WorldWideScience

Sample records for satellite based measurements

  1. Validation of PV performance models using satellite-based irradiance measurements : a case study.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Parkins, Andrew (Clean Power Research); Perez, Richard (University at Albany)

    2010-05-01

    Photovoltaic (PV) system performance models are relied upon to provide accurate predictions of energy production for proposed and existing PV systems under a wide variety of environmental conditions. Ground based meteorological measurements are only available from a relatively small number of locations. In contrast, satellite-based radiation and weather data (e.g., SUNY database) are becoming increasingly available for most locations in North America, Europe, and Asia on a 10 x 10 km grid or better. This paper presents a study of how PV performance model results are affected when satellite-based weather data is used in place of ground-based measurements.

  2. Linear and Nonlinear Relative Navigation Strategies for Small Satellite Formation Flying Based on Relative Position Measurement

    Science.gov (United States)

    Zhang, Xiaomin; Zheng, You

    Based on linear and nonlinear mathematical model of spacecraft formation flying and technology of relative position measurement of small satellites, the linear and nonlinear relative navigation strategies are developed in this paper. The dynamical characteristics of multi spacecraft formation flying have been researched in many references, including the authors' several International Astronautical Congress papers with numbers of IAF-98-A.2.06, IAA-99-IAA.11.1.09, IAA-01-IAA.11.4.08. Under conditions of short distance and short time, the linear model can describe relative orbit motion; otherwise, nonlinear model must be adopted. Furthermore the means of measurement and their error will influence relative navigation. Thus three kinds of relative navigation strategy are progressed. With consideration of difficulty in relative velocity measurement of small satellites, the three relative navigation strategies are proposed and only depend on sequential data of relative position through measuring the relative distance and relative orientation. The first kind of relative navigation strategy is based on linear model. The second relative navigation strategy is based on nonlinear model, with inclusion of the second order item. In fact the measurement error can not be avoided especially for small satellites, it is mainly considered in the third relative navigation strategy. This research is theoretical yet and a series of formulas of relative navigation are presented in this paper. Also the authors analyzed the three strategies qualitatively and quantitatively. According to results of simulation, the ranges of application are indicated and suggested in allusion to the three strategies of relative navigation. On the view of authors, the relative navigation strategies for small satellite formation flying based on relative position measurement are significant for engineering of small satellite formation flying.

  3. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite

  4. Comparison of NO2 vertical profiles from satellite and ground based measurements over Antarctica

    OpenAIRE

    Kulkarni, Pavan; Bortoli, Daniele; Costa, Maria João; Silva, Ana Maria; Ravegnani, Fabrizio; Giovanelli, Giorgio

    2011-01-01

    The Intercomparison of nitrogen dioxide (NO2) vertical profiles, derived from the satellite based HALogen Occultation Experiment (HALOE) measurements and from the ground based UV-VIS spectrometer GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences) observations at the Mario Zucchelli Station (MZS), in Antarctica, are done for the first time. It is shown here that both datasets are in good agreement showing the same features in terms of magnitude, profile structure, a...

  5. Assessment of the quality of OSIRIS mesospheric temperatures using satellite and ground-based measurements

    Directory of Open Access Journals (Sweden)

    P. E. Sheese

    2012-12-01

    Full Text Available The Optical Spectrograph and InfraRed Imaging System (OSIRIS on the Odin satellite is currently in its 12th year of observing the Earth's limb. For the first time, continuous temperature profiles extending from the stratopause to the upper mesosphere have been derived from OSIRIS measurements of Rayleigh-scattered sunlight. Through most of the mesosphere, OSIRIS temperatures are in good agreement with coincident temperature profiles derived from other satellite and ground-based measurements. In the altitude region of 55–80 km, OSIRIS temperatures are typically within 4–5 K of those from the SABER, ACE-FTS, and SOFIE instruments on the TIMED, SciSat-I, and AIM satellites, respectively. The mean differences between individual OSIRIS profiles and those of the other satellite instruments are typically within the combined uncertainties and previously reported biases. OSIRIS temperatures are typically within 2 K of those from the University of Western Ontario's Purple Crow Lidar in the altitude region of 52–79 km, where the mean differences are within combined uncertainties. Near 84 km, OSIRIS temperatures exhibit a cold bias of 10–15 K, which is due to a cold bias in OSIRIS O2 A-band temperatures at 85 km, the upper boundary of the Rayleigh-scatter derived temperatures; and near 48 km OSIRIS temperatures exhibit a cold bias of 5–15 K, which is likely due to multiple-scatter effects that are not taken into account in the retrieval.

  6. Heavy precipitation retrieval from combined satellite observations and ground-based lightning measurements

    Science.gov (United States)

    Mugnai, A.; Dietrich, S.; Casella, D.; di Paola, F.; Formenton, M.; Sanò, P.

    2010-09-01

    We have developed a series of algorithms for the retrieval of precipitation (especially, heavy precipitation) over the Mediterranean area using satellite observations from the available microwave (MW) radiometers onboard low Earth orbit (LEO) satellites and from the visible-infrared (VIS-IR) SEVIRI radiometer onboard the European geosynchronous (GEO) satellite Meteosat Second Generation (MSG), in conjunction with lightning data from ground-based networks - such as ZEUS and LINET. These are: • A new approach for precipitation retrieval from space (which we call the Cloud Dynamics and Radiation Database approach, CDRD) that incorporates lightning and environmental/dynamical information in addition to the upwelling microwave brightness temperatures (TB’s) so as to reduce the retrieval uncertainty and improve the retrieval performance; • A new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique), that uses passive-microwave (PM) retrievals in conjunction with lightning information and the Global Convection Detection (GCD) technique to discriminate deep convective clouds within the GEO observations; • A new morphing approach (which we call the Lightning-based Precipitation Evolving Technique, L-PET) that uses the available lightning measurements for propagating the rainfall estimates from satellite-borne MW radiometers to a much higher time resolution than the MW observations. We will present and discuss our combined MW/IR/lightning precipitation algorithms and analyses with special reference to some case studies over the western Mediterranean.

  7. Satellite-based RAR performance simulation for measuring directional ocean wave spectrum based on SAR inversion spectrum

    Institute of Scientific and Technical Information of China (English)

    REN Lin; MAO Zhihua; HUANG Haiqing; GONG Fang

    2010-01-01

    Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence. Both them have their own advantages and limitations. Scientists hope that SAR and satellite-based RAR can complement each other for the research on wave properties in the future. For this study, the authors aim to simulate the satellite-based RAR system to validate performance for measuring the directional wave spectrum. The principal measurements are introduced and the simulation methods based on the one developed by Hauser are adopted and slightly modified. To enhance the authenticity of input spectrum and the wave spectrum measuring consistency for SAR and satellite-based RAR, the wave height spectrum inversed from Envisat ASAR data by cross spectrum technology is used as the input spectrum of the simulation system. In the process of simulation, the sea surface, backscattering signal, modulation spectrum and the estimated wave height spectrum are simulated in each look direction. Directional wave spectrum are measured based on the simulated observations from 0° to 360~. From the estimated wave spectrum, it has an 180° ambiguity like SAR, but it has no special high wave number cut off in all the direction. Finally, the estimated spectrum is compared with the input one in terms of the dominant wave wavelength, direction and SWH and the results are promising. The simulation shows that satellite-based RAR should be capable of measuring the directional wave properties. Moreover, it indicates satellite-based RAR basically can measure waves that SAR can measure.

  8. Stream Gauges and Satellite Measurements

    Science.gov (United States)

    Alsdorf, D. E.

    2010-12-01

    Satellite measurements should not be viewed as a replacement for stream gauges. However, occasionally it is suggested that because satellite-based measurements can provide river discharge, a motivation for satellite approaches is an increasing lack of stream gauges. This is an argument for more stream gauges, but not necessarily for satellite measurements. Rather, in-situ and spaceborne methods of estimating discharge are complementary. Stream gauges provide frequent measurements at one point in the river reach whereas satellites have the potential to measure throughout all reaches but at orbital repeat intervals of days to weeks. The Surface Water and Ocean Topography satellite mission (SWOT) is an opportunity to further develop these complements. The motivation for SWOT, and indeed for any satellite based method of estimating discharge, should not be as a replacement for stream gauges. Scientific and application uses should motivate the measurements. For example, understanding floods with their dynamic water surfaces are best sampled from remote platforms that provide water surface elevations throughout the floodwave. As another example, today’s water and energy balance models are giving outputs at increasing spatial resolution and are making use of water surface elevations throughout the modeled basin. These models require a similar resolution in the calibrating and validating observations. We should also be aware of practical limitations. In addition to providing spatially distributed hydrodynamic measurements on rivers, SWOT will be able to measure storage changes in the estimated 30 million lakes in the world that are larger than a hectare. Knowing the storage changes in these lakes is especially important in certain regions such as the Arctic but gauging even a small fraction of these is impractical. Another motivator for satellite methods is that even in the presence of stream gauges, discharge data is not always well shared throughout all countries

  9. Evaluation of cloud base height measurements from ceilometer CL31 and MODIS satellite over Ahmedabad, India

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2015-11-01

    Full Text Available Clouds play a tangible role in the Earth's atmosphere and in particular, the cloud base height (CBH which is linked to cloud type is one of the important characteristic to describe the influence of clouds on the environment. In present study, CBH observations from ceilometer CL31 have been extensively studied during May 2013 to January 2015 over Ahmedabad (23.03° N, 72.54° E, India. A detail comparison has been performed with the use of ground-based CBH measurements from ceilometer CL31 and CBH retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer onboard Aqua and Terra satellite. Some interesting features of cloud dynamics viz. strong downdraft and updraft have been observed over Ahmedabad which revealed different cloud characteristics during monsoon and post-monsoon periods. CBH shows seasonal variation during Indian summer monsoon and post-monsoon period. Results indicate that ceilometer is one of the excellent instruments to precisely detect low and mid-level clouds and MODIS satellite provides accurate retrieval of high-level clouds over this region. The CBH algorithm used for MODIS satellite is also able to capture the low-level clouds.

  10. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  11. Online data base of satellite sounder and insitu measurements covering two solar cycles

    Science.gov (United States)

    Bilitza, D.; Reinisch, B.; Benson, R.; Grebowsky, J.; Papitashvili, N.; Huang, X.; Schar, W.; Hills, K.

    Accurate descriptions of the solar cycle variations of ionospheric parameters are an important goal of ionospheric modeling. Reliable predictions of these variations are of essential importance for almost all applications of ionospheric models. Unfortunately there are very few global data sources that cover a solar cycle or more. In an effort to expand the solar cycle coverage of data readily available for ionospheric modeling, we have processed a large number of satellite data sets from the sixties, seventies, and early eighties and have made them online accessible as part of NSSDC's ftp archive (http://nssdcftp.gsfc.nasa.gov/spacecraft data/) and it's ATMOWeb retrieval and plotting system (http://nssdc.gsfc.nasa.gov/atmoweb/). We report about two data restoration efforts supported through NASA's Applied Information Systems Research Program (AISRP). The first project deals with insitu data from a large number of US, Canadian, Japanese and German satellites that measured ionospheric densities and temperatures from 1964 to 1983. The accumulated data base includes data from the BE-B, DME-A, AE-B, Alouette 2, ISIS 1, 2, OGO-6, AEROS A, AE-C, -D, -E, Hinotori, ISS-b and DE-2 satellite missions. The second project involves the production of digital topside sounder ionograms from the ISIS 1 and 2 satellites and their subsequent inversion to produce electron-density profiles. Approximately 340,000 ionograms are available from NSSDC as of July 2002. An automatic topside ionogram scaler with true height algorithm (TOPIST) was developed as part of this project and is now being used to obtain electron density profiles from these ionograms. Providing global coverage over more than two solar cycles the database established by this two projects is a valuable asset for improvements of the International Reference Ionosphere model and for ionospheric research.

  12. Earth's gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

    Science.gov (United States)

    Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.

    2017-09-01

    GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

  13. Validation of NH3 satellite observations by ground-based FTIR measurements

    Science.gov (United States)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Shephard, Mark; Cady-Pereira, Karen; Capps, Shannon; Clarisse, Lieven; Coheur, Pierre; Erisman, Jan Willem

    2016-04-01

    Global emissions of reactive nitrogen have been increasing to an unprecedented level due to human activities and are estimated to be a factor four larger than pre-industrial levels. Concentration levels of NOx are declining, but ammonia (NH3) levels are increasing around the globe. While NH3 at its current concentrations poses significant threats to the environment and human health, relatively little is known about the total budget and global distribution. Surface observations are sparse and mainly available for north-western Europe, the United States and China and are limited by the high costs and poor temporal and spatial resolution. Since the lifetime of atmospheric NH3 is short, on the order of hours to a few days, due to efficient deposition and fast conversion to particulate matter, the existing surface measurements are not sufficient to estimate global concentrations. Advanced space-based IR-sounders such as the Tropospheric Emission Spectrometer (TES), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) enable global observations of atmospheric NH3 that help overcome some of the limitations of surface observations. However, the satellite NH3 retrievals are complex requiring extensive validation. Presently there have only been a few dedicated satellite NH3 validation campaigns performed with limited spatial, vertical or temporal coverage. Recently a retrieval methodology was developed for ground-based Fourier Transform Infrared Spectroscopy (FTIR) instruments to obtain vertical concentration profiles of NH3. Here we show the applicability of retrieved columns from nine globally distributed stations with a range of NH3 pollution levels to validate satellite NH3 products.

  14. Earth's gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

    Science.gov (United States)

    Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.

    2017-02-01

    GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

  15. Global Fine Particulate Matter Concentrations and Trends Inferred from Satellite Observations, Modeling, and Ground-Based Measurements

    Science.gov (United States)

    Martin, Randall; van Donkelaar, Aaron; Boys, Brian; Philip, Sajeev; Lee, Colin; Snider, Graydon; Weagle, Crystal

    2014-05-01

    Outdoor fine particulate matter (PM2.5) is a leading environmentally-related cause of premature mortality worldwide. However, ground-level PM2.5 monitors remain sparse in many regions of the world. Satellite remote sensing from MODIS, MISR, and SeaWiFS yields a powerful global data source to address this issue. Global modeling (GEOS-Chem) plays a critical role in relating these observations to ground-level concentrations. The resultant satellite-based estimates of PM2.5 indicate dramatic variation around the world, with implications for global public health. A new ground-based aerosol network (SPARTAN) offers valuable measurements to understand the relationship between satellite observations of aerosol optical depth and ground-level PM2.5 concentrations. This talk will highlight recent advances in combining satellite remote sensing, global modeling, and ground-based measurements to improve understanding of global population exposure to outdoor fine particulate matter.

  16. Comprehensive Spectral Signal Investigation of a Larch Forest Combining - and Satellite-Based Measurements

    Science.gov (United States)

    Landmann, J. M.; Rutzinger, M.; Bremer, M.; chmidtner, K.

    2016-06-01

    Collecting comprehensive knowledge about spectral signals in areas composed by complex structured objects is a challenging task in remote sensing. In the case of vegetation, shadow effects on reflectance are especially difficult to determine. This work analyzes a larch forest stand (Larix decidua MILL.) in Pinnis Valley (Tyrol, Austria). The main goal is extracting the larch spectral signal on Landsat 8 (LS8) Operational Land Imager (OLI) images using ground measurements with the Cropscan Multispectral Radiometer with five bands (MSR5) simultaneously to satellite overpasses in summer 2015. First, the relationship between field spectrometer and OLI data on a cultivated grassland area next to the forest stand is investigated. Median ground measurements for each of the grassland parcels serve for calculation of the mean difference between the two sensors. Differences are used as "bias correction" for field spectrometer values. In the main step, spectral unmixing of the OLI images is applied to the larch forest, specifying the larch tree spectral signal based on corrected field spectrometer measurements of the larch understory. In order to determine larch tree and shadow fractions on OLI pixels, a representative 3D tree shape is used to construct a digital forest. Benefits of this approach are the computational savings compared to a radiative transfer modeling. Remaining shortcomings are the limited capability to consider exact tree shapes and nonlinear processes. Different methods to implement shadows are tested and spectral vegetation indices like the Normalized Difference Vegetation Index (NDVI) and Greenness Index (GI) can be computed even without considering shadows.

  17. Analysis of rain fade duration models for Earth-to-satellite path based on data measured in Malaysia

    Science.gov (United States)

    Dao, Hassan; Rafiqul, Islam Md; Al-Khateeb, Khalid A. S.

    2013-12-01

    Statistical analysis of rain fade duration is crucial information for system engineer to design and plan a fade mitigation technique (FMT) for the satellite communication system. An investigation is carried out based on data measured of one year period in Kuala Lumpur, Malaysia from satellite path of MEASAT3. This paper presents statistical analysis of measured fade duration on high elevation angle (77.4°) in Ku-band compared to three prediction models of fade duration. It is found that none of the models could predict measured fade duration distribution accurately.

  18. Validation of VIIRS Cloud Base Heights at Night Using Ground and Satellite Measurements over Alaska

    Science.gov (United States)

    NOH, Y. J.; Miller, S. D.; Seaman, C.; Forsythe, J. M.; Brummer, R.; Lindsey, D. T.; Walther, A.; Heidinger, A. K.; Li, Y.

    2016-12-01

    Knowledge of Cloud Base Height (CBH) is critical to describing cloud radiative feedbacks in numerical models and is of practical significance to aviation communities. We have developed a new CBH algorithm constrained by Cloud Top Height (CTH) and Cloud Water Path (CWP) by performing a statistical analysis of A-Train satellite data. It includes an extinction-based method for thin cirrus. In the algorithm, cloud geometric thickness is derived with upstream CTH and CWP input and subtracted from CTH to generate the topmost layer CBH. The CBH information is a key parameter for an improved Cloud Cover/Layers product. The algorithm has been applied to the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi NPP spacecraft. Nighttime cloud optical properties for CWP are retrieved from the nighttime lunar cloud optical and microphysical properties (NLCOMP) algorithm based on a lunar reflectance model for the VIIRS Day/Night Band (DNB) measuring nighttime visible light such as moonlight. The DNB has innovative capabilities to fill the polar winter and nighttime gap of cloud observations which has been an important shortfall from conventional radiometers. The CBH products have been intensively evaluated against CloudSat data. The results showed the new algorithm yields significantly improved performance over the original VIIRS CBH algorithm. However, since CloudSat is now operational during daytime only due to a battery anomaly, the nighttime performance has not been fully assessed. This presentation will show our approach to assess the performance of the CBH algorithm at night. VIIRS CBHs are retrieved over the Alaska region from October 2015 to April 2016 using the Clouds from AVHRR Extended (CLAVR-x) processing system. Ground-based measurements from ceilometer and micropulse lidar at the Atmospheric Radiation Measurement (ARM) site on the North Slope of Alaska are used for the analysis. Local weather conditions are checked using temperature and precipitation

  19. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  20. Study of Ice Crystal Orientation in Cirrus Clouds based on Satellite Polarized Radiance Measurements

    OpenAIRE

    Noel, Vincent; Chepfer, Hélène

    2004-01-01

    International audience; The goal of this paper is to retrieve information about ice particle orientation in cirrus clouds. This is achieved by comparing simulations of sunlight reflection on a cirrus cloud with measurements of polarized radiances from the spaceborne instrument Polarization and Directionality of the Earth's Reflectance (POLDER-1) on Advanced Earth Observing Satellite-1 (ADEOS-1). Results show that horizontal orientation of cr ystals can be spotted by the presence of a local ma...

  1. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.

    Science.gov (United States)

    Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki

    2014-11-01

    Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.

  2. Evaluation of the satellite-based Global Flood Detection System for measuring river discharge: influence of local factors

    Directory of Open Access Journals (Sweden)

    B. Revilla-Romero

    2014-07-01

    Full Text Available One of the main challenges for global hydrological modelling is the limited availability of observational data for calibration and model verification. This is particularly the case for real time applications. This problem could potentially be overcome if discharge measurements based on satellite data were sufficiently accurate to substitute for ground-based measurements. The aim of this study is to test the potentials and constraints of the remote sensing signal of the Global Flood Detection System for converting the flood detection signal into river discharge values. The study uses data for 322 river measurement locations in Africa, Asia, Europe, North America and South America. Satellite discharge measurements were calibrated for these sites and a validation analysis with in situ discharge was performed. The locations with very good performance will be used in a future project where satellite discharge measurements are obtained on a daily basis to fill the gaps where real time ground observations are not available. These include several international river locations in Africa: Niger, Volta and Zambezi rivers. Analysis of the potential factors affecting the satellite signal was based on a classification decision tree (Random Forest and showed that mean discharge, climatic region, land cover and upstream catchment area are the dominant variables which determine good or poor performance of the measurement sites. In general terms, higher skill scores were obtained for locations with one or more of the following characteristics: a river width higher than 1 km; a large floodplain area and in flooded forest; with a potential flooded area greater than 40%; sparse vegetation, croplands or grasslands and closed to open and open forest; Leaf Area Index > 2; tropical climatic area; and without hydraulic infrastructures. Also, locations where river ice cover is seasonally present obtained higher skill scores. The work provides guidance on the best

  3. The first estimates of global nucleation mode aerosol concentrations based on satellite measurements

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2011-11-01

    Full Text Available Atmospheric aerosols play a key role in the Earth's climate system by scattering and absorbing solar radiation and by acting as cloud condensation nuclei. Satellites are increasingly used to obtain information on properties of aerosol particles with a diameter larger than about 100 nm. However, new aerosol particles formed by nucleation are initially much smaller and grow into the optically active size range on time scales of many hours. In this paper we derive proxies, based on process understanding and ground-based observations, to determine the concentrations of these new particles and their spatial distribution using satellite data. The results are applied to provide seasonal variation of nucleation mode concentration. The proxies describe the concentration of nucleation mode particles over continents. The source rates are related to both regional nucleation and nucleation associated with more restricted sources. The global pattern of nucleation mode particle number concentration predicted by satellite data using our proxies is compared qualitatively against both observations and global model simulations.

  4. Soil moisture on Polish territory - comparison of satellite and ground-based measurements

    Science.gov (United States)

    Rojek, Edyta; Łukowski, Mateusz; Marczewski, Wojciech; Usowicz, Bogusław

    2014-05-01

    Assessment of water resources due to changing climatic conditions in time and space is still very uncertain. The territory of Poland has a limited resource of waters, occasionally resulting in small agricultural droughts. From the other side intense rainfalls, floods or run-offs, causing soil erosion are observed. Therefore, it is important to predict and prevent of this adverse phenomena. Huge spatial variability of soil moisture does not allow for accurate estimation of its distribution using ground-based measurements. SMOS soil moisture data are quite much inherently consistent in time and space, but their validation is still a challenge for further use in the climate and hydrology studies. This is the motivation for the research: to examine soil moisture from SMOS and ground based stations of the SWEX network held over eastern Poland. The presented results are related to changes of the soil moisture on regional scales for Poland in the period 2010-2013. Some results with SMOS L2 data are extended on continental scales for Europe. Time series from ground and satellite SMOS data sources were compared by regression methods. The region of Poland indicates clearly some genetic spatial distributions in weekly averaged values. In continental scales, the country territory contrasts evidently to Lithuania and in Polesie, and indicates seasonal cycling observed in archives and well known traditional records. The central part of Poland is repeatedly susceptible on droughts with soil moisture values ranging from about 0.02 to 0.20 m3 m-3. SMOS data allows on creating systematic drought data for Poland and watching annual changes, and differences to other drought services kept on national scales for agricultural purposes. We bound that drought susceptibility to the content of sand clay components and the land use there. Lack of rainfall in the late 2011 summer, caused a significant deficit of water in soil moisture content (below 0.05 m3 m-3) throughout the entire country

  5. Tropospheric BrO column densities in the Arctic derived from satellite: retrieval and comparison to ground-based measurements

    Directory of Open Access Journals (Sweden)

    H. Sihler

    2012-11-01

    Full Text Available During polar spring, halogen radicals like bromine monoxide (BrO play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical column densities of BrO from data of high-resolution spectroscopic satellite instruments such as the second Global Ozone Monitoring Experiment (GOME-2. Unlike recently published approaches, the presented algorithm is capable of separating the fraction of BrO in the activated troposphere from the total BrO column solely based on remotely measured properties. The presented algorithm furthermore allows to estimate a realistic measurement error of the tropospheric BrO column. The sensitivity of each satellite pixel to BrO in the boundary layer is quantified using the measured UV radiance and the column density of the oxygen collision complex O4. A comparison of the sensitivities with CALIPSO LIDAR observations demonstrates that clouds shielding near-surface trace-gas columns can be reliably detected even over ice and snow. Retrieved tropospheric BrO columns are then compared to ground-based BrO measurements from two Arctic field campaigns in the Amundsen Gulf and at Barrow in 2008 and 2009, respectively. Our algorithm was found to be capable of retrieving enhanced near-surface BrO during both campaigns in good agreement with ground-based data. Some differences between ground-based and satellite measurements observed at Barrow can be explained by both elevated and shallow surface layers of BrO. The observations strongly suggest that surface release processes are the dominating source of BrO and that boundary layer meteorology influences the vertical distribution.

  6. Tropospheric BrO column densities in the Arctic from satellite: retrieval and comparison to ground-based measurements

    Directory of Open Access Journals (Sweden)

    H. Sihler

    2012-05-01

    Full Text Available During polar spring, halogen radicals like bromine monoxide (BrO play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO-distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical column densities of BrO from data of high-resolution spectroscopic satellite instruments such as the second Global Ozone Monitoring Experiment (GOME-2. Unlike recently published approaches, the presented algorithm is capable of separating the fraction of BrO in the activated troposphere from the total BrO column solely based on remotely measured properties. The sensitivity of each satellite pixel to BrO in the boundary-layer is quantified using the measured UV-radiance and the column density of the oxygen collision complex O4. A comparison of the sensitivities with CALIPSO LIDAR observations demonstrates that clouds shielding near-surface trace-gas columns can be reliably detected even over ice and snow. Retrieved tropospheric BrO columns are then compared to ground-based BrO measurements from two Arctic field campaigns in the Amundsen Gulf and at Barrow in 2008 and 2009, respectively. Our algorithm was found to be capable of retrieving enhanced near-surface BrO during both campaigns in good agreement to ground-based data. Some differences between ground-based and satellite measurements observed at Barrow can be explained by both, elevated and shallow surface layers of BrO. The observations strongly suggest that surface release processes are the dominating source of BrO and that boundary-layer meteorology influences the vertical distribution.

  7. An automated fog monitoring system for the Indo-Gangetic Plains based on satellite measurements

    Science.gov (United States)

    Patil, Dinesh; Chourey, Reema; Rizvi, Sarwar; Singh, Manoj; Gautam, Ritesh

    2016-05-01

    Fog is a meteorological phenomenon that causes reduction in regional visibility and affects air quality, thus leading to various societal and economic implications, especially disrupting air and rail transportation. The persistent and widespread winter fog impacts the entire the Indo-Gangetic Plains (IGP), as frequently observed in satellite imagery. The IGP is a densely populated region in south Asia, inhabiting about 1/6th of the world's population, with a strong upward pollution trend. In this study, we have used multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for developing an automated web-based fog monitoring system over the IGP. Using our previous and existing methodologies, and ongoing algorithm development for the detection of fog and retrieval of associated microphysical properties (e.g. fog droplet effective radius), we characterize the widespread fog detection during both daytime and nighttime. Specifically, for the night time fog detection, the algorithm employs a satellite-based bi-spectral brightness temperature difference technique between two spectral channels: MODIS band-22 (3.9μm) and band-31 (10.75μm). Further, we are extending our algorithm development to geostationary satellites, for providing continuous monitoring of the spatial-temporal variation of fog. We anticipate that the ongoing and future development of a fog monitoring system would be of assistance to air, rail and vehicular transportation management, as well as for dissemination of fog information to government agencies and general public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.

  8. All satellites total ozone evaluation in the tropics by comparison with SAOZ-NDACC ground-based measurements

    Science.gov (United States)

    Pommereau, Jean-Pierre; Lerot, Christophe; Van Roozendael, Michel; Goutail, Florence; Pazmino, Andrea; Frihi, Aymen; Bekki, Slimane; Clerbaux, Cathy

    2016-07-01

    All satellites total ozone measurements available from SBUV, OMI-T, OMI-D, OMI-CCI, GOME-CCI, GOME2-CCI, SCIAMACHY-CCI, NPP and IASI, since 2001 until 2015 are compared to those provided by the UV-Vis SAOZ/NDACC spectrometer at the two tropical stations of Reunion Island in the Indian Ocean and Bauru in Southern Brazil. The differences between satellites and SAOZ except IASI do show systematic seasonal variations of 0-3% (0-9 DU) amplitude and sharp negative peaks in Jan-Mar in Reunion Is in the austral summer. Whereas the summer negative peaks seen particularly on IASI, OMI-T, NPP and OMI-CCI at Reunion are shown to correlate with hurricanes and those seen in Brazil with high altitude overshooting convective clouds both not properly removed, ozone minima outside these events are shown to correlate with high altitude volcanic plumes impacting all satellites as well as ground-based total ozone measurements The seasonality of the Sat-SAOZ difference of varying amplitude from 0 to 3% with the satellite is attributed to the satellite retrieval. Surprisingly and though there has been no change in either SAOZ instruments or data analysis processes, the amplitude of the seasonal cycle of the Sat-SAOZ difference reduces in 2012 and drops to less than ± 0.5% (1.5 DU) after 2013 in Reunion Island and less than ±1% in Bauru, reduction for which there is no clear explanation yet. Shown in the presentation will be the demonstration of the impact of hurricanes, high altitude convective clouds and volcanic plumes on satellites total ozone retrievals, followed by a discussion of possible causes of seasonality of Sat-SAOZ amplitude drop after 2012.

  9. A Methodology For Measuring Resilience in a Satellite-Based Communication Network

    Science.gov (United States)

    2014-03-27

    In the cyber realm, most satellite operators were in compliance with the National Security Agency’s (NSA) approved encryptions for transmissions...and more continue to meet compliance as new satellites are placed in orbit. Along with the encryptions , many 17 satellite operators utilize “deaf...nation at war may be of higher concern than the nation providing backdoor support which is higher than a neutral nation, and so on until a region not

  10. Statistical theory for estimating sampling errors of regional radiation averages based on satellite measurements

    Science.gov (United States)

    Smith, G. L.; Bess, T. D.; Minnis, P.

    1983-01-01

    The processes which determine the weather and climate are driven by the radiation received by the earth and the radiation subsequently emitted. A knowledge of the absorbed and emitted components of radiation is thus fundamental for the study of these processes. In connection with the desire to improve the quality of long-range forecasting, NASA is developing the Earth Radiation Budget Experiment (ERBE), consisting of a three-channel scanning radiometer and a package of nonscanning radiometers. A set of these instruments is to be flown on both the NOAA-F and NOAA-G spacecraft, in sun-synchronous orbits, and on an Earth Radiation Budget Satellite. The purpose of the scanning radiometer is to obtain measurements from which the average reflected solar radiant exitance and the average earth-emitted radiant exitance at a reference level can be established. The estimate of regional average exitance obtained will not exactly equal the true value of the regional average exitance, but will differ due to spatial sampling. A method is presented for evaluating this spatial sampling error.

  11. Satellite-Based Sunshine Duration for Europe

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-06-01

    Full Text Available In this study, two different methods were applied to derive daily and monthly sunshine duration based on high-resolution satellite products provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT Satellite Application Facility on Climate Monitoring using data from Meteosat Second Generation (MSG SEVIRI (Spinning Enhanced Visible and Infrared Imager. The satellite products were either hourly cloud type or hourly surface incoming direct radiation. The satellite sunshine duration estimates were not found to be significantly different using the native 15-minute temporal resolution of SEVIRI. The satellite-based sunshine duration products give additional spatial information over the European continent compared with equivalent in situ-based products. An evaluation of the satellite sunshine duration by product intercomparison and against station measurements was carried out to determine their accuracy. The satellite data were found to be within ±1 h/day compared to high-quality Baseline Surface Radiation Network or surface synoptic observations (SYNOP station measurements. The satellite-based products differ more over the oceans than over land, mainly because of the treatment of fractional clouds in the cloud type-based sunshine duration product. This paper presents the methods used to derive the satellite sunshine duration products and the performance of the different retrievals. The main benefits and disadvantages compared to station-based products are also discussed.

  12. First comparison between ground-based and satellite-borne measurements of tropospheric nitrogen dioxide in the Po basin

    Science.gov (United States)

    Petritoli, Andrea; Bonasoni, Paolo; Giovanelli, Giorgio; Ravegnani, Fabrizio; Kostadinov, Ivan; Bortoli, Daniele; Weiss, Andrea; Schaub, Daniel; Richter, Andreas; Fortezza, Francesco

    2004-08-01

    In this paper we present in situ and tropospheric column measurements of NO2 in the Po river basin (northern Italy). The aim of the work is to provide a quantitative comparison between ground-based and satellite measurements in order to assess the validity of spaceborne measurements for estimating NO2 emissions and evaluate possible climatic effects. The study is carried out using in situ chemiluminescent instrumentation installed in the Po valley, a UV/Vis spectrometer installed at Mount Cimone (44.2°N, 10.7°E, 2165 m asl), and tropospheric column measurements obtained from the Global Ozone Monitoring Experiment (GOME) spectrometer. Results show that the annual cycle in surface concentrations and also some specific pollution periods observed by the air quality network are well reproduced by the GOME measurements. However, tropospheric columns derived from the surface measurements assuming a well-mixed planetary boundary layer (PBL) are much larger than the GOME columns and also have a different seasonal cycle. This is interpreted as indication of a smaller and less variable mixing height for NO2 in the boundary layer. Under particular meteorological conditions the agreement between UV/Vis tropospheric column observations and GOME measurements in the Mount Cimone area is good (R2 = 0.9) with the mixing properties of the atmosphere being the most important parameter for a valid comparison of the measurements. However, even when the atmospheric mixing properties are optimal for comparison, the ratio between GOME and ground-based tropospheric column data may not be unity. It is demonstrated that the values obtained (less than 1) are related to the fraction of the satellite ground pixel occupied by the NO2 hot spot.

  13. Studies on aerosol properties during ICARB–2006 campaign period at Hyderabad, India using ground-based measurements and satellite data

    Indian Academy of Sciences (India)

    K V S Badarinath; Shailesh Kumar Kharol

    2008-07-01

    Continuous and campaign-based aerosol field measurements are essential in understanding fundamental atmospheric aerosol processes and for evaluating their effect on global climate, environment and human life. Synchronous measurements of Aerosol Optical Depth (AOD), Black Carbon (BC) aerosol mass concentration and aerosol particle size distribution were carried out during the campaign period at tropical urban regions of Hyderabad, India. Daily satellite datasets of DMSP-OLS were processed for night-time forest fires over the Indian region in order to understand the additional sources (forest fires) of aerosol. The higher values in black carbon aerosol mass concentration and aerosol optical depth correlated well with forest fires occurring over the region. Ozone Monitoring Instrument (OMI) aerosol index (AI) variations showed absorbing aerosols over the region and correlated with ground measurements.

  14. Comparison of 7 years of satellite-borne and ground-based tropospheric NO2 measurements around Milan, Italy

    Science.gov (United States)

    OrdóñEz, C.; Richter, A.; Steinbacher, M.; Zellweger, C.; Nüß, H.; Burrows, J. P.; PréVôT, A. S. H.

    2006-03-01

    Tropospheric NO2 vertical column densities (VCDs) over the Lombardy region were retrieved from measurements of the Global Ozone Monitoring Experiment (GOME) spectrometer for the period 1996-2002 using a differential optical absorption method. This data set was compared with in situ measurements of NO2 at around 100 ground stations in the Lombardy region, northern Italy. The tropospheric NO2 VCDs are reasonably well correlated with the near-surface measurements under cloud-free conditions. However, the slope of the tropospheric VCDs versus ground measurements is higher in autumn-winter than in spring-summer. This effect is clearly reduced when the peroxyacetyl nitrate and nitric acid (HNO3) interferences of conventional NOx analyzers are taken into account. For a more quantitative comparison, the NO2 ground measurements were scaled to tropospheric VCDs using a seasonal NO2 vertical profile over northern Italy calculated by the Model of Ozone and Related Tracers 2 (MOZART-2). The tropospheric VCDs retrieved from satellite and those determined from ground measurements agree well, with a correlation coefficient R = 0.78 and a slope close to 1 for slightly polluted stations. GOME cannot reproduce the high NO2 amounts over the most polluted stations, mainly because of the large spatial variability in the distribution of pollution within the GOME footprint. The yearly and weekly cycles of the tropospheric NO2 VCDs are similar for both data sets, with significantly lower values in the summer months and on Sundays, respectively. Considering the pollution level and high aerosol concentrations of this region, the agreement is very good. Furthermore, uncertainties in the ground-based measurements, including the extrapolation to NO2 VCDs, might be as important as those of the NO2 satellite retrieval itself.

  15. Measurement-based perturbation theory and differential equation parameter estimation for high-precision high-resolution reconstruction of the Earth's gravitational field from satellite tracking measurements

    CERN Document Server

    Xu, Peiliang

    2016-01-01

    The numerical integration method has been routinely used to produce global standard gravitational models from satellite tracking measurements of CHAMP/GRACE types. It is implemented by solving the differential equations of the partial derivatives of a satellite orbit with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical point of view, satellite gravimetry from satellite tracking is the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in satellite gravimetry and statistics, is groundless. We use three different methods to derive new local solutions to the Newton's nonlinear governing differential equations of motion with a nominal reference orbit. Bearing in mind that satellite orbits ...

  16. Ground-based & satellite DOAS measurements integration for air quality evaluation/forecast management in the frame of QUITSAT Project.

    Science.gov (United States)

    Kostadinov, Ivan; Petritoli, Andrea; Giovanelli, Giorgio; Masieri, Samuele; Premuda, Margarita; Bortoli, Daniele; Ravegnani, Fabrizio; Palazzi, Elisa

    The observations of the Earth's atmosphere from space provide excellent opportunities for the exploration of the sophisticated physical-chemical processes on both global and regional scales. The major interest during the last three decades was focused mainly on the stratosphere and the ozone depletion. More recently the continuous improvements of satellite sensors have revealed new opportunities for larger applications of space observations, attracting scientific interest to the lower troposphere and air quality issues. The air quality depends strongly on the anthropogenic activity and therefore regional environmental agencies along with policy makers are in need of appropriate means for its continuous monitoring and control to ensure the adoption of the most appropriate actions. The goal of the pilot project QUITSAT, funded by the Italian Space Agency, is to develop algorithms and procedures for the evaluation and prediction of the air quality in Lombardia and Emilia-Romagna regions (Italy) by means of integrating satellite observations with ground-based in-situ and remote sensing measurements. This work presents dedicated Differential Optical Absorption Spectroscopy (DOAS) measurements performed during the summer of 2007 and the winter of 2008. One of the DOAS instruments operate at Mt.Cimone station (2165m a.s.l) and the other two instruments conducted measurements in/near Bologna (90 m. a.s.l). Different observational geometry was adopted (zenith-sky, multi-axis and long-path) aimed to provide tropospheric NO2 columns and O3, SO2 and HCHO concentrations at ground level as an input data for QUITSAT procedures. Details of the instruments, the radiative transfer model used and the algorithms for retrieving and calculation of the target gases concentrations are presented. The obtained experimental results are correlated with the corresponding ones retrieved from SCIAMACHY /ENVISAT observations during the overpasses above the ground-based instruments. The analysis

  17. Characterisation of Central-African emissions based on MAX-DOAS measurements, satellite observations and model simulations over Bujumbura, Burundi.

    Science.gov (United States)

    Gielen, Clio; Hendrick, Francois; Pinardi, Gaia; De Smedt, Isabelle; Stavrakou, Trissevgeni; Yu, Huan; Fayt, Caroline; Hermans, Christian; Bauwens, Maité; Ndenzako, Eugene; Nzohabonayo, Pierre; Akimana, Rachel; Niyonzima, Sébastien; Müller, Jean-Francois; Van Roozendael, Michel

    2016-04-01

    Central Africa is known for its strong biogenic, pyrogenic, and to a lesser extent anthropogenic emissions. Satellite observations of species like nitrogen dioxide (NO2) and formaldehyde (HCHO), as well as inverse modelling results have shown that there are large uncertainties associated with the emissions in this region. There is thus a need for additional measurements, especially from the ground, in order to better characterise the biomass-burning and biogenic products emitted in this area. We present MAX-DOAS measurements of NO2, HCHO, and aerosols performed in Central Africa, in the city of Bujumbura, Burundi (3°S, 29°E, 850m). A MAX-DOAS instrument has been operating at this location by BIRA-IASB since late 2013. Aerosol-extinction and trace-gases vertical profiles are retrieved by applying the optimal-estimation-based profiling tool bePRO to the measured O4, NO2 and HCHO slant-column densities. The MAX-DOAS vertical columns and profiles are used for investigating the diurnal and seasonal cycles of NO2, HCHO, and aerosols. Regarding the aerosols, the retrieved AODs are compared to co-located AERONET sun photometer measurements for verification purpose, while in the case of NO2 and HCHO, the MAX-DOAS vertical columns and profiles are used for validating GOME-2 and OMI satellite observations. To characterise the biomass-burning and biogenic emissions in the Bujumbura region, the trace gases and aerosol MAX-DOAS retrievals are used in combination to MODIS fire counts/radiative-power and GOME-2/OMI NO2 and HCHO satellite data, as well as simulations from the NOAA backward trajectory model HYSPLIT. First results show that HCHO seasonal variation around local noon is driven by the alternation of rain and dry periods, the latter being associated with intense biomass-burning agricultural activities and forest fires in the south/south-east and transport from this region to Bujumbura. In contrast, NO2 is seen to depend mainly on local emissions close to the city, due

  18. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.; Rucci, A.; Ferretti, A.; Novali, F.; Bissell, R.; Ringrose, P.; Mathieson, A.; Wright, I.

    2009-10-15

    Interferometric Synthetic Aperture Radar (InSAR), gathered over the In Salah CO{sub 2} storage project in Algeria, provides an early indication that satellite-based geodetic methods can be effective in monitoring the geological storage of carbon dioxide. An injected volume of 3 million tons of carbon dioxide, from one of the first large-scale carbon sequestration efforts, produces a measurable surface displacement of approximately 5 mm/year. Using geophysical inverse techniques we are able to infer flow within the reservoir layer and within a seismically detected fracture/ fault zone intersecting the reservoir. We find that, if we use the best available elastic Earth model, the fluid flow need only occur in the vicinity of the reservoir layer. However, flow associated with the injection of the carbon dioxide does appear to extend several kilometers laterally within the reservoir, following the fracture/fault zone.

  19. Multi-annual changes of NOx emissions in megacity regions: nonlinear trend analysis of satellite measurement based estimates

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2010-09-01

    Full Text Available Hazardous impact of air pollutant emissions from megacities on atmospheric composition on regional and global scales is currently an important issue in atmospheric research. However, the quantification of emissions and related effects is frequently a difficult task, especially in the case of developing countries, due to the lack of reliable data and information. This study examines possibilities to retrieve multi-annual NOx emissions changes in megacity regions from satellite measurements of nitrogen dioxide and to quantify them in terms of linear and nonlinear trends. By combining the retrievals of the GOME and SCIAMACHY satellite instrument data with simulations performed by the CHIMERE chemistry transport model, we obtain the time series of NOx emission estimates for the 12 largest urban agglomerations in Europe and the Middle East in the period from 1996 to 2008. We employ then a novel method allowing estimation of a nonlinear trend in a noisy time series of an observed variable. The method is based on the probabilistic approach and the use of artificial neural networks; it does not involve any quantitative a priori assumptions. As a result, statistically significant nonlinearities in the estimated NOx emission trends are detected in 5 megacities (Bagdad, Madrid, Milan, Moscow and Paris. Statistically significant upward linear trends are detected in Istanbul and Tehran, while downward linear trends are revealed in Berlin, London and the Ruhr agglomeration. The presence of nonlinearities in NOx emission changes in Milan, Paris and Madrid is confirmed by comparison of simulated NOx concentrations with independent air quality monitoring data. A good quantitative agreement between the linear trends in the simulated and measured near surface NOx concentrations is found in London.

  20. Arctic total ozone trend and variability during 2004 - 2012 based on Brewer revised data, Ozonesonde and satellite measurements

    Science.gov (United States)

    Moeini, Omid; Vaziri, Zahra; McElroy, Tom; Tarasick, David; Savastiouk, Vladimir; Barton, David

    2015-04-01

    It is now known that Single-Monochromator Brewer Spectrophotometer ozone measurements suffer from non-linearity due to the presence of instrumental stray light caused by scattering from the optics within the instrument. Stray light is unwanted radiation from different wavelengths that arrives at the detector during the measurements. Since the gradient of ozone absorption is large in the ultraviolet spectral region, the stray light contribution becomes significant between 300 and 325 nm where the Brewer measures, especially when the amount of ozone in the light path becomes more than 1000 Dobson Units (D.U.). Stray light results in an underestimated ozone column at larger air masses. As the light path (air mass) increases, stray-light effects in the measurements also increase. An ozone column of 600 D.U. with at an air mass factor of 3 (1800 D.U.) can measure as much as 8% lower than the ozone actual amount. These are conditions commonly seen during the Arctic spring. A new method to account for stray light effects is being developed for the Brewer ozone measurements. This method is based on a mathematical model of the instrument response and a non-linear retrieval which calculates the best values for the model parameters. The parameterization used is validated by an instrument physical model simulation. Using the mathematical model in reverse provides correct ozone values. This paper presents the method and the results of a trend analysis based of the re-evaluated data of three Brewers which are located in the Arctic (Alert Lat. 82.44, Lon. -62.55, Eureka Lat. 79.96, Lon. -86.45 and Resolute Lat. 74.69, and Lon. -95.01) from 2004 to 2012. Gaps in the Brewer data are filled with ozonesonde reanalysis data obtained from WOUDC (World Ozone and Ultraviolet radiation Data Centre) and the results will be compared with MLS (Microwave Limb Sounder) satellite data.

  1. Retrieval and satellite intercomparison of O3 measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia

    Directory of Open Access Journals (Sweden)

    T. von Clarmann

    2013-02-01

    Full Text Available Since May 2009, high-resolution Fourier Transform Infrared (FTIR solar absorption spectra have been recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude above sea level, Ethiopia. The vertical profiles and total column amounts of ozone (O3 are deduced from the spectra by using the retrieval code PROFFIT (V9.5 and regularly determined instrumental line shape (ILS. A detailed error analysis of the O3 retrieval is performed. Averaging kernels of the target gas shows that the major contribution to the retrieved information comes from the measurement. The degrees of freedom for signals is found to be 2.1 on average for the retrieval of O3 from the observed FTIR spectra. The ozone Volume Mixing Ratio (VMR profiles and column amounts retrieved from FTIR spectra are compared with the coincident satellite observations of Microwave Limb Sounding (MLS, Michelson Interferometer for Passive Atmospheric Sounding (MIPAS, Tropospheric Emission Spectrometer (TES, Ozone Monitoring Instrument (OMI, Atmospheric Infrared Sounding (AIRS and Global Ozone Monitoring Experiment (GOME-2 instruments. The mean relative differences in ozone profiles of FTIR from MLS and MIPAS are generally lower than 15% within the altitude range of 27 to 36 km, whereas difference from TES is lower than 1%. Comparisons of measurements of column amounts from the satellite and the ground-based FTIR show very good agreement as exhibited by relative differences within +0.2% to +2.8% for FTIR versus MLS and GOME-2; and −0.9 to −9.0% for FTIR versus OMI, TES and AIRS. The corresponding standard deviations are within 2.0 to 2.8% for FTIR versus MLS and GOME-2 comparisons whereas that of FTIR versus OMI, TES and AIRS are within 3.5 to 7.3%. Thus, the retrieved O3 VMR and column amounts from a tropical site, Addis Ababa, is found to exhibit very good agreement with all coincident satellite observations over an approximate 3-yr period.

  2. Retrieval and satellite intercomparison of O3 measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia

    Science.gov (United States)

    Takele Kenea, S.; Mengistu Tsidu, G.; Blumenstock, T.; Hase, F.; von Clarmann, T.; Stiller, G. P.

    2013-02-01

    Since May 2009, high-resolution Fourier Transform Infrared (FTIR) solar absorption spectra have been recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude above sea level), Ethiopia. The vertical profiles and total column amounts of ozone (O3) are deduced from the spectra by using the retrieval code PROFFIT (V9.5) and regularly determined instrumental line shape (ILS). A detailed error analysis of the O3 retrieval is performed. Averaging kernels of the target gas shows that the major contribution to the retrieved information comes from the measurement. The degrees of freedom for signals is found to be 2.1 on average for the retrieval of O3 from the observed FTIR spectra. The ozone Volume Mixing Ratio (VMR) profiles and column amounts retrieved from FTIR spectra are compared with the coincident satellite observations of Microwave Limb Sounding (MLS), Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), Tropospheric Emission Spectrometer (TES), Ozone Monitoring Instrument (OMI), Atmospheric Infrared Sounding (AIRS) and Global Ozone Monitoring Experiment (GOME-2) instruments. The mean relative differences in ozone profiles of FTIR from MLS and MIPAS are generally lower than 15% within the altitude range of 27 to 36 km, whereas difference from TES is lower than 1%. Comparisons of measurements of column amounts from the satellite and the ground-based FTIR show very good agreement as exhibited by relative differences within +0.2% to +2.8% for FTIR versus MLS and GOME-2; and -0.9 to -9.0% for FTIR versus OMI, TES and AIRS. The corresponding standard deviations are within 2.0 to 2.8% for FTIR versus MLS and GOME-2 comparisons whereas that of FTIR versus OMI, TES and AIRS are within 3.5 to 7.3%. Thus, the retrieved O3 VMR and column amounts from a tropical site, Addis Ababa, is found to exhibit very good agreement with all coincident satellite observations over an approximate 3-yr period.

  3. Aerosol optical properties over the Svalbard region of Arctic: ground-based measurements and satellite remote sensing

    Science.gov (United States)

    Gogoi, Mukunda M.; Babu, S. Suresh

    2016-05-01

    In view of the increasing anthropogenic presence and influence of aerosols in the northern polar regions, long-term continuous measurements of aerosol optical parameters have been investigated over the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m ASL). This study has shown a consistent enhancement in the aerosol scattering and absorption coefficients during spring. The relative dominance of absorbing aerosols is more near the surface (lower single scattering albedo), compared to that at the higher altitude. This is indicative of the presence of local anthropogenic activities. In addition, long-range transported biomass burning aerosols (inferred from the spectral variation of absorption coefficient) also contribute significantly to the higher aerosol absorption in the Arctic spring. Aerosol optical depth (AOD) estimates from ground based Microtop sun-photometer measurements reveals that the columnar abundance of aerosols reaches the peak during spring season. Comparison of AODs between ground based and satellite remote sensing indicates that deep blue algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals over Arctic snow surfaces overestimate the columnar AOD.

  4. Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations

    Directory of Open Access Journals (Sweden)

    A. Boynard

    2009-08-01

    Full Text Available In this paper, we present measurements of total and tropospheric ozone, retrieved from infrared radiance spectra recorded by the Infrared Atmospheric Sounding Interferometer (IASI, which was launched on board the MetOp-A European satellite in October 2006. We compare IASI total ozone columns to Global Ozone Monitoring Experiment-2 (GOME-2 observations and ground-based measurements from the Dobson and Brewer network for one full year of observations (2008. The IASI total ozone columns are shown to be in good agreement with both GOME-2 and ground-based data, with correlation coefficients of about 0.9 and 0.85, respectively. On average, IASI ozone retrievals exhibit a positive bias of about 9 DU (3.3% compared to both GOME-2 and ground-based measurements. In addition to total ozone columns, the good spectral resolution of IASI enables the retrieval of tropospheric ozone concentrations. Comparisons of IASI tropospheric columns to 490 collocated ozone soundings available from several stations around the globe have been performed for the period of June 2007–August 2008. IASI tropospheric ozone columns compare well with sonde observations, with correlation coefficients of 0.95 and 0.77 for the [surface–6 km] and [surface–12 km] partial columns, respectively. IASI retrievals tend to overestimate the tropospheric ozone columns in comparison with ozonesonde measurements. Positive average biases of 0.15 DU (1.2% and 3 DU (11% are found for the [surface–6 km] and for the [surface–12 km] partial columns respectively.

  5. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    Science.gov (United States)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  6. NDACC UV-visible total ozone measurements: improved retrieval and comparison with correlative satellite and ground-based observations

    Directory of Open Access Journals (Sweden)

    F. Hendrick

    2010-08-01

    tropospheric ozone column being ignored by zonal climatologies. For those measurements sensitive to stratospheric temperature like TOMS, OMI-TOMS, Dobson and Brewer, the application of a temperature correction results in the almost complete removal of the seasonal difference with SAOZ, improving significantly the consistency between all ground-based and satellite total ozone observations.

  7. Assessment of the aerosol optical depths measured by satellite-based passive remote sensors in the Alberta oil sands region

    Science.gov (United States)

    Sioris, Christopher E.; McLinden, Chris A.; Shephard, Mark W.; Fioletov, Vitali E.; Abboud, Ihab

    2017-02-01

    Several satellite aerosol optical depth (AOD) products are assessed in terms of their data quality in the Alberta oil sands region. The instruments consist of MODIS (Moderate Resolution Imaging Spectroradiometer), POLDER (Polarization and Directionality of Earth Reflectances), MISR (Multi-angle Imaging SpectroRadiometer), and AATSR (Advanced Along-Track Scanning Radiometer). The AOD data products are examined in terms of multiplicative and additive biases determined using local Aerosol Robotic Network (AERONET) (AEROCAN) stations. Correlation with ground-based data is used to assess whether the satellite-based AODs capture day-to-day, month-to-month, and spatial variability. The ability of the satellite AOD products to capture interannual variability is assessed at Albian mine and Shell Muskeg River, two neighbouring sites in the northern mining region where a statistically significant positive trend (2002-2015) in PM2.5 mass density exists. An increasing trend of similar amplitude (˜ 5 % year-1) is observed in this northern mining region using some of the satellite AOD products.

  8. Question No. 5: What Role Can Satellites Take, as a Complement to Ground Based Measurement Systems, to Provide Sustained Observations to Monitor GHG Emissions?

    Science.gov (United States)

    Chahine, Moustafa; Olsen, Edward

    2011-01-01

    What role can satellites take, as a complement to ground based measurement systems, to provide sustained observations to monitor GHG emissions (e.g., CO2, CH4, O3, N2O, CFC s, NH3, and NF3) that contribute to global warming?

  9. Biogeography based Satellite Image Classification

    CERN Document Server

    Panchal, V K; Kaur, Navdeep; Kundra, Harish

    2009-01-01

    Biogeography is the study of the geographical distribution of biological organisms. The mindset of the engineer is that we can learn from nature. Biogeography Based Optimization is a burgeoning nature inspired technique to find the optimal solution of the problem. Satellite image classification is an important task because it is the only way we can know about the land cover map of inaccessible areas. Though satellite images have been classified in past by using various techniques, the researchers are always finding alternative strategies for satellite image classification so that they may be prepared to select the most appropriate technique for the feature extraction task in hand. This paper is focused on classification of the satellite image of a particular land cover using the theory of Biogeography based Optimization. The original BBO algorithm does not have the inbuilt property of clustering which is required during image classification. Hence modifications have been proposed to the original algorithm and...

  10. Tropospheric BrO column densities in the Arctic derived from satellite: retrieval and comparison to ground-based measurements

    OpenAIRE

    H Sihler; Platt, U.; Beirle, S.; Marbach, T.; S. Kühl; S. Dörner; Verschaeve, J.; Frieß, U.; Pöhler, D.; Vogel, L.; Sander, R.; T. Wagner

    2012-01-01

    During polar spring, halogen radicals like bromine monoxide (BrO) play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical...

  11. Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2011-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land

  12. Water Accounting Plus (WA+ – a water accounting procedure for complex river basins based on satellite measurements

    Directory of Open Access Journals (Sweden)

    D. Molden

    2012-11-01

    Full Text Available Coping with the issue of water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land use and opportunities to mitigate the negative effects and increase the benefits of water depletion on society. Currently, water professionals do not have a common framework that links hydrological flows to user groups of water and their benefits. The absence of a standard hydrological and water management summary is causing confusion and wrong decisions. The non-availability of water flow data is one of the underpinning reasons for not having operational water accounting systems for river basins in place. In this paper we introduce Water Accounting Plus (WA+, which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. The influence of land use on the water cycle is described explicitly by defining land use groups with common characteristics. Analogous to financial accounting, WA+ presents four sheets including (i a resource base sheet, (ii a consumption sheet, (iii a productivity sheet, and (iv a withdrawal sheet. Every sheet encompasses a set of indicators that summarize the overall water resources situation. The impact of external (e.g. climate change and internal influences (e.g. infrastructure building can be estimated by studying the changes in these WA+ indicators. Satellite measurements can be used for 3 out of the 4 sheets, but is not a precondition for implementing WA+ framework. Data from hydrological models and water allocation models can also be used as inputs to WA+.

  13. Water Accounting Plus (WA+ – a water accounting procedure for complex river basins based on satellite measurements

    Directory of Open Access Journals (Sweden)

    P. Karimi

    2013-07-01

    Full Text Available Coping with water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land use and opportunities to mitigate the negative effects and increase the benefits of water depletion on society. Currently, water professionals do not have a common framework that links depletion to user groups of water and their benefits. The absence of a standard hydrological and water management summary is causing confusion and wrong decisions. The non-availability of water flow data is one of the underpinning reasons for not having operational water accounting systems for river basins in place. In this paper, we introduce Water Accounting Plus (WA+, which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. The influence of land use and landscape evapotranspiration on the water cycle is described explicitly by defining land use groups with common characteristics. WA+ presents four sheets including (i a resource base sheet, (ii an evapotranspiration sheet, (iii a productivity sheet, and (iv a withdrawal sheet. Every sheet encompasses a set of indicators that summarise the overall water resources situation. The impact of external (e.g., climate change and internal influences (e.g., infrastructure building can be estimated by studying the changes in these WA+ indicators. Satellite measurements can be used to acquire a vast amount of required data but is not a precondition for implementing WA+ framework. Data from hydrological models and water allocation models can also be used as inputs to WA+.

  14. Long-term analysis of aerosol optical depth over Northeast Asia using a satellite-based measurement: MI Yonsei Aerosol Retrieval Algorithm (YAER)

    Science.gov (United States)

    Kim, Mijin; Kim, Jhoon; Yoon, Jongmin; Chung, Chu-Yong; Chung, Sung-Rae

    2017-04-01

    In 2010, the Korean geostationary earth orbit (GEO) satellite, the Communication, Ocean, and Meteorological Satellite (COMS), was launched including the Meteorological Imager (MI). The MI measures atmospheric condition over Northeast Asia (NEA) using a single visible channel centered at 0.675 μm and four IR channels at 3.75, 6.75, 10.8, 12.0 μm. The visible measurement can also be utilized for the retrieval of aerosol optical properties (AOPs). Since the GEO satellite measurement has an advantage for continuous monitoring of AOPs, we can analyze the spatiotemporal variation of the aerosol using the MI observations over NEA. Therefore, we developed an algorithm to retrieve aerosol optical depth (AOD) using the visible observation of MI, and named as MI Yonsei Aerosol Retrieval Algorithm (YAER). In this study, we investigated the accuracy of MI YAER AOD by comparing the values with the long-term products of AERONET sun-photometer. The result showed that the MI AODs were significantly overestimated than the AERONET values over bright surface in low AOD case. Because the MI visible channel centered at red color range, contribution of aerosol signal to the measured reflectance is relatively lower than the surface contribution. Therefore, the AOD error in low AOD case over bright surface can be a fundamental limitation of the algorithm. Meanwhile, an assumption of background aerosol optical depth (BAOD) could result in the retrieval uncertainty, also. To estimate the surface reflectance by considering polluted air condition over the NEA, we estimated the BAOD from the MODIS dark target (DT) aerosol products by pixel. The satellite-based AOD retrieval, however, largely depends on the accuracy of the surface reflectance estimation especially in low AOD case, and thus, the BAOD could include the uncertainty in surface reflectance estimation of the satellite-based retrieval. Therefore, we re-estimated the BAOD using the ground-based sun-photometer measurement, and

  15. Computer based satellite design

    Science.gov (United States)

    Lashbrook, David D.

    1992-06-01

    A computer program to design geosynchronous spacecraft has been developed. The program consists of four separate but interrelated executable computer programs. The programs are compiled to run on a DOS based personnel computer. The source code is written in DoD mandated Ada programming language. The thesis presents the design technique and design equations used in the program. Detailed analysis is performed in the following areas for both dual spin and three axis stabilized spacecraft configurations: (1) Mass Propellent Budget and Mass Summary; (2) Battery Cell and Solar Cell Requirements for a Payload Power Requirement; and (3) Passive Thermal Control Requirements. A user's manual is included as Appendix A, and the source code for the computer programs as Appendix B.

  16. Interference susceptibility measurements for an MSK satellite communication link

    Science.gov (United States)

    Kerczewski, Robert J.; Fujikawa, Gene

    1992-01-01

    The results are presented of measurements of the degradation of an MSK satellite link due to modulated and CW (unmodulated) interference. These measurements were made using a hardware based satellite communication link simulator at NASA-Lewis. The results indicate the amount of bit error rate degradation caused by CW interference as a function of frequency and power level, and the degradation caused by adjacent channel and cochannel modulated interference as a function of interference power level. Results were obtained for both the uplink case (including satellite nonlinearity) and the downlink case (linear channel).

