is developed based on the open source Arduino platform. Low cost, low power wireless sensing and communication components are built on the Arduino platform. Structural control algorithms are embedded within the wireless sensor board for feedback control. The developed WCS is first validated through a series of tests. Next, numerical simulations are performed simulating wireless control of a 3-story shear structure equipped with a semi-active control device (MR damper). Finally, experimental studies are carried out implementing the WCS on the 3-story shear structure in the Intelligent Infrastructure Systems Lab (IISL). A hydraulic shake table is used to generate seismic ground motions. The control performance is evaluated with the impact of modeling uncertainties, measurement noises as well as time delay and data loss induced by the wireless network. The developed WCS is shown to be effective in controlling structural vibrations under several historical earthquake ground motions.

  3. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    Science.gov (United States)

    Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei

    2007-01-01

    Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  4. Algorithm for Wireless Sensor Networks Based on Grid Management

    Directory of Open Access Journals (Sweden)

    Geng Zhang

    2014-05-01

    Full Text Available This paper analyzes the key issues for wireless sensor network trust model and describes a method to build a wireless sensor network, such as the definition of trust for wireless sensor networks, computing and credibility of trust model application. And for the problem that nodes are vulnerable to attack, this paper proposed a grid-based trust algorithm by deep exploration trust model within the framework of credit management. Algorithm for node reliability screening and rotation schedule to cover parallel manner based on the implementation of the nodes within the area covered by trust. And analyze the results of the size of trust threshold has great influence on the safety and quality of coverage throughout the coverage area. The simulation tests the validity and correctness of the algorithm.

  5. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dao-Wei Bi

    2007-03-01

    Full Text Available Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  6. Satellite-Based Sunshine Duration for Europe

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-06-01

    Full Text Available In this study, two different methods were applied to derive daily and monthly sunshine duration based on high-resolution satellite products provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT Satellite Application Facility on Climate Monitoring using data from Meteosat Second Generation (MSG SEVIRI (Spinning Enhanced Visible and Infrared Imager. The satellite products were either hourly cloud type or hourly surface incoming direct radiation. The satellite sunshine duration estimates were not found to be significantly different using the native 15-minute temporal resolution of SEVIRI. The satellite-based sunshine duration products give additional spatial information over the European continent compared with equivalent in situ-based products. An evaluation of the satellite sunshine duration by product intercomparison and against station measurements was carried out to determine their accuracy. The satellite data were found to be within ±1 h/day compared to high-quality Baseline Surface Radiation Network or surface synoptic observations (SYNOP station measurements. The satellite-based products differ more over the oceans than over land, mainly because of the treatment of fractional clouds in the cloud type-based sunshine duration product. This paper presents the methods used to derive the satellite sunshine duration products and the performance of the different retrievals. The main benefits and disadvantages compared to station-based products are also discussed.

  7. Wireless implantable electronic platform for chronic fluorescent-based biosensors.

    Science.gov (United States)

    Valdastri, Pietro; Susilo, Ekawahyu; Förster, Thilo; Strohhöfer, Christof; Menciassi, Arianna; Dario, Paolo

    2011-06-01

    The development of a long-term wireless implantable biosensor based on fluorescence intensity measurement poses a number of technical challenges, ranging from biocompatibility to sensor stability over time. One of these challenges is the design of a power efficient and miniaturized electronics, enabling the biosensor to move from bench testing to long term validation, up to its final application in human beings. In this spirit, we present a wireless programmable electronic platform for implantable chronic monitoring of fluorescent-based autonomous biosensors. This system is able to achieve extremely low power operation with bidirectional telemetry, based on the IEEE802.15.4-2003 protocol, thus enabling over three-year battery lifetime and wireless networking of multiple sensors. During the performance of single fluorescent-based sensor measurements, the circuit drives a laser diode, for sensor excitation, and acquires the amplified signals from four different photodetectors. In vitro functionality was preliminarily tested for both glucose and calcium monitoring, simply by changing the analyte-binding protein of the biosensor. Electronics performance was assessed in terms of timing, power consumption, tissue exposure to electromagnetic fields, and in vivo wireless connectivity. The final goal of the presented platform is to be integrated in a complete system for blood glucose level monitoring that may be implanted for at least one year under the skin of diabetic patients. Results reported in this paper may be applied to a wide variety of biosensors based on fluorescence intensity measurement.

  8. Solar power satellite system; Uchu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S [Institute of Space and Astronautical Science, Tokyo (Japan)

    1995-09-05

    The solar power satellite system is a system that converts solar energy into electric energy in the space, transmits power to earth through wireless resort such as microwave and supplies energy of new concept. In order to realize this system it is necessary to have new technologies such as space power transmission at low cost, construction of large space buildings and wireless high power transmission. In this paper, the principles, characteristics and the necessary technology of this system were explained. Besides Japan`s SPS2000 Plan (cooperative research by universities, government agencies and private corporations on the model of solar power satellite) the group of Europe, Russia and the United States has also proposed some ideas concerning the solar power satellite system. As far as the microwave power transmission, which is the key technology for solar power satellite system, is concerned, ground demonstration tests at the level of several tens of kW are discussed in Canada and France. 3 refs., 3 figs.

  9. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor.

    Science.gov (United States)

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-02-10

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor's working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from -40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz / ℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.

  10. Communication Satellite: Nigeria's Efforts at Bridging Digital Divide ...

    African Journals Online (AJOL)

    Communication Satellite in the wireless age has the potentials of bridging the digital gulf that exists between civilized and developing nation. If well used, communication Satellite is a potent infrastructure of addressing technology convergence for holistic national development. This paper examines Nigeria's technological ...

  11. 14 CFR 141.91 - Satellite bases.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Satellite bases. 141.91 Section 141.91... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.91 Satellite bases. The holder of a... assistant chief instructor is designated for each satellite base, and that assistant chief instructor is...

  12. Analyzing the factors affecting network lifetime cluster-based wireless sensor network

    International Nuclear Information System (INIS)

    Malik, A.S.; Qureshi, A.

    2010-01-01

    Cluster-based wireless sensor networks enable the efficient utilization of the limited energy resources of the deployed sensor nodes and hence prolong the node as well as network lifetime. Low Energy Adaptive Clustering Hierarchy (Leach) is one of the most promising clustering protocol proposed for wireless sensor networks. This paper provides the energy utilization and lifetime analysis for cluster-based wireless sensor networks based upon LEACH protocol. Simulation results identify some important factors that induce unbalanced energy utilization between the sensor nodes and hence affect the network lifetime in these types of networks. These results highlight the need for a standardized, adaptive and distributed clustering technique that can increase the network lifetime by further balancing the energy utilization among sensor nodes. (author)

  13. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios.

    Science.gov (United States)

    Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao

    2015-09-03

    A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation.

  14. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios

    Science.gov (United States)

    Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao

    2015-01-01

    A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation. PMID:26404292

  15. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios

    Directory of Open Access Journals (Sweden)

    Feihong Dong

    2015-09-01

    Full Text Available A typical application scenario of remote wireless sensor networks (WSNs is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation.

  16. Location based Network Optimizations for Mobile Wireless Networks

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen

    selection in Wi-Fi networks and predictive handover optimization in heterogeneous wireless networks. The investigations in this work have indicated that location based network optimizations are beneficial compared to typical link measurement based approaches. Especially the knowledge of geographical...

  17. System of wireless base stations employing shadow prices for power load balancing

    NARCIS (Netherlands)

    2011-01-01

    In one aspect, a system is provided. In one embodiment, the system includes a plurality of wireless base stations that are located in a contiguous spatial coverage region of a cellular communication system. Each wireless base station that is configured to generate a coverage pilot beam to enable

  18. Study on frequency characteristics of wireless power transmission system based on magnetic coupling resonance

    Science.gov (United States)

    Liang, L. H.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Cui, S.

    2017-11-01

    In order to study the frequency characteristics of the wireless energy transmission system based on the magnetic coupling resonance, a circuit model based on the magnetic coupling resonant wireless energy transmission system is established. The influence of the load on the frequency characteristics of the wireless power transmission system is analysed. The circuit coupling theory is used to derive the minimum load required to suppress frequency splitting. Simulation and experimental results verify that when the load size is lower than a certain value, the system will appear frequency splitting, increasing the load size can effectively suppress the frequency splitting phenomenon. The power regulation scheme of the wireless charging system based on magnetic coupling resonance is given. This study provides a theoretical basis for load selection and power regulation of wireless power transmission systems.

  19. Knowledge-Based Multiple Access Protocol in Broadband Wireless ATM Networks

    DEFF Research Database (Denmark)

    Liu, Hong; Gliese, Ulrik Bo; Dittmann, Lars

    1999-01-01

    In this paper, we propose a knowledge-based multiple access protocol for the extension of wireline ATM to wireless networks. The objective is to enable effecient transmission of all kinds of ATM traffic in the wireless channel with guaranteed QoS.The proposed protocol utilixes knowledge of the main...... guaranteed QoS requirements to a variety of ATM applications....

  20. Cooperative Technique Based on Sensor Selection in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    ISLAM, M. R.

    2009-02-01

    Full Text Available An energy efficient cooperative technique is proposed for the IEEE 1451 based Wireless Sensor Networks. Selected numbers of Wireless Transducer Interface Modules (WTIMs are used to form a Multiple Input Single Output (MISO structure wirelessly connected with a Network Capable Application Processor (NCAP. Energy efficiency and delay of the proposed architecture are derived for different combination of cluster size and selected number of WTIMs. Optimized constellation parameters are used for evaluating derived parameters. The results show that the selected MISO structure outperforms the unselected MISO structure and it shows energy efficient performance than SISO structure after a certain distance.

  1. QoE-based transmission strategies for multi-user wireless information and power transfer

    Directory of Open Access Journals (Sweden)

    Taehun Jung

    2015-12-01

    Full Text Available One solution to the problem of supplying energy to wireless networks is wireless power transfer. One such technology–electromagnetic radiation enabled wireless power transfer–will change traditional wireless networks. In this paper, we investigate a transmission strategy for multi-user wireless information and power transfer. We consider a multi-user multiple-input multiple-output (MIMO channel that includes one base station (BS and two user terminals (UT consisting of one energy harvesting (EH receiver and one information decoding (ID receiver. Our system provides transmission strategies that can be executed and implemented in practical scenarios. The paper then analyzes the rate–energy (R–E pair of our strategies and compares them to those of the theoretical optimal strategy. We furthermore propose a QoE-based mode selection algorithm by mapping the R–E pair to the utility functions.

  2. Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications

    Science.gov (United States)

    Karaaslan, Muharrem; Bağmancı, Mehmet; Ünal, Emin; Akgol, Oguzhan; Sabah, Cumali

    2017-06-01

    We propose the design of a multiband absorber based on multi-layered square split ring (MSSR) structure. The multi-layered metamaterial structure is designed to be used in the frequency bands such as WIMAX, WLAN and satellite communication region. The absorption levels of the proposed structure are higher than 90% for all resonance frequencies. In addition, the incident angle and polarization dependence of the multi-layered metamaterial absorber and harvester is also investigated and it is observed that the structure has polarization angle independent frequency response with good absorption characteristics in the entire working frequency band. The energy harvesting ratios of the structure is investigated especially for the resonance frequencies at which the maximum absorption occurs. The energy harvesting potential of the proposed MSSRs is as good as those of the structures given in the literature. Therefore, the suggested design having good absorption, polarization and angle independent characteristics with a wide bandwidth is a potential candidate for future energy harvesting applications in commonly used wireless communication bands, namely WIMAX, WLAN and satellite communication bands.

  3. Research on an estimation method of DOA for wireless location based on TD-SCDMA

    Science.gov (United States)

    Zhang, Yi; Luo, Yuan; Cheng, Shi-xin

    2004-03-01

    To meet the urgent need of personal communication and hign-speed data services,the standardization and products development for International Mobile Telecommunication-2000 (IMT-2000) have become a hot point in wordwide. The wireless location for mobile terminals has been an important research project. Unlike GPS which is located by 24 artificial satellities, it is based on the base-station of wireless cell network, and the research and development of it are correlative with IMT-2000. While the standard for the third generation mobile telecommunication (3G)-TD-SCDMA, which is proposed by China and the intellective property right of which is possessed by Chinese, is adopted by ITU-T at the first time, the research for wireless location based on TD-SCDMA has theoretic meaning, applied value and marketable foreground. First,the basic principle and method for wireless location, i.e. Direction of Angle(DOA), Time of Arrival(TOA) or Time Difference of Arrival(TDOA), hybridized location(TOA/DOA,TDOA/DOA,TDOA/DOA),etc. is introduced in the paper. So the research of DOA is very important in wireless location. Next, Main estimation methods of DOA for wireless location, i.e. ESPRIT, MUSIC, WSF, Min-norm, etc. are researched in the paper. In the end, the performances of DOA estimation for wireless location based on mobile telecommunication network are analyzed by the research of theory and simulation experiment and the contrast algorithms between and Cramer-Rao Bound. Its research results aren't only propitious to the choice of algorithms for wireless location, but also to the realization of new service of wireless location .

  4. Market-Based Resource Allocation in a Wirelessly Integrated Naval Engineering Plant

    Science.gov (United States)

    2009-12-01

    available wireless nodes will be developed. Using a multi-agent approach based on free market economics (termed market based control) will be explored...as battery power, data storage capacity, MPU time, wireless bandwidth, etc.) required to perform complex computational tasks are available only in a...network. One approach to this problem is to apply free-market economics to help allocate these resources. Free-market economies can be thought of as

  5. Researches on the Security of Cluster-based Communication Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yanhong Sun

    2014-08-01

    Full Text Available Along with the in-depth application of sensor networks, the security issues have gradually become the bottleneck of wireless sensor applications. To provide a solution for security scheme is a common concern not only of researchers but also of providers, integrators and users of wireless sensor networks. Based on this demand, this paper focuses on the research of strengthening the security of cluster-based wireless sensor networks. Based on the systematic analysis of the clustering protocol and its security enhancement scheme, the paper introduces the broadcast authentication scheme, and proposes an SA-LEACH network security enhancement protocol. The performance analysis and simulation experiments prove that the protocol consumes less energy with the same security requirements, and when the base station is comparatively far from the network deployment area, it is more advantageous in terms of energy consumption and t more suitable for wireless sensor networks.

  6. Intrusion detection for IP-based multimedia communications over wireless networks

    CERN Document Server

    Tang, Jin

    2013-01-01

    IP-based multimedia communications have become increasingly popular in recent years. With the increasing coverage of the IEEE 802:11™ based wireless networks, IP-based multimedia communications over wireless networks are also drawing extensive attention in both academia and industry. Due to the openness and distributed nature of the protocols involved, such as the session initiation protocol (SIP) and the IEEE 802:11™ standard, it becomes easy for malicious users in the network to achieve their own gain or disrupt the service by deviating from the normal protocol behaviors. This SpringerBrief

  7. Anti-jamming Technology in Small Satellite Communication

    Science.gov (United States)

    Jia, Zixiang

    2018-01-01

    Small satellite communication has an increasingly important position among the wireless communications due to the advantages of low cost and high technology. However, in view of the case that its relay station stays outside the earth, its uplink may face interference from malicious signal frequently. Here this paper classified enumerates existing interferences, and proposes channel signals as main interference by comparison. Based on a basic digital communication process, then this paper discusses the possible anti - jamming techniques that commonly be realized at all stages in diverse processes, and comes to the conclusion that regarding the spread spectrum technology and antenna anti-jamming technology as fundamental direction of future development. This work provides possible thought for the design of new small satellite communication system with the coexistence of multi - technologies. This basic popular science can be consulted for people interested in small satellite communication.

  8. Comparison of Broadband Wireless Access Technology for HAPS Communication

    Directory of Open Access Journals (Sweden)

    Mingxiang GUAN

    2014-03-01

    Full Text Available An information system formed by HAP (High Altitude Platform will be a new generation-system for the wireless communications and HAPS (HAP Station communication system combines the advantages of both terrestrial and satellite communication systems and avoids, to different extents, their disadvantages. Third generation (3G mobile technology which is specified by the third generation partnership project (3 GPP is definitely one of the candidates. With the success of wireless network, the IEEE 802.16 standard, with its wireless metropolitan area network (MAN air interface appears to be a strong competitor. We provide initial practical comparison of these two technologies for HAPS Communication.

  9. Analyzing energy consumption of wireless networks. A model-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Haidi

    2013-03-04

    During the last decades, wireless networking has been continuously a hot topic both in academy and in industry. Many different wireless networks have been introduced like wireless local area networks, wireless personal networks, wireless ad hoc networks, and wireless sensor networks. If these networks want to have a long term usability, the power consumed by the wireless devices in each of these networks needs to be managed efficiently. Hence, a lot of effort has been carried out for the analysis and improvement of energy efficiency, either for a specific network layer (protocol), or new cross-layer designs. In this thesis, we apply model-based approach for the analysis of energy consumption of different wireless protocols. The protocols under consideration are: one leader election protocol, one routing protocol, and two medium access control protocols. By model-based approach we mean that all these four protocols are formalized as some formal models, more precisely, as discrete-time Markov chains (DTMCs), Markov decision processes (MDPs), or stochastic timed automata (STA). For the first two models, DTMCs and MDPs, we model them in PRISM, a prominent model checker for probabilistic model checking, and apply model checking technique to analyze them. Model checking belongs to the family of formal methods. It discovers exhaustively all possible (reachable) states of the models, and checks whether these models meet a given specification. Specifications are system properties that we want to study, usually expressed by some logics, for instance, probabilistic computer tree logic (PCTL). However, while model checking relies on rigorous mathematical foundations and automatically explores the entire state space of a model, its applicability is also limited by the so-called state space explosion problem -- even systems of moderate size often yield models with an exponentially larger state space that thwart their analysis. Hence for the STA models in this thesis, since there

  10. Developing a Framework for E-Manufacturing Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Xu Xi

    2013-06-01

    Full Text Available This paper analyzes the current situation of business environment and business intelligence systems integration at first. With emerging applications of internet and wireless communication technologies, e-manufacturing is focused on the use of internet, monitoring and communications technologies to make things happen collaboratively on a global basis. A wireless sensor network based data acquisition system gives enormous benefits such as ease and flexibility of deployment in addition to low maintenance and deployment costs. This paper reviews wireless sensor network and its application for e-manufacturing. To provide a dependable, non-intrusive, secure, real-time automated health monitoring, a distributed reconfigurable sensor network is introduced which consists of real and virtual sensor nodes over a communication wireless sensor network using Mica2 motes.

  11. Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks.

    Science.gov (United States)

    Arunraja, Muruganantham; Malathi, Veluchamy; Sakthivel, Erulappan

    2015-11-01

    Wireless sensor networks are engaged in various data gathering applications. The major bottleneck in wireless data gathering systems is the finite energy of sensor nodes. By conserving the on board energy, the life span of wireless sensor network can be well extended. Data communication being the dominant energy consuming activity of wireless sensor network, data reduction can serve better in conserving the nodal energy. Spatial and temporal correlation among the sensor data is exploited to reduce the data communications. Data similar cluster formation is an effective way to exploit spatial correlation among the neighboring sensors. By sending only a subset of data and estimate the rest using this subset is the contemporary way of exploiting temporal correlation. In Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks, we construct data similar iso-clusters with minimal communication overhead. The intra-cluster communication is reduced using adaptive-normalized least mean squares based dual prediction framework. The cluster head reduces the inter-cluster data payload using a lossless compressive forwarding technique. The proposed work achieves significant data reduction in both the intra-cluster and the inter-cluster communications, with the optimal data accuracy of collected data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Network flexibility of the IRIDIUM (R) Global Mobile Satellite System

    Science.gov (United States)

    Hutcheson, Jonathan; Laurin, Mala

    1995-01-01

    The IRIDIUM system is a global personal communications system supported by a constellation of 66 low earth orbit (LEO) satellites and a collection of earth-based 'gateway' switching installations. Like traditional wireless cellular systems, coverage is achieved by a grid of cells in which bandwidth is reused for spectral efficiency. Unlike any cellular system ever built, the moving cells can be shared by multiple switching facilities. Noteworthy features of the IRIDIUM system include inter-satellite links, a GSM-based telephony architecture, and a geographically controlled system access process. These features, working in concert, permit flexible and reliable administration of the worldwide service area by gateway operators. This paper will explore this unique concept.

  13. 78 FR 6344 - Certain Wireless Communications Base Stations and Components Thereof Notice of Receipt of...

    Science.gov (United States)

    2013-01-30

    ... INTERNATIONAL TRADE COMMISSION Certain Wireless Communications Base Stations and Components.... International Trade Commission has received a complaint entitled Certain Wireless Communications Base Stations... communications base stations and components thereof. The complaint names as respondents Telefonaktiebolaget LM...

  14. A mobile-agent-based wireless sensing network for structural monitoring applications

    International Nuclear Information System (INIS)

    Taylor, Stuart G; Farinholt, Kevin M; Figueiredo, Eloi; Moro, Erik A; Park, Gyuhae; Farrar, Charles R; Flynn, Eric B; Mascarenas, David L; Todd, Michael D

    2009-01-01

    A new wireless sensing network paradigm is presented for structural monitoring applications. In this approach, both power and data interrogation commands are conveyed via a mobile agent that is sent to sensor nodes to perform intended interrogations, which can alleviate several limitations of the traditional sensing networks. Furthermore, the mobile agent provides computational power to make near real-time assessments on the structural conditions. This paper will discuss such prototype systems, which are used to interrogate impedance-based sensors for structural health monitoring applications. Our wireless sensor node is specifically designed to accept various energy sources, including wireless energy transmission, and to be wirelessly triggered on an as-needed basis by the mobile agent or other sensor nodes. The capabilities of this proposed sensing network paradigm are demonstrated in the laboratory and the field

  15. A Wireless Implantable Switched-Capacitor Based Optogenetic Stimulating System

    Science.gov (United States)

    Lee, Hyung-Min; Kwon, Ki-Yong; Li, Wen

    2015-01-01

    This paper presents a power-efficient implantable optogenetic interface using a wireless switched-capacitor based stimulating (SCS) system. The SCS efficiently charges storage capacitors directly from an inductive link and periodically discharges them into an array of micro-LEDs, providing high instantaneous power without affecting wireless link and system supply voltage. A custom-designed computer interface in LabVIEW environment wirelessly controls stimulation parameters through the inductive link, and an optrode array enables simultaneous neural recording along with optical stimulation. The 4-channel SCS system prototype has been implemented in a 0.35-μm CMOS process and combined with the optrode array. In vivo experiments involving light-induced local field potentials verified the efficacy of the SCS system. An implantable version of the SCS system with flexible hermetic sealing is under development for chronic experiments. PMID:25570099

  16. Quality Evaluation in Wireless Imaging Using Feature-Based Objective Metrics

    OpenAIRE

    Engelke, Ulrich; Zepernick, Hans-Jürgen

    2007-01-01

    This paper addresses the evaluation of image quality in the context of wireless systems using feature-based objective metrics. The considered metrics comprise of a weighted combination of feature values that are used to quantify the extend by which the related artifacts are present in a processed image. In view of imaging applications in mobile radio and wireless communication systems, reduced-reference objective quality metrics are investigated for quantifying user-perceived quality. The exa...

  17. Architectural and Mobility Management Designs in Internet-Based Infrastructure Wireless Mesh Networks

    Science.gov (United States)

    Zhao, Weiyi

    2011-01-01

    Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous applications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility…

  18. Design of Zigbee-Based Wireless Sensor suitable for Radiation Detection and Monitoring

    International Nuclear Information System (INIS)

    Madian, A.A.

    2012-01-01

    This paper presents a design for a wireless sensor nuclear radiation monitoring and detection based on Zigbee. The system consists of transmitter and receiver modules. The wireless sensor installed at transmitter whiles the receiver processing data. The communication between Tx and Rx done through Zigbee module using the protocol of CSMA/CA. The Zigbee has the advantages of reliable, power-efficient, and low-latency communications between low-cost Tx/Rx.The wireless sensor implementation can easily be deployed to discover unusual or abnormal radioactivity. The sensors are convenient to be installed indoors or outdoors, as well as to be mounted on mobile equipment's. All wireless nuclear detection sensors are designed using micro controller and other integrated systems

  19. Software-Based Wireless Power Transfer Platform for Various Power Control Experiments

    Directory of Open Access Journals (Sweden)

    Sun-Han Hwang

    2015-07-01

    Full Text Available In this paper, we present the design and evaluation of a software-based wireless power transfer platform that enables the development of a prototype involving various open- and closed-loop power control functions. Our platform is based on a loosely coupled planar wireless power transfer circuit that uses a class-E power amplifier. In conjunction with this circuit, we implement flexible control functions using a National Instruments Data Acquisition (NI DAQ board and algorithms in the MATLAB/Simulink. To verify the effectiveness of our platform, we conduct two types of power-control experiments: a no-load or metal detection using open-loop power control, and an output voltage regulation for different receiver positions using closed-loop power control. The use of the MATLAB/Simulink software as a part of the planar wireless power transfer platform for power control experiments is shown to serve as a useful and inexpensive alternative to conventional hardware-based platforms.

  20. Equalization of Multiuser Wireless CDMA Downlink Considering Transmitter Nonlinearity Using Walsh Codes

    Directory of Open Access Journals (Sweden)

    Pinter Stephen Z

    2007-01-01

    Full Text Available Transmitter nonlinearity has been a major issue in many scenarios: cellular wireless systems have high power RF amplifier (HPA nonlinearity at the base station; satellite downlinks have nonlinear TWT amplifiers in the satellite transponder and multipath conditions in the ground station; and radio-over-fiber (ROF systems consist of a nonlinear optical link followed by a wireless channel. In many cases, the nonlinearity is simply ignored if there is no out-of-band emission. This results in poor BER performance. In this paper we propose a new technique to estimate the linear part of the wireless downlink in the presence of a nonlinearity using Walsh codes; Walsh codes are commonly used in CDMA downlinks. Furthermore, we show that equalizer performance is significantly improved by taking into account the presence of the nonlinearity during channel estimation. This is shown by using a regular decision feedback equalizer (DFE with both wireless and RF amplifier noise. We perform estimation in a multiuser CDMA communication system where all users transmit their signal simultaneously. Correlation analysis is applied to identify the channel impulse response (CIR and the derivation of key correlation relationships is shown. A difficulty with using Walsh codes in terms of their correlations (compared to PN sequences is then presented, as well as a discussion on how to overcome it. Numerical evaluations show a good estimation of the linear system with 54 users in the downlink and a signal-to-noise ratio (SNR of 25 dB. Bit error rate (BER simulations of the proposed identification and equalization algorithms show a BER of achieved at an SNR of dB.

  1. Technical note: real-time web-based wireless visual guidance system for radiotherapy.

    Science.gov (United States)

    Lee, Danny; Kim, Siyong; Palta, Jatinder R; Kim, Taeho

    2017-06-01

    Describe a Web-based wireless visual guidance system that mitigates issues associated with hard-wired audio-visual aided patient interactive motion management systems that are cumbersome to use in routine clinical practice. Web-based wireless visual display duplicates an existing visual display of a respiratory-motion management system for visual guidance. The visual display of the existing system is sent to legacy Web clients over a private wireless network, thereby allowing a wireless setting for real-time visual guidance. In this study, active breathing coordinator (ABC) trace was used as an input for visual display, which captured and transmitted to Web clients. Virtual reality goggles require two (left and right eye view) images for visual display. We investigated the performance of Web-based wireless visual guidance by quantifying (1) the network latency of visual displays between an ABC computer display and Web clients of a laptop, an iPad mini 2 and an iPhone 6, and (2) the frame rate of visual display on the Web clients in frames per second (fps). The network latency of visual display between the ABC computer and Web clients was about 100 ms and the frame rate was 14.0 fps (laptop), 9.2 fps (iPad mini 2) and 11.2 fps (iPhone 6). In addition, visual display for virtual reality goggles was successfully shown on the iPhone 6 with 100 ms and 11.2 fps. A high network security was maintained by utilizing the private network configuration. This study demonstrated that a Web-based wireless visual guidance can be a promising technique for clinical motion management systems, which require real-time visual display of their outputs. Based on the results of this study, our approach has the potential to reduce clutter associated with wired-systems, reduce space requirements, and extend the use of medical devices from static usage to interactive and dynamic usage in a radiotherapy treatment vault.

  2. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    Science.gov (United States)

    2012-04-16

    Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless

  3. Triple Play over Satellite, Ka-Band Making the Difference

    Science.gov (United States)

    Benoit, Guillaume; Fenech, Hector; Pezzana, Stefano

    Over the last years a number of operators have been deploying satellite-based consumer internet access services to reduce the digital divide and capture the market of households not covered by ADSL, cable or wireless broadband. These operators are proposing a step change improvement in the economics of consumer service, with lower terminal costs, broadband access with monthly fees comparable to ADSL and an integrated technology simplifying the process of terminal installation, provisioning and management.

  4. Energy Aware Cluster Based Routing Scheme For Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Roy Sohini

    2015-09-01

    Full Text Available Wireless Sensor Network (WSN has emerged as an important supplement to the modern wireless communication systems due to its wide range of applications. The recent researches are facing the various challenges of the sensor network more gracefully. However, energy efficiency has still remained a matter of concern for the researches. Meeting the countless security needs, timely data delivery and taking a quick action, efficient route selection and multi-path routing etc. can only be achieved at the cost of energy. Hierarchical routing is more useful in this regard. The proposed algorithm Energy Aware Cluster Based Routing Scheme (EACBRS aims at conserving energy with the help of hierarchical routing by calculating the optimum number of cluster heads for the network, selecting energy-efficient route to the sink and by offering congestion control. Simulation results prove that EACBRS performs better than existing hierarchical routing algorithms like Distributed Energy-Efficient Clustering (DEEC algorithm for heterogeneous wireless sensor networks and Energy Efficient Heterogeneous Clustered scheme for Wireless Sensor Network (EEHC.

  5. Characterizing SPDY over High Latency Satellite Channels

    Directory of Open Access Journals (Sweden)

    Luca Caviglione

    2014-12-01

    Full Text Available The increasing complexity ofWeb contents and the growing diffusion of mobile terminals, which use wireless and satellite links to get access to the Internet, impose the adoption of more specialized protocols. In particular, we focus on SPDY, a novel protocol introduced by Google to optimize the retrieval of complex webpages, to manage large Round Trip Times and high packet losses channels. In this perspective, the paper characterizes SPDY over high latency satellite links, especially with the goal of understanding whether it could be an efficient solution to cope with performance degradations typically affecting Web 2.0 services. To this aim, we implemented an experimental set-up, composed of an ad-hoc proxy, a wireless link emulator, and an instrumented Web browser. The results clearly indicate that SPDY can enhance the performances in terms of loading times, and reduce the traffic fragmentation. Moreover, owing to its connection multiplexing architecture, SPDY can also mitigate the transport layer complexity, which is critical when in presence of Performance Enhancing Proxies usually deployed to isolate satellite trunks.

  6. Wireless Access

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Wireless Access. Wireless connect to the Base station. Easy and Convenient access. Costlier as compared to the wired technology. Reliability challenges. We see it as a complementary technology to the DSL.

  7. A Computational Agent-Based Modeling Approach for Competitive Wireless Service Market

    KAUST Repository

    Douglas, C C

    2011-04-01

    Using an agent-based modeling method, we study market dynamism with regard to wireless cellular services that are in competition for a greater market share and profit. In the proposed model, service providers and consumers are described as agents who interact with each other and actively participate in an economically well-defined marketplace. Parameters of the model are optimized using the Levenberg-Marquardt method. The quantitative prediction capabilities of the proposed model are examined through data reproducibility using past data from the U.S. and Korean wireless service markets. Finally, we investigate a disruptive market event, namely the introduction of the iPhone into the U.S. in 2007 and the resulting changes in the modeling parameters. We predict and analyze the impacts of the introduction of the iPhone into the Korean wireless service market assuming a release date of 2Q09 based on earlier data. © 2011 IEEE.

  8. A wireless sensor network-based portable vehicle detector evaluation system.

    Science.gov (United States)

    Yoo, Seong-eun

    2013-01-17

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.

  9. Streetlight Control System Based on Wireless Communication over DALI Protocol

    Science.gov (United States)

    Bellido-Outeiriño, Francisco José; Quiles-Latorre, Francisco Javier; Moreno-Moreno, Carlos Diego; Flores-Arias, José María; Moreno-García, Isabel; Ortiz-López, Manuel

    2016-01-01

    Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed. PMID:27128923

  10. Streetlight Control System Based on Wireless Communication over DALI Protocol.

    Science.gov (United States)

    Bellido-Outeiriño, Francisco José; Quiles-Latorre, Francisco Javier; Moreno-Moreno, Carlos Diego; Flores-Arias, José María; Moreno-García, Isabel; Ortiz-López, Manuel

    2016-04-27

    Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed.

  11. Clinical experience in extended cardiac monitoring with the SEEQ™ satellite wireless system

    Directory of Open Access Journals (Sweden)

    Diego Vanegas-Cadavid

    2018-05-01

    Full Text Available Objectives: To present the clinical experience with a new extended (for 15 days, wireless, and satellite cardiac monitoring system in a group of patients with suspicion of cardiac arrhythmia. Method: The study included a cohort of 100 patients seen in the Cardiovascular Electrophysiology Unit of a reference hospital. They were suspected of having a cardiac arrhythmia, with no electrocardiographic diagnosis of the cause, despite previous examinations. They were subjected to SEEQ-type (Medtronic external cardiac monitoring for 15 days, with the outcomes recorded. Results: Of the total of 100 subjects studied, 51% were male, and the median age was 60 years (range: 5 - 91 years. The main symptoms were palpitation, and the most prevalent comorbidity was arterial hypertension (47%. Almost all (98% of them had a previous Holter study, and 46% had two studies, which were inconclusive in explaining the symptoms. The SEEQ monitoring recorded a significant electrocardiographic abnormality in 22% of the patients. A pacemaker implant was the treatment most applied and atrial fibrillation was the most frequent arrhythmia in 50% of the positive findings. There was a higher and significant percentage of positive diagnoses in males. Conclusions: External, satellite, wireless cardiac monitoring extended for 15 days, is a novel tool that can increase the probability of documenting a clinically significant electrocardiographic abnormality in those patients who suffer recurrent cardiovascular symptoms. Resumen: Objetivos: Dar a conocer la experiencia clínica con un nuevo sistema de monitorización cardiaca extendida (por 15 días, inalámbrica y satelital en un grupo de pacientes con sospecha de arritmias cardíacas. Metodología: Cohorte de 100 pacientes atendidos en la unidad de Electrofisiología cardiovascular de un centro de referencia, con sospecha de arritmia cardíaca, sin diagnóstico electrocardiográfico causal, a pesar de exámenes previos. Se les aplic

  12. Design of Wireless Point of Sale Based on ZigBee Technology

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2014-02-01

    Full Text Available With the rapid development of Point of Sale technology and modern communication technology, financial Point of Sale terminal system has been started from wired to wireless. Wireless payment technology can used where can’t rely on or even no cable network. As one of the most important technologies in the information era, Wireless Sensor Network has been widely used in banking business and other various modem business fields. This paper describes a kind of simple portable Point of Sale terminal based on the ZigBee wireless network 1, which is a low power, low cost, flexible, safe and reliable network. This Point of Sale system can be applied gas stations, liquefied petroleum gas stations and other complex sales environment, and it improves safety of gas station and personnel safety. Simple and user-friendly, this formula design and optimization method greatly improves efficiency and thus has much value for practical application.

  13. Mobility-based Time References for Wireless Sensor Networks

    CERN Document Server

    Sebastiano, Fabio; Makinwa, Kofi A A

    2013-01-01

     This book describes the use of low-power low-cost and extremely small radios to provide essential time reference for wireless sensor networks.  The authors explain how to integrate such radios in a standard CMOS process to reduce both cost and size, while focusing on the challenge of designing a fully integrated time reference for such radios. To enable the integration of the time reference, system techniques are proposed and analyzed, several kinds of integrated time references are reviewed, and mobility-based references are identified as viable candidates to provide the required accuracy at low-power consumption. Practical implementations of a mobility-based oscillator and a temperature sensor are also presented, which demonstrate the required accuracy over a wide temperature range, while drawing 51-uW from a 1.2-V supply in a 65-nm CMOS process. Provides system analysis to understand requirements for time/frequency accuracy in wireless sensor networks; Describes system optimization for time references i...

  14. Efficient Design of OFDMA-Based Programmable Wireless Radios

    Directory of Open Access Journals (Sweden)

    Shah SFA

    2008-01-01

    Full Text Available With the increasing demand for efficient spectrum management, programmable wireless radios can potentially play a key role in shaping our future spectrum use. In this paper, we consider the design of low-power programmable wireless radios based on orthogonal frequency division multiple access (OFDMA. To meet the demands of higher data rate communications, we split OFDMA symbols carrying multiuser data across several noncontiguous bands of available spectrum. To relax power consumption in analog-to-digital and digital-to-analog converters, we use a programmable narrowband RF front end comprising of programmable synthesizers and fixed low-pass filters. To perform digital baseband signal processing in an energy efficient manner, we propose efficient designs for the fast Fourier transform (FFT and inverse FFT (IFFT modules. Our designs of the FFT/IFFT modules reduce power consumption and chip area, and are capable of handling the dynamic nature of spectrum in programmable radios. To recover data that falls within the transition band of the filters, we propose a combiner similar to maximal ratio combiner. We also present the complete design of programmable wireless radios in accordance with the IEEE 802.22 (draft standard.

  15. Efficient Design of OFDMA-Based Programmable Wireless Radios

    Directory of Open Access Journals (Sweden)

    A. H. Tewfik

    2008-03-01

    Full Text Available With the increasing demand for efficient spectrum management, programmable wireless radios can potentially play a key role in shaping our future spectrum use. In this paper, we consider the design of low-power programmable wireless radios based on orthogonal frequency division multiple access (OFDMA. To meet the demands of higher data rate communications, we split OFDMA symbols carrying multiuser data across several noncontiguous bands of available spectrum. To relax power consumption in analog-to-digital and digital-to-analog converters, we use a programmable narrowband RF front end comprising of programmable synthesizers and fixed low-pass filters. To perform digital baseband signal processing in an energy efficient manner, we propose efficient designs for the fast Fourier transform (FFT and inverse FFT (IFFT modules. Our designs of the FFT/IFFT modules reduce power consumption and chip area, and are capable of handling the dynamic nature of spectrum in programmable radios. To recover data that falls within the transition band of the filters, we propose a combiner similar to maximal ratio combiner. We also present the complete design of programmable wireless radios in accordance with the IEEE 802.22 (draft standard.

  16. Satellite-Based Precipitation Datasets

    Science.gov (United States)

    Munchak, S. J.; Huffman, G. J.

    2017-12-01

    Of the possible sources of precipitation data, those based on satellites provide the greatest spatial coverage. There is a wide selection of datasets, algorithms, and versions from which to choose, which can be confusing to non-specialists wishing to use the data. The International Precipitation Working Group (IPWG) maintains tables of the major publicly available, long-term, quasi-global precipitation data sets (http://www.isac.cnr.it/ ipwg/data/datasets.html), and this talk briefly reviews the various categories. As examples, NASA provides two sets of quasi-global precipitation data sets: the older Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and current Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG). Both provide near-real-time and post-real-time products that are uniformly gridded in space and time. The TMPA products are 3-hourly 0.25°x0.25° on the latitude band 50°N-S for about 16 years, while the IMERG products are half-hourly 0.1°x0.1° on 60°N-S for over 3 years (with plans to go to 16+ years in Spring 2018). In addition to the precipitation estimates, each data set provides fields of other variables, such as the satellite sensor providing estimates and estimated random error. The discussion concludes with advice about determining suitability for use, the necessity of being clear about product names and versions, and the need for continued support for satellite- and surface-based observation.

  17. Satellite-based laser windsounder

    International Nuclear Information System (INIS)

    Schultz, J.F.; Czuchlewski, S.J.; Quick, C.R.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project''s primary objective is to determine the technical feasibility of using satellite-based laser wind sensing systems for detailed study of winds, aerosols, and particulates around and downstream of suspected proliferation facilities. Extensive interactions with the relevant operational organization resulted in enthusiastic support and useful guidance with respect to measurement requirements and priorities. Four candidate wind sensing techniques were evaluated, and the incoherent Doppler technique was selected. A small satellite concept design study was completed to identify the technical issues inherent in a proof-of-concept small satellite mission. Use of a Mach-Zehnder interferometer instead of a Fabry-Perot would significantly simplify the optical train and could reduce weight, and possibly power, requirements with no loss of performance. A breadboard Mach-Zehnder interferometer-based system has been built to verify these predictions. Detailed plans were made for resolving other issues through construction and testing of a ground-based lidar system in collaboration with the University of Wisconsin, and through numerical lidar wind data assimilation studies

  18. KALwEN+: Practical Key Management Schemes for Gossip-Based Wireless Medical Sensor Networks

    NARCIS (Netherlands)

    Gong, Zheng; Tang, Qiang; Law, Y.W.; Chen, Hongyang; Lai, X.; Yung, M.