  17. Comparisons of ground-based tropospheric NO2 MAX-DOAS measurements to satellite observations with the aid of an air quality model over the Thessaloniki area, Greece

    Science.gov (United States)

    Drosoglou, Theano; Bais, Alkiviadis F.; Zyrichidou, Irene; Kouremeti, Natalia; Poupkou, Anastasia; Liora, Natalia; Giannaros, Christos; Elissavet Koukouli, Maria; Balis, Dimitris; Melas, Dimitrios

    2017-05-01

    One of the main issues arising from the comparison of ground-based and satellite measurements is the difference in spatial representativeness, which for locations with inhomogeneous spatial distribution of pollutants may lead to significant differences between the two data sets. In order to investigate the spatial variability of tropospheric NO2 within a sub-satellite pixel, a campaign which lasted for about 6 months was held in the greater area of Thessaloniki, Greece. Three multi-axial differential optical absorption spectroscopy (MAX-DOAS) systems performed measurements of tropospheric NO2 columns at different sites representative of urban, suburban and rural conditions. The direct comparison of these ground-based measurements with corresponding products from the Ozone Monitoring Instrument onboard NASA's Aura satellite (OMI/Aura) showed good agreement over the rural and suburban areas, while the comparison with the Global Ozone Monitoring Experiment-2 (GOME-2) onboard EUMETSAT's Meteorological Operational satellites' (MetOp-A and MetOp-B) observations is good only over the rural area. GOME-2A and GOME-2B sensors show an average underestimation of tropospheric NO2 over the urban area of about 10.51 ± 8.32 × 1015 and 10.21 ± 8.87 × 1015 molecules cm-2, respectively. The mean difference between ground-based and OMI observations is significantly lower (6.60 ± 5.71 × 1015 molecules cm-2). The differences found in the comparisons of MAX-DOAS data with the different satellite sensors can be attributed to the higher spatial resolution of OMI, as well as the different overpass times and NO2 retrieval algorithms of the satellites. OMI data were adjusted using factors calculated by an air quality modeling tool, consisting of the Weather Research and Forecasting (WRF) mesoscale meteorological model and the Comprehensive Air Quality Model with Extensions (CAMx) multiscale photochemical transport model. This approach resulted in significant improvement of the

  18. Satellite-Based Quantum Communications

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Richard J [Los Alamos National Laboratory; Nordholt, Jane E [Los Alamos National Laboratory; McCabe, Kevin P [Los Alamos National Laboratory; Newell, Raymond T [Los Alamos National Laboratory; Peterson, Charles G [Los Alamos National Laboratory

    2010-09-20

    Single-photon quantum communications (QC) offers the attractive feature of 'future proof', forward security rooted in the laws of quantum physics. Ground based quantum key distribution (QKD) experiments in optical fiber have attained transmission ranges in excess of 200km, but for larger distances we proposed a methodology for satellite-based QC. Over the past decade we have devised solutions to the technical challenges to satellite-to-ground QC, and we now have a clear concept for how space-based QC could be performed and potentially utilized within a trusted QKD network architecture. Functioning as a trusted QKD node, a QC satellite ('QC-sat') could deliver secret keys to the key stores of ground-based trusted QKD network nodes, to each of which multiple users are connected by optical fiber or free-space QC. A QC-sat could thereby extend quantum-secured connectivity to geographically disjoint domains, separated by continental or inter-continental distances. In this paper we describe our system concept that makes QC feasible with low-earth orbit (LEO) QC-sats (200-km-2,000-km altitude orbits), and the results of link modeling of expected performance. Using the architecture that we have developed, LEO satellite-to-ground QKD will be feasible with secret bit yields of several hundred 256-bit AES keys per contact. With multiple ground sites separated by {approx} 100km, mitigation of cloudiness over any single ground site would be possible, potentially allowing multiple contact opportunities each day. The essential next step is an experimental QC-sat. A number of LEO-platforms would be suitable, ranging from a dedicated, three-axis stabilized small satellite, to a secondary experiment on an imaging satellite. to the ISS. With one or more QC-sats, low-latency quantum-secured communications could then be provided to ground-based users on a global scale. Air-to-ground QC would also be possible.

  19. 14 CFR 141.91 - Satellite bases.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Satellite bases. 141.91 Section 141.91... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.91 Satellite bases. The holder of a... assistant chief instructor is designated for each satellite base, and that assistant chief instructor...

  20. Satellite Formation based on SDDF Method

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-04-01

    Full Text Available The technology of satellite formation flying has being a research focus in flight application. The relative position and velocity between satellites are basic parameters to achieve the control of formation flight during the satellite formation flying mission. In order to improve the navigation accuracy, a new filter different from Extended Kalman Filter (EKF should be adopted to estimate the errors of relative position and velocity, which is based on the nonlinearity of the kinetic model for the satellite formation flying. A nonlinear Divided Difference Filter (DDF based on Stirling interpolation formula was proposed in this paper. According to the linearity of the measurement equation for the filter, a simplified differential filter was designed by means of expanding the polynomial of the nonlinear system equation and linear approximating of the finite differential interpolation. Digital simulation experiment for the relative positioning of satellite formation flying was carried out. The result demonstrates that the filter proposed in this paper has a higher filtering accuracy, faster convergence speed and better stability. Compared with the EKF, the estimation accuracy of the relative position and velocity has improved by 77.1%and 47% respectively in the method of simplified DDF, which indicates the significance for practical applications. 

  1. Asynchronism in leaf and wood production in tropical forests: a study combining satellite and ground-based measurements

    Directory of Open Access Journals (Sweden)

    F. Wagner

    2013-11-01

    Full Text Available The fixation of carbon in tropical forests mainly occurs through the production of wood and leaves, both being the principal components of net primary production. Currently field and satellite observations are independently used to describe the forest carbon cycle, but the link between satellite-derived forest phenology and field-derived forest productivity remains opaque. We used a unique combination of a MODIS enhanced vegetation index (EVI dataset, a wood production model based on climate data and direct litterfall observations at an intra-annual timescale in order to question the synchronism of leaf and wood production in tropical forests. Even though leaf and wood biomass fluxes had the same range (respectively 2.4 ± 1.4 and 2.2 ± 0.4 Mg C ha−1 yr−1, they occurred separately in time. EVI increased with leaf renewal at the beginning of the dry season, when solar irradiance was at its maximum. At this time, wood production stopped. At the onset of the rainy season, when new leaves were fully mature and water available again, wood production quickly increased to reach its maximum in less than a month, reflecting a change in carbon allocation from short-lived pools (leaves to long-lived pools (wood. The time lag between peaks of EVI and wood production (109 days revealed a substantial decoupling between the leaf renewal assumed to be driven by irradiance and the water-driven wood production. Our work is a first attempt to link EVI data, wood production and leaf phenology at a seasonal timescale in a tropical evergreen rainforest and pave the way to develop more sophisticated global carbon cycle models in tropical forests.

  2. Digitization and Position Measurement of Astronomical Plates of Saturnian Satellites

    Science.gov (United States)

    Yan, D.; Yu, Y.; Zhang, H. Y.; Qiao, R. C.

    2014-05-01

    Using the advanced commercial scanners to digitize astronomical plates may be a simple and effective way. In this paper, we discuss the method of digitizing and astrometrically reducing six astronomical plates of Saturnian satellites, which were taken from the 1 m RCC (Ritchey Chretien Coude) telescope of Yunnan Observatory in 1988, by using the 10000XL scanner of Epson. The digitized images of the astronomical plates of Saturnian satellites are re-reduced, and the positions of Saturnian satellites based on the UCAC2 (The Second US Naval Observatory CCD Astrograph Catalog) catalogue are given. A comparison of our measured positions with the IMCCE (Institut de Mecanique Celeste et de Calcul des Ephemerides) ephemeris of Saturnian satellites shows the high quality of our measurements, which have an accuracy of 106 mas in right ascension and 89 mas in declination. Moreover, our measurements appear to be consistent with this ephemeris within only about 56 mas in right ascension and 9 mas in declination.

  3. Satellite-based terrestrial production efficiency modeling

    Directory of Open Access Journals (Sweden)

    Obersteiner Michael

    2009-09-01

    satellite-based biomass measurements to improve Ra estimation; and satellite-based soil moisture data could improve determination of soil water stress.

  4. A case study of the energy dissipation of the gravity wave field based on satellite altimeter measurements

    Science.gov (United States)

    Huang, N. E.; Parsons, C. L.; Long, S. R.; Bliven, L. F.

    1983-01-01

    Wave breaking is proposed as the primary energy dissipation mechanism for the gravity wave field. The energy dissipation rate is calculated based on the statistical model proposed by Longuet-Higgins (1969) with a modification of the breaking criterion incorporating the surface stress according to Phillips and Banner (1974). From this modified model, an analytic expression is found for the wave attenuation rate and the half-life time of the wave field which depend only on the significant slope of the wave field and the ratio of friction velocity to initial wave phase velocity. These expressions explain why the freshly generated wave field does not last long, but why swells are capable of propagating long distances without substantial change in energy density. It is shown that breaking is many orders of magnitude more effective in dissipating wave energy than the molecular viscosity, if the significant slope is higher than 0.01. Limited observational data from satellite and laboratory are used to compare with the analytic results, and show good agreement.

  5. Monitoring agricultural crop growth: comparison of high spatial-temporal satellite imagery versus UAV-based imaging spectrometer time series measurements

    Science.gov (United States)

    Mucher, Sander; Roerink, Gerbert; Franke, Jappe; Suomalainen, Juha; Kooistra, Lammert

    2014-05-01

    In 2012, the Dutch National Satellite Data Portal (NSD) was launched as a preparation to the launch of the European SENTINEL satellites in the framework of the Copernicus Programme. At the same time the Unmanned Aerial Remote Sensing Facility (UARSF: www.wageningenUR.nl/uarsf) has been established as research facility at Wageningen University and Research Centre. The NSD became available for the development of services and advice through an investment from the Dutch government in collaboration with the Netherlands Space Office (NSO) in order to develop new services for precision agriculture. The NSD contains Formosat, Radarsat as well as DMC satellite imagery. The processing of the DMC imagery resulted in the Greenmonitor service (www.groenmonitor.nl). The Greenmonitor is an unique product that covers the Netherlands with a high spatial and temporal resolution. The Greenmonitor is now being exploited for various applications, amongst others crop identification, crop phenology, and identification of management activities. The UARSF of Wageningen UR has three objectives: 1) to develop innovation in the field of remote sensing science using Unmanned Aerial Vehicles (UAV) by providing a platform for dedicated and high-quality experiments; 2) to support high quality UAV services by providing calibration facilities and disseminating processing procedures to the UAV user community; 3) to promote and test the use of UAV in a broad range of application fields such as precision agriculture and habitat monitoring. Through this coincidence of new developments the goal of our study was to compare the information for the measurements of spatial variation in crops and soils as derived from high spatial-temporal satellite imagery from the national data portal compared to the exploitation of UAVs, in our case an Altura octocopter with a hyperspectral camera. As such, the focus is on the applications in precision agriculture. Both primary producers and chain partners and service

  6. Critical Evaluation of 0-30 km Profile Information in Ground-Based Zenith-Sky and Satellite-Measured Backscattered UV Radiation

    Science.gov (United States)

    Bhartia, Pawan; Petropavlovskikh, Irina; Deluishi, John; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We now have several decades of experience in deriving vertical ozone profiles from the measurements of diffuse ultraviolet radiation by both ground and satellite-based instruments using Umkehr and BUV techniques. Continuing technological advances are pushing the state-of-the-art of these measurements to high spectral resolution and broader wavelength coverage. These modern instruments include the ground-based Brewer and satellite-based Global Ozone Monitoring Experiment (GOME) instruments, as well as advanced instruments being developed by ESA(SCIAMACHY), Netherlands(OMI) and Japan(ODUS). However, one of the issues that remains unresolved is the 0-30 km ozone profile information retrievable from these measurements. Though it is commonly believed that both the Umkehr and the satellite-based BUV techniques have very limited profile information below 30 km, there are those who argue that the data from these instruments should continue to be reported in this altitude range for they compare well with ozonesondes and hence there is useful scientific information. Others claim that the limitations of the Umkehr and BUV techniques are largely due to their low spectral resolution, and that the profile information below 30 km can be greatly improved by going to high spectral resolution instruments, such as Brewer and GOME. The purpose of this paper is to provide a critical evaluation of the 0-30 km ozone profile information in the various UV remote sensing techniques. We use a database of individual ozone profiles created using ozonesondes and SAGE and 4D ozone fields generated by data assimilation techniques to simulate radiances measured by the various techniques. We then apply a common inversion approach to all the methods to systematically examine how much profile information is available simply from the knowledge of total ozone, how much additional profile information is added by the traditional Dobson Umkehr and satellite buv techniques, and how much better one can do

  7. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements

    Science.gov (United States)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Athanasopoulou, Eleni; Speyer, Orestis; Raptis, Panagiotis I.; Marinou, Eleni; Proestakis, Emmanouil; Solomos, Stavros; Gerasopoulos, Evangelos; Amiridis, Vassilis; Bais, Alkiviadis; Kontoes, Charalabos

    2017-07-01

    This study assesses the impact of dust on surface solar radiation focussing on an extreme dust event. For this purpose, we exploited the synergy of AERONET measurements and passive and active satellite remote sensing (MODIS and CALIPSO) observations, in conjunction with radiative transfer model (RTM) and chemical transport model (CTM) simulations and the 1-day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). The area of interest is the eastern Mediterranean where anomalously high aerosol loads were recorded between 30 January and 3 February 2015. The intensity of the event was extremely high, with aerosol optical depth (AOD) reaching 3.5, and optical/microphysical properties suggesting aged dust. RTM and CTM simulations were able to quantify the extent of dust impact on surface irradiances and reveal substantial reduction in solar energy exploitation capacity of PV and CSP installations under this high aerosol load. We found that such an extreme dust event can result in Global Horizontal Irradiance (GHI) attenuation by as much as 40-50 % and a much stronger Direct Normal Irradiance (DNI) decrease (80-90 %), while spectrally this attenuation is distributed to 37 % in the UV region, 33 % in the visible and around 30 % in the infrared. CAMS forecasts provided a reliable available energy assessment (accuracy within 10 % of that obtained from MODIS). Spatially, the dust plume resulted in a zonally averaged reduction of GHI and DNI of the order of 150 W m-2 in southern Greece, and a mean increase of 20 W m-2 in the northern Greece as a result of lower AOD values combined with local atmospheric processes. This analysis of a real-world scenario contributes to the understanding and quantification of the impact range of high aerosol loads on solar energy and the potential for forecasting power generation failures at sunshine-privileged locations where solar power plants exist, are under construction or are being planned.

  8. An Investigation of Widespread Ozone Damage to the Soybean Crop in the Upper Midwest Determined From Ground-Based and Satellite Measurements

    Science.gov (United States)

    Fishman, Jack; Creilson, John K.; Parker, Peter A.; Ainsworth, Elizabeth A.; Vining, G. Geoffrey; Szarka, John; Booker, Fitzgerald L.; Xu, Xiaojing

    2010-01-01

    Elevated concentrations of ground-level ozone (O3) are frequently measured over farmland regions in many parts of the world. While numerous experimental studies show that O3 can significantly decrease crop productivity, independent verifications of yield losses at current ambient O3 concentrations in rural locations are sparse. In this study, soybean crop yield data during a 5-year period over the Midwest of the United States were combined with ground and satellite O3 measurements to provide evidence that yield losses on the order of 10% could be estimated through the use of a multiple linear regression model. Yield loss trends based on both conventional ground-based instrumentation and satellite-derived tropospheric O3 measurements were statistically significant and were consistent with results obtained from open-top chamber experiments and an open-air experimental facility (SoyFACE, Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that such losses are a relatively new phenomenon due to the increase in background tropospheric O3 levels over recent decades. Extrapolation of these findings supports previous studies that estimate the global economic loss to the farming community of more than $10 billion annually.

  9. Global Ocean Surveillance With Electronic Intelligence Based Satellite System

    Science.gov (United States)

    Venkatramanan, Haritha

    2016-07-01

    The objective of this proposal is to design our own ELINT based satellite system to detect and locate the target by using satellite Trilateration Principle. The target position can be found by measuring the radio signals arrived at three satellites using Time Difference of Arrival(TDOA) technique. To locate a target it is necessary to determine the satellite position. The satellite motion and its position is obtained by using Simplified General Perturbation Model(SGP4) in MATLAB. This SGP4 accepts satellite Two Line Element(TLE) data and returns the position in the form of state vectors. These state vectors are then converted into observable parameters and then propagated in space. This calculations can be done for satellite constellation and non - visibility periods can be calculated. Satellite Trilateration consists of three satellites flying in formation with each other. The satellite constellation design consists of three satellites with an inclination of 61.3° maintained at equal distances between each other. The design is performed using MATLAB and simulated to obtain the necessary results. The target's position can be obtained using the three satellites ECEF Coordinate system and its position and velocity can be calculated in terms of Latitude and Longitude. The target's motion is simulated to obtain the Speed and Direction of Travel.

  10. Satellite Contamination and Materials Outgassing Knowledge base

    Science.gov (United States)

    Minor, Jody L.; Kauffman, William J. (Technical Monitor)

    2001-01-01

    Satellite contamination continues to be a design problem that engineers must take into account when developing new satellites. To help with this issue, NASA's Space Environments and Effects (SEE) Program funded the development of the Satellite Contamination and Materials Outgassing Knowledge base. This engineering tool brings together in one location information about the outgassing properties of aerospace materials based upon ground-testing data, the effects of outgassing that has been observed during flight and measurements of the contamination environment by on-orbit instruments. The knowledge base contains information using the ASTM Standard E- 1559 and also consolidates data from missions using quartz-crystal microbalances (QCM's). The data contained in the knowledge base was shared with NASA by government agencies and industry in the US and international space agencies as well. The term 'knowledgebase' was used because so much information and capability was brought together in one comprehensive engineering design tool. It is the SEE Program's intent to continually add additional material contamination data as it becomes available - creating a dynamic tool whose value to the user is ever increasing. The SEE Program firmly believes that NASA, and ultimately the entire contamination user community, will greatly benefit from this new engineering tool and highly encourages the community to not only use the tool but add data to it as well.

  11. Particulate matter pollution in the coal-producing regions of the Appalachian Mountains: Integrated ground-based measurements and satellite analysis.

    Science.gov (United States)

    Aneja, Viney P; Pillai, Priya R; Isherwood, Aaron; Morgan, Peter; Aneja, Saurabh P

    2017-04-01

    This study integrates the relationship between measured surface concentrations of particulate matter 10 μm or less in diameter (PM10), satellite-derived aerosol optical depth (AOD), and meteorology in Roda, Virginia, during 2008. A multiple regression model was developed to predict the concentrations of particles 2.5 μm or less in diameter (PM2.5) at an additional location in the Appalachia region, Bristol, TN. The model was developed by combining AOD retrievals from Moderate Resolution Imaging Spectro-radiometer (MODIS) sensor on board the EOS Terra and Aqua Satellites with the surface meteorological observations. The multiple regression model predicted PM2.5 (r(2) = 0.62), and the two-variable (AOD-PM2.5) model predicted PM2.5 (r(2) = 0.4). The developed model was validated using particulate matter recordings and meteorology observations from another location in the Appalachia region, Hazard, Kentucky. The model was extrapolated to the Roda, VA, sampling site to predict PM2.5 mass concentrations. We used 10 km x 10 km resolution MODIS 550 nm AOD to predict ground level PM2.5. For the relevant period in 2008, in Roda, VA, the predicted PM2.5 mass concentration is 9.11 ± 5.16 μg m(-3) (mean ± 1SD). This is the first study that couples ground-based Particulate Matter measurements with satellite retrievals to predict surface air pollution at Roda, Virginia. Roda is representative of the Appalachian communities that are commonly located in narrow valleys, or "hollows," where homes are placed directly along the roads in a region of active mountaintop mining operations. Our study suggests that proximity to heavy coal truck traffic subjects these communities to chronic exposure to coal dust and leads us to conclude that there is an urgent need for new regulations to address the primary sources of this particulate matter.

  12. Measurement of Satellite Bunches at the LHC

    CERN Document Server

    Jeff, A; Boccardi, A; Bozyigit, S; Bravin, E; Lefevre, T; Rabiller, A; Roncarolo, F; Welsch, C P; Fisher, A S

    2012-01-01

    The RF gymnastics involved in the delivery of proton and lead ion bunches to the LHC can result in satellite bunches of varying intensity occupying the nominally empty RF buckets. Quantification of these satellites is crucial for bunch-by-bunch luminosity normalization as well as for machine protection. We present an overview of the longitudinal density monitor (LDM) which is the principal instrument for the measurement of satellite bunches in the LHC. The LDM uses single photon counting of synchrotron light. The very high energies reached in the LHC, combined with a dedicated undulator for diagnostics, allow synchrotron light measurements to be made with both protons and heavy ions. The arrival times of photons are collected over a few million turns, with the resulting histogram corrected for the effects of the detector’s deadtime and afterpulsing in order to reconstruct the longitudinal profile of the entire LHC ring. The LDM has achieved a dynamic range in excess of 105 and a time resolution of 90 ps. Ex...

  13. Antarctica: measuring glacier velocity from satellite images.

    Science.gov (United States)

    Lucchitta, B K; Ferguson, H M

    1986-11-28

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  14. Efficient statistical classification of satellite measurements

    CERN Document Server

    Mills, Peter

    2012-01-01

    Supervised statistical classification is a vital tool for satellite image processing. It is useful not only when a discrete result, such as feature extraction or surface type, is required, but also for continuum retrievals by dividing the quantity of interest into discrete ranges. Because of the high resolution of modern satellite instruments and because of the requirement for real-time processing, any algorithm has to be fast to be useful. Here we describe an algorithm based on kernel estimation called Adaptive Gaussian Filtering that incorporates several innovations to produce superior efficiency as compared to three other popular methods: k-nearest-neighbour (KNN), Learning Vector Quantization (LVQ) and Support Vector Machines (SVM). This efficiency is gained with no compromises: accuracy is maintained, while estimates of the conditional probabilities are returned. These are useful not only to gauge the accuracy of an estimate in the absence of its true value, but also to re-calibrate a retrieved image and...

  15. Modification of ITU-R Rain Fade Slope Prediction Model Based on Satellite Data Measured at High Elevation Angle

    Directory of Open Access Journals (Sweden)

    Hassan Dao

    2012-01-01

    Full Text Available Rain fade slope is one of fade dynamics behaviour used by system engineers to design fade mitigation techniques (FMT for space-earth microwave links. Recent measurements found that fade slope prediction model proposed by ITU-R is unable to predict fade slope distribution accurately in tropical regions. Rain fade measurement was conducted  in Kuala Lumpur (3.3° N, 101.7° E where located in heavy rain zone by receiving signal at 10.982 GHz (Ku-band from MEASAT3 (91.5° E on 77.4° elevation angle. The measurement has been carried out for one year period. Fade slope S parameter on ITU-R prediction model has been investigated. New parameter is proposed for the fade slope prediction modeling based on measured data at high elevation angle, Ku-band. ABSTRAK: Cerun hujan pudar adalah salah satu dinamik tingkah laku pudar yang digunakan oleh jurutera sistem untuk mereka bentuk teknik-teknik pengurangan pudar (FMT bagi link gelombang mikro ruang bumi. Ukuran baru-baru ini mendapati bahawa cerun pudar ramalan model yang dicadangkan oleh ITU-R tidak mampu untuk meramalkan pengagihan cerun pudar tepat di kawasan tropika. Pengukuran  hujan pudar telah dijalankan di Kuala Lumpur (3.3° N, 101.7° E yang terletak di kawasan hujan lebat dengan menerima isyarat pada 10,982 GHz (Ku-band dari MEASAT3 (91.5° E pada sudut ketinggian 77.4°. Pengukuran telah dijalankan untuk tempoh satu tahun. Parameter cerun pudar S pada model ramalan ITU-R telah disiasat. Parameter baru adalah dicadangkan untuk pemodelan cerun pudar ramalan berdasarkan data yang diukur pada sudut paras ketinggian, Ku-band.KEYWORDS: fade slope; ITU-R; fade mitigation techniques; sampling time interval

  16. How well can interannual to decadal-scale variability in stratospheric ozone and water vapor be quantified using limb-based satellite measurements?

    Science.gov (United States)

    Davis, S. M.; Rosenlof, K. H.; Hurst, D. F.; Hassler, B.; Read, W. G.

    2015-12-01

    Vertical profiles of ozone and humidity from the upper troposphere to stratosphere have been retrieved from a number of limb sounding and solar occultation satellite instruments since the 1980's. In particular, measurements from the SAGE instruments, UARS MLS, UARS HALOE, and most recently Aura MLS, have provided overlapping data since 1984. In order to quantify interannual- to decadal-scale variability in water vapor and ozone, it is necessary to have a uniform and homogenous record over the period of interest. With this in mind, we merged the aforementioned satellite measurements to create the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) data set, which contains vertically resolved zonal-mean (2.5°) monthly-mean water vapor and ozone concentration at levels covering the stratosphere. In this presentation, we describe the process of merging the satellite data sets, which involves adjusting the data to a reference measurement using offsets calculated from coincident observations taken during instrument overlap periods. Uncertainties associated with individual measurement precision, geophysical variability, and the merging process are quantified and compared to one another. We show that while the SWOOSH data can be used to quantify interannual variability, quantifying long-term trends in SWOOSH is complicated by the various sources of uncertainty, as well as by potential drifts of individual instruments. The issue of satellite-derived trends is discussed in relation to the long-term record of balloon-borne frostpoint hygrometer measurements from Boulder, CO.

  17. TOWARD CALIBRATED MODULAR WIRELESS SYSTEM BASED AD HOC SENSORS FOR IN SITU LAND SURFACE TEMPERATURE MEASUREMENTS AS SUPPORT TO SATELLITE REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    ASAAD CHAHBOUN

    2011-06-01

    Full Text Available This paper presents a new method for in situ Land Surface Temperature (LST measurements' campaigns for satellite algorithms validations. The proposed method based on Wireless Sensor Network (WSN is constituted by modules of node arrays. Each of which is constituted by 25 smart nodes scattered throughout a target field. Every node represents a Thermal Infra Red (TIR radiation sensor and keeps a minimum size while ensuring the functions of communication, sensing, and processing. This Wireless-LST (Wi-LST system is convenient to beinstalled on a field pointing to any type of targets (e.g. bare soil, grass, water, etc.. Ad hoc topology is adopted among the TIR nodes with multi-hop mesh routing protocol for communication, acquisition data are transmitted to the client tier wirelessly. Using these emergent technologies, we propose a practical method for Wi-LSTsystem calibration. TIR sensor (i.e. OSM101 from OMEGA society measures temperature, which is conditioned and amplified by an AD595 within a precision of 0.1 °C. Assessed LST is transmitted over thedeveloped ad hoc WSN modules (i.e. MICA2DOT from CROSSBOW society, and collected at in situ base station (i.e. PANASONIC CF19 laptop using an integrated database. LST is evaluated with a polynomialalgorithm structure as part of developed software. Finally, the comparison of the mean values of LST(Wi-LST in each site with the Moderate Resolution Imaging Spectro-radiometer (MODIS sensor, obtained from the daily LST product (MOD11C1 developed by the MODIS-NASA Science Team, on board TERRA satellite during the campaign period is provided.

  18. A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements

    Science.gov (United States)

    Mulet, S.; Rio, M.-H.; Mignot, A.; Guinehut, S.; Morrow, R.

    2012-11-01

    A new estimate of the Global Ocean 3D geostrophic circulation from the surface down to 1500 m depth (Surcouf3D) has been computed for the 1993-2008 period using an observation-based approach that combines altimetry with temperature and salinity through the thermal wind equation. The validity of this simple approach was tested using a consistent dataset from a model reanalysis. Away from the boundary layers, errors are less than 10% in most places, which indicate that the thermal wind equation is a robust approximation to reconstruct the 3D oceanic circulation in the ocean interior. The Surcouf3D current field was validated in the Atlantic Ocean against in-situ observations. We considered the ANDRO current velocities deduced at 1000 m depth from Argo float displacements as well as velocity measurements at 26.5°N from the RAPID-MOCHA current meter array. The Surcouf3D currents show similar skill to the 3D velocities from the GLORYS Mercator Ocean reanalysis in reproducing the amplitude and variability of the ANDRO currents. In the upper 1000 m, high correlations are also found with in-situ velocities measured by the RAPID-MOCHA current meters. The Surcouf3D current field was then used to compute estimates of the Atlantic Meridional Overturning Circulation (AMOC) through the 25°N section, showing good comparisons with hydrographic sections from 1998 and 2004. Monthly averaged AMOC time series are also consistent with the RAPID-MOCHA array and with the GLORYS Mercator Ocean reanalysis over the April 2004-September 2007 period. Finally a 15 years long time series of monthly estimates of the AMOC was computed. The AMOC strength has a mean value of 16 Sv with an annual (resp. monthly) standard deviation of 2.4 Sv (resp. 7.1 Sv) over the 1993-2008 period. The time series, characterized by a strong variability, shows no significant trend.

  19. Assessing ecosystem response to multiple disturbances and climate change in South Africa using ground- and satellite-based measurements and model

    Science.gov (United States)

    Kutsch, W. L.; Falge, E. M.; Brümmer, C.; Mukwashi, K.; Schmullius, C.; Hüttich, C.; Odipo, V.; Scholes, R. J.; Mudau, A.; Midgley, G.; Stevens, N.; Hickler, T.; Scheiter, S.; Martens, C.; Twine, W.; Iiyambo, T.; Bradshaw, K.; Lück, W.; Lenfers, U.; Thiel-Clemen, T.; du Toit, J.

    2015-12-01

    Sub-Saharan Africa currently experiences rapidly growing human population, intrinsically tied to substantial changes in land use on shrubland, savanna and mixed woodland ecosystems due to over-exploitation. Significant conversions driving degradation, affecting fire frequency and water availability, and fueling climate change are expected to increase in the immediate future. However, measured data of greenhouse gas emissions as affected by land use change are scarce to entirely lacking from this region. The project 'Adaptive Resilience of Southern African Ecosystems' (ARS AfricaE) conducts research and develops scenarios of ecosystem development under climate change, for management support in conservation or for planning rural area development. This will be achieved by (1) creation of a network of research clusters (paired sites with natural and altered vegetation) along an aridity gradient in South Africa for ground-based micrometeorological in-situ measurements of energy and matter fluxes, (2) linking biogeochemical functions with ecosystem structure, and eco-physiological properties, (3) description of ecosystem disturbance (and recovery) in terms of ecosystem function such as carbon balance components and water use efficiency, (4) set-up of individual-based models to predict ecosystem dynamics under (post) disturbance managements, (5) combination with long-term landscape dynamic information derived from remote sensing and aerial photography, and (6) development of sustainable management strategies for disturbed ecosystems and land use change. Emphasis is given on validation (by a suite of field measurements) of estimates obtained from eddy covariance, model approaches and satellite derivations.

  20. NDACC/SAOZ UV-visible total ozone measurements: improved retrieval and comparison with correlative ground-based and satellite observations

    Directory of Open Access Journals (Sweden)

    F. Hendrick

    2011-06-01

    Full Text Available Accurate long-term monitoring of total ozone is one of the most important requirements for identifying possible natural or anthropogenic changes in the composition of the stratosphere. For this purpose, the NDACC (Network for the Detection of Atmospheric Composition Change UV-visible Working Group has made recommendations for improving and homogenizing the retrieval of total ozone columns from twilight zenith-sky visible spectrometers. These instruments, deployed all over the world in about 35 stations, allow measuring total ozone twice daily with limited sensitivity to stratospheric temperature and cloud cover. The NDACC recommendations address both the DOAS spectral parameters and the calculation of air mass factors (AMF needed for the conversion of O3 slant column densities into vertical column amounts. The most important improvement is the use of O3 AMF look-up tables calculated using the TOMS V8 (TV8 O3 profile climatology, that allows accounting for the dependence of the O3 AMF on the seasonal and latitudinal variations of the O3 vertical distribution. To investigate their impact on the retrieved ozone columns, the recommendations have been applied to measurements from the NDACC/SAOZ (Système d'Analyse par Observation Zénithale network. The revised SAOZ ozone data from eight stations deployed at all latitudes have been compared to TOMS, GOME-GDP4, SCIAMACHY-TOSOMI, SCIAMACHY-OL3, OMI-TOMS, and OMI-DOAS satellite overpass observations, as well as to those of collocated Dobson and Brewer instruments at Observatoire de Haute Provence (44° N, 5.5° E and Sodankyla (67° N, 27° E, respectively. A significantly better agreement is obtained between SAOZ and correlative reference ground-based measurements after applying the new O3 AMFs. However, systematic seasonal differences between SAOZ and satellite instruments remain. These are shown to mainly originate from (i a possible

  1. Satellite to measure equatorial ozone layer

    Science.gov (United States)

    1975-01-01

    The Atmosphere Explorer E (Explorer 55) Satellite is described. The satellite will gather information on the earth's upper atmosphere, particularly regarding the condition of the protective ozone layer. The satellite will also provide information concerning the earth's heat balance, and heat flow characteristics, and energy conversion mechanisms.

  2. A GIS-based assessment of the suitability of SCIAMACHY satellite sensor measurements for estimating reliable CO concentrations in a low-latitude climate.

    Science.gov (United States)

    Fagbeja, Mofoluso A; Hill, Jennifer L; Chatterton, Tim J; Longhurst, James W S

    2015-02-01

    An assessment of the reliability of the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) satellite sensor measurements to interpolate tropospheric concentrations of carbon monoxide considering the low-latitude climate of the Niger Delta region in Nigeria was conducted. Monthly SCIAMACHY carbon monoxide (CO) column measurements from January 2,003 to December 2005 were interpolated using ordinary kriging technique. The spatio-temporal variations observed in the reliability were based on proximity to the Atlantic Ocean, seasonal variations in the intensities of rainfall and relative humidity, the presence of dust particles from the Sahara desert, industrialization in Southwest Nigeria and biomass burning during the dry season in Northern Nigeria. Spatial reliabilities of 74 and 42 % are observed for the inland and coastal areas, respectively. Temporally, average reliability of 61 and 55 % occur during the dry and wet seasons, respectively. Reliability in the inland and coastal areas was 72 and 38 % during the wet season, and 75 and 46 % during the dry season, respectively. Based on the results, the WFM-DOAS SCIAMACHY CO data product used for this study is therefore relevant in the assessment of CO concentrations in developing countries within the low latitudes that could not afford monitoring infrastructure due to the required high costs. Although the SCIAMACHY sensor is no longer available, it provided cost-effective, reliable and accessible data that could support air quality assessment in developing countries.

  3. CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2007-10-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO, a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS. This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006. We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES as well as limb-viewing remote sensors (MIPAS, SMR and MLS were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above. These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km, than 30% in the lower stratosphere (12–30 km, and than 25% from 30 to 100 km.

  4. CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2008-05-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO, a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS. This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006. We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES as well as limb-viewing remote sensors (MIPAS, SMR and MLS were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above. These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km, than 30% in the lower stratosphere (12–30 km, and than 25% from 30 to 100 km.

  5. Modification of ITU-R Rain Fade Slope Prediction Model Based on Satellite Data Measured at High Elevation Angle

    OpenAIRE

    2012-01-01

    Rain fade slope is one of fade dynamics behaviour used by system engineers to design fade mitigation techniques (FMT) for space-earth microwave links. Recent measurements found that fade slope prediction model proposed by ITU-R is unable to predict fade slope distribution accurately in tropical regions. Rain fade measurement was conducted  in Kuala Lumpur (3.3° N, 101.7° E) where located in heavy rain zone by receiving signal at 10.982 GHz (Ku-band) from MEASAT3 (91.5° E) on ...

  6. Satellite measurements of formaldehyde from shipping emissions

    Directory of Open Access Journals (Sweden)

    T. Marbach

    2009-04-01

    Full Text Available International shipping is recognized as a pollution source of growing importance, in particular in the remote marine boundary layer. Nitrogen dioxide originating from ship emissions has previously been detected in satellite measurements. This study presents the first satellite measurements of formaldehyde (HCHO linked to shipping emissions as derived from observations made by the Global Ozone Monitoring Experiment (GOME instrument.

    We analyzed enhanced HCHO tropospheric columns from shipping emissions over the Indian Ocean between Sri Lanka and Sumatra. This region offers good conditions in term of plume detection with the GOME instrument as all ship tracks follow a single narrow track in the same east-west direction as used for the GOME pixel scanning. The HCHO signal alone is weak but could be clearly seen in the high-pass filtered data. The line of enhanced HCHO in the Indian Ocean as seen in the 7-year composite of cloud free GOME observations clearly coincides with the distinct ship track corridor from Sri Lanka to Indonesia. The observed mean HCHO column enhancement over this shipping route is about 2.0×1015 molec/cm2.

    The observed HCHO pattern also agrees qualitatively well with results from the coupled earth system model ECHAM5/MESSy applied to atmospheric chemistry (EMAC. However, the modelled HCHO values over the ship corridor are two times lower than in the GOME high-pass filtered data. This might indicate that the used emission inventories are too low and/or that the in-plume chemistry taking place in the narrow path of the shipping lanes are not well represented at the rather coarse model resolution.

  7. Satellite-Based Tropospheric NO2 Column Trends in the Last 10 Years Over Mexican Urban Areas Measured by the Ozone Monitoring Instrument

    Science.gov (United States)

    Rivera, C. I.; Stremme, W.; Grutter, M.

    2015-12-01

    Population density and economic activities in urban agglomerations have drastically increased in many cities in Mexico during the last decade. Several factors are responsible for increased urbanization such as a shift of people from rural to urban areas while looking for better education, services and job opportunities as well as the natural growth of the urban areas themselves. Urbanization can create great social, economic and environmental pressures and changes which can easily be observed in most urban agglomerations in the world. In this study, we have focused on analyzing tropospheric NO2 (nitrogen dioxide) column trends over Mexican urban areas that have a population of at least one million inhabitants according to the latest 2010 population census. Differential Optical Absorption Spectroscopy (DOAS) measurements of NO2 conducted by the space-borne Ozone Monitoring Instrument (OMI) on board the Aura satellite between 2005 and 2014 have been used for this analysis. This dataset has allowed us to obtain a satellite-based 10-year tropospheric NO2 column trend over the most populated Mexican cities which include the dominating metropolitan area of Mexico City with more than twenty million inhabitants as well as ten other Mexican cities with a population ranging between one to five million inhabitants with a wide range of activities (commercial, agricultural or heavily industrialized) as well as two important border crossings. Distribution maps of tropospheric NO2 columns above the studied urban agglomerations were reconstructed from the analyzed OMI dataset, allowing to identify areas of interest due to clear NO2 enhancements inside these urban regions.

  8. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  9. Air quality performed with satellite measurement within the QUITSAT project

    Science.gov (United States)

    Masieri, Samuele; Petritoli, Andrea; Premuda, Margarita; Kostadinov, Ivan; Bortoli, Daniele; Ravegnani, Fabrizio; Giovanelli, Giorgio

    Ground pollutants monitoring, using satellite observation, represents an interesting and high potential approach to air quality that could be inserted into Global monitoring systems. The QUITSAT Italian pilot project (air QUality with Integration of ground based and SAtellite measurements and chemical Transport and multiphase model), funded by the Italian Space Agency (ASI), proposes a new approach producing some interesting results in this frame. The approach focuses in the integration of the satellite observations (ENVISAT/SCIAMACHY and AURA/OMI) with the outputs of the GAMES (Gas Aerosol Modelling Evaluation System) chemical transport model, to provide the evaluation of the tropospheric profiles of some atmo-spheric compounds such as NO2 , O3 , HCHO and SO2 . This activity appears to be very useful to retrieve the surface concentration of trace gases from tropospheric columns of atmospheric compounds obtained with satellite instrumentation. The comparison with the in situ analyzer network over the Po' Valley shows a good correlation between the two data set. The corre-spondence can be improved taking into account also concentration gradients between different stations, classifying the ground base stations according to their rural or urban characteristics and considering the general orography of the ground. Results and methodology are presented and discussed.

  10. A simplified technique for determining the rotational motion of a satellite based on the onboard measurements of the angular velocity and magnetic field of the Earth

    Science.gov (United States)

    Abrashkin, V. I.; Voronov, K. E.; Piyakov, I. V.; Puzin, Yu. Ya.; Sazonov, V. V.; Syomkin, N. D.; Chebukov, S. Yu.

    2016-09-01

    The mathematical model, which allowed us to reconstruct the rotational motion of the Bion M-1 and Foton M-4 satellites by processing the measurements of onboard magnetometers and the angular velocity sensor, is sufficiently detailed and accurate. If we slightly lower the requirements for accuracy and transfer to a rougher model, i.e., we will not update the biases in measurements of the angular velocity component, then the measurement processing technique can be significantly simplified. The volume of calculations in minimizing the functional of the least-square technique is reduced; the most complicated part of calculations is performed using the standard procedure of computational linear algebra. This simplified technique is described below, and the examples of its application for reconstructing the rotational motion of the Foton M-4 satellite are presented. A noticeable distinction in the reconstructions of motion, constructed by simplified and more exact techniques, is revealed in processing the measurements over time intervals longer than 4 hours.

  11. Measurements of ozone columns in different atmospheric layers over St. Petersburg (Russia) using ground-based FTIR spectrometer in comparison with IASI satellite data

    Science.gov (United States)

    Virolainen, Yana; Eremenko, Maxim; Timofeyev, Yury; Dufour, Gaelle; Poberovsky, Anatoly; Polyakov, Alexander; Imhasin, Hamud

    2014-05-01

    Ozone plays a key role in the photochemical equilibrium of the atmosphere. In the stratosphere, it absorbs harmful ultraviolet solar radiation, in the troposphere it is one of the main air pollutant, greenhouse gases and it is involved in the troposphere's oxidative capacity. In this study, we analyze the ozone variability in different atmospheric layers over St. Petersburg (Russia) measured with the ground-based FTIR spectrometer Bruker 125 HR at the Peterhof station (59.82 N, 29.88 E), and compare it to the satellite Infrared Atmospheric Sounding Interferometer (IASI) ozone retrievals. The FTIR spectrometer has a maximum optical path difference of 180 cm, yielding an apodized spectral resolution of 0.008 cm-1, and has been recording IR spectra since 2009. The high spectral resolution of the registered spectra allows the retrieval of the ozone content in four atmospheric layers. We applied the PROFFIT inversion code to the ozone vertical profiles retrievals in 9.6-µm O3 absorption band and calculated the daily means of ozone partial columns for about 300 days between 2009 and 2013. The IASI instrument onboard the satellite MetOp-A measures the thermal infrared radiation emitted by the Earth's surface and the atmosphere with an apodized spectral resolution of 0.5 cm-1. We used the LISA (Laboratoire Inter-universitaire des Systemes Atmospheriques) retrieval algorithm for deriving the ozone profiles between 0 and 60 km for the region of 2 degrees around the Peterhof station in coincidence with FTIR-observation dates, and averaged profiles daily over all the pixels in the considered region. In this study, we compare and discuss the both types of ozone retrievals: total and partial columns in four atmospheric layers (0-12 km, 12-18 km, 18-25 km, and 25-60 km) for 285 coincident days in 2009-2013. This study was partly supported by Saint-Petersburg State University (project No. 11.0.44.2010) and Russian Foundation for Basic Research (grants No. 12-05-00596, 12

  12. Integration Of GPS And GLONASS Systems In Geodetic Satellite Measurements

    Science.gov (United States)

    Maciuk, Kamil

    2015-12-01

    The article shows the results of satellites measurements elaborations using GPS & GLONASS signals. The aim of this article is to define the influence of adding GLONASS signals on position determination accuracy. It especially concerns areas with big horizon coverages. Object of the study were analysis of DOP coefficients, code and RTK solutions, and usage of satellite techniques in levelling. The performed studies and analysis show that integrated GPS-GLONASS satellite measurements provide possibility to achieve better results than measurements using single navigation satellite system (GPS).

  13. Land-mobile-satellite fade measurements in Australia

    Science.gov (United States)

    Vogel, Wolfhard J.; Goldhirsh, Julius; Hase, Yoshihiro

    1992-01-01

    Attenuation measurements were implemented at L-band (1.5 GHz) in southeastern Australia during an 11-day period in October 1988 as part of a continuing examination of the propagation effects due to roadside trees and terrain for mobile-satellite service. Beacon transmissions from the geostationary ETS-V and IPORS satellites were observed. The Australian campaign expanded to another continent our Mobile Satellite Service data base of measurements executed in the eastern and southwestern United States regions. An empirical fade distribution model based on U.S. data predicted the Australian results with errors generally less than 1 dB in the 1-20 percent probability region. Directive antennas are shown to suffer deeper fades under severe shadowing conditions (3 dB excess at 4 percent), the equal-probability isolation between co- and cross-polarized transmissions deteriorated to 10 dB at the 5 dB fade level, and antenna diversity reception may reduce unavailability of the system by a factor of 2-8.

  14. NOx emission trends in megacities derived from satellite measurements

    Science.gov (United States)

    Konovalov, Igor; Beekmann, Matthias; Richter, Andreas

    2010-05-01

    The effects of air pollutant emissions on both local air quality in megacities and composition of the atmosphere on regional and global scales are currently an important issue of atmospheric researches. In order to properly evaluate these effects, atmospheric models should be provided with accurate information on emissions of major air pollutants. However, such information is frequently very uncertain, as it is documented in literature. The quantification of emissions and related effects is an especially difficult task in the case of developing countries. Recently, it has been demonstrated that satellite measurements of nitrogen dioxide (NO2) can be used as a source of independent information on NOx emissions. In particular, the satellite measurements were used in our earlier studies to improve spatial allocation of NOx emissions, to estimate multi-annual changes of NOx emissions on regional scales and to validate data of traditional emission inventories (see Ref. 1, 2). The goals of the present study are (1) developing an efficient method for estimation of NOx emissions trend in megacity regions by using satellite measurements and an inverse modeling technique and (2) obtaining independent estimates of NOx emission trends in several megacities in Europe and the Middle East in the period from 1996 to 2008. The study is based on the synergetic use of the data for tropospheric NO2 column amounts derived from the long-term GOME and SCIAMACHY measurements and simulations performed by the CHIMERE chemistry transport model. We performed the analysis involving methods of different complexity ranging from estimation of linear trends in the tropospheric NO2 columns retrieved from satellite measurements to evaluation of nonlinear trends in NOx emission estimates obtained with the inverse modeling approach, which, in the given case, involves only very simple and transparent formulations. The most challenging part of the study is the nonlinear trend estimation, which is

  15. Thermal Conductivity Measurements on Icy Satellite Analogs

    Science.gov (United States)

    Javeed, Aurya; Barmatz, Martin; Zhong, Fang; Choukroun, Mathieu

    2012-01-01

    With regard to planetary science, NASA aspires to: "Advance scientific knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space". In pursuit of such an end, the Galileo and Cassini missions garnered spectral data of icy satellite surfaces implicative of the satellites' structure and material composition. The potential for geophysical modeling afforded by this information, coupled with the plausibility of life on icy satellites, has pushed Jupiter's Europa along with Saturn's Enceladus and Titan toward the fore of NASA's planetary focus. Understanding the evolution of, and the present processes at work on, the aforementioned satellites falls squarely in-line with NASA's cited goal.

  16. Selected Geomagnetic Measurements From Several Satellites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — More than 17 million selected magnetic observations from several orbiting low-altitude satellites are contained in this digital collection. Except for MAGSAT, all...

  17. An SDR based AIS receiver for satellites

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Mortensen, Hans Peter; Nielsen, Jens Frederik Dalsgaard

    2011-01-01

    For a few years now, there has been a high interest in monitoring the global ship traffic from space. A few satellite, capable of listening for ship borne AIS transponders have already been launched, and soon the AAUSAT3, carrying two different types of AIS receivers will also be launched. One...... of the AIS receivers onboard AAUSAT3 is an SDR based AIS receiver. This paper serves to describe the background of the AIS system, and how the SDR based receiver has been integrated into the AAUSAT3 satellite. Amongst some of the benefits of using an SDR based receiver is, that due to its versatility, new...

  18. A Space Based Solar Power Satellite System

    Science.gov (United States)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    (SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one

  19. Measurement of sea ice and icebergs topography using satellite imagery

    Science.gov (United States)

    Zakharov, I.; Power, D.; Prasad, S.

    2016-12-01

    Sea ice topography represents geospatial information on the three-dimensional geometrical attributes of the ice surface including height and shape of various ice features. The features interest consist of deformed (pressure ridges, rubbles and hummocks) and level sea ice as well as glacial ice. Sea ice topography is important for scientific research and climate studies because it helps characterise ice volume and thickness and it influences the near-surface atmospheric transport by impacting the drag coefficients. It also represents critical information to marine operational applications, such as ships navigation and risks assessment for offshore infrastructures. The several methods were used to measure sea ice topography from a single satellite image as well as multiple images. The techniques based on the single image, acquired by optical or synthetic aperture radar (SAR) satellites, derive the height and shape information from shadow and shading. Optical stereo images acquired by very high resolution (0.5 m) satellites were used to extract highly detailed digital elevation model (DEM). SAR imagery allowed extraction of DEM using stereo-radargrammetry and interferometry. The images from optical satellites WorldView, Pleiades, GeoEye, Spot, and Landsat-8 were used to measure topography of sea ice deformation features and glacial ice including icebergs and ice islands. These features were mapped in regions of the Central Arctic, Baffin Bay and the coast of Greenland. SAR imagery including interferometric TanDEM-X data and full polarimetric Radarsat-2 were used to extract ridge frequency and measure spatial parameters of glacial features. The accuracy was evaluated by comparison of the results from different methods demonstrating their strengths and limitations. Ridge height and frequency were also compared with the high resolution results from the Los Alamos sea ice model (CICE), regionally implemented for Baffin Bay and the Labrador Sea.

  20. Lorentz Force Based Satellite Attitude Control

    Science.gov (United States)

    Giri, Dipak Kumar; Sinha, Manoranjan

    2016-07-01

    Since the inception of attitude control of a satellite, various active and passive control strategies have been developed. These include using thrusters, momentum wheels, control moment gyros and magnetic torquers. In this present work, a new technique named Lorentz force based Coulombic actuators for the active control is proposed. This method uses electrostatic charged shells, which interact with the time varying earth's magnetic field to establish a full three axes control of the satellite. It is shown that the proposed actuation mechanism is similar to a satellite actuated by magnetic coils except that the resultant magnetic moment vanishes under two different conditions. The equation for the required charges on the the Coulomb shells attached to the satellite body axes is derived, which is in turn used to find the available control torque for actuating the satellite along the orbit. Stability of the proposed system for very high initial angular velocity and exponential stability about the origin are proved for a proportional-differential control input. Simulations are carried out to show the efficacy of the proposed system for the attitude control of the earth-pointing satellite.

  1. Wind Statistics Offshore based on Satellite Images

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Mouche, Alexis; Badger, Merete

    2009-01-01

    Ocean wind maps from satellites are routinely processed both at Risø DTU and CLS based on the European Space Agency Envisat ASAR data. At Risø the a priori wind direction is taken from the atmospheric model NOGAPS (Navel Operational Global Atmospheric Prediction System) provided by the U.S. Navy......’s Master Environmental Library. At CLS the a priori wind direction is taken from the ECMWF (European Centre of Medium-range Weather Forecasting). It is also possible to use other sources of wind direction e.g. the satellite-based ASCAT wind directions as demonstrated by CLS. The wind direction has to known...

  2. A comparative study of satellite and ground-based phenology.

    Science.gov (United States)

    Studer, S; Stöckli, R; Appenzeller, C; Vidale, P L

    2007-05-01

    Long time series of ground-based plant phenology, as well as more than two decades of satellite-derived phenological metrics, are currently available to assess the impacts of climate variability and trends on terrestrial vegetation. Traditional plant phenology provides very accurate information on individual plant species, but with limited spatial coverage. Satellite phenology allows monitoring of terrestrial vegetation on a global scale and provides an integrative view at the landscape level. Linking the strengths of both methodologies has high potential value for climate impact studies. We compared a multispecies index from ground-observed spring phases with two types (maximum slope and threshold approach) of satellite-derived start-of-season (SOS) metrics. We focus on Switzerland from 1982 to 2001 and show that temporal and spatial variability of the multispecies index correspond well with the satellite-derived metrics. All phenological metrics correlate with temperature anomalies as expected. The slope approach proved to deviate strongly from the temporal development of the ground observations as well as from the threshold-defined SOS satellite measure. The slope spring indicator is considered to indicate a different stage in vegetation development and is therefore less suited as a SOS parameter for comparative studies in relation to ground-observed phenology. Satellite-derived metrics are, however, very susceptible to snow cover, and it is suggested that this snow cover should be better accounted for by the use of newer satellite sensors.

  3. Averaging kernel prediction from atmospheric and surface state parameters based on multiple regression for nadir-viewing satellite measurements of carbon monoxide and ozone

    Directory of Open Access Journals (Sweden)

    H. M. Worden

    2013-07-01

    Full Text Available A current obstacle to the observation system simulation experiments (OSSEs used to quantify the potential performance of future atmospheric composition remote sensing systems is a computationally efficient method to define the scene-dependent vertical sensitivity of measurements as expressed by the retrieval averaging kernels (AKs. We present a method for the efficient prediction of AKs for multispectral retrievals of carbon monoxide (CO and ozone (O3 based on actual retrievals from MOPITT (Measurements Of Pollution In The Troposphere on the Earth Observing System (EOS-Terra satellite and TES (Tropospheric Emission Spectrometer and OMI (Ozone Monitoring Instrument on EOS-Aura, respectively. This employs a multiple regression approach for deriving scene-dependent AKs using predictors based on state parameters such as the thermal contrast between the surface and lower atmospheric layers, trace gas volume mixing ratios (VMRs, solar zenith angle, water vapor amount, etc. We first compute the singular value decomposition (SVD for individual cloud-free AKs and retain the first three ranked singular vectors in order to fit the most significant orthogonal components of the AK in the subsequent multiple regression on a training set of retrieval cases. The resulting fit coefficients are applied to the predictors from a different test set of test retrievals cased to reconstruct predicted AKs, which can then be evaluated against the true retrieval AKs from the test set. By comparing the VMR profile adjustment resulting from the use of the predicted vs. true AKs, we quantify the CO and O3 VMR profile errors associated with the use of the predicted AKs compared to the true AKs that might be obtained from a computationally expensive full retrieval calculation as part of an OSSE. Similarly, we estimate the errors in CO and O3 VMRs from using a single regional average AK to represent all retrievals, which has been a common approximation in chemical OSSEs

  4. Land mobile satellite propagation measurements in Japan using ETS-V satellite

    Science.gov (United States)

    Obara, Noriaki; Tanaka, Kenji; Yamamoto, Shin-Ichi; Wakana, Hiromitsu

    1993-01-01

    Propagation characteristics of land mobile satellite communications channels have been investigated actively in recent years. Information of propagation characteristics associated with multipath fading and shadowing is required to design commercial land mobile satellite communications systems, including protocol and error correction method. CRL (Communications Research Laboratory) has carried out propagation measurements using the Engineering Test Satellite-V (ETS-V) at L band (1.5 GHz) through main roads in Japan by a medium gain antenna with an autotracking capability. This paper presents the propagation statistics obtained in this campaign.

  5. Using Small Drone (UAS) Imagery to Bridge the Gap Between Field- and Satellite-Based Measurements of Vegetation Structure and Change

    Science.gov (United States)

    Mayes, M. T.; Estes, L. D.; Gago, X.; Debats, S. R.; Caylor, K. K.; Manfreda, S.; Oudemans, P.; Ciraolo, G.; Maltese, A.; Nadal, M.; Estrany, J.

    2016-12-01

    Leaf area is an important ecosystem variable that relates to vegetation biomass, productivity, water and nutrient use in natural and agricultural systems globally. Since the 1980s, optical satellite image-based estimates of leaf area based on indices such as Normalized Difference Vegetation Index (NDVI) have greatly improved understanding of vegetation structure, function, and responses to disturbance at landscape (10^3 km2) to continental (10^6 km2) spatial scales. However, at landscape scales, satellites have failed to capture many leaf area patterns indicative of vegetation succession, crop types, stress and other conditions important for ecological processes. Small drones (UAS - unmanned aerial systems) offer new means for assessing leaf area and vegetation structure at higher spatial resolutions (changes and variability, including vegetation recovery from fire (Mallorca), and leaf-area and biomass variability due to orchard type and agro-ecosystem management (Matera, New Jersey). Finally, we highlight promising ways forward for improving field data collection and the use of UAS observations to monitor vegetation leaf-area and biomass change at landscape scales in natural and agricultural systems.

  6. An SDR based AIS receiver for satellites

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Mortensen, Hans Peter; Nielsen, Jens Frederik Dalsgaard

    2011-01-01

    For a few years now, there has been a high interest in monitoring the global ship traffic from space. A few satellite, capable of listening for ship borne AIS transponders have already been launched, and soon the AAUSAT3, carrying two different types of AIS receivers will also be launched. One...... of the AIS receivers onboard AAUSAT3 is an SDR based AIS receiver. This paper serves to describe the background of the AIS system, and how the SDR based receiver has been integrated into the AAUSAT3 satellite. Amongst some of the benefits of using an SDR based receiver is, that due to its versatility, new...... detection algorithms are easily deployed, and it is easily adapted the new proposed AIS transmission channels....

  7. Satellite Type Estination from Ground-based Photometric Observation

    Science.gov (United States)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  8. Impacts of elevated-aerosol-layer and aerosol type on the correlation of AOD and particulate matter with ground-based and satellite measurements in Nanjing, southeast China.

    Science.gov (United States)

    Han, Yong; Wu, Yonghua; Wang, Tijian; Zhuang, Bingliang; Li, Shu; Zhao, Kun

    2015-11-01

    Assessment of the correlation between aerosol optical depth (AOD) and particulate matter (PM) is critical to satellite remote sensing of air quality, e.g. ground PM10 and ground PM2.5. This study evaluates the impacts of aloft-aerosol-plume and aerosol-type on the correlation of AOD-PM by using synergistic measurement of a polarization-sensitive Raman-Mie lidar, CIMEL sunphotometer (SP) and TEOM PM samplers, as well as the satellite MODIS and CALIPSO, during April to July 2011 in Nanjing city (32.05(○)N/118.77(○)E), southeast China. Aloft-aerosol-layer and aerosol types (e.g. dust and non-dust or urban aerosol) are identified with the range-resolved polarization lidar and SP measurements. The results indicate that the correlations for AOD-PM10 and AOD-PM2.5 can be much improved when screening out the aloft-aerosol-layer. The linear regression slopes show significant differences for the dust and non-dust dominant aerosols in the planetary boundary layer (PBL). In addition, we evaluate the recent released MODIS-AOD product (Collection 6) from the "dark-target" (DT) and "deep-blue" (DB) algorithms and their correlation with the PM in Nanjing urban area. The results verify that the MODIS-DT AODs show a good correlation (R = 0.89) with the SP-AOD but with a systematic overestimate. In contrast, the MODIS-DB AOD shows a moderate correlation (R = 0.66) with the SP-AOD but with a smaller regression intercept (0.07). Furthermore, the moderately high correlations between the MODIS-AOD and PM10 (PM2.5) are indicated, which suggests the feasibility of PM estimate using the MODIS-AOD in Nanjing city.

  9. Satellite measurements of the earth's crustal magnetic field

    Science.gov (United States)

    Schnetzler, C. C.

    1989-01-01

    The literature associated with the Magsat mission has evaluated the capabilities and limitations of satellite measurements of the earth's crustal magnetic field, and demonstrated that there exists a 300-3000 km magnetic field, related to major features in the earth's crust, which is primarily caused by induction. Due to its scale and sensitivity, satellite data have been useful in the development of models for such large crustal features as subduction zones, submarine platforms, continental accretion boundaries, and rifts. Attention is presently given to the lack of agreement between laboratory and satellite estimates of lower crustal magnetization.

  10. SOFT project: a new forecasting system based on satellite data

    Science.gov (United States)

    Pascual, Ananda; Orfila, A.; Alvarez, Alberto; Hernandez, E.; Gomis, D.; Barth, Alexander; Tintore, Joaquim

    2002-01-01

    The aim of the SOFT project is to develop a new ocean forecasting system by using a combination of satellite dat, evolutionary programming and numerical ocean models. To achieve this objective two steps are proved: (1) to obtain an accurate ocean forecasting system using genetic algorithms based on satellite data; and (2) to integrate the above new system into existing deterministic numerical models. Evolutionary programming will be employed to build 'intelligent' systems that, learning form the past ocean variability and considering the present ocean state, will be able to infer near future ocean conditions. Validation of the forecast skill will be carried out by comparing the forecasts fields with satellite and in situ observations. Validation with satellite observations will provide the expected errors in the forecasting system. Validation with in situ data will indicate the capabilities of the satellite based forecast information to improve the performance of the numerical ocean models. This later validation will be accomplished considering in situ measurements in a specific oceanographic area at two different periods of time. The first set of observations will be employed to feed the hybrid systems while the second set will be used to validate the hybrid and traditional numerical model results.

  11. Application of spectral analysis techniques to the intercomparison of aerosol data - Part 4: Combined maximum covariance analysis to bridge the gap between multi-sensor satellite retrievals and ground-based measurements

    Science.gov (United States)

    Li, J.; Carlson, B. E.; Lacis, A. A.

    2014-04-01

    The development of remote sensing techniques has greatly advanced our knowledge of atmospheric aerosols. Various satellite sensors and the associated retrieval algorithms all add to the information of global aerosol variability, while well-designed surface networks provide time series of highly accurate measurements at specific locations. In studying the variability of aerosol properties, aerosol climate effects, and constraining aerosol fields in climate models, it is essential to make the best use of all of the available information. In the previous three parts of this series, we demonstrated the usefulness of several spectral decomposition techniques in the analysis and comparison of temporal and spatial variability of aerosol optical depth using satellite and ground-based measurements. Specifically, Principal Component Analysis (PCA) successfully captures and isolates seasonal and interannual variability from different aerosol source regions, Maximum Covariance Analysis (MCA) provides a means to verify the variability in one satellite dataset against Aerosol Robotic Network (AERONET) data, and Combined Principal Component Analysis (CPCA) realized parallel comparison among multi-satellite, multi-sensor datasets. As the final part of the study, this paper introduces a novel technique that integrates both multi-sensor datasets and ground observations, and thus effectively bridges the gap between these two types of measurements. The Combined Maximum Covariance Analysis (CMCA) decomposes the cross covariance matrix between the combined multi-sensor satellite data field and AERONET station data. We show that this new method not only confirms the seasonal and interannual variability of aerosol optical depth, aerosol source regions and events represented by different satellite datasets, but also identifies the strengths and weaknesses of each dataset in capturing the variability associated with sources, events or aerosol types. Furthermore, by examining the spread of

  12. Fifth generation lithospheric magnetic field model from CHAMP satellite measurements

    OpenAIRE

    Maus, S.; Hermann Lühr; Martin Rother; Hemant, K.; Balasis, G.; Patricia Ritter; Claudia Stolle

    2007-01-01

    Six years of low-orbit CHAMP satellite magnetic measurements have provided an exceptionally high-quality data resource for lithospheric magnetic field modeling and interpretation. Here we describe the fifth-generation satellite-only magnetic field model MF5. The model extends to spherical harmonic degree 100. As a result of careful data selection, extensive corrections, filtering, and line leveling, the model has low noise levels, even if evaluated at the Earth's surface. The model is particu...