    2010-01-01

    The constrained resources of sensors restrict the design of a key management scheme for wireless sensor networks (WSNs). In this work, we first formalize the security model of ALwEN, which is a gossip-based wireless medical sensor network (WMSN) for ambient assisted living. Our security model

  19. Battery-Free Love-Wave-Based Neural Probe and Its Wireless Characterizations

    Science.gov (United States)

    Jung, In Ki; Fu, Chen; Lee, Keekeun

    2013-06-01

    A wireless Love-wave-based neural probe that utilizes a one-port reflective delay line was developed for both reading and stimulating neurons in the brain. Poly(methyl methacrylate) (PMMA) as a waveguide layer and gold (Au) electrodes were structured on the top of a 41° YX LiNbO3 piezoelectric substrate, following the parameters extracted from coupling-of-mode (COM) modeling. For a one-port reflective delay line, single-phase unidirectional transducers (SPUDTs) and three shorted grating reflectors were employed, which made possible the implementation of a wireless and battery-free neural probe. The fabricated Love-wave-based neural probes were wirelessly measured using two antennas with a 440 MHz central frequency and a network analyzer. Sharp reflection peaks with a high signal-to-noise ratio were observed from the reflection peaks. The probe was immersed in 0.9% saline solution while applying input DC voltages. Good linearity, high sensitivity, and reproducibility were observed depending on DC applied voltage, in the range from 0 to 500 mV. The sensitivity obtained from the DC firings (artificial neural firings) was ˜0.04 µs/VDC, indicating that this prototype probe is very promising for the wireless reading and stimulation of neural firings in in vivo animal testing.

  20. Wireless Sensor Networks Data Processing Summary Based on Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Caiyun Huang

    2014-07-01

    Full Text Available As a newly proposed theory, compressive sensing (CS is commonly used in signal processing area. This paper investigates the applications of compressed sensing (CS in wireless sensor networks (WSNs. First, the development and research status of compressed sensing technology and wireless sensor networks are described, then a detailed investigation of WSNs research based on CS are conducted from aspects of data fusion, signal acquisition, signal routing transmission, and signal reconstruction. At the end of the paper, we conclude our survey and point out the possible future research directions.

  1. A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network

    Science.gov (United States)

    Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng

    2010-01-01

    A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetatables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring. PMID:22163391

  2. Optimization of Multiresonant Wireless Power Transfer Network Based on Generalized Coupled Matrix

    Directory of Open Access Journals (Sweden)

    Qiang Zhao

    2017-01-01

    Full Text Available Magnetic coupling resonant wireless power transfer network (MCRWPTN system can realize wireless power transfer for some electrical equipment real-time and high efficiency in a certain spatial scale, which resolves the contradiction between power transfer efficiency and the power transfer distance of the wireless power transfer. A fully coupled resonant energy transfer model for multirelay coils and ports is established. A dynamic adaptive impedance matching control based on fully coupling matrix and particle swarm optimization algorithm based on annealing is developed for the MCRWPTN. Furthermore, as an example, the network which has twenty nodes is analyzed, and the best transmission coefficient which has the highest power transfer efficiency is found using the optimization algorithm, and the coupling constraints are considered simultaneously. Finally, the effectiveness of the proposed method is proved by the simulation results.

  3. Application for vibration monitoring of aspheric surface machining based on wireless sensor networks

    Science.gov (United States)

    Han, Chun Guang; Guo, Yin Biao; Jiang, Chen

    2010-05-01

    Any kinds of tiny vibration of machine tool parts will have a great influence on surface quality of the workpiece at ultra-precise machining process of aspheric surface. At present the major way for decreasing influence of vibration is machining compensation technology. Therefore it is important for machining compensation control to acquire and transmit these vibration signals effectively. This paper presents a vibration monitoring system of aspheric surface machining machine tool based on wireless sensor networks (WSN). Some key issues of wireless sensor networks for vibration monitoring system of aspheric surface machining are discussed. The reliability of data transmission, network communication protocol and synchronization mechanism of wireless sensor networks are studied for the vibration monitoring system. The proposed system achieves multi-sensors vibration monitoring involving the grinding wheel, the workpiece and the workbench spindle. The wireless transmission of vibration signals is achieved by the combination with vibration sensor nodes and wireless network. In this paper, these vibration sensor nodes are developed. An experimental platform is structured which employs wireless sensor networks to the vibration monitoring system in order to test acquisition and wireless transmission of vibration signal. The test results show that the proposed system can achieve vibration data transmission effectively and reliability and meet the monitoring requirements of aspheric surface machining machine tool.

  4. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-01-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  5. Sensor Fusion-based Event Detection in Wireless Sensor Networks

    NARCIS (Netherlands)

    Bahrepour, M.; Meratnia, Nirvana; Havinga, Paul J.M.

    2009-01-01

    Recently, Wireless Sensor Networks (WSN) community has witnessed an application focus shift. Although, monitoring was the initial application of wireless sensor networks, in-network data processing and (near) real-time actuation capability have made wireless sensor networks suitable candidate for

  6. Talk is cheap: Wireless communications changing the oilpatch

    Energy Technology Data Exchange (ETDEWEB)

    Stastny, P.

    2004-03-01

    The role of cellular phones and satellite phones in the oil and natural gas industry in Canada is discussed. Cellular phones are particularly well adapted to the remote environment in which much of the industry is situated. Satellite phones are less common but they are used to fill in the gaps where cellular networks are not available. In such situations the field worker is equipped with two phones, a cellular phone and a satellite phone, each with its own number, or he carries a Globalstar phone, which combines both under operating modes using the same telephone number. The most cost-effective communication in remote areas relies on a three-watt analog booster that connects to a cell phone; a digital three-watt booster is not far down the road as the ultimate means of communication in remote environments, particularly for handling data. The digital cellular network can reach a maximum threshold of 80,000 baud (versus only 9,600 baud for analog). The demand for wireless services for wireless e-mail and Web-assisted GPS position location applications, and the sheer number of people with cellular phones are the most significant drivers of the push towards digital networks. Digital picture cell phones are also likely to find applications in troubleshooting and other areas of the oilpatch. In some areas however, satellite phones may be the only option. The low earth orbit (LEO) Globalstar is a particularly good example of satellite phone systems; it offers significant advantages in terms of voice quality, with practically limitless geographic coverage. By contrast, GEO (Geostationary Earth Orbit) systems are better suited to handling high-speed data, television transmission and other wideband applications.

  7. Streetlight Control System Based on Wireless Communication over DALI Protocol

    Directory of Open Access Journals (Sweden)

    Francisco José Bellido-Outeiriño

    2016-04-01

    Full Text Available Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed.

  8. [A wireless mobile monitoring system based on bluetooth technology].

    Science.gov (United States)

    Sun, Shou-jun; Wu, Kai; Wu, Xiao-Ming

    2006-09-01

    This paper presents a wireless mobile monitoring system based on Bluetooth technology. This system realizes the remote mobile monitoring of multiple physiological parameters, and has the characters of easy use, low cost, good reliability and strong capability of anti-jamming.

  9. Propagation Engineering in Wireless Communications

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2012-01-01

    Wireless communications has seen explosive growth in recent decades, in a realm that is both broad and rapidly expanding to include satellite services, navigational aids, remote sensing, telemetering, audio and video broadcasting, high-speed data communications, mobile radio systems and much more. Propagation Engineering in Wireless Communications deals with the basic principles of radiowaves propagation for frequency bands used in radio-communications, offering descriptions of new achievements and newly developed propagation models. The book bridges the gap between theoretical calculations and approaches, and applied procedures needed for advanced radio links design. The primary objective of this two-volume set is to demonstrate the fundamentals, and to introduce propagation phenomena and mechanisms that engineers are likely to encounter in the design and evaluation of radio links of a given type and operating frequency. Volume one covers basic principles, along with tropospheric and ionospheric propagation,...

  10. Simulative Analysis of Inter-Satellite Optical Wireless Communication (IsOWC) Link with EDFA

    Science.gov (United States)

    Singh, Mehtab; Singh, Navpreet

    2018-04-01

    In this paper, simulative analysis and performance comparison of different EDFA (Erbium-doped fiber amplifier) configurations in a 10 Gbps inter-satellite optical wireless communication (IsOWC) link have been reported for a 5,000 km long link and 1,550 nm operating wavelength. The results show that system in which both pre-amplifier and booster amplifier stages are implemented simultaneously outperforms systems with only pre-amplifier and booster amplifier stage. From the results, it can be seen that by deploying a transmission power level of 15 dBm, a link distance of 9,600 km can be achieved with a quality factor of 6.01 dB and BER (Bit error rate) of 1.07×10-9. Also, in this paper, the performance of an 8×7 Gbps WDM-IsOWC link has been reported. The results show that by using both EDFA pre-amplifier and booster amplifier stages, a link distance of 8,000 km for each channel is achievable with desired performance levels (Q≥6 and BER≤10-9). Also, the effect of channel spacing on the performance of WDM-IsOWC link is investigated. The results show that the received signal has acceptable performance levels when the channel spacing is 100 GHz but when the channel spacing is reduced to 80 GHz, the quality of the received signal degrades and link distance decreases.

  11. Java-based mobile agent platforms for wireless sensor networks

    NARCIS (Netherlands)

    Aiello, F.; Carbone, A.; Fortino, G.; Galzarano, S.; Ganzha, M.; Paprzycki, M.

    2010-01-01

    This paper proposes an overview and comparison of mobile agent platforms for the development of wireless sensor network applications. In particular, the architecture, programming model and basic performance of two Java-based agent platforms, Mobile Agent Platform for Sun SPOT (MAPS) and Agent

  12. Realization of Intelligent Household Appliance Wireless Monitoring Network Based on LEACH Protocol

    Directory of Open Access Journals (Sweden)

    Weilong ZHOU

    2014-06-01

    Full Text Available The intelligent household appliance wireless monitoring network can real-time monitor the apparent power and power factor of various household appliances in different indoor regions, and can realize the real-time monitoring on the household appliance working status and performance. The household appliance wireless monitoring network based on LEACH protocol is designed in the paper. Firstly, the basic idea of LEACH routing algorithm is proposed. Aiming at the node-distribution feature of intelligent home, the selection of cluster head in the routing algorithm and the data transmission method at the stable communication phase is modified. Moreover, the hardware circuit of power acquisition and power factor measurement is designed. The realization of wireless monitoring network based on CC2530 is described, each module and the whole system were conducted the on-line debugging. Finally, the system is proved to meet the practical requirement through the networking test.

  13. SALIENCY BASED SEGMENTATION OF SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    A. Sharma

    2015-03-01

    Full Text Available Saliency gives the way as humans see any image and saliency based segmentation can be eventually helpful in Psychovisual image interpretation. Keeping this in view few saliency models are used along with segmentation algorithm and only the salient segments from image have been extracted. The work is carried out for terrestrial images as well as for satellite images. The methodology used in this work extracts those segments from segmented image which are having higher or equal saliency value than a threshold value. Salient and non salient regions of image become foreground and background respectively and thus image gets separated. For carrying out this work a dataset of terrestrial images and Worldview 2 satellite images (sample data are used. Results show that those saliency models which works better for terrestrial images are not good enough for satellite image in terms of foreground and background separation. Foreground and background separation in terrestrial images is based on salient objects visible on the images whereas in satellite images this separation is based on salient area rather than salient objects.

  14. A decentralized receptance-based damage detection strategy for wireless smart sensors

    International Nuclear Information System (INIS)

    Jang, Shinae; Spencer Jr, Billie F; Sim, Sung-Han

    2012-01-01

    Various structural health monitoring strategies have been proposed recently that can be implemented in the decentralized computing environment intrinsic to wireless smart sensor networks (WSSN). Many are based on changes in the experimentally determined flexibility matrix for the structure under consideration. However, the flexibility matrix contains only static information; much richer information is available by considering the dynamic flexibility, or receptance, of the structure. Recently, the stochastic dynamic damage locating vector (SDDLV) method was proposed based on changes of dynamic flexibility matrices employing centrally collected output-only measurements. This paper investigates the potential of the SDDLV method for implementation on a network of wireless smart sensors, where a decentralized, hierarchical, in-network processing approach is used to address issues of scalability of the SDDLV algorithm. Two approaches to aggregate results are proposed that provide robust estimates of damage locations. The efficacy of the developed strategy is first verified using wired sensors emulating a wireless sensor network. Subsequently, the decentralized damage detection strategy is implemented on MEMSIC’s Imote2 smart sensor platform and validated experimentally on a laboratory scale truss bridge. (paper)

  15. [Research on WiFi-based wireless microscopy on a mobile phone and its application].

    Science.gov (United States)

    Hailan, Jin; Jing, Liu

    2012-11-01

    We proposed and realized a new device that acquires microscopic image wirelessly based on mobile phone and WiFi system. The mobile terminals could record, display and store the image from the far end via the wireless LAN. Using this system, a series of conceptual experiments on monitoring the microscopic images of common objects and liver cancer cells were successfully demonstrated. This system is expected to have important value in the experimental investigations on wirelessly monitoring the cell culture, and small insect etc.

  16. Highly Efficient Wireless Powering for Autonomous Structural Health Monitoring and Test/Evaluation Systems

    Science.gov (United States)

    2016-07-27

    of this work is to improve the efficiency, range, and safety (in terms of EMI/EMC and signature) of wireless powering of sensors using the recently...this work is to improve the efficiency, range, and safety (in terms of EMI/EMC and signature) of wireless powering of sensors using the recently...Force and DoD, such as, smart runways, nano-satellites, smart skins for hypersonic vehicles , autonomous portable devices, integrated circuits, and

  17. Real-time network traffic classification technique for wireless local area networks based on compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza

    2017-05-01

    Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.

  18. Energy-efficient Trust-based Aggregation in Wireless Sensor Networks

    NARCIS (Netherlands)

    Taghikhaki, Zahra; Meratnia, Nirvana; Havinga, Paul J.M.

    2011-01-01

    Wireless sensor networks (WSNs) are often deployed in unattended and noise-prone environments and suffer from energy constraints that limit the quality and quantity of data transmission. Every decision made based on the low quality and low quantity data may have drastic consequence. Therefore,

  19. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.

    Science.gov (United States)

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.

  20. Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring.

    Science.gov (United States)

    Trasviña-Moreno, Carlos A; Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Trasviña-Castro, Armando

    2017-02-24

    Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario.

  1. High Data Rate Optical Wireless Communications Based on Ultraviolet Band

    KAUST Repository

    Sun, Xiaobin

    2017-01-01

    Optical wireless communication systems based on ultraviolet (UV)-band has a lot inherent advantages, such as low background solar radiation, low device dark noise. Besides, it also has small restrictive requirements for PAT (pointing, acquisition

  2. Research on trust calculation of wireless sensor networks based on time segmentation

    Science.gov (United States)

    Su, Yaoxin; Gao, Xiufeng; Qiao, Wenxin

    2017-05-01

    Because the wireless sensor network is different from the traditional network characteristics, it is easy to accept the intrusion from the compromise node. The trust mechanism is the most effective way to defend against internal attacks. Aiming at the shortcomings of the existing trust mechanism, a method of calculating the trust of wireless sensor networks based on time segmentation is proposed. It improves the security of the network and extends the life of the network

  3. Wireless Impedance-Based SHM for Bolted Connections via Multiple PZT-Interfaces

    International Nuclear Information System (INIS)

    Nguyen, Khac Duy; Kim, Jeong Tae

    2011-01-01

    This study presents a structural health monitoring(SHM) method for bolted connections by using multi-channel wireless impedance sensor nodes and multiple PZT-interfaces. To achieve the objective, the following approaches are implemented. Firstly, a PZT-interface is designed to monitor bolt loosening in bolted connection based on variation of electro-mechanical(EM) impedance signatures. Secondly, a wireless impedance sensor node is designed for autonomous, cost-efficient and multi-channel monitoring. For the sensor platform, Imote2 is selected on the basis of its high operating speed, low power requirement and large storage memory. Finally, the performance of the wireless sensor node and the PZT-interfaces is experimentally evaluated for a bolt-connection model. Damage monitoring method using root mean square deviation(RMSD) index of EM impedance signatures is utilized to estimate the strength of the bolted joint

  4. Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications

    Science.gov (United States)

    Wagner, Raymond S.

    2010-01-01

    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Recent advances in standards-based WSN protocols for industrial control applications have come a long way to solving many of the challenges facing practical WSN deployments. In this paper, we will overview two of the more promising candidates - WirelessHART from the HART Communication Foundation and ISA100.11a from the International Society of Automation - and present the architecture for a new standards-based sensor node for networking and applications research.

  5. Didactic satellite based on Android platform for space operation demonstration and development

    Science.gov (United States)

    Ben Bahri, Omar; Besbes, Kamel

    2018-03-01

    Space technology plays a pivotal role in society development. It offers new methods for telemetry, monitoring and control. However, this sector requires training, research and skills development but the lack of instruments, materials and budgets affects the ambiguity to understand satellite technology. The objective of this paper is to describe a demonstration prototype of a smart phone device for space operations study. Therefore, the first task was carried out to give a demonstration for spatial imagery and attitude determination missions through a wireless communication. The smart phone's Bluetooth was used to achieve this goal inclusive of a new method to enable real time transmission. In addition, an algorithm around a quaternion based Kalman filter was included in order to detect the reliability of the prototype's orientation. The second task was carried out to provide a demonstration for the attitude control mission using the smart phone's orientation sensor, including a new method for an autonomous guided mode. As a result, the acquisition platform showed real time measurement with good accuracy for orientation detection and image transmission. In addition, the prototype kept the balance during the demonstration based on the attitude control method.

  6. A Priority-Based Adaptive MAC Protocol for Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Sabin Bhandari

    2016-03-01

    Full Text Available In wireless body area networks (WBANs, various sensors and actuators are placed on/inside the human body and connected wirelessly. WBANs have specific requirements for healthcare and medical applications, hence, standard protocols like the IEEE 802.15.4 cannot fulfill all the requirements. Consequently, many medium access control (MAC protocols, mostly derived from the IEEE 802.15.4 superframe structure, have been studied. Nevertheless, they do not support a differentiated quality of service (QoS for the various forms of traffic coexisting in a WBAN. In particular, a QoS-aware MAC protocol is essential for WBANs operating in the unlicensed Industrial, Scientific, and Medical (ISM bands, because different wireless services like Bluetooth, WiFi, and Zigbee may coexist there and cause severe interference. In this paper, we propose a priority-based adaptive MAC (PA-MAC protocol for WBANs in unlicensed bands, which allocates time slots dynamically, based on the traffic priority. Further, multiple channels are effectively utilized to reduce access delays in a WBAN, in the presence of coexisting systems. Our performance evaluation results show that the proposed PA-MAC outperforms the IEEE 802.15.4 MAC and the conventional priority-based MAC in terms of the average transmission time, throughput, energy consumption, and data collision ratio.

  7. A Priority-Based Adaptive MAC Protocol for Wireless Body Area Networks.

    Science.gov (United States)

    Bhandari, Sabin; Moh, Sangman

    2016-03-18

    In wireless body area networks (WBANs), various sensors and actuators are placed on/inside the human body and connected wirelessly. WBANs have specific requirements for healthcare and medical applications, hence, standard protocols like the IEEE 802.15.4 cannot fulfill all the requirements. Consequently, many medium access control (MAC) protocols, mostly derived from the IEEE 802.15.4 superframe structure, have been studied. Nevertheless, they do not support a differentiated quality of service (QoS) for the various forms of traffic coexisting in a WBAN. In particular, a QoS-aware MAC protocol is essential for WBANs operating in the unlicensed Industrial, Scientific, and Medical (ISM) bands, because different wireless services like Bluetooth, WiFi, and Zigbee may coexist there and cause severe interference. In this paper, we propose a priority-based adaptive MAC (PA-MAC) protocol for WBANs in unlicensed bands, which allocates time slots dynamically, based on the traffic priority. Further, multiple channels are effectively utilized to reduce access delays in a WBAN, in the presence of coexisting systems. Our performance evaluation results show that the proposed PA-MAC outperforms the IEEE 802.15.4 MAC and the conventional priority-based MAC in terms of the average transmission time, throughput, energy consumption, and data collision ratio.

  8. Acemind new indoor full duplex optical wireless communication prototype

    Science.gov (United States)

    Bouchet, Olivier; Perrufel, Micheline; Topsu, Suat; Guan, Hongyu

    2016-09-01

    For over a century and Mr. Guglielmo Marconi invention, systems using radio waves have controlled over wireless telecommunication solutions; from Amplitude Modulation (AM) radio products to satellite communications for instance. But beyond an increasingly negative opinion face to radio waves and radio spectrum availability more and more reduced; there is an unprecedented opportunity with LED installation in displays and lighting to provide optical wireless communication solutions. As a result, technologically mature solutions are already commercially available for services such as Location Based Services (LBS), broadcast diffusion or Intelligent Transport Services (ITS). Pending finalization of the standard review process IEEE 802.15.7 r1, our paper presents the results of the European collaborative project named "ACEMIND". It offers an indoor bilateral optical wireless communication prototype having the following characteristics: use of the existing electrical infrastructure, through judicious combination with Light Fidelity (LiFi), Power Line Communication (PLC) and Ethernet to reduce the implementation cost. We propose a bilateral optical wireless communication even when the light is switched off by using Visible Light Communication (VLC) and Infra-Red Communication (IRC) combined to a remote optical switch. Dimensionally optimized LiFi module is presented in order to offer the possibility for integration inside a laptop. Finally, there is operational mechanism implementation such as OFDM/DMT to increase throughput. After the introduction, we will present the results of a market study from Orange Labs customers about their opinion on LiFi components. Then we will detail the LiFi prototype, from the physical layer aspect to MAC layer before concluding on commercial development prospects.

  9. Wireless Hydrogen Smart Sensor Based on Pt/Graphene-Immobilized Radio-Frequency Identification Tag.

    Science.gov (United States)

    Lee, Jun Seop; Oh, Jungkyun; Jun, Jaemoon; Jang, Jyongsik

    2015-08-25

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus, appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen-gas leak detection and surveillance systems are needed; additionally, the ability to monitor large areas (e.g., cities) via wireless networks is becoming increasingly important. In this report, we introduce a radio frequency identification (RFID)-based wireless smart-sensor system, composed of a Pt-decorated reduced graphene oxide (Pt_rGO)-immobilized RFID sensor tag and an RFID-reader antenna-connected network analyzer to detect hydrogen gas. The Pt_rGOs, produced using a simple chemical reduction process, were immobilized on an antenna pattern in the sensor tag through spin coating. The resulting Pt_rGO-based RFID sensor tag exhibited a high sensitivity to hydrogen gas at unprecedentedly low concentrations (1 ppm), with wireless communication between the sensor tag and RFID-reader antenna. The wireless sensor tag demonstrated flexibility and a long lifetime due to the strong immobilization of Pt_rGOs on the substrate and battery-independent operation during hydrogen sensing, respectively.

  10. Combine harvester monitor system based on wireless sensor network

    Science.gov (United States)

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  11. Wireless Nanoionic-Based Radio Frequency Switch

    Science.gov (United States)

    Nessel, James A. (Inventor); Miranda, Felix A (Inventor)

    2017-01-01

    A nanoionic switch connected to one or more rectenna modules is disclosed. The rectenna module is configured to receive a wireless signal and apply a first bias to change a state of the nanoionic switch from a first state to a second state. The rectenna module can receive a second wireless signal and apply a second bias to change the nanoionic switch from the second state back to the first state. The first bias is generally opposite of the first bias. The rectenna module accordingly permits operation of the nanoionic switch without onboard power.

  12. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.

    Science.gov (United States)

    Taboun, Mohammed S; Brennan, Robert W

    2017-09-14

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  13. Ground test of satellite constellation based quantum communication

    OpenAIRE

    Liao, Sheng-Kai; Yong, Hai-Lin; Liu, Chang; Shentu, Guo-Liang; Li, Dong-Dong; Lin, Jin; Dai, Hui; Zhao, Shuang-Qiang; Li, Bo; Guan, Jian-Yu; Chen, Wei; Gong, Yun-Hong; Li, Yang; Lin, Ze-Hong; Pan, Ge-Sheng

    2016-01-01

    Satellite based quantum communication has been proven as a feasible way to achieve global scale quantum communication network. Very recently, a low-Earth-orbit (LEO) satellite has been launched for this purpose. However, with a single satellite, it takes an inefficient 3-day period to provide the worldwide connectivity. On the other hand, similar to how the Iridium system functions in classic communication, satellite constellation (SC) composed of many quantum satellites, could provide global...

  14. Truck-based mobile wireless sensor networks for the experimental observation of vehicle–bridge interaction

    International Nuclear Information System (INIS)

    Kim, Junhee; Lynch, Jerome P; Lee, Jong-Jae; Lee, Chang-Geun

    2011-01-01

    Heavy vehicles driving over a bridge create a complex dynamic phenomenon known as vehicle–bridge interaction. In recent years, interest in vehicle–bridge interaction has grown because a deeper understanding of the phenomena can lead to improvements in bridge design methods while enhancing the accuracy of structural health monitoring techniques. The mobility of wireless sensors can be leveraged to directly monitor the dynamic coupling between the moving vehicle and the bridge. In this study, a mobile wireless sensor network is proposed for installation on a heavy truck to capture the vertical acceleration, horizontal acceleration and gyroscopic pitching of the truck as it crosses a bridge. The vehicle-based wireless monitoring system is designed to interact with a static, permanent wireless monitoring system installed on the bridge. Specifically, the mobile wireless sensors time-synchronize with the bridge's wireless sensors before transferring the vehicle response data. Vertical acceleration and gyroscopic pitching measurements of the vehicle are combined with bridge accelerations to create a time-synchronized vehicle–bridge response dataset. In addition to observing the vehicle vibrations, Kalman filtering is adopted to accurately track the vehicle position using the measured horizontal acceleration of the vehicle and positioning information derived from piezoelectric strip sensors installed on the bridge deck as part of the bridge monitoring system. Using the Geumdang Bridge (Korea), extensive field testing of the proposed vehicle–bridge wireless monitoring system is conducted. Experimental results verify the reliability of the wireless system and the accuracy of the vehicle positioning algorithm

  15. Transitionless quantum driving based wireless power transfer

    OpenAIRE

    Paul, Koushik; Sarma, Amarendra K.

    2017-01-01

    Shortcut to adiabaticity (STA) techniques have the potential to drive a system beyond the adiabatic limits. Here, we present a robust and efficient method for wireless power transfer (WPT) between two coils based on the so-called transitionless quantum driving (TQD) algorithm. We show that it is possible to transfer power between the coils significantly fast compared to its adiabatic counterpart. The scheme is fairly robust against the variations in the coupling strength and the coupling dist...

  16. Compact printed high rejection triple band-notch UWB antenna with multiple wireless applications

    Directory of Open Access Journals (Sweden)

    Manish Sharma

    2016-09-01

    Full Text Available In this paper, small printed urn-shape triple notch ultra-wideband (UWB monopole antenna with diverse wireless applications is presented. Notch bands include WiMAX (IEEE802.16 3.30–3.80 GHz, WLAN IEEE802.11a/h/j/n (5.15–5.35 GHz, 5.25–5.35 GHz, 5.47–5.725 GHz, 5.725–5.825 GHz, and X-band downlink satellite system (7.25–7.75 GHz and other multiple wireless services as close range radar (8–12 GHz in X-band & satellite communication (12–18 GHz in Ku-band. By including T-shape stub and etching two C-shaped slots on the radiating patch, triple band-notch function is obtained with measured high band rejection (VSWR = 16.54 at 3.60 GHz, VSWR = 22.35 at 5.64 GHz and VSWR = 6.38 at 7.64 GHz and covers a wide useable fractional bandwidth of 154.56% (2.49–19.41 GHz. In short the antenna offers triple band-notch UWB systems as a compact multifunctional antenna to reduce the number of antennas installed in wireless devices for accessing multiple wireless networks with wide radiation pattern.

  17. Wireless Underwater Monitoring Systems Based on Energy Harvestings

    Directory of Open Access Journals (Sweden)

    Sea-Hee HWANGBO

    2013-01-01

    Full Text Available One of the important research fields for aquatic exploitation and conservation is underwater wireless sensor network. Since limited energy source for underwater nodes and devices is a main open problem, in this paper, we propose wireless underwater monitoring systems powered by energy harvester which resolves the energy constraint. The target system generates renewable energy from energy harvester and shares the energy with underwater sensor nodes. For the realization of the system, key components to be investigated are discriminated as follows: acoustic modem, actuator, smart battery charge controller, energy harvester and wireless power transfer module. By developing acoustic modem, actuator and smart battery charge controller and utilizing off-the-shelf energy harvester and wireless power transfer module, we design and implement a prototype of the system. Also, we verify the feasibility of concept of target system by conducting indoor and outdoor experiments.

  18. Design and realization of temperature measurement system based on optical fiber temperature sensor for wireless power transfer

    Science.gov (United States)

    Chen, Xi; Zeng, Shuang; Liu, Xiulan; Jin, Yuan; Li, Xianglong; Wang, Xiaochen

    2018-02-01

    The electric vehicles (EV) have become accepted by increasing numbers of people for the environmental-friendly advantages. A novel way to charge the electric vehicles is through wireless power transfer (WPT). The wireless power transfer is a high power transfer system. The high currents flowing through the transmitter and receiver coils increasing temperature affects the safety of person and charging equipment. As a result, temperature measurement for wireless power transfer is needed. In this paper, a temperature measurement system based on optical fiber temperature sensors for electric vehicle wireless power transfer is proposed. Initially, the thermal characteristics of the wireless power transfer system are studied and the advantages of optical fiber sensors are analyzed. Then the temperature measurement system based on optical fiber temperature sensor is designed. The system consists of optical subsystem, data acquisition subsystem and data processing subsystem. Finally, the system is tested and the experiment result shows that the system can realize 1°C precision and can acquire real-time temperature distribution of the coils, which can meet the requirement of the temperature measuring for wireless power transfer.

  19. Evaluation of coherence interference in optical wireless communication through multiscattering channels.

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-05-10

    Optical wireless communication has been the subject of much research in recent years because of the increasing interest in laser satellite-ground links and urban optical wireless communication. The major sources of performance degradation have been identified as the spatial, angular, and temporal spread of the propagating beam when the propagation channel is multiscattering, resulting in reduced power reception and intersignal interference, as well as turbulence-induced scintillations and noise due to receiver circuitry and background illumination. However, coherence effects due to multipath interference caused by a scattering propagation channel do not appear to have been treated in detail in the scientific literature. We attempt a theoretical analysis of coherence interference in optical wireless communication through scattering channels and try to quantify the resultant performance degradation for different media. We conclude that coherence interference is discernible in optical wireless communication through scattering channels and is highly dependent on the microscopic nature of the propagation medium.

  20. Dynamic Contention Window Control Scheme in IEEE 802.11e EDCA-Based Wireless LANs

    Science.gov (United States)

    Abeysekera, B. A. Hirantha Sithira; Matsuda, Takahiro; Takine, Tetsuya

    In the IEEE 802.11 MAC protocol, access points (APs) are given the same priority as wireless terminals in terms of acquiring the wireless link, even though they aggregate several downlink flows. This feature leads to a serious throughput degradation of downlink flows, compared with uplink flows. In this paper, we propose a dynamic contention window control scheme for the IEEE 802.11e EDCA-based wireless LANs, in order to achieve fairness between uplink and downlink TCP flows while guaranteeing QoS requirements for real-time traffic. The proposed scheme first determines the minimum contention window size in the best-effort access category at APs, based on the number of TCP flows. It then determines the minimum and maximum contention window sizes in higher priority access categories, such as voice and video, so as to guarantee QoS requirements for these real-time traffic. Note that the proposed scheme does not require any modification to the MAC protocol at wireless terminals. Through simulation experiments, we show the effectiveness of the proposed scheme.

  1. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    Science.gov (United States)

    Brennan, Robert W.

    2017-01-01

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452

  2. Performance Evaluation of Page Migration Scheme for NVRAM-Based Wireless Sensor Nodes

    OpenAIRE

    Ryu, Yeonseung

    2013-01-01

    A wireless sensor network consists of low-powered and multifunctional sensor nodes. Since each sensor node is operated by a battery, the energy management has become one of the critical design challenges in wireless sensor networks. Some recent studies have shown that DRAM-based main memory spends a significant portion of the total system power. In this paper, we studied a buffer management scheme for hybrid main memory that combines low-power nonvolatile RAM (NVRAM) and DRAM in order to redu...

  3. Multicasting in Wireless Communications (Ad-Hoc Networks): Comparison against a Tree-Based Approach

    Science.gov (United States)

    Rizos, G. E.; Vasiliadis, D. C.

    2007-12-01

    We examine on-demand multicasting in ad hoc networks. The Core Assisted Mesh Protocol (CAMP) is a well-known protocol for multicast routing in ad-hoc networks, generalizing the notion of core-based trees employed for internet multicasting into multicast meshes that have much richer connectivity than trees. On the other hand, wireless tree-based multicast routing protocols use much simpler structures for determining route paths, using only parent-child relationships. In this work, we compare the performance of the CAMP protocol against the performance of wireless tree-based multicast routing protocols, in terms of two important factors, namely packet delay and ratio of dropped packets.

  4. A Novel Ancient Coin-Like Fractal Multiband Antenna for Wireless Applications

    Directory of Open Access Journals (Sweden)

    Zhen Yu

    2017-01-01

    Full Text Available This study proposes a novel square-circle structure fractal multibroadband planar antenna, similar to an ancient Chinese coin-like structure, for second generation (2G, third generation (3G, fourth generation (4G, WLAN, and navigation wireless applications. The device is based on the principles and structural features of conventional monopole antenna elements, combined with the advantages of microstrip antennas and fractal geometry. A fractal method was presented for circular nested square slotted structures, similar to an ancient Chinese copper coin. The proposed antenna adapted five iterations on a fractal structure radiator, which covers more than ten mobile applications in three broad frequency bands with a bandwidth of 70% (1.43–2.97 GHz for DCS1800, TD-SCDMA, WCDMA, CDMA2000, LTE33-41, Bluetooth, GPS (Global Positioning System, BDS (BeiDou Navigation Satellite System, GLONSS (Global Navigation Satellite System, GALILEO (Galileo Satellite Navigation System, and WLAN frequency bands, 16.32% (3.32–3.91 GHz for LTE42, LTE43, and WiMAX frequency bands, and 10.92% (4.85–5.41 GHz for WLAN frequency band. The proposed antenna was fabricated on a 1.6 mm thick G10/FR4 substrate with a dielectric constant of 4.4 and a size of 88.5 × 60 mm2. The measurement results reveal that the omnidirectional radiation patterns achieve a gain of 1.16–3.75 dBi and an efficiency of 40–72%. The good agreement between the measurement results and simulation validates the proposed design approach and satisfies the requirements for various wireless applications.

  5. Real time network traffic monitoring for wireless local area networks based on compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza

    2017-05-01

    A wireless local area network (WLAN) is an important type of wireless networks which connotes different wireless nodes in a local area network. WLANs suffer from important problems such as network load balancing, large amount of energy, and load of sampling. This paper presents a new networking traffic approach based on Compressed Sensing (CS) for improving the quality of WLANs. The proposed architecture allows reducing Data Delay Probability (DDP) to 15%, which is a good record for WLANs. The proposed architecture is increased Data Throughput (DT) to 22 % and Signal to Noise (S/N) ratio to 17 %, which provide a good background for establishing high qualified local area networks. This architecture enables continuous data acquisition and compression of WLAN's signals that are suitable for a variety of other wireless networking applications. At the transmitter side of each wireless node, an analog-CS framework is applied at the sensing step before analog to digital converter in order to generate the compressed version of the input signal. At the receiver side of wireless node, a reconstruction algorithm is applied in order to reconstruct the original signals from the compressed signals with high probability and enough accuracy. The proposed algorithm out-performs existing algorithms by achieving a good level of Quality of Service (QoS). This ability allows reducing 15 % of Bit Error Rate (BER) at each wireless node.

  6. Research on Electronic-nose Application Based on Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Zhao, A; Wang, L; Yao, C H

    2006-01-01

    The paper proposed a structure of Wireless Sensor Networks based Electronic-nose system to monitors air quality in the building. In the study, the authors researched a data processing algorithm: fuzzy neural network based on RBF(Radial Basis Function) network model, to quantitatively analyze the gas ingredient and put forward a routing protocol for the system

  7. Intrusion detection in wireless ad-hoc networks

    CERN Document Server

    Chaki, Nabendu

    2014-01-01

    Presenting cutting-edge research, Intrusion Detection in Wireless Ad-Hoc Networks explores the security aspects of the basic categories of wireless ad-hoc networks and related application areas. Focusing on intrusion detection systems (IDSs), it explains how to establish security solutions for the range of wireless networks, including mobile ad-hoc networks, hybrid wireless networks, and sensor networks.This edited volume reviews and analyzes state-of-the-art IDSs for various wireless ad-hoc networks. It includes case studies on honesty-based intrusion detection systems, cluster oriented-based

  8. Rapid Prototyping of a Smart Device-based Wireless Reflectance Photoplethysmograph

    Science.gov (United States)

    Ghamari, M.; Aguilar, C.; Soltanpur, C.; Nazeran, H.

    2017-01-01

    This paper presents the design, fabrication, and testing of a wireless heart rate (HR) monitoring device based on photoplethysmography (PPG) and smart devices. PPG sensors use infrared (IR) light to obtain vital information to assess cardiac health and other physiologic conditions. The PPG data that are transferred to a computer undergo further processing to derive the Heart Rate Variability (HRV) signal, which is analyzed to generate quantitative markers of the Autonomic Nervous System (ANS). The HRV signal has numerous monitoring and diagnostic applications. To this end, wireless connectivity plays an important role in such biomedical instruments. The photoplethysmograph consists of an optical sensor to detect the changes in the light intensity reflected from the illuminated tissue, a signal conditioning unit to prepare the reflected light for further signal conditioning through amplification and filtering, a low-power microcontroller to control and digitize the analog PPG signal, and a Bluetooth module to transmit the digital data to a Bluetooth-based smart device such as a tablet. An Android app is then used to enable the smart device to acquire and digitally display the received analog PPG signal in real-time on the smart device. This article is concluded with the prototyping of the wireless PPG followed by the verification procedures of the PPG and HRV signals acquired in a laboratory environment. PMID:28959119

  9. Rapid Prototyping of a Smart Device-based Wireless Reflectance Photoplethysmograph.

    Science.gov (United States)

    Ghamari, M; Aguilar, C; Soltanpur, C; Nazeran, H

    2016-03-01

    This paper presents the design, fabrication, and testing of a wireless heart rate (HR) monitoring device based on photoplethysmography (PPG) and smart devices. PPG sensors use infrared (IR) light to obtain vital information to assess cardiac health and other physiologic conditions. The PPG data that are transferred to a computer undergo further processing to derive the Heart Rate Variability (HRV) signal, which is analyzed to generate quantitative markers of the Autonomic Nervous System (ANS). The HRV signal has numerous monitoring and diagnostic applications. To this end, wireless connectivity plays an important role in such biomedical instruments. The photoplethysmograph consists of an optical sensor to detect the changes in the light intensity reflected from the illuminated tissue, a signal conditioning unit to prepare the reflected light for further signal conditioning through amplification and filtering, a low-power microcontroller to control and digitize the analog PPG signal, and a Bluetooth module to transmit the digital data to a Bluetooth-based smart device such as a tablet. An Android app is then used to enable the smart device to acquire and digitally display the received analog PPG signal in real-time on the smart device. This article is concluded with the prototyping of the wireless PPG followed by the verification procedures of the PPG and HRV signals acquired in a laboratory environment.

  10. A Routing Algorithm for WiFi-Based Wireless Sensor Network and the Application in Automatic Meter Reading

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-01-01

    Full Text Available The Automatic Meter Reading (AMR network for the next generation Smart Grid is required to possess many essential functions, such as data reading and writing, intelligent power transmission, and line damage detection. However, the traditional AMR network cannot meet the previous requirement. With the development of the WiFi sensor node in the low power cost, a new kind of wireless sensor network based on the WiFi technology can be used in application. In this paper, we have designed a new architecture of WiFi-based wireless sensor network, which is suitable for the next generation AMR system. We have also proposed a new routing algorithm called Energy Saving-Based Hybrid Wireless Mesh Protocol (E-HWMP on the premise of current algorithm, which can improve the energy saving of the HWMP and be suitable for the WiFi-based wireless sensor network. The simulation results show that the life cycle of network is extended.

  11. Building secure wireless access point based on certificate authentication and firewall captive portal

    Directory of Open Access Journals (Sweden)

    Soewito B.

    2014-03-01

    Full Text Available Wireless local area network or WLAN more vulnerability than wired network even though WLAN has many advantages over wired. Wireless networks use radio transmissions to carry data between end users and access point. Therefore, it is possible for someone to sit in your office building's lobby or parking lot or parking lot to eavesdrop on the wireless network communication. This paper discussed securing wires local area network used WPA2 Enterprise based PEAP MS-CHAP and Captive portal firewall. We also divided the network for employer and visitor to increase the level of security. Our experiment showed that the WLAN could be broken using the attacker tool such as airodump, aireply, and aircrack.

  12. Complex networks-based energy-efficient evolution model for wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Hailin [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China)], E-mail: zhuhailin19@gmail.com; Luo Hong [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China); Peng Haipeng; Li Lixiang; Luo Qun [Information Secure Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China)

    2009-08-30

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  13. Complex networks-based energy-efficient evolution model for wireless sensor networks

    International Nuclear Information System (INIS)

    Zhu Hailin; Luo Hong; Peng Haipeng; Li Lixiang; Luo Qun

    2009-01-01

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  14. Energy Efficient Position-Based Three Dimensional Routing for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jeongdae Kim

    2008-04-01

    Full Text Available In this paper, we focus on an energy efficient position-based three dimensional (3D routing algorithm using distance information, which affects transmission power consumption between nodes as a metric. In wireless sensor networks, energy efficiency is one of the primary objectives of research. In addition, recent interest in sensor networks is extended to the need to understand how to design networks in a 3D space. Generally, most wireless sensor networks are based on two dimensional (2D designs. However, in reality, such networks operate in a 3D space. Since 2D designs are simpler and easier to implement than 3D designs for routing algorithms in wireless sensor networks, the 2D assumption is somewhat justified and usually does not lead to major inaccuracies. However, in some applications such as an airborne to terrestrial sensor networks or sensor networks, which are deployed in mountains, taking 3D designs into consideration is reasonable. In this paper, we propose the Minimum Sum of Square distance (MSoS algorithm as an energy efficient position-based three dimensional routing algorithm. In addition, we evaluate and compare the performance of the proposed routing algorithm with other algorithms through simulation. Finally, the results of the simulation show that the proposed routing algorithm is more energy efficient than other algorithms in a 3D space.