  13. Validation of an Innovative Satellite-Based UV Dosimeter

    Science.gov (United States)

    Morelli, Marco; Masini, Andrea; Simeone, Emilio; Khazova, Marina

    2016-08-01

    We present an innovative satellite-based UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in-vivo assessment of the erythemal effects on some volunteers having a controlled exposure to solar radiation.Both validations showed that the satellite-based UV dosimeter has a good accuracy and reliability needed for health-related applications.The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. This app will be launched on the global market by siHealth Ltd in May 2016 under the name of "HappySun" and available both for Android and for iOS devices (more info on http://www.happysun.co.uk).Extensive R&D activities are on-going for further improvement of the satellite-based UV dosimeter's accuracy.

  14. Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates

    NARCIS (Netherlands)

    Sasgen, I.; Konrad, H.; Ivins, E.R.; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; Bamber, J.L.; Martinec, Z.; Klemann, V.

    2013-01-01

    We present regional-scale mass balances for 25 drainage basins of the Antarctic Ice Sheet (AIS) from satellite observations of the Gravity and Climate Experiment (GRACE) for time period January 2003 to September 2012. Satellite gravimetry estimates of the AIS mass balance are strongly influenced by

  15. Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates

    NARCIS (Netherlands)

    Sasgen, I.; Konrad, H.; Ivins, E.R.; van den Broeke, M.R.; Bamber, J.L.; Martinec, Z.; Klemann, V.

    2013-01-01

    We present regional-scale mass balances for 25 drainage basins of the Antarctic Ice Sheet (AIS) from satellite observations of the Gravity and Climate Experiment (GRACE) for time period January 2003 to September 2012. Satellite gravimetry estimates of the AIS mass balance are strongly influenced by

  16. Measuring snow and glacier ice properties from satellite

    Science.gov (United States)

    KöNig, Max; Winther, Jan-Gunnar; Isaksson, Elisabeth

    2001-02-01

    Satellite remote sensing is a convenient tool for studying snow and glacier ice, allowing us to conduct research over large and otherwise inaccessible areas. This paper reviews various methods for measuring snow and glacier ice properties with satellite remote sensing. These methods have been improving with the use of new satellite sensors, like the synthetic aperture radar (SAR) during the last decade, leading to the development of new and powerful methods, such as SAR interferometry for glacier velocity, digital elevation model generation of ice sheets, or snow cover mapping. Some methods still try to overcome the limitations of present sensors, but future satellites will have much increased capability, for example, the ability to measure the whole optical spectrum or SAR sensors with multiple polarization or frequencies. Among the methods presented are the satellite-derived determination of surface albedo, snow extent, snow volume, snow grain size, surface temperature, glacier facies, glacier velocities, glacier extent, and ice sheet topography. In this review, emphasis is put on the principles and theory of each satellite remote sensing method. An extensive list of references, with an emphasis on studies from the 1990s, allows the reader to delve into specific topics.

  17. Satellite-based Tropical Cyclone Monitoring Capabilities

    Science.gov (United States)

    Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.

    2012-12-01

    Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.

  18. Aerosol height retrieval from satellite visible measurements: application to OMI 477 nm O2-O2 spectral band, based on Neural Networks

    Science.gov (United States)

    Chimot, Julien; Veefkind, Pepijn; Vlemmix, Tim; Levelt, Pieternel

    2017-04-01

    The ability to monitor air quality and climate from UltraViolet-Visible (UV-Vis) satellite spectral measurements relies on accurate trace gas (e.g. NO2, SO2, HCHO, O3) columns combined with aerosol properties and vertical distribution. In the absence of clouds, the most important error source on the observations of trace gases in the troposphere are aerosols, since their scattering and absorbing properties modify the average light path followed by the detected photons. Large impacts due to their vertical distribution uncertainties remain when retrieving vertical column densities of trace gases from UV-Vis air quality space-borne sensors [Krotkov et al., 2008; Boersma et al., 2011; Barkley et al., 2012; Hewson et al., 2015; Castellanos et al., 2015; Chimot et al., 2016a]. Aerosols and trace gases share, over urban and industrialized areas, similar anthropogenic sources, and their concentrations, as shown by the satellite observations, often present significant correlations [Veefkind et al., 2011]. We have recently developed a Multilayer Perceptron Neural Network (NN) algorithm to retrieve Aerosol Layer Height (ALH) from the OMI 477 nm O2-O2 absorption band [Chimot et al., 2016b]. This algorithm represents aerosols in the troposphere as a single scattering layer defined by its mean altitude and homogeneous optical properties. This algorithm enables the link between the OMI O2-O2 slant column density derived from the 477 nm spectral measurements and the aerosol layer altitude. A prior information about the Aerosol Optical Thickness (AOT) is needed to distinguish the effects due to the amount of fine particles and their altitude. Therefore, the ALH retrieval strongly benefits from a synergy between OMI 477 nm O2-O2 spectral measurements and MODIS AOT product. Aerosol layer heights are currently retrieved with an uncertainty in the range of 260-800 m for scenes with AOT larger than 1. Improvement of these retrievals can be expected by improving assumptions on the

  19. The principle of the positioning system based on communication satellites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    It is a long dream to realize the communication and navigation functionality in a satellite system in the world. This paper introduces how to establish the system, a positioning system based on communication satellites called Chinese Area Positioning System (CAPS). Instead of the typical navigation satellites, the communication satellites are configured firstly to transfer navigation signals from ground stations, and can be used to obtain service of the positioning, velocity and time, and to achieve the function of navigation and positioning. Some key technique issues should be first solved; they include the accuracy position determination and orbit prediction of the communication satellites, the measur- ing and calculation of transfer time of the signals, the carrier frequency drift in communication satellite signal transfer, how to improve the geometrical configuration of the constellation in the system, and the integration of navigation & communication. Several innovative methods are developed to make the new system have full functions of navigation and communication. Based on the development of crucial techniques and methods, the CAPS demonstration system has been designed and developed. Four communication satellites in the geosynchronous orbit (GEO) located at 87.5°E, 110.5°E, 134°E, 142°E and barometric altimetry are used in the CAPS system. The GEO satellites located at 134°E and 142°E are decommissioned GEO (DGEO) satellites. C-band is used as the navigation band. Dual frequency at C1=4143.15 MHz and C2=3826.02 MHz as well as dual codes with standard code (CA code and precision code (P code)) are adopted. The ground segment consists of five ground stations; the master station is in Lintong, Xi’an. The ground stations take a lot of responsibilities, including monitor and management of the operation of all system components, determination of the satellite position and prediction of the satellite orbit, accomplishment of the virtual atomic clock

  20. Satellite data sets for the atmospheric radiation measurement (ARM) program

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Bernstein, R.L. [SeaSpace Corp., San Diego, CA (United States)

    1996-04-01

    This abstract describes the type of data obtained from satellite measurements in the Atmospheric Radiation Measurement (ARM) program. The data sets have been widely used by the ARM team to derive cloud-top altitude, cloud cover, snow and ice cover, surface temperature, water vapor, and wind, vertical profiles of temperature, and continuoous observations of weather needed to track and predict severe weather.

  1. Operational evapotranspiration based on Earth observation satellites

    Science.gov (United States)

    Gellens-Meulenberghs, Françoise; Ghilain, Nicolas; Arboleda, Alirio; Barrios, Jose-Miguel

    2016-04-01

    Geostationary satellites have the potential to follow fast evolving atmospheric and Earth surface phenomena such those related to cloud cover evolution and diurnal cycle. Since about 15 years, EUMETSAT has set up a network named 'Satellite Application Facility' (SAF, http://www.eumetsat.int/website/home/Satellites/GroundSegment/Safs/index.html) to complement its ground segment. The Land Surface Analysis (LSA) SAF (http://landsaf.meteo.pt/) is devoted to the development of operational products derived from the European meteorological satellites. In particular, an evapotranspiration (ET) product has been developed by the Royal Meteorological Institute of Belgium. Instantaneous and daily integrated results are produced in near real time and are freely available respectively since the end of 2009 and 2010. The products cover Europe, Africa and the Eastern part of South America with the spatial resolution of the SEVIRI sensor on-board Meteosat Second Generation (MSG) satellites. The ET product algorithm (Ghilain et al., 2011) is based on a simplified Soil-Vegetation-Atmosphere transfer (SVAT) scheme, forced with MSG derived radiative products (LSA SAF short and longwave surface fluxes, albedo). It has been extensively validated against in-situ validation data, mainly FLUXNET observations, demonstrating its good performances except in some arid or semi-arid areas. Research has then been pursued to develop an improved version for those areas. Solutions have been found in reviewing some of the model parameterizations and in assimilating additional satellite products (mainly vegetation indices and land surface temperature) into the model. The ET products will be complemented with related latent and sensible heat fluxes, to allow the monitoring of land surface energy partitioning. The new algorithm version should be tested in the LSA-SAF operational computer system in 2016 and results should become accessible to beta-users/regular users by the end of 2016/early 2017. In

  2. An Orbiting Standards Platform for communication satellite system RF measurements

    Science.gov (United States)

    Wallace, R. G.; Woodruff, J. J.

    1978-01-01

    The Orbiting Standards Platform (OSP) is a proposed satellite dedicated to performing RF measurements on space communications systems. It would consist of a quasi-geostationary spacecraft containing an ensemble of calibrated RF sources and field strength meters operating in several microwave bands, and would be capable of accurately and conveniently measuring critical earth station and satellite RF performance parameters, such as EIRP, gain, figure of merit (G/T), crosspolarization, beamwidth, and sidelobe levels. The feasibility and utility of the OSP concept has been under joint study by NASA, NBS, Comsat and NTIA. A survey of potential OSP users was conducted by NTIA as part of this effort. The response to this survey, along with certain trends in satellite communications system design, indicates a growing need for such a measurement service.

  3. Bi-satellite formation relative position and attitude measurement based on Dual quaternion%基于对偶四元数的双星编队相对位姿测量

    Institute of Scientific and Technical Information of China (English)

    李静; 王惠南; 付世勇; 刘海颖

    2011-01-01

    为了描述编队卫星中主从星的相对位置和姿态信息,提出了基于对偶四元数的编队卫星相对位姿测量算法.以双星编队飞行的位姿运动为主线,运用对偶四元数工具,充分发挥其能以最简洁的形式表示一般性刚体运动的优点,对卫星轨道和姿态进行分析并建立了对偶四元数位姿模型.同时设计类GPS测量技术来测量编队卫星的相对位置和姿态,该技术载波相位波长和伪码码元比GPS的更短,可获得更高精度的相对测量信号.由于状态方程和观测方程的非线性特征,使用UKF滤波来消除随机噪声对量测过程的干扰.实验结果表明,所设计的算法能够有效估计系统误差,卫星的位置误差为10-3 m左右,四元教误差为10-15左右,验证了该算法的有效性.%In order to describe relative position and attitude information of formation flying satellites, a novel dual quaternion based satellite formation flying position and attitude measurement technique is put forward. Guided by bi-satellite formation flying position and attitude movement, and under the help of dual quaternion, the complex satellite formation flying position and attitude measurement model is constructed which has such merits as simple form of rigid body movement expression. Then a GPS-like measurement modal is put forward, and the observation equation is constructed for the position and attitude measurement, which owns shorter carrier phase wavelength and pseudo code symbol than those of GPS. At last, a refined UKF filter is applied to eliminate the system noise during the measurement process. Simulation is added to further improve its correctness and efficiency in solving formation flying satellite relative position and attitude measurement problem, in which the relative position error and the quaternion error are 10~3mand 10-15.

  4. Exploration of Loggerhead Shrike Habitats in Grassland National Park of Canada Based on in Situ Measurements and Satellite-Derived Adjusted Transformed Soil-Adjusted Vegetation Index (ATSAVI

    Directory of Open Access Journals (Sweden)

    Li Shen

    2013-01-01

    Full Text Available The population of loggerhead shrike (Lanius ludovicianus excubutirudes in Grassland National Park of Canada (GNPC has undergone a severe decline due to habitat loss and limitation. Shrike habitat availability is highly impacted by the biophysical characteristics of grassland landscapes. This study was conducted in the west block of GNPC. The overall purpose was to extract important biophysical and topographical variables from both SPOT satellite imagery and in situ measurements. Statistical analysis including Analysis of Variance (ANOVA, measuring Coefficient Variation (CV, and regression analysis were applied to these variables obtained from both imagery and in situ measurement. Vegetation spatial variation and heterogeneity among active, inactive and control nesting sites at 20 m × 20 m, 60 m × 60 m and 100 m × 100 m scales were investigated. Results indicated that shrikes prefer to nest in open areas with scattered shrubs, particularly thick or thorny species of smaller size, to discourage mammalian predators. The most important topographical characteristic is that active sites are located far away from roads at higher elevation. Vegetation index was identified as a good indicator of vegetation characteristics for shrike habitats due to its significant relation to most relevant biophysical factors. Spatial variation analysis showed that at all spatial scales, active sites have the lowest vegetation abundance and the highest heterogeneity among the three types of nesting sites. For all shrike habitat types, vegetation abundance decreases with increasing spatial scales while habitat heterogeneity increases with increasing spatial scales. This research also indicated that suitable shrike habitat for GNPC can be mapped using a logistical model with ATSAVI and dead material in shrub canopy as the independent variables.

  5. Results of ionospheric measurements, got on micro satellite "Compass-2"

    Science.gov (United States)

    Dokukin, Vladimir; Kuznetsov, V. D.; Garipov, G. K.; Kapustina, O.; Mikhailov, Yu. M.; Mikhailova, G. A.; Ruzhin, Yu. Ya.; Sinelnikov, V. M.; Shirokov, A. V.; Yashin, I. V.; Danilkin, V. A.; Degtyar, V. G.

    Results of measurements, executed by complex of scientific instruments of micro satellite Compass-2 in the period of 2006-2007, are presented. The project was aimed on registration and study of ionospheric effects, related to the natural and anthropogenic anomalous phenomena. The effects of interaction of solar wind with magnetosphere in the period of flare activity of the Sun and anomalous low frequency radiations, happened one day before the earthquake with magnitude 4.2, are registered. The data was got on measurements of corpuscular radiation, wide band radiations and low frequency waves along the orbit of satellite.

  6. The principle of the positioning system based on communication satellites

    Institute of Scientific and Technical Information of China (English)

    AI GuoXiang; SHI HuLi; WU HaiTao; LI ZhiGang; GUO Ji

    2009-01-01

    It is a long dream to realize the communication and navigation functionality in a satellite system in the world.This paper introduces how to establish the system,a positioning system based on communication satellites called Chinese Area Positioning System (CAPS).Instead of the typical navigation satelIites,the communication satellites are configured firstly to transfer navigation signals from ground stations,and can be used to obtain service of the positioning,velocity and time,and to achieve the function of navigation and positioning.Some key technique issues should be first solved; they include the accuracy position determination and orbit prediction of the communication satellites,the measuring and calculation of transfer time of the signals,the carrier frequency drift in communication satellite ignal transfer,how to improve the geometrical configuration of the constellation in the system,and the integration of navigation & communication.Several innovative methods are developed to make the new system have full functions of navigation and communication.Based on the development of crucial techniques and methods,the CAPS demonstration system has been designed and developed.Four communication satellites in the geosynchronous orbit (GEO) located at 87.5°E,110.5°E,134°E,142°E and barometric altimetry are used in the CAPS system.The GEO satellites located at 134°E and 142°E re decommissioned GEO (DGEO) satellites.C-band is used as the navigation band.Dual frequency at C1=4143.15 MHz and C2=3826.02 MHz as well as dual codes with standard code (CA code and precision code (P code)) are adopted.The ground segment consists of five ground stations; the master station is in Lintong,Xi'an.The ground stations take a lot of responsibilities,including monitor and management of the operation of all system components,determination of the satellite position and prediction of the satellite orbit,accomplishment of the virtual atomic clock measurement,transmission and receiving

  7. Monitoring objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  8. Calculation of the satellite "Sich-1M" orientation on onboard magnetometric measurements

    Science.gov (United States)

    Suhorukov, A.; Kozak, L.

    2005-04-01

    The satellite "Sich-1M" was launched on 24 December 2004. It came out onto the elliptic orbit with the perigee height near 280 km except planned earlier higher near circle orbit. In addition, the satellite has gotten a non-planned rotation (about 2 rotations per turn). Later the gravitational beam had been pulled out from the satellite which partly stabilized it. A rotation of the satellite was superseded by its oscillation with a period near 2-4 swings per turn and amplitude 50 degrees. The oscillations have an unstable character. Rotations and oscillations of the satellite set inessential limitations on realization of scientific tasks of the project "Variant" because there is a possibility to determine the satellite orientation for a given time moment with the help of measurements of ferrosonde magnetometer FZM or onboard magnetometer. The device FZM measures three components of magnetic field Bx, By, Bz of the Earth in coordinate system of the satellite. To determine the satellite orientation we have used the fact that each of the component of the magnetic field at the present time moment is a function of geographical coordinates of the satellite (latitude, longitude, height over sea level), its orientation and components of a vector of Earth magnetic field in this point, calculated from magnetosphere model. Thus, having direct satellite measurements of Bx, By, Bz at given time moment in given point, orbital elements and position of the satellite on the orbit and using the standard model of Earth's magnetosphere one can calculate the satellite orientation as function of time. For the calculation we have used the magnetosphere model "The International Geomagnetic Reference Field" (IGRF) which empirically calculates the components of magnetic field of the Earth and is recommended for scientific investigations by International Association of Geomagnetism and Aeronomy (IAGA). Coefficients of IGRF model are based on accessible information sources including

  9. Data Mining of Satellite-Based Measurements to Distinguish Natural From Man-Made Oil Slicks at the Sea Surface in Campeche Bay (Mexico)

    Science.gov (United States)

    Carvalho, G. D. A.; Minnett, P. J.; de Miranda, F. P.; Landau, L.; Paes, E.

    2016-02-01

    Campeche Bay, located in the Mexican portion of the Gulf of Mexico, has a well-established activity engaged with numerous oil rigs exploring and producing natural gas and oil. The associated risk of oil slicks in this region - that include oil spills (i.e. oil floating at the sea surface solely attributed to man-made activities) and oil seeps (i.e. surface footprint of the oil that naturally comes out of the seafloor reaching the surface of the ocean) - leads Pemex to be in a continuous state of alert for reducing possible negative influence on marine and coastal ecosystems. Focusing on a monitoring strategy, a multi-year dataset (2008-2012) of synthetic aperture radar (SAR) measurements from the RADARSAT-2 satellite is used to investigate the spatio-temporal distribution of the oil slicks observed at the surface of the ocean in the Campeche Bay region. The present study is an exploratory data analysis that seeks to discriminate between these two possible oil slick types: oil seeps and oil spills. Multivariate data analysis techniques (e.g. Principal Components Analysis, Clustering Analysis, Discriminant Function, etc.) are explored to design a data-learning classification algorithm to distinguish natural from man-made oil slicks. This analysis promotes a novel idea bridging geochemistry and remote sensing research to express geophysical differences between seeped and spilled oil. Here, SAR backscatter coefficients - i.e. sigma-naught (σo), beta-naught (βo), and gamma-naught (γo) - are combined with attributes referring to the geometry, shape, and dimension that describe the oil slicks. Results indicate that the synergy of combining these various characteristics is capable of distinguishing oil seeps from oil spills observed on the sea surface to a useful accuracy.

  10. Determination of atmospheric aerosol properties over land using satellite measurements

    NARCIS (Netherlands)

    Kokhanovsky, A.A.; Leeuw, G. de

    2009-01-01

    Mostly, aerosol properties are poorly understood because the aerosol properties are very sparse. The first workshop on the determination of atmospheric aerosol properties over land using satellite measurements is convened in Bremen, Germany. In this workshop, the topics of discussions included a var

  11. Earth Observation Satellites Scheduling Based on Decomposition Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Feng Yao

    2010-11-01

    Full Text Available A decomposition-based optimization algorithm was proposed for solving Earth Observation Satellites scheduling problem. The problem was decomposed into task assignment main problem and single satellite scheduling sub-problem. In task assignment phase, the tasks were allocated to the satellites, and each satellite would schedule the task respectively in single satellite scheduling phase. We adopted an adaptive ant colony optimization algorithm to search the optimal task assignment scheme. Adaptive parameter adjusting strategy and pheromone trail smoothing strategy were introduced to balance the exploration and the exploitation of search process. A heuristic algorithm and a very fast simulated annealing algorithm were proposed to solve the single satellite scheduling problem. The task assignment scheme was valued by integrating the observation scheduling result of multiple satellites. The result was responded to the ant colony optimization algorithm, which can guide the search process of ant colony optimization. Computation results showed that the approach was effective to the satellites observation scheduling problem.

  12. Development and validation of satellite based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2015-10-01

    A satellite based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5% for classifying Clear (V ≥ 30 km), Moderate (10 km ≤ V skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network, and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  13. Spectral Measurements of Geosynchronous Satellites During Glint Season

    Science.gov (United States)

    Chun, F.; Tucker, R.; Weld, E.; Chun, F.; Tippets, R.

    During certain times of the year, stable geosynchronous (GEO) satellites are known to glint or exhibit a very bright specular reflection, which is easily observed through broadband photometric filters. The glints are typically brighter in the Johnson red filter compared to the Johnson blue filter. In previous years, USAFA cadets have developed and refined techniques to take, calibrate and process satellite spectral data taken using a diffraction grating on the USAFA 16-inch, f/8.2 telescope (slitless spectroscopy). To the best of our knowledge, we have not seen any published research on observing glints across the visible spectrum. We present research from an Air Force Academy senior physics capstone project on observing glints off of GEO satellites using slitless spectroscopy. We discuss the calibration of the measurements using solar analog and solar twin stars, as well as results of the spectra of a glinting GEO satellite. A key question is whether a GEO satellite glint is localized in wavelength or equally observed across the entire spectra.

  14. A pathway to generating Climate Data Records of sea-surface temperature from satellite measurements

    Science.gov (United States)

    Minnett, Peter J.; Corlett, Gary K.

    2012-11-01

    In addition to having known uncertainty characteristics, Climate Data Records (CDRs) of geophysical variables derived from satellite measurements must be of sufficient length to resolve signals that might reveal the signatures of climate change against a background of larger, unrelated variability. The length of the record requires using satellite measurements from many instruments over several decades, and the uncertainty requirement implies that a consistent approach be used to establish the errors in the satellite retrievals over the entire period. Retrieving sea-surface temperature (SST) from satellite is a relatively mature topic, and the uncertainties of satellite retrievals are determined by comparison with collocated independent measurements. To avoid the complicating effects of near-surface temperature gradients in the upper ocean, the best validating measurements are from ship-board radiometers that measure, at source, the surface emission that is measured in space, after modification by its propagation through the atmosphere. To attain sufficient accuracy, such ship-based radiometers must use internal blackbody calibration targets, but to determine the uncertainties in these radiometric measurements, i.e. to confirm that the internal calibration is effective, it is necessary to conduct verification of the field calibration using independent blackbodies with accurately known emissivity and at very accurately measured temperatures. This is a well-justifiable approach to providing the necessary underpinning of a Climate Data Record of SST.

  15. Satellite Based Extrusion Rates for the 2006 Augustine Eruption

    Science.gov (United States)

    Dehn, J.; Bailey, J. E.; Dean, K. G.; Skoog, R.; Valcic, L.

    2006-12-01

    Extrusion rates were calculated from polar orbiting infrared satellite data for the 2006 eruption of Augustine Volcano, Alaska. The pixel integrated brightness temperatures from the satellite data were converted to estimates of ground temperature by making assumptions and using first hand observations about the geometry of the hot area (lava dome, flows and pyroclastic flow deposits) relative to the cold area in the kilometer scale pixels. Extrusion rate is calculated by assuming that at a given temperature, a lava emits an amount of radiation proportional to its volume. On ten occasions during the activity, helicopter based infrared imagers were used to validate the satellite observations. The pre-January 11 thermal activity was not significantly above background in satellite data. The first strong thermal anomalies were recorded during the first explosive phase on January 11. During successive explosive phases in January, bright thermal signals were observed, often saturating the sensors. Large areas (many km2) were observed to be warm in the satellite data, indicative of pyroclastic flows. Sometime during or after January 29, during a phase of sustained ash emission, the thermal signal became persistent, suggesting the beginning of lava effusion. The extrusion rates derived from satellite data varied from 0 to nearly 7 m3/s, giving an eruption rate of 2.7 m3/s. The extrusion event produced two blocky lava flows which moved down the north flank of the volcano. Extrusion occurred through at least March 15 (day 76) when a sharp drop in extrusion rate and thermal signal is observed. Based on the derived extrusion rates, it is estimated that 18 million m3 of lava was extruded during the course of the eruption. This value agreed well with photogrammetric measurements, but does not agree with volumes derived through subtraction of digital elevation models post- and pre- eruption. It should be noted that the thermal approach only works for hot lavas, and does not

  16. SAW based systems for mobile communications satellites

    Science.gov (United States)

    Peach, R. C.; Miller, N.; Lee, M.

    1993-01-01

    Modern mobile communications satellites, such as INMARSAT 3, EMS, and ARTEMIS, use advanced onboard processing to make efficient use of the available L-band spectrum. In all of these cases, high performance surface acoustic wave (SAW) devices are used. SAW filters can provide high selectivity (100-200 kHz transition widths), combined with flat amplitude and linear phase characteristics; their simple construction and radiation hardness also makes them especially suitable for space applications. An overview of the architectures used in the above systems, describing the technologies employed, and the use of bandwidth switchable SAW filtering (BSSF) is given. The tradeoffs to be considered when specifying a SAW based system are analyzed, using both theoretical and experimental data. Empirical rules for estimating SAW filter performance are given. Achievable performance is illustrated using data from the INMARSAT 3 engineering model (EM) processors.

  17. Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors

    Science.gov (United States)

    Petrenko, M.; Ichoku, C.

    2013-01-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in

  18. Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors

    Directory of Open Access Journals (Sweden)

    M. Petrenko

    2013-02-01

    Full Text Available Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua, MISR, OMI, POLDER, CALIOP, and SeaWiFS – altogether, a total of 11 different aerosol products – were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/. The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT retrievals during 2006–2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2 values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow/ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties

  19. Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors

    Directory of Open Access Journals (Sweden)

    M. Petrenko

    2013-07-01

    Full Text Available Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua, MISR, OMI, POLDER, CALIOP, and SeaWiFS – altogether, a total of 11 different aerosol products – were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/. The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT retrievals during 2006–2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 7%. Squared correlation coefficient (R2 values of the satellite AOD retrievals relative to AERONET exceeded 0.8 for many of the analyzed products, while root mean square error (RMSE values for most of the AOD products were within 0.15 over land and 0.07 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different land cover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the land cover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow/ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface closed shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in certain

  20. Estimating the Retrievability of Temperature Profiles from Satellite Infrared Measurements

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A method is developed to assess retrievability, namely the retrieval potential for atmospheric temperature profiles, from satellite infrared measurements in clear-sky conditions. This technique is based upon generalized linear inverse theory and empirical orthogonal function analysis. Utilizing the NCEP global temperature reanalysis data in January and July from 1999 to 2003, the retrievabilities obtained with the Atmospheric Infrared Sounder (AIRS) and the High Resolution Infrared Radiation Sounder/3 (HIRS/3)sounding channel data are derived respectively for each standard pressure level on a global scale. As an incidental result of this study, the optimum truncation number in the method of generalized linear inverse is deduced too. The results show that the retrievabilities of temperature obtained with the two datasets are similar in spatial distribution and seasonal change characteristics. As for the vertical distribution, the retrievabilities are low in the upper and lower atmosphere, and high between 400 hPa and 850 hPa. For the geographical distribution, the retrievabilities are low in the low-latitude oceanic regions and in some regions in Antarctica, and relatively high in mid-high latitudes and continental regions. Compared with the HIRS/3 data, the retrievability obtained with the AIRS data can be improved by an amount between 0.15 and 0.40.

  1. Measurements of sea ice by satellite and airborne altimetry

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine

    A changing sea ice cover in the Arctic Ocean is an early indicator of a climate in transition, the sea ice has in addition a large impact on the climate. The annual and interannual variations of the sea ice cover have been observed by satellites since the start of the satellite era in 1979......, and it has been in retreat every since. The mass balance of the sea ice is an important input to climate models, where the ice thickness is the most uncertain parameter. In this study, data from the CryoSat-2 radar altimeter satellite are used. CryoSat-2 has been measuring the sea ice in the Arctic Ocean...... freeboard is found to be 35 cm for both the airborne and satellite data implying, that the radar signal is here reflected from the snow surface, probably due to weather conditions. CryoSat-2 is very sensitive to returns from specular surfaces, even if they appear o_-nadir. This contaminates the “true...

  2. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  3. Covariance analysis of differential drag-based satellite cluster flight

    Science.gov (United States)

    Ben-Yaacov, Ohad; Ivantsov, Anatoly; Gurfil, Pini

    2016-06-01

    One possibility for satellite cluster flight is to control relative distances using differential drag. The idea is to increase or decrease the drag acceleration on each satellite by changing its attitude, and use the resulting small differential acceleration as a controller. The most significant advantage of the differential drag concept is that it enables cluster flight without consuming fuel. However, any drag-based control algorithm must cope with significant aerodynamical and mechanical uncertainties. The goal of the current paper is to develop a method for examination of the differential drag-based cluster flight performance in the presence of noise and uncertainties. In particular, the differential drag control law is examined under measurement noise, drag uncertainties, and initial condition-related uncertainties. The method used for uncertainty quantification is the Linear Covariance Analysis, which enables us to propagate the augmented state and filter covariance without propagating the state itself. Validation using a Monte-Carlo simulation is provided. The results show that all uncertainties have relatively small effect on the inter-satellite distance, even in the long term, which validates the robustness of the used differential drag controller.

  4. Satellite-Based EMI Detection, Identification, and Mitigation

    Science.gov (United States)

    Stottler, R.; Bowman, C.

    2016-09-01

    Commanding, controlling, and maintaining the health of satellites requires a clear operating spectrum for communications. Electro Magnetic Interference (EMI) from other satellites can interfere with these communications. Determining which satellite is at fault improves space situational awareness and can be used to avoid the problem in the future. The Rfi detection And Prediction Tool, Optimizing Resources (RAPTOR) monitors the satellite communication antenna signals to detect EMI (also called RFI for Radio Frequency Interference) using a neural network trained on past cases of both normal communications and EMI events. RAPTOR maintains a database of satellites that have violated the reserved spectrum in the past. When satellite-based EMI is detected, RAPTOR first checks this list to determine if any are angularly close to the satellite being communicated with. Additionally, RAPTOR checks the Space Catalog to see if any of its active satellites are angularly close. RAPTOR also consults on-line databases to determine if the described operating frequencies of the satellites match the detected EMI and recommends candidates to be added to the known offenders database, accordingly. Based on detected EMI and predicted orbits and frequencies, RAPTOR automatically reschedules satellite communications to avoid current and future satellite-based EMI. It also includes an intuitive display for a global network of satellite communications antennas and their statuses including the status of their EM spectrum. RAPTOR has been prototyped and tested with real data (amplitudes versus frequency over time) for both satellite communication signals and is currently undergoing full-scale development. This paper describes the RAPTOR technologies and results of testing.

  5. Observer-based Satellite Attitude Control and Simulation Researches

    Institute of Scientific and Technical Information of China (English)

    王子才; 马克茂

    2002-01-01

    Observer design method is applied to the realization of satellite attitude control law baaed on simplified control model. Exact mathematical model of the satellite attitude control system is also constructed, together with the observer-based control law, to conduct simulation research. The simulation results justify the effectiveness andfeasibility of the observer-based control method.

  6. Evaluation of Aerosol Properties in GCMs using Satellite Measurements

    Science.gov (United States)

    Wang, Y.; Jiang, J. H.; Su, H.; Zhang, H.

    2015-12-01

    Atmospheric aerosols from natural or anthropogenic sources have profound impacts on the regional and global climate. Currently the radiative forcing of aerosols predicted by global climate models remains highly uncertain, representing the largest uncertainty in climate predictions. The uncertainty mainly arises from the complicated aerosol chemical and physical properties, coarse emission inventories for pre-cursor gases as well as unrealistic representations of aerosol activation and cloud processing in global climate models. In this study, we will utilize multiple satellite measurements including MODIS, MISR and CALIPSO to quantitatively evaluate aerosol simulations from climate models. Our analyses show that the global means in AOD climatology from NCAR CAM5 and GFDL AM3 simulations are comparable with satellite measurements. However, the overall correlation coefficient between the AOD spatial patterns from CAM5 and satellite is only 0.4. Moreover, at finer scales, the magnitude of AOD in CAM5 is much lower than satellite measurements for most of the non-dust regions, especially over East Asia. GFDL AM3 shows better AOD simulations over East Asia. The underestimated AOD over remote maritime areas in CAM5 was attributed to the unrealistic wet removal processes in convective clouds of CAM5. Over continents, biases on AOD could stem from underestimations in the emissions inventory and unresolved sub-grid variations of relative humidity due to the model's coarse resolution. Uncertainty from emission inventory over developing countries in East Asia will be assessed using the newly updated Regional Emission inventory in Asia (REAS) and Multi-resolution Emission Inventory in China (MEIC) in the model simulations.

  7. Spline model of the high latitude scintillation based on in situ satellite data

    Science.gov (United States)

    Priyadarshi, S.; Wernik, A. W.

    2013-12-01

    We present a spline model for the high latitude ionospheric scintillation using satellite in situ measurements made by the Dynamic Explorer 2 (DE 2) satellite. DE 2 satellite measurements give observations only along satellite orbit but our interpolation model fills the gaps between the satellite orbits. This analytical model is based on products of cubic B-splines and coefficients determined by least squares fit to the binned data and constrained to make the fit periodic in 24 hours of geomagnetic local time, periodic in 360 degrees of invariant longitude, in geomagnetic indices and solar radio flux. Discussion of our results clearly shows the seasonal and diurnal behavior of ionospheric parameters important in scintillation modeling for different geophysical and solar activity conditions. We also show that results obtained from our analytical model match observations obtained from in situ measurements. Shishir Priyadarshi Space Research Centre, Poland

  8. Evaluation of CHAMP Satellite Orbit with SLR Measurements

    Institute of Scientific and Technical Information of China (English)

    QIN Xianping; YANG Yuanxi

    2005-01-01

    The technique of Evaluating CHAMP satellite orbit with SLR measurements is presented. As an independent evaluation of the orbit solution, SLR data observed from January 1 to 16, 2002 are processed to compute the residuals after fixing the GFZ's post science orbits solutions. The SLR residuals are computed as the differences of the SLR measurements minus the corresponding distances between the SLR station and the GPS-derived orbit positions. On the basis of the SLR residuals analysis, it is found that the accuracy of GFZ's post science orbits is better than 10 em and that there is no systematic error in GFZ's post science orbits.

  9. Intercomparison of desert dust optical depth from satellite measurements

    Directory of Open Access Journals (Sweden)

    E. Carboni

    2012-08-01

    Full Text Available This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify the differences between current datasets. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR, polarisation measurements (POLDER, single-view approaches using solar wavelengths (OMI, MODIS, and the thermal infrared spectral region (SEVIRI, AIRS. Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as assumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, it is important to note that differences in sampling, related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset can be an important issue.

  10. Eruption column height: a comparison between ground and satellite measurements

    Science.gov (United States)

    Scollo, Simona; Prestifilippo, Michele; Pecora, Emilio; Corradini, Stefano; Merucci, Luca; Spata, Gaetano; Coltelli, Mauro

    2014-05-01

    The eruption column height estimation is an essential parameter to evaluate the total mass eruption rate, the gas and aerosol plume dispersal and retrievals. The column height may be estimated using different systems (e.g. satellite, aircraft and ground observations) which may present marked differences. In this work we use the calibrated images collected by the video-surveillance system of the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, from the visible camera located in Catania, 27 km from the vent. The analysis is carried out on twenty lava fountains from the New South East Crater during the recent Etna explosive activity. Firstly, we calibrated the camera to estimate its intrinsic parameters and the full camera model. Furthermore, we selected the images which recorded the maximum phase of the eruptive activity. Hence, we applied an appropriate correction to take into account the wind effect. The column height was also evaluated using SEVIRI and MODIS satellite images collected at the same time of the video camera measurements. The satellite column height retrievals is realized by comparing the 11 μm brightness temperature of the most opaque plume pixels with the atmospheric temperature profile measured at Trapani WMO Meteo station (the nearest WMO station to the Etnean area). The comparison between satellite and ground data show a good agreement and the column altitudes ranges between 7.5 and 9 km (upper limit of the camera system). For nine events we evaluated also the thickness of the volcanic plumes in the umbrella region (near the vent) which ranges between 2 and 3 km. The proposed approach help to quantitatively evaluate the column height that may be used by volcanic ash dispersal and sedimentation models for improving forecasts and reducing risks to aviation during volcanic crisis.

  11. System refinement for content based satellite image retrieval

    Directory of Open Access Journals (Sweden)

    NourElDin Laban

    2012-06-01

    Full Text Available We are witnessing a large increase in satellite generated data especially in the form of images. Hence intelligent processing of the huge amount of data received by dozens of earth observing satellites, with specific satellite image oriented approaches, presents itself as a pressing need. Content based satellite image retrieval (CBSIR approaches have mainly been driven so far by approaches dealing with traditional images. In this paper we introduce a novel approach that refines image retrieval process using the unique properties to satellite images. Our approach uses a Query by polygon (QBP paradigm for the content of interest instead of using the more conventional rectangular query by image approach. First, we extract features from the satellite images using multiple tiling sizes. Accordingly the system uses these multilevel features within a multilevel retrieval system that refines the retrieval process. Our multilevel refinement approach has been experimentally validated against the conventional one yielding enhanced precision and recall rates.

  12. Validation of satellite data with IASOA observatories and shipboard measurements in Arctic Ocean

    Science.gov (United States)

    Repina, Irina; Artamonov, Arseniy; Mazilkina, Alexandra; Valiullin, Denis; Stanichny, Sergey

    2016-04-01

    The paper shows the possibility of using surface observation data at high latitudes for the validation of different satellite products. We use data from International Arctic Systems for Observing the Atmosphere (IASOA) observatories and data from Nansen and Amundsen basins observation system (NABOS) project. The NABOS field experiment was carried out in the central part of the Arctic and in the eastern Arctic seas during summer and fall period of 2004-2009, 2013 and 2015. Newly improved satellite products and surface observations provide an opportunity to revisit remote-sensing capabilities for estimating shortwave and longwave radiative fluxes, as well as turbulent fluxes at high latitudes. Estimates of SW fluxes from the MODIS and LW fluxes from the NOAA satellites are evaluated against land observations from IASOA observatories, and unique shipboard measurements. Results show that the satellite products are in better agreement with observations than those from numerical models. Therefore, the large scale satellite based estimates should be useful for model evaluation and for providing information in formulating energy budgets at high latitudes. Visible and near-infrared albedos over snow and ice surfaces are retrieved from AVHRR. Comparison with surface measurements of albedo in arctic observatories and Arctic ocean shows very good agreement. Meteorological and micrometeorological observations were used to validate the surface temperature and surface heat fluxes in the satellite data. Compared data arrays are independent and sufficiently detailed to perform trustworthy evaluations. The spatial and temporal patterns of the resulting flux fields are investigated and compared with those derived from satellite observations such as HOAPS, from blended data such as AOFLUX (in the open water cases). A computation of the sensible heat flux at the surface is formulated on the basis of spatial variations of the surface temperature estimated from satellite data. Based on

  13. Radio occultation based on BeiDou satellite navigation

    Science.gov (United States)

    Jiang, Hu; Hu, Haiying; Shen, Xue-min; Gong, Wenbin; Zhang, Yonghe

    2014-11-01

    With the development of GNSS systems, it has become a tendency that radio occultation is used to sense the Earth's atmosphere. By this means, the moisture, temperature, pressure, and total electron content can be derived. Based on the sensing results, more complicated models for atmosphere might come into being. Meteorology well benefits from this technology. As scheduled, the BD satellite navigation system will have a worldwide coverage by the end of 2020. Radio occultation studies in China have been highlighted in the recent decade. More and more feasibilities reports have been published in either domestic or international journals. Herein, some scenarios are proposed to assess the coverage of radio occultation based on two different phases of BD satellite navigation system. Phase one for BD is composed of GEO,IGSO and several MEO satellites. Phase two for BD consists mostly of 24 MEO satellites, some GEO and IGSO satellites. The characteristics of radio occultation based on these two phases are presented respectively.

  14. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay

    2014-01-01

    modeling to develop procedures and best practices for satellite based wind resource assessment offshore. All existing satellite images from the Envisat Advanced SAR sensor by the European Space Agency (2002-12) have been collected over a domain in the South China Sea. Wind speed is first retrieved from...

  15. Satellite-based Flood Modeling Using TRMM-based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Greg Easson

    2007-12-01

    Full Text Available Increasingly available and a virtually uninterrupted supply of satellite-estimatedrainfall data is gradually becoming a cost-effective source of input for flood predictionunder a variety of circumstances. However, most real-time and quasi-global satelliterainfall products are currently available at spatial scales ranging from 0.25o to 0.50o andhence, are considered somewhat coarse for dynamic hydrologic modeling of basin-scaleflood events. This study assesses the question: what are the hydrologic implications ofuncertainty of satellite rainfall data at the coarse scale? We investigated this question onthe 970 km2 Upper Cumberland river basin of Kentucky. The satellite rainfall productassessed was NASA’s Tropical Rainfall Measuring Mission (TRMM Multi-satellitePrecipitation Analysis (TMPA product called 3B41RT that is available in pseudo real timewith a latency of 6-10 hours. We observed that bias adjustment of satellite rainfall data canimprove application in flood prediction to some extent with the trade-off of more falsealarms in peak flow. However, a more rational and regime-based adjustment procedureneeds to be identified before the use of satellite data can be institutionalized among floodmodelers.

  16. Scenarios and performance measures for advanced ISDN satellite design and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1991-01-01

    Described here are the contemplated input and expected output for the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and Full Service ISDN Satellite (FSIS) Models. The discrete event simulations of these models are presented with specific scenarios that stress ISDN satellite parameters. Performance measure criteria are presented for evaluating the advanced ISDN communication satellite designs of the NASA Satellite Communications Research (SCAR) Program.

  17. Population-based geographic access to parent and satellite National Cancer Institute Cancer Center Facilities.

    Science.gov (United States)

    Onega, Tracy; Alford-Teaster, Jennifer; Wang, Fahui

    2017-09-01

    Satellite facilities of National Cancer Institute (NCI) cancer centers have expanded their regional footprints. This study characterized geographic access to parent and satellite NCI cancer center facilities nationally overall and by sociodemographics. Parent and satellite NCI cancer center facilities, which were geocoded in ArcGIS, were ascertained. Travel times from every census tract in the continental United States and Hawaii to the nearest parent and satellite facilities were calculated. Census-based population attributes were used to characterize measures of geographic access for sociodemographic groups. From the 62 NCI cancer centers providing clinical care in 2014, 76 unique parent locations and 211 satellite locations were mapped. The overall proportion of the population within 60 minutes of a facility was 22% for parent facilities and 32.7% for satellite facilities. When satellites were included for potential access, the proportion of some racial groups for which a satellite was the closest NCI cancer center facility increased notably (Native Americans, 22.6% with parent facilities and 39.7% with satellite facilities; whites, 34.8% with parent facilities and 50.3% with satellite facilities; and Asians, 40.0% with parent facilities and 54.0% with satellite facilities), with less marked increases for Hispanic and black populations. Rural populations of all categories had dramatically low proportions living within 60 minutes of an NCI cancer center facility of any type (1.0%-6.6%). Approximately 14% of the population (n = 43,033,310) lived more than 180 minutes from a parent or satellite facility, and most of these individuals were Native Americans and/or rural residents (37% of Native Americans and 41.7% of isolated rural residents). Racial/ethnic and rural populations showed markedly improved geographic access to NCI cancer center care when satellite facilities were included. Cancer 2017;123:3305-11. © 2017 American Cancer Society. © 2017 American

  18. Transportable IOT measurement station for direct-broadcast satellites

    Science.gov (United States)

    Ulbricht, Michael

    A transportable 11.7-12.5-GHz flux-density measurement facility for use in the in-orbit testing (IOT) of the FRG TV-Sat direct-broadcast satellites is described. Major components include a 1.2-m-diameter antenna, the fluxmeter, a radiometer to determine atmospheric attenuation, a weather station, and a control and data-processing computer; all of the components are mounted on a 5.10 x 2.35 x 2.70-m trailer. IOT performance parameters include gain/temperature ratio 15.9 dB/K, measurement range -97 to -117 dBW/sq m, measurement accuracy less than 0.5 dB rms, and measurement rate 250-650 msec. Photographs and a block diagram are provided.

  19. Comparison of Satellite-Derived with Ground-Based Measurements of the Fluctuations of the Margins of Vatnajokull, Iceland 1973-1992

    Science.gov (United States)

    Williams, Richard S., Jr.; Hall, Dorothy K.; Sigurdsson, Oddur; Chien, Janet Y. L.

    1997-01-01

    Vatnajokull, Iceland, is the Earth's most studied ice cap and represents a classical glaciological field site on the basis of S. Palsson's seminal glaciological field research in the late 18th century. Since the 19th century, Vatnajokull has been the focus of an array of glaciological studies by scientists from many nations, including many remote-sensing investigations since 1951. Landsat-derived positions of the termini of 11 outlet glaciers of Vatnajokull were compared with frontal positions of six of these 11 outlet glaciers determined by field observations during the period 1973-92. The largest changes during the 19 year period (1973-92) occurred in the large lobate, surge-type outlet glaciers along the southwestern, western, and northern margins of Vatnajokull, Tungnaarjokull receded - 1413 +/- 112 m (1380 +/- 1 m from ground observations), and Bruarjokull receded -1975 +/- 191 m (-2096 +/- 5 m from extrapolated ground observations) between 1973 and 1992. Satellite images can be used to delineate glacier margin changes on a time-lapse basis, if the glacier margin can be spectrally discriminated from terminal moraines and sandur deposits and if the advance/recession is larger than maximum image pixel size. "Local knowledge" of glaciers is critically important, however, in the accurate delineation of glacier margins on Landsat images.

  20. Comparison of satellite-derived with ground-based measurements of the fluctuations of the margins of Vatnajokull, Iceland, 1973-92

    Science.gov (United States)

    Williams, R.S.; Hall, D.K.; Sigurbsson, O.; Chien, J.Y.L.

    1997-01-01

    Vatnajo??kull, Iceland, is the Earth's most studied ice cap and represents a classical glaciological field site on the basis of S. Pa??lsson's seminal glaciological field research in the late 18th century. Since the 19th century, Vatnajo??kull has been the focus of an array of glaciological studies by scientists from many nations, including many remotesensing investigations since 1951. Landsat-derived positions of the termini of 11 outlet glaciers of Vatnajo??kull were compared with frontal positions of six of these 11 outlet glaciers determined by field observations during the period 1973-92. The largest changes during the 19 year period (1973-92) occurred in the large lobate, surge-type outlet glaciers along the southwestern, western, and northern margins of Vatnajo??kull. Tungnaa??rjo??kull receded - 1413 ?? 112 m (-1380 ?? l m from ground observations), and Bru??arjo??kull receded -1975 ?? 191 m (-2096 ?? 5 m from extrapolated ground observations) between 1973 and 1992. Satellite images can be used to delineate glacier margin changes on a time-lapse basis, if the glacier margin can be spectrally discriminated from terminal moraines and sandur deposits and if the advance/recession is larger than maximum image pixel size. "Local knowledge" of glaciers is critically important, however, in the accurate delineation of glacier margins on Landsat images.

  1. Global trends in satellite-based emergency mapping.

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-07-15

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  2. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-01-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  3. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-07-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  4. Performance tests of a satellite-based asymmetric communication network for the 'hyper hospital'.

    Science.gov (United States)

    Yamaguchi, T

    1997-01-01

    The Hyper Hospital is a prototype networked telemedicine system which uses virtual reality. We measured the performance of a novel multimedia network based on satellite communications. The network was a hybrid system consisting of a satellite channel in one direction and a terrestrial channel in the other. Each user was equipped with a standard satellite communication receiver and a telephone connection. Requests from the users were sent by modern and telephone line and responses were received by satellite. The user requests were initiated by clicking buttons on a World Wide Web browser screen. The transmission rates of satellite and normal telephone-line communications were compared for standardized text data. Satellite communication was three to five times faster. The transmission rate was also measured for standardized graphical data (GIF format). With a file size of about 400 kByte, satellite-mediated communication was 10 times faster than telephone lines. The effect of simultaneous access on performance was also explored. For simultaneous access of nine users to a single graphics file, 78% of the transmission speed was obtained in comparison with that of a single user. The satellite-based system showed excellent high-speed communication performance, particularly for multimedia data.

  5. Measuring thermal budgets of active volcanoes by satellite remote sensing

    Science.gov (United States)

    Glaze, L.; Francis, P. W.; Rothery, D. A.

    1989-01-01

    Thematic Mapper measurements of the total radiant energy flux Q at Lascar volcano in north Chile for December 1984 are reported. The results are consistent with the earlier suggestion that a lava lake is the source of a reported thermal budget anomaly, and with values for 1985-1986 that are much lower, suggesting that fumarolic activity was then a more likely heat source. The results show that satellite remote sensing may be used to monitor the activity of a volcano quantitatively, in a way not possible by conventional ground studies, and may provide a method for predicting eruptions.

  6. Total ozone retrieval from satellite multichannel filter radiometer measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lovill, J.E.; Sullivan, T.J.; Weichel, R.L.; Ellis, J.S.; Huebel, J.G.; Korver, J.; Weidhaas, P.P.; Phelps, F.A.

    1978-05-25

    A total ozone retrieval model has been developed to process radiance data gathered by a satellite-mounted multichannel filter radiometer (MFR). Extensive effort went into theoretical radiative transfer modeling, a retrieval scheme was developed, and the technique was applied to the MFR radiance measurements. The high quality of the total ozone retrieval results was determined through comparisons with Dobson measurements. Included in the report are global total ozone maps for 20 days between May 12 and July 5, 1977. A comparison of MFR results for 13 days in June 1977 with Dobson spectrophotometer measurements of ozone for the same period showed good agreement: there was a root-mean-square difference of 6.2% (equivalent to 20.2 m.atm.cm). The estimated global total ozone value for June 1977 (296 m.atm.cm) was in good agreement with satellite backscatter ultraviolet data for June 1970 (304 m.atm.cm) and June 1971 (preliminary data--299 m.atm.cm).

  7. Digital, Satellite-Based Aeronautical Communication

    Science.gov (United States)

    Davarian, F.

    1989-01-01

    Satellite system relays communication between aircraft and stations on ground. System offers better coverage with direct communication between air and ground, costs less and makes possible new communication services. Carries both voice and data. Because many data exchanged between aircraft and ground contain safety-related information, probability of bit errors essential.

  8. Model-based satellite image fusion

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Sveinsson, J. R.; Nielsen, Allan Aasbjerg

    2008-01-01

    A method is proposed for pixel-level satellite image fusion derived directly from a model of the imaging sensor. By design, the proposed method is spectrally consistent. It is argued that the proposed method needs regularization, as is the case for any method for this problem. A framework for pixel...

  9. Delivery of satellite based broadband services

    Science.gov (United States)

    Chandrasekhar, M. G.; Venugopal, D.

    2007-06-01

    Availability of speedy communication links to individuals and organizations is essential to keep pace with the business and social requirements of this modern age. While the PCs have been continuously growing in processing speed and memory capabilities, the availability of broadband communication links still has not been satisfactory in many parts of the world. Recognizing the need to give fillip to the growth of broadband services and improve the broadband penetration, the telecom policies of different counties have placed special emphasis on the same. While emphasis is on the use of fiber optic and copper in local loop, satellite communications systems will play an important role in quickly establishing these services in areas where fiber and other communication systems are not available and are not likely to be available for a long time to come. To make satellite communication systems attractive for the wide spread of these services in a cost effective way special emphasis has to be given on factors affecting the cost of the bandwidth and the equipment. As broadband services are bandwidth demanding, use of bandwidth efficient modulation technique and suitable system architecture are some of the important aspects that need to be examined. Further there is a need to re-look on how information services are provided keeping in view the user requirements and broadcast capability of satellite systems over wide areas. This paper addresses some of the aspects of delivering broadband services via satellite taking Indian requirement as an example.

  10. Evolution processes of a group of equatorial plasma bubble (EPBs) simultaneously observed by ground-based and satellite measurements in the equatorial region of China

    Science.gov (United States)

    Sun, Longchang; Xu, Jiyao; Wang, Wenbin; Yuan, Wei; Zhu, Yajun

    2017-04-01

    This paper for the first time reports conjugate observations of a group of evolving equatorial plasma bubbles (EPBs) generated in the longitudinal sector of China on 4/5 November 2013 using simultaneous airglow and Communication/Navigation Outage Forecasting System (C/NOFS) observations. The airglow depletion structures seen by two all-sky airglow imagers had the same zonal wavelength as that of the longitudinally periodic electron density depletions observed by the C/NOFS satellite which occurred at almost the same time but at magnetically conjugate latitudes. Data from a VHF radar and a Digisonde were combined to investigate the evolution of the EPB group, including their generation, development, and dissipation. Results indicate that the EPB group developed from the bottomside large-scale wave-like structure (LSWS) at about 195-210 km height with a characteristic zonal wavelength and longitudinal extension of about 450 km and 2250 km, respectively. The EPB group also caused periodic bottomside type spread F associated with the LSWS. We found that the development of the EPB group and their associated spread F could be limited by the equatorward motion of equatorial ionization anomaly (EIA) and the southwestward motion of an extremely bright airglow region (SMEBAR). The SMEBAR is a newly discovered structure of plasma density increase but not a plasma blob reported before. Both EIA and SMEBAR could feed high plasma density into an EPB airglow depletion structure that was eventually seen as a bright airglow structure or disappeared. Meanwhile, spread F associated with the EPBs did not evolve from the bottomside type into the strong range type.

  11. Simulation and Analysis of Autonomous Time Synchronization Based on Asynchronism Two-way Inter-satellite Link

    Science.gov (United States)

    Fang, L.; Yang, X. H.; Sun, B. Q.; Qin, W. J.; Kong, Y.

    2013-09-01

    The measurement of the inter-satellite link is one of the key techniques in the autonomous operation of satellite navigation system. Based on the asynchronism inter-satellite two-way measurement mode in GPS constellation, the reduction formula of the inter-satellite time synchronization is built in this paper. Moreover, the corrective method of main systematic errors is proposed. Inter-satellite two-way time synchronization is simulated on the basis of IGS (International GNSS Service) precise ephemeris. The impacts of the epoch domestication of asynchronism inter-satellite link pseudo-range, the initial orbit, and the main systematic errors on satellite time synchronization are analyzed. Furthermore, the broadcast clock error of each satellite is calculated by the ``centralized'' inter-satellite autonomous time synchronization. Simulation results show that the epoch domestication of asynchronism inter-satellite link pseudo-range and the initial orbit have little impact on the satellite clock errors, and thus they needn't be taken into account. The errors caused by the relativistic effect and the asymmetry of path travel have large impact on the satellite clock errors. These should be corrected with theoretical formula. Compared with the IGS precise clock error, the root mean square of the broadcast clock error of each satellite is about 0.4 ns.

  12. Introducing multisensor satellite radiance-based evaluation for regional Earth System modeling

    Science.gov (United States)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; Aires, F.

    2014-07-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  13. Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling

    Science.gov (United States)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; hide

    2014-01-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  14. Global distribution of pauses observed with satellite measurements

    Indian Academy of Sciences (India)

    M Venkat Ratnam; P Kishore; Isabella Velicogna

    2013-04-01

    Several studies have been carried out on the tropopause, stratopause, and mesopause (collectively termed as ‘pauses’) independently; however, all the pauses have not been studied together. We present global distribution of altitudes and temperatures of these pauses observed with long-term space borne high resolution measurements of Global Positioning System (GPS) Radio Occultation (RO) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) aboard Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. Here we study the commonality and differences observed in the variability of all the pauses. We also examined how good other datasets will represent these features among (and in between) different satellite measurements, re-analysis, and model data. Hemispheric differences observed in all the pauses are also reported. In addition, we show that asymmetries between northern and southern hemispheres continue up to the mesopause. We analyze inter and intra-seasonal variations and long-term trends of these pauses at different latitudes. Finally, a new reference temperature profile is shown from the ground to 110 km for tropical, mid-latitudes, and polar latitudes for both northern and southern hemispheres.

  15. Co-Channel Interference Mitigation Using Satellite Based Receivers

    Science.gov (United States)

    2014-12-01

    While there is some phase noise present in the continuous time-shifted signal, it is important to recognize that this signal is plotted over the [−π...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS CO-CHANNEL INTERFERENCE MITIGATION USING SATELLITE BASED RECEIVERS by John E. Patterson...07-02-2012 to 12-19-2014 4. TITLE AND SUBTITLE CO-CHANNEL INTERFERENCE MITIGATION USING SATELLITE BASED RE- CEIVERS 5. FUNDING NUMBERS 6. AUTHOR(S

  16. Modeling Navigation System Performance of a Satellite-Observing Star Tracker Tightly Integrated with an Inertial Measurement Unit

    Science.gov (United States)

    2015-03-26

    Hancock, R.C. Stirbl, and B. Pain. “ Active pixel sensor (APS) based star tracker ”. Aerospace Conference, 1998 IEEE, volume 1, 119–127 vol.1. 1998...Modeling Navigation System Performance of a Satellite-Observing Star Tracker Tightly Integrated with an Inertial Measurement Unit DISSERTATION Scott...Navigation System Performance of a Satellite-Observing Star Tracker Tightly Integrated with an Inertial Measurement Unit DISSERTATION Presented to the

  17. Efficient chaotic based satellite power supply subsystem

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Turci, Luiz Felipe [Technological Institute of Aeronautics (ITA), Sao Jose dos Campos, SP (Brazil)], E-mail: felipeturci@yahoo.com.br; Macau, Elbert E.N. [National Institute of Space Research (Inpe), Sao Jose dos Campos, SP (Brazil)], E-mail: elbert@lac.inpe.br; Yoneyama, Takashi [Technological Institute of Aeronautics (ITA), Sao Jose dos Campos, SP (Brazil)], E-mail: takashi@ita.br

    2009-10-15

    In this work, we investigate the use of the Dynamical System Theory to increase the efficiency of the satellite power supply subsystems. The core of a satellite power subsystem relies on its DC/DC converter. This is a very nonlinear system that presents a multitude of phenomena ranging from bifurcations, quasi-periodicity, chaos, coexistence of attractors, among others. The traditional power subsystem design techniques try to avoid these nonlinear phenomena so that it is possible to use linear system theory in small regions about the equilibrium points. Here, we show that more efficiency can be drawn from a power supply subsystem if the DC/DC converter operates in regions of high nonlinearity. In special, if it operates in a chaotic regime, is has an intrinsic sensitivity that can be exploited to efficiently drive the power subsystem over high ranges of power requests by using control of chaos techniques.

  18. The Measurement of Landfill Gas Emissions with the Orbiting Carbon Observatory and CarbonSAT Satellites

    Science.gov (United States)

    Vigil, S. A.; Bovensmann, H.

    2010-12-01

    Landfill gas is a significant contributor to anthropogenic emissions of CH4 and CO2. The U.S. Environmental Protection Agency has estimated the total U.S. 2007 emissions of the CH4 component of landfill gas at 132.9 Tg CO2 Equivalent. This compares to total CH4 emission from all US sources in 2007 at 585.3 Tg CO2 Equivalent. Worldwide CH4 emissions from landfill gas have been estimated at 668 Tg CO2 Equivalent. Satellite remote sensing can also be used to characterize landfill gas emissions. The NASA Orbiting Carbon Observatory (OCO-2) and the proposed CarbonSAT (University of Bremen) satellites are particularly suited for this purpose. The Orbiting Carbon Observatory (OCO) was designed to provided high spatial resolution ( developed countries. In general, landfills in the developed countries have landfill gas control system ground based landfill gas monitoring systems. These ground-based measurements can be used to calibrate OCO-2 and CarbonSAT landfill gas measurements. OCO-2 and CarbonSAT can be used to measure landfill emissions from the large landfills and open dumps of the emerging megacities in the developing world where accurate ground measurements are not available. For example Mexico City generates 26,000 MT of municipal solid waste that is disposed of in two uncontrolled landfills. Similar conditions exist in Asia, Latin America, and Africa. Satellite based measurements of these landfill gas emissions could help prioritize greenhouse gas remediation projects for these countries.

  19. MEaSUREs Land Surface Temperature from GOES Satellites

    Science.gov (United States)

    Pinker, Rachel T.; Chen, Wen; Ma, Yingtao; Islam, Tanvir; Borbas, Eva; Hain, Chris; Hulley, Glynn; Hook, Simon

    2017-04-01

    Information on Land Surface Temperature (LST) can be generated from observations made from satellites in low Earth orbit (LEO) such as MODIS and ASTER and by sensors in geostationary Earth orbit (GEO) such as GOES. Under a project titled: "A Unified and Coherent Land Surface Temperature and Emissivity Earth System Data Record for Earth Science" led by Jet Propulsion Laboratory, an effort is underway to develop long term consistent information from both such systems. In this presentation we will describe an effort to derive LST information from GOES satellites. Results will be presented from two approaches: 1) based on regression developed from a wide range of simulations using MODTRAN, SeeBor Version 5.0 global atmospheric profiles and the CAMEL (Combined ASTER and MODIS Emissivity for Land) product based on the standard University of Wisconsin 5 km emissivity values (UWIREMIS) and the ASTER Global Emissivity Database (GED) product; 2) RTTOV radiative transfer model driven with MERRA-2 reanalysis fields. We will present results of evaluation of these two methods against various products, such as MOD11, and ground observations for the five year period of (2004-2008).