  15. PPM-based relay communication schemes for wireless body area networks

    NARCIS (Netherlands)

    Zhang, P.; Willems, F.M.J.; Huang, Li

    2012-01-01

    This paper investigates cooperative communication schemes based on a single relay with pulse-position modulation (PPM) signaling, for enhancing energy efficiency of wireless body area networks (WBANs) in noncoherent channel settings. We explore cooperation between the source and the relay such that

  16. Validation of an Innovative Satellite-Based UV Dosimeter

    Science.gov (United States)

    Morelli, Marco; Masini, Andrea; Simeone, Emilio; Khazova, Marina

    2016-08-01

    We present an innovative satellite-based UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in-vivo assessment of the erythemal effects on some volunteers having a controlled exposure to solar radiation.Both validations showed that the satellite-based UV dosimeter has a good accuracy and reliability needed for health-related applications.The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. This app will be launched on the global market by siHealth Ltd in May 2016 under the name of "HappySun" and available both for Android and for iOS devices (more info on http://www.happysun.co.uk).Extensive R&D activities are on-going for further improvement of the satellite-based UV dosimeter's accuracy.

  17. Simultaneous transmission of wired and wireless signals based on double sideband carrier suppression

    Science.gov (United States)

    Bitew, Mekuanint Agegnehu; Shiu, Run-Kai; Peng, Peng-Chun; Wang, Cheng-Hao; Chen, Yan-Ming

    2017-11-01

    In this paper, we proposed and experimentally demonstrated simultaneous transmission of wired and wireless signals based on double sideband optical carrier suppression. By properly adjusting the bias point of the dual-output mach-zehnder modulator (MZM), a central carrier in one output port and a pair of first-order sidebands in another output port are generated. The pair of first-order sidebands are fed into a second MZM to generate second-order order sidebands. A wired signal is embedded on the central carrier while a wireless signal is embedded on the second-order sidebands. Unlike other schemes, we did not use optical filter to separate the carrier from the optical sidebands. The measured bit error rate (BER) and eye-diagrams after a 25 km single-mode-fiber (SMF) transmission proved that the proposed scheme is successful for both wired and wireless signals transmission. Moreover, the power penalty at the BER of 10-9 is 0.3 and 0.7 dB for wired and wireless signals, respectively.

  18. Cluster-based Dynamic Energy Management for Collaborative Target Tracking in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dao-Wei Bi

    2007-07-01

    Full Text Available A primary criterion of wireless sensor network is energy efficiency. Focused onthe energy problem of target tracking in wireless sensor networks, this paper proposes acluster-based dynamic energy management mechanism. Target tracking problem isformulated by the multi-sensor detection model as well as energy consumption model. Adistributed adaptive clustering approach is investigated to form a reasonable routingframework which has uniform cluster head distribution. Dijkstra’s algorithm is utilized toobtain optimal intra-cluster routing. Target position is predicted by particle filter. Thepredicted target position is adopted to estimate the idle interval of sensor nodes. Hence,dynamic awakening approach is exploited to prolong sleep time of sensor nodes so that theoperation energy consumption of wireless sensor network can be reduced. The sensornodes around the target wake up on time and act as sensing candidates. With the candidatesensor nodes and predicted target position, the optimal sensor node selection is considered.Binary particle swarm optimization is proposed to minimize the total energy consumptionduring collaborative sensing and data reporting. Experimental results verify that theproposed clustering approach establishes a low-energy communication structure while theenergy efficiency of wireless sensor networks is enhanced by cluster-based dynamic energymanagement.

  19. Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    OpenAIRE

    Li, Kai; Ni, Wei; Duan, Lingjie; Abolhasan, Mehran; Niu, Jianwei

    2017-01-01

    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need...

  20. Transmission Delay Based Control over Networks with Wireless Links

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To achieve the mobility of computers during communication, the TCP connections between fixed host and mobile host may often traverse wired and wireless networks, and the recovery of losses due to wireless transmission error is much different from congestion control. The paper analyzes the side effect of RTT estimation while making the TCP source to handle congestion and wireless error losses properly. Then present a strategy using information feedback by the last hop acknowledgement and monitoring the queuing level of the wired bottleneck link by calculating the changes in transmission delay along the path. With the identification of the early stage of congestion, it can respond to wired congestion quickly while keeping wireless link more reliable, and make TCP react to the different packets losses more appropriately.

  1. Implementation of Wireless Communications Systems on FPGA-Based Platforms

    Directory of Open Access Journals (Sweden)

    Voros NS

    2007-01-01

    Full Text Available Wireless communications are a very popular application domain. The efficient implementation of their components (access points and mobile terminals/network interface cards in terms of hardware cost and design time is of great importance. This paper describes the design and implementation of the HIPERLAN/2 WLAN system on a platform including general purpose microprocessors and FPGAs. Detailed implementation results (performance, code size, and FPGA resources utilization are presented. The main goal of the design case presented is to provide insight into the design aspects of a complex system based on FPGAs. The results prove that an implementation based on microprocessors and FPGAs is adequate for the access point part of the system where the expected volumes are rather small. At the same time, such an implementation serves as a prototyping of an integrated implementation (System-on-Chip, which is necessary for the mobile terminals of a HIPERLAN/2 system. Finally, firmware upgrades were developed allowing the implementation of an outdoor wireless communication system on the same platform.

  2. System and method for time synchronization in a wireless network

    Science.gov (United States)

    Gonia, Patrick S.; Kolavennu, Soumitri N.; Mahasenan, Arun V.; Budampati, Ramakrishna S.

    2010-03-30

    A system includes multiple wireless nodes forming a cluster in a wireless network, where each wireless node is configured to communicate and exchange data wirelessly based on a clock. One of the wireless nodes is configured to operate as a cluster master. Each of the other wireless nodes is configured to (i) receive time synchronization information from a parent node, (ii) adjust its clock based on the received time synchronization information, and (iii) broadcast time synchronization information based on the time synchronization information received by that wireless node. The time synchronization information received by each of the other wireless nodes is based on time synchronization information provided by the cluster master so that the other wireless nodes substantially synchronize their clocks with the clock of the cluster master.

  3. Optimization design of wireless charging system for autonomous robots based on magnetic resonance coupling

    Directory of Open Access Journals (Sweden)

    Junhua Wang

    2018-05-01

    Full Text Available Wireless charging is the key technology to realize real autonomy of mobile robots. As the core part of wireless power transfer system, coupling mechanism including coupling coils and compensation topology is analyzed and optimized through simulations, to achieve stable and practical wireless charging suitable for ordinary robots. Multi-layer coil structure, especially double-layer coil is explored and selected to greatly enhance coupling performance, while shape of ferrite shielding goes through distributed optimization to guarantee coil fault tolerance and cost effectiveness. On the basis of optimized coils, primary compensation topology is analyzed to adopt composite LCL compensation, to stabilize operations of the primary side under variations of mutual inductance. Experimental results show the optimized system does make sense for wireless charging application for robots based on magnetic resonance coupling, to realize long-term autonomy of robots.

  4. Optimization design of wireless charging system for autonomous robots based on magnetic resonance coupling

    Science.gov (United States)

    Wang, Junhua; Hu, Meilin; Cai, Changsong; Lin, Zhongzheng; Li, Liang; Fang, Zhijian

    2018-05-01

    Wireless charging is the key technology to realize real autonomy of mobile robots. As the core part of wireless power transfer system, coupling mechanism including coupling coils and compensation topology is analyzed and optimized through simulations, to achieve stable and practical wireless charging suitable for ordinary robots. Multi-layer coil structure, especially double-layer coil is explored and selected to greatly enhance coupling performance, while shape of ferrite shielding goes through distributed optimization to guarantee coil fault tolerance and cost effectiveness. On the basis of optimized coils, primary compensation topology is analyzed to adopt composite LCL compensation, to stabilize operations of the primary side under variations of mutual inductance. Experimental results show the optimized system does make sense for wireless charging application for robots based on magnetic resonance coupling, to realize long-term autonomy of robots.

  5. A 35 GHz wireless millimeter-wave power sensor based on GaAs micromachining technology

    International Nuclear Information System (INIS)

    Wang, De-bo; Liao, Xiao-ping

    2012-01-01

    A novel MEMS wireless millimeter-wave power sensor based on GaAs MMIC technology is presented in this paper. The principle of this wireless millimeter-wave power sensor is explained. It is designed and fabricated using MEMS technology and the GaAs MMIC process. With the millimeter-wave power range from 0.1 to 80 mW, the sensitivity of the wireless millimeter-wave power sensor is about 0.246 mV mW −1 at 35 GHz. In order to verify the power detection capability, this wireless power sensor is mounted on a PCB which influences the microwave performance of the CPW-fed antenna including the return loss and the radiation pattern. The frequency-dependent characteristic and the degree-dependent characteristic of this wireless power sensor are researched. Furthermore, in addition to the combination of the advantages of CPW-fed antenna with the advantages of the thermoelectric power sensor, another significant advantage of this wireless millimeter-wave power sensor is that it can be integrated with MMICs and other planar connecting circuit structures with zero dc power consumption. These features make it suitable for various applications ranging from the environment or space radiation detection systems to radar receiver and transmitter systems. (paper)

  6. A Vision-Based Wireless Charging System for Robot Trophallaxis

    Directory of Open Access Journals (Sweden)

    Jae-O Kim

    2015-12-01

    Full Text Available The need to recharge the batteries of a mobile robot has presented an important challenge for a long time. In this paper, a vision-based wireless charging method for robot energy trophallaxis between two robots is presented. Even though wireless power transmission allows more positional error between receiver-transmitter coils than with a contact-type charging system, both coils have to be aligned as accurately as possible for efficient power transfer. To align the coils, a transmitter robot recognizes the coarse pose of a receiver robot via a camera image and the ambiguity of the estimated pose is removed with a Bayesian estimator. The precise pose of the receiver coil is calculated using a marker image attached to a receiver robot. Experiments with several types of receiver robots have been conducted to verify the proposed method.

  7. Wireless, low-cost, FPGA-based miniature gamma ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Becker, E.M., E-mail: beckere@engr.orst.edu; Farsoni, A.T.

    2014-10-11

    A compact, low-cost, wireless gamma-ray spectrometer is a tool sought by a number of different organizations in the field of radiation detection. Such a device has applications in emergency response, battlefield assessment, and personal dosimetry. A prototype device fitting this description has been constructed in the Advanced Radiation Instrumentation Laboratory at Oregon State University. The prototype uses a CsI(Tl) scintillator coupled to a solid-state photomultiplier and a 40 MHz, 12-bit, FPGA-based digital pulse processor to measure gamma radiation, and is able to be accessed wirelessly by mobile phone. The prototype device consumes roughly 420 mW, weighs about 28 g (not including battery), and measures 2.54×3.81 cm{sup 2}. The prototype device is able to achieve 5.9% FWHM energy resolution at 662 keV.

  8. Columnar transmitter based wireless power delivery system for implantable device in freely moving animals.

    Science.gov (United States)

    Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Lee, Sung Eun; Jun, Sang Bum; Kim, Sung June

    2013-01-01

    A wireless power delivery system is developed to deliver electrical power to the neuroprosthetic devices that are implanted into animals freely moving inside the cage. The wireless powering cage is designed for long-term animal experiments without cumbersome wires for power supply or the replacement of batteries. In the present study, we propose a novel wireless power transmission system using resonator-based inductive links to increase power efficiency and to minimize the efficiency variations. A columnar transmitter coil is proposed to provide lateral uniformity of power efficiency. Using this columnar transmitter coil, only 7.2% efficiency fluctuation occurs from the maximum transmission efficiency of 25.9%. A flexible polymer-based planar type receiver coil is fabricated and assembled with a neural stimulator and an electrode. Using the designed columnar transmitter coil, the implantable device successfully operates while it moves freely inside the cage.

  9. A survey on bio inspired meta heuristic based clustering protocols for wireless sensor networks

    Science.gov (United States)

    Datta, A.; Nandakumar, S.

    2017-11-01

    Recent studies have shown that utilizing a mobile sink to harvest and carry data from a Wireless Sensor Network (WSN) can improve network operational efficiency as well as maintain uniform energy consumption by the sensor nodes in the network. Due to Sink mobility, the path between two sensor nodes continuously changes and this has a profound effect on the operational longevity of the network and a need arises for a protocol which utilizes minimal resources in maintaining routes between the mobile sink and the sensor nodes. Swarm Intelligence based techniques inspired by the foraging behavior of ants, termites and honey bees can be artificially simulated and utilized to solve real wireless network problems. The author presents a brief survey on various bio inspired swarm intelligence based protocols used in routing data in wireless sensor networks while outlining their general principle and operation.

  10. Adaptive Reliable Routing Based on Cluster Hierarchy for Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2010-01-01

    Full Text Available As a multimedia information acquisition and processing method, wireless multimedia sensor network(WMSN has great application potential in military and civilian areas. Compared with traditional wireless sensor network, the routing design of WMSN should obtain more attention on the quality of transmission. This paper proposes an adaptive reliable routing based on clustering hierarchy named ARCH, which includes energy prediction and power allocation mechanism. To obtain a better performance, the cluster structure is formed based on cellular topology. The introduced prediction mechanism makes the sensor nodes predict the remaining energy of other nodes, which dramatically reduces the overall information needed for energy balancing. ARCH can dynamically balance the energy consumption of nodes based on the predicted results provided by power allocation. The simulation results prove the efficiency of the proposed ARCH routing.

  11. Airborne wireless communication systems, airborne communication methods, and communication methods

    Science.gov (United States)

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  12. Secure Trust Based Key Management Routing Framework for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jugminder Kaur

    2016-01-01

    Full Text Available Security is always a major concern in wireless sensor networks (WSNs. Several trust based routing protocols are designed that play an important role in enhancing the performance of a wireless network. However they still have some disadvantages like limited energy resources, susceptibility to physical capture, and little protection against various attacks due to insecure wireless communication channels. This paper presents a secure trust based key management (STKF routing framework that establishes a secure trustworthy route depending upon the present and past node to node interactions. This route is then updated by isolating the malicious or compromised nodes from the route, if any, and a dedicated link is created between every pair of nodes in the selected route with the help of “q” composite random key predistribution scheme (RKPS to ensure data delivery from source to destination. The performance of trust aware secure routing framework (TSRF is compared with the proposed routing scheme. The results indicate that STKF provides an effective mechanism for finding out a secure route with better trustworthiness than TSRF which avoids the data dropping, thereby increasing the data delivery ratio. Also the distance required to reach the destination in the proposed protocol is less hence effectively utilizing the resources.

  13. Development of a personal digital assistant-based wireless application in clinical practice.

    Science.gov (United States)

    Chen, Yen-Cheng; Chiu, Hou-Chang; Tsai, Ming-Dar; Chang, Hang; Chong, Chee-Fah

    2007-02-01

    Our study aims to develop a personal digital assistant (PDA)-based wireless application in medical information processing by using Bluetooth and IEEE 802.11b wireless standards and SyncML codes. In this study, an "integrated database access module" is used to provide a unified integrated access interface while consistency of wireless data transmission is achieved by using the standardized SyncML protocol. A prototype of the system has been developed, implemented, and tested for its mobility, usability, stability, and performance with questionnaire survey. Response time for browsing/searching was usually less than 3s. The average time intervals needed for data transmissions were 68.6+/-8.5s for Bluetooth and 47.0+/-4.8s for 802.11b. The five-point Likert scale (from 1=least to 5=most) questionnaire survey of 30 medical professionals yielded a high degree of satisfaction with the system's mobility (4.18+/-0.89), usability (4.69+/-0.90), stability (3.81+/-0.94), and performance (3.97+/-0.88). The results of our study suggested that PDA applications which exploit wireless communication are convenient and feasible in clinical practice.

  14. A Multi-Sensor RSS Spatial Sensing-Based Robust Stochastic Optimization Algorithm for Enhanced Wireless Tethering

    CERN Document Server

    Parasuraman, Ramviyas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel

    2014-01-01

    The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide red...

  15. Wireless OAM transmission system based on elliptical microstrip patch antenna.

    Science.gov (United States)

    Chen, Jia Jia; Lu, Qian Nan; Dong, Fei Fei; Yang, Jing Jing; Huang, Ming

    2016-05-30

    The multiplexing transmission has always been a focus of attention for communication technology. In this paper, the radiation characteristics of circular microstrip patch antenna was firstly analyzed based on cavity model theory, and then spiral beams carrying orbital angular momentum (OAM) were generated, using elliptical microstrip patch antenna, with a single feed probe instead of a standard circular patch with two feedpoints. Moreover, by combining the proposed elliptic microstrip patch antenna with Universal Software Radio Peripheral (USRP), a wireless OAM transmission system was established and the real-time transmission of text, image and video in a real channel environment was realized. Since the wireless OAM transmission has the advantage of good safety and high spectrum utilization efficiency, this work has theoretical significance and potential application.

  16. Next Generation RFID-Based Medical Service Management System Architecture in Wireless Sensor Network

    Science.gov (United States)

    Tolentino, Randy S.; Lee, Kijeong; Kim, Yong-Tae; Park, Gil-Cheol

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide unlimited future potentials most especially in healthcare systems. RFID is used to detect presence and location of objects while WSN is used to sense and monitor the environment. Integrating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. However, there isn't any flexible and robust communication infrastructure to integrate these devices into an emergency care setting. An efficient wireless communication substrate for medical devices that addresses ad hoc or fixed network formation, naming and discovery, transmission efficiency of data, data security and authentication, as well as filtration and aggregation of vital sign data need to be study and analyze. This paper proposed an efficient next generation architecture for RFID-based medical service management system in WSN that possesses the essential elements of each future medical application that are integrated with existing medical practices and technologies in real-time, remote monitoring, in giving medication, and patient status tracking assisted by embedded wearable wireless sensors which are integrated in wireless sensor network.

  17. Less wireless costs : optimizing firms aim to cut wireless service bills

    International Nuclear Information System (INIS)

    Mahony, J.

    2006-01-01

    The Calgary-based firm Alliance is offering optimized billing to oil companies, many of which spend more than $100,000 a month on wireless services for devices such as cellular telephones, pagers and Blackberries. In particular, Alliance is focusing on cutting the cost of wireless for corporate clients by analyzing client-usage patterns and choosing the most cost-efficient rate plans offered by the telecoms. Alliance suggests that do-it-yourself optimization is too complex for the average user, given the very large choice of rate plans. Using algorithms, Alliance software goes through all the wireless service contract options from the telecoms to choose the best plan for a company's needs. Optimizers claim their clients will see significant savings on wireless, in the order to 20 to 50 per cent. This article presented a brief case history of a successful optimization plan for Nabors Canada LP. Alliance allows its clients to view their billing information on their web-based server. Call records can be viewed by device or company division. 1 ref., 1 fig

  18. Satellite-based Flood Modeling Using TRMM-based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Greg Easson

    2007-12-01

    Full Text Available Increasingly available and a virtually uninterrupted supply of satellite-estimatedrainfall data is gradually becoming a cost-effective source of input for flood predictionunder a variety of circumstances. However, most real-time and quasi-global satelliterainfall products are currently available at spatial scales ranging from 0.25o to 0.50o andhence, are considered somewhat coarse for dynamic hydrologic modeling of basin-scaleflood events. This study assesses the question: what are the hydrologic implications ofuncertainty of satellite rainfall data at the coarse scale? We investigated this question onthe 970 km2 Upper Cumberland river basin of Kentucky. The satellite rainfall productassessed was NASA’s Tropical Rainfall Measuring Mission (TRMM Multi-satellitePrecipitation Analysis (TMPA product called 3B41RT that is available in pseudo real timewith a latency of 6-10 hours. We observed that bias adjustment of satellite rainfall data canimprove application in flood prediction to some extent with the trade-off of more falsealarms in peak flow. However, a more rational and regime-based adjustment procedureneeds to be identified before the use of satellite data can be institutionalized among floodmodelers.

  19. Leo satellite-based telecommunication network concepts

    Science.gov (United States)

    Aiken, John G.; Swan, Peter A.; Leopold, Ray J.

    1991-01-01

    Design considerations are discussed for Low Earth Orbit (LEO) satellite based telecommunications networks. The satellites are assumed to be connected to each other via intersatellite links. They are connected to the end user either directly or through gateways to other networks. Frequency reuse, circuit switching, packet switching, call handoff, and routing for these systems are discussed by analogy with terrestrial cellular (mobile radio) telecommunication systems.

  20. Fine-tuning satellite-based rainfall estimates

    Science.gov (United States)

    Harsa, Hastuadi; Buono, Agus; Hidayat, Rahmat; Achyar, Jaumil; Noviati, Sri; Kurniawan, Roni; Praja, Alfan S.

    2018-05-01

    Rainfall datasets are available from various sources, including satellite estimates and ground observation. The locations of ground observation scatter sparsely. Therefore, the use of satellite estimates is advantageous, because satellite estimates can provide data on places where the ground observations do not present. However, in general, the satellite estimates data contain bias, since they are product of algorithms that transform the sensors response into rainfall values. Another cause may come from the number of ground observations used by the algorithms as the reference in determining the rainfall values. This paper describe the application of bias correction method to modify the satellite-based dataset by adding a number of ground observation locations that have not been used before by the algorithm. The bias correction was performed by utilizing Quantile Mapping procedure between ground observation data and satellite estimates data. Since Quantile Mapping required mean and standard deviation of both the reference and the being-corrected data, thus the Inverse Distance Weighting scheme was applied beforehand to the mean and standard deviation of the observation data in order to provide a spatial composition of them, which were originally scattered. Therefore, it was possible to provide a reference data point at the same location with that of the satellite estimates. The results show that the new dataset have statistically better representation of the rainfall values recorded by the ground observation than the previous dataset.

  1. A Data Gathering Scheme in Wireless Sensor Networks Based on Synchronization of Chaotic Spiking Oscillator Networks

    International Nuclear Information System (INIS)

    Nakano, Hidehiro; Utani, Akihide; Miyauchi, Arata; Yamamoto, Hisao

    2011-01-01

    This paper studies chaos-based data gathering scheme in multiple sink wireless sensor networks. In the proposed scheme, each wireless sensor node has a simple chaotic oscillator. The oscillators generate spike signals with chaotic interspike intervals, and are impulsively coupled by the signals via wireless communication. Each wireless sensor node transmits and receives sensor information only in the timing of the couplings. The proposed scheme can exhibit various chaos synchronous phenomena and their breakdown phenomena, and can effectively gather sensor information with the significantly small number of transmissions and receptions compared with the conventional scheme. Also, the proposed scheme can flexibly adapt various wireless sensor networks not only with a single sink node but also with multiple sink nodes. This paper introduces our previous works. Through simulation experiments, we show effectiveness of the proposed scheme and discuss its development potential.

  2. Mobile Device Based Dynamic Key Management Protocols for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chin-Ling Chen

    2015-01-01

    Full Text Available In recent years, wireless sensor network (WSN applications have tended to transmit data hop by hop, from sensor nodes through cluster nodes to the base station. As a result, users must collect data from the base station. This study considers two different applications: hop by hop transmission of data from cluster nodes to the base station and the direct access to cluster nodes data by mobile users via mobile devices. Due to the hardware limitations of WSNs, some low-cost operations such as symmetric cryptographic algorithms and hash functions are used to implement a dynamic key management. The session key can be updated to prevent threats of attack from each communication. With these methods, the data gathered in wireless sensor networks can be more securely communicated. Moreover, the proposed scheme is analyzed and compared with related schemes. In addition, an NS2 simulation is developed in which the experimental results show that the designed communication protocol is workable.

  3. Probabilistic Location-based Routing Protocol for Mobile Wireless Sensor Networks with Intermittent Communication

    Directory of Open Access Journals (Sweden)

    Sho KUMAGAI

    2015-02-01

    Full Text Available In a sensor network, sensor data messages reach the nearest stationary sink node connected to the Internet by wireless multihop transmissions. Recently, various mobile sensors are available due to advances of robotics technologies and communication technologies. A location based message-by-message routing protocol, such as Geographic Distance Routing (GEDIR is suitable for such mobile wireless networks; however, it is required for each mobile wireless sensor node to know the current locations of all its neighbor nodes. On the other hand, various intermittent communication methods for a low power consumption requirement have been proposed for wireless sensor networks. Intermittent Receiver-driven Data Transmission (IRDT is one of the most efficient methods; however, it is difficult to combine the location based routing and the intermittent communication. In order to solve this problem, this paper proposes a probabilistic approach IRDT-GEDIR with the help of one of the solutions of the secretaries problem. Here, each time a neighbor sensor node wakes up from its sleep mode, an intermediate sensor node determines whether it forwards its buffered sensor data messages to it or not based on an estimation of achieved pseudo speed of the messages. Simulation experiments show that IRDT-GEDIR achieves higher pseudo speed of sensor data message transmissions and shorter transmission delay than achieves shorter transmission delay than the two naive combinations of IRDT and GEDIR in sensor networks with mobile sensor nodes and a stationary sink node. In addition, the guideline of the estimated numbers of the neighbor nodes of each intermediate sensor node is provided based on the results of the simulation experiments to apply the probabilistic approach IRDT-GEDIR.

  4. Wireless and mobile systems in telemedicine

    Directory of Open Access Journals (Sweden)

    Reza Safdari

    2012-12-01

    Full Text Available Background: It is necessary to deploy mobile and wireless systems in healthcare, because they have many benefits for healthcare systems. The objectives of this article were introducing various systems, applications, and standards of the wireless and mobile telemedicine. Material and Methods: This review study was conducted in 2010. To conduct the study, published articles in the years 2005 to 2012, in English with an emphasis on wireless and mobile technologies in health were studied. Search was done with key words include telemedicine, wireless health systems, health and telecommunications technology in databases including Pubmed, Science Direct, Google Scholar, Web of Sciences, Proquest. The collected data were analyzed. Results: Telemedicine system in the ambulance, telemedicine systems in space, telecardiology systems, EEG system, ultrasound system are some types of wireless and mobile systems in telemedicine. PDA-based mobile and wireless telemedicine application, based PDA drug application, and patient tracking application are some of wireless and mobile applications of telemedicine. The most important standards of wireless and mobile telemedicine are HL7, DICOM, SNOMed, and ICD-9-CM. Conclusion: There are many challenges in the wireless and mobile systems in telemedicine, despite the many benefits. Slow speed in sending pictures and video, lack of attention to the privacy in the design of these systems, environmental variables and the number of users during the day are some of these challenges. It is recommended to consider these challenges during the planning and designing of wireless and mobile systems in telemedicine.

  5. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.

    Science.gov (United States)

    Vimalarani, C; Subramanian, R; Sivanandam, S N

    2016-01-01

    Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.

  6. Satellite-based quantum communication terminal employing state-of-the-art technology

    Science.gov (United States)

    Pfennigbauer, Martin; Aspelmeyer, Markus; Leeb, Walter R.; Baister, Guy; Dreischer, Thomas; Jennewein, Thomas; Neckamm, Gregor; Perdigues, Josep M.; Weinfurter, Harald; Zeilinger, Anton

    2005-09-01

    Feature Issue on Optical Wireless Communications (OWC) We investigate the design and the accommodation of a quantum communication transceiver in an existing classical optical communication terminal on board a satellite. Operation from a low earth orbit (LEO) platform (e.g., the International Space Station) would allow transmission of single photons and pairs of entangled photons to ground stations and hence permit quantum communication applications such as quantum cryptography on a global scale. Integration of a source generating entangled photon pairs and single-photon detection into existing optical terminal designs is feasible. Even more, major subunits of the classical terminals such as those for pointing, acquisition, and tracking as well as those providing the required electronic, thermal, and structural backbone can be adapted so as to meet the quantum communication terminal needs.

  7. Adaptive Power Management for Wireless Base Station in Smart Grid Environment

    OpenAIRE

    Niyato, Dusit; Lu, Xiao; Wang, Ping

    2014-01-01

    The growing concerns of a global environmental change raises a revolution on the way of utilizing energy. In wireless industry, green wireless communications has recently gained increasing attention and is expected to play a major role in reduction of electrical power consumption. In particular, actions to promote energy saving of wireless communications with regard to environmental protection are becoming imperative. To this purpose, we study a green communication system model where wireless...

  8. Wireless synapses in bio-inspired neural networks

    Science.gov (United States)

    Jannson, Tomasz; Forrester, Thomas; Degrood, Kevin

    2009-05-01

    Wireless (virtual) synapses represent a novel approach to bio-inspired neural networks that follow the infrastructure of the biological brain, except that biological (physical) synapses are replaced by virtual ones based on cellular telephony modeling. Such synapses are of two types: intracluster synapses are based on IR wireless ones, while intercluster synapses are based on RF wireless ones. Such synapses have three unique features, atypical of conventional artificial ones: very high parallelism (close to that of the human brain), very high reconfigurability (easy to kill and to create), and very high plasticity (easy to modify or upgrade). In this paper we analyze the general concept of wireless synapses with special emphasis on RF wireless synapses. Also, biological mammalian (vertebrate) neural models are discussed for comparison, and a novel neural lensing effect is discussed in detail.

  9. A Computational Agent-Based Modeling Approach for Competitive Wireless Service Market

    KAUST Repository

    Douglas, C C; Hyoseop Lee,; Wonsuck Lee,

    2011-01-01

    Using an agent-based modeling method, we study market dynamism with regard to wireless cellular services that are in competition for a greater market share and profit. In the proposed model, service providers and consumers are described as agents

  10. A SAT-Based Analysis of a Calculus for Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Wu, Xi; Nielson, Hanne Riis; Zhu, Huibiao

    2015-01-01

    In viewing the common unreliability problem in wireless communications, the CWQ calculus (a Calculus for Wireless sensor networks from Quality perspective) was recently proposed for modeling and reasoning about WSNs(Wireless Sensor Networks) and their applications from a quality perspective...

  11. Artificial intelligence based event detection in wireless sensor networks

    NARCIS (Netherlands)

    Bahrepour, M.

    2013-01-01

    Wireless sensor networks (WSNs) are composed of large number of small, inexpensive devices, called sensor nodes, which are equipped with sensing, processing, and communication capabilities. While traditional applications of wireless sensor networks focused on periodic monitoring, the focus of more

  12. Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission.

    Science.gov (United States)

    Falk, Magnus; Alcalde, Miguel; Bartlett, Philip N; De Lacey, Antonio L; Gorton, Lo; Gutierrez-Sanchez, Cristina; Haddad, Raoudha; Kilburn, Jeremy; Leech, Dónal; Ludwig, Roland; Magner, Edmond; Mate, Diana M; Conghaile, Peter Ó; Ortiz, Roberto; Pita, Marcos; Pöller, Sascha; Ruzgas, Tautgirdas; Salaj-Kosla, Urszula; Schuhmann, Wolfgang; Sebelius, Fredrik; Shao, Minling; Stoica, Leonard; Sygmund, Cristoph; Tilly, Jonas; Toscano, Miguel D; Vivekananthan, Jeevanthi; Wright, Emma; Shleev, Sergey

    2014-01-01

    Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply.

  13. Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission.

    Directory of Open Access Journals (Sweden)

    Magnus Falk

    Full Text Available Here for the first time, we detail self-contained (wireless and self-powered biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor, and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply.

  14. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  15. A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks.

    Science.gov (United States)

    Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao

    2017-07-04

    Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network.

  16. A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Weijian Tu

    2017-07-01

    Full Text Available Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network.

  17. Internal model control for industrial wireless plant using WirelessHART hardware-in-the-loop simulator.

    Science.gov (United States)

    Tran, Chung Duc; Ibrahim, Rosdiazli; Asirvadam, Vijanth Sagayan; Saad, Nordin; Sabo Miya, Hassan

    2018-04-01

    The emergence of wireless technologies such as WirelessHART and ISA100 Wireless for deployment at industrial process plants has urged the need for research and development in wireless control. This is in view of the fact that the recent application is mainly in monitoring domain due to lack of confidence in control aspect. WirelessHART has an edge over its counterpart as it is based on the successful Wired HART protocol with over 30 million devices as of 2009. Recent works on control have primarily focused on maintaining the traditional PID control structure which is proven not adequate for the wireless environment. In contrast, Internal Model Control (IMC), a promising technique for delay compensation, disturbance rejection and setpoint tracking has not been investigated in the context of WirelessHART. Therefore, this paper discusses the control design using IMC approach with a focus on wireless processes. The simulation and experimental results using real-time WirelessHART hardware-in-the-loop simulator (WH-HILS) indicate that the proposed approach is more robust to delay variation of the network than the PID. Copyright © 2017. Published by Elsevier Ltd.

  18. Enhanced Deployment Strategy for Role-Based Hierarchical Application Agents in Wireless Sensor Networks with Established Clusterheads

    Science.gov (United States)

    Gendreau, Audrey

    2014-01-01

    Efficient self-organizing virtual clusterheads that supervise data collection based on their wireless connectivity, risk, and overhead costs, are an important element of Wireless Sensor Networks (WSNs). This function is especially critical during deployment when system resources are allocated to a subsequent application. In the presented research,…

  19. Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    Science.gov (United States)

    He, Jing

    2012-01-01

    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network.…

  20. Wireless measurement of elastic and plastic deformation by a metamaterial-based sensor.

    Science.gov (United States)

    Ozbey, Burak; Demir, Hilmi Volkan; Kurc, Ozgur; Erturk, Vakur B; Altintas, Ayhan

    2014-10-20

    We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR) probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar), and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve. This wireless measurement includes both the elastic and plastic region deformation together for the first time, where wired technologies, like strain gauges, typically fail to capture. The experiments are further repeated in the presence of a concrete block between the antenna and the probe, and it is shown that the sensing system is capable of functioning through the concrete. The comparison of the wireless sensor measurement with those undertaken using strain gauges and extensometers reveals that the sensor is able to measure both the average strain and the relative displacement on the rebar as a result of the applied force in a considerably accurate way. The performance of the sensor is tested for different types of misalignments that can possibly occur due to the acting force. These results indicate that the metamaterial-based sensor holds great promise for its accurate, robust and wireless measurement of the elastic and plastic deformation of a rebar, providing beneficial information for remote structural health monitoring and post-earthquake damage assessment.

  1. A multihop key agreement scheme for wireless ad hoc networks based on channel characteristics.

    Science.gov (United States)

    Hao, Zhuo; Zhong, Sheng; Yu, Nenghai

    2013-01-01

    A number of key agreement schemes based on wireless channel characteristics have been proposed recently. However, previous key agreement schemes require that two nodes which need to agree on a key are within the communication range of each other. Hence, they are not suitable for multihop wireless networks, in which nodes do not always have direct connections with each other. In this paper, we first propose a basic multihop key agreement scheme for wireless ad hoc networks. The proposed basic scheme is resistant to external eavesdroppers. Nevertheless, this basic scheme is not secure when there exist internal eavesdroppers or Man-in-the-Middle (MITM) adversaries. In order to cope with these adversaries, we propose an improved multihop key agreement scheme. We show that the improved scheme is secure against internal eavesdroppers and MITM adversaries in a single path. Both performance analysis and simulation results demonstrate that the improved scheme is efficient. Consequently, the improved key agreement scheme is suitable for multihop wireless ad hoc networks.

  2. MB-OFDM-UWB Based Wireless Multimedia Sensor Networks for Underground Coalmine: A Survey

    Science.gov (United States)

    Han, Ruisong; Yang, Wei; You, Kaiming

    2016-01-01

    Safety production of coalmines is a task of top priority which plays an important role in guaranteeing, supporting and promoting the continuous development of the coal industry. Since traditional wireless sensor networks (WSNs) cannot fully meet the requirements of comprehensive environment monitoring of underground coalmines, wireless multimedia sensor networks (WMSNs), enabling the retrieval of multimedia information, are introduced to realize fine-grained and precise environment surveillance. In this paper, a framework for designing underground coalmine WMSNs based on Multi-Band Orthogonal Frequency-Division Multiplexing Ultra-wide Band (MB-OFDM-UWB) is presented. The selection of MB-OFDM-UWB wireless transmission solution is based on the characteristics of underground coalmines. Network structure and design challenges are analyzed first, which is the foundation for further discussion. Then, key supporting technologies and open research areas in different layers are surveyed, and we provide a detailed literature review of the state of the art strategies, algorithms and general solutions in these issues. Finally, other research issues like localization, information processing, and network management are discussed. PMID:27999258

  3. MB-OFDM-UWB Based Wireless Multimedia Sensor Networks for Underground Coalmine: A Survey.

    Science.gov (United States)

    Han, Ruisong; Yang, Wei; You, Kaiming

    2016-12-16

    Safety production of coalmines is a task of top priority which plays an important role in guaranteeing, supporting and promoting the continuous development of the coal industry. Since traditional wireless sensor networks (WSNs) cannot fully meet the requirements of comprehensive environment monitoring of underground coalmines, wireless multimedia sensor networks (WMSNs), enabling the retrieval of multimedia information, are introduced to realize fine-grained and precise environment surveillance. In this paper, a framework for designing underground coalmine WMSNs based on Multi-Band Orthogonal Frequency-Division Multiplexing Ultra-wide Band (MB-OFDM-UWB) is presented. The selection of MB-OFDM-UWB wireless transmission solution is based on the characteristics of underground coalmines. Network structure and design challenges are analyzed first, which is the foundation for further discussion. Then, key supporting technologies and open research areas in different layers are surveyed, and we provide a detailed literature review of the state of the art strategies, algorithms and general solutions in these issues. Finally, other research issues like localization, information processing, and network management are discussed.

  4. Wireless network system based multi-non-invasive sensors for smart home

    Science.gov (United States)

    Issa Ahmed, Rudhwan

    There are several techniques that have been implemented for smart homes usage; however, most of these techniques are limited to a few sensors. Many of these methods neither meet the needs of the user nor are cost-effective. This thesis discusses the design, development, and implementation of a wireless network system, based on multi-non-invasive sensors for smart home environments. This system has the potential to be used as a means to accurately, and remotely, determine the activities of daily living by continuously monitoring relatively simple parameters that measure the interaction between users and their surrounding environment. We designed and developed a prototype system to meet the specific needs of the elderly population. Unlike audio-video based health monitoring systems (which have associated problems such as the encroachment of privacy), the developed system's distinct features ensure privacy and are almost invisible to the occupants, thus increasing the acceptance levels of this system in household environments. The developed system not only achieved high levels of accuracy, but it is also portable, easy to use, cost-effective, and requires low data rates and less power compared to other wireless devices such as Wi-Fi, Bluetooth, wireless USB, Ultra wideband (UWB), or Infrared (IR) wireless. Field testing of the prototype system was conducted at different locations inside and outside of the Minto Building (Centre for Advanced Studies in Engineering at Carleton University) as well as other locations, such as the washroom, kitchen, and living room of a prototype apartment. The main goal of the testing was to determine the range of the prototype system and the functionality of each sensor in different environments. After it was verified that the system operated well in all of the tested environments, data were then collected at the different locations for analysis and interpretation in order to identify the activities of daily living of an occupant.

  5. A wireless sensor enabled by wireless power.

    Science.gov (United States)

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-11-22

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  6. Secure wireless embedded systems via component-based design

    DEFF Research Database (Denmark)

    Hjorth, T.; Torbensen, R.

    2010-01-01

    This paper introduces the method secure-by-design as a way of constructing wireless embedded systems using component-based modeling frameworks. This facilitates design of secure applications through verified, reusable software. Following this method we propose a security framework with a secure c......, with full support for confidentiality, authentication, and integrity using keypairs. The approach has been demonstrated in a multi-platform home automation prototype that can remotely unlock a door using a PDA over the Internet....

  7. Development of a PZT-based wireless digital monitor for composite impact monitoring

    International Nuclear Information System (INIS)

    Liu, Peipei; Yuan, Shenfang; Qiu, Lei

    2012-01-01

    One of the major concerns in the whole lifetime of composite materials in aircraft is their susceptibility to impact damage. And there has existed a need in recent years to develop an online structural health monitoring (SHM) system for impact monitoring. This paper proposes a new PZT-based wireless digital impact monitoring system development method aimed at giving a localized area for further inspection. Based on this method, a PZT-based wireless digital impact monitor (WDIM) with advantages of compactness, light weight, low power consumption and high efficiency is developed. Differently from conventional SHM systems, the complex analog circuits are removed and the whole process is achieved in a digital way by turning the output of the PZT sensor directly into a digital queue through a comparator. A simple but efficient sub-region location method is implemented in a field programmable gate array (FPGA) as the processing core of the WDIM to detect and record the impact events. In addition, wireless communication technology is used in the WDIM to transmit data and form a monitoring network. To illustrate the capability of the WDIM, a complete process dealing with an impact event is investigated and the stability of the WDIM is also evaluated in this paper. The WDIM shows its potential for real online applications in aircraft. (paper)

  8. Wireless Sensor Network Based Smart Parking System

    Directory of Open Access Journals (Sweden)

    Jeffrey JOSEPH

    2014-01-01

    Full Text Available Ambient Intelligence is a vision in which various devices come together and process information from multiple sources in order to exert control on the physical environment. In addition to computation and control, communication plays a crucial role in the overall functionality of such a system. Wireless Sensor Networks are one such class of networks, which meet these criteria. These networks consist of spatially distributed sensor motes which work in a co-operative manner to sense and control the environment. In this work, an implementation of an energy-efficient and cost-effective, wireless sensor networks based vehicle parking system for a multi-floor indoor parking facility has been introduced. The system monitors the availability of free parking slots and guides the vehicle to the nearest free slot. The amount of time the vehicle has been parked is monitored for billing purposes. The status of the motes (dead/alive is also recorded. Information like slot allocated, directions to the slot and billing data is sent as a message to customer’s mobile phones. This paper extends our previous work 1 with the development of a low cost sensor mote, about one tenth the cost of a commercially available mote, keeping in mind the price sensitive markets of the developing countries.