  20. Sub-visual cirrus LIDAR measurements for satellite masking improvement

    Science.gov (United States)

    Landulfo, Eduardo; Larroza, Eliane G.; Lopes, Fábio J. S.; de Jesus, Wellington C.; Bottino, Marcus; Nakaema, Walter M.; Steffens, Juliana

    2008-10-01

    Understanding the impact of cirrus cloud on modifying both the solar reflected and terrestrial emitted radiations is crucial for climate studies. Unlike most boundary layer stratus and stratocumulus clouds that have a net cooling effect on the climate, high-level thin cirrus clouds have a warming effect on our climate. However, the satellites as GOES from the NOAA series are limited to the cloud top and its reflectivity or brightness temperature, without assessing accurately the optical depth or physical thickness. Other more recent sensors as MODIS are able to determine optical depths for aerosols and clouds but when related to cirrus they are still inaccurate. Research programs as First ISCCP, FIRE, HOIST, ECLIPS and ARM have concentrated efforts in the research of cirrus, being based mainly on the observations of combined terrestrial remote sensing and airplanes instruments. LIDARs are able to detect sub-visual cirrus cloud (SVCs) in altitudes above 15 km and estimate exactly their height, thickness and optical depth, contributing with information for satellites sensors and radiative transfer models. In order to research characteristics of SVCs, the LIDAR system at Instituto de Pesquisas Energeticas e Nucleares has as objective to determine such parameters and implement a cirrus cloud mask that could be used in the satellite images processing as well as in the qualitative improvement of the radiative parameters for numerical models of climate changes. The first preliminary study shows where we compare the data lidar with Brightness temperature differences between the split-window data from GOES-10 (DSA/INPE) and CALIPSO.

  1. Influence of synoptic meteorological conditions on urban air quality -A study over Hyderabad, India using satellite data and ground based measurements

    Science.gov (United States)

    Rani Sharma, Anu; Kharol, Shailesh Kumar; Kvs, Badarinath

    Urban areas were considered to be a major source of atmospheric pollution due to popula-tion growth, migration, increasing industrialization and energy use particularly in developing countries. The air quality in urban areas is governed by temporal distribution of emissions from various activities in the city, the topography, and the weather, including atmospheric circulation patterns in the region. The extensive coastal belt of India is very vulnerable to low pressure systems in the Bay of Bengal (BoB) or the Arabian Sea. Most importantly, the formation of a low pressure system in the ocean is one of the most prominent weather systems characterized by high atmospheric pressure gradients and wind. In the present study, variation in aerosol properties and ground reaching solar irradiance were analyzed over a tropical urban environment of Hyderabad associated with a low pressure system during December, 3-10, 2008 over Bay of Bengal (BoB). The low pressure system formed over southeast BoB on Decem-ber 4, 2008, moved westwards and lay centered at 23:30 Indian Standard Time. The study area of Hyderabad is located between 17° 10' and 17° 50' N latitude and 78° 10' and 78° 50' E longitude, in the southeastern part of the Indian region, 300 km from the BoB. Synchronous measurements of aerosol optical depth were carried out using handheld MICROTOPS -II in the premises of the National Remote Sensing Centre (NRSC) campus located at Balanagar, Hyderabad. Along with the daytime measurements of AOD500, continuous measurements of the vertical profile of aerosols and planetary boundary layer were carried out using a portable micropulse lidar (MPL) system at 532 nm. An ultraviolet (UV)-B radiometer from Solar Light Company was used to measure UVery in the range 280-320 nm. Continuous measurements of the Particulate-matter (PM) size distributions were performed with GRIMM aerosol spectrom-eter model 1-108. Ground-reaching solar radiation in 310 to 2800 nm broadband was carried

  2. Autonomous sensor-based dual-arm satellite grappling

    Science.gov (United States)

    Wilcox, Brian; Tso, Kam; Litwin, Todd; Hayati, Samad; Bon, Bruce

    1989-01-01

    Dual-arm satellite grappling involves the integration of technologies developed in the Sensing and Perception (S&P) Subsystem for object acquisition and tracking, and the Manipulator Control and Mechanization (MCM) Subsystem for dual-arm control. S&P acquires and tracks the position, orientation, velocity, and angular velocity of a slowly spinning satellite, and sends tracking data to the MCM subsystem. MCM grapples the satellite and brings it to rest, controlling the arms so that no excessive forces or torques are exerted on the satellite or arms. A 350-pound satellite mockup which can spin freely on a gimbal for several minutes, closely simulating the dynamics of a real satellite is demonstrated. The satellite mockup is fitted with a panel under which may be mounted various elements such as line replacement modules and electrical connectors that will be used to demonstrate servicing tasks once the satellite is docked. The subsystems are housed in three MicroVAX II microcomputers. The hardware of the S&P Subsystem includes CCD cameras, video digitizers, frame buffers, IMFEX (a custom pipelined video processor), a time-code generator with millisecond precision, and a MicroVAX II computer. Its software is written in Pascal and is based on a locally written vision software library. The hardware of the MCM Subsystem includes PUMA 560 robot arms, Lord force/torque sensors, two MicroVAX II computers, and unimation pneumatic parallel grippers. Its software is written in C, and is based on a robot language called RCCL. The two subsystems are described and test results on the grappling of the satellite mockup with rotational rates of up to 2 rpm are provided.

  3. Accuracy of Satellite-Measured Wave Heights in the Australian Region for Wave Power Applications

    Science.gov (United States)

    Meath, Sian E.; Aye, Lu; Haritos, Nicholas

    2008-01-01

    This article focuses on the accuracy of satellite data, which may then be used in wave power applications. The satellite data are compared to data from wave buoys, which are currently considered to be the most accurate of the devices available for measuring wave characteristics. This article presents an analysis of satellite- (Topex/Poseidon) and…

  4. Moving Target Information Extraction Based on Single Satellite Image

    Directory of Open Access Journals (Sweden)

    ZHAO Shihu

    2015-03-01

    Full Text Available The spatial and time variant effects in high resolution satellite push broom imaging are analyzed. A spatial and time variant imaging model is established. A moving target information extraction method is proposed based on a single satellite remote sensing image. The experiment computes two airplanes' flying speed using ZY-3 multispectral image and proves the validity of spatial and time variant model and moving information extracting method.

  5. Ice Mass Change in Greenland and Antarctica Between 1993 and 2013 from Satellite Gravity Measurements

    Science.gov (United States)

    Talpe, Matthieu J.; Nerem, R. Steven; Forootan, Ehsan; Schmidt, Michael; Lemoine, Frank G.; Enderlin, Ellyn M.; Landerer, Felix W.

    2017-01-01

    We construct long-term time series of Greenland and Antarctic ice sheet mass change from satellite gravity measurements. A statistical reconstruction approach is developed based on a principal component analysis (PCA) to combine high-resolution spatial modes from the Gravity Recovery and Climate Experiment (GRACE) mission with the gravity information from conventional satellite tracking data. Uncertainties of this reconstruction are rigorously assessed; they include temporal limitations for short GRACE measurements, spatial limitations for the low-resolution conventional tracking data measurements, and limitations of the estimated statistical relationships between low- and high-degree potential coefficients reflected in the PCA modes. Trends of mass variations in Greenland and Antarctica are assessed against a number of previous studies. The resulting time series for Greenland show a higher rate of mass loss than other methods before 2000, while the Antarctic ice sheet appears heavily influenced by interannual variations.

  6. Ocean tidal signals in observatory and satellite magnetic measurements

    DEFF Research Database (Denmark)

    Maus, S.; Kuvshinov, A.

    2004-01-01

    Ocean flow moves sea water through the Earth's magnetic field, inducing electric fields, currents and secondary magnetic fields. These motionally induced magnetic fields have a potential for the remote sensing of ocean flow variability. A first goal must be to gain a better understanding...... of magnetic field generation by tidal ocean flow. We predict the motionally induced magnetic fields for the six major tidal constituents and compare their amplitudes with the spectra of night time observatory and satellite magnetic measurements for the Indian Ocean. The magnetic variations at the solar S2, K1......, and P1 periods turn out to be dominated by unrelated external fields. In contrast, observed lunar M2 and N2 tidal signals are in fair agreement with predictions from motional induction. The lunar diurnal O1 signal, visible at some observatories, could be caused by ocean flow but disagrees in amplitude...

  7. Satellite measurements of formaldehyde linked to shipping emissions

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2009-11-01

    Full Text Available International shipping is recognized as a pollution source of growing importance, in particular in the remote marine boundary layer. Nitrogen dioxide originating from ship emissions has previously been detected in satellite measurements. This study presents the first satellite measurements of formaldehyde (HCHO linked to shipping emissions as derived from observations made by the Global Ozone Monitoring Experiment (GOME instrument.

    We analyzed enhanced HCHO tropospheric columns from shipping emissions over the Indian Ocean between Sri Lanka and Sumatra. This region offers good conditions in term of plume detection with the GOME instrument as all ship tracks follow a single narrow track in the same east-west direction as used for the GOME pixel scanning. The HCHO signal alone is weak but could be clearly seen in the high-pass filtered data. The line of enhanced HCHO in the Indian Ocean as seen in the 7-year composite of cloud free GOME observations clearly coincides with the distinct ship track corridor from Sri Lanka to Indonesia. The observed mean HCHO column enhancement over this shipping route is about 2.0×1015 molec/cm2.

    Compared to the simultaneously observed NO2 values over the shipping route, those of HCHO are substantially higher; also the HCHO peaks are found at larger distance from the ship routes. These findings indicate that direct emissions of HCHO or degradation of emitted NMHC cannot explain the observed enhanced HCHO values. One possible reason might be increased CH4 degradation due to enhanced OH concentrations related to the ship emissions, but this source is probably too weak to fully explain the observed values.

    The observed HCHO pattern also agrees qualitatively well with results from the coupled earth system model ECHAM5/MESSy applied to atmospheric chemistry (EMAC. However, the modelled HCHO values over the ship corridor are two times lower than in the

  8. DIGITAL VIDEO BROADCAST RETURN CHANNEL VIA SATELLITE (DVB-RCS HUB FOR SATELLITE BASED E-LEARNING

    Directory of Open Access Journals (Sweden)

    N.G.Vasantha Kumar

    2011-02-01

    Full Text Available This paper discusses in-house designed and developed scale-down DVB-RCS hub along with the performance of the realized hub. This development is intended to support the Satellite Based e-Learning initiative in India. The scale-down DVB-RCS HUB is implemented around a single PC with other subsystems making it very cost effective and unique of its kind. This realization will drastically reduce the total cost of Satellite based Education Networks as very low cost commercially available Satellite Interactive Terminals (SITs complying to open standard could be used at remote locations. The system is successfully tested to work with a commercial SIT using a GEO satellite EDUSAT which is especially dedicated for satellite based e-Learning. The internal detail of the DVB-RCS Forward and Return Link Organization and how it manages the Satellite Interactive Terminals access to the satellite channel using MF-TDMA approach has been described.

  9. Technology status of HNF-based monopropellants for satellite propulsion

    NARCIS (Netherlands)

    Marée, A.G.M.; Moerel, J.L.P.A.; Weiland-Veltmans, W.H.M.; Wierkx, F.J.M.; Zevenbergen, J.

    2004-01-01

    This paper reports on significant technological progress made over the last few years in determining the feasibility of HNF-based monopropellants. An HNF-based monopropellant is an interesting alternative for hydrazine as monopropellant for satellite propulsion. New non-toxic monopropellants based o

  10. Technology status of HNF-based monopropellants for satellite propulsion

    NARCIS (Netherlands)

    Marée, A.G.M.; Moerel, J.L.P.A.; Weiland-Veltmans, W.H.M.; Wierkx, F.J.M.; Zevenbergen, J.

    2004-01-01

    This paper reports on significant technological progress made over the last few years in determining the feasibility of HNF-based monopropellants. An HNF-based monopropellant is an interesting alternative for hydrazine as monopropellant for satellite propulsion. New non-toxic monopropellants based o

  11. Simultaneous ground- and satellite-based observation of MF/HF auroral radio emissions

    Science.gov (United States)

    Sato, Yuka; Kumamoto, Atsushi; Katoh, Yuto; Shinbori, Atsuki; Kadokura, Akira; Ogawa, Yasunobu

    2016-05-01

    We report on the first simultaneous measurements of medium-high frequency (MF/HF) auroral radio emissions (above 1 MHz) by ground- and satellite-based instruments. Observational data were obtained by the ground-based passive receivers in Iceland and Svalbard, and by the Plasma Waves and Sounder experiment (PWS) mounted on the Akebono satellite. We observed two simultaneous appearance events, during which the frequencies of the auroral roar and MF bursts detected at ground level were different from those of the terrestrial hectometric radiation (THR) observed by the Akebono satellite passing over the ground-based stations. This frequency difference confirms that auroral roar and THR are generated at different altitudes across the F peak. We did not observe any simultaneous observations that indicated an identical generation region of auroral roar and THR. In most cases, MF/HF auroral radio emissions were observed only by the ground-based detector, or by the satellite-based detector, even when the satellite was passing directly over the ground-based stations. A higher detection rate was observed from space than from ground level. This can primarily be explained in terms of the idea that the Akebono satellite can detect THR emissions coming from a wider region, and because a considerable portion of auroral radio emissions generated in the bottomside F region are masked by ionospheric absorption and screening in the D/E regions associated with ionization which results from auroral electrons and solar UV radiation.

  12. Combining satellite, aerial and ground measurements to assess forest carbon stocks in Democratic Republic of Congo

    Science.gov (United States)

    Beaumont, Benjamin; Bouvy, Alban; Stephenne, Nathalie; Mathoux, Pierre; Bastin, Jean-François; Baudot, Yves; Akkermans, Tom

    2015-04-01

    Monitoring tropical forest carbon stocks changes has been a rising topic in the recent years as a result of REDD+ mechanisms negotiations. Such monitoring will be mandatory for each project/country willing to benefit from these financial incentives in the future. Aerial and satellite remote sensing technologies offer cost advantages in implementing large scale forest inventories. Despite the recent progress made in the use of airborne LiDAR for carbon stocks estimation, no widely operational and cost effective method has yet been delivered for central Africa forest monitoring. Within the Maï Ndombe region of Democratic Republic of Congo, the EO4REDD project develops a method combining satellite, aerial and ground measurements. This combination is done in three steps: [1] mapping and quantifying forest cover changes using an object-based semi-automatic change detection (deforestation and forest degradation) methodology based on very high resolution satellite imagery (RapidEye), [2] developing an allometric linear model for above ground biomass measurements based on dendrometric parameters (tree crown areas and heights) extracted from airborne stereoscopic image pairs and calibrated using ground measurements of individual trees on a data set of 18 one hectare plots and [3] relating these two products to assess carbon stocks changes at a regional scale. Given the high accuracies obtained in [1] (> 80% for deforestation and 77% for forest degradation) and the suitable, but still to be improved with a larger calibrating sample, model (R² of 0.7) obtained in [2], EO4REDD products can be seen as a valid and replicable option for carbon stocks monitoring in tropical forests. Further improvements are planned to strengthen the cost effectiveness value and the REDD+ suitability in the second phase of EO4REDD. This second phase will include [A] specific model developments per forest type; [B] measurements of afforestation, reforestation and natural regeneration processes and

  13. A Novel Sampling Method for Satellite-Based Offshore Wind Resource Estimation

    DEFF Research Database (Denmark)

    Badger, Merete; Badger, Jake; Hasager, Charlotte Bay

    Synthetic aperture radar (SAR) measurements from satellites can be used to estimate the spatial wind speed variation offshore in great detail. The radar senses cm-scale roughness at the sea surface which can be translated to wind speed at the height 10 m using an empirical geophysical model......-based wind climatology have improved gradually as more data were collected. The satellite scenes have been treated as random samples and weighted equally in our previous analyses. Here we introduce a novel sampling strategy based on the wind class methodology that is normally applied in numerical modeling...... climatologically representative large-scale meteorological conditions for the region of interest. The wind classes are used to make the most representative selection of satellite images from the ENVISAT image catalogue. A minimum of one satellite image is chosen per wind class. The frequency of occurrence of each...

  14. Retrieval of HCFC-142b (CH3CClF2) from ground-based high-resolution infrared solar spectra: Atmospheric increase since 1989 and comparison with surface and satellite measurements

    Science.gov (United States)

    Mahieu, Emmanuel; Lejeune, Bernard; Bovy, Benoît; Servais, Christian; Toon, Geoffrey C.; Bernath, Peter F.; Boone, Christopher D.; Walker, Kaley A.; Reimann, Stefan; Vollmer, Martin K.; O'Doherty, Simon

    2017-01-01

    We have developed an approach for retrieving HCFC-142b (CH3CClF2) from ground-based high-resolution infrared solar spectra, using its ν7 band Q branch in the 900-906 cm-1 interval. Interferences by HNO3, CO2 and H2O have to be accounted for. Application of this approach to observations recorded within the framework of long-term monitoring activities carried out at the northern mid-latitude, high-altitude Jungfraujoch station in Switzerland (46.5°N, 8.0°E, 3580 m above sea level) has provided a total column times series spanning the 1989 to mid-2015 time period. A fit to the HCFC-142b daily mean total column time series shows a statistically-significant long-term trend of (1.23±0.08×1013 molec cm-2) per year from 2000 to 2010, at the 2-σ confidence level. This corresponds to a significant atmospheric accumulation of (0.94±0.06) ppt (1 ppt=1/1012) per year for the mean tropospheric mixing ratio, at the 2-σ confidence level. Over the subsequent time period (2010-2014), we note a significant slowing down in the HCFC-142b buildup. Our ground-based FTIR (Fourier Transform Infrared) results are compared with relevant data sets derived from surface in situ measurements at the Mace Head and Jungfraujoch sites of the AGAGE (Advanced Global Atmospheric Gases Experiment) network and from occultation measurements by the ACE-FTS (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer) instrument on-board the SCISAT satellite.

  15. APPLICATION OF VISION METROLOGY TO IN-ORBIT MEASUREMENT OF LARGE REFLECTOR ONBOARD COMMUNICATION SATELLITE FOR NEXT GENERATION MOBILE SATELLITE COMMUNICATION

    Directory of Open Access Journals (Sweden)

    M. Akioka

    2016-06-01

    Full Text Available Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1 Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order

  16. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    Science.gov (United States)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial

  17. On applicability of the photochemical-equilibrium approach for retrieval of O and H mesospheric distributions from the satellite-based measurements of the airglow emission and ozone concentration

    Science.gov (United States)

    Feigin, Alexander; Belikovich, Mikhail; Kulikov, Mikhail

    2016-04-01

    Atomic oxygen and hydrogen are known to be among key components for the photochemistry and energy balance of the Earth's atmosphere between approximately 80 and 100 km altitude (mesopause region). Therefore, obtaining information about the vertical distributions of O and H concentrations is an important task in studies of this region. Solving of this problem is rather difficult due to the absence of regular methods which allow one to direct measurements of distributions of these components in mesosphere. However, indirect methods used to retrieve O and H distributions from the satellite-based measurements of the OH and O2(1D) airglow emission, as well as the data of IR and microwave O3 measurements have a sufficiently long development history. These methods are rooted in the use of the condition of photochemical equilibrium of ozone density in the range of altitudes from 50 to 100 km. A significant factor is that an insufficient volume of such measurement data forces researchers to use approximate ("truncated") photochemical-equilibrium conditions. In particular, it is assumed that in the daytime the ozone production reaction is perfectly balanced by ozone photodissociation, whereas during the night the only ozone sink is the reaction of ozone with atomic hydrogen, which, in its turn, leads to formation of excited OH and airglow emission of the latter. The presentation analyzes applicability of the photochemical-equilibrium conditions both in the total and truncated forms for description of the spatio-temporal evolution of mesospheric ozone during a year. The analysis is based on year-long time series generated by a 3D chemical transport model, which reproduces correctly various types of atmosphere dynamics in the range of altitudes from 50 to 100 km. These data are used to determine statistics of the ratio between the correct (calculated dynamically) distributions of the O3 density and its uncontracted and truncated equilibrium values for the conditions of the

  18. Validation of aerosol measurements by the satellite sensors SAM II and Sage

    Science.gov (United States)

    Russell, P. B.; Mccormick, M. P.; Swissler, T. J.

    1982-01-01

    A global data base on stratospheric aerosols has been obtained with the aid of the sensors SAM II and SAGE since the satellites carrying the sensors were launched in October 1978 and Feburary 1979, respectively. Several major comparative experiments have been conducted to acquire correlative data for validating the extinction profiles measured by these satellite sensors. The present investigation has the objective to present results from the first two of these experiments, which were conducted at Sondrestorm, Greenland, in November 1978, and at Poker Flat, Alaska, in July 1979. In both experiments, extinction profiles derived from the correlative sensors (dustsonde, lidar, filter, wire impactor) agreed, to within their respective uncertainties, with the extinction profiles measured by SAM II and SAGE (which in turn agreed with each other).

  19. A satellite based telemetry link for a UAV application

    Science.gov (United States)

    Bloise, Anthony

    1995-01-01

    The requirements for a satellite based communication facility to service the needs of the Geographical Information System (GIS) data collection community are addressed in this paper. GIS data is supplied in the form of video imagery at sub-television rates in one or more spectral bands / polarizations laced with a position correlated data stream. The limitations and vicissitudes of using a terrestrial based telecommunications link to collect GIS data are illustrated from actual mission scenarios. The expectations from a satellite based communications link by the geophysical data collection community concerning satellite architecture, operating bands, bandwidth, footprint agility, up link and down link hardware configurations on the UAV, the Mobile Control Vehicle and at the Central Command and Data Collection Facility comprise the principle issues discussed in the first section of this paper. The final section of the paper discusses satellite based communication links would have an increased volume and scope of services the GIS data collection community could make available to the GIS user community, and the price the data collection community could afford to pay for access to the communication satellite described in the paper.

  20. Image-processing techniques in precisely measuring positions of Saturn and its satellites

    Institute of Scientific and Technical Information of China (English)

    PENG; Qingyu; (彭青玉)

    2003-01-01

    After overcoming the deficiencies of previous image-processing techniques, a novel technique based on the edge-detection of Saturnian ring is developed to precisely measure Saturn's position. Furthermore, the scattering light (i.e. halo light) of Saturn and its ring is removed effectively based on its center symmetry. Therefore, we have much more opportunities to accurately measure the positions of Mimas and Enceladus-- two satellites very close to the Saturn. Experimental tests with 127 frames of CCD images obtained on the 1-meter telescope at the Yunnan Observatory over three nights show that the geometric center of the Saturnian ring and its 4 satellites (Tethys, Dione, Rhea and Titan) have the same positional precision, and the standard error for a single observation is less than ±0.05 arcsec. It is believed that these new techniques would have important impetus to the positional measurement of both Saturn by using a CCD meridian instrument and its faint satellites by using a long focal length telescope.

  1. Towards validation of ammonia (NH3 measurements from the IASI satellite

    Directory of Open Access Journals (Sweden)

    M. Van Damme

    2014-12-01

    Full Text Available Limited availability of ammonia (NH3 observations is currently a barrier for effective monitoring of the nitrogen cycle. It prevents a full understanding of the atmospheric processes in which this trace gas is involved and therefore impedes determining its related budgets. Since the end of 2007, the Infrared Atmospheric Sounding Interferometer (IASI satellite has been observing NH3 from space at a high spatiotemporal resolution. This valuable data set, already used by models, still needs validation. We present here a first attempt to validate IASI-NH3 measurements using existing independent ground-based and airborne data sets. The yearly distributions reveal similar patterns between ground-based and space-borne observations and highlight the scarcity of local NH3 measurements as well as their spatial heterogeneity and lack of representativity. By comparison with monthly resolved data sets in Europe, China and Africa, we show that IASI-NH3 observations are in fair agreement but that they are characterized by a smaller variation in concentrations. The use of hourly and airborne data sets to compare with IASI individual observations allows to investigate the impact of averaging as well as the representativity of independent observations for the satellite footprint. The importance of considering the latter and the added value of densely located airborne measurements at various altitudes to validate IASI-NH3 columns are discussed. Perspectives and guidelines for future validation work on NH3 satellite observations are presented.

  2. Direct measurements of laser light aberration from the ARTEMIS geostationary satellite through thin clouds

    CERN Document Server

    Kuzkov, Volodymyr; Sodnik, Zoran

    2015-01-01

    A precise ground based telescope system was developed for laser communication experiments with the geostationary satellite ARTEMIS of ESA. Precise tracking of the satellite was realized by using time resolved coordinates of the satellite. During the experiments, the time propagation of laser signal from the satellite and the point-ahead angle for the laser beam were calculated. Some laser experiments though thin clouds were performed. A splitting of some images of the laser beam from the satellite along declination and right ascension coordinates of telescope could be observed through thin clouds. The splitting along the declination coordinate may be interpreted as refraction in the atmosphere. The splitting along the right ascension coordinate is equivalent to the calculated point-ahead angle for the satellite. We find out that a small part of laser beam was observed ahead of the velocity vector in the point where the satellite would be after the laser light from the satellite reaches the telescope. These re...

  3. Monolithic sensors for low frequency motion measurement and control of spacecrafts and satellites

    Science.gov (United States)

    Barone, F.; Giordano, G.; Acernese, F.; Romano, R.

    2016-10-01

    In this paper we describe the characteristics and performances of a monolithic sensor designed for low frequency motion measurement and control of spacecrafts and satellites, whose mechanics is based on the UNISA Folded Pendulum. The latter, developed for ground-based applications, exhibits unique features (compactness, lightness, scalability, low resonance frequency and high quality factor), consequence of the action of the gravitational force on its inertial mass. In this paper we introduce and discuss the general methodology used to extend the application of ground-based folded pendulums to space, also in total absence of gravity, still keeping all their peculiar features and characteristics.

  4. Satellite-based assessment of yield variation and its determinants in smallholder African systems

    Science.gov (United States)

    Lobell, David B.

    2017-01-01

    The emergence of satellite sensors that can routinely observe millions of individual smallholder farms raises possibilities for monitoring and understanding agricultural productivity in many regions of the world. Here we demonstrate the potential to track smallholder maize yield variation in western Kenya, using a combination of 1-m Terra Bella imagery and intensive field sampling on thousands of fields over 2 y. We find that agreement between satellite-based and traditional field survey-based yield estimates depends significantly on the quality of the field-based measures, with agreement highest (R2 up to 0.4) when using precise field measures of plot area and when using larger fields for which rounding errors are smaller. We further show that satellite-based measures are able to detect positive yield responses to fertilizer and hybrid seed inputs and that the inferred responses are statistically indistinguishable from estimates based on survey-based yields. These results suggest that high-resolution satellite imagery can be used to make predictions of smallholder agricultural productivity that are roughly as accurate as the survey-based measures traditionally used in research and policy applications, and they indicate a substantial near-term potential to quickly generate useful datasets on productivity in smallholder systems, even with minimal or no field training data. Such datasets could rapidly accelerate learning about which interventions in smallholder systems have the most positive impact, thus enabling more rapid transformation of rural livelihoods. PMID:28202728

  5. Satellite laser ranging measurements in South Africa: Contributions to earth system sciences

    Directory of Open Access Journals (Sweden)

    Christina M. Botai

    2015-03-01

    Full Text Available This contribution reassesses progress in the development of satellite laser ranging (SLR technology and its scientific and societal applications in South Africa. We first highlight the current global SLR tracking stations within the framework of the International Laser Ranging Service (ILRS and the artificial satellites currently being tracked by these stations. In particular, the present work focuses on analysing SLR measurements at Hartebeesthoek Radio Astronomy Observatory (HartRAO, South Africa, based on the MOBLAS-6 SLR configuration. Generally, there is a weak geometry of ILRS stations in the southern hemisphere and the SLR tracking station at HartRAO is the only active ILRS station operating on the African continent. The SLR-derived products such as station positions and velocities, satellite orbits, components of earth's gravity field and their temporal variations, earth orientation parameters are collected, merged, achieved and distributed by the ILRS under the Crustal Dynamic Data Information System. These products are used in various research fields such as detection and monitoring of tectonic plate motion, crustal deformation, earth rotation, polar motion, and the establishment and monitoring of International Terrestrial Reference Frames, as well as modelling of the spatio-temporal variations of the earth's gravity field. The MOBLAS-6 tracking station is collocated with other geodetic techniques such as very long baseline interferometry and Global Navigation Satellite Systems, thus making this observatory a fiducial geodetic location. Some applications of the SLR data products are described within the context of earth system science.

  6. Multi-spectral band selection for satellite-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Clodius, W.B.; Weber, P.G.; Borel, C.C.; Smith, B.W.

    1998-09-01

    The design of satellite based multispectral imaging systems requires the consideration of a number of tradeoffs between cost and performance. The authors have recently been involved in the design and evaluation of a satellite based multispectral sensor operating from the visible through the long wavelength IR. The criteria that led to some of the proposed designs and the modeling used to evaluate and fine tune the designs will both be discussed. These criteria emphasized the use of bands for surface temperature retrieval and the correction of atmospheric effects. The impact of cost estimate changes on the final design will also be discussed.

  7. Benefits Derived From Laser Ranging Measurements for Orbit Determination of the GPS Satellite Orbit

    Science.gov (United States)

    Welch, Bryan W.

    2007-01-01

    While navigation systems for the determination of the orbit of the Global Position System (GPS) have proven to be very effective, the current research is examining methods to lower the error in the GPS satellite ephemerides below their current level. Two GPS satellites that are currently in orbit carry retro-reflectors onboard. One notion to reduce the error in the satellite ephemerides is to utilize the retro-reflectors via laser ranging measurements taken from multiple Earth ground stations. Analysis has been performed to determine the level of reduction in the semi-major axis covariance of the GPS satellites, when laser ranging measurements are supplemented to the radiometric station keeping, which the satellites undergo. Six ground tracking systems are studied to estimate the performance of the satellite. The first system is the baseline current system approach which provides pseudo-range and integrated Doppler measurements from six ground stations. The remaining five ground tracking systems utilize all measurements from the current system and laser ranging measurements from the additional ground stations utilized within those systems. Station locations for the additional ground sites were taken from a listing of laser ranging ground stations from the International Laser Ranging Service. Results show reductions in state covariance estimates when utilizing laser ranging measurements to solve for the satellite s position component of the state vector. Results also show dependency on the number of ground stations providing laser ranging measurements, orientation of the satellite to the ground stations, and the initial covariance of the satellite's state vector.

  8. Estimation of Satellite Orientation from Space Surveillance Imagery Measured with an Adaptive Optics Telescope

    Science.gov (United States)

    1996-12-01

    SATELLITE ORIENTATION FROM SPACE SURVEILLANCE IMAGERY MEASURED WITH AN ADAPTIVE OPTICS TELESCOPE THESIS Gregory E. Wood Lieutenant, USAF AFIT/GSO/ENP...the official policy or position of the Department of Defense or the U. S. Government. AFIT/GSO/ENP/96D-02 ESTIMATION OF SATELLITE ORIENTATION FROM...surveillance operations. xii ESTIMATION OF SATELLITE ORIENTATION FROM SPACE SURVEILLANCE IMAGERY MEASURED WITH AN ADAPTIVE OPTICS TELESCOPE

  9. Tracking target objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  10. Methods of Evaluating Thermodynamic Properties of Landscape Cover Using Multispectral Reflected Radiation Measurements by the Landsat Satellite

    Directory of Open Access Journals (Sweden)

    Yuriy Puzachenko

    2013-09-01

    Full Text Available The paper discusses methods of evaluating thermodynamic properties of landscape cover based on multi-spectral measurements by the Landsat satellites. Authors demonstrate how these methods could be used for studying functionality of landscapes and for spatial interpolation of Flux NET system measurements.

  11. Computer-aided evaluation of the railway track geometry on the basis of satellite measurements

    Science.gov (United States)

    Specht, Cezary; Koc, Władysław; Chrostowski, Piotr

    2016-05-01

    In recent years, all over the world there has been a period of intensive development of GNSS (Global Navigation Satellite Systems) measurement techniques and their extension for the purpose of their applications in the field of surveying and navigation. Moreover, in many countries a rising trend in the development of rail transportation systems has been noticed. In this paper, a method of railway track geometry assessment based on mobile satellite measurements is presented. The paper shows the implementation effects of satellite surveying railway geometry. The investigation process described in the paper is divided on two phases. The first phase is the GNSS mobile surveying and the analysis obtained data. The second phase is the analysis of the track geometry using the flat coordinates from the surveying. The visualization of the measured route, separation and quality assessment of the uniform geometric elements (straight sections, arcs), identification of the track polygon (main directions and intersection angles) are discussed and illustrated by the calculation example within the article.

  12. Global Land Surface Emissivity Retrieved From Satellite Ultraspectral IR Measurements

    Science.gov (United States)

    Zhou, D. K.; Larar, A. M.; Liu, Xu; Smith, W. L.; Strow, L. L.; Yang, Ping; Schlussel, P.; Calbet, X.

    2011-01-01

    Ultraspectral resolution infrared (IR) radiances obtained from nadir observations provide information about the atmosphere, surface, aerosols, and clouds. Surface spectral emissivity (SSE) and surface skin temperature from current and future operational satellites can and will reveal critical information about the Earth s ecosystem and land-surface-type properties, which might be utilized as a means of long-term monitoring of the Earth s environment and global climate change. In this study, fast radiative transfer models applied to the atmosphere under all weather conditions are used for atmospheric profile and surface or cloud parameter retrieval from ultraspectral and/or hyperspectral spaceborne IR soundings. An inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral IR sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface or cloud microphysical parameters. This inversion scheme has been applied to the Infrared Atmospheric Sounding Interferometer (IASI). Rapidly produced SSE is initially evaluated through quality control checks on the retrievals of other impacted surface and atmospheric parameters. Initial validation of retrieved emissivity spectra is conducted with Namib and Kalahari desert laboratory measurements. Seasonal products of global land SSE and surface skin temperature retrieved with IASI are presented to demonstrate seasonal variation of SSE.

  13. Observing convection with satellite, radar, and lightning measurements

    Science.gov (United States)

    Hamann, Ulrich; Nisi, Luca; Clementi, Lorenzo; Ventura, Jordi Figueras i.; Gabella, Marco; Hering, Alessandro M.; Sideris, Ioannis; Trefalt, Simona; Germann, Urs

    2015-04-01

    Heavy precipitation, hail, and wind gusts are the fundamental meteorological hazards associated with strong convection and thunderstorms. The thread is particularly severe in mountainous areas, e.g. it is estimated that on average between 50% and 80% of all weather-related damage in Switzerland is caused by strong thunderstorms (Hilker et al., 2010). Intense atmospheric convection is governed by processes that range from the synoptic to the microphysical scale and are considered to be one of the most challenging and difficult weather phenomena to predict. Even though numerical weather prediction models have some skills to predict convection, in general the exact location of the convective initialization and its propagation cannot be forecasted by these models with sufficient precision. Hence, there is a strong interest to improve the short-term forecast by using statistical, object oriented and/or heuristic nowcasting methods. MeteoSwiss has developed several operational nowcasting systems for this purpose such as TRT (Hering, 2008) and COALITION (Nisi, 2014). In this contribution we analyze the typical development of convection using measurements of the Swiss C-band Dual Polarization Doppler weather radar network, the MSG SEVIRI satellite, and the Météorage lighting network. The observations are complemented with the analysis and forecasts of the COSMO model. Special attention is given to the typical evolutionary stages like the pre-convective environment, convective initiation, cloud top glaciation, start, maximum, and end of precipitation and lightning activity. The pre-convective environment is examined using instability indices derived from SEVIRI observations and the COSMO forecasts. During the early development satellite observations are used to observe the rise of the cloud top, the growth of the cloud droplet or crystals, and the glaciation of the cloud top. SEVIRI brightness temperatures, channel differences, and temporal trends as suggested by

  14. Engineering satellite-based navigation and timing global navigation satellite systems, signals, and receivers

    CERN Document Server

    Betz, J

    2016-01-01

    This book describes the design and performance analysis of satnav systems, signals, and receivers. It also provides succinct descriptions and comparisons of all the world’s satnav systems. Its comprehensive and logical structure addresses all satnav signals and systems in operation and being developed. Engineering Satellite-Based Navigation and Timing: Global Navigation Satellite Systems, Signals, and Receivers provides the technical foundation for designing and analyzing satnav signals, systems, and receivers. Its contents and structure address all satnav systems and signals: legacy, modernized, and new. It combines qualitative information with detailed techniques and analyses, providing a comprehensive set of insights and engineering tools for this complex multidisciplinary field. Part I describes system and signal engineering including orbital mechanics and constellation design, signal design principles and underlying considerations, link budgets, qua tifying receiver performance in interference, and e...

  15. Secular Gravity Gradients in Non-Dynamical Chern-Simons Modified Gravity for Satellite Gradiometry Measurements

    CERN Document Server

    Qiang, Li-E

    2016-01-01

    With continuous advances in related technologies, relativistic gravitational experiments with orbiting gradiometers becomes feasible, which could naturally be incorporated into future satellite gravity missions. Tests of Chern-Simons modified gravity are meaningful since such a modification gives us insights into (possible) parity-violations in gravitation. In this work, we derive, at the post-Newtonian level, the new observables of secular gradients from the non-dynamical Chern-Simons modified gravity, which will greatly improve the constraint on the mass scale $M_{CS}$ that may be drawn from satellite gradiometry measurements. For superconducting gradiometers, a strong bound $M_{CS}\\geq 10^{-7}\\ eV$ could in principle be obtained. For future optical gradiometers based on similar technologies from the LISA PathFinder mission, a even stronger bound $M_{CS}\\geq 10^{-5}\\ eV$ might be expected.

  16. A Satellite Based Fog Study of the Korean Peninsula

    Science.gov (United States)

    2007-06-01

    total number of fog and fog likely days detected from the two MODIS satellites, Aqua and Tera , respectively. Results from all nine areas of...trends in fog detection based on the satellite differences. 46 0 20 40 60 80 100 120 N um be r o f D ay s 1 2 3 4 5 6 7 8 9 Areas Four Month Tera vs...Aqua Fog Totals Tera Fog Tera Fog Likely Aqua Fog Aqua Fog Likely Figure 29. Comparisons of the four month total number of fog and fog likely days

  17. Trellis-coded CPM for satellite-based mobile communications

    Science.gov (United States)

    Abrishamkar, Farrokh; Biglieri, Ezio

    1988-01-01

    Digital transmission for satellite-based land mobile communications is discussed. To satisfy the power and bandwidth limitations imposed on such systems, a combination of trellis coding and continuous-phase modulated signals are considered. Some schemes based on this idea are presented, and their performance is analyzed by computer simulation. The results obtained show that a scheme based on directional detection and Viterbi decoding appears promising for practical applications.

  18. Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, M.; Gotseff, P.

    2013-12-01

    This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear sky model performance.

  19. Evaluation of satellite soil moisture products over Norway using ground-based observations

    Science.gov (United States)

    Griesfeller, A.; Lahoz, W. A.; Jeu, R. A. M. de; Dorigo, W.; Haugen, L. E.; Svendby, T. M.; Wagner, W.

    2016-03-01

    In this study we evaluate satellite soil moisture products from the advanced SCATterometer (ASCAT) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over Norway using ground-based observations from the Norwegian water resources and energy directorate. The ASCAT data are produced using the change detection approach of Wagner et al. (1999), and the AMSR-E data are produced using the VUA-NASA algorithm (Owe et al., 2001, 2008). Although satellite and ground-based soil moisture data for Norway have been available for several years, hitherto, such an evaluation has not been performed. This is partly because satellite measurements of soil moisture over Norway are complicated owing to the presence of snow, ice, water bodies, orography, rocks, and a very high coastline-to-area ratio. This work extends the European areas over which satellite soil moisture is validated to the Nordic regions. Owing to the challenging conditions for soil moisture measurements over Norway, the work described in this paper provides a stringent test of the capabilities of satellite sensors to measure soil moisture remotely. We show that the satellite and in situ data agree well, with averaged correlation (R) values of 0.72 and 0.68 for ASCAT descending and ascending data vs in situ data, and 0.64 and 0.52 for AMSR-E descending and ascending data vs in situ data for the summer/autumn season (1 June-15 October), over a period of 3 years (2009-2011). This level of agreement indicates that, generally, the ASCAT and AMSR-E soil moisture products over Norway have high quality, and would be useful for various applications, including land surface monitoring, weather forecasting, hydrological modelling, and climate studies. The increasing emphasis on coupled approaches to study the earth system, including the interactions between the land surface and the atmosphere, will benefit from the availability of validated and improved soil moisture satellite datasets, including those

  20. GPS/Magnetometer Based Satellite Navigation and Attitude Determination

    Science.gov (United States)

    Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    In recent years algorithms were developed for orbit, attitude and angular-rate determination of Low Earth Orbiting (LEO) satellites. Those algorithms rely on measurements of magnetometers, which are standard, relatively inexpensive, sensors that are normally installed on every LEO satellite. Although magnetometers alone are sufficient for obtaining the desired information, the convergence of the algorithms to the correct values of the satellite orbital parameters, position, attitude and angular velocity is very slow. The addition of sun sensors reduces the convergence time considerably. However, for many LEO satellites the sun data is not available during portions of the orbit when the spacecraft (SC) is in the earth shadow. It is here where the GPS space vehicles (SV) can provide valuable support. This is clearly demonstrated in the present paper. Although GPS measurements alone can be used to obtain SC position, velocity, attitude and angular-rate, the use of magnetometers improve the results due to the synergistic effect of sensor fusion. Moreover, it is possible to obtain these results with less than three SVs. In this paper we introduce an estimation algorithm, which is a combination of an Extended Kalman Filter (EKF) and a Pseudo Linear Kalman Filter (PSELIKA).

  1. Surface radiation at sea validation of satellite-derived data with shipboard measurements

    Directory of Open Access Journals (Sweden)

    Hein Dieter Behr

    2009-03-01

    Full Text Available Quality-controlled and validated radiation products are the basis for their ability to serve the climate and solar energy community. Satellite-derived radiation fluxes are well preferred for this task as they cover the whole research area in time and space. In order to monitor the accuracy of these data, validation with well maintained and calibrated ground based measurements is necessary. Over sea, however, long-term accurate reference data sets from calibrated instruments recording radiation are scarce. Therefore data from research vessels operating at sea are used to perform a reasonable validation. A prerequisite is that the instruments on board are maintained as well as land borne stations. This paper focuses on the comparison of radiation data recorded on board of the German Research Vessel "Meteor" during her 13 months cruise across the Mediterranean and the Black Sea with CM-SAF products using NOAA- and MSG-data (August 2006-August 2007: surface incoming short-wave radiation (SIS and surface downward long-wave radiation (SDL. Measuring radiation fluxes at sea causes inevitable errors, e.g.shadowing of fields of view of the radiometers by parts of the ship. These ship-inherent difficulties are discussed at first. A comparison of pairs of ship-recorded and satellite-derived mean fluxes for the complete measuring period delivers a good agreement: the mean bias deviation (MBD for SIS daily means is −7.6 W/m2 with a median bias of −4 W/m2 and consistently the MBD for monthly means is −7.3 W/m2, for SDL daily means the MBD is 8.1 and 6 W/m2 median bias respectively. The MBD for monthly means is 8.2 W/m2. The variances of the daily means (ship and satellite have the same annual courses for both fluxes. No significant dependence of the bias on the total cloud cover recorded according to WMO (1969 has been found. The results of the comparison between ship-based observations and satellite retrieved surface radiation reveal the good accuracy

  2. Characterization of satellite based proxies for estimating nucleation mode particles over South Africa

    Directory of Open Access Journals (Sweden)

    A.-M. Sundström

    2014-10-01

    Full Text Available In this work satellite observations from the NASA's A-Train constellation were used to derive the values of primary emission and regional nucleation proxies over South Africa to estimate the potential for new particle formation. As derived in Kulmala et al. (2011, the satellite based proxies consist of source terms (NO2, SO2 and UV-B radiation, and a sink term describing the pre-existing aerosols. The first goal of this work was to study in detail the use of satellite aerosol optical depth (AOD as a substitute to the in situ based condensation sink (CS. One of the major factors affecting the agreement of CS and AOD was the elevated aerosol layers that increased the value of column integrated AOD but not affected the in situ CS. However, when the AOD in the proxy sink was replaced by an estimate from linear bivariate fit between AOD and CS, the agreement with the actual nucleation mode number concentration improved somewhat. The second goal of the work was to estimate how well the satellite based proxies can predict the potential for new particle formation. For each proxy the highest potential for new particle formation were observed over the Highveld industrial area, where the emissions were high but the sink due to pre-existing aerosols was relatively low. Best agreement between the satellite and in situ based proxies were obtained for NO2/AOD and UV-B/AOD2, whereas proxies including SO2 in the source term had lower correlation. Even though the OMI SO2 boundary layer product showed reasonable spatial pattern and detected the major sources over the study area, some of the known minor point sources were not detected. When defining the satellite proxies only for days when new particle formation event was observed, it was seen that for all the satellite based proxies the event day medians were higher than the entire measurement period median.

  3. Correlating Global Precipitation Measurement satellite data with karst spring hydrographs for rapid catchment delineation

    Science.gov (United States)

    Longenecker, Jake; Bechtel, Timothy; Chen, Zhao; Goldscheider, Nico; Liesch, Tanja; Walter, Robert

    2017-05-01

    To protect karst spring water resources, catchments must be known. We have developed a method for correlating spring hydrographs with newly available, high-resolution, satellite-based Global Precipitation Measurement data to rapidly and remotely locate recharge areas. We verify the method using a synthetic comparison of ground-based rain gage data with the satellite precipitation data set. Application to karst springs is proven by correlating satellite data with hydrographs from well-known springs with published catchments in Europe and North America. Application to an unknown-catchment spring in Pennsylvania suggests distant recharge, requiring a flow path that crosses topographic divides, as well as multiple lithologies, physiographic provinces, and tectonic boundaries. Although surprising, this latter result is consistent with published geologic/geophysical, monitoring well, and stream gage data. We conclude that the method has considerable potential to improve the speed and accuracy of catchment identification and hydrodynamic characterization, with applications to water resource protection and groundwater exploration, among others.

  4. CONCEPTUAL PAPER : Utilization of GPS Satellites for Precise Irradiation Measurement and Monitoring

    Indian Academy of Sciences (India)

    S. Vijayan

    2008-03-01

    Precise measurement of irradiance over the earth under various circumstances like solar flares, coronal mass ejections, over an 11-year solar cycle, etc. leads to better understanding of Sun–earth relationship. To continuously monitor the irradiance over earth-space regions several satellites at several positions are required. For that continuous and multiple satellite monitoring we can use GPS (Global Positioning System) satellites (like GLONASS, GALILEO, future satellites) installed with irradiance measuring and monitoring instruments. GPS satellite system consists of 24 constellations of satellites. Therefore usage of all the satellites leads to 24 measurements of irradiance at the top of the atmosphere (or 12 measurements of those satellites which are pointing towards the Sun) at an instant. Therefore in one day, numerous irradiance observations can be obtained for the whole globe, which will be very helpful for several applications like Albedo calculation, Earth Radiation Budget calculation, monitoring of near earth-space atmosphere, etc. Moreover, measuring irradiance both in ground (using ground instruments) and in space at the same instant of time over a same place, leads to numerous advantages. That is, for a single position we obtain irradiance at the top of the atmosphere, irradiance at ground and the difference in irradiance from over top of the atmosphere to the ground. Measurement of irradiance over the atmosphere and in ground at a precise location gives more fine details about the solar irradiance influence over the earth, path loss and interaction of irradiance with the atmosphere.

  5. Possible satellite-based observations of the 1997 Leonid meteoroids

    Energy Technology Data Exchange (ETDEWEB)

    Pongratz, M.B.; Carlos, R.C.; Cayton, T.

    1998-12-01

    The Block IIA GPS satellites are equipped with a sensor designed to detect electromagnetic transients. Several phenomena will produce triggers in this sensor. They include earth-based electromagnetic transients such as lightning and two space-based phenomena--deep dielectric discharge and meteoroid or hyper-velocity micro-gram particle impact (HMPI). Energetic electrons in the GPS environment cause the deep dielectric charging. HMPIs cause triggers through the transient electric fields generated by the ejecta plasma. During the 1997 Leonid passage the energetic particle fluxes were very low. In the presence of such low fluxes the typical median trigger rate is 20 per minute with a standard deviation of about 20 per minute. Between 0800 UT and 1200 UT on November 17, 1997, the sensor on a specially configured satellite observed trigger rates more than 10 sigma above the nominal median rate. Sensors on other Block IIA GPS satellites also observed excess triggers during November. Detection is enhanced when the sensor antenna is oriented into the Leonid radiant. While many questions persist the authors feel that it is likely that the excess events during the November interval were caused by the close approach of the satellites to the Leonid meteoroid path.

  6. An Ontology Based Methodology for Satellite Data Semantic Interoperability

    Directory of Open Access Journals (Sweden)

    ABBURU, S.

    2015-08-01

    Full Text Available Satellites and ocean based observing system consists of various sensors and configurations. These observing systems transmit data in heterogeneous file formats and heterogeneous vocabulary from various data centers. These data centers maintain a centralized data management system that disseminates the observations to various research communities. Currently, different data naming conventions are being used by existing observing systems, thus leading to semantic heterogeneity. In this work, sensor data interoperability and semantics of the data are being addressed through ontologies. The present work provides an effective technical solution to address semantic heterogeneity through semantic technologies. These technologies provide interoperability, capability to build knowledge base, and framework for semantic information retrieval by developing an effective concept vocabulary through domain ontologies. The paper aims at a new methodology to interlink the multidisciplinary and heterogeneous sensor data products. A four phase methodology has been implemented to address satellite data semantic interoperability. The paper concludes with the evaluation of the methodology by linking and interfacing multiple ontologies to arrive at ontology vocabulary for sensor observations. Data from Indian Meteorological satellite INSAT-3D satellite have been used as a typical example to illustrate the concepts. This work on similar lines can also be extended to other sensor observations.

  7. Incorporation of star measurements for the determination of orbit and attitude parameters of a geosynchronous satellite: An iterative application of linear regression

    Science.gov (United States)

    Phillips, D.

    1980-01-01

    Currently on NOAA/NESS's VIRGS system at the World Weather Building star images are being ingested on a daily basis. The image coordinates of the star locations are measured and stored. Subsequently, the information is used to determine the attitude, the misalignment angles between the spin axis and the principal axis of the satellite, and the precession rate and direction. This is done for both the 'East' and 'West' operational geosynchronous satellites. This orientation information is then combined with image measurements of earth based landmarks to determine the orbit of each satellite. The method for determining the orbit is simple. For each landmark measurement one determines a nominal position vector for the satellite by extending a ray from the landmark's position towards the satellite and intersecting the ray with a sphere with center coinciding with the Earth's center and with radius equal to the nominal height for a geosynchronous satellite. The apparent motion of the satellite around the Earth's center is then approximated with a Keplerian model. In turn the variations of the satellite's height, as a function of time found by using this model, are used to redetermine the successive satellite positions by again using the Earth based landmark measurements and intersecting rays from these landmarks with the newly determined spheres. This process is performed iteratively until convergence is achieved. Only three iterations are required.

  8. Evaluating the hydrological consistency of satellite based water cycle components

    KAUST Repository

    Lopez Valencia, Oliver M.

    2016-06-15

    Advances in multi-satellite based observations of the earth system have provided the capacity to retrieve information across a wide-range of land surface hydrological components and provided an opportunity to characterize terrestrial processes from a completely new perspective. Given the spatial advantage that space-based observations offer, several regional-to-global scale products have been developed, offering insights into the multi-scale behaviour and variability of hydrological states and fluxes. However, one of the key challenges in the use of satellite-based products is characterizing the degree to which they provide realistic and representative estimates of the underlying retrieval: that is, how accurate are the hydrological components derived from satellite observations? The challenge is intrinsically linked to issues of scale, since the availability of high-quality in-situ data is limited, and even where it does exist, is generally not commensurate to the resolution of the satellite observation. Basin-scale studies have shown considerable variability in achieving water budget closure with any degree of accuracy using satellite estimates of the water cycle. In order to assess the suitability of this type of approach for evaluating hydrological observations, it makes sense to first test it over environments with restricted hydrological inputs, before applying it to more hydrological complex basins. Here we explore the concept of hydrological consistency, i.e. the physical considerations that the water budget impose on the hydrologic fluxes and states to be temporally and spatially linked, to evaluate the reproduction of a set of large-scale evaporation (E) products by using a combination of satellite rainfall (P) and Gravity Recovery and Climate Experiment (GRACE) observations of storage change, focusing on arid and semi-arid environments, where the hydrological flows can be more realistically described. Our results indicate no persistent hydrological

  9. Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data

    Directory of Open Access Journals (Sweden)

    Sandra Eckert

    2012-03-01

    Full Text Available Accurate estimation of aboveground biomass and carbon stock has gained importance in the context of the United Nations Framework Convention on Climate Change (UNFCCC and the Kyoto Protocol. In order to develop improved forest stratum–specific aboveground biomass and carbon estimation models for humid rainforest in northeast Madagascar, this study analyzed texture measures derived from WorldView-2 satellite data. A forest inventory was conducted to develop stratum-specific allometric equations for dry biomass. On this basis, carbon was calculated by applying a conversion factor. After satellite data preprocessing, vegetation indices, principal components, and texture measures were calculated. The strength of their relationships with the stratum-specific plot data was analyzed using Pearson’s correlation. Biomass and carbon estimation models were developed by performing stepwise multiple linear regression. Pearson’s correlation coefficients revealed that (a texture measures correlated more with biomass and carbon than spectral parameters, and (b correlations were stronger for degraded forest than for non-degraded forest. For degraded forest, the texture measures of Correlation, Angular Second Moment, and Contrast, derived from the red band, contributed to the best estimation model, which explained 84% of the variability in the field data (relative RMSE = 6.8%. For non-degraded forest, the vegetation index EVI and the texture measures of Variance, Mean, and Correlation, derived from the newly introduced coastal blue band, both NIR bands, and the red band, contributed to the best model, which explained 81% of the variability in the field data (relative RMSE = 11.8%. These results indicate that estimation of tropical rainforest biomass/carbon, based on very high resolution satellite data, can be improved by (a developing and applying forest stratum–specific models, and (b including textural information in addition to spectral information.

  10. Spatial variability of the Black Sea surface temperature from high resolution modeling and satellite measurements

    Science.gov (United States)

    Mizyuk, Artem; Senderov, Maxim; Korotaev, Gennady

    2016-04-01

    Large number of numerical ocean models were implemented for the Black Sea basin during last two decades. They reproduce rather similar structure of synoptical variability of the circulation. Since 00-s numerical studies of the mesoscale structure are carried out using high performance computing (HPC). With the growing capacity of computing resources it is now possible to reconstruct the Black Sea currents with spatial resolution of several hundreds meters. However, how realistic these results can be? In the proposed study an attempt is made to understand which spatial scales are reproduced by ocean model in the Black Sea. Simulations are made using parallel version of NEMO (Nucleus for European Modelling of the Ocean). A two regional configurations with spatial resolutions 5 km and 2.5 km are described. Comparison of the SST from simulations with two spatial resolutions shows rather qualitative difference of the spatial structures. Results of high resolution simulation are compared also with satellite observations and observation-based products from Copernicus using spatial correlation and spectral analysis. Spatial scales of correlations functions for simulated and observed SST are rather close and differs much from satellite SST reanalysis. Evolution of spectral density for modelled SST and reanalysis showed agreed time periods of small scales intensification. Using of the spectral analysis for satellite measurements is complicated due to gaps. The research leading to this results has received funding from Russian Science Foundation (project № 15-17-20020)

  11. Variability and trends of surface solar radiation in Europe based on CM SAF satellite data records

    Science.gov (United States)

    Trentmann, Jörg; Pfeifroth, Uwe; Sanchez-Lorenzo, Arturo; Urbain, Manon; Clerbaux, Nicolas

    2017-04-01

    The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based high-quality climate data records, with a focus on the global energy and water cycle. Here, the latest releases of the CM SAF's data records of surface solar radiation, Surface Solar Radiation Data Set - Heliosat (SARAH), and CM SAF cLouds, Albedo and Radiation dataset from AVHRR data (CLARA), are analyzed and validated with reference to ground-based measurements, e.g., provided by the Baseline Surface Radiation Network (BSRN), the World Radiation Data Center (WRDC) and the Global Energy Balance Archive (GEBA). Focus is given to the trends and the variability of the surface irradiance in Europe as derived from the surface and the satellite-based data records. Both data sources show an overall increase (i.e., brightening) after the 1980s, and indicate substantial decadal variability with periods of reduced increase (or even a decrease) and periods with a comparable high increase. Also the increase shows a pronounced spatial pattern, which is also found to be consistent between the two data sources. The good correspondence between the satellite-based data records and the surface measurements highlight the potential of the satellite data to represent the variability and changes in the surface irradiance and document the dominant role of clouds over aerosol to explain its variations. Reasons for remaining differences between the satellite- and the surface-based data records (e.g., in Southern Europe) will be discussed. To test the consistency of the CM SAF solar radiation data records we also assess the decadal variability of the solar reflected radiation at the top-of-the atmosphere (TOA) from the CM SAF climate data record based on the MVIRI / SEVIRI measurements from 1983 to 2015. This data record complements the SARAH data record in its temporal and spatial coverage; fewer and different assumptions are used in the retrieval to generate the TOA reflected solar

  12. Periodic material-based vibration isolation for satellites

    Directory of Open Access Journals (Sweden)

    Xinnan Liu

    2016-01-01

    Full Text Available The vibration environment of a satellite is very severe during launch. Isolating the satellitevibrations during launch will significantly enhance reliability and lifespan, and reduce the weight of satellite structure and manufacturing cost. Guided by the recent advances in solid-state physics research, a new type of satellite vibration isolator is proposed by usingperiodic material that is hence called periodic isolator. The periodic isolator possesses a unique dynamic property, i.e., frequency band gaps. External vibrations with frequencies falling in the frequency band gaps of the periodic isolator are to be isolated. Using the elastodynamics and the Bloch-Floquet theorem, the frequency band gaps of periodic isolators are determined. A parametric study is conducted to provide guidelines for the design of periodic isolators. Based on these analytical results, a finite element model of a micro-satellite with a set of designed periodic isolators is built to show the feasibility of vibration isolation. The periodic isolator is found to be a multi-directional isolator that provides vibration isolation in the three directions.

  13. Validation of satellite-based noontime UVI with NDACC ground-based instruments: influence of topography, environment and satellite overpass time

    Science.gov (United States)

    Brogniez, Colette; Auriol, Frédérique; Deroo, Christine; Arola, Antti; Kujanpää, Jukka; Sauvage, Béatrice; Kalakoski, Niilo; Riku Aleksi Pitkänen, Mikko; Catalfamo, Maxime; Metzger, Jean-Marc; Tournois, Guy; Da Conceicao, Pierre

    2016-12-01

    Spectral solar UV radiation measurements are performed in France using three spectroradiometers located at very different sites. One is installed in Villeneuve d'Ascq, in the north of France (VDA). It is an urban site in a topographically flat region. Another instrument is installed in Observatoire de Haute-Provence, located in the southern French Alps (OHP). It is a rural mountainous site. The third instrument is installed in Saint-Denis, Réunion Island (SDR). It is a coastal urban site on a small mountainous island in the southern tropics. The three instruments are affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC) and carry out routine measurements to monitor the spectral solar UV radiation and enable derivation of UV index (UVI). The ground-based UVI values observed at solar noon are compared to similar quantities derived from the Ozone Monitoring Instrument (OMI, onboard the Aura satellite) and the second Global Ozone Monitoring Experiment (GOME-2, onboard the Metop-A satellite) measurements for validation of these satellite-based products. The present study concerns the period 2009-September 2012, date of the implementation of a new OMI processing tool. The new version (v1.3) introduces a correction for absorbing aerosols that were not considered in the old version (v1.2). Both versions of the OMI UVI products were available before September 2012 and are used to assess the improvement of the new processing tool. On average, estimates from satellite instruments always overestimate surface UVI at solar noon. Under cloudless conditions, the satellite-derived estimates of UVI compare satisfactorily with ground-based data: the median relative bias is less than 8 % at VDA and 4 % at SDR for both OMI v1.3 and GOME-2, and about 6 % for OMI v1.3 and 2 % for GOME-2 at OHP. The correlation between satellite-based and ground-based data is better at VDA and OHP (about 0.99) than at SDR (0.96) for both space-borne instruments. For all

  14. An Analysis of Satellite, Radiosonde, and Lidar Observations of Upper Tropospheric Water Vapor from the Atmospheric Radiation Measurement Program

    Energy Technology Data Exchange (ETDEWEB)

    Soden, Brian J.; Turner, David D.; Lesht, B. M.; Miloshevich, Larry M.

    2004-02-25

    To improve our understanding of the distribution and radiative effects of water vapor, the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program has conducted a series of coordinated water vapor Intensive Observational Periods (IOPs). This study uses observations collected from four ARM IOPs to accomplish two goals: first, we compare radiosonde and Raman lidar observations of upper tropospheric water vapor with co-located geostationary satellite radiances at 6.7 micrometers. During all four IOPs, we find excellent agreement between the satellite and Raman lidar observations of upper tropospheric humidity with systematic differences of ~10%. In contrast, radiosondes equipped with Vaisala sensors are shown to be systematically drier in the upper troposphere by ~40% relative to both the lidar and satellite measurements. Second, we assess the performance of various "correction" strategies designed to rectify known deficiencies in the radiosonde measurements. It is shown that existing methods for correcting the radiosonde dry bias, while effective in the lower troposphere, offer little improvement in the upper troposphere. An alternative method based on variational assimilation of satellite radiances is presented and, when applied to the radiosonde measurements, is shown to significantly improve their agreement with coincident Raman lidar observations. It is suggested that a similar strategy could be used to improve the quality of the global historical record of radiosonde water vapor observations during the satellite era.