  9. Photonics-assisted wireless link based on mm-wave reconfigurable antennas

    DEFF Research Database (Denmark)

    Feliciano daCosta, Igor; Cerqueira Sodré, Arismar; Rodriguez Páez, Juan Sebastián

    2017-01-01

    The authors report a novel concept for photonics-assisted and broadband optical-wireless indoor networks based on optically-controlled reconfigurable antenna arrays (OCRAAs) and photonic down conversion (PDC) techniques, operating in the 28 and 38 GHz frequency bands. The antenna bandwidth is opt...... for access networks in the mm-wave frequency range....

  10. Energy-autonomous wireless vibration sensor for condition-based maintenance of machinery

    NARCIS (Netherlands)

    Wang, Z.; Bouwens, F.; Vullers, R.; Petré, F.; Devos, S.

    2011-01-01

    This paper addresses the development of an energy-autonomous wireless vibration sensor for condition-based monitoring of machinery. Such technology plays an increasingly important role in modern manufacturing industry. In this work, energy harvesting is realized by resorting to a custom designed

  11. Wireless sEMG-Based Body-Machine Interface for Assistive Technology Devices.

    Science.gov (United States)

    Fall, Cheikh Latyr; Gagnon-Turcotte, Gabriel; Dube, Jean-Francois; Gagne, Jean Simon; Delisle, Yanick; Campeau-Lecours, Alexandre; Gosselin, Clement; Gosselin, Benoit

    2017-07-01

    Assistive technology (AT) tools and appliances are being more and more widely used and developed worldwide to improve the autonomy of people living with disabilities and ease the interaction with their environment. This paper describes an intuitive and wireless surface electromyography (sEMG) based body-machine interface for AT tools. Spinal cord injuries at C5-C8 levels affect patients' arms, forearms, hands, and fingers control. Thus, using classical AT control interfaces (keypads, joysticks, etc.) is often difficult or impossible. The proposed system reads the AT users' residual functional capacities through their sEMG activity, and converts them into appropriate commands using a threshold-based control algorithm. It has proven to be suitable as a control alternative for assistive devices and has been tested with the JACO arm, an articulated assistive device of which the vocation is to help people living with upper-body disabilities in their daily life activities. The wireless prototype, the architecture of which is based on a 3-channel sEMG measurement system and a 915-MHz wireless transceiver built around a low-power microcontroller, uses low-cost off-the-shelf commercial components. The embedded controller is compared with JACO's regular joystick-based interface, using combinations of forearm, pectoral, masseter, and trapeze muscles. The measured index of performance values is 0.88, 0.51, and 0.41 bits/s, respectively, for correlation coefficients with the Fitt's model of 0.75, 0.85, and 0.67. These results demonstrate that the proposed controller offers an attractive alternative to conventional interfaces, such as joystick devices, for upper-body disabled people using ATs such as JACO.

  12. Temperature estimation of induction machines based on wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2018-04-01

    Full Text Available In this paper, a fourth-order Kalman filter (KF algorithm is implemented in the wireless sensor node to estimate the temperatures of the stator winding, the rotor cage and the stator core in the induction machine. Three separate wireless sensor nodes are used as the data acquisition systems for different input signals. Six Hall sensors are used to acquire the three-phase stator currents and voltages of the induction machine. All of them are processed to root mean square (rms in ampere and volt. A rotary encoder is mounted for the rotor speed and Pt-1000 is used for the temperature of the coolant air. The processed signals in the physical unit are transmitted wirelessly to the host wireless sensor node, where the KF is implemented with fixed-point arithmetic in Contiki OS. Time-division multiple access (TDMA is used to make the wireless transmission more stable. Compared to the floating-point implementation, the fixed-point implementation has the same estimation accuracy at only about one-fifth of the computation time. The temperature estimation system can work under any work condition as long as there are currents through the machine. It can also be rebooted for estimation even when wireless transmission has collapsed or packages are missing.

  13. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    C. Vimalarani

    2016-01-01

    Full Text Available Wireless Sensor Network (WSN is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.

  14. Fuzzy Weight Cluster-Based Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Teng Gao

    2015-01-01

    Full Text Available Cluster-based protocol is a kind of important routing in wireless sensor networks. However, due to the uneven distribution of cluster heads in classical clustering algorithm, some nodes may run out of energy too early, which is not suitable for large-scale wireless sensor networks. In this paper, a distributed clustering algorithm based on fuzzy weighted attributes is put forward to ensure both energy efficiency and extensibility. On the premise of a comprehensive consideration of all attributes, the corresponding weight of each parameter is assigned by using the direct method of fuzzy engineering theory. Then, each node works out property value. These property values will be mapped to the time axis and be triggered by a timer to broadcast cluster headers. At the same time, the radio coverage method is adopted, in order to avoid collisions and to ensure the symmetrical distribution of cluster heads. The aggregated data are forwarded to the sink node in the form of multihop. The simulation results demonstrate that clustering algorithm based on fuzzy weighted attributes has a longer life expectancy and better extensibility than LEACH-like algorithms.

  15. Cooperative wireless network control based health and activity monitoring system.

    Science.gov (United States)

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  16. Using Wireless Network Coding to Replace a Wired with Wireless Backhaul

    DEFF Research Database (Denmark)

    Thomsen, Henning; De Carvalho, Elisabeth; Popovski, Petar

    2014-01-01

    of wireless emulated wire (WEW), based on two-way relaying and network coding. This setup leads to a new type of broadcast problem, with decoding conditions that are specific to the requirement for equivalence to the wired backhaul. We formulate and solve the associated optimization problems. The proposed...... approach is a convincing argument that wireless backhauling solutions should be designed and optimized for two-way communication....

  17. A video wireless capsule endoscopy system powered wirelessly: design, analysis and experiment

    International Nuclear Information System (INIS)

    Pan, Guobing; Chen, Jiaoliao; Xin, Wenhui; Yan, Guozheng

    2011-01-01

    Wireless capsule endoscopy (WCE), as a relatively new technology, has brought about a revolution in the diagnosis of gastrointestinal (GI) tract diseases. However, the existing WCE systems are not widely applied in clinic because of the low frame rate and low image resolution. A video WCE system based on a wireless power supply is developed in this paper. This WCE system consists of a video capsule endoscope (CE), a wireless power transmission device, a receiving box and an image processing station. Powered wirelessly, the video CE has the abilities of imaging the GI tract and transmitting the images wirelessly at a frame rate of 30 frames per second (f/s). A mathematical prototype was built to analyze the power transmission system, and some experiments were performed to test the capability of energy transferring. The results showed that the wireless electric power supply system had the ability to transfer more than 136 mW power, which was enough for the working of a video CE. In in vitro experiments, the video CE produced clear images of the small intestine of a pig with the resolution of 320 × 240, and transmitted NTSC format video outside the body. Because of the wireless power supply, the video WCE system with high frame rate and high resolution becomes feasible, and provides a novel solution for the diagnosis of the GI tract in clinic

  18. Automobile inspection system based on wireless communication

    Science.gov (United States)

    Miao, Changyun; Ye, Chunqing

    2010-07-01

    This paper aims to research the Automobile Inspection System based on Wireless Communication, and suggests an overall design scheme which uses GPS for speed detection and Bluetooth and GPRS for communication. The communication between PDA and PC was realized by means of GPRS and TCP/IP; and the hardware circuit and software for detection terminal were devised by means of JINOU-3264 Bluetooth Module after analyzing the Bluetooth and its communication protocol. According to the results of debugging test, this system accomplished GPRS based data communication and management as well as the real-time detection on auto safety performance parameters in crash test via PC, whereby the need for mobility and reliability was met and the efficiency and level of detection was improved.

  19. A Remote WIRELESS Facility

    Directory of Open Access Journals (Sweden)

    Kees Uiterwijk

    2007-10-01

    Full Text Available Continuing need for available distance learning facilities has led to the development of a remote lab facility focusing on wireless technology. In the field of engineering there is a student need of gaining experience in set-up, monitoring and maintenance of 802.11A/B/G based wireless LAN environments.

  20. Gas Detection Instrument Based on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    ANSONG FENG

    2013-06-01

    Full Text Available The wireless sensor network is used to simulate poisonous gas generating system in the Fire-Fighting Simulated Training System. In the paper, we use the wireless signal to simulate the poisonous gas source and use received signal strength indicator (RSSI to simulate the distance between the fireman and the gas source. The gas detection instrument samples the temperature and sphygmus of the trainee and uses the wireless signal as poisonous gas signal. When the trainee enters into the poisonous gas area, the gas detection instrument warns with sound and light and sends the type, density value, the location of the poisonous gas and vital signs of the trainee to host. The paper discusses the software and hardware design of the gas detection instrument. The system has been used to the several of Fire-Fighting training systems.

  1. Spatial Air Index Based on Largest Empty Rectangles for Non-Flat Wireless Broadcast in Pervasive Computing

    Directory of Open Access Journals (Sweden)

    Jun-Hong Shen

    2016-11-01

    Full Text Available In pervasive computing, location-based services (LBSs are valuable for mobile clients based on their current locations. LBSs use spatial window queries to enable useful applications for mobile clients. Based on skewed access patterns of mobile clients, non-flat wireless broadcast has been shown to efficiently disseminate spatial objects to mobile clients. In this paper, we consider a scenario in which spatial objects are broadcast to mobile clients over a wireless channel in a non-flat broadcast manner to process window queries. For such a scenario, we propose an efficient spatial air index method to handle window query access in non-flat wireless broadcast environments. The concept of largest empty rectangles is used to avoid unnecessary examination of the broadcast content, thus reducing the processing time for window queries. Simulation results show that the proposed spatial air index method outperforms the existing methods under various settings.

  2. SDN Based User-Centric Framework for Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Zhaoming Lu

    2016-01-01

    Full Text Available Due to the rapid growth of mobile data traffic, more and more basestations and access points (APs have been densely deployed to provide users with ubiquitous network access, which make current wireless network a complex heterogeneous network (HetNet. However, traditional wireless networks are designed with network-centric approaches where different networks have different quality of service (QoS strategies and cannot easily cooperate with each other to serve network users. Massive network infrastructures could not assure users perceived network and service quality, which is an indisputable fact. To address this issue, we design a new framework for heterogeneous wireless networks with the principle of user-centricity, refactoring the network from users’ perspective to suffice their requirements and preferences. Different from network-centric approaches, the proposed framework takes advantage of Software Defined Networking (SDN and virtualization technology, which will bring better perceived services quality for wireless network users. In the proposed user-centric framework, control plane and data plane are decoupled to manage the HetNets in a flexible and coadjutant way, and resource virtualization technology is introduced to abstract physical resources of HetNets into unified virtualized resources. Hence, ubiquitous and undifferentiated network connectivity and QoE (quality of experience driven fine-grained resource management could be achieved for wireless network users.

  3. Cluster-based Data Gathering in Long-Strip Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    FANG, W.

    2012-02-01

    Full Text Available This paper investigates a special class of wireless sensor networks that are different from traditional ones in that the sensor nodes in this class of networks are deployed along narrowly elongated geographical areas and form a long-strip topology. According to hardware capabilities of current sensor nodes, a cluster-based protocol for reliable and efficient data gathering in long-strip wireless sensor networks (LSWSN is proposed. A well-distributed cluster-based architecture is first formed in the whole network through contention-based cluster head election. Cluster heads are responsible for coordination among the nodes within their clusters and aggregation of their sensory data, as well as transmission the data to the sink node on behalf of their own clusters. The intra-cluster coordination is based on the traditional TDMA schedule, in which the inter-cluster interference caused by the border nodes is solved by the multi-channel communication technique. The cluster reporting is based on the CSMA contention, in which a connected overlay network is formed by relay nodes to forward the data from the cluster heads through multi-hops to the sink node. The relay nodes are non-uniformly deployed to resolve the energy-hole problem which is extremely serious in the LSWSN. Extensive simulation results illuminate the distinguished performance of the proposed protocol.

  4. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    International Nuclear Information System (INIS)

    Fu Sheng; Song Haiqiang

    2012-01-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  5. A Forest Early Fire Detection Algorithm Based on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    CHENG Qiang

    2014-03-01

    Full Text Available Wireless Sensor Networks (WSN adopt GHz as their communication carrier, and it has been found that GHz carrier attenuation model in transmission path is associated with vegetation water content. In this paper, based on RSSI mechanism of WSN nodes we formed vegetation dehydration sensors. Through relationships between vegetation water content and carrier attenuation, we perceived forest vegetation water content variations and early fire gestation process, and established algorithms of early forest fires detection. Experiments confirm that wireless sensor networks can accurately perceive vegetation dehydration events and forest fire events. Simulation results show that, WSN dehydration perception channel (P2P representing 75 % amounts of carrier channel or more, it can meet the detection requirements, which presented a new algorithm of early forest fire detection.

  6. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    Science.gov (United States)

    Fu, Sheng; Song, Haiqiang

    2012-05-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  7. Mutual Image-Based Authentication Framework with JPEG2000 in Wireless Environment

    Directory of Open Access Journals (Sweden)

    Ginesu G

    2006-01-01

    Full Text Available Currently, together with the development of wireless connectivity, the need for a reliable and user-friendly authentication system becomes always more important. New applications, as e-commerce or home banking, require a strong level of protection, allowing for verification of legitimate users' identity and enabling the user to distinguis trusted servers from shadow ones. A novel framework for image-based authentication (IBA is then proposed and evaluated. In order to provide mutual authentication, the proposed method integrates an IBA password technique with a challenge-response scheme based on a shared secret key for image scrambling. The wireless environment is mainly addressed by the proposed system, which tries to overcome the severe constraints on security, data transmission capability, and user friendliness imposed by such environment. In order to achieve such results, the system offers a strong solution for authentication, taking into account usability and avoiding the need for hardware upgrades. Data and application scalability is provided through the JPEG2000 standard and JPIP framework.

  8. Energy efficient wireless sensor networks by using a fuzzy-based solution

    Science.gov (United States)

    Tirrito, Salvatore; Nicolosi, Giuseppina

    2016-12-01

    Wireless Sensor Networks are characterized by a distributed architecture realized by a set of autonomous electronic devices able to sense data from the surrounding environment and to communicate among them. These devices are battery powered since they may be used even to monitor hazardous events in inaccessible areas. As a consequence, it is preferable to assure the adoption of energy management solutions in order to extend the WSN lifetime, as far as possible. Moreover, it is crucial to guarantee that the nodes receive the transmitted data correctly. It is clear that trading off power optimization and quality of service has become one the most important concerns when dealing with modern systems based on WSNs. This paper introduces a solution based on a Fuzzy Logic Controller (FLC) focusing on the minimization of energy consumption of wireless sensor nodes. This is made possible because the sleeping time of these nodes is dynamically regulated by a FLC.

  9. EEM{sup TM} wireless supervision

    Energy Technology Data Exchange (ETDEWEB)

    Bilic, H. [Ericsson-Nikola Tesla d.d. Zagreb (Croatia)

    2000-07-01

    By adding the GSM network to the communication level of Energy Management systems, energy operating centres (EOC) can offer wireless access to the supervised equipment. Furthermore EOC can profit from rapid service development in the GSM networks. With implementation of GPRS to the GSM network EOC can instantly offer wireless access to external IP based networks such as Internet and corporate Intranets. The author describes architecture and key characteristic of Ericsson EnergyMaster{sup TM} (EEM{sup TM}) system for Energy Management, how and where to implement wireless supervision, wireless access to IP addresses and also how to implement new services provided by the GSM network. (orig.)

  10. Integrated Frequency Synthesis for Convergent Wireless Solutions

    CERN Document Server

    Atallah, Jad G

    2012-01-01

    This book describes the design and implementation of an electronic subsystem called the frequency synthesizer, which is a very important building block for any wireless transceiver. The discussion includes several new techniques for the design of such a subsystem which include the usage modes of the wireless device, including its support for several leading-edge wireless standards. This new perspective for designing such a demanding subsystem is based on the fact that optimizing the performance of a complete system is not always achieved by optimizing the performance of its building blocks separately.  This book provides “hands-on” examples of this sort of co-design of optimized subsystems, which can make the vision of an always-best-connected scenario a reality. Provides up-to-date design information regarding one of the most complex subsystems used in state-of-the-art wireless devices; Describes a wireless front-end solution designed to provide an always-best-connected solution, based on a wireless det...

  11. Optical burst switching based satellite backbone network

    Science.gov (United States)

    Li, Tingting; Guo, Hongxiang; Wang, Cen; Wu, Jian

    2018-02-01

    We propose a novel time slot based optical burst switching (OBS) architecture for GEO/LEO based satellite backbone network. This architecture can provide high speed data transmission rate and high switching capacity . Furthermore, we design the control plane of this optical satellite backbone network. The software defined network (SDN) and network slice (NS) technologies are introduced. Under the properly designed control mechanism, this backbone network is flexible to support various services with diverse transmission requirements. Additionally, the LEO access and handoff management in this network is also discussed.

  12. The design of the CMOS wireless bar code scanner applying optical system based on ZigBee

    Science.gov (United States)

    Chen, Yuelin; Peng, Jian

    2008-03-01

    The traditional bar code scanner is influenced by the length of data line, but the farthest distance of the wireless bar code scanner of wireless communication is generally between 30m and 100m on the market. By rebuilding the traditional CCD optical bar code scanner, a CMOS code scanner is designed based on the ZigBee to meet the demands of market. The scan system consists of the CMOS image sensor and embedded chip S3C2401X, when the two dimensional bar code is read, the results show the inaccurate and wrong code bar, resulted from image defile, disturber, reads image condition badness, signal interference, unstable system voltage. So we put forward the method which uses the matrix evaluation and Read-Solomon arithmetic to solve them. In order to construct the whole wireless optics of bar code system and to ensure its ability of transmitting bar code image signals digitally with long distances, ZigBee is used to transmit data to the base station, and this module is designed based on image acquisition system, and at last the wireless transmitting/receiving CC2430 module circuit linking chart is established. And by transplanting the embedded RTOS system LINUX to the MCU, an applying wireless CMOS optics bar code scanner and multi-task system is constructed. Finally, performance of communication is tested by evaluation software Smart RF. In broad space, every ZIGBEE node can realize 50m transmission with high reliability. When adding more ZigBee nodes, the transmission distance can be several thousands of meters long.

  13. Electronic Devices, Methods, and Computer Program Products for Selecting an Antenna Element Based on a Wireless Communication Performance Criterion

    DEFF Research Database (Denmark)

    2014-01-01

    A method of operating an electronic device includes providing a plurality of antenna elements, evaluating a wireless communication performance criterion to obtain a performance evaluation, and assigning a first one of the plurality of antenna elements to a main wireless signal reception...... and transmission path and a second one of the plurality of antenna elements to a diversity wireless signal reception path based on the performance evaluation....

  14. Wireless Sensor Network Handles Image Data

    Science.gov (United States)

    2008-01-01

    To relay data from remote locations for NASA s Earth sciences research, Goddard Space Flight Center contributed to the development of "microservers" (wireless sensor network nodes), which are now used commercially as a quick and affordable means to capture and distribute geographical information, including rich sets of aerial and street-level imagery. NASA began this work out of a necessity for real-time recovery of remote sensor data. These microservers work much like a wireless office network, relaying information between devices. The key difference, however, is that instead of linking workstations within one office, the interconnected microservers operate miles away from one another. This attribute traces back to the technology s original use: The microservers were originally designed for seismology on remote glaciers and ice streams in Alaska, Greenland, and Antarctica-acquiring, storing, and relaying data wirelessly between ground sensors. The microservers boast three key attributes. First, a researcher in the field can establish a "managed network" of microservers and rapidly see the data streams (recovered wirelessly) on a field computer. This rapid feedback permits the researcher to reconfigure the network for different purposes over the course of a field campaign. Second, through careful power management, the microservers can dwell unsupervised in the field for up to 2 years, collecting tremendous amounts of data at a research location. The third attribute is the exciting potential to deploy a microserver network that works in synchrony with robotic explorers (e.g., providing ground truth validation for satellites, supporting rovers as they traverse the local environment). Managed networks of remote microservers that relay data unsupervised for up to 2 years can drastically reduce the costs of field instrumentation and data rec

  15. WING/WORLD: An Open Experimental Toolkit for the Design and Deployment of IEEE 802.11-Based Wireless Mesh Networks Testbeds

    Directory of Open Access Journals (Sweden)

    Daniele Miorandi

    2010-01-01

    Full Text Available Wireless Mesh Networks represent an interesting instance of light-infrastructure wireless networks. Due to their flexibility and resiliency to network failures, wireless mesh networks are particularly suitable for incremental and rapid deployments of wireless access networks in both metropolitan and rural areas. This paper illustrates the design and development of an open toolkit aimed at supporting the design of different solutions for wireless mesh networking by enabling real evaluation, validation, and demonstration. The resulting testbed is based on off-the-shelf hardware components and open-source software and is focused on IEEE 802.11 commodity devices. The software toolkit is based on an “open” philosophy and aims at providing the scientific community with a tool for effective and reproducible performance analysis of WMNs. The paper describes the architecture of the toolkit, and its core functionalities, as well as its potential evolutions.

  16. Area efficient decimation filter based on merged delay transformation for wireless applications

    International Nuclear Information System (INIS)

    Rashid, U.; Siddiq, F.; Muhammad, T.; Jamal, H.

    2013-01-01

    Expected by 2014 is the 4G standard for cellular wireless communications, which will improve bandwidth, connectivity and roaming for mobile and stationary devices, 4G and other wireless systems are currently hot topics of research and development in the communication field. In wireless technologies like Global System for Mobile (GSM), Digital Enhanced Cordless Telecommunications (DECT) and Wi-Fi, decimation filters are essential part of transceivers being used. This paper describes a decimation filter which is efficient in terms of both the power consumption and the area used. The architecture is based upon Merged Delay Transformation (MDT). The existing Merged Delay Transformed Infinite Impulse Response (IIR) architecture is power efficient but requires larger area. The proposed and existing filters were implemented on Field-Programmable Gate Array (FPGA). The computational cost of the proposed filter is reduced to (3N/2 + 1) and M-1 times reduction in the number of multipliers in comparison to the existing FIR filter is achieved. The power consumption and speed remain nearly the same. (author)

  17. Location-Aware Dynamic Session-Key Management for Grid-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    I-Hsien Lin

    2010-08-01

    Full Text Available Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths.

  18. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    Science.gov (United States)

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-08-28

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  19. Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jeongyeup Paek

    2014-08-01

    Full Text Available This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet’s built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Jacinto Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  20. Structural processing for wireless communications

    CERN Document Server

    Lu, Jianhua; Ge, Ning

    2015-01-01

    This brief presents an alternative viewpoint on processing technology for wireless communications based on recent research advances. As a lever in emerging processing technology, the structure perspective addresses the complexity and uncertainty issues found in current wireless applications. Likewise, this brief aims at providing a new prospective to the development of communication technology and information science, while stimulating new theories and technologies for wireless systems with ever-increasing complexity. Readers of this brief may range from graduate students to researchers in related fields.

  1. Wireless Sensor Network-Based Service Provisioning by a Brokering Platform.

    Science.gov (United States)

    Guijarro, Luis; Pla, Vicent; Vidal, Jose R; Naldi, Maurizio; Mahmoodi, Toktam

    2017-05-12

    This paper proposes a business model for providing services based on the Internet of Things through a platform that intermediates between human users and Wireless Sensor Networks (WSNs). The platform seeks to maximize its profit through posting both the price charged to each user and the price paid to each WSN. A complete analysis of the profit maximization problem is performed in this paper. We show that the service provider maximizes its profit by incentivizing all users and all Wireless Sensor Infrastructure Providers (WSIPs) to join the platform. This is true not only when the number of users is high, but also when it is moderate, provided that the costs that the users bear do not trespass a cost ceiling. This cost ceiling depends on the number of WSIPs, on the value of the intrinsic value of the service and on the externality that the WSIP has on the user utility.

  2. The Design of Wireless Sensor Network System Based on ZigBee Technology for Greenhouse

    International Nuclear Information System (INIS)

    Zhu, Y W; Zhong, X X; Shi, J F

    2006-01-01

    Wireless sensor network is a new research field. It can be used in some special situation for signal collection, processing and transmitting. Zigbee is a new Wireless sensor network technology characteristic of less distance and low speed. It is a new wireless network protocol stack of IEEE 802.15.4. Lately traditional system to collects parameters for Greenhouse is widely used in agriculture. The traditional system adopts wired way wiring, which makes the system complex and expensive. Generally modern Greenhouse has hundreds of square meters and they may plant variety of plants depending on different seasons. So we need to adjust the sensors which collect parameters for Greenhouse to a better place to work more efficient. Adopting wireless way wiring is convenient and economical. This paper developed a wireless sensor network system based on ZigBee technology for greenhouse. It offers flexibility and mobility to save cost and energy spent on wiring. The framework hardware and software structure, related programming are also discussed in this paper. Comparing the system which uses ZigBee technology with traditional wired network system for greenhouse, it has advantage of low cost..low power and wider coverage. Additionally it complies with IEEE802.15.4 protocol, which makes it convenient to communicate with other products that comply with the protocol too

  3. Implementation and Analysis of a Wireless Sensor Network-Based Pet Location Monitoring System for Domestic Scenarios.

    Science.gov (United States)

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leyre; Astrain, José Javier; Villadangos, Jesús; Santesteban, Daniel; Falcone, Francisco

    2016-08-30

    The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN). Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.

  4. Implementation and Analysis of a Wireless Sensor Network-Based Pet Location Monitoring System for Domestic Scenarios

    Directory of Open Access Journals (Sweden)

    Erik Aguirre

    2016-08-01

    Full Text Available The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN. Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.

  5. Web of Things-Based Remote Monitoring System for Coal Mine Safety Using Wireless Sensor Network

    OpenAIRE

    Bo, Cheng; Xin, Cheng; Zhongyi, Zhai; Chengwen, Zhang; Junliang, Chen

    2014-01-01

    Frequent accidents have occurred in coal mine enterprises; therefore, raising the technological level of coal mine safety monitoring systems is an urgent problem. Wireless sensor networks (WSN), as a new field of research, have broad application prospects. This paper proposes a Web of Things- (WoT-) based remote monitoring system that takes full advantage of wireless sensor networks in combination with the CAN bus communication technique that abstracts the underground sensor data and capabili...

  6. Design of Tropical Flowers Environmental Parameters Wireless Monitoring System Based on MSP430

    Directory of Open Access Journals (Sweden)

    Huang Jian-Qing

    2016-01-01

    Full Text Available Considering the importance of real-time monitoring tropical flower environment parameters, the paper designs a wireless monitoring system based on MSP430F149 for tropical flower growing parameters. The proposed system uses sensor nodes to obtain data of temperature, humidity and light intensity, sink node to collect data from sensor nodes through wireless sensor network, and monitoring center to process data downloaded from the sink node through RS232 serial port. The node hardware platform is composed of a MSP430F149 processor, AM2306 and NHZD10AI sensors used to adopt temperature, humidity and light intensity data, and an nRF905 RF chip used to receive and send data. The node software, operated in IAR Embedded Workbench, adopts C Language to do node data collection and process, wireless transmission and serial port communication. The software of monitoring center develops in VB6.0, which can provide vivid and explicit real-time monitoring platform for flower farmers.

  7. Hybrid wireless-over-fiber transmission system based on multiple injection-locked FP LDs.

    Science.gov (United States)

    Li, Chung-Yi; Lu, Hai-Han; Chu, Chien-An; Ying, Cheng-Ling; Lu, Ting-Chien; Peng, Peng-Chun

    2015-07-27

    A hybrid wireless-over-fiber (WoF) transmission system based on multiple injection-locked Fabry-Perot laser diodes (FP LDs) is proposed and experimentally demonstrated. Unlike the traditional hybrid WoF transmission systems that require multiple distributed feedback (DFB) LDs to support different kinds of services, the proposed system employs multiple injection-locked FP LDs to provide different kinds of applications. Such a hybrid WoF transmission system delivers downstream intensity-modulated 20-GHz microwave (MW)/60-GHz millimeter-wave (MMW)/550-MHz cable television (CATV) signals and upstream phase-remodulated 20-GHz MW signal. Excellent bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed over a 40-km single-mode fiber (SMF) and a 4-m radio frequency (RF) wireless transport. Such a hybrid WoF transmission system has practical applications for fiber-wireless convergence to provide broadband integrated services, including telecommunication, data communication, and CATV services.

  8. Network design consideration of a satellite-based mobile communications system

    Science.gov (United States)

    Yan, T.-Y.

    1986-01-01

    Technical considerations for the Mobile Satellite Experiment (MSAT-X), the ground segment testbed for the low-cost spectral efficient satellite-based mobile communications technologies being developed for the 1990's, are discussed. The Network Management Center contains a flexible resource sharing algorithm, the Demand Assigned Multiple Access scheme, which partitions the satellite transponder bandwidth among voice, data, and request channels. Satellite use of multiple UHF beams permits frequency reuse. The backhaul communications and the Telemetry, Tracking and Control traffic are provided through a single full-coverage SHF beam. Mobile Terminals communicate with the satellite using UHF. All communications including SHF-SHF between Base Stations and/or Gateways, are routed through the satellite. Because MSAT-X is an experimental network, higher level network protocols (which are service-specific) will be developed only to test the operation of the lowest three levels, the physical, data link, and network layers.

  9. Impact of Various Parameters on the Performance of Inter-aircraft Optical Wireless Communication Link

    Science.gov (United States)

    Singh, Mehtab

    2017-12-01

    Optical wireless communication (OWC) systems also known as Free space optics (FSO) are capable of providing high channel bandwidth, high data transmission rates, low power consumption, and high security. OWC links are being considered in different applications such as inter-satellite links, terrestrial links, and inter-aircraft communication links. This paper investigates the impact of different system parameters such as transmission power level, operating wavelength, transmitter pointing error angle, bit transmission rate, atmospheric attenuation, antenna aperture diameter, geometric losses, the responsivity of the photodetector, and link range on the performance of inter-aircraft optical wireless communication link.

  10. Head ballistocardiogram based on wireless multi-location sensors.

    Science.gov (United States)

    Onizuka, Kohei; Sodini, Charles G

    2015-08-01

    Recently a wearable BCG monitoring technique based on an accelerometer worn at the ear was demonstrated to replace a conventional bulky BCG acquisition system. In this work, a multi-location wireless vital signs monitor was developed, and at least two common acceleration vectors correlating to sitting-BCG were found in the supine position by using head PPG signal as a reference for eight healthy human subjects. The head side amplitude in the supine position is roughly proportional to the sitting amplitude that is in turn proportional to the stroke volume. Signal processing techniques to identify J-waves in a subject having small amplitude was also developed based on the two common vectors at the head side and top.

  11. Existing PON Infrastructure Supported Hybrid Fiber-Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Yu, Xianbin; Zhao, Ying; Deng, Lei

    2012-01-01

    We propose a hybrid fiber wireless sensor network based on the existing PON infrastructure. The feasibility of remote sensing and PON convergence is experimentally proven by transmitting direct-sequence spread-spectrum wireless sensing and 2.5Gbps GPON signals.......We propose a hybrid fiber wireless sensor network based on the existing PON infrastructure. The feasibility of remote sensing and PON convergence is experimentally proven by transmitting direct-sequence spread-spectrum wireless sensing and 2.5Gbps GPON signals....

  12. Flash floods warning technique based on wireless communication networks data

    Science.gov (United States)

    David, Noam; Alpert, Pinhas; Messer, Hagit

    2010-05-01

    Flash floods can occur throughout or subsequent to rainfall events, particularly in cases where the precipitation is of high-intensity. Unfortunately, each year these floods cause severe property damage and heavy casualties. At present, there are no sufficient real time flash flood warning facilities found to cope with this phenomenon. Here we show the tremendous potential of flash floods advanced warning based on precipitation measurements of commercial microwave links. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. We present the flash flood warning potential of the wireless communication system for two different cases when floods occurred at the Judean desert and at the northern Negev in Israel. In both cases, an advanced warning regarding the hazard could have been announced based on this system. • This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 173/08). This work was also supported by a grant from the Yeshaya Horowitz Association, Jerusalem. Additional support was given by the PROCEMA-BMBF project and by the GLOWA-JR BMBF project.

  13. Planning for a data base system to support satellite conceptual design

    Science.gov (United States)

    Claydon, C. R.

    1976-01-01

    The conceptual design of an automated satellite design data base system is presented. The satellite catalog in the system includes data for all earth orbital satellites funded to the hardware stage for launch between 1970 and 1980, and provides a concise compilation of satellite capabilities and design parameters. The cost of satellite subsystems and components will be added to the base. Data elements are listed and discussed. Sensor and science and applications opportunities catalogs will be included in the data system. Capabilities of the BASIS storage, retrieval, and analysis system are used in the system design.

  14. Hierarchical control of a photovoltaic/battery based DC microgrid including electric vehicle wireless charging station

    DEFF Research Database (Denmark)

    Xiao, Zhao xia; Fan, Haodong; Guerrero, Josep M.

    2017-01-01

    In this paper, the hierarchical control strategy of a photovoltaic/battery based dc microgrid is presented for electric vehicle (EV) wireless charging. Considering irradiance variations, battery charging/discharging requirements, wireless power transmission characteristics, and onboard battery...... coils, receiving coils and compensation capacitors, the wireless power transmission system is designed to be resonant when it is operating at the rated power, with the aim to achieve the optimum transmission system efficiency. Simulation and experimental results of the hierarchical control...... charging power change and other factors, the possible operation states are obtained. A hierarchical control strategy is established, which includes central and local controllers. The central controller is responsible for the selection and transfer of operation states and the management of the local...

  15. Voice Quality Estimation in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Petr Zach

    2015-01-01

    Full Text Available This article deals with the impact of Wireless (Wi-Fi networks on the perceived quality of voice services. The Quality of Service (QoS metrics must be monitored in the computer network during the voice data transmission to ensure proper voice service quality the end-user has paid for, especially in the wireless networks. In addition to the QoS, research area called Quality of Experience (QoE provides metrics and methods for quality evaluation from the end-user’s perspective. This article focuses on a QoE estimation of Voice over IP (VoIP calls in the wireless networks using network simulator. Results contribute to voice quality estimation based on characteristics of the wireless network and location of a wireless client.

  16. mm-Wave Wireless Communications based on Silicon Photonics Integrated Circuits

    DEFF Research Database (Denmark)

    Rommel, Simon; Heck, Martijn; Vegas Olmos, Juan José

    Hybrid photonic-wireless transmission schemes in the mm-wave frequency range are promising candidates to enable the multi-gigabit per second data communications required from wireless and mobile networks of the 5th and future generations. Photonic integration may pave the way to practical applica...

  17. K-best decoders for 5G+ wireless communication

    CERN Document Server

    Rahman, Mehnaz

    2017-01-01

    This book discusses new, efficient and hardware realizable algorithms that can attain the performance of beyond 5G wireless communication. The authors explain topics gradually, stepping from basic MIMO detection to optimized schemes for both hard and soft domain MIMO detection and also to the feasible VLSI implementation, scalable to any MIMO configuration (including massive MIMO, used in satellite/space communication). The techniques described in this book enable readers to implement real designs, with reduced computational complexity and improved performance.

  18. A New Missing Values Estimation Algorithm in Wireless Sensor Networks Based on Convolution

    Directory of Open Access Journals (Sweden)

    Feng Liu

    2013-04-01

    Full Text Available Nowadays, with the rapid development of Internet of Things (IoT applications, data missing phenomenon becomes very common in wireless sensor networks. This problem can greatly and directly threaten the stability and usability of the Internet of things applications which are constructed based on wireless sensor networks. How to estimate the missing value has attracted wide interest, and some solutions have been proposed. Different with the previous works, in this paper, we proposed a new convolution based missing value estimation algorithm. The convolution theory, which is usually used in the area of signal and image processing, can also be a practical and efficient way to estimate the missing sensor data. The results show that the proposed algorithm in this paper is practical and effective, and can estimate the missing value accurately.

  19. Indoor optical wireless systems : technology, trends, and applications

    NARCIS (Netherlands)

    Koonen, T.

    2018-01-01

    Indoor wireless traffic is evolving at a staggering pace, and is quickly depleting radio spectrum resources. Optical wireless communication (OWC) offers powerful solutions for resolving this imminent capacity crunch of radio-based wireless networks. OWC is not intended to fully replace radio

  20. [The Development of Information Centralization and Management Integration System for Monitors Based on Wireless Sensor Network].

    Science.gov (United States)

    Xu, Xiu; Zhang, Honglei; Li, Yiming; Li, Bin

    2015-07-01

    Developed the information centralization and management integration system for monitors of different brands and models with wireless sensor network technologies such as wireless location and wireless communication, based on the existing wireless network. With adaptive implementation and low cost, the system which possesses the advantages of real-time, efficiency and elaboration is able to collect status and data of the monitors, locate the monitors, and provide services with web server, video server and locating server via local network. Using an intranet computer, the clinical and device management staffs can access the status and parameters of monitors. Applications of this system provide convenience and save human resource for clinical departments, as well as promote the efficiency, accuracy and elaboration for the device management. The successful achievement of this system provides solution for integrated and elaborated management of the mobile devices including ventilator and infusion pump.

  1. A New Approach to Design Autonomous Wireless Sensor Node Based on RF Energy Harvesting System.

    Science.gov (United States)

    Mouapi, Alex; Hakem, Nadir

    2018-01-05

    Energy Harvesting techniques are increasingly seen as the solution for freeing the wireless sensor nodes from their battery dependency. However, it remains evident that network performance features, such as network size, packet length, and duty cycle, are influenced by the sum of recovered energy. This paper proposes a new approach to defining the specifications of a stand-alone wireless node based on a Radio-frequency Energy Harvesting System (REHS). To achieve adequate performance regarding the range of the Wireless Sensor Network (WSN), techniques for minimizing the energy consumed by the sensor node are combined with methods for optimizing the performance of the REHS. For more rigor in the design of the autonomous node, a comprehensive energy model of the node in a wireless network is established. For an equitable distribution of network charges between the different nodes that compose it, the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol is used for this purpose. The model considers five energy-consumption sources, most of which are ignored in recently used models. By using the hardware parameters of commercial off-the-shelf components (Mica2 Motes and CC2520 of Texas Instruments), the energy requirement of a sensor node is quantified. A miniature REHS based on a judicious choice of rectifying diodes is then designed and developed to achieve optimal performance in the Industrial Scientific and Medical (ISM) band centralized at 2.45 GHz . Due to the mismatch between the REHS and the antenna, a band pass filter is designed to reduce reflection losses. A gradient method search is used to optimize the output characteristics of the adapted REHS. At 1 mW of input RF power, the REHS provides an output DC power of 0.57 mW and a comparison with the energy requirement of the node allows the Base Station (BS) to be located at 310 m from the wireless nodes when the Wireless Sensor Network (WSN) has 100 nodes evenly spread over an area of 300 × 300 m 2 and

  2. A New Approach to Design Autonomous Wireless Sensor Node Based on RF Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Alex Mouapi

    2018-01-01

    Full Text Available Energy Harvesting techniques are increasingly seen as the solution for freeing the wireless sensor nodes from their battery dependency. However, it remains evident that network performance features, such as network size, packet length, and duty cycle, are influenced by the sum of recovered energy. This paper proposes a new approach to defining the specifications of a stand-alone wireless node based on a Radio-frequency Energy Harvesting System (REHS. To achieve adequate performance regarding the range of the Wireless Sensor Network (WSN, techniques for minimizing the energy consumed by the sensor node are combined with methods for optimizing the performance of the REHS. For more rigor in the design of the autonomous node, a comprehensive energy model of the node in a wireless network is established. For an equitable distribution of network charges between the different nodes that compose it, the Low-Energy Adaptive Clustering Hierarchy (LEACH protocol is used for this purpose. The model considers five energy-consumption sources, most of which are ignored in recently used models. By using the hardware parameters of commercial off-the-shelf components (Mica2 Motes and CC2520 of Texas Instruments, the energy requirement of a sensor node is quantified. A miniature REHS based on a judicious choice of rectifying diodes is then designed and developed to achieve optimal performance in the Industrial Scientific and Medical (ISM band centralized at 2.45 GHz . Due to the mismatch between the REHS and the antenna, a band pass filter is designed to reduce reflection losses. A gradient method search is used to optimize the output characteristics of the adapted REHS. At 1 mW of input RF power, the REHS provides an output DC power of 0.57 mW and a comparison with the energy requirement of the node allows the Base Station (BS to be located at 310 m from the wireless nodes when the Wireless Sensor Network (WSN has 100 nodes evenly spread over an area of 300

  3. Multitask Learning-Based Security Event Forecast Methods for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hui He

    2016-01-01

    Full Text Available Wireless sensor networks have strong dynamics and uncertainty, including network topological changes, node disappearance or addition, and facing various threats. First, to strengthen the detection adaptability of wireless sensor networks to various security attacks, a region similarity multitask-based security event forecast method for wireless sensor networks is proposed. This method performs topology partitioning on a large-scale sensor network and calculates the similarity degree among regional subnetworks. The trend of unknown network security events can be predicted through multitask learning of the occurrence and transmission characteristics of known network security events. Second, in case of lacking regional data, the quantitative trend of unknown regional network security events can be calculated. This study introduces a sensor network security event forecast method named Prediction Network Security Incomplete Unmarked Data (PNSIUD method to forecast missing attack data in the target region according to the known partial data in similar regions. Experimental results indicate that for an unknown security event forecast the forecast accuracy and effects of the similarity forecast algorithm are better than those of single-task learning method. At the same time, the forecast accuracy of the PNSIUD method is better than that of the traditional support vector machine method.