  15. Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites

    Directory of Open Access Journals (Sweden)

    J. X. Warner

    2013-06-01

    Full Text Available This study tests a novel methodology to add value to satellite datasets. This methodology, data fusion, is similar to data assimilation, except that the background model-based field is replaced by a satellite dataset, in this case AIRS (Atmospheric Infrared Sounder carbon monoxide (CO measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer and MLS (Microwave Limb Sounder. We show that combining these datasets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere region compared to each product individually. The combined AIRS/TES and AIRS/MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20–30% and above 20%, respectively as compared with AIRS-only retrievals, and improved coverage compared with TES and MLS CO data.

  16. Hail detection algorithm for the Global Precipitation Measuring mission core satellite sensors

    Science.gov (United States)

    Mroz, Kamil; Battaglia, Alessandro; Lang, Timothy J.; Tanelli, Simone; Cecil, Daniel J.; Tridon, Frederic

    2017-04-01

    By exploiting an abundant number of extreme storms observed simultaneously by the Global Precipitation Measurement (GPM) mission core satellite's suite of sensors and by the ground-based S-band Next-Generation Radar (NEXRAD) network over continental US, proxies for the identification of hail are developed based on the GPM core satellite observables. The full capabilities of the GPM observatory are tested by analyzing more than twenty observables and adopting the hydrometeor classification based on ground-based polarimetric measurements as truth. The proxies have been tested using the Critical Success Index (CSI) as a verification measure. The hail detection algorithm based on the mean Ku reflectivity in the mixed-phase layer performs the best, out of all considered proxies (CSI of 45%). Outside the Dual frequency Precipitation Radar (DPR) swath, the Polarization Corrected Temperature at 18.7 GHz shows the greatest potential for hail detection among all GMI channels (CSI of 26% at a threshold value of 261 K). When dual variable proxies are considered, the combination involving the mixed-phase reflectivity values at both Ku and Ka-bands outperforms all the other proxies, with a CSI of 49%. The best-performing radar-radiometer algorithm is based on the mixed-phase reflectivity at Ku-band and on the brightness temperature (TB) at 10.7 GHz (CSI of 46%). When only radiometric data are available, the algorithm based on the TBs at 36.6 and 166 GHz is the most efficient, with a CSI of 27.5%.

  17. The satellite based augmentation system – EGNOS for non-precision approach global navigation satellite system

    Directory of Open Access Journals (Sweden)

    Andrzej FELLNER

    2012-01-01

    Full Text Available First in the Poland tests of the EGNOS SIS (Signal in Space were conducted on 5th October 2007 on the flight inspection with SPAN (The Synchronized Position Attitude Navigation technology at the Mielec airfield. This was an introduction to a test campaign of the EGNOS-based satellite navigation system for air traffic. The advanced studies will be performed within the framework of the EGNOS-APV project in 2011. The implementation of the EGNOS system to APV-I precision approach operations, is conducted according to ICAO requirements in Annex 10. Definition of usefulness and certification of EGNOS as SBAS (Satellite Based Augmentation System in aviation requires thorough analyses of accuracy, integrity, continuity and availability of SIS. Also, the project will try to exploit the excellent accuracy performance of EGNOS to analyze the implementation of GLS (GNSS Landing System approaches (Cat I-like approached using SBAS, with a decision height of 200 ft. Location of the EGNOS monitoring station Rzeszów, located near Polish-Ukrainian border, being also at the east border of planned EGNOS coverage for ECAC states is very useful for SIS tests in this area. According to current EGNOS programmed schedule, the project activities will be carried out with EGNOS system v2.2, which is the version released for civil aviation certification. Therefore, the project will allow demonstrating the feasibility of the EGNOS certifiable version for civil applications.

  18. GPS SATELLITE SIMULATOR SIGNAL ESTIMATION BASED ON ANN

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Multi-channel Global Positioning System (GPS) satellite signal simulator is used to provide realistic test signals for GPS receivers and navigation systems. In this paper, signals arriving the antenna of GPS receiver are analyzed from the viewpoint of simulator design. The estimation methods are focused of which several signal parameters are difficult to determine directly according to existing experiential models due to various error factors. Based on the theory of Artificial Neural Network (ANN), an approach is proposed to simulate signal propagation delay,carrier phase, power, and other parameters using ANN. The architecture of the hardware-in-the-loop test system is given. The ANN training and validation process is described. Experimental results demonstrate that the ANN designed can statistically simulate sample data in high fidelity.Therefore the computation of signal state based on this ANN can meet the design requirement,and can be directly applied to the development of multi-channel GPS satellite signal simulator.

  19. Measurements of Integration Gain for the Cospas-Sarsat System from Geosynchronous Satellites

    Science.gov (United States)

    Klein-Lebbink, Elizabeth; Christo, James; Peters, Robert; Nguyen, Xuan

    2015-01-01

    The GOES-R satellite is the first satellite to use a standard straight bent pipe transponder with no on-board re-modulation to support Search and Rescue (SAR) operations. Here, we report on the link measurements with a high fidelity satellite transponder simulator made up of satellite EDU (Engineering Design Units) components using an uplink from a beacon simulator and received by a GEOLUT (GEOsynchronous satellite Local User Terminal). We also report on the first ever measurements showing the performance gain obtained by the signal integration performed by the GEOLUT. In addition, a simulator made of commercially available off-the-shelf components assembled to develop the test plan was found to perform very close to the high fidelity simulator. In this paper, we describe what message integration is, how it is implemented in the particular satellite receiving station model used for this tests, and show the measured improvement in message decoding due to this integration process. These are the first tests to quantify the integration gain and are the first tests on the new SARSAT standard for the bent pipe (no onboard re-modulation) repeater used in GOES-R. An inexpensive satellite simulator to run test scripts built from off the shelf components was also found to have the same performance as a high fidelity simulator using actual satellite EDUs.

  20. Satellite Formation Design for Space Based Radar Applications

    Science.gov (United States)

    2007-07-30

    Practical Guidance Methodology for Relative Motion of LEO Spacecraft Based on the Clohessy-Wiltshire Equations,” AAS Paper 04-252, AAS/AIAA Space...Non- Circular Reference Orbit," AAS Paper 01-222, AAS/AIAA Space Flight Mechanics Meeting, Santa Barbara, CA, Feb 11-16, 2001. 11. D. Brouwer ...Small Eccentricities or Inclinations in the Brouwer Theory of the Artificial Satellite,” The Astronomical Journal, Vol. 68, October 1963, pp. 555

  1. Calculation of smoke plume mass from passive UV satellite measurements by GOME-2 polarization measurement devices

    Science.gov (United States)

    Penning de Vries, M. J. M.; Tuinder, O. N. E.; Wagner, T.; Fromm, M.

    2012-04-01

    The Wallow wildfire of 2011 was one of the most devastating fires ever in Arizona, burning over 2,000 km2 in the states of Arizona and New Mexico. The fire originated in the Bear Wallow Wilderness area in June, 2011, and raged for more than a month. The intense heat of the fire caused the formation of a pyro-convective cloud. The resulting smoke plume, partially located above low-lying clouds, was detected by several satellite instruments, including GOME-2 on June 2. The UV Aerosol Index, indicative of aerosol absorption, reached a maximum of 12 on that day, pointing to an elevated plume with moderately absorbing aerosols. We have performed extensive model calculations assuming different aerosol optical properties to determine the total aerosol optical depth of the plume. The plume altitude, needed to constrain the aerosol optical depth, was obtained from independent satellite measurements. The model results were compared with UV Aerosol Index and UV reflectances measured by the GOME-2 polarization measurement devices, which have a spatial resolution of roughly 10x40 km2. Although neither the exact aerosol optical properties nor optical depth can be obtained with this method, the range in aerosol optical depth values that we calculate, combined with the assumed specific extinction mass factor of 5 m2/kg lead us to a rough estimate of the smoke plume mass that cannot, at present, be assessed in another way.

  2. Spectral Measurements of Geosynchronous Satellites During Glint Season

    Science.gov (United States)

    2015-10-18

    primarily due to specular reflection off of the solar panels , the occurrence of a glint relative to solar phase angle or even the number of glints can...and south solar panels on DTV-12 being offset in different east-west angles causing two glints, whereas the two solar panels of Wildblue-1 are both in... solar panels that maintain a stable attitude relative to the earth and sun. During the equinox periods of the year, the geometry of the satellite

  3. Research on Coal Exploration Technology Based on Satellite Remote Sensing

    Directory of Open Access Journals (Sweden)

    Dong Xiao

    2016-01-01

    Full Text Available Coal is the main source of energy. In China and Vietnam, coal resources are very rich, but the exploration level is relatively low. This is mainly caused by the complicated geological structure, the low efficiency, the related damage, and other bad situations. To this end, we need to make use of some advanced technologies to guarantee the resource exploration is implemented smoothly and orderly. Numerous studies show that remote sensing technology is an effective way in coal exploration and measurement. In this paper, we try to measure the distribution and reserves of open-air coal area through satellite imagery. The satellite picture of open-air coal mining region in Quang Ninh Province of Vietnam was collected as the experimental data. Firstly, the ENVI software is used to eliminate satellite imagery spectral interference. Then, the image classification model is established by the improved ELM algorithm. Finally, the effectiveness of the improved ELM algorithm is verified by using MATLAB simulations. The results show that the accuracies of the testing set reach 96.5%. And it reaches 83% of the image discernment precision compared with the same image from Google.

  4. Efficient enhancing scheme for TCP performance over satellite-based internet

    Institute of Scientific and Technical Information of China (English)

    Wang Lina; Gu Xuemai

    2007-01-01

    Satellite link characteristics drastically degrade transport control protocol (TCP) performance. An efficient performance enhancing scheme is proposed. The improvement of TCP performance over satellite-based Intemet is accomplished by protocol transition gateways at each end ora satellite link. The protocol which runs over a satellite link executes the receiver-driven flow control and acknowledgements- and timeouts-based error control strategies. The validity of this TCP performance enhancing scheme is verified by a series of simulation experiments. Results show that the proposed scheme can efficiently enhance the TCP performance over satellite-based Intemet and ensure that the available bandwidth resources of the satellite link are fully utilized.

  5. Measurements of Cumulonimbus Clouds using quantitative satellite and radar data

    Science.gov (United States)

    Negri, A. J.; Reynolds, D. W.; Maddox, R. A.

    1977-01-01

    Results are reported for a preliminary study of SMS-2 digital brightness and IR data obtained at frequent 5-7.5 min intervals. The clouds studied were over the Central and Great Plains in midlatitudes and thus were typical of an environment much different from that of the tropical oceans. The satellite data are compared to radar data for both a severe weather event and weak thundershower activity of the type which might be a target for weather modification efforts. The relative importance of short time interval satellite data is shown for both cases, and possible relationships between the two types of data are presented. It is concluded that (1) using a threshold technique for visible reflected brightness, precipitating vs. nonprecipitating clouds can be discriminated; (2) brightness is well related to cloud size and shape; and (3) satellite-derived growth rates may be a significant parameter to be used in determining storm severity, especially if rapid time sequence data are used during the development phase of the storm.

  6. Biomass prediction model in maize based on satellite images

    Science.gov (United States)

    Mihai, Herbei; Florin, Sala

    2016-06-01

    Monitoring of crops by satellite techniques is very useful in the context of precision agriculture, regarding crops management and agricultural production. The present study has evaluated the interrelationship between maize biomass production and satellite indices (NDVI and NDBR) during five development stages (BBCH code), highlighting different levels of correlation. Biomass production recorded was between 2.39±0.005 t ha-1 (12-13 BBCH code) and 51.92±0.028 t ha-1 (83-85 BBCH code), in relation to vegetation stages studied. Values of chlorophyll content ranged from 24.1±0.25 SPAD unit (12-13 BBCH code) to 58.63±0.47 SPAD unit (71-73 BBCH code), and the obtained satellite indices ranged from 0.035641±0.002 and 0.320839±0.002 for NDVI indices respectively 0.035095±0.034 and 0.491038±0.018 in the case of NDBR indices. By regression analysis it was possible to obtain predictive models of biomass in maize based on the satellite indices, in statistical accurate conditions. The most accurate prediction was possible based on NDBR index (R2 = 0.986, F = 144.23, p<0.001, RMSE = 1.446), then based on chlorophyll content (R2 = 0.834, F = 16.14, p = 0.012, RMSE = 6.927) and NDVI index (R2 = 0.682, F = 3.869, p = 0.116, RMSE = 12.178).

  7. SIDRA instrument for measurements of particle fluxes at satellite altitudes. Laboratory prototype

    Science.gov (United States)

    Dudnik, O. V.; Prieto, M.; Kurbatov, E. V.; Sanchez, S.; Timakova, T. G.; Spassky, A. V.; Dubina, V. N.; Parra, P.

    2013-01-01

    The design concept and first set of results are presented for electronic modules of a laboratory prototype of the small-size satellite instrument SIDRA intended for measurements of charged particle fluxes in outer space. The working prototype consists of a detector assembly based on high-purity silicon and fast scintillation detectors, modules of analogue and digital processing, and a secondary power supply module. The first results are discussed of a Monte-Carlo simulation of the instrument with the use of the GEANT4 toolkit and of measurements of the main parameters of charge-sensitive pre-amplifiers, shapers, and peak detectors. Results of calibration measurements with the use of radioactive sources and beams of accelerated charged particles are presented.

  8. Observation operator for the assimilation of aerosol type resolving satellite measurements into a chemical transport model

    Directory of Open Access Journals (Sweden)

    M. Schroedter-Homscheidt

    2010-11-01

    Full Text Available Modelling of aerosol particles with chemical transport models is still based mainly on static emission databases while episodic emissions cannot be treated sufficiently. To overcome this situation, a coupling of chemical mass concentration modelling with satellite-based measurements relying on physical and optical principles has been developed. This study deals with the observation operator for a component-wise assimilation of satellite measurements. It treats aerosol particles classified into water soluble, water insoluble, soot, sea salt and mineral dust containing aerosol particles in the atmospheric boundary layer as separately assimilated aerosol components. It builds on a mapping of aerosol classes used both in observation and model space taking their optical and chemical properties into account. Refractive indices for primary organic carbon particles, anthropogenic particles, and secondary organic species have been defined based on a literature review. Together with a treatment of different size distributions in observations and model state, this allows transforming the background from mass concentrations into aerosol optical depths. A two-dimensional, variational assimilation is applied for component-wise aerosol optical depths. Error covariance matrices are defined based on a validation against AERONET sun photometer measurements. Analysis fields are assessed threefold: (1 through validation against AERONET especially in Saharan dust outbreak situations, (2 through comparison with the British Black Smoke and Sulphur Dioxide Network for soot-containing particles, and (3 through comparison with measurements of the water soluble components SO4, NH4, and NO3 conducted by the EMEP (European Monitoring and Evaluation Programme network. Separately, for the water soluble, the soot and the mineral dust aerosol components a bias reduction and subsequent a root mean square error reduction is observed in the

  9. SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus

    2016-04-01

    Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the

  10. The Geodesy of the Main Saturnian Satellites from Range Rate Measurements of the Cassini Spacecraft

    Science.gov (United States)

    Ducci, M.; Iess, L.; Armstrong, J. W.; Asmar, S. W.; Jacobson, R. A.; Lunine, J. I.; Racioppa, P.; Rappaport, N. J.; Stevenson, D. J.; Tortora, P.

    2012-03-01

    During Cassini's eight-year tour in the saturnian system, the gravity field of the main satellites was inferred from range rate measurements of the spacecraft. Here we present our latest results and an overview of our analysis methods.

  11. Efficient Satellite Scheduling Based on Improved Vector Evaluated Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Tengyue Mao

    2012-03-01

    Full Text Available Satellite scheduling is a typical multi-peak, many-valley, nonlinear multi-objective optimization problem. How to effectively implement the satellite scheduling is a crucial research in space areas.This paper mainly discusses the performance of VEGA (Vector Evaluated Genetic Algorithm based on the study of basic principles of VEGA algorithm, algorithm realization and test function, and then improves VEGA algorithm through introducing vector coding, new crossover and mutation operators, new methods to assign fitness and hold good individuals. As a result, the diversity and convergence of improved VEGA algorithm of improved VEGA algorithm have been significantly enhanced and will be applied to Earth-Mars orbit optimization. At the same time, this paper analyzes the results of the improved VEGA, whose results of performance analysis and evaluation show that although VEGA has a profound impact upon multi-objective evolutionary research,  multi-objective evolutionary algorithm on the basis of Pareto seems to be a more effective method to get the non-dominated solutions from the perspective of diversity and convergence of experimental result. Finally, based on Visual C + + integrated development environment, we have implemented improved vector evaluation algorithm in the satellite scheduling.

  12. Satellite Imagery Assisted Road-Based Visual Navigation System

    Science.gov (United States)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  13. Entropy-Based Block Processing for Satellite Image Registration

    Directory of Open Access Journals (Sweden)

    Ikhyun Lee

    2012-11-01

    Full Text Available Image registration is an important task in many computer vision applications such as fusion systems, 3D shape recovery and earth observation. Particularly, registering satellite images is challenging and time-consuming due to limited resources and large image size. In such scenario, state-of-the-art image registration methods such as scale-invariant feature transform (SIFT may not be suitable due to high processing time. In this paper, we propose an algorithm based on block processing via entropy to register satellite images. The performance of the proposed method is evaluated using different real images. The comparative analysis shows that it not only reduces the processing time but also enhances the accuracy.

  14. Chaos Based Secure IP Communications over Satellite DVB

    Science.gov (United States)

    Caragata, Daniel; El Assad, Safwan; Tutanescu, Ion; Sofron, Emil

    2010-06-01

    The Digital Video Broadcasting—Satellite (DVB-S) standard was originally conceived for TV and radio broadcasting. Later, it became possible to send IP packets using encapsulation methods such as Multi Protocol Encapsulation, MPE, or Unidirectional Lightweight Encapsulation, ULE. This paper proposes a chaos based security system for IP communications over DVB-S with ULE encapsulation. The proposed security system satisfies all the security requirements while respecting the characteristics of satellite links, such as the importance of efficient bandwidth utilization and high latency time. It uses chaotic functions to generate the keys and to encrypt the data. The key management is realized using a multi-layer architecture. A theoretical analysis of the system and a simulation of FTP and HTTP traffic are presented and discussed to show the cost of the security enhancement and to provide the necessary tools for security parameters setup.

  15. Saharan dust detection using multi-sensor satellite measurements.

    Science.gov (United States)

    Madhavan, Sriharsha; Qu, John J; Hao, X

    2017-02-01

    Contemporary scientists have vested interest in trying to understand the climatology of the North Atlantic Basin since this region is considered as the genesis for hurricane formation that eventually get shipped to the tropical Atlantic region and the Caribbean. The effects of atmospheric water cycle and the climate of West Africa and the Atlantic basin are hugely impacted by the radiative forcing of Saharan dust. The focus area in this paper would be to improve the dust detection schemes by employing the use of multi sensor measurements in the thermal emissive wavelengths using legacy sensors such as Terra (T) and Aqua (A) MODerate-resolution Imaging Spectroradiometer (MODIS), fusing with Ozone Monitoring Instrument (OMI). Previous work by Hao and Qu (2007) had considered a limited number of thermal infrared channels which led to a correlation coefficient R(2) value of 0.765 between the Aerosol Optical Thickness (AOT) at 550 nm and the modeled dust index. In this work, we extend the thermal infrared based dust detection by employing additional channels: the 8.55 μm which has shown high sensitivity to the Saharan dust, along with water vapor channel of 7.1 μm and cloud top channel of 13.1 μm. Also, the dust pixels were clearly identified using the OMI based aerosol types. The dust pixels were cleanly segregated from the other aerosol types such as sulfates, biomass, and other carbonaceous aerosols. These improvements led to a much higher correlation coefficient R(2) value of 0.85 between the modified dust index and the AOT in comparison to the previous work. The key limitations from the current AOT products based on MODIS and were put to test by validating the improved dust detection algorithm. Two improvements were noted. First, the dust measurement radiometry using MODIS is significantly improved by at least an order of 2. Second the spatial measurements are enhanced by a factor of at least 10.

  16. Saharan dust detection using multi-sensor satellite measurements

    Directory of Open Access Journals (Sweden)

    Sriharsha Madhavan

    2017-02-01

    Full Text Available Contemporary scientists have vested interest in trying to understand the climatology of the North Atlantic Basin since this region is considered as the genesis for hurricane formation that eventually get shipped to the tropical Atlantic region and the Caribbean. The effects of atmospheric water cycle and the climate of West Africa and the Atlantic basin are hugely impacted by the radiative forcing of Saharan dust. The focus area in this paper would be to improve the dust detection schemes by employing the use of multi sensor measurements in the thermal emissive wavelengths using legacy sensors such as Terra (T and Aqua (A MODerate-resolution Imaging Spectroradiometer (MODIS, fusing with Ozone Monitoring Instrument (OMI. Previous work by Hao and Qu (2007 had considered a limited number of thermal infrared channels which led to a correlation coefficient R2 value of 0.765 between the Aerosol Optical Thickness (AOT at 550 nm and the modeled dust index. In this work, we extend the thermal infrared based dust detection by employing additional channels: the 8.55 μm which has shown high sensitivity to the Saharan dust, along with water vapor channel of 7.1 μm and cloud top channel of 13.1 μm. Also, the dust pixels were clearly identified using the OMI based aerosol types. The dust pixels were cleanly segregated from the other aerosol types such as sulfates, biomass, and other carbonaceous aerosols. These improvements led to a much higher correlation coefficient R2 value of 0.85 between the modified dust index and the AOT in comparison to the previous work. The key limitations from the current AOT products based on MODIS and were put to test by validating the improved dust detection algorithm. Two improvements were noted. First, the dust measurement radiometry using MODIS is significantly improved by at least an order of 2. Second the spatial measurements are enhanced by a factor of at least 10.

  17. Satellite (Timed, Aura, Aqua) and In Situ (Meteorological Rockets, Balloons) Measurement Comparability

    Science.gov (United States)

    Schmidlin, F. J.; Goldberg, Richard A.; Feofilov, A.; Rose, R.

    2010-01-01

    Measurements using the inflatable falling sphere often are requested to provide density data in support of special sounding rocket launchings into the mesosphere and thermosphere. To insure density measurements within narrow time frames and close in space, the inflatable falling sphere is launched within minutes of the major test. Sphere measurements are reliable for the most part, however, availability of these rocket systems has become more difficult and, in fact, these instruments no longer are manufactured resulting in a reduction of the meager stockpile of instruments. Sphere measurements also are used to validate remotely measured temperatures and have the advantage of measuring small-scale atmospheric features. Even so, with the dearth of remaining falling spheres perhaps it is time to consider whether the remote measurements are mature enough to stand alone. Presented are two field studies, one in 2003 from Northern Sweden and one in 2010 from the vicinity of Kwajalein Atoll that compare temperature retrievals between satellite and in situ failing spheres. The major satellite instruments employed are SABER, MLS, and AIRS. The comparisons indicate that remotely measured temperatures mimic the sphere temperature measurements quite well. The data also confirm that satellite retrievals, while not always at the exact location required for individual studies, are adaptable enough and highly useful. Although the falling sphere will provide a measurement at a specific location and time, satellites only pass a given location daily or less often. This report reveals that averaged satellite measurements can provide temperatures and densities comparable to the falling sphere.

  18. Satellite and terrestrial narrow-band propagation measurements at 2.05 GHz

    Science.gov (United States)

    Vaisnys, Arv; Vogel, Wolf

    1995-08-01

    A series of satellite and terrestrial propagation measurements were conducted on 15 and 16 Dec. 1994 in the vicinity of the Jet Propulsion Laboratory (JPL), Pasadena, California, in support of the VOA/JPL DBS-Radio Program. The reason for including terrestrial measurements was the possible use of terrestrial boosters to improve reception in some satellite digital audio broadcasting system service areas. The signal sources used were the NASA TDRS satellite located at 171 degrees West and a terrestrial transmitter located on a high point on JPL property. Both signals were unmodulated carriers near 2.05 GHz, spaced a few kHz apart so that both could be received simultaneously by a single receiver. An unmodulated signal was used in order to maximize the dynamic range of the signal strength measurement. A range of greater than 35 dB was achieved with the satellite signal, and over 50 dB was achieved with the terrestrial signal measurements. Three test courses were used to conduct the measurements: (1) a 33 km round trip drive from JPL through Pasadena was used to remeasure the propagation of the satellite signal over the path previously used in DBS-Radio experiments in mid 1994. A shortened portion of this test course, approximately 20 km, was used to measure the satellite and terrestrial signals simultaneously; (2) a 9 km round trip drive through JPL property, going behind buildings and other obstacles, was used to measure the satellite and terrestrial signals simultaneously; and (3) a path through one of the buildings at JPL, hand carrying the receiver, was also used to measure the satellite and terrestrial signals simultaneously.

  19. Spatial and temporal variation of CO over Alberta using measurements from satellite, aircrafts, and ground stations

    Science.gov (United States)

    Marey, H. S.; Hashisho, Z.; Fu, L.; Gille, J.

    2014-12-01

    Alberta is Canada's largest oil producer and its oil sand deposits comprise 30% of the world's oil reserves. The process of bitumen extraction and upgrading releases trace gases and aerosols to the atmosphere. In this study we present satellite-based analysis to explore, for the first time, various contributing factors that affect tropospheric carbon monoxide (CO) levels over Alberta. The multispectral product that uses both near-infrared (NIR) and the thermal-infrared (TIR) radiances for CO retrieval from the Measurements of Pollution in the Troposphere (MOPITT) are examined for the 12 year period from 2002-2013. Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly product from 2001 to 2013 is employed to investigate the seasonal and temporal variations of forest fires. Additionally, in situ CO measurements at industrial and urban sites are compared to satellite data. Furthermore, the available MOZAIC/IAGOS (Measurement of Ozone, Water Vapor, Carbon Monoxide, Nitrogen Oxide by Airbus In-Service Aircraft/In service Aircraft for Global Observing System) aircraft CO profiles (April 2009-December 2011) are used to validate MOPITT CO data. The climatological time curtain plot and spatial maps for CO over northern Alberta indicate the signatures of transported CO for two distinct biomass burning seasons, summer and spring. Distinct seasonal patterns of CO at the urban site s (Edmonton and Calgary cities) point to the strong influence of traffic. Meteorological parameters play an important role on the CO spatial distribution at various pressure levels. Northern Alberta shows stronger upward lifting motion which leads to larger CO total column values while the poor dispersion in central and south Alberta exacerbates the surface CO pollution. Inter-annual variations of satellite data depict a slightly decreasing trend for both regions while the decline trend is more evident from ground observations, especially at the urban sites. MOPITT CO vertical

  20. Spatial and temporal variation in CO over Alberta using measurements from satellites, aircraft, and ground stations

    Science.gov (United States)

    Marey, H. S.; Hashisho, Z.; Fu, L.; Gille, J.

    2015-04-01

    Alberta is Canada's largest oil producer, and its oil sands deposits comprise 30% of the world's oil reserves. The process of bitumen extraction and upgrading releases trace gases and aerosols to the atmosphere. In this study we present satellite-based analysis to explore, for the first time, various contributing factors that affect tropospheric carbon monoxide (CO) levels over Alberta. The multispectral product that uses both near-infrared (NIR) and the thermal-infrared (TIR) radiances for CO retrieval from the Measurements of Pollution in the Troposphere (MOPITT) is examined for the 12-year period from 2002 to 2013. The Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly product from 2001 to 2013 is employed to investigate the seasonal and temporal variations in forest fires. Additionally, in situ CO measurements at industrial and urban sites are compared to satellite data. Furthermore, the available MOZAIC/IAGOS (Measurement of Ozone, Water Vapor, Carbon Monoxide, Nitrogen Oxide by Airbus In-Service Aircraft/In service Aircraft for Global Observing System) aircraft CO profiles (April 2009-December 2011) are used to validate MOPITT CO data. The climatological time curtain plot and spatial maps for CO over northern Alberta indicate the signatures of transported CO for two distinct biomass burning seasons: summer and spring. Distinct seasonal patterns of CO at the urban sites (Edmonton and Calgary) point to the strong influence of traffic. Meteorological parameters play an important role in the CO spatial distribution at various pressure levels. Northern Alberta shows a stronger upward lifting motion which leads to larger CO total column values, while the poor dispersion in central and southern Alberta exacerbates the surface CO pollution. Interannual variations in satellite data depict a slightly decreasing trend for both regions, while the decline trend is more evident from ground observations, especially at the urban sites. MOPITT CO vertical

  1. Spatial and temporal variation of CO over Alberta using measurements from satellite, aircrafts, and ground stations

    Directory of Open Access Journals (Sweden)

    H. S. Marey

    2014-12-01

    Full Text Available Alberta is Canada's largest oil producer and its oil sand deposits comprise 30% of the world's oil reserves. The process of bitumen extraction and upgrading releases trace gases and aerosols to the atmosphere. In this study we present satellite-based analysis to explore, for the first time, various contributing factors that affect tropospheric carbon monoxide (CO levels over Alberta. The multispectral product that uses both near-infrared (NIR and the thermal-infrared (TIR radiances for CO retrieval from the Measurements of Pollution in the Troposphere (MOPITT are examined for the 12 year period from 2002–2013. Moderate Resolution Imaging Spectroradiometer (MODIS thermal anomaly product from 2001 to 2013 is employed to investigate the seasonal and temporal variations of forest fires. Additionally, in situ CO measurements at industrial and urban sites are compared to satellite data. Furthermore, the available MOZAIC/IAGOS (Measurement of Ozone, Water Vapor, Carbon Monoxide, Nitrogen Oxide by Airbus In-Service Aircraft/In service Aircraft for Global Observing System aircraft CO profiles (April 2009–December 2011 are used to validate MOPITT CO data. The climatological time curtain plot and spatial maps for CO over northern Alberta indicate the signatures of transported CO for two distinct biomass burning seasons, summer and spring. Distinct seasonal patterns of CO at the urban site s (Edmonton and Calgary cities point to the strong influence of traffic. Meteorological parameters play an important role on the CO spatial distribution at various pressure levels. Northern Alberta shows stronger upward lifting motion which leads to larger CO total column values while the poor dispersion in central and south Alberta exacerbates the surface CO pollution. Inter-annual variations of satellite data depict a slightly decreasing trend for both regions while the decline trend is more evident from ground observations, especially at the urban sites. MOPITT CO

  2. Characterization of the CTS 12 and 14 GHz communications links - Preliminary measurements and evaluation. [Communications Technology Satellite

    Science.gov (United States)

    Ippolito, L. J.

    1976-01-01

    The Communications Link Characterization Experiment is designed to characterize the radio frequency links of the Communications Technology Satellite. The experiment is twofold: (1) it will study the natural characteristics in the CTS frequency bands (14 GHz uplink, and 12 GHz downlink) including attenuation and signal degradation due primarily to absorption and scattering induced by precipitation, and (2) it will perform environmental measurements for the characterization of man-made, earth-based signals which could interfere with the uplink frequency bands of the satellite.

  3. CLAIRE: a Canadian Small Satellite Mission for Measurement of Greenhouse Gases

    Science.gov (United States)

    Sloan, James; Grant, Cordell; Germain, Stephane; Durak, Berke; McKeever, Jason; Latendresse, Vincent

    2016-07-01

    CLAIRE, a Canadian mission operated by GHGSat Inc. of Montreal, is the world's first satellite designed to measure greenhouse gas emissions from single targeted industrial facilities. Claire was launched earlier this year into a 500 km polar sun-synchronous orbit selected to provide an acceptable balance between return frequency and spatial resolution. Extensive simulations of oil & gas facilities, power plants, hydro reservoirs and even animal feedlots were used to predict the mission performance. The principal goal is to measure the emission rates of carbon dioxide and methane from selected targets with greater precision and lower cost than ground-based alternatives. CLAIRE will measure sources having surface areas less than 10 x 10 km2 with a spatial resolution better than 50 m, thereby providing industrial site operators and government regulators with the information they need to understand, manage and ultimately to reduce greenhouse gas emissions more economically. The sensor is based on a Fabry-Perot interferometer, coupled with a 2D InGaAs focal plane array operating in the short-wave infrared with a spectral resolution of about 0.1 nm. The patented, high étendue, instrument design provides signal to noise ratios that permit quantification of emission rates with accuracies adequate for most regulatory reporting thresholds. The very high spatial resolution of the density maps produced by the CLAIRE mission resolves plume shapes and emitter locations so that advanced dispersion models can derive accurate emission rates of multiple sources within the field of view. The satellite bus, provided by the University of Toronto's Space Flight Laboratory, is based on the well-characterized NEMO architecture, including hardware that has significant spaceflight heritage. The mission is currently undergoing initial test and validation measurements in preparation for commercial operation later this year.

  4. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals

    Directory of Open Access Journals (Sweden)

    Y. Y. Liu

    2010-09-01

    Full Text Available Combining information derived from satellite-based passive and active microwave sensors has the potential to offer improved retrievals of surface soil moisture variations at global scales. Here we propose a technique to take advantage of retrieval characteristics of passive (AMSR-E and active (ASCAT microwave satellite estimates over sparse-to-moderately vegetated areas to obtain an improved soil moisture product. To do this, absolute soil moisture values from AMSR-E and relative soil moisture derived from ASCAT are rescaled against a reference land surface model date set using a cumulative distribution function (CDF matching approach. While this technique imposes the bias of the reference to the rescaled satellite products, it adjusts both satellite products to the same range and almost preserves the correlation between satellite products and in situ measurements. Comparisons with in situ data demonstrated that over the regions where the correlation coefficient between rescaled AMSR-E and ASCAT is above 0.65 (hereafter referred to as transitional regions, merging the different satellite products together increases the number of observations while minimally changing the accuracy of soil moisture retrievals. These transitional regions also delineate the boundary between sparsely and moderately vegetated regions where rescaled AMSR-E and ASCAT are respectively used in the merged product. Thus the merged product carries the advantages of better spatial coverage overall and increased number of observations particularly for the transitional regions. The combination approach developed in this study has the potential to be applied to existing microwave satellites as well as to new microwave missions. Accordingly, a long-term global soil moisture dataset can be developed and extended, enhancing basic understanding of the role of soil moisture in the water, energy and carbon cycles.

  5. Retrieval of ozone column content from airborne Sun photometer measurements during SOLVE II: comparison with coincident satellite and aircraft measurements

    Directory of Open Access Journals (Sweden)

    J. M. Livingston

    2005-01-01

    -15 DU (~3% for AATS data acquired during two flights - a longitudinal transect from Sweden to Greenland on 21 January, and a latitudinal transect from 47° N to 35° N on 6 February. For the round trip DC-8 latitudinal transect between 34° N and 22° N on 19-20 December 2002, resultant AATS-14 ozone retrievals plus below-aircraft ozone estimates yield a latitudinal gradient that is similar in shape to that observed by TOMS and GOME, but resultant AATS values exceed the corresponding satellite values by up to 30 DU at certain latitudes. These differences are unexplained, but they are attributed to spatial and temporal variability that was associated with the dynamics near the subtropical jet but was unresolved by the satellite sensors. For selected cases, we also compare AATS-14 ozone retrievals with values derived from coincident measurements by the other two DC-8 based solar occultation instruments: the National Center for Atmospheric Research Direct beam Irradiance Airborne Spectrometer (DIAS and the NASA Langley Research Center Gas and Aerosol Monitoring System (GAMS. AATS and DIAS retrievals agree to within RMS differences of 1% of the AATS values for the 21 January and 19-20 December flights, and 2.3% for the 6 February flight. Corresponding AATS-GAMS RMS differences are ~1.5% for the 21 January flight; GAMS data were not compared for the 6 February flight and were not available for the 19-20 December flight. Line of sight ozone retrievals from coincident measurements obtained by the three DC-8 solar occultation instruments during the SAGE III solar occultation event on 24 January yield RMS differences of 2.1% for AATS-DIAS and 0.5% for AATS-GAMS.

  6. Retrieval of ozone column content from airborne Sun photometer measurements during SOLVE II: comparison with coincident satellite and aircraft measurements

    Directory of Open Access Journals (Sweden)

    J. M. Livingston

    2005-01-01

    within 10–15 DU (~3% for AATS data acquired during two flights – a longitudinal transect from Sweden to Greenland on 21 January, and a latitudinal transect from 47° N to 35° N on 6 February. For the round trip DC-8 latitudinal transect between 34° N and 22° N on 19–20 December 2002, resultant AATS-14 ozone retrievals plus below-aircraft ozone estimates yield a latitudinal gradient that is similar in shape to that observed by TOMS and GOME, but resultant AATS values exceed the corresponding satellite values by up to 30 DU at certain latitudes. These differences are unexplained, but they are attributed to spatial and temporal variability that was associated with the dynamics near the subtropical jet but was unresolved by the satellite sensors.

    For selected cases, we also compare AATS-14 ozone retrievals with values derived from coincident measurements by the other two DC-8 based solar occultation instruments: the National Center for Atmospheric Research Direct beam Irradiance Airborne Spectrometer (DIAS and the NASA Langley Research Center Gas and Aerosol Monitoring System (GAMS. AATS and DIAS retrievals agree to within RMS differences of 1% of the AATS values for the 21 January and 19–20 December flights, and 2.3% for the 6 February flight. Corresponding AATS-GAMS RMS differences are ~3% for the 21 January flight; GAMS data were not compared for the 6 February flight and were not available for the 19–20 December flight. Line of sight ozone retrievals from coincident measurements obtained by the three DC-8 solar occultation instruments during the SAGE III solar occultation event on 24 January yield RMS differences of 2.1% for AATS-DIAS and 4.2% for AATS-GAMS.

  7. Interoperability of satellite-based augmentation systems for aircraft navigation

    Science.gov (United States)

    Dai, Donghai

    The Federal Aviation Administration (FAA) is pioneering a transformation of the national airspace system from its present ground based navigation and landing systems to a satellite based system using the Global Positioning System (GPS). To meet the critical safety-of-life aviation positioning requirements, a Satellite-Based Augmentation System (SBAS), the Wide Area Augmentation System (WAAS), is being implemented to support navigation for all phases of flight, including Category I precision approach. The system is designed to be used as a primary means of navigation, capable of meeting the Required Navigation Performance (RNP), and therefore must satisfy the accuracy, integrity, continuity and availability requirements. In recent years there has been international acceptance of Global Navigation Satellite Systems (GNSS), spurring widespread growth in the independent development of SBASs. Besides the FAA's WAAS, the European Geostationary Navigation Overlay Service System (EGNOS) and the Japan Civil Aviation Bureau's MTSAT-Satellite Augmentation System (MSAS) are also being actively developed. Although all of these SBASs can operate as stand-alone, regional systems, there is increasing interest in linking these SBASs together to reduce costs while improving service coverage. This research investigated the coverage and availability improvements due to cooperative efforts among regional SBAS networks. The primary goal was to identify the optimal interoperation strategies in terms of performance, complexity and practicality. The core algorithms associated with the most promising concepts were developed and demonstrated. Experimental verification of the most promising concepts was conducted using data collected from a joint international test between the National Satellite Test Bed (NSTB) and the EGNOS System Test Bed (ESTB). This research clearly shows that a simple switch between SBASs made by the airborne equipment is the most effective choice for achieving the

  8. Operational Testing of Satellite based Hydrological Model (SHM)

    Science.gov (United States)

    Gaur, Srishti; Paul, Pranesh Kumar; Singh, Rajendra; Mishra, Ashok; Gupta, Praveen Kumar; Singh, Raghavendra P.

    2017-04-01

    Incorporation of the concept of transposability in model testing is one of the prominent ways to check the credibility of a hydrological model. Successful testing ensures ability of hydrological models to deal with changing conditions, along with its extrapolation capacity. For a newly developed model, a number of contradictions arises regarding its applicability, therefore testing of credibility of model is essential to proficiently assess its strength and limitations. This concept emphasizes to perform 'Hierarchical Operational Testing' of Satellite based Hydrological Model (SHM), a newly developed surface water-groundwater coupled model, under PRACRITI-2 program initiated by Space Application Centre (SAC), Ahmedabad. SHM aims at sustainable water resources management using remote sensing data from Indian satellites. It consists of grid cells of 5km x 5km resolution and comprises of five modules namely: Surface Water (SW), Forest (F), Snow (S), Groundwater (GW) and Routing (ROU). SW module (functions in the grid cells with land cover other than forest and snow) deals with estimation of surface runoff, soil moisture and evapotranspiration by using NRCS-CN method, water balance and Hragreaves method, respectively. The hydrology of F module is dependent entirely on sub-surface processes and water balance is calculated based on it. GW module generates baseflow (depending on water table variation with the level of water in streams) using Boussinesq equation. ROU module is grounded on a cell-to-cell routing technique based on the principle of Time Variant Spatially Distributed Direct Runoff Hydrograph (SDDH) to route the generated runoff and baseflow by different modules up to the outlet. For this study Subarnarekha river basin, flood prone zone of eastern India, has been chosen for hierarchical operational testing scheme which includes tests under stationary as well as transitory conditions. For this the basin has been divided into three sub-basins using three flow

  9. Spin period and attitude of satellites and space debris measured by using photometry

    Science.gov (United States)

    Shakun, Leonid; Koshkin, Nikolay; Korobeynikova, Elena; Strakhova, Svetlana; Melikyants, Seda; Ryabov, Andrey

    2016-07-01

    Photometry is an essential method for studying of the properties of the proper rotation of satellites and space debris. The observation method with high time resolution is used in the Odessa astronomical observatory for observations of artificial satellites. This method provides the measuring of the orbital motion and the proper rotation of satellites. Worth note, that the time resolution of the light curve and the accuracy of positioning in time of the details in the light curve are more important for the interpretation of the brightness variations than the precise measuring of the brightness. The rapid photometry allows not only registering of the flashes caused by mirror surfaces of structure satellite elements but also determining the indicatrix of the corresponding structure satellite element. This principal change of the photometric quality allows significant improving the interpretation of the satellites' light curves. We obtained a large amount of the photometric observations sequences of the satellites with time resolution 0.02 sec on the 50 cm telescope during last 11 years. We used this data for determination of the rotational parameters of several space objects. We present the method and results of the data analysis for the inactive satellites such as Envisat, Cbers-2B, Topex and other. Each of them changes its rotational parameters in its own way. For some satellites, the rotation period increases, for other it decreases. The rotation axis also change their orientation in space. The obtained information about rotation characteristics can be used for the precise numerical models of the satellite orbital motion and for the future Active Debris Removal missions.

  10. Convolutional neural network features based change detection in satellite images

    Science.gov (United States)

    Mohammed El Amin, Arabi; Liu, Qingjie; Wang, Yunhong

    2016-07-01

    With the popular use of high resolution remote sensing (HRRS) satellite images, a huge research efforts have been placed on change detection (CD) problem. An effective feature selection method can significantly boost the final result. While hand-designed features have proven difficulties to design features that effectively capture high and mid-level representations, the recent developments in machine learning (Deep Learning) omit this problem by learning hierarchical representation in an unsupervised manner directly from data without human intervention. In this letter, we propose approaching the change detection problem from a feature learning perspective. A novel deep Convolutional Neural Networks (CNN) features based HR satellite images change detection method is proposed. The main guideline is to produce a change detection map directly from two images using a pretrained CNN. This method can omit the limited performance of hand-crafted features. Firstly, CNN features are extracted through different convolutional layers. Then, a concatenation step is evaluated after an normalization step, resulting in a unique higher dimensional feature map. Finally, a change map was computed using pixel-wise Euclidean distance. Our method has been validated on real bitemporal HRRS satellite images according to qualitative and quantitative analyses. The results obtained confirm the interest of the proposed method.

  11. New astrometric measurement and reduction of USNO photographic observations of the main Saturnian satellites: 1974-1998

    Science.gov (United States)

    Robert, V.; Pascu, D.; Lainey, V.; Arlot, J.-E.; De Cuyper, J.-P.; Dehant, V.; Thuillot, W.

    2016-11-01

    Context. Accurate positional measurements of planets and satellites are used to improve our knowledge of their orbits and dynamics, and to infer the accuracy of the planet and satellite ephemerides. Aims: In the framework of the European FP7 ESPaCE program, we provide the positions of Saturn and its main satellites taken with the US Naval Observatory 26-inch refractor from 1974 to 1998. Methods: We measured 526 astrophotographic plates with the digitizer of the Royal Observatory of Belgium and reduced them through an optimal process that includes image, instrumental, and spherical corrections using the UCAC4 catalog to provide the most accurate equatorial (RA, Dec) positions. Results: We compared the observed positions of the satellites with the theoretical positions from INPOP13c and DE432 planetary ephemerides and from NOE-6-2015-SAT and SAT375 satellite ephemerides. The mean post-fit rms residuals in equatorial positions range from ±68 mas for the Titan observations or 400 km at Saturn, to ±100 mas for the Hyperion observations or 600 km at Saturn. The mean post-fit rms intersatellite residuals range from ±46 mas for the Rhea-Titan observations or 280 km at Saturn, to ±72 mas for the Hyperion-Titan observations or 430 km at Saturn. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A37 , at the Natural Satellites DataBase and Natural Satellites Data Center services of IMCCE via http://nsdb.imcce.fr/ or http://www.imcce.fr/nsdc/

  12. Refractive index based measurements

    DEFF Research Database (Denmark)

    2014-01-01

    A refractive index based measurement of a property of a fluid is measured in an apparatus comprising a variable wavelength coherent light source (16), a sample chamber (12), a wavelength controller (24), a light sensor (20), a data recorder (26) and a computation apparatus (28), by - directing...

  13. Refractive index based measurements

    DEFF Research Database (Denmark)

    2014-01-01

    In a method for performing a refractive index based measurement of a property of a fluid such as chemical composition or temperature by observing an apparent angular shift in an interference fringe pattern produced by back or forward scattering interferometry, ambiguities in the measurement caused...

  14. Planetary gearbox condition monitoring of ship-based satellite communication antennas using ensemble multiwavelet analysis method

    Science.gov (United States)

    Chen, Jinglong; Zhang, Chunlin; Zhang, Xiaoyan; Zi, Yanyang; He, Shuilong; Yang, Zhe

    2015-03-01

    Satellite communication antennas are key devices of a measurement ship to support voice, data, fax and video integration services. Condition monitoring of mechanical equipment from the vibration measurement data is significant for guaranteeing safe operation and avoiding the unscheduled breakdown. So, condition monitoring system for ship-based satellite communication antennas is designed and developed. Planetary gearboxes play an important role in the transmission train of satellite communication antenna. However, condition monitoring of planetary gearbox still faces challenges due to complexity and weak condition feature. This paper provides a possibility for planetary gearbox condition monitoring by proposing ensemble a multiwavelet analysis method. Benefit from the property on multi-resolution analysis and the multiple wavelet basis functions, multiwavelet has the advantage over characterizing the non-stationary signal. In order to realize the accurate detection of the condition feature and multi-resolution analysis in the whole frequency band, adaptive multiwavelet basis function is constructed via increasing multiplicity and then vibration signal is processed by the ensemble multiwavelet transform. Finally, normalized ensemble multiwavelet transform information entropy is computed to describe the condition of planetary gearbox. The effectiveness of proposed method is first validated through condition monitoring of experimental planetary gearbox. Then this method is used for planetary gearbox condition monitoring of ship-based satellite communication antennas and the results support its feasibility.

  15. The contribution of satellite SAR-derived displacement measurements in landslide risk management practices

    Science.gov (United States)

    Raspini, Federico; Bardi, Federica; Bianchini, Silvia; Ciampalini, Andrea; Del Ventisette, Chiara; Farina, Paolo; Ferrigno, Federica; Solari, Lorenzo; Casagli, Nicola

    2017-04-01

    Landslides are common phenomena that occur worldwide and are a main cause of loss of life and damage to property. The hazards associated with landslides are a challenging concern in many countries, including Italy. With 13% of the territory prone to landslides, Italy is one of the European countries with the highest landslide hazard, and on a worldwide scale, it is second only to Japan among the technologically advanced countries. Over the last 15 years, an increasing number of applications have aimed to demonstrate the applicability of images captured by space-borne Synthetic Aperture Radar (SAR) sensors in slope instability investigations. InSAR (SAR Interferometry) is currently one of the most exploited techniques for the assessment of ground displacements, and it is becoming a consolidated tool for Civil Protection institutions in addressing landslide risk. We present a subset of the results obtained in Italy within the framework of SAR-based programmes and applications intended to test the potential application of C- and X-band satellite interferometry during different Civil Protection activities (namely, prevention, prevision, emergency response and post-emergency phases) performed to manage landslide risk. In all phases, different benefits can be derived from the use of SAR-based measurements, which were demonstrated to be effective in the field of landslide analysis. Analysis of satellite-SAR data is demonstrated to play a major role in the investigation of landslide-related events at different stages, including detection, mapping, monitoring, characterization and prediction. Interferometric approaches are widely consolidated for analysis of slow-moving slope deformations in a variety of environments, and exploitation of the amplitude data in SAR images is a somewhat natural complement for rapid-moving landslides. In addition, we discuss the limitations that still exist and must be overcome in the coming years to manage the transition of satellite SAR

  16. Measurements of UV irradiance within the area of one satellite pixel

    Science.gov (United States)

    Weihs, P.; Blumthaler, M.; Rieder, H. E.; Kreuter, A.; Simic, S.; Laube, W.; Schmalwieser, A. W.; Wagner, J. E.; Tanskanen, A.

    2008-09-01

    A measurement campaign was performed in the region of Vienna and its surroundings from May to July 2007. Within the scope of this campaign erythemal UV was measured at six ground stations within a radius of 30 km. First, the homogeneity of the UV levels within the area of one satellite pixel was studied. Second, the ground UV was compared to ground UV retrieved by the ozone monitoring instrument (OMI) onboard the NASA EOS Aura Spacecraft. During clear-sky conditions the mean bias between erythemal UV measured by the different stations was within the measurement uncertainty of ±5%. Short term fluctuations of UV between the stations were below 3% within a radius of 20 km. For partly cloudy conditions and overcast conditions the discrepancy of instantaneous values between the stations is up to 200% or even higher. If averages of the UV index over longer time periods are compared the difference between the stations decreases strongly. The agreement is better than 20% within a distance of 10 km between the stations for 3 h averages. The comparison with OMI UV showed for clear-sky conditions higher satellite retrieved UV values by, on the average, approximately 15%. The ratio of OMI to ground measured UV lies between 0.9 and 1.5. and strongly depends on the aerosol optical depth. For partly cloudy and overcast conditions the OMI derived surface UV estimates show larger deviation from the ground-based reference data, and even bigger systematic positive bias. Here the ratio OMI to ground data lies between 0.5 and 4.5. The average difference between OMI and ground measurements is +24 to +37% for partly cloudy conditions and more than +50% for overcast conditions.

  17. Measurements of UV irradiance within the area of one satellite pixel

    Directory of Open Access Journals (Sweden)

    P. Weihs

    2008-09-01

    Full Text Available A measurement campaign was performed in the region of Vienna and its surroundings from May to July 2007. Within the scope of this campaign erythemal UV was measured at six ground stations within a radius of 30 km. First, the homogeneity of the UV levels within the area of one satellite pixel was studied. Second, the ground UV was compared to ground UV retrieved by the ozone monitoring instrument (OMI onboard the NASA EOS Aura Spacecraft. During clear-sky conditions the mean bias between erythemal UV measured by the different stations was within the measurement uncertainty of ±5%. Short term fluctuations of UV between the stations were below 3% within a radius of 20 km. For partly cloudy conditions and overcast conditions the discrepancy of instantaneous values between the stations is up to 200% or even higher. If averages of the UV index over longer time periods are compared the difference between the stations decreases strongly. The agreement is better than 20% within a distance of 10 km between the stations for 3 h averages. The comparison with OMI UV showed for clear-sky conditions higher satellite retrieved UV values by, on the average, approximately 15%. The ratio of OMI to ground measured UV lies between 0.9 and 1.5. and strongly depends on the aerosol optical depth. For partly cloudy and overcast conditions the OMI derived surface UV estimates show larger deviation from the ground-based reference data, and even bigger systematic positive bias. Here the ratio OMI to ground data lies between 0.5 and 4.5. The average difference between OMI and ground measurements is +24 to +37% for partly cloudy conditions and more than +50% for overcast conditions.

  18. Upper tropospheric water vapour variability over tropical latitudes observed using radiosonde and satellite measurements

    Indian Academy of Sciences (India)

    Ghouse Basha; M Venkat Ratnam; B V Krishna Murthy

    2013-12-01

    The present study deals with using long-term database for upper tropospheric water vapour (UTWV) variability studies over three tropical stations (Gadanki, Singapore and Truk), where different climatic conditions prevail. Over Gadanki (13.5°N, 79.2°E) strong seasonal variation in UTWV is revealed but not over Singapore (1.37°N, 103.98°E) and Truk (7.46°N, 151.85°E) except at 100 hPa. It is examined whether high resolution radiosonde measurements represent well the UTWV by comparing with different satellite based (Atmospheric Infrared Sounder (AIRS), Advanced Microwave Sounding Unit-B (AMSUB) and Microwave Limb Sounder (MLS)) water vapour measurements. Very good comparison in the nature of variations of UTWV is observed between radiosonde data and satellite data, except over Singapore particularly with AIRS and MLS data, on long-term basis. An attempt is also made to examine the source for UTWV. A close relationship is found between UTWV and deep convection over Gadanki indicating that the source for UTWV is convection particularly during the summer monsoon season.

  19. Night sky brightness at sites from DMSP-OLS satellite measurements

    CERN Document Server

    Cinzano, P

    2004-01-01

    We apply the sky brightness modelling technique introduced and developed by Roy Garstang to high-resolution DMSP-OLS satellite measurements of upward artificial light flux and to GTOPO30 digital elevation data in order to predict the brightness distribution of the night sky at a given site in the primary astronomical photometric bands for a range of atmospheric aerosol contents. This method, based on global data and accounting for elevation, Earth curvature and mountain screening, allows the evaluation of sky glow conditions over the entire sky for any site in the World, to evaluate its evolution, to disentangle the contribution of individual sources in the surrounding territory, and to identify main contributing sources. Sky brightness, naked eye stellar visibility and telescope limiting magnitude are produced as 3-dimensional arrays whose axes are the position on the sky and the atmospheric clarity. We compared our results to available measurements.

  20. Assessing satellite AOD based and WRF/CMAQ output PM2.5 estimators

    Science.gov (United States)

    Cordero, Lina; Wu, Yonghua; Gross, Barry M.; Moshary, Fred

    2013-05-01

    Fine particulate matter measurements (PM2.5) are essential for air quality monitoring and related public health; however, the shortage of reliable measurmennts constrains researchers to use other means for obtaining reliable estimates over large scales. In particular, model forecasters and satellite community use their respective products to develop ground particulate matter estimations but few experiments have explored how the remote sensing approaches compare to the high resolution models. . In this paper we focus on studying the performance of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Geostationary Operational Environmental Satellites (GOES) regression based estimates in comparison to more direct bias corrected outputs from the Community Multiscale Air Quality (CMAQ) model, We use a two-year dataset (2005-2006) and apply urban, season and hour filters to illustrate the agreement between estimated and in-situ measured fine particulate matter from the New York State Department of Environmental Conservation (NYSDEC). We first begin by analyzing the correspondence between ground aerosol optical depth (AOD) measurements from an AERONET (AErosol RObotic NETwork) Cimel sun/sky radiometer with both satellite and model products in one urban location; we show that satellite readings perform better than model outputs, especially during the summer (RMODIS>=0.65, RCMAQ>=0.37). This is a clear symptom of the difficulty in the models to properly model realistic optical properties. We then turn to a direct assessment of PM2.5 presenting individual comparisons between ground PM2.5 measurements with satellite/model predictions and demonstrate the higher accuracy from model estimations (RurbanMODIS >= 0.74, RurbanCMAQ >= 0.77; Rnon-urbanMODIS >= 0.48, Rnon-urbanCMAQ >= 0.78). In general, we find that the bias corrected CMAQ estimates are superior to satellite based estimators except at very high resolution. Finally, we show that when using both model and

  1. An Ad-hoc Satellite Network to Measure Filamentary Current Structures in the Auroral Zone

    Science.gov (United States)

    Nabong, C.; Fritz, T. A.; Semeter, J. L.

    2014-12-01

    An ad-hoc cubesat-based satellite network project known as ANDESITE is under development at Boston University. It aims to develop a dense constellation of easy-to-use, rapidly-deployable low-cost wireless sensor nodes in space. The objectives of the project are threefold: 1) Demonstrate viability of satellite based sensor networks by deploying an 8-node miniature sensor network to study the filamentation of the field aligned currents in the auroral zones of the Earth's magnetosphere. 2) Test the scalability of proposed protocols, including localization techniques, tracking, data aggregation, and routing, for a 3 dimensional wireless sensor network using a "flock" of nodes. 3) Construct a 6U Cube-sat running the Android OS as an integrated constellation manager, data mule and sensor node deplorer. This small network of sensor nodes will resolve current densities at different spatial resolutions in the near-Earth magnetosphere using measurements from magnetometers with 1-nT sensitivities and 0.2 nT/√Hz self-noise. Mapping of these currents will provide new constraints for models of auroral particle acceleration, wave-particle interactions, ionospheric destabilization, and other kinetic processes operating in the low-beta plasma of the near Earth magnetosphere.

  2. Error analysis for satellite gravity field determination based on two-dimensional Fourier methods

    CERN Document Server

    Cai, Lin; Hsu, Houtse; Gao, Fang; Zhu, Zhu; Luo, Jun

    2012-01-01

    The time-wise and space-wise approaches are generally applied to data processing and error analysis for satellite gravimetry missions. But both the approaches, which are based on least-squares collocation, address the whole effect of measurement errors and estimate the resolution of gravity field models mainly from a numerical point of indirect view. Moreover, requirement for higher accuracy and resolution gravity field models could make the computation more difficult, and serious numerical instabilities arise. In order to overcome the problems, this study focuses on constructing a direct relationship between power spectral density of the satellite gravimetry measurements and coefficients of the Earth's gravity potential. Based on two-dimensional Fourier transform, the relationship is analytically concluded. By taking advantage of the analytical expression, it is efficient and distinct for parameter estimation and error analysis of missions. From the relationship and the simulations, it is analytically confir...

  3. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals

    Directory of Open Access Journals (Sweden)

    Y. Y. Liu

    2011-02-01

    Full Text Available Combining information derived from satellite-based passive and active microwave sensors has the potential to offer improved estimates of surface soil moisture at global scale. We develop and evaluate a methodology that takes advantage of the retrieval characteristics of passive (AMSR-E and active (ASCAT microwave satellite estimates to produce an improved soil moisture product. First, volumetric soil water content (m3 m−3 from AMSR-E and degree of saturation (% from ASCAT are rescaled against a reference land surface model data set using a cumulative distribution function matching approach. While this imposes any bias of the reference on the rescaled satellite products, it adjusts them to the same range and preserves the dynamics of original satellite-based products. Comparison with in situ measurements demonstrates that where the correlation coefficient between rescaled AMSR-E and ASCAT is greater than 0.65 ("transitional regions", merging the different satellite products increases the number of observations while minimally changing the accuracy of soil moisture retrievals. These transitional regions also delineate the boundary between sparsely and moderately vegetated regions where rescaled AMSR-E and ASCAT, respectively, are used for the merged product. Therefore the merged product carries the advantages of better spatial coverage overall and increased number of observations, particularly for the transitional regions. The combination method developed has the potential to be applied to existing microwave satellites as well as to new missions. Accordingly, a long-term global soil moisture dataset can be developed and extended, enhancing basic understanding of the role of soil moisture in the water, energy and carbon cycles.

  4. Estimation of fossil-fuel CO2 emissions using satellite measurements of "proxy" species

    Science.gov (United States)

    Konovalov, Igor B.; Berezin, Evgeny V.; Ciais, Philippe; Broquet, Grégoire; Zhuravlev, Ruslan V.; Janssens-Maenhout, Greet

    2016-11-01

    Fossil-fuel (FF) burning releases carbon dioxide (CO2) together with many other chemical species, some of which, such as nitrogen dioxide (NO2) and carbon monoxide (CO), are routinely monitored from space. This study examines the feasibility of estimation of FF CO2 emissions from large industrial regions by using NO2 and CO column retrievals from satellite measurements in combination with simulations by a mesoscale chemistry transport model (CTM). To this end, an inverse modeling method is developed that allows estimating FF CO2 emissions from different sectors of the economy, as well as the total CO2 emissions, in a given region. The key steps of the method are (1) inferring "top-down" estimates of the regional budget of anthropogenic NOx and CO emissions from satellite measurements of proxy species (NO2 and CO in the case considered) without using formal a priori constraints on these budgets, (2) the application of emission factors (the NOx-to-CO2 and CO-to-CO2 emission ratios in each sector) that relate FF CO2 emissions to the proxy species emissions and are evaluated by using data of "bottom-up" emission inventories, and (3) cross-validation and optimal combination of the estimates of CO2 emission budgets derived from measurements of the different proxy species. Uncertainties in the top-down estimates of the NOx and CO emissions are evaluated and systematic differences between the measured and simulated data are taken into account by using original robust techniques validated with synthetic data. To examine the potential of the method, it was applied to the budget of emissions for a western European region including 12 countries by using NO2 and CO column amounts retrieved from, respectively, the OMI and IASI satellite measurements and simulated by the CHIMERE mesoscale CTM, along with the emission conversion factors based on the EDGAR v4.2 emission inventory. The analysis was focused on evaluation of the uncertainty levels for the top-down NOx and CO emission

  5. Bias adjustment of satellite-based precipitation estimation using gauge observations: A case study in Chile

    Science.gov (United States)

    Yang, Zhongwen; Hsu, Kuolin; Sorooshian, Soroosh; Xu, Xinyi; Braithwaite, Dan; Verbist, Koen M. J.