  4. Rotating-Disk-Based Hybridized Electromagnetic-Triboelectric Nanogenerator for Sustainably Powering Wireless Traffic Volume Sensors.

    Science.gov (United States)

    Zhang, Binbin; Chen, Jun; Jin, Long; Deng, Weili; Zhang, Lei; Zhang, Haitao; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin

    2016-06-28

    Wireless traffic volume detectors play a critical role for measuring the traffic-flow in a real-time for current Intelligent Traffic System. However, as a battery-operated electronic device, regularly replacing battery remains a great challenge, especially in the remote area and wide distribution. Here, we report a self-powered active wireless traffic volume sensor by using a rotating-disk-based hybridized nanogenerator of triboelectric nanogenerator and electromagnetic generator as the sustainable power source. Operated at a rotating rate of 1000 rpm, the device delivered an output power of 17.5 mW, corresponding to a volume power density of 55.7 W/m(3) (Pd = P/V, see Supporting Information for detailed calculation) at a loading resistance of 700 Ω. The hybridized nanogenerator was demonstrated to effectively harvest energy from wind generated by a moving vehicle through the tunnel. And the delivered power is capable of triggering a counter via a wireless transmitter for real-time monitoring the traffic volume in the tunnel. This study further expands the applications of triboelectric nanogenerators for high-performance ambient mechanical energy harvesting and as sustainable power sources for driving wireless traffic volume sensors.

  5. Power-Efficient Beacon Recognition Method Based on Periodic Wake-Up for Industrial Wireless Devices.

    Science.gov (United States)

    Song, Soonyong; Lee, Donghun; Jang, Ingook; Choi, Jinchul; Son, Youngsung

    2018-04-17

    Energy harvester-integrated wireless devices are attractive for generating semi-permanent power from wasted energy in industrial environments. The energy-harvesting wireless devices may have difficulty in their communication with access points due to insufficient power supply for beacon recognition during network initialization. In this manuscript, we propose a novel method of beacon recognition based on wake-up control to reduce instantaneous power consumption in the initialization procedure. The proposed method applies a moving window for the periodic wake-up of the wireless devices. For unsynchronized wireless devices, beacons are always located in the same positions within each beacon interval even though the starting offsets are unknown. Using these characteristics, the moving window checks the existence of the beacon associated withspecified resources in a beacon interval, checks again for neighboring resources at the next beacon interval, and so on. This method can reduce instantaneous power and generates a surplus of charging time. Thus, the proposed method alleviates the problems of power insufficiency in the network initialization. The feasibility of the proposed method is evaluated using computer simulations of power shortage in various energy-harvesting conditions.

  6. Range based power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-08-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in Wireless Mesh Networks (WMNs). In this paper, researchers present a range based dynamic power control for MRMC WMNs. First, WMN is represented as a set of disjoint Unified...

  7. Wireless overhead line temperature sensor based on RF cavity resonance

    International Nuclear Information System (INIS)

    Ghafourian, Maryam; Nezhad, Abolghasem Zeidaabadi; Bridges, Greg E; Thomson, Douglas J

    2013-01-01

    The importance of maximizing power transfer through overhead transmission lines necessitates the use of dynamic power control to keep transmission line temperatures within acceptable limits. Excessive conductor operating temperatures lead to an increased sag of the transmission line conductor and may reduce their expected life. In this paper, a passive wireless sensor based on a resonant radio frequency (RF) cavity is presented which can be used to measure overhead transmission line temperature. The temperature sensor does not require a power supply and can be easily clamped to the power line with an antenna attached. Changing temperature causes a change of cavity dimensions and a shift in resonant frequency. The resonant frequency of the cavity can be interrogated wirelessly. This temperature sensor has a resolution of 0.07 °C and can be interrogated from distances greater than 4.5 m. The sensor has a deviation from linearity of less than 2 °C. (paper)

  8. Design and implementation about the campus wireless network

    International Nuclear Information System (INIS)

    Qi Fazhi; An Dehai; Wang Yanming; Cui Tao; Chen Gang; Liu Baoxu

    2007-01-01

    With the development of network applications, flexibility and wieldy is becoming more and more important for network users. Based on the analysis of the needs of campus wireless network. This article design and analysis the deployment mechanism, register system and protection system of wireless network. Built a wireless network system base on IHEP network environment, realization the 'always and everywhere' access the network in the IHEP campus area. (authors)

  9. Microwave materials for wireless applications

    CERN Document Server

    Cruickshank, David B

    2011-01-01

    This practical resource offers you an in-depth, up-to-date understanding of the use of microwave magnetic materials for cutting-edge wireless applications. The book discusses device applications used in wireless infrastructure base stations, point-to-point radio links, and a range of more specialized microwave systems. You find detailed discussions on the attributes of each family of magnetic materials with respect to specific wireless applications. Moreover, the book addresses two of the hottest topics in the field today - insertion loss and intermodulation. This comprehensive reference also

  10. A Wireless Swing Angle Measurement Scheme Using Attitude Heading Reference System Sensing Units Based on Microelectromechanical Devices

    Directory of Open Access Journals (Sweden)

    Bingtuan Gao

    2014-11-01

    Full Text Available Feasible real-time swing angle measurement is significant to improve the efficiency and safety of industrial crane systems. This paper presents a wireless microelectromechanical system (MEMS-based swing angle measurement system. The system consists of two attitude heading reference system (AHRS sensing units with a wireless communication function, which are mounted on the hook (or payload and the jib (or base of the crane, respectively. With a combination of a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, the standard extended Kalman filter (EKF is used to estimate the desired orientation of the payload and the base. Wireless ZigBee communication is employed to transmit the orientation of the payload to the sensing unit mounted on the base, which measures the orientation of the base. Because several physical parameters from the payload to the base can be acquired from the original crane control system, the swing angles of the payload can be calculated based on the two measured orientation parameters together with the known physical parameters. Experiments were performed to show the feasibility and effectiveness of the proposed swing angle measurement system.

  11. An SDR based AIS receiver for satellites

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Mortensen, Hans Peter; Nielsen, Jens Frederik Dalsgaard

    2011-01-01

    For a few years now, there has been a high interest in monitoring the global ship traffic from space. A few satellite, capable of listening for ship borne AIS transponders have already been launched, and soon the AAUSAT3, carrying two different types of AIS receivers will also be launched. One...... of the AIS receivers onboard AAUSAT3 is an SDR based AIS receiver. This paper serves to describe the background of the AIS system, and how the SDR based receiver has been integrated into the AAUSAT3 satellite. Amongst some of the benefits of using an SDR based receiver is, that due to its versatility, new...... detection algorithms are easily deployed, and it is easily adapted the new proposed AIS transmission channels....

  12. A Feedback-Based Secure Path Approach for Wireless Sensor Network Data Collection

    Science.gov (United States)

    Mao, Yuxin; Wei, Guiyi

    2010-01-01

    The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose. PMID:22163424

  13. A feedback-based secure path approach for wireless sensor network data collection.

    Science.gov (United States)

    Mao, Yuxin; Wei, Guiyi

    2010-01-01

    The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose.

  14. A Feedback-Based Secure Path Approach for Wireless Sensor Network Data Collection

    Directory of Open Access Journals (Sweden)

    Guiyi Wei

    2010-10-01

    Full Text Available The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose.

  15. Terahertz wireless communication based on InP-related devices (Conference Presentation)

    Science.gov (United States)

    Lee, Eui Su; Kim, Hyun-Soo; Park, Jeong-Woo; Park, Dong Woo; Park, Kyung Hyun

    2017-02-01

    Recently, a wide interest has been gathered in using terahertz (THz) waves as the carrier waves for the next generation of broadband wireless communications. Upon this objective, the photonics technologies are very attractive for their usefulness in signal generations, modulations and detections with enhanced bandwidth and data rates, and the readiness in combining to the existing fiber-optic or wireless networks. In this paper, as a preliminary step toward the THz wireless communications, a THz wireless interconnection system with a broadband antenna-integrated uni-traveling-carrier photodiode (UTC-PD) and a Shottky-barrier diode (SBD) module will be presented. In our system, optical beating signals are generated and digitally modulated by the optical intensity modulator driven by a pulse pattern generator (PPG). As the receiver a SBD and an IF filter followed by a low-noise preamplifier and a limiting amplifier was used. With a 6-mA photocurrent of the UTC-PD which corresponds to the transmitter output power of about 30 μW at 280 GHz, an error-free (BERdefinition serial digital interface format was successfully transmitted over a wireless link.

  16. An Improved Approach for RSSI-Based only Calibration-Free Real-Time Indoor Localization on IEEE 802.11 and 802.15.4 Wireless Networks

    Directory of Open Access Journals (Sweden)

    Marco Passafiume

    2017-03-01

    Full Text Available Assuming a reliable and responsive spatial contextualization service is a must-have in IEEE 802.11 and 802.15.4 wireless networks, a suitable approach consists of the implementation of localization capabilities, as an additional application layer to the communication protocol stack. Considering the applicative scenario where satellite-based positioning applications are denied, such as indoor environments, and excluding data packet arrivals time measurements due to lack of time resolution, received signal strength indicator (RSSI measurements, obtained according to IEEE 802.11 and 802.15.4 data access technologies, are the unique data sources suitable for indoor geo-referencing using COTS devices. In the existing literature, many RSSI based localization systems are introduced and experimentally validated, nevertheless they require periodic calibrations and significant information fusion from different sensors that dramatically decrease overall systems reliability and their effective availability. This motivates the work presented in this paper, which introduces an approach for an RSSI-based calibration-free and real-time indoor localization. While switched-beam array-based hardware (compliant with IEEE 802.15.4 router functionality has already been presented by the author, the focus of this paper is the creation of an algorithmic layer for use with the pre-existing hardware capable to enable full localization and data contextualization over a standard 802.15.4 wireless sensor network using only RSSI information without the need of lengthy offline calibration phase. System validation reports the localization results in a typical indoor site, where the system has shown high accuracy, leading to a sub-metrical overall mean error and an almost 100% site coverage within 1 m localization error.

  17. An Improved Approach for RSSI-Based only Calibration-Free Real-Time Indoor Localization on IEEE 802.11 and 802.15.4 Wireless Networks.

    Science.gov (United States)

    Passafiume, Marco; Maddio, Stefano; Cidronali, Alessandro

    2017-03-29

    Assuming a reliable and responsive spatial contextualization service is a must-have in IEEE 802.11 and 802.15.4 wireless networks, a suitable approach consists of the implementation of localization capabilities, as an additional application layer to the communication protocol stack. Considering the applicative scenario where satellite-based positioning applications are denied, such as indoor environments, and excluding data packet arrivals time measurements due to lack of time resolution, received signal strength indicator (RSSI) measurements, obtained according to IEEE 802.11 and 802.15.4 data access technologies, are the unique data sources suitable for indoor geo-referencing using COTS devices. In the existing literature, many RSSI based localization systems are introduced and experimentally validated, nevertheless they require periodic calibrations and significant information fusion from different sensors that dramatically decrease overall systems reliability and their effective availability. This motivates the work presented in this paper, which introduces an approach for an RSSI-based calibration-free and real-time indoor localization. While switched-beam array-based hardware (compliant with IEEE 802.15.4 router functionality) has already been presented by the author, the focus of this paper is the creation of an algorithmic layer for use with the pre-existing hardware capable to enable full localization and data contextualization over a standard 802.15.4 wireless sensor network using only RSSI information without the need of lengthy offline calibration phase. System validation reports the localization results in a typical indoor site, where the system has shown high accuracy, leading to a sub-metrical overall mean error and an almost 100% site coverage within 1 m localization error.

  18. KeyWare: an open wireless distributed computing environment

    Science.gov (United States)

    Shpantzer, Isaac; Schoenfeld, Larry; Grindahl, Merv; Kelman, Vladimir

    1995-12-01

    Deployment of distributed applications in the wireless domain lack equivalent tools, methodologies, architectures, and network management that exist in LAN based applications. A wireless distributed computing environment (KeyWareTM) based on intelligent agents within a multiple client multiple server scheme was developed to resolve this problem. KeyWare renders concurrent application services to wireline and wireless client nodes encapsulated in multiple paradigms such as message delivery, database access, e-mail, and file transfer. These services and paradigms are optimized to cope with temporal and spatial radio coverage, high latency, limited throughput and transmission costs. A unified network management paradigm for both wireless and wireline facilitates seamless extensions of LAN- based management tools to include wireless nodes. A set of object oriented tools and methodologies enables direct asynchronous invocation of agent-based services supplemented by tool-sets matched to supported KeyWare paradigms. The open architecture embodiment of KeyWare enables a wide selection of client node computing platforms, operating systems, transport protocols, radio modems and infrastructures while maintaining application portability.

  19. GPS-based satellite tracking system for precise positioning

    Science.gov (United States)

    Yunck, T. P.; Melbourne, W. G.; Thornton, C. L.

    1985-01-01

    NASA is developing a Global Positioning System (GPS) based measurement system to provide precise determination of earth satellite orbits, geodetic baselines, ionospheric electron content, and clock offsets between worldwide tracking sites. The system will employ variations on the differential GPS observing technique and will use a network of nine fixed ground terminals. Satellite applications will require either a GPS flight receiver or an on-board GPS beacon. Operation of the system for all but satellite tracking will begin by 1988. The first major satellite application will be a demonstration of decimeter accuracy in determining the altitude of TOPEX in the early 1990's. By then the system is expected to yield long-baseline accuracies of a few centimeters and instantaneous time synchronization to 1 ns.

  20. Time Synchronized Wireless Sensor Network for Vibration Measurement

    Science.gov (United States)

    Uchimura, Yutaka; Nasu, Tadashi; Takahashi, Motoichi

    Network based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard based TSF counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on the synchronization accuracy and the effect is evaluated by stochastic analysis and simulation studies. A new wireless sensing system is developed and the hardware and software specifications are shown. The experiments are conducted in a reinforced concrete building and results show good performance enough for vibration measurement purpose.

  1. Space Solar Power: Satellite Concepts

    Science.gov (United States)

    Little, Frank E.

    1999-01-01

    Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.

  2. Cluster Based Hierarchical Routing Protocol for Wireless Sensor Network

    OpenAIRE

    Rashed, Md. Golam; Kabir, M. Hasnat; Rahim, Muhammad Sajjadur; Ullah, Shaikh Enayet

    2012-01-01

    The efficient use of energy source in a sensor node is most desirable criteria for prolong the life time of wireless sensor network. In this paper, we propose a two layer hierarchical routing protocol called Cluster Based Hierarchical Routing Protocol (CBHRP). We introduce a new concept called head-set, consists of one active cluster head and some other associate cluster heads within a cluster. The head-set members are responsible for control and management of the network. Results show that t...

  3. Wireless Testbed Bonsai

    Science.gov (United States)

    2006-02-01

    wireless sensor device network, and a about 200 Stargate nodes higher-tier multi-hop peer- to-peer 802.11b wireless network. Leading up to the full ExScal...deployment, we conducted spatial scaling tests on our higher-tier protocols on a 7 × 7 grid of Stargates nodes 45m and with 90m separations respectively...onW and its scaled version W̃ . III. EXPERIMENTAL SETUP Description of Kansei testbed. A stargate is a single board linux-based computer [7]. It uses a

  4. Energy-efficient digital and wireless IC design for wireless smart sensing

    Science.gov (United States)

    Zhou, Jun; Huang, Xiongchuan; Wang, Chao; Tae-Hyoung Kim, Tony; Lian, Yong

    2017-10-01

    Wireless smart sensing is now widely used in various applications such as health monitoring and structural monitoring. In conventional wireless sensor nodes, significant power is consumed in wirelessly transmitting the raw data. Smart sensing adds local intelligence to the sensor node and reduces the amount of wireless data transmission via on-node digital signal processing. While the total power consumption is reduced compared to conventional wireless sensing, the power consumption of the digital processing becomes as dominant as wireless data transmission. This paper reviews the state-of-the-art energy-efficient digital and wireless IC design techniques for reducing the power consumption of the wireless smart sensor node to prolong battery life and enable self-powered applications.

  5. Assessment of satellite-based precipitation estimates over Paraguay

    Science.gov (United States)

    Oreggioni Weiberlen, Fiorella; Báez Benítez, Julián

    2018-04-01

    Satellite-based precipitation estimates represent a potential alternative source of input data in a plethora of meteorological and hydrological applications, especially in regions characterized by a low density of rain gauge stations. Paraguay provides a good example of a case where the use of satellite-based precipitation could be advantageous. This study aims to evaluate the version 7 of the Tropical Rainfall Measurement Mission Multi-Satellite Precipitation Analysis (TMPA V7; 3B42 V7) and the version 1.0 of the purely satellite-based product of the Climate Prediction Center Morphing Technique (CMORPH RAW) through their comparison with daily in situ precipitation measurements from 1998 to 2012 over Paraguay. The statistical assessment is conducted with several commonly used indexes. Specifically, to evaluate the accuracy of daily precipitation amounts, mean error (ME), root mean square error (RMSE), BIAS, and coefficient of determination (R 2) are used, and to analyze the capability to correctly detect different precipitation intensities, false alarm ratio (FAR), frequency bias index (FBI), and probability of detection (POD) are applied to various rainfall rates (0, 0.1, 0.5, 1, 2, 5, 10, 20, 40, 60, and 80 mm/day). Results indicate that TMPA V7 has a better performance than CMORPH RAW over Paraguay. TMPA V7 has higher accuracy in the estimation of daily rainfall volumes and greater precision in the detection of wet days (> 0 mm/day). However, both satellite products show a lower ability to appropriately detect high intensity precipitation events.

  6. 38.2-Gb/s Optical-Wireless Transmission in 75-110 GHz Based on Electrical OFDM with Optical Comb Expansion

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Beltrán, Marta

    2012-01-01

    We demonstrate scalable optical comb- and heterodyning-based generation, optical and 1.3-m wireless transmission, and electrical heterodyne detection of multiband OFDM up to 38.2 Gb/s occupying 14.4-GHz RF bandwidth, for high-capacity optical-wireless links in 75-110 GHz....

  7. On the Capacity of Hybrid Wireless Networks with Opportunistic Routing

    Directory of Open Access Journals (Sweden)

    Le Tan

    2010-01-01

    Full Text Available This paper studies the capacity of hybrid wireless networks with opportunistic routing (OR. We first extend the opportunistic routing algorithm to exploit high-speed data transmissions in infrastructure network through base stations. We then develop linear programming models to calculate the end-to-end throughput bounds from multiple source nodes to single as well as multiple destination nodes. The developed models are applied to study several hybrid wireless network examples. Through case studies, we investigate several factors that have significant impacts on the hybrid wireless network capacity under opportunistic routing, such as node transmission range, density and distribution pattern of base stations (BTs, and number of wireless channels on wireless nodes and base stations. Our numerical results demonstrate that opportunistic routing could achieve much higher throughput on both ad hoc and hybrid networks than traditional unicast routing (UR. Moreover, opportunistic routing can efficiently utilize base stations and achieve significantly higher throughput gains in hybrid wireless networks than in pure ad hoc networks especially with multiple-channel base stations.

  8. Simulations of Large-scale WiFi-based Wireless Networks: Interdisciplinary Challenges and Applications

    OpenAIRE

    Nekovee, Maziar

    2008-01-01

    Wireless Fidelity (WiFi) is the fastest growing wireless technology to date. In addition to providing wire-free connectivity to the Internet WiFi technology also enables mobile devices to connect directly to each other and form highly dynamic wireless adhoc networks. Such distributed networks can be used to perform cooperative communication tasks such ad data routing and information dissemination in the absence of a fixed infrastructure. Furthermore, adhoc grids composed of wirelessly network...

  9. Wireless-Delimited Secure Zones with Encrypted Attribute-Based Broadcast for Safe Firearms

    OpenAIRE

    Portnoi, Marcos; Shen, Chien-Chung

    2014-01-01

    This work presents an application of the highly expressive Attribute-Based Encryption to implement wireless-delimited Secure Zones for firearms. Within these zones, radio-transmitted local policies based on attributes of the consumer and the firearm are received by embedded hardware in the firearms, which then advises the consumer about safe operations. The Secure Zones utilize Attribute-Based Encryption to encode the policies and consumer or user attributes, and providing privacy and securit...

  10. Attacks to Cryptography Protocols of Wireless Industrial Communication Systems

    Directory of Open Access Journals (Sweden)

    Tomas Ondrasina

    2010-01-01

    Full Text Available The paper deals with problems of safety and security principles within wireless industrial communication systems. First safety requirements to wireless industrial communication system, summarisation of attack methods and the available measures for risks elimination are described with orientation to safety critical applications. The mainly part is oriented to identification of risks and summarisation of defensive methods of wireless communication based on cryptographic techniques. Practical part the cryptoanalytic’s attacks to COTS (Commercial Off-The-Shelf wireless communications are mentioned based on the IEEE 802.11 standards.

  11. Wireless Data Communications Prototyping: A Flexible, High-Quality, and Cost-Effective Information System for Education.

    Science.gov (United States)

    Juliano, Benjoe A.; Sheel, Stephen J.

    In this paper, potential applications of wireless data communications and mobile satellite technology are described which aim at improving education. The motivation behind this work is that the technology now exists for providing today's teachers and students with not only better access to educational facilities, but also instantaneous…

  12. Distributed medium access control in wireless networks

    CERN Document Server

    Wang, Ping

    2013-01-01

    This brief investigates distributed medium access control (MAC) with QoS provisioning for both single- and multi-hop wireless networks including wireless local area networks (WLANs), wireless ad hoc networks, and wireless mesh networks. For WLANs, an efficient MAC scheme and a call admission control algorithm are presented to provide guaranteed QoS for voice traffic and, at the same time, increase the voice capacity significantly compared with the current WLAN standard. In addition, a novel token-based scheduling scheme is proposed to provide great flexibility and facility to the network servi

  13. Global mobile satellite communications theory for maritime, land and aeronautical applications

    CERN Document Server

    Ilčev, Stojče Dimov

    2017-01-01

    This book discusses current theory regarding global mobile satellite communications (GMSC) for maritime, land (road and rail), and aeronautical applications. It covers how these can enable connections between moving objects such as ships, road and rail vehicles and aircrafts on one hand, and on the other ground telecommunications subscribers through the medium of communications satellites, ground earth stations, Terrestrial Telecommunication Networks (TTN), Internet Service Providers (ISP) and other wireless and landline telecommunications providers. This new edition covers new developments and initiatives that have resulted in land and aeronautical applications and the introduction of new satellite constellations in non-geostationary orbits and projects of new hybrid satellite constellations. The book presents current GMSC trends, mobile system concepts and network architecture using a simple mode of style with understandable technical information, characteristics, graphics, illustrations and mathematics equ...

  14. Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state

    Science.gov (United States)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu

    2017-08-01

    Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.

  15. Development of an extremely compact impedance-based wireless sensing device

    International Nuclear Information System (INIS)

    Overly, Timothy G S; Park, Gyuhae; Farinholt, Kevin M; Farrar, Charles R

    2008-01-01

    This paper describes the development of the next generation of an extremely compact, wireless impedance sensor node for use in structural health monitoring (SHM) and piezoelectric active-sensor self-diagnostics. The sensor node uses a recently developed, low-cost integrated circuit that can measure and record the electrical impedance of a piezoelectric transducer. The sensor node also integrates several components, including a microcontroller for local computing, telemetry for wirelessly transmitting data, multiplexers for managing up to seven piezoelectric transducers per node, energy harvesting and storage mediums, and a wireless triggering circuit into one package to truly realize a comprehensive, self-contained wireless active-sensor node for various SHM applications. It is estimated that the developed sensor node requires less than 60 mW of total power for measurement, computation, and transmission. In addition, the sensor node is equipped with active-sensor self-diagnostic capabilities that can monitor the condition of piezoelectric transducers used in SHM applications. The performance of this miniaturized device is compared to our previous results and its broader capabilities are demonstrated

  16. Wireless body sensor networks for health-monitoring applications

    International Nuclear Information System (INIS)

    Hao, Yang; Foster, Robert

    2008-01-01

    Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system. (topical review)

  17. Toward Wireless Health Monitoring via an Analog Signal Compression-Based Biosensing Platform.

    Science.gov (United States)

    Zhao, Xueyuan; Sadhu, Vidyasagar; Le, Tuan; Pompili, Dario; Javanmard, Mehdi

    2018-06-01

    Wireless all-analog biosensor design for the concurrent microfluidic and physiological signal monitoring is presented in this paper. The key component is an all-analog circuit capable of compressing two analog sources into one analog signal by the analog joint source-channel coding (AJSCC). Two circuit designs are discussed, including the stacked-voltage-controlled voltage source (VCVS) design with the fixed number of levels, and an improved design, which supports a flexible number of AJSCC levels. Experimental results are presented on the wireless biosensor prototype, composed of printed circuit board realizations of the stacked-VCVS design. Furthermore, circuit simulation and wireless link simulation results are presented on the improved design. Results indicate that the proposed wireless biosensor is well suited for sensing two biological signals simultaneously with high accuracy, and can be applied to a wide variety of low-power and low-cost wireless continuous health monitoring applications.

  18. Target Detection Based on EBPSK Satellite Passive Radar

    Directory of Open Access Journals (Sweden)

    Lu Zeyuan

    2015-05-01

    Full Text Available Passive radar is a topic anti stealth technology with simple structure, and low cost. Radiation source model, signal transmission model, and target detection are the key points of passive radar technology research. The paper analyzes the characteristics of EBPSK signal modulation and target detection method aspect of spaceborne radiant source. By comparison with other satellite navigation and positioning system, the characteristics of EBPSK satellite passive radar system are analyzed. It is proved that the maximum detection range of EBPSK satellite signal can satisfy the needs of the proposed model. In the passive radar model, sparse representation is used to achieve high resolution DOA detection. The comparison with the real target track by simulation demonstrates that effective detection of airborne target using EBPSK satellite passive radar system based on sparse representation is efficient.

  19. Wireless Communications in Smart Grid

    Science.gov (United States)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  20. Information Security of PHY Layer in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Weidong Fang

    2016-01-01

    Full Text Available Since the characteristics of wireless channel are open and broadcasting, wireless networks are very vulnerable to be attacked via eavesdropping, jamming, and interference. As traditional secure technologies are not suitable for PHY layer of wireless networks, physical-layer security issues become a focus of attention. In this paper, we firstly identify and summarize the threats and vulnerabilities in PHY layer of wireless networks. Then, we give a holistic overview of PHY layer secure schemes, which are divided into three categories: spatial domain-based, time domain-based, and frequency domain-based. Along the way, we analyze the pros and cons of current secure technologies in each category. In addition, we also conclude the techniques and methods used in these categories and point out the open research issues and directions in this area.

  1. Satellite Contamination and Materials Outgassing Knowledge base

    Science.gov (United States)

    Minor, Jody L.; Kauffman, William J. (Technical Monitor)

    2001-01-01

    Satellite contamination continues to be a design problem that engineers must take into account when developing new satellites. To help with this issue, NASA's Space Environments and Effects (SEE) Program funded the development of the Satellite Contamination and Materials Outgassing Knowledge base. This engineering tool brings together in one location information about the outgassing properties of aerospace materials based upon ground-testing data, the effects of outgassing that has been observed during flight and measurements of the contamination environment by on-orbit instruments. The knowledge base contains information using the ASTM Standard E- 1559 and also consolidates data from missions using quartz-crystal microbalances (QCM's). The data contained in the knowledge base was shared with NASA by government agencies and industry in the US and international space agencies as well. The term 'knowledgebase' was used because so much information and capability was brought together in one comprehensive engineering design tool. It is the SEE Program's intent to continually add additional material contamination data as it becomes available - creating a dynamic tool whose value to the user is ever increasing. The SEE Program firmly believes that NASA, and ultimately the entire contamination user community, will greatly benefit from this new engineering tool and highly encourages the community to not only use the tool but add data to it as well.

  2. Wireless optical telecommunications

    CERN Document Server

    Bouchet, Olivier

    2013-01-01

    Wireless optical communication refers to communication based on the unguided propagation of optical waves. The past 30 years have seen significant improvements in this technique - a wireless communication solution for the current millennium - that offers an alternative to radio systems; a technique that could gain attractiveness due to recent concerns regarding the potential effects of radiofrequency waves on human health.The aim of this book is to look at the free space optics that are already used for the exchange of current information; its many benefits, such as incorporating chan

  3. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    Science.gov (United States)

    McCown, Steven H [Rigby, ID; Derr, Kurt W [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  4. An Energy-Efficient Underground Localization System Based on Heterogeneous Wireless Networks

    Science.gov (United States)

    Yuan, Yazhou; Chen, Cailian; Guan, Xinping; Yang, Qiuling

    2015-01-01

    A precision positioning system with energy efficiency is of great necessity for guaranteeing personnel safety in underground mines. The location information of the miners' should be transmitted to the control center timely and reliably; therefore, a heterogeneous network with the backbone based on high speed Industrial Ethernet is deployed. Since the mobile wireless nodes are working in an irregular tunnel, a specific wireless propagation model cannot fit all situations. In this paper, an underground localization system is designed to enable the adaptation to kinds of harsh tunnel environments, but also to reduce the energy consumption and thus prolong the lifetime of the network. Three key techniques are developed and implemented to improve the system performance, including a step counting algorithm with accelerometers, a power control algorithm and an adaptive packets scheduling scheme. The simulation study and experimental results show the effectiveness of the proposed algorithms and the implementation. PMID:26016918

  5. A Spectrum Sensing Method Based on Signal Feature and Clustering Algorithm in Cognitive Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yongwei Zhang

    2017-01-01

    Full Text Available In order to solve the problem of difficulty in determining the threshold in spectrum sensing technologies based on the random matrix theory, a spectrum sensing method based on clustering algorithm and signal feature is proposed for Cognitive Wireless Multimedia Sensor Networks. Firstly, the wireless communication signal features are obtained according to the sampling signal covariance matrix. Then, the clustering algorithm is used to classify and test the signal features. Different signal features and clustering algorithms are compared in this paper. The experimental results show that the proposed method has better sensing performance.

  6. Low-complexity JPEG-based progressive video codec for wireless video transmission

    DEFF Research Database (Denmark)

    Ukhanova, Ann; Forchhammer, Søren

    2010-01-01

    This paper discusses the question of video codec enhancement for wireless video transmission of high definition video data taking into account constraints on memory and complexity. Starting from parameter adjustment for JPEG2000 compression algorithm used for wireless transmission and achieving...

  7. Rule-Based vs. Behavior-Based Self-Deployment for Mobile Wireless Sensor Networks.

    Science.gov (United States)

    Urdiales, Cristina; Aguilera, Francisco; González-Parada, Eva; Cano-García, Jose; Sandoval, Francisco

    2016-07-07

    In mobile wireless sensor networks (MWSN), nodes are allowed to move autonomously for deployment. This process is meant: (i) to achieve good coverage; and (ii) to distribute the communication load as homogeneously as possible. Rather than optimizing deployment, reactive algorithms are based on a set of rules or behaviors, so nodes can determine when to move. This paper presents an experimental evaluation of both reactive deployment approaches: rule-based and behavior-based ones. Specifically, we compare a backbone dispersion algorithm with a social potential fields algorithm. Most tests are done under simulation for a large number of nodes in environments with and without obstacles. Results are validated using a small robot network in the real world. Our results show that behavior-based deployment tends to provide better coverage and communication balance, especially for a large number of nodes in areas with obstacles.

  8. PBG based terahertz antenna for aerospace applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications. Space communication systems using the terahertz spectrum can resolve the problems of limited bandwidth of present wireless communications without radio-frequency interference. This book describes design of such high-gain antennas and their performance enhancement using photonic band gap (PBG) substrates. Further, optimization of antenna models using evolutionary algorithm based computational engine has been included. The optimized high-performance compact antenna may be used for various wireless applications, such as inter-orbital communications and on-vehicle satellite communications.

  9. Multiple-state based power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-01-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in wireless mesh networks (WMNs). In this paper, we present asynchronous multiple-state based power control for MRMC WMNs. First, WMN is represented as a set of disjoint...

  10. Fast collision resolution for real time services in SDMA based wireless ATM networks

    DEFF Research Database (Denmark)

    Vornefeld, U.; Schieimer, D.; Walke, B.

    1999-01-01

    protocol, the influence of SDMA on a contention based access protocol is investigated under collision resolution schemes derived from classical splitting algorithms. Although this work is embedded in the framework of wireless ATM and HIPERLAN/2 systems, the ideas are generally applicable....

  11. An efficient schedule based data aggregation using node mobility for wireless sensor network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Pawar, Pranav M.; Prasad, Neeli R.

    2014-01-01

    In the Wireless Sensor Networks, (WSNs) a key challenge is to schedule the activities of the mobile node for improvement in throughput, energy consumption and delay. This paper proposes efficient schedule based data aggregation algorithm using node mobility (SDNM). It considers the cluster...

  12. Design and Implementation of a Secure Wireless Mote-Based Medical Sensor Network

    Science.gov (United States)

    Malasri, Kriangsiri; Wang, Lan

    2009-01-01

    A medical sensor network can wirelessly monitor vital signs of humans, making it useful for long-term health care without sacrificing patient comfort and mobility. For such a network to be viable, its design must protect data privacy and authenticity given that medical data are highly sensitive. We identify the unique security challenges of such a sensor network and propose a set of resource-efficient mechanisms to address these challenges. Our solution includes (1) a novel two-tier scheme for verifying the authenticity of patient data, (2) a secure key agreement protocol to set up shared keys between sensor nodes and base stations, and (3) symmetric encryption/decryption for protecting data confidentiality and integrity. We have implemented the proposed mechanisms on a wireless mote platform, and our results confirm their feasibility. PMID:22454585

  13. Indoor Trajectory Tracking Scheme Based on Delaunay Triangulation and Heuristic Information in Wireless Sensor Networks.

    Science.gov (United States)

    Qin, Junping; Sun, Shiwen; Deng, Qingxu; Liu, Limin; Tian, Yonghong

    2017-06-02

    Object tracking and detection is one of the most significant research areas for wireless sensor networks. Existing indoor trajectory tracking schemes in wireless sensor networks are based on continuous localization and moving object data mining. Indoor trajectory tracking based on the received signal strength indicator ( RSSI ) has received increased attention because it has low cost and requires no special infrastructure. However, RSSI tracking introduces uncertainty because of the inaccuracies of measurement instruments and the irregularities (unstable, multipath, diffraction) of wireless signal transmissions in indoor environments. Heuristic information includes some key factors for trajectory tracking procedures. This paper proposes a novel trajectory tracking scheme based on Delaunay triangulation and heuristic information (TTDH). In this scheme, the entire field is divided into a series of triangular regions. The common side of adjacent triangular regions is regarded as a regional boundary. Our scheme detects heuristic information related to a moving object's trajectory, including boundaries and triangular regions. Then, the trajectory is formed by means of a dynamic time-warping position-fingerprint-matching algorithm with heuristic information constraints. Field experiments show that the average error distance of our scheme is less than 1.5 m, and that error does not accumulate among the regions.

  14. A two-hop based adaptive routing protocol for real-time wireless sensor networks.

    Science.gov (United States)

    Rachamalla, Sandhya; Kancherla, Anitha Sheela

    2016-01-01

    One of the most important and challenging issues in wireless sensor networks (WSNs) is to optimally manage the limited energy of nodes without degrading the routing efficiency. In this paper, we propose an energy-efficient adaptive routing mechanism for WSNs, which saves energy of nodes by removing the much delayed packets without degrading the real-time performance of the used routing protocol. It uses the adaptive transmission power algorithm which is based on the attenuation of the wireless link to improve the energy efficiency. The proposed routing mechanism can be associated with any geographic routing protocol and its performance is evaluated by integrating with the well known two-hop based real-time routing protocol, PATH and the resulting protocol is energy-efficient adaptive routing protocol (EE-ARP). The EE-ARP performs well in terms of energy consumption, deadline miss ratio, packet drop and end-to-end delay.

  15. Location-Based Self-Adaptive Routing Algorithm for Wireless Sensor Networks in Home Automation

    Directory of Open Access Journals (Sweden)

    Hong SeungHo

    2011-01-01

    Full Text Available The use of wireless sensor networks in home automation (WSNHA is attractive due to their characteristics of self-organization, high sensing fidelity, low cost, and potential for rapid deployment. Although the AODVjr routing algorithm in IEEE 802.15.4/ZigBee and other routing algorithms have been designed for wireless sensor networks, not all are suitable for WSNHA. In this paper, we propose a location-based self-adaptive routing algorithm for WSNHA called WSNHA-LBAR. It confines route discovery flooding to a cylindrical request zone, which reduces the routing overhead and decreases broadcast storm problems in the MAC layer. It also automatically adjusts the size of the request zone using a self-adaptive algorithm based on Bayes' theorem. This makes WSNHA-LBAR more adaptable to the changes of the network state and easier to implement. Simulation results show improved network reliability as well as reduced routing overhead.

  16. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yasaman Samei

    2008-08-01

    Full Text Available Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN. With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture. This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  17. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks.

    Science.gov (United States)

    Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman

    2008-08-04

    Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  18. Towards Controlling Latency in Wireless Networks

    KAUST Repository

    Bouacida, Nader

    2017-04-24

    Wireless networks are undergoing an unprecedented revolution in the last decade. With the explosion of delay-sensitive applications in the Internet (i.e., online gaming and VoIP), latency becomes a major issue for the development of wireless technology. Taking advantage of the significant decline in memory prices, industrialists equip the network devices with larger buffering capacities to improve the network throughput by limiting packets drops. Over-buffering results in increasing the time that packets spend in the queues and, thus, introducing more latency in networks. This phenomenon is known as “bufferbloat”. While throughput is the dominant performance metric, latency also has a huge impact on user experience not only for real-time applications but also for common applications like web browsing, which is sensitive to latencies in order of hundreds of milliseconds. Concerns have arisen about designing sophisticated queue management schemes to mitigate the effects of such phenomenon. My thesis research aims to solve bufferbloat problem in both traditional half-duplex and cutting-edge full-duplex wireless systems by reducing delay while maximizing wireless links utilization and fairness. Our work shed lights on buffer management algorithms behavior in wireless networks and their ability to reduce latency resulting from excessive queuing delays inside oversized static network buffers without a significant loss in other network metrics. First of all, we address the problem of buffer management in wireless full-duplex networks by using Wireless Queue Management (WQM), which is an active queue management technique for wireless networks. Our solution is based on Relay Full-Duplex MAC (RFD-MAC), an asynchronous media access control protocol designed for relay full-duplexing. Compared to the default case, our solution reduces the end-to-end delay by two orders of magnitude while achieving similar throughput in most of the cases. In the second part of this thesis

  19. A Centralized Detection of Sinkhole Attacks Based on Energy Level of the Nodes on Cluster-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Merve Nilay Aydın

    2017-10-01

    Full Text Available Wireless Sensor Networks is consist of thousands of small and low-cost devices, which communicate over wireless medium. Due to locating in harsh environment and having limited resources, WSN is prone to various attacks. One of the most dangerous attacks threatening WSN is the sinkhole attack. In this paper, sinkhole attack is modelled on a cluster-based WSN, and a centralized detection algorithm based on the remaining energies of the nodes is proposed. The simulations were run for different values of energy thresholds and various numbers of nodes. The performance of the system was investigated over total energy consumption in the system, the number of packets arrived at base station and true detection rate of the sinkhole node(s. The results showed that the proposed method is energy-efficient and detects the malicious nodes with a 100% accuracy for all number of nodes.

  20. An Internet of Energy Things Based on Wireless LPWAN

    Directory of Open Access Journals (Sweden)

    Yonghua Song

    2017-08-01

    Full Text Available Under intense environmental pressure, the global energy sector is promoting the integration of renewable energy into interconnected energy systems. The demand-side management (DSM of energy systems has drawn considerable industrial and academic attention in attempts to form new flexibilities to respond to variations in renewable energy inputs to the system. However, many DSM concepts are still in the experimental demonstration phase. One of the obstacles to DSM usage is that the current information infrastructure was mainly designed for centralized systems, and does not meet DSM requirements. To overcome this barrier, this paper proposes a novel information infrastructure named the Internet of Energy Things (IoET in order to make DSM practicable by basing it on the latest wireless communication technology: the low-power wide-area network (LPWAN. The primary advantage of LPWAN over general packet radio service (GPRS and area Internet of Things (IoT is its wide-area coverage, which comes with minimum power consumption and maintenance costs. Against this background, this paper briefly reviews the representative LPWAN technologies of narrow-band Internet of Things (NB-IoT and Long Range (LoRa technology, and compares them with GPRS and area IoT technology. Next, a wireless-to-cloud architecture is proposed for the IoET, based on the main technical features of LPWAN. Finally, this paper looks forward to the potential of IoET in various DSM application scenarios.