    2016-04-01

    Satellite-based precipitation estimates (SPEs) are promising alternative precipitation data for climatic and hydrological applications, especially for regions where ground-based observations are limited. However, existing satellite-based rainfall estimations are subject to systematic biases. This study aims to adjust the biases in the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) rainfall data over Chile, using gauge observations as reference. A novel bias adjustment framework, termed QM-GW, is proposed based on the nonparametric quantile mapping approach and a Gaussian weighting interpolation scheme. The PERSIANN-CCS precipitation estimates (daily, 0.04°×0.04°) over Chile are adjusted for the period of 2009-2014. The historical data (satellite and gauge) for 2009-2013 are used to calibrate the methodology; nonparametric cumulative distribution functions of satellite and gauge observations are estimated at every 1°×1° box region. One year (2014) of gauge data was used for validation. The results show that the biases of the PERSIANN-CCS precipitation data are effectively reduced. The spatial patterns of adjusted satellite rainfall show high consistency to the gauge observations, with reduced root-mean-square errors and mean biases. The systematic biases of the PERSIANN-CCS precipitation time series, at both monthly and daily scales, are removed. The extended validation also verifies that the proposed approach can be applied to adjust SPEs into the future, without further need for ground-based measurements. This study serves as a valuable reference for the bias adjustment of existing SPEs using gauge observations worldwide.

  6. Experimental study of mountain lee—waves by means of satellite photographs and aircraft measurements

    OpenAIRE

    Cruette, Denise

    2011-01-01

    This paper is a summary of a Ph.D. Thesis1 which was a systematic study of the influence of various meteorological factors on the occurrence and characteristics of mountain waves, more specifically of lee-waves of great horizontal extent. The data used are, beside classical meteorological informations, that given by satellite pictures completed by quasi-simultaneous measurements from planes or gliders. The analysis of many satellite pictures received at the french station of Lannion (Brittany...

  7. Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements

    OpenAIRE

    Zhang, M.; Lin, W.; Klein, S.; J. Bacmeister; Bony, S.; Cederwall, R.; Del Genio, A; Hack, J.; Loeb, N.; Lohmann, U.; P. Minnis; Musat, I.; Pincus, R; Stier, P.; Suarez, M.

    2005-01-01

    To assess the current status of climate models in simulating clouds, basic cloud climatologies from ten atmospheric general circulation models are compared with satellite measurements from the International Satellite Cloud Climatology Project (ISCCP) and the Clouds and Earth's Radiant Energy System (CERES) program. An ISCCP simulator is employed in all models to facilitate the comparison. Models simulated a four-fold difference in high-top clouds. There are also, however, large uncertainties ...

  8. Single-baseline-interferometry-based Orbit Measurement and Determination Test of GEO Satellite%基于单基线干涉测量的GEO卫星轨道测定与验证

    Institute of Scientific and Technical Information of China (English)

    任天鹏; 曹建峰; 唐歌实; 戴一堂; 陈略; 孙靖; 韩松涛; 路伟涛; 王美

    2016-01-01

    As a kind of passive measurement, the interferometry has a natural advantage to track a non-cooperative spatial target. Through applying a 5.5km-baseline interferometry system, a differential interferometry test is done on a GEO satellite. After introducing group-delay-aided phase delay, the measured noise of the interferometry delay is about 9.4ps (root mean square of the linear fitting residuals in each 300 seconds). Following a differential observation as "2-hour-calibration~13-hour-tracking~2-hour-calibration", the accuracy of the interferometry delay is about 0.267ns (rms). The maximum difference between solved orbit and precise ephemeris is about 35.7km. Results show that the single-baseline interferometry can converge to the solution of GEO satellite orbit, which would bring a high-accuracy orbit even as passive monitoring.%干涉测量具有被动式测量特点,对空间非合作目标轨道监测具有天然优势.利用5.5公里基线干涉测量系统,针对GEO卫星开展了差分干涉测量实验.引入群时延辅助的相时延处理技术,GEO卫星干涉测量噪声约9.4ps.基于"2小时标校-13小时跟踪-2小时标校"的长时差分观测模式,GEO卫星干涉测量误差约0.267ns,定轨解算星历与精密星历最大径向偏差为35.7公里.结果表明,单基线干涉测量可以收敛解算GEO卫星轨道,实现较高精度的GEO卫星轨道被动式监测.

  9. Relative navigation for satellite formation flight using a continuous-discrete converted measurement Kalman filter

    Institute of Scientific and Technical Information of China (English)

    XUE Dan; CAO Xi-bin

    2008-01-01

    The present paper develops an approach of relative orbit determination for satellite formation flight. Inter-satellite measurements by the onboard devices of the satellite were chosen to perform this relative naviga-tion, and the equations of relative motion expressed in the Earth Centered Inertial frame were used to eliminate the assumption of the circular reference orbit. The relative orbit estimation was achieved through a continuous-discrete converted measurement Kalman filter design, in which the measurements were transformed to the iner-tial frame to avoid the linearization error of the observation equation. In addition, the situation of the coarse measurement period (only microwave radar measurements are available) existing was analyzed. The numerical simulation results verify the validity of the navigation approach, and it has been proved that this approach can be applied to the formation with an elliptical reference orbit.

  10. Communications satellite business ventures - Measuring the impact of technology programmes and related policies

    Science.gov (United States)

    Greenberg, J. S.

    1986-01-01

    An economic evaluation and planning procedure which assesses the effects of various policies on fixed satellite business ventures is described. The procedure is based on a stochastic financial simulation model, the Domsat II, which evaluates spacecraft reliability, market performance, and cost uncertainties. The application of the Domsat II model to the assessment of NASA's ion thrusters for on-orbit propulsion and GaAs solar cell technology is discussed. The effects of insurance rates and the self-insurance option on the financial performance of communication satellite business ventures are investigated. The selection of a transportation system for placing the satellites into GEO is analyzed.

  11. Communications satellite business ventures - Measuring the impact of technology programmes and related policies

    Science.gov (United States)

    Greenberg, J. S.

    1986-01-01

    An economic evaluation and planning procedure which assesses the effects of various policies on fixed satellite business ventures is described. The procedure is based on a stochastic financial simulation model, the Domsat II, which evaluates spacecraft reliability, market performance, and cost uncertainties. The application of the Domsat II model to the assessment of NASA's ion thrusters for on-orbit propulsion and GaAs solar cell technology is discussed. The effects of insurance rates and the self-insurance option on the financial performance of communication satellite business ventures are investigated. The selection of a transportation system for placing the satellites into GEO is analyzed.

  12. Direct Radiative Forcing from Saharan Mineral Dust Layers from In-situ Measurements and Satellite Retrievals

    Science.gov (United States)

    Sauer, D. N.; Vázquez-Navarro, M.; Gasteiger, J.; Chouza, F.; Weinzierl, B.

    2016-12-01

    Mineral dust is the major species of airborne particulate matter by mass in the atmosphere. Each year an estimated 200-3000 Tg of dust are emitted from the North African desert and arid regions alone. A large fraction of the dust is lifted into the free troposphere and gets transported in extended dust layers westward over the Atlantic Ocean into the Caribbean Sea. Especially over the dark surface of the ocean, those dust layers exert a significant effect on the atmospheric radiative balance though aerosol-radiation interactions. During the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in summer 2013 airborne in-situ aerosol measurements on both sides of the Atlantic Ocean, near the African coast and the Caribbean were performed. In this study we use data about aerosol microphysical properties acquired between Cabo Verde and Senegal to derive the aerosol optical properties and the resulting radiative forcing using the radiative transfer package libRadtran. We compare the results to values retrieved from MSG/SEVIRI data using the RRUMS algorithm. The RRUMS algorithm can derive shortwave and longwave top-of-atmosphere outgoing fluxes using only information issued from the narrow-band MSG/SEVIRI channels. A specific calibration based on collocated Terra/CERES measurements ensures a correct retrieval of the upwelling flux from the dust covered pixels. The comparison of radiative forcings based on in-situ data to satellite-retrieved values enables us to extend the radiative forcing estimates from small-scale in-situ measurements to large scale satellite coverage over the Atlantic Ocean.

  13. Understanding data noise in gravity field recovery on the basis of inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE

    NARCIS (Netherlands)

    Ditmar, P.; Teixeira da Encarnacao, J.; Hashemi Farahani, H.

    2012-01-01

    Spectral analysis of data noise is performed in the context of gravity field recovery from inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE. The motivation of the study is two-fold: (i) to promote a further improvement of GRACE data processing techniques and

  14. A Time and Space-based Dynamic IP Routing in Broadband Satellite Networks

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The topology architecture, characteristics and routing technologies of broadband satellite networks are studied in this paper. The authors propose the routing scheme of satellite networks and design a time and space-based distributed routing algorithm whose complexity is O(1). Simulation results aiming at satellite mobility show that the new algorithm can determine the minimum propagation delay paths effectively.

  15. Global top-down smoke aerosol emissions estimation using satellite fire radiative power measurements

    Directory of Open Access Journals (Sweden)

    C. Ichoku

    2013-10-01

    Full Text Available Biomass burning occurs seasonally in most vegetated parts of the world, consuming large amounts of biomass fuel, generating intense heat energy, and emitting corresponding amounts of smoke plumes that comprise different species of aerosols and trace gases. Accurate estimates of these emissions are required as model inputs to evaluate and forecast smoke plume transport and impacts on air quality, human health, clouds, weather, radiation, and climate. Emissions estimates have long been based on bottom-up approaches that are not only complex, but also fraught with compounding uncertainties. Fortunately, a series of recent studies have revealed that both the rate of biomass consumption and the rate of emission of aerosol particulate matter (PM by open biomass burning are directly proportional to the rate of release of fire radiative energy (FRE, which is fire radiative power (FRP that is measurable from satellite. This direct relationship enables the determination of coefficients of emission (Ce, which can be used to convert FRP or FRE to smoke aerosol emissions in the same manner as emission factors (EFs are used to convert burned biomass to emissions. We have leveraged this relationship to generate the first global 1° × 1° gridded Ce product for smoke aerosol or total particulate matter (TPM emissions using coincident measurements of FRP and aerosol optical thickness (AOT from the Moderate-resolution Imaging Spectro-radiometer (MODIS sensors aboard the Terra and Aqua satellites. This new Fire Energetics and Emissions Research version 1.0 (FEER.v1 Ce product has now been released to the community and can be obtained from http://feer.gsfc.nasa.gov/, along with the corresponding 1-to-1 mapping of their quality assurance (QA flags that will enable the Ce values to be filtered by quality for use in various applications. The regional averages of Ce values for different ecosystem types were found to be in the ranges of: 16–21 g MJ−1 for savanna

  16. POGO satellite orbit corrections: an opportunity to improve the quality of the geomagnetic field measurements?

    Science.gov (United States)

    Stockmann, Reto; Christiansen, Freddy; Olsen, Nils; Jackson, Andrew

    2015-06-01

    We present an attempt to improve the quality of the geomagnetic field measurements from the Polar Orbiting Geophysical Observatory (POGO) satellite missions in the late 1960s. Inaccurate satellite positions are believed to be a major source of errors for using the magnetic observations for field modelling. To improve the data, we use an iterative approach consisting of two main parts: one is a main field modelling process to obtain the radial field gradient to perturb the orbits and the other is the state-of-the-art GPS orbit modelling software BERNESE to calculate new physical orbits. We report results based on a single-day approach showing a clear increase of the data quality. That single-day approach leads, however, to undesirable orbital jumps at midnight. Furthermore, we report results obtained for a much larger data set comprising almost all of the data from the three missions. With this approach, we eliminate the orbit discontinuities at midnight but only tiny quality improvements could be achieved for geomagnetically quiet data. We believe that improvements to the data are probably still possible, but it would require the original tracking observations to be found.

  17. Satellite quenching time-scales in clusters from projected phase space measurements matched to simulated orbits

    Science.gov (United States)

    Oman, Kyle A.; Hudson, Michael J.

    2016-12-01

    We measure the star formation quenching efficiency and time-scale in cluster environments. Our method uses N-body simulations to estimate the probability distribution of possible orbits for a sample of observed Sloan Digital Sky Survey galaxies in and around clusters based on their position and velocity offsets from their host cluster. We study the relationship between their star formation rates and their likely orbital histories via a simple model in which star formation is quenched once a delay time after infall has elapsed. Our orbit library method is designed to isolate the environmental effect on the star formation rate due to a galaxy's present-day host cluster from `pre-processing' in previous group hosts. We find that quenching of satellite galaxies of all stellar masses in our sample (109-10^{11.5}M_{⊙}) by massive (> 10^{13} M_{⊙}) clusters is essentially 100 per cent efficient. Our fits show that all galaxies quench on their first infall, approximately at or within a Gyr of their first pericentric passage. There is little variation in the onset of quenching from galaxy-to-galaxy: the spread in this time is at most ˜2 Gyr at fixed M*. Higher mass satellites quench earlier, with very little dependence on host cluster mass in the range probed by our sample.

  18. Scheduler for monitoring objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Scot S; Pertica, Alexander J; Riot, Vincent J; De Vries, Willem H; Bauman, Brian J; Nikolaev, Sergei; Henderson, John R; Phillion, Donald W

    2015-04-28

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  19. Neural network-based recognition of whistlers on spectrograms detected by satellite

    Science.gov (United States)

    Conti, Livio

    2016-04-01

    We present a system to automatically recognize and classify the occurrence of whistler waves on spectrograms of electric field measurements performed by satellite. Whistlers - VLF waves generated by lightning, with a specific spectral dispersion relation - can induce precipitation of trapped Van Allen particles and have a role in the chemistry of some atmospheric components (mainly NOx). Moreover, it has also been suggested that the increase of the number of anomalous whistlers (i.e. whistlers with high value of dispersion constant) could be induced by disturbances in the Earth-ionosphere wave-guide, generated by seismo-electromagnetic emissions. On satellite, the recognition of whistlers asks for analyzing high-resolution spectrograms that cannot be downloaded to Earth, due to the limits of data transmission. For this reason, a real time identification and classification must be performed on satellite, by avoiding downloading all the unprocessed data. The procedure that we have developed is based on a Time Delay Neural Network (TDNN). The TDNN, proposed some years ago for speech recognition, can be fruitfully also applied in real-time analysis of electromagnetic spectrograms in order to detect phenomena characterized by a specific shape/signature such as those of the whistler waves. Some studies have been performed by the RNF experiment on board of the DEMETER satellite and our algorithm could be adopted on board of the satellite CSES (China Seismo-Electromagnetic Satellite), launch scheduled by the end of 2016. Moreover, the procedure can be also adopted to automatic analysis of whistlers detected on ground.

  20. A New Algorithm for the Satellite-Based Retrieval of Solar Surface Irradiance in Spectral Bands

    Directory of Open Access Journals (Sweden)

    Annette Hammer

    2012-03-01

    Full Text Available Accurate solar surface irradiance data is a prerequisite for an efficient planning and operation of solar energy systems. Further, it is essential for climate monitoring and analysis. Recently, the demand on information about spectrally resolved solar surface irradiance has grown. As surface measurements are rare, satellite derived information with high accuracy might fill this gap. This paper describes a new approach for the retrieval of spectrally resolved solar surface irradiance from satellite data. The method combines a eigenvector-hybrid look-up table approach for the clear sky case with satellite derived cloud transmission (Heliosat method. The eigenvector LUT approach is already used to retrieve the broadband solar surface irradiance of data sets provided by the Climate Monitoring Satellite Application Facility (CM-SAF. This paper describes the extension of this approach to wavelength bands and the combination with spectrally resolved cloud transmission values derived with radiative transfer corrections of the broadband cloud transmission. Thus, the new approach is based on radiative transfer modeling and enables the use of extended information about the atmospheric state, among others, to resolve the effect of water vapor and ozone absorption bands. The method is validated with spectrally resolved measurements from two sites in Europe and by comparison with radiative transfer calculations. The validation results demonstrate the ability of the method to retrieve accurate spectrally resolved irradiance from satellites. The accuracy is in the range of the uncertainty of surface measurements, with exception of the UV and NIR ( ≥ 1200 nm part of the spectrum, where higher deviations occur.

  1. Refractive index based measurements

    DEFF Research Database (Denmark)

    2014-01-01

    In a method for performing a refractive index based measurement of a property of a fluid such as chemical composition or temperature, a chirp in the local spatial frequency of interference fringes of an interference pattern is reduced by mathematical manipulation of the recorded light intensity...

  2. Assessing the utility of satellite-based whitecap fraction to estimate sea spray production and CO2 transfer velocity

    Science.gov (United States)

    Anguelova, M. D.

    2016-05-01

    The utility of a satellite-based whitecap database for estimates of surface sea spray production and bubble-mediated gas transfer on a global scale is presented. Existing formulations of sea spray production and bubble-mediated CO2 transfer velocity involve whitecap fraction parametrization as a function of wind speed at 10 m reference height W(U 10) based on photographic measurements of whitecaps. Microwave radiometric measurements of whitecaps from satellites provide whitecap fraction data over the world oceans for all seasons. Parametrizations W(U 10) based on such radiometric data are thus applicable for a wide range of conditions and can account for influences secondary to the primary forcing factor, the wind speed. Radiometric satellite-based W(U 10) relationship was used as input to: (i) the Coupled Ocean-Atmosphere Response Experiment Gas transfer (COAREG) algorithm to obtain CO2 transfer velocity and total CO2 flux; and (ii) the sea spray source function (SSSF) recommended by Andreas in 2002 to obtain fluxes of sea spray number and mass. The outputs of COAREG and SSSF obtained with satellite-based W(U 10) are compared with respective outputs obtained with the nominal W(U 10) relationship based on photographic data. Good comparisons of the gas and sea spray fluxes with direct measurements and previous estimates imply that the satellite- based whitecap database can be useful to obtain surface fluxes of particles and gases in regions and conditions difficult to access and sample in situ. Satellite and in situ estimates of surface sea spray production and bubble-mediated gas transfer thus complement each other: accurate in situ observations can constrain radiometric whitecap fraction and mass flux estimates, while satellite observations can provide global coverage of whitecap fraction and mass flux estimates.

  3. Stratospheric composition from balloon based measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mencaraglia, F.; Carli, B. [Ist. per le Ricerche sulle Onde Elettromagnetiche, Firenze (Italy); Bonetti, A.; Ciarpallini, P. [Univ. di Firenze (Italy); Carlotti, M.; Lepri, G. [Univ. di Bologna (Italy); Alboni, F.; Cortesi, U.; Ridolfi, M. [Fondazione per la Metereologia Applicata, Firenze (Italy)

    1995-12-31

    Measurements of the composition of the earth`s atmosphere is of fundamental importance for the study of atmospheric chemistry and for developing models that can predict the evolution of the atmosphere itself. Here, the chemical composition of the lower stratosphere has been measured using a polarizing interferometer operating in the far infrared and submillimetric spectral region. The instrument was flown three times (in 1992, 1993 and 1994) from the NSBF balloon base (Fort Sumner, New Mexico) in coincidence with overpasses of the UARS satellite, for a total of about 50 hours of measurements. In this paper the authors report some of the results obtained from the data analysis made up to now.

  4. Planning for a data base system to support satellite conceptual design

    Science.gov (United States)

    Claydon, C. R.

    1976-01-01

    The conceptual design of an automated satellite design data base system is presented. The satellite catalog in the system includes data for all earth orbital satellites funded to the hardware stage for launch between 1970 and 1980, and provides a concise compilation of satellite capabilities and design parameters. The cost of satellite subsystems and components will be added to the base. Data elements are listed and discussed. Sensor and science and applications opportunities catalogs will be included in the data system. Capabilities of the BASIS storage, retrieval, and analysis system are used in the system design.

  5. Geophysical interpretation of satellite laser ranging measurements of crustal movement in California

    Science.gov (United States)

    Cohen, Steven C.

    1985-12-01

    As determined by satellite laser ranging the rate of contraction of a 900 km baseline between sites located near Quincy in northern California and San Diego in southern California is about 61-65 mm/yr with a formal uncertainty of about 10 mm/yr (Christodoulidis et al., 1985). The measured changes in baseline length are a manifestation of the relative motion between the North America and Pacific tectonic plates. This long baseline result is compared to measurements made by more conventional means on shorter baselines. Additional information based on seismiscity, geology, and theoretical modelling is also analyzed. Deformation lying within a few tens of kilometers about the major faults in southern California accounts for most, but not all, of the observed motion. Further motion is attributable to a broader-scale deformation in southern California. Data suggesting crustal movements north of the Garlock fault, in and near the southern Sierra Nevada and local motion at an observatory are also critically reviewed. The best estimates of overall motion indicated by ground observations lie between 40 and 60 mm/yr. This lies within one or two standard deviations of that deduced from satellite ranging but the possibility of some unresolved deficit cannot be entirely dismissed. The long time scale RM2 plate tectonic model of Minster and Jordan (1978) predicts a contraction between 47 and 53 mm/yr depending on the extension rate of the Basin and Range. Thus the ground based observations, SLR results, and RM2 rates differ at about the 10 mm/yr level but are not inconsistent with one another within the data and model uncertainties.

  6. Zenith Pass Problem of Inter-satellite Linkage Antenna Based on Program Guidance Method

    Institute of Scientific and Technical Information of China (English)

    Zhai Kun; Yang Di

    2008-01-01

    While adopting an elevation-over-azimuth architecture by an inter-satellite linkage antenna of a user satellite, a zenith pass problem always occurs when the antenna is tracing the tracking and data relay satellite (TDRS). This paper deals with this problem by way of,firstly, introducing movement laws of the inter-satellite linkage to predict the movement of the user satellite antenna followed by analyzing the potential pass moment and the actual one of the zenith pass in detail. A number of specific orbit altitudes for the user satellite that can remove the blindness zone are obtained. Finally, on the base of the predicted results from the movement laws of the inter-satellite linkage, the zenith pass tracing strategies for the user satellite antenna are designed under the program guidance using a trajectory preprocessor. Simulations have confirmed the reasonability and feasibility of the strategies in dealing with the zenith pass problem.

  7. Measurements of ionospheric TEC in the direction of GPS satellites and comparison with three ionospheric models

    Directory of Open Access Journals (Sweden)

    E. Zuccheretti

    1997-06-01

    Full Text Available The IEN Galileo Ferraris uses GPS for time and frequency synchronization. To obtain high performance it is important to reduce the error due to the ionospheric time-delay in GPS measurements. Evaluations of TEC in the direction of GPS satellites, obtained from three different ionospheric models, have been compared with corresponding measurements by GPS signal.

  8. Radiation budget and related measurements in 1985 and beyond. [earth radiation budget satellite system

    Science.gov (United States)

    1978-01-01

    Development of systems for obtaining radiation budget and cloud data is discussed. Instruments for measuring total solar irradiance, total infrared flux, reflected solar flux, and cloud heights and properties are considered. Other topics discussed include sampling by multiple satellites, user identification, and determination of the parameters that need to be measured.

  9. Stochastic estimation of dynamically changing object orientation parameters using satellite measurements

    OpenAIRE

    Lukasevich, V. I.; Kramarov, S. O.; Sokolov, Sergey V.

    2015-01-01

    It is solved a problem of a posteriori estimation of dynamically modified parameters of angular movement of the object by satellite measurements. There are shown advantages of application of the methods of stochastic non-linear dynamic filtration before single-stage measurements. It is represented an example, showing efficiency of proposed approach.

  10. Retrieval and intercomparison of volcanic SO2 injection height and eruption time from satellite maps and ground-based observations

    Science.gov (United States)

    Pardini, Federica; Burton, Mike; de'Michieli Vitturi, Mattia; Corradini, Stefano; Salerno, Giuseppe; Merucci, Luca; Di Grazia, Giuseppe

    2017-02-01

    Syneruptive gas flux time series can, in principle, be retrieved from satellite maps of SO2 collected during and immediately after volcanic eruptions, and used to gain insights into the volcanic processes which drive the volcanic activity. Determination of the age and height of volcanic plumes are key prerequisites for such calculations. However, these parameters are challenging to constrain using satellite-based techniques. Here, we use imagery from OMI and GOME-2 satellite sensors and a novel numerical procedure based on back-trajectory analysis to calculate plume height as a function of position at the satellite measurement time together with plume injection height and time at a volcanic vent location. We applied this new procedure to three Etna eruptions (12 August 2011, 18 March 2012 and 12 April 2013) and compared our results with independent satellite and ground-based estimations. We also compare our injection height time-series with measurements of volcanic tremor, which reflects the eruption intensity, showing a good match between these two datasets. Our results are a milestone in progressing towards reliable determination of gas flux data from satellite-derived SO2 maps during volcanic eruptions, which would be of great value for operational management of explosive eruptions.

  11. Bowie Lecture: The Record of Sea Level Change from Satellite Measurements: What Have We Learned?

    Science.gov (United States)

    Nerem, R. S.

    2005-12-01

    Over the last decade, satellite geodetic measurements together with in situ measurements, have revolutionized our understanding of present-day sea level change. This is important because sea level change can be used as one barometer of climate variations and because of the implications sea level change has for coastal populations. With measurements from satellite altimeter missions (TOPEX/Posiedon and Jason), satellite gravity missions (GRACE), and the Global Positioning System (GPS), we are now able to start asking some important questions with regards to global sea level change and its regional variations. What has been the rate of global mean sea level change over the last dozen years? Is this rate different from the historical rate observed by the tide gauges over the last century? What are the principal causes of the observed sea level change, and are they related to anthropogenic climate variations? The record of sea level change from satellite altimetry will be reviewed, its error sources and limitations discussed, and the results placed in context with other estimates of sea level change from tide gauges, in situ measurements, and global climate models. The much shorter, but just as important, record of ocean mass variations from satellite gravity measurements will be similarly reviewed. In addition, GPS measurements of the deformation of the solid Earth due to the melting of continental ice and what they tell us about sea level change will be discussed. A sea level change budget will be presented, both for the altimetric era and the last century, containing estimates of contributions from thermal expansion, ocean mass changes (melting ice, runoff, etc.), and other contributions to sea level change. Finally, the need for continuing the satellite measurements of sea level change will be discussed in the context of future missions and the scientific gain that would result.

  12. Development and validation of satellite-based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2016-02-01

    A satellite-based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5 % for classifying clear (V ≥ 30 km), moderate (10 km ≤ V skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear-sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  13. An Attitude Modelling Method Based on the Inherent Frequency of a Satellite Platform

    Science.gov (United States)

    Mo, F.; Tang, X.; Xie, J.; Yan, C.

    2017-05-01

    The accuracy of attitude determination plays a key role in the improvement of surveying and mapping accuracy for high-resolution remote-sensing satellites, and it is a bottleneck in large-scale satellite topographical mapping. As the on-board energy is constrained and the performance of an attitude-measurement device is limited, the attitude acquired is discretely sampled with a settled time interval. The larger the interval, the easier the data transmission, and the more deviation the attitude data will have. Meanwhile, several kinds of jitter frequencies have been detected in satellite platforms. This paper presents a novel attitude modelling (AttModel) method that sufficiently considers the discrete and periodic characteristics, and the attitude model built is continuous and consists of several inherent waves of different frequencies. The process of modelling includes two steps: (a) frequency detection, which uses raw gyroscope data within a period of time to detect the attitude frequencies (as the gyroscope data can actually reflect continuous, very small changes of the satellite platform), and (b) attitude modelling , which processes the attitude data that was filtered by extended Kalman filtering based on general polynomial and trigonometric polynomials, and these trigonometric polynomials are rebuilt by those frequencies detected in the first part of the modelling process. Finally, one experiment designed for verifying the effectiveness of the presented method shows that the AttModel method can reach a slightly better pointing accuracy without ground-control points than traditional attitude-interpolation methods.

  14. Evaluation of satellite based indices for primary production estimates in a sparse savanna in the Sudan

    Directory of Open Access Journals (Sweden)

    M. Sjöström

    2008-07-01

    Full Text Available One of the more frequently applied methods for integrating controls on primary production through satellite data is the Light Use Efficiency (LUE approach. Satellite indices such as the Enhanced Vegetation Index (EVI and the Shortwave Infrared Water Stress Index (SIWSI have previously shown promise as predictors of primary production in several different environments. In this study, we evaluate EVI and SIWSI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS satellite sensor against in-situ measurements from central Sudan in order to asses their applicability in LUE-based primary production modelling within a water limited environment. Results show a strong correlation between EVI against gross primary production (GPP, demonstrating the significance of EVI for deriving information on primary production with relatively high accuracy at similar areas. Evaluation of SIWSI however, reveal that the fraction of vegetation apparently is to low for the index to provide accurate information on canopy water content, indicating that the use of SIWSI as a predictor of water stress in satellite data-driven primary production modelling in similar semi-arid ecosystems is limited.

  15. Multi-decadal satellite measurements of passive and eruptive volcanic SO2 emissions

    Science.gov (United States)

    Carn, Simon; Yang, Kai; Krotkov, Nickolay; Prata, Fred; Telling, Jennifer

    2015-04-01

    strongest volcanic SO2 sources between 2004 and 2015. OMI measurements are most sensitive to SO2 emission rates on the order of ~1000 tons/day or more, and thus the satellite data provide new constraints on the location and persistence of major volcanic SO2 sources. We find that OMI has detected non-eruptive SO2 emissions from at least ~60 volcanoes since 2004. Results of our analysis reveal the emergence of several major tropospheric SO2 sources that are not prominent in existing inventories (Ambrym, Nyiragongo, Turrialba, Ubinas), the persistence of some well-known sources (Etna, Kilauea) and a possible decline in emissions at others (e.g., Lascar). The OMI measurements provide particularly valuable information in regions lacking regular ground-based monitoring such as Indonesia, Melanesia and Kamchatka. We describe how the OMI measurements of SO2 total column, and their probability density function, can be used to infer SO2 emission rates for compatibility with existing emissions data and assimilation into chemical transport models. The satellite-derived SO2 emission rates are in good agreement with ground-based measurements from frequently monitored volcanoes (e.g., from the NOVAC network), but differ for other volcanoes. We conclude that some ground-based SO2 measurements may be biased high if collected during periods of elevated unrest, and hence may not be representative of long-term average emissions.

  16. Discrepant estimates of primary and export production from satellite algorithms, a biogeochemical model, and geochemical tracer measurements in the North Pacific Ocean

    Science.gov (United States)

    Palevsky, Hilary I.; Quay, Paul D.; Nicholson, David P.

    2016-08-01

    Estimates of primary and export production (PP and EP) based on satellite remote sensing algorithms and global biogeochemical models are widely used to provide year-round global coverage not available from direct observations. However, observational data to validate these approaches are limited. We find that no single satellite algorithm or model can reproduce seasonal and annual geochemically determined PP, export efficiency (EP/PP), and EP rates throughout the North Pacific basin, based on comparisons throughout the full annual cycle at time series stations in the subarctic and subtropical gyres and basin-wide regions sampled by container ship transects. The high-latitude regions show large PP discrepancies in winter and spring and strong effects of deep winter mixed layers on annual EP that cannot be accounted for in current satellite-based approaches. These results underscore the need to evaluate satellite- and model-based estimates using multiple productivity parameters measured over broad ocean regions throughout the annual cycle.

  17. Application of satellite infrared measurements to mapping sea ice

    Science.gov (United States)

    Barnes, J. C.

    1972-01-01

    The application of the ITOS-SR (scanning radiometer) infrared measurements for mapping sea ice was examined. The work included detailed mapping of ice features visible in the ITOS nighttime DRSR (direct readout scanning radiometer) pictorial data and in Nimbus summertime film strip data. Analyses of digital temperature values from computer printouts of ITOS stored data and from Nimbus data listings were also undertaken, and densitometric measurements of both ITOS and Nimbus data were initiated.

  18. Volcview: A Web-Based Platform for Satellite Monitoring of Volcanic Activity and Eruption Response

    Science.gov (United States)

    Schneider, D. J.; Randall, M.; Parker, T.

    2014-12-01

    The U.S. Geological Survey (USGS), in cooperation with University and State partners, operates five volcano observatories that employ specialized software packages and computer systems to process and display real-time data coming from in-situ geophysical sensors and from near-real-time satellite sources. However, access to these systems both inside and from outside the observatory offices are limited in some cases by factors such as software cost, network security, and bandwidth. Thus, a variety of Internet-based tools have been developed by the USGS Volcano Science Center to: 1) Improve accessibility to data sources for staff scientists across volcano monitoring disciplines; 2) Allow access for observatory partners and for after-hours, on-call duty scientists; 3) Provide situational awareness for emergency managers and the general public. Herein we describe VolcView (volcview.wr.usgs.gov), a freely available, web-based platform for display and analysis of near-real-time satellite data. Initial geographic coverage is of the volcanoes in Alaska, the Russian Far East, and the Commonwealth of the Northern Mariana Islands. Coverage of other volcanoes in the United States will be added in the future. Near-real-time satellite data from NOAA, NASA and JMA satellite systems are processed to create image products for detection of elevated surface temperatures and volcanic ash and SO2 clouds. VolcView uses HTML5 and the canvas element to provide image overlays (volcano location and alert status, annotation, and location information) and image products that can be queried to provide data values, location and measurement capabilities. Use over the past year during the eruptions of Pavlof, Veniaminof, and Cleveland volcanoes in Alaska by the Alaska Volcano Observatory, the National Weather Service, and the U.S. Air Force has reinforced the utility of shared situational awareness and has guided further development. These include overlay of volcanic cloud trajectory and

  19. Improvement of NCEP Numerical Weather Prediction with Use of Satellite Land Measurements

    Science.gov (United States)

    Zheng, W.; Ek, M. B.; Wei, H.; Meng, J.; Dong, J.; Wu, Y.; Zhan, X.; Liu, J.; Jiang, Z.; Vargas, M.

    2014-12-01

    Over the past two decades, satellite measurements are being increasingly used in weather and climate prediction systems and have made a considerable progress in accurate numerical weather and climate predictions. However, it is noticed that the utilization of satellite measurements over land is far less than over ocean, because of the high land surface inhomogeneity and the high emissivity variabilities in time and space of surface characteristics. In this presentation, we will discuss the application efforts of satellite land observations in the National Centers for Environmental Prediction (NCEP) operational Global Forecast System (GFS) in order to improve the global numerical weather prediction (NWP). Our study focuses on use of satellite data sets such as vegetation type and green vegetation fraction, assimilation of satellite products such as soil moisture retrieval, and direct radiance assimilation. Global soil moisture data products could be used for initialization of soil moisture state variables in numerical weather, climate and hydrological forecast models. A global Soil Moisture Operational Product System (SMOPS) has been developed at NOAA-NESDIS to continuously provide global soil moisture data products to meet NOAA-NCEP's soil moisture data needs. The impact of the soil moisture data products on numerical weather forecast is assessed using the NCEP GFS in which the Ensemble Kalman Filter (EnKF) data assimilation algorithm has been implemented. In terms of radiance assimilation, satellite radiance measurements in various spectral channels are assimilated through the JCSDA Community Radiative Transfer Model (CRTM) on the NCEP Gridpoint Statistical Interpolation (GSI) system, which requires the CRTM to calculate model brightness temperature (Tb) with input of model atmosphere profiles and surface parameters. Particularly, for surface sensitive channels (window channels), Tb largely depends on surface parameters such as land surface skin temperature, soil

  20. Developing a sustainable satellite-based environmental monitoring system In Nigeria

    Science.gov (United States)

    Akinyede, J. O.; Adepoju, K. A.; Akinluyi, F. O.; Anifowose, A. Y. B.

    2015-10-01

    Increased anthropogenic activities over the year have remained a major factor of the Earth changing environment. This phenomenon has given rise to a number of environmental degraded sites that characterize the Nigeria's landscape. The human-induced elements include gully erosion, mangrove ecosystems degradation, desertification and deforestation, particularly in the south east, Niger Delta, north east and south west of Nigeria respectively, as well as river flooding/flood plain inundation and land degradation around Kainji lake area. Because of little or no effective management measures, the attendant environmental hazards have been extremely damaging to the infrastructures and socio-economic development of the affected area. Hence, a concerted effort, through integrated and space-based research, is being intensified to manage and monitor the environment in order to restore the stability, goods and services of the environment. This has justified Nigeria's investment in its space programme, especially the launch of NigeriaSat-1, an Earth observation micro-satellite in constellation with five (5) other similar satellites, Alsat-1, China DMC, Bilsat-1, DEMOS and UK DMC belonging to Algeria, China, Turkey, Spain and United Kingdom respectively. The use of data from these satellites, particularly NigeriaSat-1, in conjunction with associated technologies has proved to be very useful in understanding the influence of both natural and human activities on the Nigeria's ecosystems and environment. The results of some researches on specific applications of Nigerian satellites are presented in this paper. Appropriate sustainable land and water resources management in the affected areas, based on Nigeria's satellite data capture and integration, are also discussed.

  1. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Directory of Open Access Journals (Sweden)

    Ghangho Kim

    2015-04-01

    Full Text Available A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO satellite using single-epoch measurements from a Global Positioning System (GPS receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS. Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state.

  2. Satellite single-axis attitude determination based on Automatic Dependent Surveillance - Broadcast signals

    Science.gov (United States)

    Zhou, Kaixing; Sun, Xiucong; Huang, Hai; Wang, Xinsheng; Ren, Guangwei

    2017-10-01

    The space-based Automatic Dependent Surveillance - Broadcast (ADS-B) is a new technology for air traffic management. The satellite equipped with spaceborne ADS-B system receives the broadcast signals from aircraft and transfers the message to ground stations, so as to extend the coverage area of terrestrial-based ADS-B. In this work, a novel satellite single-axis attitude determination solution based on the ADS-B receiving system is proposed. This solution utilizes the signal-to-noise ratio (SNR) measurement of the broadcast signals from aircraft to determine the boresight orientation of the ADS-B receiving antenna fixed on the satellite. The basic principle of this solution is described. The feasibility study of this new attitude determination solution is implemented, including the link budget and the access analysis. On this basis, the nonlinear least squares estimation based on the Levenberg-Marquardt method is applied to estimate the single-axis orientation. A full digital simulation has been carried out to verify the effectiveness and performance of this solution. Finally, the corresponding results are processed and presented minutely.

  3. Fade-durations derived from land-mobile-satellite measurements in Australia

    Science.gov (United States)

    Hase, Yoshihiro; Vogel, Wolfhard J.; Goldhirsh, Julius

    1991-01-01

    Transmissions from the Japanese ETS-V geostationary satellite were measured at L band (1.5 GHz) in a vehicle driving on roads of southeastern Australia. The measurements were part of a program designed to characterize propagation effects due to roadside trees and terrain for mobile satellite service. It is shown that the cumulative distributions of fade and nonfade durations follow a lognormal and power law, respectively. At 1 percent probability, fades last 2-8 m, and nonfades 10-100 m, depending on the degree of shadowing. Phase fluctuations are generally small, allowing the channel characteristics to be estimated from levels only.

  4. Some results on the upper atmosphere deduced from satellite occultation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Felske, D.; Knuth, R.; Martini, L.; Ohle, K.H.; Sonnemann, G.; Stark, B.

    1980-08-01

    Measurements of neutral gas densities in the upper atmosphere deduced from extinction profiles from the Intercosmos 1, 4, 7, 11 and 16 and SOLRAD 9 and 10 solar radiation satellites at sunrise and sunset are presented. Occultation measurements in the Lyman alpha range have revealed the presence of an anomalously high absorption above 110 km in winter, which may be explained by high densities of water in the thermosphere. Calculations of oxygen densities based on extinction profiles measured in Lyman alpha and the Schumann-Runge range also indicate the presence of high densities of NO, and an unknown Lyman alpha absorber of molecular weight corresponding to that of water. Observations obtained for the D-region winter anomaly indicate that the wavelike ionization variations have counterparts in similar neutral thermosphere density variations, which may influence the ion production and/or loss processes. Finally, short-term neutral density fluctuations between 90 and 300 km measured during a strong F-region disturbance are presented which demonstrate sharp rises in O density and decreases in O2 density accompanied by increases in electron concentration during the first phase of the disturbance, the opposite changes during the second phase, and complex mixing variations between O and O2 and their plasma counterparts in the recovery phase.

  5. Low-cost Citizen Science Balloon Platform for Measuring Air Pollutants to Improve Satellite Retrieval Algorithms

    Science.gov (United States)

    Potosnak, M. J.; Beck-Winchatz, B.; Ritter, P.

    2016-12-01

    High-altitude balloons (HABs) are an engaging platform for citizen science and formal and informal STEM education. However, the logistics of launching, chasing and recovering a payload on a 1200 g or 1500 g balloon can be daunting for many novice school groups and citizen scientists, and the cost can be prohibitive. In addition, there are many interesting scientific applications that do not require reaching the stratosphere, including measuring atmospheric pollutants in the planetary boundary layer. With a large number of citizen scientist flights, these data can be used to constrain satellite retrieval algorithms. In this poster presentation, we discuss a novel approach based on small (30 g) balloons that are cheap and easy to handle, and low-cost tracking devices (SPOT trackers for hikers) that do not require a radio license. Our scientific goal is to measure air quality in the lower troposphere. For example, particulate matter (PM) is an air pollutant that varies on small spatial scales and has sources in rural areas like biomass burning and farming practices such as tilling. Our HAB platform test flight incorporates an optical PM sensor, an integrated single board computer that records the PM sensor signal in addition to flight parameters (pressure, location and altitude), and a low-cost tracking system. Our goal is for the entire platform to cost less than $500. While the datasets generated by these flights are typically small, integrating a network of flight data from citizen scientists into a form usable for comparison to satellite data will require big data techniques.

  6. Global Characterization of Biomass-Burning Patterns using Satellite Measurements of Fire Radiative Energy

    Science.gov (United States)

    Ichoku, Charles; Giglio, Louis; Wooster, Martin J.; Remer, Lorraine A.

    2008-01-01

    Remote sensing is the most practical means of measuring energy release from large open-air biomass burning. Satellite measurement of fire radiative energy (FRE) release rate or power (FRP) enables distinction between fires of different strengths. Based on a 1-km resolution fire data acquired globally by the MODerate-resolution Imaging Spectro-radiometer (MODIS) sensor aboard the Terra and Aqua satellites from 2000 to 2006, instanteaneous FRP values ranged between 0.02 MW and 1866 MW, with global daily means ranging between 20 and 40 MW. Regionally, at the Aqua-MODIS afternoon overpass, the mean FRP values for Alaska, Western US, Western Australia, Quebec and the rest of Canada are significantly higher than these global means, with Quebec having the overall highest value of 85 MW. Analysis of regional mean FRP per unit area of land (FRP flux) shows that a peak fire season in certain regions, fires can be responsible for up to 0.2 W/m(sup 2) at peak time of day. Zambia has the highest regional monthly mean FRP flux of approximately 0.045 W/m(sup 2) at peak time of day and season, while the Middle East has the lowest value of approximately 0.0005 W/m(sup 2). A simple scheme based on FRP has been devised to classify fires into five categories, to facilitate fire rating by strength, similar to earthquakes and hurricanes. The scheme uses MODIS measurements of FRP at 1-km resolution as follows: catagory 1 (less than 100 MW), category 2 (100 to less than 500 MW), category 3 (500 to less than 1000 MW), category 4 (1000 to less than 1500 MW), catagory 5 (greater than or equal to 1500 MW). In most regions of the world, over 90% of fires fall into category 1, while only less than 1% fall into each of categories 3 to 5, although these proportions may differ significantly from day to day and by season. The frequency of occurence of the larger fires is region specific, and could not be explained by ecosystem type alone. Time-series analysis of the propertions of higher category

  7. Direct Radiative Effect of Aerosols Based on PARASOL and OMI Satellite Observations

    Science.gov (United States)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-01-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 +/- 1.5 W/sq m for cloud-free and -2.1 +/- 0.7 W/sq m for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  8. Direct radiative effect of aerosols based on PARASOL and OMI satellite observations

    Science.gov (United States)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-02-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 ± 1.5 W/m2 for cloud-free and -2.1 ± 0.7 W/m2 for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  9. Direct Radiative Effect of Aerosols Based on PARASOL and OMI Satellite Observations

    Science.gov (United States)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-01-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 +/- 1.5 W/sq m for cloud-free and -2.1 +/- 0.7 W/sq m for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  10. Advanced Multipath Mitigation Techniques for Satellite-Based Positioning Applications

    Directory of Open Access Journals (Sweden)

    Mohammad Zahidul H. Bhuiyan

    2010-01-01

    Full Text Available Multipath remains a dominant source of ranging errors in Global Navigation Satellite Systems (GNSS, such as the Global Positioning System (GPS or the future European satellite navigation system Galileo. Multipath is generally considered undesirable in the context of GNSS, since the reception of multipath can make significant distortion to the shape of the correlation function used for time delay estimation. However, some wireless communications techniques exploit multipath in order to provide signal diversity though in GNSS, the major challenge is to effectively mitigate the multipath, since we are interested only in the satellite-receiver transit time offset of the Line-Of-Sight (LOS signal for the receiver's position estimate. Therefore, the multipath problem has been approached from several directions in order to mitigate the impact of multipath on navigation receivers, including the development of novel signal processing techniques. In this paper, we propose a maximum likelihood-based technique, namely, the Reduced Search Space Maximum Likelihood (RSSML delay estimator, which is capable of mitigating the multipath effects reasonably well at the expense of increased complexity. The proposed RSSML attempts to compensate the multipath error contribution by performing a nonlinear curve fit on the input correlation function, which finds a perfect match from a set of ideal reference correlation functions with certain amplitude(s, phase(s, and delay(s of the multipath signal. It also incorporates a threshold-based peak detection method, which eventually reduces the code-delay search space significantly. However, the downfall of RSSML is the memory requirement which it uses to store the reference correlation functions. The multipath performance of other delay-tracking methods previously studied for Binary Phase Shift Keying-(BPSK- and Sine Binary Offset Carrier- (SinBOC- modulated signals is also analyzed in closed loop model with the new Composite

  11. Parameterization of oceanic whitecap fraction based on satellite observations

    Directory of Open Access Journals (Sweden)

    M. F. M. A. Albert

    2015-08-01

    Full Text Available In this study the utility of satellite-based whitecap fraction (W values for the prediction of sea spray aerosol (SSA emission rates is explored. More specifically, the study is aimed at improving the accuracy of the sea spray source function (SSSF derived by using the whitecap method through the reduction of the uncertainties in the parameterization of W by better accounting for its natural variability. The starting point is a dataset containing W data, together with matching environmental and statistical data, for 2006. Whitecap fraction W was estimated from observations of the ocean surface brightness temperature TB by satellite-borne radiometers at two frequencies (10 and 37 GHz. A global scale assessment of the data set to evaluate the wind speed dependence of W revealed a quadratic correlation between W and U10, as well as a relatively larger spread in the 37 GHz data set. The latter could be attributed to secondary factors affecting W in addition to U10. To better visualize these secondary factors, a regional scale assessment over different seasons was performed. This assessment indicates that the influence of secondary factors on W is for the largest part imbedded in the exponent of the wind speed dependence. Hence no further improvement can be expected by looking at effects of other factors on the variation in W explicitly. From the regional analysis, a new globally applicable quadratic W(U10 parameterization was derived. An intrinsic correlation between W and U10 that could have been introduced while estimating W from TB was determined, evaluated and presumed to lie within the error margins of the newly derived W(U10 parameterization. The satellite-based parameterization was compared to parameterizations from other studies and was applied in a SSSF to estimate the global SSA emission rate. The thus obtained SSA production for 2006 of 4.1 × 1012 kg is within previously reported estimates. While recent studies that account for

  12. Latitude variability of acoustic-gravity waves in the upper atmosphere based on satellite data

    Science.gov (United States)

    Fedorenko, A. K.; Bespalova, A. V.; Zhuk, I. T.; Kryuchkov, E. I.

    2017-07-01

    Based on satellite measurements, we investigated the properties of acoustic-gravity waves in different geographical areas of the Earth's upper atmosphere. To study wave activity at high latitudes, we used the concentration of neutral particles measured by the low-altitude polar satellite Dynamic Explorer 2 and measurements from the equatorial satellite Atmosphere Explorer-E for analysis of waves at low latitudes. In the range of heights 250-400 km, there are observed latitudinal variations of amplitudes, together with variations in the morphological and spectral properties of acoustic-gravity waves. In the polar regions of thermosphere, the wave amplitudes amount to 3-10% in terms of relative variations of density and do not exceed 3% at low and middle latitudes. At low latitudes, regular fluctuations induced by the solar terminator are clearly seen with a predominant wave mode moving synchronously with terminator. Moreover, at low and middle latitudes, there are observed sporadic local wave packets of small amplitudes (1-2%) that can have origins of various natures. We also investigated the relation between some of the observed wave trains and the earthquakes.

  13. A thermodynamic geography: night-time satellite imagery as a proxy measure of emergy.

    Science.gov (United States)

    Coscieme, Luca; Pulselli, Federico M; Bastianoni, Simone; Elvidge, Christopher D; Anderson, Sharolyn; Sutton, Paul C

    2014-11-01

    Night-time satellite imagery enables the measurement, visualization, and mapping of energy consumption in an area. In this paper, an index of the "sum of lights" as observed by night-time satellite imagery within national boundaries is compared with the emergy of the nations. Emergy is a measure of the solar energy equivalent used, directly or indirectly, to support the processes that characterize the economic activity in a country. Emergy has renewable and non-renewable components. Our results show that the non-renewable component of national emergy use is positively correlated with night-time satellite imagery. This relationship can be used to produce emergy density maps which enable the incorporation of spatially explicit representations of emergy in geographic information systems. The region of Abruzzo (Italy) is used to demonstrate this relationship as a spatially disaggregate case.

  14. Improving knowledge of the surface salinity annual cycle with Aquarius satellite measurements

    Science.gov (United States)

    Lagerloef, G. S. E.

    2016-12-01

    To improve knowledge of the ocean surface salinity annual cycle, and its link to global precipitation patterns, remains a key science measurement objective for satellites. The Aquarius satellite data are applied here to address this, and the analysis is not as straightforward as it may seem. Sensor calibration is considered carefully to ensure that seasonality in external calibration data sources do not alias the satellite measurements. For example, quasi-monthly calibration error signals were identified early in the Aquarius mission. Subsequently, Aquarius data processing has relied primarily on an ocean target calibration method, whereby the satellite observations were co-located with output from the US Navy operational HYCOM model to adjust for these quasi-monthly calibration drifts. It was later determined that HYCOM salinity fields are themselves adjusted with a climatological restoring term, that imprints the seasonal climatology signal on the sensor calibration. When that output is compared with a parallel Aquarius data processing that bypasses the HYCOM ocean target calibration, and substitutes a simulation of the sensor electronics, the globally averaged output show very different annual signals between these trials. A modified ocean-target calibration, that employs satellite data matched directly with the in situ observations, is presently being investigated. The methodology uses signal processing to separate the satellite-in situ differences related to the sensor calibration from geophysical error sources. This remains a work-in-progress, and the results, with any unresolved issues, will be discussed. The presentation will also provide a very brief summary of Aquarius scientific accomplishments, the final "legacy" data set production, and the program to continue salinity data processing from other satellites.

  15. Satellite-based phenology detection in broadleaf forests in South-Western Germany

    Science.gov (United States)

    Misra, Gourav; Buras, Allan; Menzel, Annette

    2016-04-01

    Many techniques exist for extracting phenological information from time series of satellite data. However, there have been only a few successful attempts to temporarily match satellite-derived observations with ground based phenological observations (Fisher et al., 2006; Hamunyela et al., 2013; Galiano et al., 2015). Such studies are primarily plagued with problems relating to shorter time series of satellite data including spatial and temporal resolution issues. A great challenge is to correlate spatially continuous and pixel-based satellite information with spatially discontinuous and point-based, mostly species-specific, ground observations of phenology. Moreover, the minute differences in phenology observed by ground volunteers might not be sufficient to produce changes in satellite-measured reflectance of vegetation, which also exposes the difference in the definitions of phenology (Badeck et al., 2004; White et al., 2014). In this study Start of Season (SOS) was determined for broadleaf forests at a site in south-western Germany using MODIS-sensor time series of Normalised Difference Vegetation Index (NDVI) data for the years covering 2001 to 2013. The NDVI time series raster data was masked for broadleaf forests using Corine Land Cover dataset, filtered and corrected for snow and cloud contaminations, smoothed with a Gaussian filter and interpolated to daily values. Several SOS techniques cited in literature, namely thresholds of amplitudes (20%, 50%, 60% and 75%), rates of change (1st, 2nd and 3rd derivative) and delayed moving average (DMA) were tested for determination of satellite SOS. The different satellite SOS were then compared with a species-rich ground based phenology information (e.g. understory leaf unfolding, broad leaf unfolding and greening of evergreen tree species). Working with all the pixels at a finer resolution, it is seen that the temporal trends in understory and broad leaf species are well captured. Initial analyses show promising

  16. Dust aerosol characterization and transport features based on combined ground-based, satellite and model-simulated data

    Science.gov (United States)

    Vijayakumar, K.; Devara, P. C. S.; Rao, S. Vijaya Bhaskara; Jayasankar, C. K.

    2016-06-01

    In this paper, we study aerosol characteristics over an urban station in Western India, during a dust event that occurred between 19 and 26 March 2012, with the help of ground-based and satellite measurements and model simulation data. The aerosol parameters are found to change significantly during dust events and they suggest dominance of coarse mode aerosols. The fine mode fraction, size distribution and single scattering albedo reveal that dust (natural) aerosols dominate the anthropogenic aerosols over the study region. Ground-based measurements show drastic reduction in visibility on the dust-laden day (22 March 2012). Additionally, HYSPLIT model and satellite daily data have been used to trace the source, path and spatial extent of dust storm events. Most of the dust aerosols, during the study period, travel from west-to-east pathway from source-to-sink region. Furthermore, aerosol vertical profiles from CALIPSO and synoptic meteorological parameters from ECMWF re-analysis data reveal a layer of thick dust extending from surface to an altitude of about 4 km, and decrease in temperature and increase in specific humidity, respectively. The aerosol radiative forcing calculations indicate more cooling at the surface and warming in the atmosphere during dust event. The results of satellite observations are found to have good consistency with ground-based air quality measurements. Synthesis of satellite data integrated with ground-based observations, supplemented by model analysis, is found to be a promising technique for improved understanding of dust storm phenomenon and its impact on regional climate.

  17. Internet-Protocol-Based Satellite Bus Architecture Designed

    Science.gov (United States)

    Slywczak, Richard A.

    2004-01-01

    NASA is designing future complex satellite missions ranging from single satellites and constellations to space networks and sensor webs. These missions require more interoperability, autonomy, and coordination than previous missions; in addition, a desire exists to have scientists retrieve data directly from the satellite rather than a central distribution source. To meet these goals, NASA has been studying the possibility of extending the Transmission Control Protocol/Internet Protocol (TCP/IP) suite for spacebased applications.

  18. Assessment of the global monthly mean surface insolation estimated from satellite measurements using global energy balance archive data

    Science.gov (United States)

    Li, Zhanqing; Whitlock, Charles H.; Charlock, Thomas P.

    1995-01-01

    Global sets of surface radiation budget (SRB) have been obtained from satellite programs. These satellite-based estimates need validation with ground-truth observations. This study validates the estimates of monthly mean surface insolation contained in two satellite-based SRB datasets with the surface measurements made at worldwide radiation stations from the Global Energy Balance Archive (GEBA). One dataset was developed from the Earth Radiation Budget Experiment (ERBE) using the algorithm of Li et al. (ERBE/SRB), and the other from the International Satellite Cloud Climatology Project (ISCCP) using the algorithm of Pinker and Laszlo and that of Staylor (GEWEX/SRB). Since the ERBE/SRB data contain the surface net solar radiation only, the values of surface insolation were derived by making use of the surface albedo data contained GEWEX/SRB product. The resulting surface insolation has a bias error near zero and a root-mean-square error (RMSE) between 8 and 28 W/sq m. The RMSE is mainly associated with poor representation of surface observations within a grid cell. When the number of surface observations are sufficient, the random error is estimated to be about 5 W/sq m with present satellite-based estimates. In addition to demonstrating the strength of the retrieving method, the small random error demonstrates how well the ERBE derives from the monthly mean fluxes at the top of the atmosphere (TOA). A larger scatter is found for the comparison of transmissivity than for that of insolation. Month to month comparison of insolation reveals a weak seasonal trend in bias error with an amplitude of about 3 W/sq m. As for the insolation data from the GEWEX/SRB, larger bias errors of 5-10 W/sq m are evident with stronger seasonal trends and almost identical RMSEs.

  19. An emission source inversion model based on satellite data and its application in air quality forecasts

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper aims at constructing an emission source inversion model using a variational processing method and adaptive nudging scheme for the Community Multiscale Air Quality Model (CMAQ) based on satellite data to investigate the applicability of high resolution OMI (Ozone Monitoring Instrument) column concentration data for air quality forecasts over the North China. The results show a reasonable consistency and good correlation between the spatial distributions of NO2 from surface and OMI satellite measurements in both winter and summer. Such OMI products may be used to implement integrated variational analysis based on observation data on the ground. With linear and variational corrections made, the spatial distribution of OMI NO2 clearly revealed more localized distributing characteristics of NO2 concentration. With such information, emission sources in the southwest and southeast of North China are found to have greater impacts on air quality in Beijing. When the retrieved emission source inventory based on high-resolution OMI NO2 data was used, the coupled Weather Research Forecasting CMAQ model (WRF-CMAQ) performed significantly better in forecasting NO2 concentration level and its tendency as reflected by the more consistencies between the NO2 concentrations from surface observation and model result. In conclusion, satellite data are particularly important for simulating NO2 concentrations on urban and street-block scale. High-resolution OMI NO2 data are applicable for inversing NOx emission source inventory, assessing the regional pollution status and pollution control strategy, and improving the model forecasting results on urban scale.

  20. Small satellite attitude determination based on GPS/IMU data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Golovan, Andrey [Navigation and Control Laboratory, M.V. Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow (Russian Federation); Cepe, Ali [Department of Applied Mechanics and Control, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-12-10

    In this paper, we present the mathematical models and algorithms that describe the problem of attitude determination for a small satellite using measurements from three angular rate sensors (ARS) and aiding measurements from multiple GPS receivers/antennas rigidly attached to the platform of the satellite.

  1. Satellite-based detection of volcanic sulphur dioxide from recent eruptions in Central and South America

    Directory of Open Access Journals (Sweden)

    D. Loyola

    2008-01-01

    Full Text Available Volcanic eruptions can emit large amounts of rock fragments and fine particles (ash into the atmosphere, as well as several gases, including sulphur dioxide (SO2. These ejecta and emissions are a major natural hazard, not only to the local population, but also to the infrastructure in the vicinity of volcanoes and to aviation. Here, we describe a methodology to retrieve quantitative information about volcanic SO2 plumes from satellite-borne measurements in the UV/Visible spectral range. The combination of a satellite-based SO2 detection scheme and a state-of-the-art 3D trajectory model enables us to confirm the volcanic origin of trace gas signals and to estimate the plume height and the effective emission height. This is demonstrated by case-studies for four selected volcanic eruptions in South and Central America, using the GOME, SCIAMACHY and GOME-2 instruments.

  2. Development of a web-based picture archiving and communication system using satellite data communication.

    Science.gov (United States)

    Hwang, S; Lee, J; Kim, H; Lee, M

    2000-01-01

    Using the JAVA language we have developed a Web-based picture archiving and communication system (PACS) which allows a remote hospital to access medical images. An asymmetric satellite data communication system (ASDCS) provided a receive-only link for data delivery and a conventional terrestrial link (which could be the conventional telephone network) allowed data transmission. The satellite communication link was 10-30 times faster than the conventional terrestrial link. To increase image transmission speeds over the Internet connection, JPEG and wavelet compression methods were used. The resulting images were evaluated quantitatively by measuring the peak signal:noise ratio and qualitatively by radiologists. Compression ratios of 10:1 or less were deemed acceptable for diagnostic purposes. The system appears to be suitable for teleradiology and telemedicine.

  3. Dsm Based Orientation of Large Stereo Satellite Image Blocks

    Science.gov (United States)

    d'Angelo, P.; Reinartz, P.

    2012-07-01

    High resolution stereo satellite imagery is well suited for the creation of digital surface models (DSM). A system for highly automated and operational DSM and orthoimage generation based on CARTOSAT-1 imagery is presented, with emphasis on fully automated georeferencing. The proposed system processes level-1 stereo scenes using the rational polynomial coefficients (RPC) universal sensor model. The RPC are derived from orbit and attitude information and have a much lower accuracy than the ground resolution of approximately 2.5 m. In order to use the images for orthorectification or DSM generation, an affine RPC correction is required. In this paper, GCP are automatically derived from lower resolution reference datasets (Landsat ETM+ Geocover and SRTM DSM). The traditional method of collecting the lateral position from a reference image and interpolating the corresponding height from the DEM ignores the higher lateral accuracy of the SRTM dataset. Our method avoids this drawback by using a RPC correction based on DSM alignment, resulting in improved geolocation of both DSM and ortho images. Scene based method and a bundle block adjustment based correction are developed and evaluated for a test site covering the nothern part of Italy, for which 405 Cartosat-1 Stereopairs are available. Both methods are tested against independent ground truth. Checks against this ground truth indicate a lateral error of 10 meters.

  4. Suborbital Reusable Launch Vehicles as an Opportunity to Consolidate and Calibrate Ground Based and Satellite Instruments

    Science.gov (United States)

    Papadopoulos, K.

    2014-12-01

    XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an

  5. A New Satellite Measurement Capability for Assessing Damage to Crops from Regional Scale Ozone Pollution

    Science.gov (United States)

    Fishman, J. J.; Creilson, J. K.; Parker, P. A.; Ainsworth, E. A.; Vining, G. G.; Szarka, J. L.

    2009-05-01

    High concentrations of ground-level ozone are frequently measured over farmland regions in many parts of the world. Since laboratory data show that ozone can significantly impact crop productivity if levels above a threshold concentration are reached, there is a consensus that crop yield should be impacted now and that the effects will become even more detrimental as global background concentrations continue to rise, as suggested by the latest IPCC report. Using the long-term record of tropospheric ozone derived from satellite measurements (http://asd-www.larc.nasa.gov/TOR/data.html), we present a methodology that can be used to assess the impact of regional ozone pollution on crop productivity. In this study, we use soybean crop yield data during a 5-year period over the Midwest of the United States and analyze the results using multiple linear regression statistical models. The results are consistent with findings using conventional ground-based measurements and with results obtained from an open-air experimental facility SoyFACE (Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that the cost to the farmers globally is substantial, and supports other studies that calculate an economic loss to the farming community of more than 10 billion dollars annually.

  6. Satellite-based monitoring of particulate matter pollution at very high resolution: the HOTBAR method

    Science.gov (United States)

    Wilson, Robin; Milton, Edward; Nield, Joanna

    2016-04-01

    Particulate matter air pollution is a major health risk, and is responsible for millions of premature deaths each year. Concentrations tend to be highest in urban areas - particularly in the mega-cities of rapidly industrialising countries, where there are limited ground monitoring networks. Satellite-based monitoring has been used for many years to assess regional-scale trends in air quality, but currently available satellite products produce data at 1-10km resolution: too coarse to discern the small-scale patterns of sources and sinks seen in urban areas. Higher-resolution satellite products are required to provide accurate assessments of particulate matter concentrations in these areas, and to allow analysis of localised air quality effects on health. The Haze Optimized Transform-based Aerosol Retrieval (HOTBAR) method is a novel method which provides estimates of PM2.5 concentrations from high-resolution (approximately 30m) satellite imagery. This method is designed to work over a wide range of land covers and performs well over the complex land-cover mosaic found in urban areas. It requires only standard visible and near-infrared data, making it applicable to a range of data from sensors such as Landsat, SPOT and Sentinel-2. The method is based upon an extension of the Haze Optimized Transform (HOT), which was originally designed for assessing areas of thick haze in satellite imagery. This was done by calculating a 'haziness' value for each pixel in an image as the distance from a 'Clear Line' in feature space, defined by the high correlation between visible bands. Here, we adapt the HOT method and use it to estimate Aerosol Optical Thickness (a measure of the column-integrated haziness of the atmosphere) instead, from which PM2.5 concentrations can then be estimated. Significant extensions to the original HOT method include Monte Carlo estimation of the 'Clear Line', object-based correction for land cover, and estimation of AOT from the haziness values

  7. Solar absorption estimated from surface radiation measurements and collocated satellite products over Europe

    Science.gov (United States)

    Zyta Hakuba, Maria; Folini, Doris; Wild, Martin; Sanchez-Lorenzo, Arturo

    2013-04-01

    Anthropogenic climate change is physically speaking a perturbation of the atmospheric energy budget through the insertion of constituents such as greenhouse gases or aerosols. Changes in the atmospheric energy budget largely affect the global climate and hydrological cycle, but the quantification of the different energy balance components is still afflicted with large uncertainties. The overall aim of the present study is the assessment of the mean state and the spatio-temporal variations in the solar energy disposition, in which we focus on obtaining an accurate partitioning of absorbed solar radiation between the surface and the atmosphere. Surface based measurements of solar radiation (GEBA, BSRN) are combined with collocated satellite-retrieved surface albedo (MODIS, CERES FSW, or CM SAF GAC-SAL) and top-of-atmosphere net incoming solar radiation (CERES EBAF) to quantify the absorbed solar radiation (ASR) at the surface and within the atmosphere over Europe for the period 2001-2005. In a first step, we examine the quality and temporal homogeneity of the monthly time series beyond 2000 provided by GEBA in order to identify a subset of sufficient quality. We find the vast majority of monthly time series to be suitable for our purposes. Using the satellite-derived CM SAF surface solar radiation product at 0.03° spatial resolution, we assess the spatial representativeness of the GEBA and BSRN sites for their collocated 1° grid cells as we intend to combine the point measurements with the coarser resolved CERES EBAF products (1° resolution), and we find spatial sampling errors of on average 3 Wm-2 or 2% (normalized by point values). Based on the combination of 134 GEBA surface solar radiation (SSR) time series with MODIS white-sky albedo and CERES EBAF top-of-atmosphere net radiation (TOAnet), we obtain a European mean partitioning (2001-2005) of absorbed solar radiation (relative to total incoming radiation) of: ASRsurf= 41% and ASRatm= 25%, together equaling

  8. A Positioning System based on Communication Satellites and the Chinese Area Positioning System (CAPS)

    Science.gov (United States)

    Ai, Guo-Xiang; Shi, Hu-Li; Wu, Hai-Tao; Yan, Yi-Hua; Bian, Yu-Jing; Hu, Yong-Hui; Li, Zhi-Gang; Guo, Ji; Xian-DeCai

    2008-12-01

    The Chinese Area Positioning System (CAPS) is a positioning system based on satellite communication that is fundamentally different from the 3``G'' (GPS, GLONASS and GALILEO) systems. The latter use special-purpose navigation satellites to broadcast navigation information generated on-board to users, while the CAPS transfers ground-generated navigation information to users via the communication satellite. In order to achieve accurate Positioning, Velocity and Time (PVT), the CAPS employs the following strategies to overcome the three main obstacles caused by using the communication satellite: (a) by real-time following-up frequency stabilization to achieve stable frequency; (b) by using a single carrier in the transponder with 36 MHz band-width to gain sufficient power; (c) by incorporating Decommissioned Geostationary Orbit communication satellite (DGEO), barometric pressure and Inclined Geostationary Orbit communication satellite (IGSO) to achieve the 3-D positioning. Furthermore, the abundant transponders available on DGEO can be used to realize the large capacity of communication as well as the integrated navigation and communication. With the communication functions incorporated, five new functions appear in the CAPS: (1) combination of navigation and communication; (2) combination of navigation and high accuracy orbit measurement; (3) combination of navigation message and wide/local area differential processing; (4) combination of the switching of satellites, frequencies and codes; and (5) combination of the navigation message and the barometric altimetry. The CAPS is thereby labelled a PVT5C system of high accuracy. In order to validate the working principle and the performance of the CAPS, a trial system was established in the course of two years at a cost of about 20 million dollars. The trial constellation consists of two GEO satellites located at E87.5° and E110.5°, two DGEOs located at E130° and E142°, as well as barometric altimetry as a virtual

  9. A Positioning System based on Communication Satellites and the Chinese Area Positioning System (CAPS)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Chinese Area Positioning System (CAPS) is a positioning system based on satellite communication that is fundamentally different from the 3"G" (GPS, GLONASS and GALILEO) systems. The latter use special-purpose navigation satellites to broadcast navi-gation information generated on-board to users, while the CAPS transfers ground-generated navigation information to users via the communication satellite. In order to achieve accurate Positioning, Velocity and Time (PVT), the CAPS employs the following strategies to over-come the three main obstacles caused by using the communication satellite: (a) by real-time following-up frequency stabilization to achieve stable frequency; (b) by using a single carrier in the transponder with 36 MHz band-width to gain sufficient power; (c) by incorporating Decommissioned Geostationary Orbit communication satellite (DGEO), barometric pressure and Inclined Geostationary Orbit communication satellite (IGSO) to achieve the 3-D posi-tioning. Furthermore, the abundant transponders available on DGEO can be used to realize the large capacity of communication as well as the integrated navigation and communication. With the communication functions incorporated, five new functions appear in the CAPS: (1) combination of navigation and communication; (2) combination of navigation and high accu-racy orbit measurement; (3) combination of navigation message and wide/local area differen-tial processing; (4) combination of the switching of satellites, frequencies and codes; and (5) combination of the navigation message and the barometric altimetry. The CAPS is thereby labelled a PVT5C system of high accuracy. In order to validate the working principle and the performance of the CAPS, a trial system was established in the course of two years at a cost of about 20 million dollars. The trial constellation consists of two GEO satellites located at E87.5°and E110.5°, two DGEOs located at E130° and E142°, as well as barometric altimetry as a virtual

  10. Satellite-based Assessment of Fire Impacts on Ecosystem Changes in West Africa

    Science.gov (United States)

    Ichoku, Charles

    2008-01-01

    Fires bum many vegetated regions of the world to a variety of degrees and frequency depending on season. Extensive biomass burning occurs in most parts of sub-Saharan Africa, posing great threat to ecosystem stability among other real and potential adverse impacts. In Africa, such landscape-scale fires are used for various agricultural purposes, including land clearing and hunting, although there may be a limited number of cases of fires ignited by accident or due to arson. Satellite remote sensing provides the most practical means of mapping fires, because of their sudden and aggressive nature coupled with the tremendous heat they generate. Recent advancements in satellite technology has enabled, not only the identification of fire locations, but also the measurement of fire radiative energy (FRE) release rate or power (FRP), which has been found to have a direct linear relationship with the rate of biomass combustion. A recent study based on FRP measurements from the Moderate-resolution imaging Spectro-radiometer (MODIS) sensor aboard the Terra and Aqua satellites revealed that, among all the regions of the world where fires occur, African regions rank the highest in the intensity of biomass burning per unit area of land during the peak of the burning season. In this study, we will analyze the burning patterns in West Africa during the last several years and examine the extent of their impacts on the ecosystem dynamics, using a variety of satellite data. The study introduces a unique methodology that can be used to build up the knowledge base from which decision makers can obtain scientific information in fomulating policies for regulating biomass burning in the region.

  11. Support scattering effects on low-gain satellite antenna pattern measurements

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1973-01-01

    The purpose of the present investigation is to determine the difference between the scattering effects from two types of supports on satellite antenna pattern measurements. The difference in scattering effects is estimated by comparing low-gain antenna patterns recorded when using a foam tower an...

  12. Derivation of the radiation budget at ground level from satellite measurements

    Science.gov (United States)

    Raschke, E.

    1982-01-01

    Determination of the Earth radiaton budget and progress in measurement of the budget components and in the treatment of imaging data from satellites are described. Methods for calculating the radiation budget in a general circulation model, radiative transfer characteristics of clouds, computation of solar radiation at ground level using meteorological data and development of a 10-channel radiometer are discussed.

  13. Pico satellite attitude estimation via Robust Unscented Kalman Filter in the presence of measurement faults.

    Science.gov (United States)

    Soken, Halil Ersin; Hajiyev, Chingiz

    2010-07-01

    In the normal operation conditions of a pico satellite, a conventional Unscented Kalman Filter (UKF) gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunction in the estimation system, UKF gives inaccurate results and diverges by time. This study introduces Robust Unscented Kalman Filter (RUKF) algorithms with the filter gain correction for the case of measurement malfunctions. By the use of defined variables named as measurement noise scale factor, the faulty measurements are taken into consideration with a small weight, and the estimations are corrected without affecting the characteristics of the accurate ones. Two different RUKF algorithms, one with single scale factor and one with multiple scale factors, are proposed and applied for the attitude estimation process of a pico satellite. The results of these algorithms are compared for different types of measurement faults in different estimation scenarios and recommendations about their applications are given.

  14. Long-term stability of TES satellite radiance measurements

    Directory of Open Access Journals (Sweden)

    T. C. Connor

    2011-07-01

    Full Text Available The utilization of Tropospheric Emission Spectrometer (TES Level 2 (L2 retrieval products for the purpose of assessing long term changes in atmospheric trace gas composition requires knowledge of the overall radiometric stability of the Level 1B (L1B radiances. The purpose of this study is to evaluate the stability of the radiometric calibration of the TES instrument by analyzing the difference between measured and calculated brightness temperatures in selected window regions of the spectrum. The Global Modeling and Assimilation Office (GMAO profiles for temperature and water vapor and the Real-Time Global Sea Surface Temperature (RTGSST are used as input to the Optimal Spectral Sampling (OSS radiative transfer model to calculate the simulated spectra. The TES reference measurements selected cover a 4-year period of time from mid 2005 through mid 2009 with the selection criteria being; observation latitudes greater than −30° and less than 30°, over ocean, Global Survey mode (nadir view and retrieved cloud optical depth of less than or equal to 0.01. The TES cloud optical depth retrievals are used only for screening purposes and no effects of clouds on the radiances are included in the forward model. This initial screening results in over 55 000 potential reference spectra spanning the four year period. Presented is a trend analysis of the time series of the residuals (observation minus calculations in the TES 2B1, 1B2, 2A1, and 1A1 bands, with the standard deviation of the residuals being approximately equal to 0.6 K for bands 2B1, 1B2, 2A1, and 0.9 K for band 1A1. The analysis demonstrates that the trend in the residuals is not significantly different from zero over the 4-year period. This is one method used to demonstrate that the relative radiometric calibration is stable over time, which is very important for any longer term analysis of TES retrieved products (L2, particularly well-mixed species such as carbon dioxide and methane.

  15. Wind Atlas of Bay of Bengal with Satellite Wind Measurement

    DEFF Research Database (Denmark)

    Nadi, Navila Rahman

    The objective of this study is to obtain appropriate offshore location in the Bay of Bengal, Bangladesh for further development of wind energy. Through analyzing the previous published works, no offshore wind energy estimation has been found here. That is why, this study can be claimed as the first...... footstep towards offshore wind energy analysis for this region. Generally, it is difficult to find offshore wind data relative to the wind turbine hub heights, therefore a starting point is necessary to identify the possible wind power density of the region. In such scenario, Synthetic aperture radars (SAR......) have proven useful. In this study, SAR based dataset- ENVISAT ASAR has been used for Wind Atlas generation. Furthermore, a comparative study has been performed with Global Wind Atlas (GWA) to determine a potential offshore wind farm. Additionally, the annual energy production of that offshore windfarm...

  16. Combining Satellite and Ground Magnetic Measurements to Improve Estimates of Electromagnetic Induction Transfer Functions

    Science.gov (United States)

    Balasis, G.; Egbert, G. D.

    2005-12-01

    Electromagnetic (EM) induction studies using satellite and ground-based magnetic data may ultimately provide critical new constraints on the electrical conductivity of Earth's mantle. Unlike ground-based observatories, which leave large areas of the Earth (especially the ocean basins) unsampled, satellites have the potential for nearly complete global coverage. However, because the number of operating satellites is limited, spatially complex (especially non-zonal) external current sources are sampled relatively poorly by satellites at any fixed time. The comparatively much larger number of ground-based observatories provides more complete synoptic sampling of external source structure. By combining data from both satellites and observatories models of external sources can be improved, leading to more reliable global mapping of Earth conductivity. For example, estimates of EM induction transfer functions estimated from night-side CHAMP data have been previously shown to have biases which depend systematically on local time (LT). This pattern of biases suggests that a purely zonal model does not adequately describe magnetospheric sources. As a first step toward improved modeling of spatial complexity in sources, we have applied empirical orthogonal function (EOF) methods to exploratory analysis of night-side observatory data. After subtraction of the predictions of the CM4 comprehensive model, which includes a zonally symmetric storm-time correction based on Dst, we find significant non-axisymmetric, but large scale coherent variability in the mid-latitude night-side observatory residuals. Over the restricted range of local times (18:00-6:00) and latitudes (50°S to 50°N) considered, the dominant spatial mode of variability is reasonably approximated by a q21 quadrupole spherical harmonic. Temporal variability of this leading EOF mode is well correlated with Dst. Strategies for moving beyond this initial exploratory EOF analysis to combine observatory data with

  17. Three-Axis Satellite Attitude Control Based on Magnetic Torquing

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    1995-01-01

    Recently small satellite missions have gained considerable interest due to low-cost launch opportunities and technilogical improvement of micro-electronics.......Recently small satellite missions have gained considerable interest due to low-cost launch opportunities and technilogical improvement of micro-electronics....

  18. Three-Axis Satellite Attitude Control Based on Magnetic Torquing

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    1995-01-01

    Recently small satellite missions have gained considerable interest due to low-cost launch opportunities and technilogical improvement of micro-electronics.......Recently small satellite missions have gained considerable interest due to low-cost launch opportunities and technilogical improvement of micro-electronics....

  19. Fuel type characterization based on coarse resolution MODIS satellite data

    Directory of Open Access Journals (Sweden)

    Lanorte A

    2007-01-01

    Full Text Available Fuel types is one of the most important factors that should be taken into consideration for computing spatial fire hazard and risk and simulating fire growth and intensity across a landscape. In the present study, forest fuel mapping is considered from a remote sensing perspective. The purpose is to delineate forest types by exploring the use of coarse resolution satellite remote sensing MODIS imagery. In order to ascertain how well MODIS data can provide an exhaustive classification of fuel properties a sample area characterized by mixed vegetation covers and complex topography was analysed. The study area is located in the South of Italy. Fieldwork fuel type recognitions, performed before, after and during the acquisition of remote sensing MODIS data, were used as ground-truth dataset to assess the obtained results. The method comprised the following three steps: (I adaptation of Prometheus fuel types for obtaining a standardization system useful for remotely sensed classification of fuel types and properties in the considered Mediterranean ecosystems; (II model construction for the spectral characterization and mapping of fuel types based on two different approach, maximum likelihood (ML classification algorithm and spectral Mixture Analysis (MTMF; (III accuracy assessment for the performance evaluation based on the comparison of MODIS-based results with ground-truth. Results from our analyses showed that the use of remotely sensed MODIS data provided a valuable characterization and mapping of fuel types being that the achieved classification accuracy was higher than 73% for ML classifier and higher than 83% for MTMF.

  20. ATM Quality of Service Parameters at 45 Mbps Using a Satellite Emulator: Laboratory Measurements

    Science.gov (United States)

    Ivancic, William D.; Bobinsky, Eric A.

    1997-01-01

    Results of 45-Mbps DS3 intermediate-frequency loopback measurements of asynchronous transfer mode (ATM) quality of service parameters (cell error ratio and cell loss ratio) are presented. These tests, which were conducted at the NASA Lewis Research Center in support of satellite-ATM interoperability research, represent initial efforts to quantify the minimum parameters for stringent ATM applications, such as MPEG-1 and MPEG-2 video transmission. Portions of these results were originally presented to the International Telecommunications Union's ITU-R Working Party 4B in February 1996 in support of their Draft Preliminary Recommendation on the Transmission of ATM Traffic via Satellite.

  1. In situ autonomous optical radiometry measurements for satellite ocean color validation in the Western Black Sea

    Directory of Open Access Journals (Sweden)

    G. Zibordi

    2014-12-01

    Full Text Available The accuracy of primary satellite ocean color data products from the Moderate Resolution Imaging Spectroradiometer on-board Aqua (MODIS-A and the Visible/Infrared Imager/Radiometer Suite (VIIRS, is investigated in the Western Black Sea using in situ measurements from the Gloria site included in the Ocean Color component of the Aerosol Robotic Network (AERONET-OC. The analysis is also extended to an additional well-established AERONET-OC site in the northern Adriatic Sea characterized by optically complex coastal waters exhibiting similarities with those observed at the Gloria site. Results from the comparison of normalized-water leaving radiance LWN indicate biases of a few percent between satellite derived and in situ data at the center-wavelengths relevant for the determination of chlorophyll a concentration (443–547 nm, or equivalent. Remarkable is the consistency among the annual cycle determined with time series of satellite-derived and in situ LWN ratios at these center-wavelengths. Contrarily, the differences between in situ and satellite-derived LWN are pronounced at the blue (i.e., 412 nm and red (i.e., 667 nm, or equivalent center-wavelengths, suggesting difficulties in confidently applying satellite-derived radiometric data from these spectral regions for quantitative analysis in optically complex waters.

  2. A Hybrid Algorithm for Satellite Data Transmission Schedule Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Yun-feng; WU Xiao-yue

    2008-01-01

    A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission. At first, based on description of satellite data transmission request, satellite data transmission task modal and satellite data transmission scheduling problem model are established. Secondly, the conflicts in scheduling are discussed. According to the meaning of possible conflict, the method to divide possible conflict task set is given. Thirdly, a hybrid algorithm which consists of genetic algorithm and heuristic information is presented. The heuristic information comes from two concepts, conflict degree and conflict number. Finally, an example shows the algorithm's feasibility and performance better than other traditional algorithms.

  3. Object-based Evaluation of Satellite Precipitation Retrievals: A Case Study of the Summer Season over CONUS

    Science.gov (United States)

    Li, J.; Xu, P.

    2015-12-01

    Satellite precipitation retrievals that have high spatial and temporal resolutions are suitable for various applications, such as hydrologic modeling and watershed management. Many validation studies have been established to understand the strengths and limitations of these satellite precipitation retrievals. In this study, an object-based validation approach is adopted to evaluate several satellite precipitation retrievals focusing on the spatial and geometric patterns of precipitation. This object-based validation approach identifies precipitation objects using an image processing technique referred to as watershed transform. Several object attributes are diagnosed and analyzed based on the distance measurement. Three object-based verification scores are summarized to determine the overall performances of satellite precipitation retrievals. The Integrated Multi-satellitE Retrievals for GPM (IMERG) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) were evaluated using the object-based approach. The NOAA stage IV MPE multi-sensor composite rain analysis was utilized as the ground observations. The comparative assessments were conducted at 0.25° by 0.25° on a daily scale in the summer season of 2014 over the continental United States (CONUS). The results suggest that IMERG possesses the similar spatial pattern of local-scale precipitation areas against stage IV observations. In addition, IMERG depicts the sizes and locations of precipitation areas more accurately against stage IV.

  4. Quantitative evaluation of smoke source strengths and impacts by infusing satellite fire- strength measurements in transport models.

    Science.gov (United States)

    Ichoku, C.; Chin, M.; Diehl, T.; Wooster, M.; Roberts, G.; Giglio, L.

    2007-05-01

    Chemical transport models currently derive their smoke emission sources from counts of fire hot spots detected from satellites, usually with single daily overpasses. However, fires vary in size and strength, with a significant diurnal trend, making the use of pixel counts measured at the same time of day very unreliable for estimating smoke sources. Fortunately, the Moderate-resolution Imaging Spectro-radiometer (MODIS) twin sensors onboard the Terra and Aqua satellites, not only detect fires everywhere at four strategic times of day, but also measure their strength in the form of fire radiative power (FRP) or rate of release of fire radiative energy (FRE). FRP is now also being derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard the geostationary Meteosat-8 platform, which observes Africa and Europe virtually every 15 mins. The SEVIRI measurements show that MODIS 4-times-a-day measurements capture the essence of the fire diurnal cycle. Therefore, MODIS is currently the only satellite data source ideal for estimating daily smoke emissions globally. In a number of recent studies, FRP has been found to be directly proportional to both the rate of biomass consumption and the rate of smoke aerosol emission. Indeed, (1) a combustion factor (Fc), which relates FRE to burned biomass was established, and (2) a FRE-based emission coefficient (Ce), which is a simple coefficient to convert FRP (or FRE) to smoke aerosol emissions was derived for different parts of the world. The results obtained from satellite have been reproduced in the laboratory, and the ingestion of FRP in models is now being tested using the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. Although MODIS has been in operation since the last 6 years, regrettably, this rare but formidable data resource it provides (FRP) has been left largely unutilized. In this presentation, we will show the preliminary results of using FRP to improve the

  5. Satellite based radar interferometry to estimate large-scale soil water depletion from clay shrinkage: possibilities and limitations

    NARCIS (Netherlands)

    Brake, te B.; Hanssen, R.F.; Ploeg, van der M.J.; Rooij, de G.H.

    2013-01-01

    Satellite-based radar interferometry is a technique capable of measuring small surface elevation changes at large scales and with a high resolution. In vadose zone hydrology, it has been recognized for a long time that surface elevation changes due to swell and shrinkage of clayey soils can serve as

  6. Satellite based radar interferometry to estimate large-scale soil water depletion from clay shrinkage: possibilities and limitations

    NARCIS (Netherlands)

    Brake, te B.; Hanssen, R.F.; Ploeg, van der M.J.; Rooij, de G.H.

    2013-01-01

    Satellite-based radar interferometry is a technique capable of measuring small surface elevation changes at large scales and with a high resolution. In vadose zone hydrology, it has been recognized for a long time that surface elevation changes due to swell and shrinkage of clayey soils can serve as

  7. New dynamic routing algorithm based on MANET in LEO/MEO satellite network

    Institute of Scientific and Technical Information of China (English)

    LI Zhe; LI Dong-ni; WANG Guang-xing

    2006-01-01

    The features of low earth orbit/medium earth orbit (LEO/MEO) satellite networks routing algorithm based on inter-satellite link are analyzed and the similarities between satellite networks and mobile Ad Hoc network (MANET) are pointed out.The similar parts in MANET routing protocol are used in the satellite network for reference.A new dynamic routing algorithm based on MANET in LEO/MEO satellite networks,which fits for the LEO/MEO satellite communication system,is proposed.At the same time,the model of the algorithm is simulated and features are analyzed.It is shown that the algorithm has strong adaptability.It can give the network high autonomy,perfect function,low system overhead and great compatibility.

  8. A virtual maintenance-based approach for satellite assembling and troubleshooting assessment

    Science.gov (United States)

    Geng, Jie; Li, Ying; Wang, Ranran; Wang, Zili; Lv, Chuan; Zhou, Dong

    2017-09-01

    In this study, a Virtual Maintenance (VM)-based approach for satellite troubleshooting assessment is proposed. By focusing on various elements in satellite assemble troubleshooting, such as accessibility, ergonomics, wiring, and extent of damage, a systematic, quantitative, and objective assessment model is established to decrease subjectivity in satellite assembling and troubleshooting assessment. Afterwards, based on the established assessment model and satellite virtual prototype, an application process of this model suitable for a virtual environment is presented. Finally, according to the application process, all the elements in satellite troubleshooting are analyzed and assessed. The corresponding improvements, which realize the transformation from a conventional way to a virtual simulation and assessment, are suggested, and the flaws in assembling and troubleshooting are revealed. Assembling or troubleshooting schemes can be improved in the early stage of satellite design with the help of a virtual prototype. Repetition in the practical operation is beneficial to companies as risk and cost are effectively reduced.

  9. Comparison of Satellite-Derived Wind Measurements with Other Wind Measurement Sensors

    Science.gov (United States)

    Susko, Michael; Herman, Leroy

    1995-01-01

    The purpose of this paper is to compare the good data from the Jimsphere launches with the data from the satellite system. By comparing the wind speeds from the Fixed Pedestal System 16 (FPS-16) Radar/Jimsphere Wind System and NASA's 50-MHz Radar Wind Profiler, the validation of winds from Geostationary Operational Environmental Satellite 7 (GOES-7) is performed. This study provides an in situ data quality check for the GOES-7 satellite winds. Comparison was made of the flowfields in the troposphere and the lower stratosphere of case studies of pairs of Jimsphere balloon releases and Radar Wind Profiler winds during Space Shuttle launches. The mean and standard deviation of the zonal component statistics, the meridional component statistics, and the power spectral density curves show good agreement between the two wind sensors. The standard deviation of the u and v components for the STS-37 launch (consisting of five Jimsphere/Radar Wind Profiler data sets) was 1.92 and 1.67 m/s, respectively; for the STS-43 launch (there were six Jimsphere/Wind Profiler data sets) it was 1.39 and 1.44 m/s, respectively. The overall standard deviation was 1.66 m/s for the u component and 1.55 m/s tor the v component, and a standard deviation of 2.27 m/s tor the vector wind difference. The global comparison of satellite with Jimsphere balloon vector winds shows a standard deviation of 3.15 m/s for STS-43 and 4.37 m/s for STS-37. The overall standard deviation of the vector wind was 3.76 m/s, with a root-mean-square vector difference of 4.43 m/s. These data have demonstrated that this unique comparison of the Jimsphere and satellite winds provides excellent ground truth and a frame of reference during testing and validation of satellite data

  10. Validating Microwave-Based Satellite Rain Rate Retrievals Over TRMM Ground Validation Sites

    Science.gov (United States)

    Fisher, B. L.; Wolff, D. B.

    2008-12-01

    Multi-channel, passive microwave instruments are commonly used today to probe the structure of rain systems and to estimate surface rainfall from space. Until the advent of meteorological satellites and the development of remote sensing techniques for measuring precipitation from space, there was no observational system capable of providing accurate estimates of surface precipitation on global scales. Since the early 1970s, microwave measurements from satellites have provided quantitative estimates of surface rainfall by observing the emission and scattering processes due to the existence of clouds and precipitation in the atmosphere. This study assesses the relative performance of microwave precipitation estimates from seven polar-orbiting satellites and the TRMM TMI using four years (2003-2006) of instantaneous radar rain estimates obtained from Tropical Rainfall Measuring Mission (TRMM) Ground Validation (GV) sites at Kwajalein, Republic of the Marshall Islands (KWAJ) and Melbourne, Florida (MELB). The seven polar orbiters include three different sensor types: SSM/I (F13, F14 and F15), AMSU-B (N15, N16 and N17), and AMSR-E. The TMI aboard the TRMM satellite flies in a sun asynchronous orbit between 35 S and 35 N latitudes. The rain information from these satellites are combined and used to generate several multi-satellite rain products, namely the Goddard TRMM Multi-satellite Precipitation Analysis (TMPA), NOAA's CPC Morphing Technique (CMORPH) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). Instantaneous rain rates derived from each sensor were matched to the GV estimates in time and space at a resolution of 0.25 degrees. The study evaluates the measurement and error characteristics of the various satellite estimates through inter-comparisons with GV radar estimates. The GV rain observations provided an empirical ground-based reference for assessing the relative performance of each sensor and sensor

  11. Quantitative measurements of Jupiter, Saturn, their rings and satellites made from Voyager imaging data

    Science.gov (United States)

    Collins, S. A.; Bunker, A. S.

    1983-01-01

    The Voyager spacecraft cameras use selenium-sulfur slow scan vidicons to convert focused optical images into sensible electrical signals. The vidicon-generated data thus obtained are the basis of measurements of much greater precision than was previously possible, in virtue of their superior linearity, geometric fidelity, and the use of in-flight calibration. Attention is given to positional, radiometric, and dynamical measurements conducted on the basis of vidicon data for the Saturn rings, the Saturn satellites, and the Jupiter atmosphere.

  12. Cloud parameters using Ground Based Remote Sensing Systems and Satellites over urban coastal area

    Science.gov (United States)

    Han, Z. T.; Gross, B.; Moshary, F.; Wu, Y.; Ahmed, S. A.

    2013-12-01

    Determining cloud radiative and microphysical properties are very important as a means to assess their effect on earths energy balance. While MODIS and GOES have been used for estimating cloud properties, assessing cloud properties directly has been difficult due the lack of consistent ground based sensor measurements except in such established places such as the ARM site in Oklahoma. However, it is known that significant aerosol seeding from urban and/or maritime sources can modify cloud properties such as effective radius and cloud optical depth and therefore evaluation of satellite retrievals in such a unique area offers novel opportunities to assess the potential of satellite retrievals to distinguish these mechanisms In our study, we used a multi-filter rotating shadow band radiometer (MFRSR) and micro wave radiometer (MWR) to retrieve the cloud optical depth and cloud droplets effective radius . In particular, we make a statistical study during summer 2013 where water phase clouds dominate and assess the accuracy of both MODIS and GOES satellite cloud products including LWP, COD and Reff. Most importantly, we assess performance against satellite observing geometries. Much like previous studies at the ARM site, we observe significant biases in the effective radius when the solar zenith angle is too large. In addition, we show that biases are also sensitive to the LWP limiting such measurement s in assessing potential aerosol-cloud signatures Finally, we discuss preliminary aerosol-cloud interactions from our ground system where local lidar is used to assess aerosols below clouds and explore the Aerosol Cloud Index.

  13. Object Based and Pixel Based Classification Using Rapideye Satellite Imager of ETI-OSA, Lagos, Nigeria

    OpenAIRE

    Esther Oluwafunmilayo Makinde; Ayobami Taofeek Salami; James Bolarinwa Olaleye; Oluwapelumi Comfort Okewusi

    2016-01-01

    Several studies have been carried out to find an appropriate method to classify the remote sensing data. Traditional classification approaches are all pixel-based, and do not utilize the spatial information within an object which is an important source of information to image classification. Thus, this study compared the pixel based and object based classification algorithms using RapidEye satellite image of Eti-Osa LGA, Lagos. In the object-oriented approach, the image was segmented to homog...

  14. Satellite gravity measurement monitoring terrestrial water storage change and drought in the continental United States

    Science.gov (United States)

    Yi, Hang; Wen, Lianxing

    2016-01-01

    We use satellite gravity measurements in the Gravity Recovery and Climate Experiment (GRACE) to estimate terrestrial water storage (TWS) change in the continental United States (US) from 2003 to 2012, and establish a GRACE-based Hydrological Drought Index (GHDI) for drought monitoring. GRACE-inferred TWS exhibits opposite patterns between north and south of the continental US from 2003 to 2012, with the equivalent water thickness increasing from -4.0 to 9.4 cm in the north and decreasing from 4.1 to -6.7 cm in the south. The equivalent water thickness also decreases by -5.1 cm in the middle south in 2006. GHDI is established to represent the extent of GRACE-inferred TWS anomaly departing from its historical average and is calibrated to resemble traditional Palmer Hydrological Drought Index (PHDI) in the continental US. GHDI exhibits good correlations with PHDI in the continental US, indicating its feasibility for drought monitoring. Since GHDI is GRACE-based and has minimal dependence of hydrological parameters on the ground, it can be extended for global drought monitoring, particularly useful for the countries that lack sufficient hydrological monitoring infrastructures on the ground.

  15. Multi-decadal record of ice dynamics on Daugaard Jensen Gletscher, East Greenland, from satellite imagery and terrestrial measurements

    DEFF Research Database (Denmark)

    Stearns, L.A.; Hamilton, G.S.; Reeh, Niels

    2005-01-01

    The history of ice velocity and calving front position of Daugaard Jensen Gletscher, a large outlet glacier in East Greenland, is reconstructed from field measurements, aerial photography and satellite imagery for the period 1950-2001. The calving terminus of the glacier has remained...... in approximately the same position over the past similar to 50 years. There is no evidence of a change in ice motion between 1968 and 2001, based on a comparison of velocities derived from terrestrial surveying and feature tracking using sequential satellite images. Estimates of flux near the entrance to the fjord...... vs snow accumulation in the interior catchment show that Daugaard Jensen Gletscher has a small negative mass balance. This result is consistent with other mass-balance estimates for the inland region of the glacier....

  16. Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites

    Science.gov (United States)

    Cao, C.; Uprety, S.; Xiong, J.; Wu, A.; Jing, P.; Smith, D.; Chander, G.; Fox, N.; Ungar, S.

    2010-01-01

    Establishing satellite measurement consistency by using common desert sites has become increasingly more important not only for climate change detection but also for quantitative retrievals of geophysical variables in satellite applications. Using the Antarctic Dome C site (75°06′S, 123°21′E, elevation 3.2 km) for satellite radiometric calibration and validation (Cal/Val) is of great interest owing to its unique location and characteristics. The site surface is covered with uniformly distributed permanent snow, and the atmospheric effect is small and relatively constant. In this study, the long-term stability and spectral characteristics of this site are evaluated using well-calibrated satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Preliminary results show that despite a few limitations, the site in general is stable in the long term, the bidirectional reflectance distribution function (BRDF) model works well, and the site is most suitable for the Cal/Val of reflective solar bands in the 0.4–1.0 µm range. It was found that for the past decade, the reflectivity change of the site is within 1.35% at 0.64 µm, and interannual variability is within 2%. The site is able to resolve calibration biases between instruments at a level of ~1%. The usefulness of the site is demonstrated by comparing observations from seven satellite instruments involving four space agencies, including OrbView-2–SeaWiFS, Terra–Aqua MODIS, Earth Observing 1 (EO-1) – Hyperion, Meteorological Operational satellite programme (MetOp) – Advanced Very High Resolution Radiometer (AVHRR), Envisat Medium Resolution Imaging Spectrometer (MERIS) – dvanced Along-Track Scanning Radiometer (AATSR), and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Dome C is a promising candidate site for climate quality calibration of satellite radiometers towards more consistent satellite measurements, as part

  17. Analysis of Satellite-Based Navigation Signal Reflectometry: Simulations and Observations

    DEFF Research Database (Denmark)

    von Benzon, Hans-Henrik; Høeg, Per; Durgonics, Tibor

    2016-01-01

    A new wave propagator that can be used to simulate global navigation satellite systems reflected signals from ocean surfaces is presented. The wave propagator simulates the characteristics of a bistatic scattering system. Simulated GPS ocean surface reflections will be presented and discussed based...... on the Hawaiian island of Maui. The GPS receiver was during the experiments running in an open-loop configuration. The analysis of both the simulated surface-reflection signals and the measured reflection signals will in general reveal spectral structures of the reflected signals that can lead to extraction...

  18. A Collective Detection Based GPS Receiver for Small Satellites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To solve the problem of autonomous navigation on small satellite platforms less than 20 kg, we propose to develop an onboard orbit determination receiver for small...

  19. Comparison of the simulated performance of a VSAT satellite link with measurements

    Science.gov (United States)

    Mwanakatwe, M.; Willis, M. J.; Evans, B. G.

    1991-06-01

    The transmisson performance of a Ka-band VSAT system (CODE) has been simulated to verify the systems design and to demonstrate the adequacy of the implementation margin and phase noise. A detailed simulation of phase noise effects on VSAT systems design is also presented. Hardware measurements and BOSS simulations for the test set-up show a good agreement for values of Eb/N0 up to 7dB. The simulated results indicate an increased error when the TWTA is operated in the nonlinear region, with the simulations indicating larger degradation than the measurement. The phase noise performance of the digital TRL modem is found to be consistently better than that of the simulated model. There appears to be closer agreement with the BOSS simulations than with the TOPSIM III simulations. The discrepancy between the TOPSIM III and BOSS phase noise simulations was only resolved by measurements taken using the Olympus satellite and BTI satellite simulator.

  20. Satellite Image Time Series Decomposition Based on EEMD

    Directory of Open Access Journals (Sweden)

    Yun-long Kong

    2015-11-01

    Full Text Available Satellite Image Time Series (SITS have recently been of great interest due to the emerging remote sensing capabilities for Earth observation. Trend and seasonal components are two crucial elements of SITS. In this paper, a novel framework of SITS decomposition based on Ensemble Empirical Mode Decomposition (EEMD is proposed. EEMD is achieved by sifting an ensemble of adaptive orthogonal components called Intrinsic Mode Functions (IMFs. EEMD is noise-assisted and overcomes the drawback of mode mixing in conventional Empirical Mode Decomposition (EMD. Inspired by these advantages, the aim of this work is to employ EEMD to decompose SITS into IMFs and to choose relevant IMFs for the separation of seasonal and trend components. In a series of simulations, IMFs extracted by EEMD achieved a clear representation with physical meaning. The experimental results of 16-day compositions of Moderate Resolution Imaging Spectroradiometer (MODIS, Normalized Difference Vegetation Index (NDVI, and Global Environment Monitoring Index (GEMI time series with disturbance illustrated the effectiveness and stability of the proposed approach to monitoring tasks, such as applications for the detection of abrupt changes.

  1. Satellite-Based Study of Glaciers Retreat in Northern Pakistan

    Science.gov (United States)

    Munir, Siraj

    Glaciers serve as a natural regulator of regional water supplies. About 16933 Km 2 area of glaciers is covered by Pakistan. These glaciers are enormous reservoirs of fresh water and their meltwater is an important resource which feed rivers in Pakistan. Glacier depletion, especially recent melting can affect agriculture, drinking water supplies, hydro-electric power, and ecological habitats. This can also have a more immediate impact on Pakistan's economy that depends mainly on water from glacier melt. Melting of seasonal snowfall and permanent glaciers has resulted not only in reduction of water resources but also caused flash floods in many areas of Pakistan. With the advent of satellite technology, using optical and SAR data the study of glaciers, has become possible. Using temporal data, based on calculation of snow index, band ratios and texture reflectance it has been revealed that the rate of glacier melting has increased as a consequent of global warming. Comparison of Landsat images of Batura glacier for October 1992 and October 2000 has revealed that there is a decrease of about 17 sq km in Batura glaciers. Although accurate changes in glacier extent cannot be assessed without baseline information, these efforts have been made to analyze future changes in glaciated area.

  2. Unmodelled magnetic contributions in satellite-based models

    Science.gov (United States)

    Tozzi, Roberta; Mandea, Mioara; De Michelis, Paola

    2016-06-01

    A complex system of electric currents flowing in the ionosphere and magnetosphere originates from the interaction of the solar wind and the Interplanetary Magnetic Field (IMF) with the Earth's magnetic field. These electric currents generate magnetic fields contributing themselves to those measured by both ground observatories and satellites. Here, low-resolution (1 Hz) magnetic vector data recorded between 1 March 2014 and 31 May 2015 by the recently launched Swarm constellation are considered. The core and crustal magnetic fields and part of that originating in the magnetosphere are removed from Swarm measurements using CHAOS-5 model. Low- and mid-latitude residuals of the geomagnetic field representing the ionospheric and the unmodelled magnetospheric contributions are investigated, in the Solar Magnetic frame, according to the polarity of IMF B y (azimuthal) and B z (north-south) components and to different geomagnetic activity levels. The proposed approach makes it possible to investigate the features of unmodelled contributions due to the external sources of the geomagnetic field. Results show, on one side, the existence of a relation between the analysed residuals and IMF components B y and B z , possibly due to the long distance effect of high-latitude field-aligned currents. On the other side, they suggest the presence of a contribution due to the partial ring current that is activated during the main phase of geomagnetic storms. The perturbation observed on residuals is also compatible with the effect of the net field-aligned currents. Moreover, we have quantitatively estimated the effect of these current systems on computed residuals.

  3. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    Science.gov (United States)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  4. Continued development of a global precipitation dataset from satellite and ground-based gauges

    Science.gov (United States)

    Dietzsch, Felix; Andersson, Axel; Schröder, Marc; Ziese, Markus; Becker, Andreas

    2017-04-01

    The project framework MiKlip ("Mittelfristige Klimaprognosen") is focused on the development of an operational forecast system for decadal climate predictions. The objective of the "Daily Precipitation Analysis for the validation of Global medium-range Climate predictions Operationalized" (DAPAGLOCO) project, is the development and operationalization of a global precipitation dataset for forecast validation of the MPI-ESM experiments used in MiKlip. The dataset is a combination of rain gauge measurement data over land and satellite-based precipitation retrievals over ocean. Over land, gauge data from the Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst (DWD) are used. Over ocean, retrievals from the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) dataset are used as data source. The currently available dataset consists of 21 years of data (1988-2008) and is provided in different spatial resolutions of 1° and 2.5° on the global scale, and 0.5° for Europe. Rain rates over ocean are currently derived from satellite microwave imagers by using a neuronal network. For the future it is intended to switch this retrieval method to a 1D-Var method. The current state of the dataset is presented, an introduction to the future retrieval and its features is given and first results from evaluation and application are shown.

  5. Comparative Analysis of Satellite Measurements Calculation Results Using the Postprocessing Services: Asg-Eupos (Poland), Apps (USA) and CSRS (Canada)

    Science.gov (United States)

    Mika, Monika; Kudach, Jakub

    2014-06-01

    The publication has a cognitive research character. It presents a comparative analysis of free Internet services in Poland and abroad, used to adjust the data obtained using satellite measurement techniques. The main aim of this work is to describe and compare free tools for satellite data processing and to examine them for possible use in the surveying works in Poland. Among the many European and global services three of them dedicated to satellite measurements were selected: ASG-EUPOS (Poland), APPS (USA) and CSRS (Canada). The publication contains the results of calculations using these systems. Calculations were based on RINEX files obtained via postprocessing service (ASG-EUPOS network) POZGEO D for 12 reference stations in the South Poland. In order to examine differences in results between the ASG-EUPOS, APPS and CSRS the transformation points coordinate to a single coordinate system ETRF 2000 (in force in Poland) was made. Studies have shown the possibility of the calculation in Poland (in postprocessing mode) using the analyzed applications with global coverage.

  6. Investigating the error budget of tropical rainfall accumulations derived from combined passive microwave and infrared satellite measurements

    Science.gov (United States)

    Roca, R.; Chambon, P.; jobard, I.; Viltard, N.

    2012-04-01

    Measuring rainfall requires a high density of observations, which, over the whole tropical elt, can only be provided from space. For several decades, the availability of satellite observations has greatly increased; thanks to newly implemented missions like the Megha-Tropiques mission and the forthcoming GPM constellation, measurements from space become available from a set of observing systems. In this work, we focus on rainfall error estimations at the 1 °/1-day accumulated scale, key scale of meteorological and hydrological studies. A novel methodology for quantitative precipitation estimation is introduced; its name is TAPEER (Tropical Amount of Precipitation with an Estimate of ERrors) and it aims to provide 1 °/1-day rain accumulations and associated errors over the whole Tropical belt. This approach is based on a combination of infrared imagery from a fleet of geostationary satellites and passive microwave derived rain rates from a constellation of low earth orbiting satellites. A three-stage disaggregation of error into sampling, algorithmic and calibration errors is performed; the magnitudes of the three terms are then estimated separately. A dedicated error model is used to evaluate sampling errors and a forward error propagation approach is used for an estimation of algorithmic and calibration errors. One of the main findings in this study is the large contribution of the sampling errors and the algorithmic errors of BRAIN on medium rain rates (2 mm h-1 to 10 mm h-1) in the total error budget.

  7. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors.

    Science.gov (United States)

    Wang, Menghua; Shi, Wei; Jiang, Lide; Voss, Kenneth

    2016-09-05

    The near-infrared (NIR) and shortwave infrared (SWIR)-based atmospheric correction algorithms are used in satellite ocean color data processing, with the SWIR-based algorithm particularly useful for turbid coastal and inland waters. In this study, we describe the NIR- and two SWIR-based on-orbit vicarious calibration approaches for satellite ocean color sensors, and compare results from these three on-orbit vicarious calibrations using satellite measurements from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). Vicarious calibration gains for VIIRS spectral bands are derived using the in situ normalized water-leaving radiance nLw(λ) spectra from the Marine Optical Buoy (MOBY) in waters off Hawaii. The SWIR vicarious gains are determined using VIIRS measurements from the South Pacific Gyre region, where waters are the clearest and generally stable. Specifically, vicarious gain sets for VIIRS spectral bands of 410, 443, 486, 551, and 671 nm derived from the NIR method using the NIR 745 and 862 nm bands, the SWIR method using the SWIR 1238 and 1601 nm bands, and the SWIR method using the SWIR 1238 and 2257 nm bands are (0.979954, 0.974892, 0.974685, 0.965832, 0.979042), (0.980344, 0.975344, 0.975357, 0.965531, 0.979518), and (0.980820, 0.975609, 0.975761, 0.965888, 0.978576), respectively. Thus, the NIR-based vicarious calibration gains are consistent with those from the two SWIR-based approaches with discrepancies mostly within ~0.05% from three data processing methods. In addition, the NIR vicarious gains (745 and 862 nm) derived from the two SWIR methods are (0.982065, 1.00001) and (0.981811, 1.00000), respectively, with the difference ~0.03% at the NIR 745 nm band. This is the fundamental basis for the NIR-SWIR combined atmospheric correction algorithm, which has been used to derive improved satellite ocean color products over open oceans and turbid coastal/inland waters. Therefore, a unified

  8. Satellite and ground-based sensors for the Urban Heat Island analysis in the city of Rome

    DEFF Research Database (Denmark)

    Fabrizi, Roberto; Bonafoni, Stefania; Biondi, Riccardo

    2010-01-01

    In this work, the trend of the Urban Heat Island (UHI) of Rome is analyzed by both ground-based weather stations and a satellite-based infrared sensor. First, we have developed a suitable algorithm employing satellite brightness temperatures for the estimation of the air temperature belonging...... to the layer of air closest to the surface. UHI spatial characteristics have been assessed using air temperatures measured by both weather stations and brightness temperature maps from the Advanced Along Track Scanning Radiometer (AATSR) on board ENVISAT polar-orbiting satellite. In total, 634 daytime...... and nighttime scenes taken between 2003 and 2006 have been processed. Analysis of the Canopy Layer Heat Island (CLHI) during summer months reveals a mean growth in magnitude of 3-4 K during nighttime and a negative or almost zero CLHI intensity during daytime, confirmed by the weather stations. © 2010...

  9. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System.

    Science.gov (United States)

    Jan, Shau-Shiun; Tao, An-Lin

    2016-05-13

    The Chinese BeiDou navigation satellite system (BDS) aims to provide global positioning service by 2020. The combined use of BDS and Global Positioning System (GPS) is proposed to provide navigation service with more stringent requirements. Actual satellite data, signals and measurements were collected for more than one month to analyze the positioning service qualities from both BDS and GPS. In addition to the conversions of coordinate and timing system, five data quality analysis (DQA) methods, three signal quality analysis (SQA) methods, and four measurement quality analysis (MQA) methods are proposed in this paper to improve the integrated positioning performance of BDS and GPS. As shown in the experiment results, issues related to BDS and GPS are resolved by the above proposed quality analysis methods. Thus, the anomalies in satellite data, signals and measurements can be detected by following the suggested resolutions to enhance the positioning performance of the combined use of BDS and GPS in the Asia Pacific region.

  10. Integrated Multi-Point Space Plasma Measurements With Four Ionospheric Satellites

    Science.gov (United States)

    Siefring, C. L.; Bernhardt, P. A.; Selcher, C.; Wilkens, M. R.; McHarg, M. G.; Krause, L.; Chun, F.; Enloe, L.; Panholzer, R.; Sakoda, D.; Phelps, R.; D Roussel-Dupre, D.; Colestock, P.; Close, S.

    2006-12-01

    The STP-1 launch scheduled for late 2006 will place four satellites with ionospheric plasma diagnostics into the same nearly circular orbit with an altitude of 560 km and inclination of 35.4°. The satellites will allow for unique multipoint measurements of ionospheric scintillations and their causes. Both the radio and in-situ diagnostics will provide coverage of low- and mid-latitudes. The four satellites, STPSat1, NPSat1, FalconSat3, and CFE will follow the same ground-track but because of drag and mass differences their relative velocities will be different and vary during the lifetime of the satellites. The four satellites will start close together; separate over a few months and coming back together with near conjunctions at six and eight months. Two satellite conjunctions between NPSat1 and STPSat1 will occur most often, approximately one month apart at the end of the mission. STPSat1 is equipped with CITRIS (sCintillation and TEC Receiver In Space) which will measure scintillations in the VHF, UHF and L-band along with measuring Total Electron Content (TEC) along the propagation path. NPSat1 will carry a three-frequency CERTO (Coherent Electromagnetic Radio TOmography) Beacon which broadcasts phase-coherent signals at 150.012 MHz, 400.032 MHz, and 1066.752 MHz. CITRIS will be able to measure TEC and Scintillations along the orbital path (propagation path from NPSat1 to STPSat1) as well as between the CITRIS and the ground. NPSat1 carries electron and ion saturation Langmuir Probes, while FalconSat3 carries the FLAPS (FLAt Plasma Spectrometer) and PLANE (Plasma Local Anomalous Noise Environment). The in-situ diagnostic complement the CITRIS/CERTO radio techniques in many ways. The CIBOLA Flight Experiment (CFE) contains a wide band receiver covering 100 to 500 MHz. The CFE data can be processed to show distortion of wide-band modulations by ionospheric irregularities. CFE and CITRIS can record ground transmissions from the French DORIS beacons which radiate

  11. A method for colocating satellite XCO2 data to ground-based data and its application to ACOS-GOSAT and TCCON

    Directory of Open Access Journals (Sweden)

    H. Nguyen

    2014-02-01

    Full Text Available Satellite measurements are often compared with higher-precision ground-based measurements as part of validation efforts. The satellite soundings are rarely perfectly coincident in space and time with the ground-based measurements, so a colocation methodology is needed to aggregate "nearby" soundings into what the instrument would have seen at the location and time of interest. We are particularly interested in validation efforts for satellite-retrieved total column carbon dioxide (XCO2, where XCO2 data from Greenhouse Gas Observing Satellite (GOSAT retrievals (ACOS, NIES, RemoteC, PPDF, etc. or SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCHIACHY are often colocated and compared to ground-based column XCO2 measurement from Total Carbon Column Observing Network (TCCON. Current colocation methodologies for comparing satellite measurements of total column dry-air mole fractions of CO2 (XCO2 with ground-based measurements typically involve locating and averaging the satellite measurements within some latitudinal, longitudinal, and temporal window. We examine a geostatistical colocation methodology that takes a weighted average of satellite observations depending on the "distance" of each observation from a ground-based location of interest. The "distance" function that we use is a modified Euclidian distance with respect to latitude, longitude, time, and mid-tropospheric temperature at 700 hPa. We apply this methodology to XCO2 retrieved from Greenhouse Gas Observing Satellite (GOSAT spectra by the ACOS team, cross-validate the results to TCCON XCO2 ground-based data, and present some comparison between our methodology and standard existing colocation methods showing that in general geostatistical colocation produces smaller mean-squared error.

  12. Satellite-based estimate of aerosol direct radiative effect over the South-East Atlantic

    Directory of Open Access Journals (Sweden)

    L. Costantino

    2013-09-01

    Full Text Available The net effect of aerosol Direct Radiative Forcing (DRF is the balance between the scattering effect that reflects solar radiation back to space (cooling, and the absorption that decreases the reflected sunlight (warming. The amplitude of these two effects and their balance depends on the aerosol load, its absorptivity, the cloud fraction and the respective position of aerosol and cloud layers. In this study, we use the information provided by CALIOP (CALIPSO satellite and MODIS (AQUA satellite instruments as input data to a Rapid Radiative Transfer Model (RRTM and quantify the shortwave (SW aerosol direct atmospheric forcing, over the South-East Atlantic. The combination of the passive and active measurements allows estimates of the horizontal and vertical distributions of the aerosol and cloud parameters. We use a parametrization of the Single Scattering Albedo (SSA based on the satellite-derived Angstrom coefficient. The South East Atlantic is a particular region, where bright stratocumulus clouds are often topped by absorbing smoke particles. Results from radiative transfer simulations confirm the similar amplitude of the cooling effect, due to light scattering by the aerosols, and the warming effect, due to the absorption by the same particles. Over six years of satellite retrievals, from 2005 to 2010, the South-East Atlantic all-sky SW DRF is −0.03 W m−2, with a spatial standard deviation of 8.03 W m−2. In good agreement with previous estimates, statistics show that a cloud fraction larger than 0.5 is generally associated with positive all-sky DRF. In case of cloudy-sky and aerosol located only above the cloud top, a SSA larger than 0.91 and cloud optical thickness larger than 4 can be considered as threshold values, beyond which the resulting radiative forcing becomes positive.

  13. Preliminary Analysis of a Novel SAR Based Emergency System for Earth Orbit Satellites using Galileo

    NARCIS (Netherlands)

    Gill, E.K.A.; Helderweirt, A.

    2010-01-01

    This paper presents a preliminary analysis of a novel Search and Rescue (SAR) based emergency system for Low Earth Orbit (LEO) satellites using the Galileo Global Navigation Satellite System (GNSS). It starts with a description of the space user SAR system including a concept description, mission ar

  14. Comparative Study of Ground Measured, Satellite-Derived, and Estimated Global Solar Radiation Data in Nigeria

    Directory of Open Access Journals (Sweden)

    Boluwaji M. Olomiyesan

    2016-01-01

    Full Text Available In this study, the performance of three global solar radiation models and the accuracy of global solar radiation data derived from three sources were compared. Twenty-two years (1984–2005 of surface meteorological data consisting of monthly mean daily sunshine duration, minimum and maximum temperatures, and global solar radiation collected from the Nigerian Meteorological (NIMET Agency, Oshodi, Lagos, and the National Aeronautics Space Agency (NASA for three locations in North-Western region of Nigeria were used. A new model incorporating Garcia model into Angstrom-Prescott model was proposed for estimating global radiation in Nigeria. The performances of the models used were determined by using mean bias error (MBE, mean percentage error (MPE, root mean square error (RMSE, and coefficient of determination (R2. Based on the statistical error indices, the proposed model was found to have the best accuracy with the least RMSE values (0.376 for Sokoto, 0.463 for Kaduna, and 0.449 for Kano and highest coefficient of determination, R2 values of 0.922, 0.938, and 0.961 for Sokoto, Kano, and Kaduna, respectively. Also, the comparative study result indicates that the estimated global radiation from the proposed model has a better error range and fits the ground measured data better than the satellite-derived data.

  15. Satellite quenching timescales in clusters from projected phase space measurements matched to simulated orbits

    CERN Document Server

    Oman, Kyle A

    2016-01-01

    We measure the star formation quenching efficiency and timescale in cluster environments. Our method uses N-body simulations to estimate the probability distribution of possible orbits for a sample of observed SDSS galaxies in and around clusters based on their position and velocity offsets from their host cluster. We study the relationship between their star formation rates and their likely orbital histories via a simple model in which star formation is quenched once a delay time after infall has elapsed. Our orbit library method is designed to isolate the environmental effect on the star formation rate due to a galaxy's present-day host cluster from `pre-processing' in previous group hosts. We find that quenching of satellite galaxies of all stellar masses in our sample ($10^{9}-10^{11.5}\\,{\\rm M}_\\odot$) by massive ($> 10^{13}\\,{\\rm M}_\\odot$) clusters is essentially $100$ per cent efficient. Our fits show that all galaxies quench on their first infall, approximately at or within a Gyr of their first peric...

  16. Energetic particle radiations measured by particle detector on board CBERS-1 satellite

    Institute of Scientific and Technical Information of China (English)

    HAO YongQiang; XIAO Zuo; ZOU Hong; ZHANG DongHe

    2007-01-01

    Using the data measured by energetic particle detector on board CBERS-01 and -02 for the past five years, statistics was made to show the general features of MeV electrons and protons along a solar synchronous orbit at an altitude of 780 km. This height is in the bottom region of the Earth's radiation belts. Detectors are inside the satellite cabinet and such continuous monitoring of particle radiation environment inside a satellite has seldom conducted so far. After a proper and careful treatment, it is indicated that the data inside satellite are well correlated with the radiation environment outside. Besides the agreement of the general distribution characteristics of energetic electrons and protons with similar observations from other satellites, attention is particularly paid to the disturbed conditions. Variations of particle fluxes are closely related with solar proton events, in general, electron fluxes of outer belt are well correlated with Dst index after three days' delay while the electron injection occurred almost at the same day during great magnetic storms. It is confirmed that both energetic electrons and protons appear in the Polar Cap region only after the solar proton events.

  17. Are there urban signatures in the tropospheric ozone column products derived from satellite measurements?

    Directory of Open Access Journals (Sweden)

    J. Kar

    2010-06-01

    Full Text Available In view of the proposed geostationary satellite missions to monitor air quality from space, it is important to first assess the capability of the current suite of satellite instruments to provide information on the urban scale pollution. We explore the possibility of detecting urban signatures in the tropospheric column ozone data derived from Total Ozone Mapping Spectrometer (TOMS/Solar Backscattered Ultraviolet (SBUV and Ozone Monitoring Instrument (OMI/Microwave Limb Sounder (MLS satellite data. We find that distinct isolated plumes of tropospheric ozone near several large and polluted cities around the world may be detected in these data sets. The ozone plumes generally correspond with the tropospheric column NO2 plumes around these cities as observed by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY instrument. Similar plumes are also seen in tropospheric mean ozone mixing ratio distribution after accounting for the surface and tropopause pressure variations. The total column ozone retrievals indicate fairly significant sensitivity to the lower troposphere over the polluted land areas, which might help explain these detections. These results indicate that ultraviolet (UV measurements may, in principle, be able to capture the urban signatures and may have implications for future missions using geostationary satellites.

  18. Long-term groundwater variations in Northwest India from satellite gravity measurements

    Science.gov (United States)

    Chen, Jianli; Li, Jin; Zhang, Zizhan; Ni, Shengnan

    2014-05-01

    Satellite gravity data from the Gravity Recovery and Climate Experiment (GRACE) provides quantitative measures of terrestrial water storage (TWS) change at large spatial scales. Combining GRACE-observed TWS changes and model estimates of water storage changes in soil and snow at the surface offers a means for measuring groundwater storage change. In this study, we re-assess long-term groundwater storage variation in the Northwest India (NWI) region using an extended record of GRACE time-variable gravity measurements, and a fully unconstrained global forward modeling method. Our new assessments based on the GRACE release-5 (RL05) gravity solutions indicate that during the 10 year period January 2003 to December 2012, the NWI groundwater depletion remains pronounced, especially during the first 5 years (01/2003-12/2007). The newly estimated depletion rates are ~ 20.4 ± 7.1 Gigatonne (Gt)/yr averaged over the 10 year period, and 29.4 ± 8.4 Gt/yr during the first 5 years. The yearly groundwater storage changes in the NWI region are strongly correlated with yearly precipitation anomalies. In 2009, the driest season of the decade, the groundwater depletion reaches nearly 80 Gt, while in the two relatively wet seasons, 2008 and 2011, the groundwater storages even see net increases of about 24 and 35 Gt, respectively. The estimated mean groundwater depletion rates for the first 5 years are significantly higher than previous assessments. The larger depletion rates may reflect the benefits from improved data quality of GRACE RL05 gravity solutions, and improved data processing method, which can more effectively reduce leakage error in GRACE estimates. Our analysis indicates that the neighboring Punjab Province of Pakistan (especially Northern Punjab) apparently also experiences significant groundwater depletion during the same period, which has partly contributed to the new regional groundwater depletion estimates.

  19. Application of remote sensing to thermal pollution analysis. [satellite sea surface temperature measurement assessment

    Science.gov (United States)

    Hiser, H. W.; Lee, S. S.; Veziroglu, T. N.; Sengupta, S.

    1975-01-01

    A comprehensive numerical model development program for near-field thermal plume discharge and far field general circulation in coastal regions is being carried on at the University of Miami Clean Energy Research Institute. The objective of the program is to develop a generalized, three-dimensional, predictive model for thermal pollution studies. Two regions of specific application of the model are the power plants sites at the Biscayne Bay and Hutchinson Island area along the Florida coastline. Remote sensing from aircraft as well as satellites are used in parallel with in situ measurements to provide information needed for the development and verification of the mathematical model. This paper describes the efforts that have been made to identify problems and limitations of the presently available satellite data and to develop methods for enhancing and enlarging thermal infrared displays for mesoscale sea surface temperature measurements.

  20. Air Quality Measurements from Satellites during the 2008 Beijing Olympics and Paralympics

    Science.gov (United States)

    Witte, J. C.; Schoeberl, M.; Douglass, A.; Gleason, J.; Krotkov, N.; Gille, J.; Pickering, K.; Livesey, N.

    2009-05-01

    In preparation for the Olympic and Paralympic games in August and September 2008 in Beijing, China, the Chinese government imposed strict controls on industrial emissions and motor vehicle traffic in and around the city and vicinity before and during the events to improve the air quality for the competitors and visitors. To test the efficacy of these measures, we used satellite data from NASA's Aura/Ozone Monitoring Instrument (OMI) and Terra/Measurements Of Pollution In The Troposphere (MOPITT) over Beijing and surrounding areas during the Olympic and Paralympic period. The satellite instruments recorded significant reductions in nitrogen dioxide of up to 50%, up to 10% in tropospheric column ozone, 20-40% in boundary layer sulfur dioxide, and 10-20% reductions in carbon monoxide concentrations below 700 hPa.