  1. Buffer management in wireless full-duplex systems

    KAUST Repository

    Bouacida, Nader; Showail, Ahmad; Shihada, Basem

    2015-01-01

    , we address the problem of buffer management in full-duplex networks by using Wireless Queue Management (WQM), which is an active queue management technique for wireless networks. Our solution is based on Relay Full-Duplex MAC (RFD

  2. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    International Nuclear Information System (INIS)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish

    2015-01-01

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency

  3. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish [Department of Electronics and Instrumentation Engineering, Institute of Technical Education and Research, Siksha ‘O’ Anushandhan University, Bhubaneswar 751030 (India)

    2015-09-28

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.

  4. GaN-Based Laser Wireless Power Transfer System

    Directory of Open Access Journals (Sweden)

    Carlo De Santi

    2018-01-01

    Full Text Available The aim of this work is to present a potential application of gallium nitride-based optoelectronic devices. By using a laser diode and a photodetector, we designed and demonstrated a free-space compact and lightweight wireless power transfer system, whose efficiency is limited by the efficiency of the receiver. We analyzed the effect of the electrical load, temperature, partial absorption and optical excitation distribution on the efficiency, by identifying heating and band-filling as the most impactful processes. By comparing the final demonstrator with a commercial RF-based Qi system, we conclude that the efficiency is still low at close range, but is promising in medium to long range applications. Efficiency may not be a limiting factor, since this concept can enable entirely new possibilities and designs, especially relevant for space applications.

  5. Mutual-Information-Based Incremental Relaying Communications for Wireless Biomedical Implant Systems

    Directory of Open Access Journals (Sweden)

    Yangzhe Liao

    2018-02-01

    Full Text Available Network lifetime maximization of wireless biomedical implant systems is one of the major research challenges of wireless body area networks (WBANs. In this paper, a mutual information (MI-based incremental relaying communication protocol is presented where several on-body relay nodes and one coordinator are attached to the clothes of a patient. Firstly, a comprehensive analysis of a system model is investigated in terms of channel path loss, energy consumption, and the outage probability from the network perspective. Secondly, only when the MI value becomes smaller than the predetermined threshold is data transmission allowed. The communication path selection can be either from the implanted sensor to the on-body relay then forwards to the coordinator or from the implanted sensor to the coordinator directly, depending on the communication distance. Moreover, mathematical models of quality of service (QoS metrics are derived along with the related subjective functions. The results show that the MI-based incremental relaying technique achieves better performance in comparison to our previous proposed protocol techniques regarding several selected performance metrics. The outcome of this paper can be applied to intra-body continuous physiological signal monitoring, artificial biofeedback-oriented WBANs, and telemedicine system design.

  6. Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations.

    Science.gov (United States)

    Li, Chung-Yi; Lu, Hai-Han; Lu, Ting-Chieh; Chu, Chien-An; Chen, Bo-Rui; Lin, Chun-Yu; Peng, Peng-Chun

    2015-12-14

    A hybrid lightwave transmission system for cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission based on fiber-wired/fiber-wireless/fiber-visible laser light communication (VLLC) integrations is proposed and demonstrated. For down-link transmission, the light is intensity-modulated with 50-550 MHz CATV signal and optically promoted from 25 GHz radio frequency (RF) signal to 10 Gbps/50 GHz and 20 Gbps/100 GHz MMW data signals based on fiber-wired and fiber-wireless integrations. Good performances of carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) are obtained over a 40-km single-mode fiber (SMF) and a 10-m RF wireless transport. For up-link transmission, the light is successfully intensity-remodulated with 5-Gbps BB data stream based on fiber-VLLC integration. Good BER performance is achieved over a 40-km SMF and a 10-m free-space VLLC transport. Such a hybrid CATV/MMW/BB lightwave transmission system is an attractive alternative, it gives the benefits of a communication link for broader bandwidth and higher transmission rate.

  7. A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks.

    Science.gov (United States)

    Gui, Jinsong; Zhou, Kai; Xiong, Naixue

    2016-09-25

    Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude.

  8. A Game Theory-Based Obstacle Avoidance Routing Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shujun Bi

    2011-09-01

    Full Text Available The obstacle avoidance problem in geographic forwarding is an important issue for location-based routing in wireless sensor networks. The presence of an obstacle leads to several geographic routing problems such as excessive energy consumption and data congestion. Obstacles are hard to avoid in realistic environments. To bypass obstacles, most routing protocols tend to forward packets along the obstacle boundaries. This leads to a situation where the nodes at the boundaries exhaust their energy rapidly and the obstacle area is diffused. In this paper, we introduce a novel routing algorithm to solve the obstacle problem in wireless sensor networks based on a game-theory model. Our algorithm forms a concave region that cannot forward packets to achieve the aim of improving the transmission success rate and decreasing packet transmission delays. We consider the residual energy, out-degree and forwarding angle to determine the forwarding probability and payoff function of forwarding candidates. This achieves the aim of load balance and reduces network energy consumption. Simulation results show that based on the average delivery delay, energy consumption and packet delivery ratio performances our protocol is superior to other traditional schemes.

  9. Implementation of an Embedded Web Server Application for Wireless Control of Brain Computer Interface Based Home Environments.

    Science.gov (United States)

    Aydın, Eda Akman; Bay, Ömer Faruk; Güler, İnan

    2016-01-01

    Brain Computer Interface (BCI) based environment control systems could facilitate life of people with neuromuscular diseases, reduces dependence on their caregivers, and improves their quality of life. As well as easy usage, low-cost, and robust system performance, mobility is an important functionality expected from a practical BCI system in real life. In this study, in order to enhance users' mobility, we propose internet based wireless communication between BCI system and home environment. We designed and implemented a prototype of an embedded low-cost, low power, easy to use web server which is employed in internet based wireless control of a BCI based home environment. The embedded web server provides remote access to the environmental control module through BCI and web interfaces. While the proposed system offers to BCI users enhanced mobility, it also provides remote control of the home environment by caregivers as well as the individuals in initial stages of neuromuscular disease. The input of BCI system is P300 potentials. We used Region Based Paradigm (RBP) as stimulus interface. Performance of the BCI system is evaluated on data recorded from 8 non-disabled subjects. The experimental results indicate that the proposed web server enables internet based wireless control of electrical home appliances successfully through BCIs.

  10. Wireless next generation networks a virtue-based trust model

    CERN Document Server

    Harvey, Melissa

    2014-01-01

    This SpringerBrief proposes a trust model motivated by virtue epistemology, addressing the need for a more efficient and flexible trust model for wireless next generation networks. This theory of trust simplifies the computation and communication overhead of strictly cognitive-computational models of trust. Both the advantages and the challenges of virtue-based trust models are discussed. This brief offers new research and a general theory of rationality that enables users to interpret trust and reason as complementary mechanisms that guide our rational conduct at two different epistemic level

  11. Design of Wireless GPIB Interface Module Based on Bluetooth

    International Nuclear Information System (INIS)

    Fu, P; Ma, W J; Huang, C J

    2006-01-01

    GPIB interface is widely used in the testing and control field. In this paper a wireless GPIB interface module based on Bluetooth is developed. Programming with Verilog HDL language on the hardware of ROK 101 008 and a FPGA chip, the complicated logical design of GPIB interface and the Bluetooth data processing unit are implemented. On basis of Bluetooth specifications, the software for the control computer is developed. In order to provide a standard software interface for users, a VISA library that is compatible with the VPP specifications is also designed

  12. Design of Wireless GPIB Interface Module Based on Bluetooth

    Energy Technology Data Exchange (ETDEWEB)

    Fu, P [Department of Automatic Testing and Control, Harbin Institute of Technology, Harbin 150001 (China); Ma, W J [Department of Automatic Testing and Control, Harbin Institute of Technology, Harbin 150001 (China); Huang, C J [Department of Automatic Testing and Control, Harbin Institute of Technology, Harbin 150001 (China)

    2006-10-15

    GPIB interface is widely used in the testing and control field. In this paper a wireless GPIB interface module based on Bluetooth is developed. Programming with Verilog HDL language on the hardware of ROK 101 008 and a FPGA chip, the complicated logical design of GPIB interface and the Bluetooth data processing unit are implemented. On basis of Bluetooth specifications, the software for the control computer is developed. In order to provide a standard software interface for users, a VISA library that is compatible with the VPP specifications is also designed.

  13. Corrections to "Connectivity-Based Reliable Multicast MAC Protocol for IEEE 802.11 Wireless LANs"

    Directory of Open Access Journals (Sweden)

    Choi Woo-Yong

    2010-01-01

    Full Text Available We have found the errors in the throughput formulae presented in our paper "Connectivity-based reliable multicast MAC protocol for IEEE 802.11 wireless LANs". We provide the corrected formulae and numerical results.

  14. Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling

    Science.gov (United States)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; hide

    2014-01-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  15. FPGA-based digital convolution for wireless applications

    CERN Document Server

    Guan, Lei

    2017-01-01

    This book presents essential perspectives on digital convolutions in wireless communications systems and illustrates their corresponding efficient real-time field-programmable gate array (FPGA) implementations. Covering these digital convolutions from basic concept to vivid simulation/illustration, the book is also supplemented with MS PowerPoint presentations to aid in comprehension. FPGAs or generic all programmable devices will soon become widespread, serving as the “brains” of all types of real-time smart signal processing systems, like smart networks, smart homes and smart cities. The book examines digital convolution by bringing together the following main elements: the fundamental theory behind the mathematical formulae together with corresponding physical phenomena; virtualized algorithm simulation together with benchmark real-time FPGA implementations; and detailed, state-of-the-art case studies on wireless applications, including popular linear convolution in digital front ends (DFEs); nonlinear...

  16. The Effects of Space Environment on Wireless Communication Devices' Performance

    OpenAIRE

    Landon, Hillyard; Dennison, JR

    2012-01-01

    This project evaluates the effects of the space environment on small radio hardware devices called Bluetooth (a proprietary open wireless technology standard for exchanging data over short distances) chips (hoovers). When electronics are exposed to the harsh environment outside the Earth's atmosphere, they sometimes do not perform as expected. The USU Getaway Away Special (GAS) team is now in the design stages of launching a CubeSat (a 10 cm cubed autonomous satellite to fly in Low Earth Orbi...

  17. Wireless virtualization

    CERN Document Server

    Wen, Heming; Le-Ngoc, Tho

    2013-01-01

    This SpringerBriefs is an overview of the emerging field of wireless access and mobile network virtualization. It provides a clear and relevant picture of the current virtualization trends in wireless technologies by summarizing and comparing different architectures, techniques and technologies applicable to a future virtualized wireless network infrastructure. The readers are exposed to a short walkthrough of the future Internet initiative and network virtualization technologies in order to understand the potential role of wireless virtualization in the broader context of next-generation ubiq

  18. A signal strength priority based position estimation for mobile platforms

    Science.gov (United States)

    Kalgikar, Bhargav; Akopian, David; Chen, Philip

    2010-01-01

    Global Positioning System (GPS) products help to navigate while driving, hiking, boating, and flying. GPS uses a combination of orbiting satellites to determine position coordinates. This works great in most outdoor areas, but the satellite signals are not strong enough to penetrate inside most indoor environments. As a result, a new strain of indoor positioning technologies that make use of 802.11 wireless LANs (WLAN) is beginning to appear on the market. In WLAN positioning the system either monitors propagation delays between wireless access points and wireless device users to apply trilateration techniques or it maintains the database of location-specific signal fingerprints which is used to identify the most likely match of incoming signal data with those preliminary surveyed and saved in the database. In this paper we investigate the issue of deploying WLAN positioning software on mobile platforms with typically limited computational resources. We suggest a novel received signal strength rank order based location estimation system to reduce computational loads with a robust performance. The proposed system performance is compared to conventional approaches.

  19. Multi-spectral band selection for satellite-based systems

    International Nuclear Information System (INIS)

    Clodius, W.B.; Weber, P.G.; Borel, C.C.; Smith, B.W.

    1998-01-01

    The design of satellite based multispectral imaging systems requires the consideration of a number of tradeoffs between cost and performance. The authors have recently been involved in the design and evaluation of a satellite based multispectral sensor operating from the visible through the long wavelength IR. The criteria that led to some of the proposed designs and the modeling used to evaluate and fine tune the designs will both be discussed. These criteria emphasized the use of bands for surface temperature retrieval and the correction of atmospheric effects. The impact of cost estimate changes on the final design will also be discussed

  20. Energy generation for an ad hoc wireless sensor network-based monitoring system using animal head movement

    DEFF Research Database (Denmark)

    S. Nadimi, Esmaeil; Blanes-Vidal, Victoria; Jørgensen, Rasmus Nyholm

    2011-01-01

    are not easily accessible. Therefore, exploring novel sources of energy generation rather than operating electronics only on limited power supplies such as batteries is a major challenge. Monitoring free-ranging animal behavior is an application in which the entities (animals) within the MANET are not readily...... that the amount of energy generated by the vertical neck–head movement of sheep during grazing can be converted to useful electrical power adequate to provide power for operation of wireless sensor nodes on a continuous basis within a MANET-based animal behavior monitoring system.......The supply of energy to electronics is an imperative constraining factor to be considered during the design process of mobile ad hoc wireless sensor networks (MANETs). This influence is especially important when the MANET is deployed unattended or the wireless modules within the MANET...

  1. A Regulation-Based Security Evaluation Method for Data Link in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Claudio S. Malavenda

    2014-01-01

    Full Text Available This article presents a novel approach to the analysis of wireless sensor networks (WSN security, based on the regulations intended for wireless communication devices. Starting from the analysis and classification of attacks, countermeasures, and available protocols, we present the current state on secure communication stacks for embedded systems. The regulation analysis is based on civil EN 50150 and MIL STD-188-220, both applicable to WSN communications. Afterwards, starting from a list of known WSN attacks, we use a correspondence table to match WSN attacks with countermeasures required by regulations. This approach allows us to produce a precise security evaluation and classification methodology for WSN protocols. The results show that current protocols do not present a complete coverage of security issues. While this conclusion is already known for many WSN protocols, to the best of our knowledge this is the first time a complete methodology is proposed to base this assertion. Moreover, by using the proposed methodology, we are able to precisely identify the exposed threats for each WSN protocol under analysis.

  2. A Balancing Algorithm in Wireless Sensor Network Based on the Assistance of Approaching Nodes

    Directory of Open Access Journals (Sweden)

    Chengpei Tang

    2013-03-01

    Full Text Available Sensor node in wireless sensor network is a micro-embedded system with limited memory, energy and communication capabilities. Some nodes will run out of energy and exit the network earlier than other nodes because of the uneven energy consumption. This will lead to partial or complete paralysis of the whole wireless sensor network. A balancing algorithm based on the assistance of approaching nodes is proposed. Via the set theory, notes are divided into neighbor nodes set and approaching nodes set. Approaching nodes will help weaker nodes forward part of massages to balance energy consumption. Simulation result has verified the rationality and feasibility of the balancing algorithm.

  3. Battling Latency in Modern Wireless Networks

    KAUST Repository

    Showail, Ahmad

    2018-05-15

    Buffer sizing has a tremendous effect on the performance of Wi-Fi based networks. Choosing the right buffer size is challenging due to the dynamic nature of the wireless environment. Over buffering or ‘bufferbloat’ may produce unacceptable endto-end delays. On the other hand, small buffers may limit the performance gains that can be obtained with various IEEE 802.11n/ac enhancements, such as frame aggregation. We propose Wireless Queue Management (WQM), a novel, practical, and lightweight queue management scheme for wireless networks. WQM adapts the buffer size based on the wireless link characteristics and the network load. Furthermore, it accounts for aggregates length when deciding on the optimal buffer size. We evaluate WQM using our 10 nodes wireless testbed. WQM reduces the end-to-end delay by an order of magnitude compared to the default buffer size in Linux while achieving similar network throughput. Also, WQM outperforms state of the art bufferbloat solutions, namely CoDel and PIE. WQM achieves 7× less latency compared to PIE, and 2× compared to CoDel at the cost of 8% drop in goodput in the worst case. Further, WQM improves network fairness as it limits the ability of a single flow to saturate the buffers.

  4. Battling Latency in Modern Wireless Networks

    KAUST Repository

    Showail, Ahmad; Shihada, Basem

    2018-01-01

    Buffer sizing has a tremendous effect on the performance of Wi-Fi based networks. Choosing the right buffer size is challenging due to the dynamic nature of the wireless environment. Over buffering or ‘bufferbloat’ may produce unacceptable endto-end delays. On the other hand, small buffers may limit the performance gains that can be obtained with various IEEE 802.11n/ac enhancements, such as frame aggregation. We propose Wireless Queue Management (WQM), a novel, practical, and lightweight queue management scheme for wireless networks. WQM adapts the buffer size based on the wireless link characteristics and the network load. Furthermore, it accounts for aggregates length when deciding on the optimal buffer size. We evaluate WQM using our 10 nodes wireless testbed. WQM reduces the end-to-end delay by an order of magnitude compared to the default buffer size in Linux while achieving similar network throughput. Also, WQM outperforms state of the art bufferbloat solutions, namely CoDel and PIE. WQM achieves 7× less latency compared to PIE, and 2× compared to CoDel at the cost of 8% drop in goodput in the worst case. Further, WQM improves network fairness as it limits the ability of a single flow to saturate the buffers.

  5. Wireless Remote Control System

    Directory of Open Access Journals (Sweden)

    Adrian Tigauan

    2012-06-01

    Full Text Available This paper presents the design of a wireless remote control system based on the ZigBee communication protocol. Gathering data from sensors or performing control tasks through wireless communication is advantageous in situations in which the use of cables is impractical. An Atmega328 microcontroller (from slave device is used for gathering data from the sensors and transmitting it to a coordinator device with the help of the XBee modules. The ZigBee standard is suitable for low-cost, low-data-rate and low-power wireless networks implementations. The XBee-PRO module, designed to meet ZigBee standards, requires minimal power for reliable data exchange between devices over a distance of up to 1600m outdoors. A key component of the ZigBee protocol is the ability to support networking and this can be used in a wireless remote control system. This system may be employed e.g. to control temperature and humidity (SHT11 sensor and light intensity (TSL230 sensor levels inside a commercial greenhouse.

  6. TinyOS-based quality of service management in wireless sensor networks

    Science.gov (United States)

    Peterson, N.; Anusuya-Rangappa, L.; Shirazi, B.A.; Huang, R.; Song, W.-Z.; Miceli, M.; McBride, D.; Hurson, A.; LaHusen, R.

    2009-01-01

    Previously the cost and extremely limited capabilities of sensors prohibited Quality of Service (QoS) implementations in wireless sensor networks. With advances in technology, sensors are becoming significantly less expensive and the increases in computational and storage capabilities are opening the door for new, sophisticated algorithms to be implemented. Newer sensor network applications require higher data rates with more stringent priority requirements. We introduce a dynamic scheduling algorithm to improve bandwidth for high priority data in sensor networks, called Tiny-DWFQ. Our Tiny-Dynamic Weighted Fair Queuing scheduling algorithm allows for dynamic QoS for prioritized communications by continually adjusting the treatment of communication packages according to their priorities and the current level of network congestion. For performance evaluation, we tested Tiny-DWFQ, Tiny-WFQ (traditional WFQ algorithm implemented in TinyOS), and FIFO queues on an Imote2-based wireless sensor network and report their throughput and packet loss. Our results show that Tiny-DWFQ performs better in all test cases. ?? 2009 IEEE.

  7. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  8. Study on explosion field temperature testing system based on wireless data transmission

    International Nuclear Information System (INIS)

    Wang Xinling; Sun Yunqiang

    2011-01-01

    The accurate measurement of the transient temperature value produced by explosive blasting may provide the basis for distinguishing the types of the explosive, the power contrast of the explosive and the performance evaluation in the weapons research process. To solve the problems of the Universal Test System emplaced inconveniently and the stored testing system need to be recycled, it has designed the explosion field application in wireless sensor system of temperature measurement. The system based on PIC16F877A micro controller, CPLD complex programmable logic devices and nRF24L01 wireless transmission chip sensor. The system adopts the Tungsten-Rhenium Thermocouple as the temperature sensor, DS600 temperature sensor for cold temperature compensation. This system has arrangement convenient, high-speed data acquisition, trigger and working parameters of adjustable characteristics, has been successfully applied in a test system. (authors)

  9. Wireless sensing and vibration control with increased redundancy and robustness design.

    Science.gov (United States)

    Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan

    2014-11-01

    Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.

  10. Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks

    OpenAIRE

    Campbell, Carlene E.-A.; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong

    2011-01-01

    The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and da...

  11. A Heterogeneous Wireless Identification Network for the Localization of Animals Based on Stochastic Movements

    Directory of Open Access Journals (Sweden)

    Ivana Raos

    2009-05-01

    Full Text Available The improvement in the transmission range in wireless applications without the use of batteries remains a significant challenge in identification applications. In this paper, we describe a heterogeneous wireless identification network mostly powered by kinetic energy, which allows the localization of animals in open environments. The system relies on radio communications and a global positioning system. It is made up of primary and secondary nodes. Secondary nodes are kinetic-powered and take advantage of animal movements to activate the node and transmit a specific identifier, reducing the number of batteries of the system. Primary nodes are battery-powered and gather secondary-node transmitted information to provide it, along with position and time data, to a final base station in charge of the animal monitoring. The system allows tracking based on contextual information obtained from statistical data.

  12. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay

    2014-01-01

    variations are clearly visible across the domain; for instance sheltering effects caused by the land masses. The satellite based wind resource maps have two shortcomings. One is the lack of information at the higher vertical levels where wind turbines operate. The other is the limited number of overlapping...... years of WRF data – specifically the parameters heat flux, air temperature, and friction velocity – are used to calculate a long-term correction for atmospheric stability effects. The stability correction is applied to the satellite based wind resource maps together with a vertical wind profile...... from satellite synthetic aperture radar (SAR) data are particularly suitable for offshore wind energy applications because they offer a spatial resolution up to 500 m and include coastal seas. In this presentation, satellite wind maps are used in combination with mast observations and numerical...

  13. End-User Attitudes towards Location-Based Services and Future Mobile Wireless Devices: The Students’ Perspective

    Directory of Open Access Journals (Sweden)

    Bogdan Cramariuc

    2011-07-01

    Full Text Available Nowadays, location-enabled mobile phones are becoming more and more widespread. Various players in the mobile business forecast that, in the future, a significant part of total wireless revenue will come from Location-Based Services (LBS. An LBS system extracts information about the user’s geographical location and provides services based on the positioning information. A successful LBS service should create value for the end-user, by satisfying some of the users’ needs or wants, and at the same time preserving the key factors of the mobile wireless device, such as low costs, low battery consumption, and small size. From many users’ perspectives, location services and mobile location capabilities are still rather poorly known and poorly understood. The aim of this research is to investigate users’ views on the LBS, their requirements in terms of mobile device characteristics, their concerns in terms of privacy and usability, and their opinion on LBS applications that might increase the social wellbeing in the future wireless world. Our research is based on two surveys performed among 105 students (average student age: 24 years from two European technical universities. The survey questions were intended to solicit the youngsters’ views on present and future technological trends and on their perceived needs and wishes regarding Location-Based Services, with the aim of obtaining a better understanding of designer constraints when building a location receiver and generating new ideas related to potential future killer LBS applications.

  14. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  15. Fully wireless pressure sensor based on endoscopy images

    Science.gov (United States)

    Maeda, Yusaku; Mori, Hirohito; Nakagawa, Tomoaki; Takao, Hidekuni

    2018-04-01

    In this paper, the result of developing a fully wireless pressure sensor based on endoscopy images for an endoscopic surgery is reported for the first time. The sensor device has structural color with a nm-scale narrow gap, and the gap is changed by air pressure. The structural color of the sensor is acquired from camera images. Pressure detection can be realized with existing endoscope configurations only. The inner air pressure of the human body should be measured under flexible-endoscope operation using the sensor. Air pressure monitoring, has two important purposes. The first is to quantitatively measure tumor size under a constant air pressure for treatment selection. The second purpose is to prevent the endangerment of a patient due to over transmission of air. The developed sensor was evaluated, and the detection principle based on only endoscopy images has been successfully demonstrated.

  16. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865

  17. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.

  18. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Kea-Tiong Tang

    2011-04-01

    Full Text Available This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN applications.

  19. Centralized optical-frequency-comb-based RF carrier generator for DWDM fiber-wireless access systems

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Beltran, Marta; Sanchez, Jose

    2014-01-01

    In this paper, we report on a gigabit capacity fiber-wireless system that enables smooth integration between high-speed wireless networks and dense wavelength-division-multiplexing (DWDM) access networks. By employing a centralized optical frequency comb, both the wireline and the wireless services...

  20. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors

    Directory of Open Access Journals (Sweden)

    Youngmin Kim

    2016-07-01

    Full Text Available Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM. Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.

  1. Information Assurance in Wireless Networks

    Science.gov (United States)

    Kabara, Joseph; Krishnamurthy, Prashant; Tipper, David

    2001-09-01

    Emerging wireless networks will contain a hybrid infrastructure based on fixed, mobile and ad hoc topologies and technologies. In such a dynamic architecture, we define information assurance as the provisions for both information security and information availability. The implications of this definition are that the wireless network architecture must (a) provide sufficient security measures, (b) be survivable under node or link attack or failure and (c) be designed such that sufficient capacity remains for all critical services (and preferably most other services) in the event of attack or component failure. We have begun a research project to investigate the provision of information assurance for wireless networks viz. survivability, security and availability and here discuss the issues and challenges therein.

  2. Design and Implementation of Mobile Car with Wireless Video Monitoring System Based on STC89C52

    Directory of Open Access Journals (Sweden)

    Yang Hong

    2014-05-01

    Full Text Available With the rapid development of wireless networks and image acquisition technology, wireless video transmission technology has been widely applied in various communication systems. The traditional video monitoring technology is restricted by some conditions such as layout, environmental, the relatively large volume, cost, and so on. In view of this problem, this paper proposes a method that the mobile car can be equipped with wireless video monitoring system. The mobile car which has some functions such as detection, video acquisition and wireless data transmission is developed based on STC89C52 Micro Control Unit (MCU and WiFi router. Firstly, information such as image, temperature and humidity is processed by the MCU and communicated with the router, and then returned by the WiFi router to the host computer phone. Secondly, control information issued by the host computer phone is received by WiFi router and sent to the MCU, and then the MCU sends relevant instructions. Lastly, the wireless transmission of video images and the remote control of the car are realized. The results prove that the system has some features such as simple operation, high stability, fast response, low cost, strong flexibility, widely application, and so on. The system has certain practical value and popularization value.

  3. Cell-Phone Tower Power System Prototype Testing for Verizon Wireless |

    Science.gov (United States)

    Advanced Manufacturing Research | NREL Cell-Phone Tower Power System Prototype Testing for Verizon Wireless Cell-Phone Tower Power System Prototype Testing for Verizon Wireless For Verizon Wireless , NREL tested a new cell-phone tower power system prototype based on DC interconnection and photovoltaics

  4. Wireless Sensor Network Congestion Control Based on Standard Particle Swarm Optimization and Single Neuron PID.

    Science.gov (United States)

    Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong

    2018-04-19

    Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm⁻neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS.

  5. A wireless computational platform for distributed computing based traffic monitoring involving mixed Eulerian-Lagrangian sensing

    KAUST Repository

    Jiang, Jiming

    2013-06-01

    This paper presents a new wireless platform designed for an integrated traffic monitoring system based on combined Lagrangian (mobile) and Eulerian (fixed) sensing. The sensor platform is built around a 32-bit ARM Cortex M4 micro-controller and a 2.4GHz 802.15.4 ISM compliant radio module, and can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. The platform is specially designed and optimized to be integrated in a solar-powered wireless sensor network in which traffic flow maps are computed by the nodes directly using distributed computing. A MPPT circuitry is proposed to increase the power output of the attached solar panel. A self-recovering unit is designed to increase reliability and allow periodic hard resets, an essential requirement for sensor networks. A radio monitoring circuitry is proposed to monitor incoming and outgoing transmissions, simplifying software debug. An ongoing implementation is briefly discussed, and compared with existing platforms used in wireless sensor networks. © 2013 IEEE.

  6. Wireless Sensor Network Congestion Control Based on Standard Particle Swarm Optimization and Single Neuron PID

    Science.gov (United States)

    Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong

    2018-01-01

    Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm–neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS. PMID:29671822

  7. SHER: A Colored Petri Net Based Random Mobility Model for Wireless Communications

    Science.gov (United States)

    Khan, Naeem Akhtar; Ahmad, Farooq; Khan, Sher Afzal

    2015-01-01

    In wireless network research, simulation is the most imperative technique to investigate the network’s behavior and validation. Wireless networks typically consist of mobile hosts; therefore, the degree of validation is influenced by the underlying mobility model, and synthetic models are implemented in simulators because real life traces are not widely available. In wireless communications, mobility is an integral part while the key role of a mobility model is to mimic the real life traveling patterns to study. The performance of routing protocols and mobility management strategies e.g. paging, registration and handoff is highly dependent to the selected mobility model. In this paper, we devise and evaluate the Show Home and Exclusive Regions (SHER), a novel two-dimensional (2-D) Colored Petri net (CPN) based formal random mobility model, which exhibits sociological behavior of a user. The model captures hotspots where a user frequently visits and spends time. Our solution eliminates six key issues of the random mobility models, i.e., sudden stops, memoryless movements, border effect, temporal dependency of velocity, pause time dependency, and speed decay in a single model. The proposed model is able to predict the future location of a mobile user and ultimately improves the performance of wireless communication networks. The model follows a uniform nodal distribution and is a mini simulator, which exhibits interesting mobility patterns. The model is also helpful to those who are not familiar with the formal modeling, and users can extract meaningful information with a single mouse-click. It is noteworthy that capturing dynamic mobility patterns through CPN is the most challenging and virulent activity of the presented research. Statistical and reachability analysis techniques are presented to elucidate and validate the performance of our proposed mobility model. The state space methods allow us to algorithmically derive the system behavior and rectify the

  8. Isochronous wireless network for real-time communication in industrial automation

    CERN Document Server

    Trsek, Henning

    2016-01-01

    This dissertation proposes and investigates an isochronous wireless network for industrial control applications with guaranteed latencies and jitter. Based on a requirements analysis of real industrial applications and the characterisation of the wireless channel, the solution approach is developed. It consists of a TDMA-based medium access control, a dynamic resource allocation and the provision of a global time base for the wired and the wireless network. Due to the global time base, the solution approach allows a seamless and synchronous integration into existing wired Real-time Ethernet systems.

  9. An Architecture for Performance Optimization in a Collaborative Knowledge-Based Approach for  Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Juan Ramon Velasco

    2011-09-01

    Full Text Available Over the past few years, Intelligent Spaces (ISs have received the attention of many Wireless Sensor Network researchers. Recently, several studies have been devoted to identify their common capacities and to set up ISs over these networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks for the purpose of implementing ISs. This work presents a distributed architecture proposal for collaborative Fuzzy Rule-Based Systems embedded in Wireless Sensor Networks, which has been designed to optimize the implementation of ISs. This architecture includes the following: (a an optimized design for the inference engine; (b a visual interface; (c a module to reduce the redundancy and complexity of the knowledge bases; (d a module to evaluate the accuracy of the new knowledge base; (e a module to adapt the format of the rules to the structure used by the inference engine; and (f a communications protocol. As a real-world application of this architecture and the proposed methodologies, we show an application to the problem of modeling two plagues of the olive tree: prays (olive moth, Prays oleae Bern. and repilo (caused by the fungus Spilocaea oleagina. The results show that the architecture presented in this paper significantly decreases the consumption of resources (memory, CPU and battery without a substantial decrease in the accuracy of the inferred values.

  10. A new concept of space solar power satellite

    Science.gov (United States)

    Li, Xun; Duan, Baoyan; Song, Liwei; Yang, Yang; Zhang, Yiqun; Wang, Dongxu

    2017-07-01

    Space solar power satellite (SSPS) is a tremendous energy system that collects and converts solar power to electric power in space, and then transmits the electric power to earth wirelessly. In this paper, a novel SSPS concept based on ε-near-zero (ENZ) metamaterial is proposed. A spherical condenser made of ENZ metamaterial is developed, by using the refractive property of the ENZ metamaterial sunlight can be captured and redirected to its center. To make the geometric concentration ratio of the PV array reasonable, a hemispherical one located at the center is used to collect and convert the normal-incidence sunlight to DC power, then through a phased array transmitting antenna the DC power is beamed down to the rectenna on the ground. Detailed design of the proposed concept is presented.

  11. A wireless acoustic emission sensor remotely powered by light

    International Nuclear Information System (INIS)

    Zahedi, F; Huang, H

    2014-01-01

    In this paper, wireless sensing of acoustic emission (AE) signals using a battery-free sensor node remotely powered by light is presented. The wireless sensor consists of a piezoelectric wafer active sensor (PWAS) for AE signal acquisition and a wireless transponder that performs signal conditioning, frequency conversion, and wireless transmission. For signal conditioning, a voltage follower that consumes less than 2 mW was introduced to buffer the high impedance of the PWAS from the low impedance of the wireless transponder. A photocell-based energy harvester with a stable voltage output was developed to power the voltage follower so that the wireless AE sensor can operate without an external power source. The principle of operation of the battery-free wireless AE sensor node and the sensor interrogation system is described, followed by a detailed description of the hardware implementation. The voltage follower and the wireless channel were characterized by ultrasound pitch–catch and pencil lead break experiments. (paper)

  12. Building a satellite climate diagnostics data base for real-time climate monitoring

    International Nuclear Information System (INIS)

    Ropelewski, C.F.

    1991-01-01

    The paper discusses the development of a data base, the Satellite Climate Diagnostic Data Base (SCDDB), for real time operational climate monitoring utilizing current satellite data. Special attention is given to the satellite-derived quantities useful for monitoring global climate changes, the requirements of SCDDB, and the use of conventional meteorological data and model assimilated data in developing the SCDDB. Examples of prototype SCDDB products are presented. 10 refs

  13. Wireless Positioning Based on a Segment-Wise Linear Approach for Modeling the Target Trajectory

    DEFF Research Database (Denmark)

    Figueiras, Joao; Pedersen, Troels; Schwefel, Hans-Peter

    2008-01-01

    Positioning solutions in infrastructure-based wireless networks generally operate by exploiting the channel information of the links between the Wireless Devices and fixed networking Access Points. The major challenge of such solutions is the modeling of both the noise properties of the channel...... measurements and the user mobility patterns. One class of typical human being movement patterns is the segment-wise linear approach, which is studied in this paper. Current tracking solutions, such as the Constant Velocity model, hardly handle such segment-wise linear patterns. In this paper we propose...... a segment-wise linear model, called the Drifting Points model. The model results in an increased performance when compared with traditional solutions....

  14. A novel block encryption scheme based on chaos and an S-box for wireless sensor networks

    International Nuclear Information System (INIS)

    Tong Xiao-Jun; Zuo Ke; Wang Zhu

    2012-01-01

    The wireless sensor network (WSN) has been widely used in various fields, but it still remains in the preliminary discovery and research phase with a lack of various related mature technologies. Traditional encryption schemes are not suitable for wireless sensor networks due to intrinsic features of the nodes such as low energy, limited computation capability, and lack of storage resources. In this paper, we present a novel block encryption scheme based on the integer discretization of a chaotic map, the Feistel network structure, and an S-box. The novel scheme is fast, secure, has low resource consumption and is suitable for wireless sensor network node encryption schemes. The experimental tests are carried out with detailed analysis, showing that the novel block algorithm has a large key space, very good diffusion and disruptive performances, a strict avalanche effect, excellent statistical balance, and fast encryption speed. These features enable the encryption scheme to pass the SP800-22 test. Meanwhile, the analysis and the testing of speed, time, and storage space on the simulator platform show that this new encryption scheme is well able to hide data information in wireless sensor networks. (general)

  15. Self-Powered Wireless Smart Sensor Node Enabled by an Ultrastable, Highly Efficient, and Superhydrophobic-Surface-Based Triboelectric Nanogenerator.

    Science.gov (United States)

    Zhao, Kun; Wang, Zhong Lin; Yang, Ya

    2016-09-27

    Wireless sensor networks will be responsible for a majority of the fast growth in intelligent systems in the next decade. However, most of the wireless smart sensor nodes require an external power source such as a Li-ion battery, where the labor cost and environmental waste issues of replacing batteries have largely limited the practical applications. Instead of using a Li-ion battery, we report an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator (TENG) to scavenge wind energy for sustainably powering a wireless smart temperature sensor node. There is no decrease in the output voltage and current of the TENG after continuous working for about 14 h at a wind speed of 12 m/s. Through a power management circuit, the TENG can deliver a constant output voltage of 3.3 V and a pulsed output current of about 100 mA to achieve highly efficient energy storage in a capacitor. A wireless smart temperature sensor node can be sustainably powered by the TENG for sending the real-time temperature data to an iPhone under a working distance of 26 m, demonstrating the feasibility of the self-powered wireless smart sensor networks.

  16. Performance Evaluation of a Cluster-Based Service Discovery Protocol for Heterogeneous Wireless Sensor Networks

    NARCIS (Netherlands)

    Marin Perianu, Raluca; Scholten, Johan; Havinga, Paul J.M.; Hartel, Pieter H.

    2006-01-01

    Abstract—This paper evaluates the performance in terms of resource consumption of a service discovery protocol proposed for heterogeneous Wireless Sensor Networks (WSNs). The protocol is based on a clustering structure, which facilitates the construction of a distributed directory. Nodes with higher

  17. A near real-time satellite-based global drought climate data record

    International Nuclear Information System (INIS)

    AghaKouchak, Amir; Nakhjiri, Navid

    2012-01-01

    Reliable drought monitoring requires long-term and continuous precipitation data. High resolution satellite measurements provide valuable precipitation information on a quasi-global scale. However, their short lengths of records limit their applications in drought monitoring. In addition to this limitation, long-term low resolution satellite-based gauge-adjusted data sets such as the Global Precipitation Climatology Project (GPCP) one are not available in near real-time form for timely drought monitoring. This study bridges the gap between low resolution long-term satellite gauge-adjusted data and the emerging high resolution satellite precipitation data sets to create a long-term climate data record of droughts. To accomplish this, a Bayesian correction algorithm is used to combine GPCP data with real-time satellite precipitation data sets for drought monitoring and analysis. The results showed that the combined data sets after the Bayesian correction were a significant improvement compared to the uncorrected data. Furthermore, several recent major droughts such as the 2011 Texas, 2010 Amazon and 2010 Horn of Africa droughts were detected in the combined real-time and long-term satellite observations. This highlights the potential application of satellite precipitation data for regional to global drought monitoring. The final product is a real-time data-driven satellite-based standardized precipitation index that can be used for drought monitoring especially over remote and/or ungauged regions. (letter)

  18. A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks

    Science.gov (United States)

    Gui, Jinsong; Zhou, Kai; Xiong, Naixue

    2016-01-01

    Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude. PMID:27681731

  19. A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jinsong Gui

    2016-09-01

    Full Text Available Multi-Input Multi-Output (MIMO can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs, clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO, which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude.

  20. Rogue AP Detection in the Wireless LAN for Large Scale Deployment

    Directory of Open Access Journals (Sweden)

    Sang-Eon Kim

    2006-10-01

    Full Text Available The wireless LAN standard, also known as WiFi, has begun to use commercial purposes. This paper describes access network architecture of wireless LAN for large scale deployment to provide public service. A metro Ethernet and digital subscriber line access network can be used for wireless LAN with access point. In this network architecture, access point plays interface between wireless node and network infrastructure. It is important to maintain access point without any failure and problems to public users. This paper proposes definition of rogue access point and classifies based on functional problem to access the Internet. After that, rogue access point detection scheme is described based on classification over the wireless LAN. The rogue access point detector can greatly improve the network availability to network service provider of wireless LAN.

  1. Applicable approach of the wireless technology for Korean nuclear power plants

    International Nuclear Information System (INIS)

    Ko, Do Young; Lee, Soo Ill

    2013-01-01

    Highlights: • To apply wireless technology for Korean NPPs, several stipulations are proposed. • WLAN is proposed as the most appropriate wireless technology for Korean NPPs. • WLAN can be applied to the specific fields except in the control system. • An attitude survey on wireless showed that 94.7% agree with the necessity of wireless. - Abstract: Recently, many nuclear power plants (NPPs) over the world use various types of wireless systems for the advantages. Unfortunately, wireless technologies are not currently installed in any Korean NPPs because it is difficult to solve the negative impact of unexpected outcomes or failures from the influence of the wireless technologies, which is electromagnetic interference and radio-frequency interference (EMI/RFI). Moreover, a lack of desire on the part of Korean nuclear industry to implement it leads to give up benefit from the wireless technologies. To install the wireless technologies with maximum benefit and minimum risk, a systematic approach, which quantify the negative impact and prevent the influence, is essential; therefore, this paper describes an applicable research result on the wireless technology for Korean NPPs based on regulatory guides and current wireless hardware and software technologies. Also, survey on the needs for the wireless technology for Korean nuclear power plants was conducted, because the level of awareness of workers in NPPs regarding wireless technologies is very important issue. In this paper, we propose an applicable system to enhance the applicability for the wireless technology for Korean NPPs. The result based on proposed applicable system shows that wireless local area network (WLAN) is the representative candidate for Korean NPPs, which can be applied to the specific fields of radiation monitoring, voice and data communication, component monitoring and instrumentation, and wireless cameras

  2. Applicable approach of the wireless technology for Korean nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Young, E-mail: kodoyoung@khnp.co.kr; Lee, Soo Ill

    2013-12-15

    Highlights: • To apply wireless technology for Korean NPPs, several stipulations are proposed. • WLAN is proposed as the most appropriate wireless technology for Korean NPPs. • WLAN can be applied to the specific fields except in the control system. • An attitude survey on wireless showed that 94.7% agree with the necessity of wireless. - Abstract: Recently, many nuclear power plants (NPPs) over the world use various types of wireless systems for the advantages. Unfortunately, wireless technologies are not currently installed in any Korean NPPs because it is difficult to solve the negative impact of unexpected outcomes or failures from the influence of the wireless technologies, which is electromagnetic interference and radio-frequency interference (EMI/RFI). Moreover, a lack of desire on the part of Korean nuclear industry to implement it leads to give up benefit from the wireless technologies. To install the wireless technologies with maximum benefit and minimum risk, a systematic approach, which quantify the negative impact and prevent the influence, is essential; therefore, this paper describes an applicable research result on the wireless technology for Korean NPPs based on regulatory guides and current wireless hardware and software technologies. Also, survey on the needs for the wireless technology for Korean nuclear power plants was conducted, because the level of awareness of workers in NPPs regarding wireless technologies is very important issue. In this paper, we propose an applicable system to enhance the applicability for the wireless technology for Korean NPPs. The result based on proposed applicable system shows that wireless local area network (WLAN) is the representative candidate for Korean NPPs, which can be applied to the specific fields of radiation monitoring, voice and data communication, component monitoring and instrumentation, and wireless cameras.

  3. Secure relay selection based on learning with negative externality in wireless networks

    Science.gov (United States)

    Zhao, Caidan; Xiao, Liang; Kang, Shan; Chen, Guiquan; Li, Yunzhou; Huang, Lianfen

    2013-12-01

    In this paper, we formulate relay selection into a Chinese restaurant game. A secure relay selection strategy is proposed for a wireless network, where multiple source nodes send messages to their destination nodes via several relay nodes, which have different processing and transmission capabilities as well as security properties. The relay selection utilizes a learning-based algorithm for the source nodes to reach their best responses in the Chinese restaurant game. In particular, the relay selection takes into account the negative externality of relay sharing among the source nodes, which learn the capabilities and security properties of relay nodes according to the current signals and the signal history. Simulation results show that this strategy improves the user utility and the overall security performance in wireless networks. In addition, the relay strategy is robust against the signal errors and deviations of some user from the desired actions.

  4. Fault Detection for Large-Scale Railway Maintenance Equipment Base on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junfu Yu

    2014-04-01

    Full Text Available Focusing on the fault detection application for large-scale railway maintenance equipment with the specialties of low-cost, energy efficiency, collecting data of the function units. This paper proposed energy efficiency, convenient installation fault detection application using Sigsbee wireless sensor networks, which Sigsbee is the most widely used protocol based on IEEE 802.15.4. This paper proposed a systematic application from hardware design using STM32F103 chips as processer, to software system. Fault detection application is the basic part of the fault diagnose system, wireless sensor nodes of the fault detection application with different kinds of sensors for verities function units communication by Sigsbee to collecting and sending basic working status data to the home gateway, then data will be sent to the fault diagnose system.

  5. Landslide and Flood Warning System Prototypes based on Wireless Sensor Networks

    Science.gov (United States)

    Hloupis, George; Stavrakas, Ilias; Triantis, Dimos

    2010-05-01

    Wireless sensor networks (WSNs) are one of the emerging areas that received great attention during the last few years. This is mainly due to the fact that WSNs have provided scientists with the capability of developing real-time monitoring systems equipped with sensors based on Micro-Electro-Mechanical Systems (MEMS). WSNs have great potential for many applications in environmental monitoring since the sensor nodes that comprised from can host several MEMS sensors (such as temperature, humidity, inertial, pressure, strain-gauge) and transducers (such as position, velocity, acceleration, vibration). The resulting devices are small and inexpensive but with limited memory and computing resources. Each sensor node contains a sensing module which along with an RF transceiver. The communication is broadcast-based since the network topology can change rapidly due to node failures [1]. Sensor nodes can transmit their measurements to central servers through gateway nodes without any processing or they make preliminary calculations locally in order to produce results that will be sent to central servers [2]. Based on the above characteristics, two prototypes using WSNs are presented in this paper: A Landslide detection system and a Flood warning system. Both systems sent their data to central processing server where the core of processing routines exists. Transmission is made using Zigbee and IEEE 802.11b protocol but is capable to use VSAT communication also. Landslide detection system uses structured network topology. Each measuring node comprises of a columnar module that is half buried to the area under investigation. Each sensing module contains a geophone, an inclinometer and a set of strain gauges. Data transmitted to central processing server where possible landslide evolution is monitored. Flood detection system uses unstructured network topology since the failure rate of sensor nodes is expected higher. Each sensing module contains a custom water level sensor

  6. Assessing satellite-based start-of-season trends in the US High Plains

    International Nuclear Information System (INIS)

    Lin, X; Sassenrath, G F; Hubbard, K G; Mahmood, R

    2014-01-01

    To adequately assess the effects of global warming it is necessary to address trends and impacts at the local level. This study examines phenological changes in the start-of-season (SOS) derived from satellite observations from 1982–2008 in the US High Plains region. The surface climate-based SOS was also evaluated. The averaged profiles of SOS from 37° to 49°N latitude by satellite- and climate-based methods were in reasonable agreement, especially for areas where croplands were masked out and an additional frost date threshold was adopted. The statistically significant trends of satellite-based SOS show a later spring arrival ranging from 0.1 to 4.9 days decade −1 over nine Level III ecoregions. We found the croplands generally exhibited larger trends (later arrival) than the non-croplands. The area-averaged satellite-based SOS for non-croplands (i.e. mostly grasslands) showed no significant trends. We examined the trends of temperatures, precipitation, and standardized precipitation index (SPI), as well as the strength of correlation between the satellite-based SOS and these climatic drivers. Our results indicate that satellite-based SOS trends are spatially and primarily related to annual maximum normalized difference vegetation index (NDVI, mostly in summertime) and/or annual minimum NDVI (mostly in wintertime) and these trends showed the best correlation with six-month SPI over the period 1982–2008 in the US High Plains region. (letter)

  7. Data-Based Energy Efficient Clustered Routing Protocol for Wireless Sensors Networks – Tabuk Flood Monitoring System Case Study

    Directory of Open Access Journals (Sweden)

    Ammar Babiker

    2017-10-01

    Full Text Available Energy efficiency has been considered as the most important issue in wireless sensor networks. As in many applications, wireless sensors are scattered in a wide harsh area, where the battery replacement or charging will be quite difficult and it is the most important challenge. Therefore, the design of energy saving mechanism becomes mandatory in most recent research. In this paper, a new energy efficient clustered routing protocol is proposed: the proposed protocol is based on analyzing the data collected from the sensors in a base-station. Based on this analysis the cluster head will be selected as the one with the most useful data. Then, a variable time slot is specified to each sensor to minimize the transmission of repetitive and un-useful data. The proposed protocol Data-Based Energy Efficient Clustered Routing Protocol for Wireless Sensors Networks (DCRP was compared with the famous energy efficient LEACH protocol and also with one of the recent energy efficient routing protocols named Position Responsive Routing Protocol (PRRP. DCRP has been used in monitoring the floods in Tabuk area –Saudi Arabia. It shows comparatively better results.

  8. Wireless Sensor Network Based Smart Grid Communications: Cyber Attacks, Intrusion Detection System and Topology Control

    Directory of Open Access Journals (Sweden)

    Lipi Chhaya

    2017-01-01

    Full Text Available The existing power grid is going through a massive transformation. Smart grid technology is a radical approach for improvisation in prevailing power grid. Integration of electrical and communication infrastructure is inevitable for the deployment of Smart grid network. Smart grid technology is characterized by full duplex communication, automatic metering infrastructure, renewable energy integration, distribution automation and complete monitoring and control of entire power grid. Wireless sensor networks (WSNs are small micro electrical mechanical systems that are deployed to collect and communicate the data from surroundings. WSNs can be used for monitoring and control of smart grid assets. Security of wireless sensor based communication network is a major concern for researchers and developers. The limited processing capabilities of wireless sensor networks make them more vulnerable to cyber-attacks. The countermeasures against cyber-attacks must be less complex with an ability to offer confidentiality, data readiness and integrity. The address oriented design and development approach for usual communication network requires a paradigm shift to design data oriented WSN architecture. WSN security is an inevitable part of smart grid cyber security. This paper is expected to serve as a comprehensive assessment and analysis of communication standards, cyber security issues and solutions for WSN based smart grid infrastructure.

  9. Research on orbit prediction for solar-based calibration proper satellite

    Science.gov (United States)

    Chen, Xuan; Qi, Wenwen; Xu, Peng

    2018-03-01

    Utilizing the mathematical model of the orbit mechanics, the orbit prediction is to forecast the space target's orbit information of a certain time based on the orbit of the initial moment. The proper satellite radiometric calibration and calibration orbit prediction process are introduced briefly. On the basis of the research of the calibration space position design method and the radiative transfer model, an orbit prediction method for proper satellite radiometric calibration is proposed to select the appropriate calibration arc for the remote sensor and to predict the orbit information of the proper satellite and the remote sensor. By analyzing the orbit constraint of the proper satellite calibration, the GF-1solar synchronous orbit is chose as the proper satellite orbit in order to simulate the calibration visible durance for different satellites to be calibrated. The results of simulation and analysis provide the basis for the improvement of the radiometric calibration accuracy of the satellite remote sensor, which lays the foundation for the high precision and high frequency radiometric calibration.

  10. The Wireless ATM Architecture

    Directory of Open Access Journals (Sweden)

    R. Palitefka

    1998-06-01

    Full Text Available An overview of the proposed wireless ATM structure is provided. Wireless communication have been developed to a level where offered services can now be extended beyond voice and data. There are already wireless LANs, cordless systems offering data services and mobile data. Wireless LAN systems are basically planned for local, on-promises and in-house networking providing short distance radio or infrared links between computer system. The main challenge of wireless ATM is to harmonise the development of broadband wireless system with service B -ISDN/ATM and ATM LANs, and offer multimedia multiservice features for the support of time-sensitive voice communication, video, desktop multimedia applications, and LAN data traffic for the wireless user.

  11. On Radio over Fiber for Heterogeneous Wireless Networks

    DEFF Research Database (Denmark)

    Riaz, M. Tahir; Nielsen, Rasmus Hjorth; Pedersen, Jens Myrup

    2009-01-01

    The paper provides an overview of the radio over fiber (RoF) technology and its potential use in heterogeneous wireless networks. Wireless communications have seen a huge growth in the last decade. It has been estimated that five in every six people in the entire world will have a mobile phone...... in 2010. The vast growing use of Internet on the mobile devices has also been increased significantly. In order to provide a broadband access for mobile communications, a new wireless infrastructure (fiber optic networks for distributed, extendible heterogeneous radio architectures and service...... provisioning - FUTON) based on RoF technology has been introduced. The project adopts centralized processing of radio signals for number of wireless base stations can enhance the network performance in terms of bandwidth, and QoS parameters. The simplified remote access units (RAU) are expected to not only...

  12. A reliable transmission protocol for ZigBee-based wireless patient monitoring.

    Science.gov (United States)

    Chen, Shyr-Kuen; Kao, Tsair; Chan, Chia-Tai; Huang, Chih-Ning; Chiang, Chih-Yen; Lai, Chin-Yu; Tung, Tse-Hua; Wang, Pi-Chung

    2012-01-01

    Patient monitoring systems are gaining their importance as the fast-growing global elderly population increases demands for caretaking. These systems use wireless technologies to transmit vital signs for medical evaluation. In a multihop ZigBee network, the existing systems usually use broadcast or multicast schemes to increase the reliability of signals transmission; however, both the schemes lead to significantly higher network traffic and end-to-end transmission delay. In this paper, we present a reliable transmission protocol based on anycast routing for wireless patient monitoring. Our scheme automatically selects the closest data receiver in an anycast group as a destination to reduce the transmission latency as well as the control overhead. The new protocol also shortens the latency of path recovery by initiating route recovery from the intermediate routers of the original path. On the basis of a reliable transmission scheme, we implement a ZigBee device for fall monitoring, which integrates fall detection, indoor positioning, and ECG monitoring. When the triaxial accelerometer of the device detects a fall, the current position of the patient is transmitted to an emergency center through a ZigBee network. In order to clarify the situation of the fallen patient, 4-s ECG signals are also transmitted. Our transmission scheme ensures the successful transmission of these critical messages. The experimental results show that our scheme is fast and reliable. We also demonstrate that our devices can seamlessly integrate with the next generation technology of wireless wide area network, worldwide interoperability for microwave access, to achieve real-time patient monitoring.

  13. A low-cost biomedical signal transceiver based on a Bluetooth wireless system.

    Science.gov (United States)

    Fazel-Rezai, Reza; Pauls, Mark; Slawinski, David

    2007-01-01

    Most current wireless biomedical signal transceivers use range-limiting communication. This work presents a low-cost biomedical signal transceiver that uses Bluetooth wireless technology. The design is implemented in a modular form to be adaptable to different types of biomedical signals. The signal front end obtains and processes incoming signals, which are then transmitted via a microcontroller and wireless module. Near real-time receive software in LabVIEW was developed to demonstrate the system capability. The completed transmitter prototype successfully transmits ECG signals, and is able to simultaneously send multiple signals. The sampling rate of the transmitter is fast enough to send up to thirteen ECG signals simultaneously, with an error rate below 0.1% for transmission exceeding 65 meters. A low-cost wireless biomedical transceiver has many applications, such as real-time monitoring of patients with a known condition in non-clinical settings.

  14. Proxy SDN Controller for Wireless Networks

    Directory of Open Access Journals (Sweden)

    Won-Suk Kim

    2016-01-01

    Full Text Available Management of wireless networks as well as wired networks by using software-defined networking (SDN has been highlighted continually. However, control features of a wireless network differ from those of a wired network in several aspects. In this study, we identify the various inefficient points when controlling and managing wireless networks by using SDN and propose SDN-based control architecture called Proxcon to resolve these problems. Proxcon introduces the concept of a proxy SDN controller (PSC for the wireless network control, and the PSC entrusted with the role of a main controller performs control operations and provides the latest network state for a network administrator. To address the control inefficiency, Proxcon supports offloaded SDN operations for controlling wireless networks by utilizing the PSC, such as local control by each PSC, hybrid control utilizing the PSC and the main controller, and locally cooperative control utilizing the PSCs. The proposed architecture and the newly supported control operations can enhance scalability and response time when the logically centralized control plane responds to the various wireless network events. Through actual experiments, we verified that the proposed architecture could address the various control issues such as scalability, response time, and control overhead.

  15. Fault Tolerant Mechanism for Multimedia Flows in Wireless Ad Hoc Networks Based on Fast Switching Paths

    Directory of Open Access Journals (Sweden)

    Juan R. Diaz

    2014-01-01

    Full Text Available Multimedia traffic can be forwarded through a wireless ad hoc network using the available resources of the nodes. Several models and protocols have been designed in order to organize and arrange the nodes to improve transmissions along the network. We use a cluster-based framework, called MWAHCA architecture, which optimizes multimedia transmissions over a wireless ad hoc network. It was proposed by us in a previous research work. This architecture is focused on decreasing quality of service (QoS parameters like latency, jitter, and packet loss, but other network features were not developed, like load balance or fault tolerance. In this paper, we propose a new fault tolerance mechanism, using as a base the MWAHCA architecture, in order to recover any multimedia flow crossing the wireless ad hoc network when there is a node failure. The algorithm can run independently for each multimedia flow. The main objective is to keep the QoS parameters as low as possible. To achieve this goal, the convergence time must be controlled and reduced. This paper provides the designed protocol, the analytical model of the algorithm, and a software application developed to test its performance in a real laboratory.

  16. FPGA based Smart Wireless MIMO Control System

    International Nuclear Information System (INIS)

    Ali, Syed M Usman; Hussain, Sajid; Siddiqui, Ali Akber; Arshad, Jawad Ali; Darakhshan, Anjum

    2013-01-01

    In our present work, we have successfully designed, and developed an FPGA based smart wireless MIMO (Multiple Input and Multiple Output) system capable of controlling multiple industrial process parameters such as temperature, pressure, stress and vibration etc. To achieve this task we have used Xilin x Spartan 3E FPGA (Field Programmable Gate Array) instead of conventional microcontrollers. By employing FPGA kit to PC via RF transceivers which has a working range of about 100 meters. The developed smart system is capable of performing the control task assigned to it successfully. We have also provided a provision to our proposed system that can be accessed for monitoring and control through the web and GSM as well. Our proposed system can be equally applied to all the hazardous and rugged industrial environments where a conventional system cannot work effectively

  17. Transmit Power Optimisation in Wireless Network

    Directory of Open Access Journals (Sweden)

    Besnik Terziu

    2011-09-01

    Full Text Available Transmit power optimisation in wireless networks based on beamforming have emerged as a promising technique to enhance the spectrum efficiency of present and future wireless communication systems. The aim of this study is to minimise the access point power consumption in cellular networks while maintaining a targeted quality of service (QoS for the mobile terminals. In this study, the targeted quality of service is delivered to a mobile station by providing a desired level of Signal to Interference and Noise Ratio (SINR. Base-stations are coordinated across multiple cells in a multi-antenna beamforming system. This study focuses on a multi-cell multi-antenna downlink scenario where each mobile user is equipped with a single antenna, but where multiple mobile users may be active simultaneously in each cell and are separated via spatial multiplexing using beamforming. The design criteria is to minimize the total weighted transmitted power across the base-stations subject to SINR constraints at the mobile users. The main contribution of this study is to define an iterative algorithm that is capable of finding the joint optimal beamformers for all basestations, based on a correlation-based channel model, the full-correlation model. Among all correlated channel models, the correlated channel model used in this study is the most accurate, giving the best performance in terms of power consumption. The environment here in this study is chosen to be Non-Light of- Sight (NLOS condition, where a signal from a wireless transmitter passes several obstructions before arriving at a wireless receiver. Moreover there are many scatterers local to the mobile, and multiple reflections can occur among them before energy arrives at the mobile. The proposed algorithm is based on uplink-downlink duality using the Lagrangian duality theory. Time-Division Duplex (TDD is chosen as the platform for this study since it has been adopted to the latest technologies in Fourth

  18. Wireless Communications in Smart Rail Transportation Systems

    Directory of Open Access Journals (Sweden)

    César Briso-Rodríguez

    2017-01-01

    Full Text Available Railway, subway, airplane, and other transportation systems have drawn an increasing interest on the use of wireless communications for critical and noncritical services to improve performance, reliability, and passengers experience. Smart transportation systems require the use of critical communications for operation and control, and wideband services can be provided using noncritical communications. High speed train (HST is one of the best test cases for the analysis of communication links and specification of the general requirements for train control and supervision, passenger communications, and onboard and infrastructure wireless sensors. In this paper, we analyze in detail critical and noncritical networks mainly using the HST as a test case. First, the different types of links for smart rail transportation are described, specifying the main requirements of the transportation systems, communications, and their applications for different services. Then, we propose a network architecture and requirements of the communication technologies for critical and noncritical data. Finally, an analysis is made for the future technologies, including the fifth-generation (5G communications, millimeter wave (mmWave, terahertz (THz, and satellites for critical and high-capacity communications in transportation.

  19. Energy-efficient ZigBee-based wireless sensor network for track bicycle performance monitoring.

    Science.gov (United States)

    Gharghan, Sadik K; Nordin, Rosdiadee; Ismail, Mahamod

    2014-08-22

    In a wireless sensor network (WSN), saving power is a vital requirement. In this paper, a simple point-to-point bike WSN was considered. The data of bike parameters, speed and cadence, were monitored and transmitted via a wireless communication based on the ZigBee protocol. Since the bike parameters are monitored and transmitted on every bike wheel rotation, this means the sensor node does not sleep for a long time, causing power consumption to rise. Therefore, a newly proposed algorithm, known as the Redundancy and Converged Data (RCD) algorithm, was implemented for this application to put the sensor node into sleep mode while maintaining the performance measurements. This is achieved by minimizing the data packets transmitted as much as possible and fusing the data of speed and cadence by utilizing the correlation measurements between them to minimize the number of sensor nodes in the network to one node, which results in reduced power consumption, cost, and size, in addition to simpler hardware implementation. Execution of the proposed RCD algorithm shows that this approach can reduce the current consumption to 1.69 mA, and save 95% of the sensor node energy. Also, the comparison results with different wireless standard technologies demonstrate minimal current consumption in the sensor node.

  20. Energy-Efficient ZigBee-Based Wireless Sensor Network for Track Bicycle Performance Monitoring

    Directory of Open Access Journals (Sweden)

    Sadik K. Gharghan

    2014-08-01

    Full Text Available In a wireless sensor network (WSN, saving power is a vital requirement. In this paper, a simple point-to-point bike WSN was considered. The data of bike parameters, speed and cadence, were monitored and transmitted via a wireless communication based on the ZigBee protocol. Since the bike parameters are monitored and transmitted on every bike wheel rotation, this means the sensor node does not sleep for a long time, causing power consumption to rise. Therefore, a newly proposed algorithm, known as the Redundancy and Converged Data (RCD algorithm, was implemented for this application to put the sensor node into sleep mode while maintaining the performance measurements. This is achieved by minimizing the data packets transmitted as much as possible and fusing the data of speed and cadence by utilizing the correlation measurements between them to minimize the number of sensor nodes in the network to one node, which results in reduced power consumption, cost, and size, in addition to simpler hardware implementation. Execution of the proposed RCD algorithm shows that this approach can reduce the current consumption to 1.69 mA, and save 95% of the sensor node energy. Also, the comparison results with different wireless standard technologies demonstrate minimal current consumption in the sensor node.

  1. IP communication optimization for 6LoWPAN-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Li MA

    2014-07-01

    Full Text Available The emergence of 6LoWPAN makes it possible that Wireless Sensor Networks access to the Internet. However, the cost of IP communication between 6LoWPAN wireless sensor node and external internet node is still relatively high. This paper proposed a new addressing configuration and compression scheme in 6LoWPAN network called IPHC-NAT, which largely reduced the proportion of the IP header in 6LoWPAN packet, designed and constructed a bidirectional data transmission gateway to connect 6LoWPAN wireless sensor node with IPv6 client. The experimental results show the feasibility of the design of IPHC-NAT and the data transmission efficiency has significantly been improved compared to the original 6LoWPAN network.

  2. A Research of RSSI-AM Localization Algorithm Based on Data Encryption in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2014-07-01

    Full Text Available In practical application of wireless sensor networks, because of open environment, signal is easy to be attacked and traditional RSSI location technology produces errors. By analyzing the location modal of RSSI, this paper proposes a new encryption modulation algorithm: RSSI-AM, which is unlike most approaches. The location algorithm has the following advantages: simple calculation, strong security, powerful anti-interference ability and no hardware expansion required. Besides, the simulation experiment shows the location precision of ranging method based on RSSI-AM has obvious improvement compared with traditional algorithm. It can be used in the environment of wireless sensor network nodes with low cost and performance of hardware.

  3. Utility Maximization in Nonconvex Wireless Systems

    CERN Document Server

    Brehmer, Johannes

    2012-01-01

    This monograph formulates a framework for modeling and solving utility maximization problems in nonconvex wireless systems. First, a model for utility optimization in wireless systems is defined. The model is general enough to encompass a wide array of system configurations and performance objectives. Based on the general model, a set of methods for solving utility maximization problems is developed. The development is based on a careful examination of the properties that are required for the application of each method. The focus is on problems whose initial formulation does not allow for a solution by standard convex methods. Solution approaches that take into account the nonconvexities inherent to wireless systems are discussed in detail. The monograph concludes with two case studies that demonstrate the application of the proposed framework to utility maximization in multi-antenna broadcast channels.

  4. Wireless Zigbee strain gage sensor system for structural health monitoring

    Science.gov (United States)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  5. TRICALCAR : Weaving Community Based Wireless Networks in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... wireless champions by facilitating the exchange of knowledge between them and with other like-minded actors in the region. The training materials and knowledge gained during the experience will be documented and made available online. The idea is to improve Internet access in rural and urban marginalized areas at ...

  6. Tracking target objects orbiting earth using satellite-based telescopes

    Science.gov (United States)

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  7. Wireless Communication Technologies

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Wireless Communication Technologies. Since 1999, the wireless LAN has experienced a tremendous growth. Reasons: Adoption of industry standards. Interoperability testing. The progress of wireless equipments to higher data rates. Rapid decrease in product ...

  8. Reactor building indoor wireless network channel quality estimation using RSSI measurement of wireless sensor network

    International Nuclear Information System (INIS)

    Merat, S.

    2008-01-01

    Expanding wireless communication network reception inside reactor buildings (RB) and service wings (SW) has always been a technical challenge for operations service team. This is driven by the volume of metal equipment inside the Reactor Buildings (RB) that blocks and somehow shields the signal throughout the link. In this study, to improve wireless reception inside the Reactor Building (RB), an experimental model using indoor localization mesh based on IEEE 802.15 is developed to implement a wireless sensor network. This experimental model estimates the distance between different nodes by measuring the RSSI (Received Signal Strength Indicator). Then by using triangulation and RSSI measurement, the validity of the estimation techniques is verified to simulate the physical environmental obstacles, which block the signal transmission. (author)

  9. Reactor building indoor wireless network channel quality estimation using RSSI measurement of wireless sensor network

    Energy Technology Data Exchange (ETDEWEB)

    Merat, S. [Wardrop Engineering Inc., Toronto, Ontario (Canada)

    2008-07-01

    Expanding wireless communication network reception inside reactor buildings (RB) and service wings (SW) has always been a technical challenge for operations service team. This is driven by the volume of metal equipment inside the Reactor Buildings (RB) that blocks and somehow shields the signal throughout the link. In this study, to improve wireless reception inside the Reactor Building (RB), an experimental model using indoor localization mesh based on IEEE 802.15 is developed to implement a wireless sensor network. This experimental model estimates the distance between different nodes by measuring the RSSI (Received Signal Strength Indicator). Then by using triangulation and RSSI measurement, the validity of the estimation techniques is verified to simulate the physical environmental obstacles, which block the signal transmission. (author)

  10. Entanglement routers via a wireless quantum network based on arbitrary two qubit systems

    International Nuclear Information System (INIS)

    Metwally, N

    2014-01-01

    A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol. (paper)

  11. TrackCC: A Practical Wireless Indoor Localization System Based on Less-Expensive Chips

    Directory of Open Access Journals (Sweden)

    Xiaolong Li

    2017-06-01

    Full Text Available This paper aims at proposing a new wireless indoor localization system (ILS, called TrackCC, based on a commercial type of low-power system-on-chip (SoC, nRF24LE1. This type of chip has only l output power levels and acute fluctuation for a received minimum power level in operation, which give rise to many practical challenges for designing localization algorithms. In order to address these challenges, we exploit the Markov theory to construct a ( l + 1 × ( l + 1 -sized state transition matrix to remove the fluctuation, and then propose a priority-based pattern matching algorithm to search for the most similar match in the signal map to estimate the real position of unknown nodes. The experimental results show that, compared to two existing wireless ILSs, LANDMARC and SAIL, which have meter level positioning accuracy, the proposed TrackCC can achieve the decimeter level accuracy on average in both line-of-sight (LOS and non-line-of-sight (NLOS senarios.

  12. Scheduling algorithm for data relay satellite optical communication based on artificial intelligent optimization

    Science.gov (United States)

    Zhao, Wei-hu; Zhao, Jing; Zhao, Shang-hong; Li, Yong-jun; Wang, Xiang; Dong, Yi; Dong, Chen

    2013-08-01

    Optical satellite communication with the advantages of broadband, large capacity and low power consuming broke the bottleneck of the traditional microwave satellite communication. The formation of the Space-based Information System with the technology of high performance optical inter-satellite communication and the realization of global seamless coverage and mobile terminal accessing are the necessary trend of the development of optical satellite communication. Considering the resources, missions and restraints of Data Relay Satellite Optical Communication System, a model of optical communication resources scheduling is established and a scheduling algorithm based on artificial intelligent optimization is put forwarded. According to the multi-relay-satellite, multi-user-satellite, multi-optical-antenna and multi-mission with several priority weights, the resources are scheduled reasonable by the operation: "Ascertain Current Mission Scheduling Time" and "Refresh Latter Mission Time-Window". The priority weight is considered as the parameter of the fitness function and the scheduling project is optimized by the Genetic Algorithm. The simulation scenarios including 3 relay satellites with 6 optical antennas, 12 user satellites and 30 missions, the simulation result reveals that the algorithm obtain satisfactory results in both efficiency and performance and resources scheduling model and the optimization algorithm are suitable in multi-relay-satellite, multi-user-satellite, and multi-optical-antenna recourses scheduling problem.

  13. A Multifactor Secure Authentication System for Wireless Payment

    Science.gov (United States)

    Sanyal, Sugata; Tiwari, Ayu; Sanyal, Sudip

    Organizations are deploying wireless based online payment applications to expand their business globally, it increases the growing need of regulatory requirements for the protection of confidential data, and especially in internet based financial areas. Existing internet based authentication systems often use either the Web or the Mobile channel individually to confirm the claimed identity of the remote user. The vulnerability is that access is based on only single factor authentication which is not secure to protect user data, there is a need of multifactor authentication. This paper proposes a new protocol based on multifactor authentication system that is both secure and highly usable. It uses a novel approach based on Transaction Identification Code and SMS to enforce another security level with the traditional Login/password system. The system provides a highly secure environment that is simple to use and deploy with in a limited resources that does not require any change in infrastructure or underline protocol of wireless network. This Protocol for Wireless Payment is extended as a two way authentications system to satisfy the emerging market need of mutual authentication and also supports secure B2B communication which increases faith of the user and business organizations on wireless financial transaction using mobile devices.

  14. Immunizations on small worlds of tree-based wireless sensor networks

    DEFF Research Database (Denmark)

    Li, Qiao; Zhang, Bai-Hai; Cui, Ling-Guo

    2012-01-01

    , are conducted on small worlds of tree-based wireless sensor networks to combat the sensor viruses. With the former strategy, the infection extends exponentially, although the immunization effectively reduces the contagion speed. With the latter strategy, recurrent contagion oscillations occur in the small world......The sensor virus is a serious threat, as an attacker can simply send a single packet to compromise the entire sensor network. Epidemics become drastic with link additions among sensors when the small world phenomena occur. Two immunization strategies, uniform immunization and temporary immunization...

  15. Development and Application of a Structural Health Monitoring System Based on Wireless Smart Aggregates.

    Science.gov (United States)

    Yan, Shi; Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin

    2017-07-17

    Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates.

  16. Design of a telemetry system based on wireless power transmission for physiological parameter monitoring

    International Nuclear Information System (INIS)

    Jia, Zhiwei; Yan, Guozheng; Zhu, Bingquan

    2015-01-01

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system

  17. Design of a telemetry system based on wireless power transmission for physiological parameter monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zhiwei, E-mail: jiayege@hotmail.com [College of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha (China); Yan, Guozheng; Zhu, Bingquan [820 Institute, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2015-04-15

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.

  18. Register of international standard NP on IT based wireless application in nuclear power plants

    International Nuclear Information System (INIS)

    Koo, I. S.; Hong, S. B.; Cho, I. W.; Choi, Y. S.; Lee, J. C.

    2011-04-01

    DC draft of standard technical report for wireless applications in NPP is developed, which is a Korean IT technologies. Wireless technologies are forwardwd to converging technologies nuclear and IT area. These technologies are supported to reduce vulnerability against cyber attacks and are forwarded to international standards which met with the nuclear environment requirements. DC draft of standard technical report is provided and circulated. Korean experts participate in Plenary meeting for IEC TC45/SC45A and intermediate meeting for IEC SC45A/WGA3 and 9. Korean expert takes the chair of wireless session at ANS winter conference. Visible light communication is experimented for feasibility study on reducing vulnerability against cyber attacks. VLC is capable of robust wireless communication against cyber attacks. This is suggested to describe a method for technical report. Issue DTR for wireless applications in NPP in 2012

  19. Bulk Material Based Thermoelectric Energy Harvesting for Wireless Sensor Applications

    International Nuclear Information System (INIS)

    Wang, W S; Magnin, W; Wang, N; Hayes, M; O'Flynn, B; O'Mathuna, C

    2011-01-01

    The trend towards smart building and modern manufacturing demands ubiquitous sensing in the foreseeable future. Self-powered Wireless sensor networks (WSNs) are essential for such applications. This paper describes bulk material based thermoelectric generator (TEG) design and implementation for WSN. A 20cm 2 Bi 0.5 Sb 1.5 Te 3 based TEG was created with optimized configuration and generates 2.7mW in typical condition. A novel load matching method is used to maximize the power output. The implemented power management module delivers 651μW to WSN in 50 deg. C. With average power consumption of Tyndall WSN measured at 72μW, feasibility of utilizing bulk material TEG to power WSN is demonstrated.

  20. The art of wireless sensor networks

    CERN Document Server

    2014-01-01

    During the last one and a half decades, wireless sensor networks have witnessed significant growth and tremendous development in both academia and industry.   “The Art of Wireless Sensor Networks: Volume 1: Fundamentals” focuses on the fundamentals concepts in the design, analysis, and implementation of wireless sensor networks. It covers the various layers of the lifecycle of this type of network from the physical layer up to the application layer. Its rationale is that the first volume covers contemporary design issues, tools, and protocols for radio-based two-dimensional terrestrial sensor networks. All the book chapters in this volume include up-to-date research work spanning various classic facets of the physical properties and functional behavior of wireless sensor networks, including physical layer, medium access control, data routing, topology management, mobility management, localization, task management, data management, data gathering, security, middleware, sensor technology, standards, and ...

  1. Active Wireless System for Structural Health Monitoring Applications.

    Science.gov (United States)

    Perera, Ricardo; Pérez, Alberto; García-Diéguez, Marta; Zapico-Valle, José Luis

    2017-12-11

    The use of wireless sensors in Structural Health Monitoring (SHM) has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT) sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI)-based SHM. This work develops a flexible wireless smart sensor (WSS) framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  2. Stability Analysis of Wireless Measurement and Control System Based on Dynamic Matrix

    Directory of Open Access Journals (Sweden)

    Yongxian SONG

    2014-01-01

    Full Text Available Focus on data packet loss and time delay problems in wireless greenhouse measurement and control system, and temperature and humidity were taken as the research objects, the model of temperature and humidity information transmission was set up by decoupling technology according to the characteristics of wireless greenhouse measurement and control system. According to related theory of exponential stability in network control system, the stability conditions judgment of temperature and humidity control model was established, the linear matrix inequality that time delay and packet loss should satisfy was obtained when wireless measurement and control system was stable operation. The feasibility analysis of linear matrix inequality (LMI was implemented Using LMI toolbox in MATLAB, and the critical values of time delay and packet loss rate were obtained when the system was stable operation. The wireless sensor network control system simulation model with time delay and packet loss was set up using TrueTime toolbox. The simulation results have shown that the system was in a stable state when time delay and packet loss rate obtained were less than the critical values in wireless greenhouse sensor network measurement and control system; With the increase of time delay and packet loss rate, and stable performance drops; When time delay and packet loss rate obtained were more than the critical values, the measurement and control system would be in a state of flux, and when it was serious, even can lead to collapse of the whole system. As a result, the critical values determination of time delay and packet loss rate provided a theoretical basis for establishing stable greenhouse wireless sensor network (WSN measurement and control system in practical application.

  3. Evaluating the hydrological consistency of satellite based water cycle components

    KAUST Repository

    Lopez Valencia, Oliver Miguel

    2016-06-15

    Advances in multi-satellite based observations of the earth system have provided the capacity to retrieve information across a wide-range of land surface hydrological components and provided an opportunity to characterize terrestrial processes from a completely new perspective. Given the spatial advantage that space-based observations offer, several regional-to-global scale products have been developed, offering insights into the multi-scale behaviour and variability of hydrological states and fluxes. However, one of the key challenges in the use of satellite-based products is characterizing the degree to which they provide realistic and representative estimates of the underlying retrieval: that is, how accurate are the hydrological components derived from satellite observations? The challenge is intrinsically linked to issues of scale, since the availability of high-quality in-situ data is limited, and even where it does exist, is generally not commensurate to the resolution of the satellite observation. Basin-scale studies have shown considerable variability in achieving water budget closure with any degree of accuracy using satellite estimates of the water cycle. In order to assess the suitability of this type of approach for evaluating hydrological observations, it makes sense to first test it over environments with restricted hydrological inputs, before applying it to more hydrological complex basins. Here we explore the concept of hydrological consistency, i.e. the physical considerations that the water budget impose on the hydrologic fluxes and states to be temporally and spatially linked, to evaluate the reproduction of a set of large-scale evaporation (E) products by using a combination of satellite rainfall (P) and Gravity Recovery and Climate Experiment (GRACE) observations of storage change, focusing on arid and semi-arid environments, where the hydrological flows can be more realistically described. Our results indicate no persistent hydrological

  4. SOFT project: a new forecasting system based on satellite data

    Science.gov (United States)

    Pascual, Ananda; Orfila, A.; Alvarez, Alberto; Hernandez, E.; Gomis, D.; Barth, Alexander; Tintore, Joaquim

    2002-01-01

    The aim of the SOFT project is to develop a new ocean forecasting system by using a combination of satellite dat, evolutionary programming and numerical ocean models. To achieve this objective two steps are proved: (1) to obtain an accurate ocean forecasting system using genetic algorithms based on satellite data; and (2) to integrate the above new system into existing deterministic numerical models. Evolutionary programming will be employed to build 'intelligent' systems that, learning form the past ocean variability and considering the present ocean state, will be able to infer near future ocean conditions. Validation of the forecast skill will be carried out by comparing the forecasts fields with satellite and in situ observations. Validation with satellite observations will provide the expected errors in the forecasting system. Validation with in situ data will indicate the capabilities of the satellite based forecast information to improve the performance of the numerical ocean models. This later validation will be accomplished considering in situ measurements in a specific oceanographic area at two different periods of time. The first set of observations will be employed to feed the hybrid systems while the second set will be used to validate the hybrid and traditional numerical model results.

  5. Wireless security in mobile health.

    Science.gov (United States)

    Osunmuyiwa, Olufolabi; Ulusoy, Ali Hakan

    2012-12-01

    Mobile health (m-health) is an extremely broad term that embraces mobile communication in the health sector and data packaging. The four broad categories of wireless networks are wireless personal area network, wireless metropolitan area network, wireless wide area network, and wireless local area network. Wireless local area network is the most notable of the wireless networking tools obtainable in the health sector. Transfer of delicate and critical information on radio frequencies should be secure, and the right to use must be meticulous. This article covers the business opportunities in m-health, threats faced by wireless networks in hospitals, and methods of mitigating these threats.

  6. How to model wireless mesh networks topology

    International Nuclear Information System (INIS)

    Sanni, M L; Hashim, A A; Anwar, F; Ali, S; Ahmed, G S M

    2013-01-01

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches

  7. Sequential optimization of a terrestrial biosphere model constrained by multiple satellite based products

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.

    2012-12-01

    Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis

  8. Functional Testing of Wireless Sensor Node Designs

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Madsen, Jan

    2007-01-01

    Wireless sensor networks are networked embedded computer systems with stringent power, performance, cost and form-factor requirements along with numerous other constraints related to their pervasiveness and ubiquitousness. Therefore, only a systematic design methdology coupled with an efficient...... test approach can enable their conformance to design and deployment specifications. We discuss off-line, hierarchical, functional testing of complete wireless sensor nodes containing configurable logic through a combination of FPGA-based board test and Software-Based Self-Test (SBST) techniques...

  9. MEMS-based Circuits and Systems for Wireless Communication

    CERN Document Server

    Kaiser, Andreas

    2013-01-01

    MEMS-based Circuits and Systems for Wireless Communication provides comprehensive coverage of RF-MEMS technology from device to system level. This edited volume places emphasis on how system performance for radio frequency applications can be leveraged by Micro-Electro-Mechanical Systems (MEMS). Coverage also extends to innovative MEMS-aware radio architectures that push the potential of MEMS technology further ahead.  This work presents a broad overview of the technology from MEMS devices (mainly BAW and Si MEMS resonators) to basic circuits, such as oscillators and filters, and finally complete systems such as ultra-low-power MEMS-based radios. Contributions from leading experts around the world are organized in three parts. Part I introduces RF-MEMS technology, devices and modeling and includes a prospective outlook on ongoing developments towards Nano-Electro-Mechanical Systems (NEMS) and phononic crystals. Device properties and models are presented in a circuit oriented perspective. Part II focusses on ...

  10. Intercluster Connection in Cognitive Wireless Mesh Networks Based on Intelligent Network Coding

    Science.gov (United States)

    Chen, Xianfu; Zhao, Zhifeng; Jiang, Tao; Grace, David; Zhang, Honggang

    2009-12-01

    Cognitive wireless mesh networks have great flexibility to improve spectrum resource utilization, within which secondary users (SUs) can opportunistically access the authorized frequency bands while being complying with the interference constraint as well as the QoS (Quality-of-Service) requirement of primary users (PUs). In this paper, we consider intercluster connection between the neighboring clusters under the framework of cognitive wireless mesh networks. Corresponding to the collocated clusters, data flow which includes the exchanging of control channel messages usually needs four time slots in traditional relaying schemes since all involved nodes operate in half-duplex mode, resulting in significant bandwidth efficiency loss. The situation is even worse at the gateway node connecting the two colocated clusters. A novel scheme based on network coding is proposed in this paper, which needs only two time slots to exchange the same amount of information mentioned above. Our simulation shows that the network coding-based intercluster connection has the advantage of higher bandwidth efficiency compared with the traditional strategy. Furthermore, how to choose an optimal relaying transmission power level at the gateway node in an environment of coexisting primary and secondary users is discussed. We present intelligent approaches based on reinforcement learning to solve the problem. Theoretical analysis and simulation results both show that the intelligent approaches can achieve optimal throughput for the intercluster relaying in the long run.

  11. Shed a light of wireless technology on portable mobile design of NIRS

    Science.gov (United States)

    Sun, Yunlong; Li, Ting

    2016-03-01

    Mobile internet is growing rapidly driven by high-tech companies including the popular Apple and Google. The wireless mini-NIRS is believed to deserve a great spread future, while there is sparse report on wireless NIRS device and even for the reported wireless NIRS, its wireless design is scarcely presented. Here we focused on the wireless design of NIRS devices. The widely-used wireless communication standards and wireless communication typical solutions were employed into our NIRS design and then compared on communication efficiency, distance, error rate, low-cost, power consumption, and stabilities, based on the requirements of NIRS applications. The properly-performed wireless communication methods matched with the characteristics of NIRS are picked out. Finally, we realized one recommended wireless communication in our NIRS, developed a test platform on wireless NIRS and tested the full properties on wireless communication. This study elaborated the wireless communication methods specified for NIRS and suggested one implementation with one example fully illustrated, which support the future mobile design on NIRS devices.

  12. Proposed systems configurations for a satellite based ISDN

    Science.gov (United States)

    Capece, M.; Pavesi, B.; Tozzi, P.; Galligan, K. P.

    This paper summarizes concepts developed during a study for the ESA in which the evolution of ISDN capability and the impact in the satellite land mobile area are examined. Following the progressive steps of the expected ISDN implementation and the potential market penetration, a space based system capable of satisfying particular user services classes has been investigated. The approach used is to establish a comparison between the requirements of potential mobile users and the services already envisaged by ISDN, identifying the service subclasses that might be adopted in a mobile environment through a satellite system. Two system alternatives, with different ISDN compatibility, have been identified. The first option allows a partial compatibility, by providing the central stations of the earth segment with suitable interface units. The second option permits a full integration, operating on the satellite on-board capabilities.

  13. A MEMS-based Adaptive AHRS for Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Hussain, Dil Muhammed Akbar; Soltani, Mohsen

    2015-01-01

    Satellite tracking is a challenging task for marine applications. An attitude determination system should estimate the wave disturbances on the ship body accurately. To achieve this, an Attitude Heading Reference System (AHRS) based on Micro-Electro-Mechanical Systems (MEMS) sensors, composed...... of three-axis gyroscope, accelerometer and magnetometer, is developed for Marine Satellite Tracking Antenna (MSTA). In this paper, the attitude determination algorithm is improved using an adaptive mechanism that tunes the attitude estimator parameters based on an estimation of ship motion frequency...

  14. Satellite-based technique for nowcasting of thunderstorms over ...

    Indian Academy of Sciences (India)

    Suman Goyal

    2017-08-31

    Aug 31, 2017 ... Due to inadequate radar network, satellite plays the dominant role for nowcast of these thunderstorms. In this study, a nowcast based algorithm ForTracc developed by Vila ... of actual development of cumulonimbus clouds, ... MCS over Indian region using Infrared Channel ... (2016) based on case study of.

  15. Bidirectional fiber-wireless and fiber-IVLLC integrated system based on polarization-orthogonal modulation scheme.

    Science.gov (United States)

    Lu, Hai-Han; Li, Chung-Yi; Chen, Hwan-Wei; Ho, Chun-Ming; Cheng, Ming-Te; Huang, Sheng-Jhe; Yang, Zih-Yi; Lin, Xin-Yao

    2016-07-25

    A bidirectional fiber-wireless and fiber-invisible laser light communication (IVLLC) integrated system that employs polarization-orthogonal modulation scheme for hybrid cable television (CATV)/microwave (MW)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and demonstrated. To our knowledge, it is the first one that adopts a polarization-orthogonal modulation scheme in a bidirectional fiber-wireless and fiber-IVLLC integrated system with hybrid CATV/MW/MMW/BB signal. For downlink transmission, carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) perform well over 40-km single-mode fiber (SMF) and 10-m RF/50-m optical wireless transport scenarios. For uplink transmission, good BER performance is obtained over 40-km SMF and 50-m optical wireless transport scenario. Such a bidirectional fiber-wireless and fiber-IVLLC integrated system for hybrid CATV/MW/MMW/BB signal transmission will be an attractive alternative for providing broadband integrated services, including CATV, Internet, and telecommunication services. It is shown to be a prominent one to present the advancements for the convergence of fiber backbone and RF/optical wireless feeder.

  16. Wireless Sensor Networks Database: Data Management and Implementation

    Directory of Open Access Journals (Sweden)

    Ping Liu

    2014-04-01

    Full Text Available As the core application of wireless sensor network technology, Data management and processing have become the research hotspot in the new database. This article studied mainly data management in wireless sensor networks, in connection with the characteristics of the data in wireless sensor networks, discussed wireless sensor network data query, integrating technology in-depth, proposed a mobile database structure based on wireless sensor network and carried out overall design and implementation for the data management system. In order to achieve the communication rules of above routing trees, network manager uses a simple maintenance algorithm of routing trees. Design ordinary node end, server end in mobile database at gathering nodes and mobile client end that can implement the system, focus on designing query manager, storage modules and synchronous module at server end in mobile database at gathering nodes.

  17. Research and Mass Deployment of Non-cognitive Authentication Strategy Based on Campus Wireless Network

    Directory of Open Access Journals (Sweden)

    Huangfu Dapeng

    2018-01-01

    Full Text Available With the rapid development of Internet +, the dependence on wireless networks and wireless terminals are increasing. Campus wireless network has become the main network of teachers and students in campus on the internet. As there are uneven clients and a wide variety of intelligent terminals now. Simplified authentication and network security become the most urgent problem for wireless network. This paper used the Portal + Mac authentication method to realize the non-cognitive authentication of teachers and students on basis of the analysis of the advantages and disadvantages of mainstream authentication of campus wireless network, such as 802.1X authentication, Portal authentication, Mac authentication and DHCP authentication. Teachers and students only need portal certification at the first time, then surf the internet with non-perceived authentication at the second time and later. This method increases network security, and is better to meet the needs of teachers and students.

  18. Validation of Remote Sensing Retrieval Products using Data from a Wireless Sensor-Based Online Monitoring in Antarctica

    Science.gov (United States)

    Li, Xiuhong; Cheng, Xiao; Yang, Rongjin; Liu, Qiang; Qiu, Yubao; Zhang, Jialin; Cai, Erli; Zhao, Long

    2016-01-01

    Of the modern technologies in polar-region monitoring, the remote sensing technology that can instantaneously form large-scale images has become much more important in helping acquire parameters such as the freezing and melting of ice as well as the surface temperature, which can be used in the research of global climate change, Antarctic ice sheet responses, and cap formation and evolution. However, the acquirement of those parameters is impacted remarkably by the climate and satellite transit time which makes it almost impossible to have timely and continuous observation data. In this research, a wireless sensor-based online monitoring platform (WSOOP) for the extreme polar environment is applied to obtain a long-term series of data which is site-specific and continuous in time. Those data are compared and validated with the data from a weather station at Zhongshan Station Antarctica and the result shows an obvious correlation. Then those data are used to validate the remote sensing products of the freezing and melting of ice and the surface temperature and the result also indicated a similar correlation. The experiment in Antarctica has proven that WSOOP is an effective system to validate remotely sensed data in the polar region. PMID:27869668

  19. Magnetic field concentration using ferromagnetic material to propel a wireless power transfer based micro-robot

    Directory of Open Access Journals (Sweden)

    Dongwook Kim

    2018-05-01

    Full Text Available In this paper, we propose a novel coil structure, using a ferromagnetic material which concentrates the magnetic field, as the propulsion system of a wireless power transfer (WPT based micro-robot. This structure uses an incident magnetic field to induce current during wireless power transfer, to generate a Lorentz force. To prevent net cancelation of the Lorentz force in the load coil, ferrite films were applied to one side of the coil segment. The demonstrated simplicity and effectiveness of the proposed micro-robot showed its suitability for applications. Simulation and experimental results confirmed a velocity of 1.02 mm/s with 6 mW power transfer capacity for the 3 mm sized micro-robot.

  20. Magnetic field concentration using ferromagnetic material to propel a wireless power transfer based micro-robot

    Science.gov (United States)

    Kim, Dongwook; Park, Bumjin; Park, Jaehyoung; Park, Hyun Ho; Ahn, Seungyoung

    2018-05-01

    In this paper, we propose a novel coil structure, using a ferromagnetic material which concentrates the magnetic field, as the propulsion system of a wireless power transfer (WPT) based micro-robot. This structure uses an incident magnetic field to induce current during wireless power transfer, to generate a Lorentz force. To prevent net cancelation of the Lorentz force in the load coil, ferrite films were applied to one side of the coil segment. The demonstrated simplicity and effectiveness of the proposed micro-robot showed its suitability for applications. Simulation and experimental results confirmed a velocity of 1.02 mm/s with 6 mW power transfer capacity for the 3 mm sized micro-robot.

  1. A Multi-Sensor RSS Spatial Sensing-Based Robust Stochastic Optimization Algorithm for Enhanced Wireless Tethering

    Science.gov (United States)

    Parasuraman, Ramviyas; Fabry, Thomas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel

    2014-01-01

    The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions. PMID:25615734

  2. A Multi-Sensor RSS Spatial Sensing-Based Robust Stochastic Optimization Algorithm for Enhanced Wireless Tethering

    Directory of Open Access Journals (Sweden)

    Ramviyas Parasuraman

    2014-12-01

    Full Text Available The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS. When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities, there is a possibility that some electronic components may fail randomly (due to radiation effects, which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions.

  3. Wireless sensor network for irrigation application in cotton

    Science.gov (United States)

    A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...

  4. Frequency selective surface based passive wireless sensor for structural health monitoring

    International Nuclear Information System (INIS)

    Jang, Sang-Dong; Kang, Byung-Woo; Kim, Jaehwan

    2013-01-01

    Wireless sensor networks or ubiquitous sensor networks are a promising technology giving useful information to people. In particular, the chipless passive wireless sensor is one of the most important developments in wireless sensor technology because it is compact and does not need a battery or chip for the sensor operation. So it has many possibilities for use in various types of sensor system with economical efficiency and robustness in harsh environmental conditions. This sensor uses an electromagnetic resonance frequency or phase angle shift associated with a geometrical change of the sensor tag or an impedance change of the sensor. In this paper, a chipless passive wireless structural health monitoring (SHM) sensor is made using a frequency selective surface (FSS). The cross type FSS is introduced, and its SHM principle is explained. The electromagnetic characteristics of the FSS are simulated in terms of transmission and reflection coefficients using simulation software, and an experimental verification is conducted. The electromagnetic characteristic change of the FSS in the presence of mechanical strain or a structural crack is investigated by means of simulation and experiment. Since large-area structures can be covered by deploying FSS, it is possible to detect the location of any cracks. (paper)

  5. Advanced Wireless Sensor Nodes - MSFC

    Science.gov (United States)

    Varnavas, Kosta; Richeson, Jeff

    2017-01-01

    NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.

  6. Resource optimized TTSH-URA for multimedia stream authentication in swallowable-capsule-based wireless body sensor networks.

    Science.gov (United States)

    Wang, Wei; Wang, Chunqiu; Zhao, Min

    2014-03-01

    To ease the burdens on the hospitalization capacity, an emerging swallowable-capsule technology has evolved to serve as a remote gastrointestinal (GI) disease examination technique with the aid of the wireless body sensor network (WBSN). Secure multimedia transmission in such a swallowable-capsule-based WBSN faces critical challenges including energy efficiency and content quality guarantee. In this paper, we propose a joint resource allocation and stream authentication scheme to maintain the best possible video quality while ensuring security and energy efficiency in GI-WBSNs. The contribution of this research is twofold. First, we establish a unique signature-hash (S-H) diversity approach in the authentication domain to optimize video authentication robustness and the authentication bit rate overhead over a wireless channel. Based on the full exploration of S-H authentication diversity, we propose a new two-tier signature-hash (TTSH) stream authentication scheme to improve the video quality by reducing authentication dependence overhead while protecting its integrity. Second, we propose to combine this authentication scheme with a unique S-H oriented unequal resource allocation (URA) scheme to improve the energy-distortion-authentication performance of wireless video delivery in GI-WBSN. Our analysis and simulation results demonstrate that the proposed TTSH with URA scheme achieves considerable gain in both authenticated video quality and energy efficiency.

  7. CCNA Wireless Study Guide

    CERN Document Server

    Lammle, Todd

    2010-01-01

    A complete guide to the CCNA Wireless exam by leading networking authority Todd Lammle. The CCNA Wireless certification is the most respected entry-level certification in this rapidly growing field. Todd Lammle is the undisputed authority on networking, and this book focuses exclusively on the skills covered in this Cisco certification exam. The CCNA Wireless Study Guide joins the popular Sybex study guide family and helps network administrators advance their careers with a highly desirable certification.: The CCNA Wireless certification is the most respected entry-level wireless certification

  8. Game Theory Based Security in Wireless Body Area Network with Stackelberg Security Equilibrium.

    Science.gov (United States)

    Somasundaram, M; Sivakumar, R

    2015-01-01

    Wireless Body Area Network (WBAN) is effectively used in healthcare to increase the value of the patient's life and also the value of healthcare services. The biosensor based approach in medical care system makes it difficult to respond to the patients with minimal response time. The medical care unit does not deploy the accessing of ubiquitous broadband connections full time and hence the level of security will not be high always. The security issue also arises in monitoring the user body function records. Most of the systems on the Wireless Body Area Network are not effective in facing the security deployment issues. To access the patient's information with higher security on WBAN, Game Theory with Stackelberg Security Equilibrium (GTSSE) is proposed in this paper. GTSSE mechanism takes all the players into account. The patients are monitored by placing the power position authority initially. The position authority in GTSSE is the organizer and all the other players react to the organizer decision. Based on our proposed approach, experiment has been conducted on factors such as security ratio based on patient's health information, system flexibility level, energy consumption rate, and information loss rate. Stackelberg Security considerably improves the strength of solution with higher security.

  9. Game Theory Based Security in Wireless Body Area Network with Stackelberg Security Equilibrium

    Science.gov (United States)

    Somasundaram, M.; Sivakumar, R.

    2015-01-01

    Wireless Body Area Network (WBAN) is effectively used in healthcare to increase the value of the patient's life and also the value of healthcare services. The biosensor based approach in medical care system makes it difficult to respond to the patients with minimal response time. The medical care unit does not deploy the accessing of ubiquitous broadband connections full time and hence the level of security will not be high always. The security issue also arises in monitoring the user body function records. Most of the systems on the Wireless Body Area Network are not effective in facing the security deployment issues. To access the patient's information with higher security on WBAN, Game Theory with Stackelberg Security Equilibrium (GTSSE) is proposed in this paper. GTSSE mechanism takes all the players into account. The patients are monitored by placing the power position authority initially. The position authority in GTSSE is the organizer and all the other players react to the organizer decision. Based on our proposed approach, experiment has been conducted on factors such as security ratio based on patient's health information, system flexibility level, energy consumption rate, and information loss rate. Stackelberg Security considerably improves the strength of solution with higher security. PMID:26759829

  10. THz Wireless Transmission Systems Based on Photonic Generation of Highly Pure Beat-Notes

    DEFF Research Database (Denmark)

    Jia, Shi; Yu, Xianbin; Hu, Hao

    2016-01-01

    In this paper, a terahertz (THz) wireless communication system at 400 GHz with various modulation formats [on–off keying (OOK), quadrature phase-shift keying (QPSK), 16-quadrature amplitude modulation (16-QAM), and 32-quadrature amplitude modulation (32-QAM)] is experimentally demonstrated based...... noise of photonically generated THz beat-notes when phase correlation of two optical comb tones is damaged due to their path-length difference. In addition, we demonstrate THz wireless transmission of various modulation formats, including OOK, QPSK, 16-QAM, and 32-QAM at beyond 10 Gb/s in such a system......, and the measured bit error rate (BER) performance for all the signals after 0.5 m free-space delivery is below the hard decision forward error correction threshold of 3.8 × 10–3. Furthermore, the influence of THz carrier purity on the system performance is experimentally analyzed with respect to the BER of the THz...

  11. Reconfigurable Magneto-Electric Dipole Antennas for Base Stations in Modern Wireless Communication Systems

    Directory of Open Access Journals (Sweden)

    Lei Ge

    2018-01-01

    Full Text Available Magneto-electric (ME dipole antennas, with the function of changing the antenna characteristics, such as frequency, polarization, or radiation patterns, are reviewed in this paper. The reconfigurability is achieved by electrically altering the states of diodes or varactors to change the surface currents distributions or reflector size of the antenna. The purpose of the designs is to obtain agile antenna characteristics together with good directive radiation performances, such as low cross-polarization level, high front-to-back ratio, and stable gain. By reconfiguring the antenna capability to support more than one wireless frequency standard, switchable polarizations, or cover tunable areas, the reconfigurable ME dipole antennas are able to switch functionality as the mission changes. Therefore, it can help increase the communication efficiency and reduce the construction cost. This shows very attractive features in base station antennas of modern wireless communication applications.

  12. Wireless data transmission for high energy physics applications

    Science.gov (United States)

    Dittmeier, Sebastian; Brenner, Richard; Dancila, Dragos; Dehos, Cedric; De Lurgio, Patrick; Djurcic, Zelimir; Drake, Gary; Gonzalez Gimenez, Jose Luis; Gustafsson, Leif; Kim, Do-Won; Locci, Elizabeth; Pfeiffer, Ullrich; Röhrich, Dieter; Rydberg, Anders; Schöning, André; Siligaris, Alexandre; Soltveit, Hans Kristian; Ullaland, Kjetil; Vincent, Pierre; Rodriguez Vazquez, Pedro; Wiedner, Dirk; Yang, Shiming

    2017-08-01

    Silicon tracking detectors operated at high luminosity collider experiments pose a challenge for current and future readout systems regarding bandwidth, radiation, space and power constraints. With the latest developments in wireless communications, wireless readout systems might be an attractive alternative to commonly used wired optical and copper based readout architectures. The WADAPT group (Wireless Allowing Data and Power Transmission) has been formed to study the feasibility of wireless data transmission for future tracking detectors. These proceedings cover current developments focused on communication in the 60 GHz band. This frequency band offers a high bandwidth, a small form factor and an already mature technology. Motivation for wireless data transmission for high energy physics application and the developments towards a demonstrator prototype are summarized. Feasibility studies concerning the construction and operation of a wireless transceiver system have been performed. Data transmission tests with a transceiver prototype operating at even higher frequencies in the 240 GHz band are described. Data transmission at rates up to 10 Gb/s have been obtained successfully using binary phase shift keying.

  13. Wireless Sensor Network for Indoor Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-06-01

    Full Text Available Indoor air quality monitoring system consists of wireless sensor device, nRF24L01 wireless transceiver modules, C8051MCU, STM32103 remote monitoring platform, alarm device and data server. Distributed in the interior space of wireless sensors measure parameters of the local air quality, wireless transceiver module of the MCU to transmit data to the remote monitoring platform for analysis which displayed and stored field environment data or charts. The data collecting from wireless sensors to be send by wireless Access Point to the remote data server based on B/S architecture, intelligent terminals such as mobile phone, laptop, tablet PC on the Internet monitor indoor air quality in real-time. When site environment air quality index data exceeds the threshold in the monitoring device, the remote monitoring platform sends out the alarm SMS signal to inform user by GSM module. Indoor air quality monitoring system uses modular design method, has the portability and scalability has the low manufacture cost, real-time monitoring data and man-machine interaction.

  14. Cross-layer cluster-based energy-efficient protocol for wireless sensor networks.

    Science.gov (United States)

    Mammu, Aboobeker Sidhik Koyamparambil; Hernandez-Jayo, Unai; Sainz, Nekane; de la Iglesia, Idoia

    2015-04-09

    Recent developments in electronics and wireless communications have enabled the improvement of low-power and low-cost wireless sensors networks (WSNs). One of the most important challenges in WSNs is to increase the network lifetime due to the limited energy capacity of the network nodes. Another major challenge in WSNs is the hot spots that emerge as locations under heavy traffic load. Nodes in such areas quickly drain energy resources, leading to disconnection in network services. In such an environment, cross-layer cluster-based energy-efficient algorithms (CCBE) can prolong the network lifetime and energy efficiency. CCBE is based on clustering the nodes to different hexagonal structures. A hexagonal cluster consists of cluster members (CMs) and a cluster head (CH). The CHs are selected from the CMs based on nodes near the optimal CH distance and the residual energy of the nodes. Additionally, the optimal CH distance that links to optimal energy consumption is derived. To balance the energy consumption and the traffic load in the network, the CHs are rotated among all CMs. In WSNs, energy is mostly consumed during transmission and reception. Transmission collisions can further decrease the energy efficiency. These collisions can be avoided by using a contention-free protocol during the transmission period. Additionally, the CH allocates slots to the CMs based on their residual energy to increase sleep time. Furthermore, the energy consumption of CH can be further reduced by data aggregation. In this paper, we propose a data aggregation level based on the residual energy of CH and a cost-aware decision scheme for the fusion of data. Performance results show that the CCBE scheme performs better in terms of network lifetime, energy consumption and throughput compared to low-energy adaptive clustering hierarchy (LEACH) and hybrid energy-efficient distributed clustering (HEED).

  15. Cross-Layer Cluster-Based Energy-Efficient Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Aboobeker Sidhik Koyamparambil Mammu

    2015-04-01

    Full Text Available Recent developments in electronics and wireless communications have enabled the improvement of low-power and low-cost wireless sensors networks (WSNs. One of the most important challenges in WSNs is to increase the network lifetime due to the limited energy capacity of the network nodes. Another major challenge in WSNs is the hot spots that emerge as locations under heavy traffic load. Nodes in such areas quickly drain energy resources, leading to disconnection in network services. In such an environment, cross-layer cluster-based energy-efficient algorithms (CCBE can prolong the network lifetime and energy efficiency. CCBE is based on clustering the nodes to different hexagonal structures. A hexagonal cluster consists of cluster members (CMs and a cluster head (CH. The CHs are selected from the CMs based on nodes near the optimal CH distance and the residual energy of the nodes. Additionally, the optimal CH distance that links to optimal energy consumption is derived. To balance the energy consumption and the traffic load in the network, the CHs are rotated among all CMs. In WSNs, energy is mostly consumed during transmission and reception. Transmission collisions can further decrease the energy efficiency. These collisions can be avoided by using a contention-free protocol during the transmission period. Additionally, the CH allocates slots to the CMs based on their residual energy to increase sleep time. Furthermore, the energy consumption of CH can be further reduced by data aggregation. In this paper, we propose a data aggregation level based on the residual energy of CH and a cost-aware decision scheme for the fusion of data. Performance results show that the CCBE scheme performs better in terms of network lifetime, energy consumption and throughput compared to low-energy adaptive clustering hierarchy (LEACH and hybrid energy-efficient distributed clustering (HEED.

  16. Directional virtual backbone based data aggregation scheme for Wireless Visual Sensor Networks.

    Science.gov (United States)

    Zhang, Jing; Liu, Shi-Jian; Tsai, Pei-Wei; Zou, Fu-Min; Ji, Xiao-Rong

    2018-01-01

    Data gathering is a fundamental task in Wireless Visual Sensor Networks (WVSNs). Features of directional antennas and the visual data make WVSNs more complex than the conventional Wireless Sensor Network (WSN). The virtual backbone is a technique, which is capable of constructing clusters. The version associating with the aggregation operation is also referred to as the virtual backbone tree. In most of the existing literature, the main focus is on the efficiency brought by the construction of clusters that the existing methods neglect local-balance problems in general. To fill up this gap, Directional Virtual Backbone based Data Aggregation Scheme (DVBDAS) for the WVSNs is proposed in this paper. In addition, a measurement called the energy consumption density is proposed for evaluating the adequacy of results in the cluster-based construction problems. Moreover, the directional virtual backbone construction scheme is proposed by considering the local-balanced factor. Furthermore, the associated network coding mechanism is utilized to construct DVBDAS. Finally, both the theoretical analysis of the proposed DVBDAS and the simulations are given for evaluating the performance. The experimental results prove that the proposed DVBDAS achieves higher performance in terms of both the energy preservation and the network lifetime extension than the existing methods.

  17. The wireless internet explained

    CERN Document Server

    Rhoton, John

    2001-01-01

    The Wireless Internet Explained covers the full spectrum of wireless technologies from a wide range of vendors, including initiatives by Microsoft and Compaq. The Wireless Internet Explained takes a practical look at wireless technology. Rhoton explains the concepts behind the physics, and provides an overview that clarifies the convoluted set of standards heaped together under the umbrella of wireless. It then expands on these technical foundations to give a panorama of the increasingly crowded landscape of wireless product offerings. When it comes to actual implementation the book gives abundant down-to-earth advice on topics ranging from the selection and deployment of mobile devices to the extremely sensitive subject of security.Written by an expert on Internet messaging, the author of Digital Press''s successful Programmer''s Guide to Internet Mail and X.400 and SMTP: Battle of the E-mail Protocols, The Wireless Internet Explained describes and evaluates the current state of the fast-growing and crucial...

  18. IR wireless cluster synapses of HYDRA very large neural networks

    Science.gov (United States)

    Jannson, Tomasz; Forrester, Thomas

    2008-04-01

    RF/IR wireless (virtual) synapses are critical components of HYDRA (Hyper-Distributed Robotic Autonomy) neural networks, already discussed in two earlier papers. The HYDRA network has the potential to be very large, up to 10 11-neurons and 10 18-synapses, based on already established technologies (cellular RF telephony and IR-wireless LANs). It is organized into almost fully connected IR-wireless clusters. The HYDRA neurons and synapses are very flexible, simple, and low-cost. They can be modified into a broad variety of biologically-inspired brain-like computing capabilities. In this third paper, we focus on neural hardware in general, and on IR-wireless synapses in particular. Such synapses, based on LED/LD-connections, dominate the HYDRA neural cluster.

  19. A Wireless LAN and Voice Information System for Underground Coal Mine

    OpenAIRE

    Yu Zhang; Wei Yang; Dongsheng Han; Young-Il Kim

    2014-01-01

    In this paper we constructed a wireless information system, and developed a wireless voice communication subsystem based on Wireless Local Area Networks (WLAN) for underground coal mine, which employs Voice over IP (VoIP) technology and Session Initiation Protocol (SIP) to achieve wireless voice dispatching communications. The master control voice dispatching interface and call terminal software are also developed on the WLAN ground server side to manage and implement the voice dispatching co...

  20. Routing in Mobile Wireless Sensor Networks: A Leader-Based Approach.

    Science.gov (United States)

    Burgos, Unai; Amozarrain, Ugaitz; Gómez-Calzado, Carlos; Lafuente, Alberto

    2017-07-07

    This paper presents a leader-based approach to routing in Mobile Wireless Sensor Networks (MWSN). Using local information from neighbour nodes, a leader election mechanism maintains a spanning tree in order to provide the necessary adaptations for efficient routing upon the connectivity changes resulting from the mobility of sensors or sink nodes. We present two protocols following the leader election approach, which have been implemented using Castalia and OMNeT++. The protocols have been evaluated, besides other reference MWSN routing protocols, to analyse the impact of network size and node velocity on performance, which has demonstrated the validity of our approach.

  1. FSO-Based Vertical Backhaul/Fronthaul Framework for 5G+ Wireless Networks

    KAUST Repository

    Alzenad, Mohamed

    2018-01-12

    The presence of a super high rate, but also cost-efficient, easy-to-deploy, and scalable, back-haul/fronthaul framework, is essential in the upcoming 5G wireless networks and beyond. Motivated by the mounting interest in unmanned flying platforms of various types, including UAVs, drones, balloons, and HAPs/MAPs/LAPs, which we refer to as networked flying platforms (NFPs), for providing communications services, and by the recent advances in free space optics (FSO), this article investigates the feasibility of a novel vertical backhaul/fronthaul framework where the NFPs transport the backhaul/fronthaul traffic between the access and core networks via point-to-point FSO links. The performance of the proposed innovative approach is investigated under different weather conditions and a broad range of system parameters. Simulation results demonstrate that the FSO-based vertical backhaul/fronthaul framework can offer data rates higher than the baseline alternatives, and thus can be considered a promising solution to the emerging backhaul/fronthaul requirements of the 5G+ wireless networks, particularly in the presence of ultra-dense heterogeneous small cells. This article also presents the challenges that accompany such a novel framework and provides some key ideas toward overcoming these challenges.

  2. Spread Spectrum Based Energy Efficient Collaborative Communication in Wireless Sensor Networks.

    Science.gov (United States)

    Ghani, Anwar; Naqvi, Husnain; Sher, Muhammad; Khan, Muazzam Ali; Khan, Imran; Irshad, Azeem

    2016-01-01

    Wireless sensor networks consist of resource limited devices. Most crucial of these resources is battery life, as in most applications like battle field or volcanic area monitoring, it is often impossible to replace or recharge the power source. This article presents an energy efficient collaborative communication system based on spread spectrum to achieve energy efficiency as well as immunity against jamming, natural interference, noise suppression and universal frequency reuse. Performance of the proposed system is evaluated using the received signal power, bit error rate (BER) and energy consumption. The results show a direct proportionality between the power gain and the number of collaborative nodes as well as BER and signal-to-noise ratio (Eb/N0). The analytical and simulation results of the proposed system are compared with SISO system. The comparison reveals that SISO perform better than collaborative communication in case of small distances whereas collaborative communication performs better than SISO in case of long distances. On the basis of these results it is safe to conclude that collaborative communication in wireless sensor networks using wideband systems improves the life time of nodes in the networks thereby prolonging the network's life time.

  3. Abnormal Event Detection in Wireless Sensor Networks Based on Multiattribute Correlation

    Directory of Open Access Journals (Sweden)

    Mengdi Wang

    2017-01-01

    Full Text Available Abnormal event detection is one of the vital tasks in wireless sensor networks. However, the faults of nodes and the poor deployment environment have brought great challenges to abnormal event detection. In a typical event detection technique, spatiotemporal correlations are collected to detect an event, which is susceptible to noises and errors. To improve the quality of detection results, we propose a novel approach for abnormal event detection in wireless sensor networks. This approach considers not only spatiotemporal correlations but also the correlations among observed attributes. A dependency model of observed attributes is constructed based on Bayesian network. In this model, the dependency structure of observed attributes is obtained by structure learning, and the conditional probability table of each node is calculated by parameter learning. We propose a new concept named attribute correlation confidence to evaluate the fitting degree between the sensor reading and the abnormal event pattern. On the basis of time correlation detection and space correlation detection, the abnormal events are identified. Experimental results show that the proposed algorithm can reduce the impact of interference factors and the rate of the false alarm effectively; it can also improve the accuracy of event detection.

  4. Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements

    Science.gov (United States)

    Xi, B.; Dong, X.; Wu, P.; Qiu, S.

    2017-12-01

    A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.

  5. mm-Wave Hybrid Photonic Wireless Links for Ultra-High Speed Wireless Transmissions

    DEFF Research Database (Denmark)

    Rommel, Simon; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    Hybrid photonic-wireless transmission schemes in the mm-wave frequency range are promising candidates to enable the multi-gigabit per second data communications required from wireless and mobile networks of the 5th and future generations. Large FCC spectrum allocations for wireless transmission...

  6. Sending policies in dynamic wireless mesh using network coding

    DEFF Research Database (Denmark)

    Pandi, Sreekrishna; Fitzek, Frank; Pihl, Jeppe

    2015-01-01

    This paper demonstrates the quick prototyping capabilities of the Python-Kodo library for network coding based performance evaluation and investigates the problem of data redundancy in a network coded wireless mesh with opportunistic overhearing. By means of several wireless meshed architectures ...

  7. Subsurface event detection and classification using Wireless Signal Networks.

    Science.gov (United States)

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T

    2012-11-05

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.

  8. Introduction of wireless, pen-based computing among visiting nurses in the inner city: a qualitative study.

    Science.gov (United States)

    Wilson, R; Fulmer, T

    1997-01-01

    The purpose of this qualitative study is to understand how a sample of visiting nurses experienced the practice of home health nursing in the inner city and how they perceived the anticipated introduction of wireless, pen-based computing into their practice. Focus groups were held with visiting nurses 1 week before the introduction of the wireless, pen-based computers. The data were analyzed using Strauss and Corbin's (1990) method for concept development. The following central concepts emerged from the focus groups with visiting nurses: "Missing contact in the field," "Consumption of time writing on forms," "Using the computer to help with the practice of home health nursing," and "Home nursing is a lifeline." These concepts, based on the commentaries by visiting nurses, help one to understand the problems encountered by visiting nurses in the delivery of home health care, identify ways to incorporate evolving technologies to enhance nursing practice, and consider approaches to computer skill acquisition.

  9. Effective Low-Power Wearable Wireless Surface EMG Sensor Design Based on Analog-Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Mohammadreza Balouchestani

    2014-12-01

    Full Text Available Surface Electromyography (sEMG is a non-invasive measurement process that does not involve tools and instruments to break the skin or physically enter the body to investigate and evaluate the muscular activities produced by skeletal muscles. The main drawbacks of existing sEMG systems are: (1 they are not able to provide real-time monitoring; (2 they suffer from long processing time and low speed; (3 they are not effective for wireless healthcare systems because they consume huge power. In this work, we present an analog-based Compressed Sensing (CS architecture, which consists of three novel algorithms for design and implementation of wearable wireless sEMG bio-sensor. At the transmitter side, two new algorithms are presented in order to apply the analog-CS theory before Analog to Digital Converter (ADC. At the receiver side, a robust reconstruction algorithm based on a combination of ℓ1-ℓ1-optimization and Block Sparse Bayesian Learning (BSBL framework is presented to reconstruct the original bio-signals from the compressed bio-signals. The proposed architecture allows reducing the sampling rate to 25% of Nyquist Rate (NR. In addition, the proposed architecture reduces the power consumption to 40%, Percentage Residual Difference (PRD to 24%, Root Mean Squared Error (RMSE to 2%, and the computation time from 22 s to 9.01 s, which provide good background for establishing wearable wireless healthcare systems. The proposed architecture achieves robust performance in low Signal-to-Noise Ratio (SNR for the reconstruction process.

  10. Wired and Wireless Camera Triggering with Arduino

    Science.gov (United States)

    Kauhanen, H.; Rönnholm, P.

    2017-10-01

    Synchronous triggering is an important task that allows simultaneous data capture from multiple cameras. Accurate synchronization enables 3D measurements of moving objects or from a moving platform. In this paper, we describe one wired and four wireless variations of Arduino-based low-cost remote trigger systems designed to provide a synchronous trigger signal for industrial cameras. Our wireless systems utilize 315 MHz or 434 MHz frequencies with noise filtering capacitors. In order to validate the synchronization accuracy, we developed a prototype of a rotating trigger detection system (named RoTriDeS). This system is suitable to detect the triggering accuracy of global shutter cameras. As a result, the wired system indicated an 8.91 μs mean triggering time difference between two cameras. Corresponding mean values for the four wireless triggering systems varied between 7.92 and 9.42 μs. Presented values include both camera-based and trigger-based desynchronization. Arduino-based triggering systems appeared to be feasible, and they have the potential to be extended to more complicated triggering systems.

  11. Active Wireless System for Structural Health Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Ricardo Perera

    2017-12-01

    Full Text Available The use of wireless sensors in Structural Health Monitoring (SHM has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI-based SHM. This work develops a flexible wireless smart sensor (WSS framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  12. Building Representative-Based Data Aggregation Tree in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yanfei Zheng

    2010-01-01

    Full Text Available Data aggregation is an essential operation to reduce energy consumption in large-scale wireless sensor networks (WSNs. A compromised node may forge an aggregation result and mislead base station into trusting a false reading. Efficient and secure aggregation scheme is critical in WSN applications due to the stringent resource constraints. In this paper, we propose a method to build up the representative-based aggregation tree in the WSNs such that the sensing data are aggregated along the route from the leaf cell to the root of the tree. In the cinema of large-scale and high-density sensor nodes, representative-based aggregation tree can reduce the data transmission overhead greatly by directed aggregation and cell-by-cell communications. It also provides security services including the integrity, freshness, and authentication, via detection mechanism in the cells.

  13. Resource management for multimedia services in high data rate wireless networks

    CERN Document Server

    Zhang, Ruonan; Pan, Jianping

    2017-01-01

    This brief offers a valuable resource on principles of quality-of-service (QoS) provisioning and the related link-layer resource management techniques for high data-rate wireless networks. The primary emphasis is on protocol modeling and analysis. It introduces media access control (MAC) protocols, standards of wireless local area networks (WLANs), wireless personal area networks (WPANs), and wireless body area networks (WBANs), discussing their key technologies, applications, and deployment scenarios. The main analytical approaches and models for performance analysis of the fundamental resource scheduling mechanisms, including the contention-based, reservation-based, and hybrid MAC, are presented. To help readers understand and evaluate system performance, the brief contains a range of simulation results. In addition, a thorough bibliography provides an additional tool. This brief is an essential resource for engineers, researchers, students, and users of wireless networks.

  14. Socially Aware Heterogeneous Wireless Networks.

    Science.gov (United States)

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-06-11

    The development of smart cities has been the epicentre of many researchers' efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users' locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation.

  15. Satellite-based Tropical Cyclone Monitoring Capabilities

    Science.gov (United States)

    Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.

    2012-12-01

    Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.

  16. Artificial intelligence in wireless communications

    CERN Document Server

    Rondeau, Thomas W

    2009-01-01

    This cutting-edge resource offers practical overview of cognitive radio, a paradigm for wireless communications in which a network or a wireless node changes its transmission or reception parameters. The alteration of parameters is based on the active monitoring of several factors in the external and internal radio environment. This book offers a detailed description of cognitive radio and its individual parts. Practitioners learn how the basic processing elements and their capabilities are implemented as modular components. Moreover, the book explains how each component can be developed and t

  17. Design and implementation of real-time wireless projection system based on ARM embedded system

    Science.gov (United States)

    Long, Zhaohua; Tang, Hao; Huang, Junhua

    2018-04-01

    Aiming at the shortage of existing real-time screen sharing system, a real-time wireless projection system is proposed in this paper. Based on the proposed system, a weight-based frame deletion strategy combined sampling time period and data variation is proposed. By implementing the system on the hardware platform, the results show that the system can achieve good results. The weight-based strategy can improve the service quality, reduce the delay and optimize the real-time customer service system [1].

  18. Wireless networks of opportunity in support of secure field operations

    Science.gov (United States)

    Stehle, Roy H.; Lewis, Mark

    1997-02-01

    Under funding from the Defense Advanced Research Projects Agency (DARPA) for joint military and law enforcement technologies, demonstrations of secure information transfer in support of law enforcement and military operations other than war, using wireless and wired technology, were held in September 1996 at several locations in the United States. In this paper, the network architecture, protocols, and equipment supporting the demonstration's scenarios are presented, together with initial results, including lessons learned and desired system enhancements. Wireless networks of opportunity encompassed in-building (wireless-LAN), campus-wide (Metricom Inc.), metropolitan (AMPS cellular, CDPD), and national (one- and two-way satellite) systems. Evolving DARPA-sponsored packet radio technology was incorporated. All data was encrypted, using multilevel information system security initiative (MISSI)FORTEZZA technology, for carriage over unsecured and unclassified commercial networks. The identification and authentication process inherent in the security system permitted logging for database accesses and provided an audit trail useful in evidence gathering. Wireless and wireline communications support, to and between modeled crisis management centers, was demonstrated. Mechanisms for the guarded transport of data through the secret-high military tactical Internet were included, to support joint law enforcement and crisis management missions. A secure World Wide Web (WWW) browser forms the primary, user-friendly interface for information retrieval and submission. The WWW pages were structured to be sensitive to the bandwidth, error rate, and cost of the communications medium in use (e.g., the use of and resolution for graphical data). Both still and motion compressed video were demonstrated, along with secure voice transmission from laptop computers in the field. Issues of network bandwidth, airtime costs, and deployment status are discussed.

  19. Tracking Mobile Robot in Indoor Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liping Zhang

    2014-01-01

    Full Text Available This work addresses the problem of tracking mobile robots in indoor wireless sensor networks (WSNs. Our approach is based on a localization scheme with RSSI (received signal strength indication which is used widely in WSN. The developed tracking system is designed for continuous estimation of the robot’s trajectory. A WSN, which is composed of many very simple and cheap wireless sensor nodes, is deployed at a specific region of interest. The wireless sensor nodes collect RSSI information sent by mobile robots. A range-based data fusion scheme is used to estimate the robot’s trajectory. Moreover, a Kalman filter is designed to improve tracking accuracy. Experiments are provided to assess the performance of the proposed scheme.

  20. Distortion-Based Slice Level Prioritization for Real-Time Video over QoS-Enabled Wireless Networks

    Directory of Open Access Journals (Sweden)

    Ismail A. Ali

    2012-01-01

    Full Text Available This paper presents a prioritization scheme based on an analysis of the impact on objective video quality when dropping individual slices from coded video streams. It is shown that giving higher-priority classified packets preference in accessing the wireless media results in considerable quality gain (up to 3 dB in tests over the case when no prioritization is applied. The proposed scheme is demonstrated for an IEEE 802.11e quality-of-service- (QoS- enabled wireless LAN. Though more complex prioritization systems are possible, the proposed scheme is crafted for mobile interactive or user-to-user video services and is simply implemented within the Main or the Baseline profiles of an H.264 codec.