  1. Optimality of incompletely measurable active and passive attitude control systems. [for satellites

    Science.gov (United States)

    Schiehlen, W.; Popp, K.

    1973-01-01

    Passive attitude control systems and active systems with incomplete state measurements are only suboptimal systems in the sense of optimal control theory, since optimal systems require complete state measurements or state estimations. An optimal system, then, requires additional hardware (especially in the case of flexible spacecraft) which results in higher costs. Therefore, it is a real engineering problem to determine how much an optimal system exceeds the suboptimal system, or in other words, what is the suboptimal system's degree of optimality. The problem will be treated in three steps: (1) definition of the degree of optimality for linear, time-invariant systems; (2) a computation method using the quadratic cost functional; (3) application to a gravity-gradient stabilized three-body satellite and a spinning flexible satellite.

  2. Differences in estimating terrestrial water flux from three satellite-based Priestley-Taylor algorithms

    Science.gov (United States)

    Yao, Yunjun; Liang, Shunlin; Yu, Jian; Zhao, Shaohua; Lin, Yi; Jia, Kun; Zhang, Xiaotong; Cheng, Jie; Xie, Xianhong; Sun, Liang; Wang, Xuanyu; Zhang, Lilin

    2017-04-01

    Accurate estimates of terrestrial latent heat of evaporation (LE) for different biomes are essential to assess energy, water and carbon cycles. Different satellite- based Priestley-Taylor (PT) algorithms have been developed to estimate LE in different biomes. However, there are still large uncertainties in LE estimates for different PT algorithms. In this study, we evaluated differences in estimating terrestrial water flux in different biomes from three satellite-based PT algorithms using ground-observed data from eight eddy covariance (EC) flux towers of China. The results reveal that large differences in daily LE estimates exist based on EC measurements using three PT algorithms among eight ecosystem types. At the forest (CBS) site, all algorithms demonstrate high performance with low root mean square error (RMSE) (less than 16 W/m2) and high squared correlation coefficient (R2) (more than 0.9). At the village (HHV) site, the ATI-PT algorithm has the lowest RMSE (13.9 W/m2), with bias of 2.7 W/m2 and R2 of 0.66. At the irrigated crop (HHM) site, almost all models algorithms underestimate LE, indicating these algorithms may not capture wet soil evaporation by parameterization of the soil moisture. In contrast, the SM-PT algorithm shows high values of R2 (comparable to those of ATI-PT and VPD-PT) at most other (grass, wetland, desert and Gobi) biomes. There are no obvious differences in seasonal LE estimation using MODIS NDVI and LAI at most sites. However, all meteorological or satellite-based water-related parameters used in the PT algorithm have uncertainties for optimizing water constraints. This analysis highlights the need to improve PT algorithms with regard to water constraints.

  3. Groundwater Modelling For Recharge Estimation Using Satellite Based Evapotranspiration

    Science.gov (United States)

    Soheili, Mahmoud; (Tom) Rientjes, T. H. M.; (Christiaan) van der Tol, C.

    2017-04-01

    Groundwater movement is influenced by several factors and processes in the hydrological cycle, from which, recharge is of high relevance. Since the amount of aquifer extractable water directly relates to the recharge amount, estimation of recharge is a perquisite of groundwater resources management. Recharge is highly affected by water loss mechanisms the major of which is actual evapotranspiration (ETa). It is, therefore, essential to have detailed assessment of ETa impact on groundwater recharge. The objective of this study was to evaluate how recharge was affected when satellite-based evapotranspiration was used instead of in-situ based ETa in the Salland area, the Netherlands. The Methodology for Interactive Planning for Water Management (MIPWA) model setup which includes a groundwater model for the northern part of the Netherlands was used for recharge estimation. The Surface Energy Balance Algorithm for Land (SEBAL) based actual evapotranspiration maps from Waterschap Groot Salland were also used. Comparison of SEBAL based ETa estimates with in-situ abased estimates in the Netherlands showed that these SEBAL estimates were not reliable. As such results could not serve for calibrating root zone parameters in the CAPSIM model. The annual cumulative ETa map produced by the model showed that the maximum amount of evapotranspiration occurs in mixed forest areas in the northeast and a portion of central parts. Estimates ranged from 579 mm to a minimum of 0 mm in the highest elevated areas with woody vegetation in the southeast of the region. Variations in mean seasonal hydraulic head and groundwater level for each layer showed that the hydraulic gradient follows elevation in the Salland area from southeast (maximum) to northwest (minimum) of the region which depicts the groundwater flow direction. The mean seasonal water balance in CAPSIM part was evaluated to represent recharge estimation in the first layer. The highest recharge estimated flux was for autumn

  4. Environmental Satellites: Strategy Needed to Sustain Critical Climate and Space Weather Measurements

    Science.gov (United States)

    2010-04-01

    together. For example, climate measurements have allowed scientists to better understand the effect of deforestation on how the earth absorbs heat, retains...Geostationary Operational Environmental Satellites: Progress Has Been Made, but Improvements Are Needed to Effectively Manage Risks, GAO-08-18 (Washington...color; and atmospheric observations such as greenhouse gas levels (e.g., carbon dioxide), aerosol and dust particles, and moisture concentration. When

  5. Amazon vegetation greenness as measured by satellite sensors over the last decade

    OpenAIRE

    Atkinson, P.M.; Dash, J.; Jeganathan, C.

    2011-01-01

    [1] During the last decade two major drought events, one in 2005 and another in 2010, occurred in the Amazon basin. Several studies have claimed the ability to detect the effect of these droughts on Amazon vegetation response, measured through satellite sensor vegetation indices (VIs). Such monitoring capability is important as it potentially links climate changes (increasing frequency and severity of drought), vegetation response as observed through vegetation greenness, and land-atmosphere ...

  6. Comparison of advanced Arctic Ocean model sea ice fields to satellite derived measurements

    OpenAIRE

    Dimitriou, David S.

    1998-01-01

    Approved for public release; distribution is unlimited Numerical models have proven integral to the study of climate dynamics. Sea ice models are critical to the improvement of general circulation models used to study the global climate. The object of this study is to evaluate a high resolution ice-ocean coupled model by comparing it to derived measurements from SMMR and SSM/I satellite observations. Utilized for this study was the NASA Goddard Space Flight (GSFC) Sea Ice Concentration Dat...

  7. Simulation of Satellite Water Vapour Lidar Measurements: Performance Assessment under Real Atmospheric Conditions.

    OpenAIRE

    Di Girolamo, Paolo; Behrendt, Andreas; Kiemle, Christoph; Wulfmeyer, Volker; Bauer, Heinz; Summa, Donato; Dörnbrack, Andreas; Ehret, Gerhard

    2008-01-01

    A lidar simulator has been applied to assess the performances of a satellite water vapour differential absorption lidar (DIAL) system. Measurements performed by the airborne Deutsches Zentrum für Luft- und Raumfahrt (DLR) water vapour DIAL on 15 May 2002 during ESA’s Water Vapour Lidar Experiment (WALEX), in combination with MM5 mesoscale model output, were used to obtain backscatter and water vapour fields with high resolution and accuracy. These data and model output serve as input for the ...

  8. Validity of satellite measurements used for the monitoring of UV radiation risk on health

    Directory of Open Access Journals (Sweden)

    F. Jégou

    2011-06-01

    Full Text Available In order to test the validity of ultraviolet index (UVI satellite products and UVI model simulations for general public information, intercomparison involving three satellite instruments (SCIAMACHY, OMI and GOME-2, the Chemistry and Transport Model, Modélisation de la Chimie Atmosphérique Grande Echelle (MOCAGE, and ground-based instruments was performed in 2008 and 2009. The intercomparison highlighted a systematic high bias of ~1 UVI in the OMI clear-sky products compared to the SCIAMACHY and TUV model clear-sky products. The OMI and GOME-2 all-sky products are close to the ground-based observations with a low 6 % positive bias, comparable to the results found during the satellite validation campaigns. This result shows that OMI and GOME-2 all-sky products are well appropriate to evaluate the UV-risk on health. The study has pointed out the difficulty to take into account either in the retrieval algorithms or in the models, the large spatial and temporal cloud modification effect on UV radiation. This factor is crucial to provide good quality UV information. OMI and GOME-2 show a realistic UV variability as a function of the cloud cover. Nevertheless these satellite products do not sufficiently take into account the radiation reflected by clouds. MOCAGE numerical forecasts show good results during periods with low cloud covers, but are actually not adequate for overcast conditions; this is why Météo-France currently uses human-expertised cloudiness (rather than direct outputs from Numerical Prediction Models together with MOCAGE clear-sky UV indices for its operational forecasts. From now on, the UV monitoring could be done using free satellite products (OMI, GOME-2 and operational forecast for general public by using modelling, as long as cloud forecasts and the parametrisation of the impact of cloudiness on UV radiation are adequate.

  9. On the value of satellite-based river discharge and river flood data

    Science.gov (United States)

    Kettner, A. J.; Brakenridge, R.; van Praag, E.; Borrero, S.; Slayback, D. A.; Young, C.; Cohen, S.; Prades, L.; de Groeve, T.

    2015-12-01

    Flooding is the most common natural hazard worldwide. According to the World Resources Institute, floods impact 21 million people every year and affect the global GDP by $96 billion. Providing accurate flood maps in near-real time (NRT) is critical to their utility to first responders. Also, in times of flooding, river gauging stations on location, if any, are of less use to monitor stage height as an approximation for water surface area, as often the stations themselves get washed out or peak water levels reach much beyond their design measuring capacity. In a joint effort with NASA Goddard Space Flight Center, the European Commission Joint Research Centre and the University of Alabama, the Dartmouth Flood Observatory (DFO) measures NRT: 1) river discharges, and 2) water inundation extents, both with a global coverage on a daily basis. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations'. Once calibrated, daily discharge time series span from 1998 to the present. Also, the two MODIS instruments aboard the NASA Terra and Aqua satellites provide daily floodplain inundation extent with global coverage at a spatial resolution of 250m. DFO's mission is to provide easy access to NRT river and flood data products. Apart from the DFO web portal, several water extent products can be ingested by utilizing a Web Map Service (WMS), such as is established with for Latin America and the Caribbean (LAC) region through the GeoSUR program portal. This effort includes implementing over 100 satellite discharge stations showing in NRT if a river is flooding, normal, or in low flow. New collaborative efforts have resulted in flood hazard maps which display flood extent as well as exceedance probabilities. The record length of our sensors allows mapping the 1.5 year, 5 year and 25 year flood extent. These can provide key information to water management and disaster response entities.

  10. Validation of the Global NASA Satellite-based Flood Detection System in Bangladesh

    Science.gov (United States)

    Moffitt, C. B.

    2009-12-01

    Floods are one of the most destructive natural forces on earth, affecting millions of people annually. Nations lying in the downstream end of an international river basin often suffer the most damage during flooding and could benefit from the real-time communication of rainfall and stream flow data from countries upstream. This is less likely to happen among developing nations due to a lack of freshwater treaties (Balthrop and Hossain, Water Policy, 2009). A more viable option is for flood-prone developing nations to utilize the global satellite rainfall and modeled runoff data that is independently and freely available from the NASA Satellite-based Global Flood Detection System. Although the NASA Global Flood Detection System has been in operation in real-time since 2006, the ‘detection’ capability of flooding has only been validated against qualitative reports in news papers and other types of media. In this study, a more quantitative validation against in-situ measurements of the flood detection system over Bangladesh is presented. Using ground-measured stream flow data as well as satellite-based flood potential and rainfall data, the study looks into the relationship between rainfall and flood potential, rainfall and stream flow, and stream flow and flood potential for three very distinct river systems in Bangladesh - 1) Ganges- a snow-fed river regulated by upstream India 2) Brahmaputra - a snow-fed river that is also braided 3) Meghna - a rain-fed river. The quantitative assessment will show the effectiveness of the NASA Global Flood Detection System for a very humid and flood prone region like Bangladesh that is also faced with tremendous transboundary hurdles that can only be resolved from the vantage of space.

  11. Development of Deep Learning Based Data Fusion Approach for Accurate Rainfall Estimation Using Ground Radar and Satellite Precipitation Products

    Science.gov (United States)

    Chen, H.; Chandra, C. V.; Tan, H.; Cifelli, R.; Xie, P.

    2016-12-01

    Rainfall estimation based on onboard satellite measurements has been an important topic in satellite meteorology for decades. A number of precipitation products at multiple time and space scales have been developed based upon satellite observations. For example, NOAA Climate Prediction Center has developed a morphing technique (i.e., CMORPH) to produce global precipitation products by combining existing space based rainfall estimates. The CMORPH products are essentially derived based on geostationary satellite IR brightness temperature information and retrievals from passive microwave measurements (Joyce et al. 2004). Although the space-based precipitation products provide an excellent tool for regional and global hydrologic and climate studies as well as improved situational awareness for operational forecasts, its accuracy is limited due to the sampling limitations, particularly for extreme events such as very light and/or heavy rain. On the other hand, ground-based radar is more mature science for quantitative precipitation estimation (QPE), especially after the implementation of dual-polarization technique and further enhanced by urban scale radar networks. Therefore, ground radars are often critical for providing local scale rainfall estimation and a "heads-up" for operational forecasters to issue watches and warnings as well as validation of various space measurements and products. The CASA DFW QPE system, which is based on dual-polarization X-band CASA radars and a local S-band WSR-88DP radar, has demonstrated its excellent performance during several years of operation in a variety of precipitation regimes. The real-time CASA DFW QPE products are used extensively for localized hydrometeorological applications such as urban flash flood forecasting. In this paper, a neural network based data fusion mechanism is introduced to improve the satellite-based CMORPH precipitation product by taking into account the ground radar measurements. A deep learning system is

  12. Global Crop Monitoring: A Satellite-Based Hierarchical Approach

    Directory of Open Access Journals (Sweden)

    Bingfang Wu

    2015-04-01

    Full Text Available Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, the CropWatch system has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The approach adopts a hierarchical system covering four spatial levels of detail: global, regional, national (thirty-one key countries including China and “sub-countries” (for the nine largest countries. The thirty-one countries encompass more that 80% of both production and exports of maize, rice, soybean and wheat. The methodology resorts to climatic and remote sensing indicators at different scales. The global patterns of crop environmental growing conditions are first analyzed with indicators for rainfall, temperature, photosynthetically active radiation (PAR as well as potential biomass. At the regional scale, the indicators pay more attention to crops and include Vegetation Health Index (VHI, Vegetation Condition Index (VCI, Cropped Arable Land Fraction (CALF as well as Cropping Intensity (CI. Together, they characterize crop situation, farming intensity and stress. CropWatch carries out detailed crop condition analyses at the national scale with a comprehensive array of variables and indicators. The Normalized Difference Vegetation Index (NDVI, cropped areas and crop conditions are integrated to derive food production estimates. For the nine largest countries, CropWatch zooms into the sub-national units to acquire detailed information on crop condition and production by including new indicators (e.g., Crop type proportion. Based on trend analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. The hierarchical approach adopted by CropWatch is the basis of the analyses of climatic and crop conditions assessments published in the quarterly “CropWatch bulletin” which

  13. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    Science.gov (United States)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  14. Topic Modelling for Object-Based Unsupervised Classification of VHR Panchromatic Satellite Images Based on Multiscale Image Segmentation

    Directory of Open Access Journals (Sweden)

    Li Shen

    2017-08-01

    Full Text Available Image segmentation is a key prerequisite for object-based classification. However, it is often difficult, or even impossible, to determine a unique optimal segmentation scale due to the fact that various geo-objects, and even an identical geo-object, present at multiple scales in very high resolution (VHR satellite images. To address this problem, this paper presents a novel unsupervised object-based classification for VHR panchromatic satellite images using multiple segmentations via the latent Dirichlet allocation (LDA model. Firstly, multiple segmentation maps of the original satellite image are produced by means of a common multiscale segmentation technique. Then, the LDA model is utilized to learn the grayscale histogram distribution for each geo-object and the mixture distribution of geo-objects within each segment. Thirdly, the histogram distribution of each segment is compared with that of each geo-object using the Kullback-Leibler (KL divergence measure, which is weighted with a constraint specified by the mixture distribution of geo-objects. Each segment is allocated a geo-object category label with the minimum KL divergence. Finally, the final classification map is achieved by integrating the multiple classification results at different scales. Extensive experimental evaluations are designed to compare the performance of our method with those of some state-of-the-art methods for three different types of images. The experimental results over three different types of VHR panchromatic satellite images demonstrate the proposed method is able to achieve scale-adaptive classification results, and improve the ability to differentiate the geo-objects with spectral overlap, such as water and grass, and water and shadow, in terms of both spatial consistency and semantic consistency.

  15. Satellite link augmentation of ground based packet switched data networks

    Science.gov (United States)

    Farrell, J. B.; McLane, P. J.; Campbell, L. L.

    Use of satellite link augmentation to improve the performance of a packet switched data network is considered. Particular attention is paid to the analysis of two queues in series from the standpoint of time delay. A finite state machine model is used to aid the analysis. The results from the analysis are then used in a flow deviation routing algorithm. This algorithm is applied to study the performance improvement when satellite links are used to augment the Canadian DATAPAC network. The results are backed up by extensive simulations on a digital computer.

  16. Satellite-based estimation of rainfall erosivity for Africa

    NARCIS (Netherlands)

    Vrieling, A.; Sterk, G.; Jong, S.M. de

    2010-01-01

    Rainfall erosivity is a measure for the erosive force of rainfall. Rainfall kinetic energy determines the erosivity and is in turn greatly dependent on rainfall intensity. Attempts for its large-scale mapping are rare. Most are based on interpolation of erosivity values derived from rain gauge data.

  17. Evaluation of satellite-based precipitation estimates in winter season using an object-based approach

    Science.gov (United States)

    Li, J.; Hsu, K.; AghaKouchak, A.; Sorooshian, S.

    2012-12-01

    Verification has become an integral component of satellite precipitation algorithms and products. A number of object-based verification methods have been proposed to provide diagnostic information regarding the precipitation products' ability to capture the spatial pattern, intensity, and placement of precipitation. However, most object-based methods are not capable of investigating precipitation objects at the storm-scale. In this study, an image processing approach known as watershed segmentation was adopted to detect the storm-scale rainfall objects. Then, a fuzzy logic-based technique was utilized to diagnose and analyze storm-scale object attributes, including centroid distance, area ratio, intersection area ratio and orientation angle difference. Three verification metrics (i.e., false alarm ratio, missing ratio and overall membership score) were generated for validation and verification. Three satellite-based precipitation products, including PERSIANN, CMORPH, 3B42RT, were evaluated against NOAA stage IV MPE multi-sensor composite rain analysis at 0.25° by 0.25° on a daily scale in the winter season of 2010 over the contiguous United States. Winter season is dominated by frontal systems which usually have larger area coverage. All three products and the stage IV observation tend to find large size storm objects. With respect to the evaluation attributes, PERSIANN tends to obtain larger area ratio and consequently has larger centroid distance to the stage IV observations, while 3B42RT are found to be closer to the stage IV for the object size. All evaluation products give small orientation angle differences but vary significantly for the missing ratio and false alarm ratio. This implies that satellite estimates can fail to detect storms in winter. The overall membership scores are close for all three different products which indicate that all three satellite-based precipitation products perform well for capturing the spatial and geometric characteristics of

  18. Fluxes of energetic protons and electrons measured on board the Oersted satellite

    Directory of Open Access Journals (Sweden)

    J. Cabrera

    2005-11-01

    Full Text Available The Charged Particle Detector (CPD on board the Oersted satellite (649 km perigee, 865 km apogee and 96.48° inclination currently measures energetic protons and electrons. The measured peak fluxes of E>1 MeV electrons are found to confirm the predictions of AE8-MAX, though they occur at a geographical position relatively shifted in the SAA. The fluxes of protons are one order of magnitude higher than the predictions of AP8-MAX in the energy range 20-500 MeV. This huge discrepancy between AP8 and recent measurements in LEO was already noticed and modelled in SAMPEX/PSB97 and TPM-1 models. Nevertheless some other LEO measurements such as PROBA and CORONA-F result in flux values in good agreement with AP8 within a factor 2. The anisotropy of the low-altitude proton flux, combined with measurement performed on board three-axis stabilised satellites, has been suspected to be one possible source of the important discrepancies observed by different missions. In this paper, we evaluate the effect of anisotropy on flux measurements conducted using the CPD instruments. On the basis of the available data, we confirm the inaccuracy of AP8 at LEO and suggest methods to improve the analysis of data in future flux measurements of energetic protons at low altitudes.

  19. Advanced two-way satellite frequency transfer by carrier-phase and carrier-frequency measurements

    Science.gov (United States)

    Fujieda, Miho; Gotoh, Tadahiro; Amagai, Jun

    2016-06-01

    Carrier-phase measurement is one of the ways to improve the measurement resolution of two-way satellite frequency transfer. We introduce two possible methods for carrier-phase measurement: direct carrier-phase detection identified by Two-Way Carrier-Phase (TWCP) and the use of carrier-frequency information identified by Two-Way Carrier Frequency (TWCF). We performed the former using an arbitrary waveform generator and an analog-to-digital sampler and the latter using a conventional modem. The TWCF measurement using the modem had a resolution of 10-13 and the result agreed with that obtained by GPS carrier-phase frequency transfer in a 1500 km baseline. The measurement accuracy may have been limited by the poor frequency resolution of the modem; however, the TWCF measurement was able to improve the stability of conventional two-way satellite frequency transfer. Additionally, we show that the TWCP measurement system has the potential to achieve a frequency stability of 10-17.

  20. Harmonized dataset of ozone profiles from satellite limb and occultation measurements

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2013-06-01

    Full Text Available In this paper, we present a HARMonized dataset of OZone profiles (HARMOZ based on limb and occultation measurements from Envisat (GOMOS, MIPAS and SCIAMACHY, Odin (OSIRIS, SMR and SCISAT (ACE-FTS satellite instruments. These measurements provide high-vertical-resolution ozone profiles covering the altitude range from the upper troposphere up to the mesosphere in years 2001–2012. HARMOZ has been created in the framework of European Space Agency Climate Change Initiative project. The harmonized dataset consists of original retrieved ozone profiles from each instrument, which are screened for invalid data by the instrument teams. While the original ozone profiles are presented in different units and on different vertical grids, the harmonized dataset is given on a common pressure grid in netcdf format. The pressure grid corresponds to vertical sampling of ~ 1 km below 20 km and 2–3 km above 20 km. The vertical range of the ozone profiles is specific for each instrument, thus all information contained in the original data is preserved. Provided altitude and temperature profiles allow the representation of ozone profiles in number density or mixing ratio on a pressure or altitude vertical grids. Geolocation, uncertainty estimates and vertical resolution are provided for each profile. For each instrument, optional parameters, which might be related to the data quality, are also included. For convenience of users, tables of biases between each pair of instruments for each month, as well as bias uncertainties, are provided. These tables characterize the data consistency and can be used in various bias and drift analyses, which are needed, for instance, for combining several datasets to obtain a long-term climate dataset. This user-friendly dataset can be interesting and useful for various analyses and applications, such as data merging, data validation, assimilation and scientific research. Dataset is available at: http

  1. Development of satellite-based drought monitoring and warning system in Asian Pacific countries

    Science.gov (United States)

    Takeuchi, W.; Oyoshi, K.; Muraki, Y.

    2013-12-01

    This research focuses on a development of satellite-based drought monitoring warning system in Asian Pacific countries. Drought condition of cropland is evaluated by using Keeth-Byram Drought Index (KBDI) computed from rainfall measurements with GSMaP product, land surface temperature by MTSAT product and vegetation phenology by MODIS NDVI product at daily basis. The derived information is disseminated as a system for an application of space based technology (SBT) in the implementation of the Core Agriculture Support Program. The benefit of this system are to develop satellite-based drought monitoring and early warning system (DMEWS) for Asian Pacific counties using freely available data, and to develop capacity of policy makers in those countries to apply the developed system in policy making. A series of training program has been carried out in 2013 to officers and researchers of ministry of agriculture and relevant agencies in Greater Mekong Subregion countries including Cambodia, China, Myanmar, Laos, Thailand and Vietnam. This system is running as fully operational and can be accessed at http://webgms.iis.u-tokyo.ac.jp/DMEWS/.

  2. Bias reduction for Satellite Based Precipitation Estimates using statistical transformations in Guiana Shield

    Science.gov (United States)

    Ringard, Justine; Becker, Melanie; Seyler, Frederique; Linguet, Laurent

    2016-04-01

    Currently satellite-based precipitation estimates exhibit considerable biases, and there have been many efforts to reduce these biases by merging surface gauge measurements with satellite-based estimates. In Guiana Shield all products exhibited better performances during the dry season (August- December). All products greatly overestimate very low intensities (50 mm). Moreover the responses of each product are different according to hydro climatic regimes. The aim of this study is to correct spatially the bias of precipitation, and compare various correction methods to define the best methods depending on the rainfall characteristic correcting (intensity, frequency). Four satellites products are used: Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research product (3B42V7) and real time product (3B42RT), the Precipitation Estimation from Remotely-Sensed Information using Artificial Neural Network (PERSIANN) and the NOAA Climate Prediction Center (CPC) Morphing technique (CMORPH), for six hydro climatic regimes between 2001 and 2012. Several statistical transformations are used to correct the bias. Statistical transformations attempt to find a function h that maps a simulated variable Ps such that its new distribution equals the distribution of the observed variable Po. The first is the use of a distribution derived transformations which is a mixture of the Bernoulli and the Gamma distribution, where the Bernoulli distribution is used to model the probability of precipitation occurrence and the Gamma distribution used to model precipitation intensities. The second a quantile-quantile relation using parametric transformation, and the last one is a common approach using the empirical CDF of observed and modelled values instead of assuming parametric distributions. For each correction 30% of both, simulated and observed data sets, are used to calibrate and the other part used to validate. The validation are test with statistical

  3. Recent Developments for Satellite-Based Fire Monitoring in Canada

    Science.gov (United States)

    Abuelgasim, A.; Fraser, R.

    2002-05-01

    Wildfires in Canadian forests are a major source of natural disturbance. These fires have a tremendous impact on the local environment, humans and wildlife, ecosystem function, weather, and climate. Approximately 9000 fires burn 3 million hectares per year in Canada (based on a 10-year average). While only 2 to 3 percent of these wildfires grow larger than 200 hectares in size, they account for almost 97 percent of the annual area burned. This provides an excellent opportunity to monitor active fires using a combination of low and high resolution sensors for the purpose of determining fire location and burned areas. Given the size of Canada, the use of remote sensing data is a cost-effective way to achieve a synoptic overview of large forest fire activity in near-real time. In 1998 the Canada Centre for Remote Sensing (CCRS) and the Canadian Forest Service (CFS) developed a system for Fire Monitoring, Mapping and Modelling (Fire M3;http://fms.nofc.cfs.nrcan.gc.ca/FireM3/). Fire M3 automatically identifies, monitors, and maps large forest fires on a daily basis using NOAA AVHRR data. These data are processed daily using the GEOCOMP-N satellite image processing system. This presentation will describe recent developments to Fire M3, included the addition of a set of algorithms tailored for NOAA-16 (N-16) data. The two fire detection algorithms are developed for N-16 day and night-time daily data collection. The algorithms exploit both the multi-spectral and thermal information from the AVHRR daily images. The set of N-16 day and night algorithms was used to generate daily active fire maps across North America for the 2001 fire season. Such a combined approach for fire detection leads to an improved detection rate, although day-time detection based on the new 1.6 um channel was much less effective (note - given the low detection rate with day time imagery, I don't think we can make the statement about capturing the diurnal cycle). Selected validation sites in western

  4. A Constraint Based Approach for Building Operationally Responsive Satellites

    Science.gov (United States)

    2008-09-01

    discipline specific software codes into a common environment. LLB team also uses MATLAB R© to integrate CAD tools such as Catia , Pro/Engineer with FE...satellite configuration through a Catia CAD tool. The LLB approach is similar to the approach discussed in this research because it provides a method

  5. Analysis of the role of urban vegetation in local climate of Budapest using satellite measurements

    Science.gov (United States)

    Pongracz, Rita; Bartholy, Judit; Dezso, Zsuzsanna; Fricke, Cathy

    2016-08-01

    Urban areas significantly modify the natural environment due to the concentrated presence of humans and the associated anthropogenic activities. In order to assess this effect, it is essential to evaluate the relationship between urban and vegetated surface covers. In our study we focused on the Hungarian capital, Budapest, in which about 1.7 million inhabitants are living nowadays. The entire city is divided by the river Danube into the hilly, greener Buda side on the west, and the flat, more densely built-up Pest side on the east. Most of the extended urban vegetation, i.e., forests are located in the western Buda side. The effects of the past changing of these green areas are analyzed using surface temperature data calculated from satellite measurements in the infrared channels, and NDVI (Normalized Difference Vegetation Index) derived from visible and near-infrared satellite measurements. For this purpose, data available from sensor MODIS (Moderate Resolution Imaging Spectroradiometer) of NASA satellites (i.e., Terra and Aqua) are used. First, the climatological effects of forests on the urban heat island intensity are evaluated. Then, we also aim to evaluate the relationship of surface temperature and NDVI in this urban environment with special focus on vegetation-related sections of the city where the vegetation cover either increased or decreased remarkably.

  6. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    Christophe Poix

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  7. Simulation of Ship-Track versus Satellite-Sensor Differences in Oceanic Precipitation Using an Island-Based Radar

    Directory of Open Access Journals (Sweden)

    Jörg Burdanowitz

    2017-06-01

    Full Text Available The point-to-area problem strongly complicates the validation of satellite-based precipitation estimates, using surface-based point measurements. We simulate the limited spatial representation of light-to-moderate oceanic precipitation rates along ship tracks with respect to areal passive microwave satellite estimates using data from a subtropical island-based radar. The radar data serves to estimate the discrepancy between point-like and areal precipitation measurements. From the spatial discrepancy, two statistical adjustments are derived so that along-track precipitation ship data better represent areal precipitation estimates from satellite sensors. The first statistical adjustment uses the average duration of a precipitation event as seen along a ship track, and the second adjustment uses the median-normalized along-track precipitation rate. Both statistical adjustments combined reduce the root mean squared error by 0.24 mm h − 1 (55% compared to the unadjusted average track of 60 radar pixels in length corresponding to a typical ship speed of 24–34 km h − 1 depending on track orientation. Beyond along-track averaging, the statistical adjustments represent an important step towards a more accurate validation of precipitation derived from passive microwave satellite sensors using point-like along-track surface precipitation reference data.

  8. First results of measurements of extreme ultraviolet radiation onboard a geostationary satellite "ELECTRO-L"

    Science.gov (United States)

    Nusinov, Anatoliy; Kazachevskaya, Tamara; Gonjukh, David

    Measurements of the intensity of EUV emission in the hydrogen Lyman-alpha line were conducted by a broadband photometer VUSS-E onboard geostationary Hydrometeorological satellite "Electro" since March 2011. The solar hydrogen Lyman-alpha line (lambda = 121.6 nm) was monitored. The photomultiplier with LiF window used as a detector insensitive to visible light. Long-wavelength limit of the spectral band sensitivity of the instrument is about 200 nm, so the signal of the device is defined as the flux of solar radiation in the region of 123-200 nm. Its exclusion was carried out by calculation. Since the satellite "Electro" designed for remote sensing of the Earth, its line of sight focused on Earth. Alignment of instrument in the Sun direction was achieved by installing it on the solar panel, periodically moved in the solar direction. Correction of instrument readings, reduced due to the deviation of its axis from the Sun direction, carried out by calculation. Measurements were carried out every second. The first results of the measurements are presented. The difference in absolute calibration Electro-L/VUSS-E is within 5% of corresponding values for measurements TIMED satellite in those days, that is in agreement with laboratory calibrations. It is useful to measure the temperature of the instrument, as its variation on a small interval of time makes change the value of the output signal about 1-2 %. During first year of operation, the sensitivity of the apparatus remained within ± 2% of measured value, significant degradation of sensitivity was not observed. Over time of observation there have been several large flares of X class. The increase of the signal in the ultraviolet range does not exceed a few percent during these flares.

  9. Ionizing radiation fluxes and dose measurements during the Kosmos 1887 satellite flight.

    Science.gov (United States)

    Charvat, J; Spurny, F; Kopecka, B; Votockova, I

    1990-01-01

    The results of dosimetric experiments performed during the flight of Kosmos 1887 biosatellite are presented. Two kinds of measurements were performed on the external surface of the satellite. First, the fluences and spectra of low energy charged particles were established. It was found that most of the particles registered by means of solid state nuclear track detectors are helium nuclei. Tracks of oxygen nuclei and some heavier charged particles were also observed. Thermoluminescent detectors were used to establish absorbed doses in open space on the satellite's surface and behind thin shielding. It was found that these doses were rather high; nevertheless, their decrease with shielding thickness is very rapid. Dosimetric and other consequences of the results obtained are analyzed and discussed.

  10. Absorbed dose measurements on external surface of Kosmos-satellites with glass thermoluminescent detectors.

    Science.gov (United States)

    Akatov YuA; Arkhangelsky, V V; Kovalev, E E; Spurny, F; Votochkova, I

    1989-01-01

    In this paper we present absorbed dose measurements with glass thermoluminescent detectors on external surface of satellites of Kosmos-serie flying in 1983-87. Experiments were performed with thermoluminescent aluminophosphate glasses of thicknesses 0.1, 0.3, 0.4, 0.5, and 1 mm. They were exposed in sets of total thickness between 5 and 20 mm, which were protected against sunlight with thin aluminized foils. In all missions, extremely high absorbed dose values were observed in the first layers of detectors, up to the thickness of 0.2 to 0.5 gcm-2. These experimental results confirm that, during flights at 250 to 400 km, doses on the surface of the satellites are very high, due to the low energy component of the proton and electron radiation.

  11. Distribution and composition of suspended particulate matter in the Atlantic Ocean: Direct measurements and satellite data

    Science.gov (United States)

    Lisitzin, A. P.; Klyuvitkin, A. A.; Burenkov, V. I.; Kravchishina, M. D.; Politova, N. V.; Novigatsky, A. N.; Shevchenko, V. P.; Klyuvitkina, T. S.

    2016-01-01

    The main purpose of this work is to study the real distribution and spatial-temporal variations of suspended particulate matter and its main components in surface waters of the Atlantic Ocean on the basis of direct and satellite measurements for development of new and perfection of available algorithms for converting satellite data. The distribution fields of suspended particulate matter were calculated and plotted for the entire Atlantic Ocean. It is established that its distribution in the open ocean is subordinate to the latitudinal climatic zonality. The areas with maximum concentrations form latitudinal belts corresponding to high-productivity eutrophic and mesotrophic waters of the northern and southern temperate humid belts and with the equatorial humid zone. Phytoplankton, the productivity of which depends primarily on the climatic zonality, is the main producer of suspended particulate matter in the surface water layer.

  12. The ESRC: A Web-based Environmental Satellite Resource Center

    Science.gov (United States)

    Abshire, W. E.; Guarente, B.; Dills, P. N.

    2009-12-01

    The COMET® Program has developed an Environmental Satellite Resource Center (known as the ESRC), a searchable, database-driven Website that provides easy access to a wide range of useful information training materials on polar-orbiting and geostationary satellites. Primarily sponsored by the NPOESS Program and NOAA, the ESRC is a tool for users seeking reliable sources of satellite information, training, and data. First published in September 2008, and upgraded in April 2009, the site is freely available at: http://www.meted.ucar.edu/esrc. Additional contributions to the ESRC are sought and made on an ongoing basis. The ESRC was created in response to a broad community request first made in May 2006. The COMET Program was asked to develop the site to consolidate and simplify access to reliable, current, and diverse information, training materials, and data associated with environmental satellites. The ESRC currently includes over 400 significant resources from NRL, CIMSS, CIRA, NASA, VISIT, NESDIS, and EUMETSAT, and improves access to the numerous satellite resources available from COMET’s MetEd Website. The ESRC is designed as a community site where organizations and individuals around the globe can easily submit their resources via online forms by providing a small set of metadata. The ESRC supports languages other than English and multi-lingual character sets have been tested. COMET’s role is threefold: 1) maintain the site, 2) populate it with our own materials, including smaller, focused learning objects derived from our larger training modules, and 3) provide the necessary quality assurance and monitoring to ensure that all resources are appropriate and well described before being made available. Our presentation will demonstrate many of the features and functionality of searching for resources using the ESRC, and will outline the steps for users to make their own submissions. For the site to reach its full potential, submissions representing diverse

  13. Quantum-limited measurements of optical signals from a geostationary satellite

    CERN Document Server

    Günthner, Kevin; Elser, Dominique; Stiller, Birgit; Bayraktar, Ömer; Müller, Christian R; Saucke, Karen; Tröndle, Daniel; Heine, Frank; Seel, Stefan; Greulich, Peter; Zech, Herwig; Gütlich, Björn; Richter, Ines; Lutzer, Michael; Philipp-May, Sabine; Meyer, Rolf; Marquardt, Christoph; Leuchs, Gerd

    2016-01-01

    The measurement of quantum signals that traveled through long distances is of fundamental and technical interest. We present quantum-limited coherent measurements of optical signals, sent from a satellite in geostationary Earth orbit to an optical ground station. We bound the excess noise that the quantum states could have acquired after having propagated 38600 km through Earth's gravitational potential as well as its turbulent atmosphere. Our results indicate that quantum communication is feasible in principle in such a scenario, highlighting the possibility of a global quantum key distribution network for secure communication.

  14. An Image-Based Sensor System for Autonomous Rendez-Vous with Uncooperative Satellites

    CERN Document Server

    Miravet, Carlos; Krouch, Eloise; del Cura, Juan Manuel

    2008-01-01

    In this paper are described the image processing algorithms developed by SENER, Ingenieria y Sistemas to cope with the problem of image-based, autonomous rendez-vous (RV) with an orbiting satellite. The methods developed have a direct application in the OLEV (Orbital Life Extension Extension Vehicle) mission. OLEV is a commercial mission under development by a consortium formed by Swedish Space Corporation, Kayser-Threde and SENER, aimed to extend the operational life of geostationary telecommunication satellites by supplying them control, navigation and guidance services. OLEV is planned to use a set of cameras to determine the angular position and distance to the client satellite during the complete phases of rendez-vous and docking, thus enabling the operation with satellites not equipped with any specific navigational aid to provide support during the approach. The ability to operate with un-equipped client satellites significantly expands the range of applicability of the system under development, compar...

  15. A Satellite Based Method for Wetland Inundation Mapping

    Science.gov (United States)

    Di Vittorio, C.; Georgakakos, A. P.

    2016-12-01

    Hydrologic models of wetlands enable hydrologists and water resources managers to appreciate the environmental and societal roles of wetlands and manage them in ways that preserve their integrity and sustain their valuable services. However, wetland model reliability and accuracy are often unsatisfactory due to the complexity of the underlying processes and the lack of adequate in-situ data. In this research, we demonstrate how MODIS satellite imagery can be used to characterize wetland flooding over time and to support the development of more reliable wetland models. We apply this method to the Sudd, a seasonal wetland in South Sudan that is part of the Nile River Basin. The database consists of 16 years of 8-day composite ground surface reflectance data with a 500 m spatial resolution downloaded from Earth Explorer. After masking poor quality pixels, monthly mean NDWI and NDVI values were extracted. Based on literature and personal accounts describing the Sudd as well as Google Earth imagery, a set of ground truth locations were identified for each land class and monthly distributions of the indices were derived. The indices were then combined in a unique way and statistics of the new distributions were used to classify land types present in the full area of interest. Subsequently, annual statistics were derived from the same indices and used to identify pixels that undergo flooding as well as the timing and duration of flooding for each year (2000-2015). An independent set of ground truth locations were selected for method validation. The combined indices demonstrate high land classification accuracy and outperform the individual indices as well as other existing land classification algorithms. The derived monthly inundation series agrees well with literature and anecdotal observations. This information is currently being used to develop wetland models as part of a comprehensive modeling system for the Nile River Basin. The new method is general and can be used

  16. Spacetime effects on satellite-based quantum communications

    Science.gov (United States)

    Bruschi, David Edward; Ralph, Timothy C.; Fuentes, Ivette; Jennewein, Thomas; Razavi, Mohsen

    2014-08-01

    We investigate the consequences of space-time being curved on space-based quantum communication protocols. We analyze tasks that require either the exchange of single photons in a certain entanglement distribution protocol or beams of light in a continuous-variable quantum key distribution scheme. We find that gravity affects the propagation of photons, therefore adding additional noise to the channel for the transmission of information. The effects could be measured with current technology.

  17. Spacetime effects on satellite-based quantum communications

    CERN Document Server

    Bruschi, David Edward; Fuentes, Ivette; Jennewein, Thomas; Razavi, Mohsen

    2013-01-01

    We investigate the effects of space-time curvature on space-based quantum communication protocols. We analyze tasks that require either the exchange of single photons in a certain entanglement distribution protocol or beams of light in a continuous-variable quantum key distribution scheme. We find that gravity affects the propagation of photons, therefore acting as a noisy channel for the transmission of information. The effects can be measured with current technology.

  18. Snow thickness retrieval using SMOS satellite data: Comparison with airborne IceBridge and buoy measurements

    Science.gov (United States)

    Maaß, N.; Kaleschke, L.; Tian-Kunze, X.

    2015-12-01

    The passive microwave mission SMOS (Soil Moisture and Ocean Salinity) provides daily coverage of the polar regions and its data have been used to retrieve thin sea ice thickness up to about one meter. In addition, there has been an attempt to retrieve snow thickness over thick Arctic multi-year ice, which is a crucial parameter for the freeboard-based estimation of (thick) sea ice thickness from lidar and radar altimetry. SMOS provides measurements at a frequency of 1.4 GHz (L-band) at horizontal and vertical polarization for a range of incidence angles (0 to 60°). The retrieval of ice or snow parameters from SMOS measurements is based on an emission model that describes the 1.4 GHz brightness temperature of (snow-covered) sea ice as a function of the ice and snow thicknesses and the permittivities of these media, which are mainly determined by ice temperature and salinity and snow density, respectively. In the first attempts to retrieve snow thickness from SMOS data, these parameters were assumed to be constant in the emission model, and the resulting maps were compared with airborne ice and snow thickness measurements taken during NASA's Operation IceBridge mission in spring 2012. The present approach to produce SMOS snow thickness maps is more elaborate. For example, available information on the ice surface temperature from MODIS (MODerate resolution Imaging Spectroradiometer) satellite images or from the IceBridge campaign itself are used, and the ice in the retrieval model is described by temperature and salinity profiles instead of using bulk values. As a first step we have produced (winter/spring) snow thickness maps of the Arctic, from 3-day-averages up to monthly means, using the available SMOS data from 2010 on. Here, we show how our spatial snow thickness distributions compare with IceBridge campaign data in the western Arctic from spring 2011 to 2015. In addition, we show how the temporal evolution of SMOS-retrieved snow thickness compares with snow

  19. A method for colocating satellite XCO2 data to ground-based data and its application to ACOS-GOSAT and TCCON

    Science.gov (United States)

    Nguyen, H.; Osterman, G.; Wunch, D.; O'Dell, C.; Mandrake, L.; Wennberg, P.; Fisher, B.; Castano, R.

    2014-08-01

    Satellite measurements are often compared with higher-precision ground-based measurements as part of validation efforts. The satellite soundings are rarely perfectly coincident in space and time with the ground-based measurements, so a colocation methodology is needed to aggregate "nearby" soundings into what the instrument would have seen at the location and time of interest. We are particularly interested in validation efforts for satellite-retrieved total column carbon dioxide (XCO2), where XCO2 data from Greenhouse Gas Observing Satellite (GOSAT) retrievals (ACOS, NIES, RemoteC, PPDF, etc.) or SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) are often colocated and compared to ground-based column XCO2 measurement from Total Carbon Column Observing Network (TCCON). Current colocation methodologies for comparing satellite measurements of total column dry-air mole fractions of CO2 (XCO2) with ground-based measurements typically involve locating and averaging the satellite measurements within a latitudinal, longitudinal, and temporal window. We examine a geostatistical colocation methodology that takes a weighted average of satellite observations depending on the "distance" of each observation from a ground-based location of interest. The "distance" function that we use is a modified Euclidian distance with respect to latitude, longitude, time, and midtropospheric temperature at 700 hPa. We apply this methodology to XCO2 retrieved from GOSAT spectra by the ACOS team, cross-validate the results to TCCON XCO2 ground-based data, and present some comparisons between our methodology and standard existing colocation methods showing that, in general, geostatistical colocation produces smaller mean-squared error.

  20. Processing the data of measurements of angular velocity and microaccelerations onboard the Foton-12 satellite

    Science.gov (United States)

    Sazonov, V. V.

    2011-10-01

    The results of reconstruction of uncontrolled rotational motion of the Foton-12 satellite using the measurement data of onboard sensors are presented. This problem has already been solved successfully several years ago. The satellite motion was reconstructed using the data of measuring the Earth's magnetic field. The data of measuring the angular velocity and microaccelerations by the QSAM system were actually not used for this purpose, since these data include a clearly seen additional component whose origin was at that time unclear. This component prevented one from using these data directly for reconstruction of the angular motion. Later it became clear that the additional component was caused by the Earth's magnetic field. Discovery of this fact allowed us to make necessary corrections when processing the QSAM system data and to use them for reconstruction of rotational motion of Foton-12. Below, a modified method of processing the QSAM system data is described together with the results of its application. The main result is obtained by comparing the motion reconstructed from measurements of angular velocity or acceleration with that found by way of processing the measurements of the Earth's magnetic field. Their coincidence turned out to be rather accurate.

  1. Subpixel Accuracy Analysis of Phase Correlation Shift Measurement Methods Applied to Satellite Imagery

    Directory of Open Access Journals (Sweden)

    S.M. Badwai

    2013-01-01

    Full Text Available the key point of super resolution process is the accurate measuring of sub-pixel shift. Any tiny error in measuring such shift leads to an incorrect image focusing. In this paper, methodology of measuring sub-pixel shift using Phase correlation (PC are evaluated using different window functions, then modified version of (PC method using high pass filter (HPF is introduced . Comprehensive analysis and assessment of (PC methods shows that different natural features yield different shift measurements. It is concluded that there is no universal window function for measuring shift; it mainly depends on the features in the satellite images. Even the question of which window is optimal of particular feature is generally remains open. This paper presents the design of a method for obtaining high accuracy sub pixel shift phase correlation using (HPF.The proposed method makes the change in the different locations that lack of edges easy.

  2. Evapotranspiration Estimation over Yangtze River Basin from GRACE satellite measurement and in situ data

    Science.gov (United States)

    Li, Qiong; Luo, Zhicai; Zhong, Bo; Wang, Haihong; Zhou, Zebing

    2016-04-01

    As the critical component of hydrologic cycle, evapotranspiration (ET) plays an important role in global water exchanges and energy flow across the hydrosphere, atmosphere and biosphere. Influenced by the Asian monsoon, the Yangtze River Basin (YRB) suffer from the several severe floods and droughts over the last decades due to the significant difference between temporal and spatial distribution terrestrial water storages. As an indispensable part, it is practically important to assessment ET in the YRB accompany with increased population and rapid economic and agriculture development. Average ET over the YRB is computed as the residual of terrestrial water budget using the Gravity Recovery and Climate Experiment (GRACE) satellite-based measurements and the ground-based observations. The GRACE-based ET were well coincidence with the ET from MODIS, with the correlation coefficient of 0.853, and the correlation coefficient is 0.696 while comparing with the ET ground-based observation. The mean monthly average of ET from these various estimates is 56.9 mm/month over the whole YRB, and peak between June and August. Monthly variations of ET reach a maximum in Wujiang with 69.11 mm/month and a minimum in Jinshajiang with 39.01 mm/month. Based on the correlation between ET and independent estimates of near-surface temperature and soil moisture, it is showed that as the temperature increased, the ET of the seven sub-catchment were rising except for the Poyang Lake and Donting Lake. And we also can infer that the midstream of YRB is significant correlated with ESON especially in the Hanjiang basin. The Surface Humidity Index over the YRB was gradually decreased and its variations in each sub-catchment showed a significant decreasing trend in Jinshajiang and Mingjiang. This research has important potential for use in large-scale water budget assessments and intercomparison studies. Acknowledgements: This research is supported by the National Natural Science Foundation of

  3. Adaptive Predistortions Based on Neural Networks Associated with Levenberg-Marquardt Algorithm for Satellite Down Links

    Directory of Open Access Journals (Sweden)

    Roviras Daniel

    2008-01-01

    Full Text Available Abstract This paper presents adaptive predistortion techniques based on a feed-forward neural network (NN to linearize power amplifiers such as those used in satellite communications. Indeed, it presents the suitable NN structures which give the best performances for three satellite down links. The first link is a stationary memoryless travelling wave tube amplifier (TWTA, the second one is a nonstationary memoryless TWT amplifier while the third is an amplifier with memory modeled by a memoryless amplifier followed by a linear filter. Equally important, it puts forward the studies concerning the application of different NN training algorithms in order to determine the most prefermant for adaptive predistortions. This comparison examined through computer simulation for 64 carriers and 16-QAM OFDM system, with a Saleh's TWT amplifier, is based on some quality measure (mean square error, the required training time to reach a particular quality level, and computation complexity. The chosen adaptive predistortions (NN structures associated with an adaptive algorithm have a low complexity, fast convergence, and best performance.

  4. A study of Asian dust plumes using satellite, surface, and aircraft measurements during the INTEX-B field experiment

    Science.gov (United States)

    Logan, Timothy; Xi, Baike; Dong, Xiquan; Obrecht, Rebecca; Li, Zhanqing; Cribb, Maureen

    2010-04-01

    Asian dust events occur frequently during the boreal spring season. Their optical properties have been analyzed by using a combination of source region (ground-based and satellite) and remote Pacific Ocean (aircraft) measurements during the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B) field campaign which lasted from 7 April to 15 May 2006. A strong dust event originating from the Gobi Desert and passing over the Xianghe surface site on 17 April 2006 has been extensively analyzed. The surface averaged aerosol optical depth (AOD) values increased from 0.17 (clear sky) to 4.0 (strong dust), and the Angström exponent (α) dropped from 1.26 (clear sky) to below 0.1. Its total downwelling SW flux over the Xianghe site (thousands of kilometers away from the dust source region) is only 46% of the clear-sky value with almost no direct transmission and nearly double the diffuse SW clear-sky value. This event was also captured 6 days later by satellite observations as well as the UND/NASA DC-8 aircraft over the eastern Pacific Ocean. The DC-8 measurements in the remote Pacific region further classified the plumes into dust dominant, pollution dominant, and a mixture of dust and pollution events. HYSPLIT backward trajectories not only verified the origins of each case we selected but also showed (1) two possible origins for the dust: the Gobi and Taklimakan deserts; and (2) pollution: urban areas in eastern China, Japan, and other industrialized cities east of the two deserts. Based on the averaged satellite retrieved AOD data (0.5° × 0.5° grid box), declining AOD values with respect to longitude demonstrated the evolution of the transpacific transport pathway of Asian dust and pollution over the period of the field campaign.

  5. High resolution surface solar radiation patterns over Eastern Mediterranean: Satellite, ground-based, reanalysis data and radiative transfer simulations

    Science.gov (United States)

    Alexandri, G.; Georgoulias, A.; Meleti, C.; Balis, D.

    2013-12-01

    Surface solar radiation (SSR) and its long and short term variations play a critical role in the modification of climate and by extent of the social and financial life of humans. Thus, SSR measurements are of primary importance. SSR is measured for decades from ground-based stations for specific spots around the planet. During the last decades, satellite observations allowed for the assessment of the spatial variability of SSR at a global as well as regional scale. In this study, a detailed spatiotemporal view of the SSR over Eastern Mediterranean is presented at a high spatial resolution. Eastern Mediterranean is affected by various aerosol types (continental, sea, dust and biomass burning particles) and encloses countries with significant socioeconomical changes during the last decades. For the aims of this study, SSR data from satellites (Climate Monitoring Satellite Application Facility - CM SAF) and our ground station in Thessaloniki, a coastal city of ~1 million inhabitants in northern Greece, situated in the heart of Eastern Mediterranean (Eppley Precision pyranometer and Kipp & Zonen CM-11 pyranometer) are used in conjunction with radiative transfer simulations (Santa Barbara DISORT Atmospheric Radiative Transfer - SBDART). The CM SAF dataset used here includes monthly mean SSR observations at a high spatial resolution of 0.03x0.03 degrees for the period 1983-2005. Our ground-based SSR observations span from 1983 until today. SBDART radiative transfer simulations were implemented for a number of spots in the area of study in order to calculate the SSR. High resolution (level-2) aerosol and cloud data from MODIS TERRA and AQUA satellite sensors were used as input, as well as ground-based data from the AERONET. Data from other satellites (Earth Probe TOMS, OMI, etc) and reanalysis projects (ECMWF) were used where needed. The satellite observations, the ground-based measurements and the model estimates are validated against each other. The good agreement

  6. Observation of TGFs onboard "Vernov" satellite and TGEs in ground-based experiments

    Science.gov (United States)

    Bogomolov, Vitaly; Panasyuk, Mikhail; Svertilov, Sergey; Garipov, Gali; Iyudin, Anatoly; Klimov, Pavel; Morozenko, Violetta; Maximov, Ivan; Mishieva, Tatiana; Klimov, Stanislav; Pozanenko, Alexey; Rothkaehl, Hanna

    2016-04-01

    "Vernov" satellite with RELEC experiment on-board was launched on 2014 July, 8 into a polar solar-synchronous orbit. The payload includes DRGE gamma-ray spectrometer providing measurements in 10-3000 keV energy range with four detectors directed to atmosphere. Total area of DRGE detectors is ~500 cm2. The data were recorded both in monitoring and gamma by gamma modes with timing accuracy ~15 us. Several TGF candidates with 10-40 gammas in a burst with duration instruments on-board "Vernov" satellite shows the absence of significant electromagnetic pulses around correspondent time moments. Comparison with WWLLN lightning network data base also indicates that there were no thunderstorms connected with most of detected TGF candidates. Possible connection of these flashes with electron precipitations is discussed. Ground-based experiments, with similar gamma-spectrometers were conducted, to study the spectral, temporal and spatial characteristics of TGEs in 20-3000 keV energy range, as well, as to search the fast hard X-ray and gamma-ray flashes possibly appearing at the moment of lightning. The time of each gamma-quantum interaction was recorded with an ~15 us s accuracy together with detailed spectral data. Measurements were done on the ground at Moscow region, and at mountain altitude in Armenia at Aragatz station. During the time interval covering spring, summer and autumn of 2015 a number of TGEs were detected. Measured low-energy gamma-ray spectra usually contain a set of lines that can be interpreted as radiation of Rn-222 daughter isotopes. The increase of Rn-222 radiation was detected during rainfalls with thunderstorm, as well, as during rainy weather without thunderstorms. Variations of Rn-222 radiation dominate at low energies (measure low energy gamma-radiation from the electrons accelerated in thunderclouds. There were no significant flashes with duration of ~1ms detected in coincidence with a nearby lightnings.

  7. Cost Analysis of Algorithm Based Billboard Manger Based Handover Method in LEO satellite Networks

    Directory of Open Access Journals (Sweden)

    Suman Kumar Sikdar

    2012-12-01

    Full Text Available Now-a-days LEO satellites have an important role in global communication system. They have some advantages like low power requirement and low end-to-end delay, more efficient frequency spectrum utilization between satellites and spot beams over GEO and MEO. So in future they can be used as a replacement of modern terrestrial wireless networks. But the handover occurrence is more due to the speed of the LEOs. Different protocol has been proposed for a successful handover among which BMBHO is more efficient. But it had a problem during the selection of the mobile node during handover. In our previous work we have proposed an algorithm so that the connection can be established easily with the appropriate satellite. In this paper we will evaluate the mobility management cost of Algorithm based Billboard Manager Based Handover method (BMBHO. A simulation result shows that the cost is lower than the cost of Mobile IP of SeaHO-LEO and PatHOLEO

  8. Developing a Satellite Based Automatic System for Crop Monitoring: Kenya's Great Rift Valley, A Case Study

    Science.gov (United States)

    Lucciani, Roberto; Laneve, Giovanni; Jahjah, Munzer; Mito, Collins

    2016-08-01

    The crop growth stage represents essential information for agricultural areas management. In this study we investigate the feasibility of a tool based on remotely sensed satellite (Landsat 8) imagery, capable of automatically classify crop fields and how much resolution enhancement based on pan-sharpening techniques and phenological information extraction, useful to create decision rules that allow to identify semantic class to assign to an object, can effectively support the classification process. Moreover we investigate the opportunity to extract vegetation health status information from remotely sensed assessment of the equivalent water thickness (EWT). Our case study is the Kenya's Great Rift valley, in this area a ground truth campaign was conducted during August 2015 in order to collect crop fields GPS measurements, leaf area index (LAI) and chlorophyll samples.

  9. Estimation of snow cover distribution in Beas basin, Indian Himalaya using satellite data and ground measurements

    Indian Academy of Sciences (India)

    H S Negi; A V Kulkarni; B S Semwal

    2009-10-01

    In the present paper,a methodology has been developed for the mapping of snow cover in Beas basin,Indian Himalaya using AWiFS (IRS-P6)satellite data.The complexities in the mapping of snow cover in the study area are snow under vegetation,contaminated snow and patchy snow. To overcome these problems,field measurements using spectroradiometer were carried out and reflectance/snow indices trend were studied.By evaluation and validation of different topographic correction models,it was observed that,the normalized difference snow index (NDSI)values remain constant with the variations in slope and aspect and thus NDSI can take care of topography effects.Different snow cover mapping methods using snow indices are compared to find the suitable mapping technique.The proposed methodology for snow cover mapping uses the NDSI (estimated using planetary re flectance),NIR band reflectance and forest/vegetation cover information.The satellite estimated snow or non-snow pixel information using proposed methodology was validated with the snow cover information collected at three observatory locations and it was found that the algorithm classify all the sample points correctly,once that pixel is cloud free.The snow cover distribution was estimated using one year (2004 –05)cloud free satellite data and good correlation was observed between increase/decrease areal extent of seasonal snow cover and ground observed fresh snowfall and standing snow data.

  10. A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm.

    Science.gov (United States)

    Song, Jiancai; Xue, Guixiang; Kang, Yanan

    2016-01-01

    In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones.

  11. A Novel Onboard-gateway-based Mechanism to Improve TCP Performance in Aeronautical Satellite Networks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The IP-based networks on aircraft serve to support Internet services via satellites. However, in aeronautical satellite hybrid networks, the TCP protocol performance often deteriorates due to improper decreases and slow recovery of the congestion window. This paper proposes a window size determination and notification mechanism, onboard-gateway-based mechanism (OGBM), which is based on the onboard gateway in the networks on aircraft. A cross-layer approach is adopted by the onboard gateway to obtain the satellite link bandwidth information. And then, by the gateway, through changing the receiver's advertised window field in ACK packets, TCP sources are notified of the window size of each TCP source calculated on the ground of bandwidth delay product and flow numbers. The mechanism is able to avoid improper changes of TCP window and serve multiple users. Simulation results show that the mechanism with the fairness index close to 1 improves TCP performance in aeronautical satellite networks.

  12. On the scale estimation using truncated swath measurements from low Earth orbiting satellites

    Science.gov (United States)

    Liu, Qi

    2013-05-01

    Truncation effect caused by limited swath width of low Earth orbiting (LEO) satellites results in inevitable underestimation of object scale when using pixel-counting methods. A new approach is proposed to obtain more accurate object scale through truncated measurements. The approach is based upon the mean object area fraction (MOAF), which depicts the relative population of object points in a varying-size domain and proves to be less sensitive to truncation effect. The MOAF-equivalent radius (MER) is deduced by comparing the actual MOAF with the standard one inferred from a circle object. Numerical simulations are implemented to demonstrate the MER characteristics. In contrast to area-equivalent radius (AER) that is merely determined by the absolute amount of object points, MER relies on the overall spatial structure of the object. For objects with irregular shapes, the MER value is generally smaller than AER in the absence of truncation. Nevertheless, taking the actual AER as true scale, MER has significantly reduced biases compared to AER once the object is truncated. This advantage can be reinforced when focusing on size statistics of analogous objects, because negative and positive biases associated with various truncation situations coexist in MER, against the uniform negative biases of AER. When applied to MODIS cloud mask data that are restricted in individual granules, MER has consistently larger values than AER for most truncated clouds. Compared with the explicitly problematic estimation from AER due to truncation, MER offers a notable elevation on the estimated cloud size and gets closer to the truth.

  13. South African Weather Service operational satellite based precipitation estimation technique: applications and improvements

    Directory of Open Access Journals (Sweden)

    E. de Coning

    2010-11-01

    Full Text Available Extreme weather related to heavy or more frequent precipitation events seem to be a likely possibility for the future of our planet. While precipitation measurements can be done by means of rain gauges, the obvious disadvantages of point measurements are driving meteorologists towards remotely sensed precipitation methods. In South Africa more sophisticated and expensive nowcasting technology such as radar and lightning networks are available, supported by a fairly dense rain gauge network of about 1500 gauges. In the rest of southern Africa rainfall measurements are more difficult to obtain. The availability of the local version of the Unified Model and the Meteosat Second Generation satellite data make these products ideal components of precipitation measurement in data sparse regions such as Africa. In this article the local version of the Hydroestimator (originally from NOAA/NESDIS is discussed as well as its applications for precipitation measurement in this region. Hourly accumulations of the Hydroestimator are currently used as a satellite based precipitation estimator for the South African Flash Flood Guidance system. However, the Hydroestimator is by no means a perfect representation of the real rainfall. In this study the Hydroestimator and the stratiform rainfall field from the Unified Model are both bias corrected and then combined into a new precipitation field which can feed into the South African Flash Flood Guidance system. This new product should provide a more accurate and comprehensive input to the Flash Flood Guidance systems in South Africa as well as southern Africa. In this way the southern African region where data is sparse and very few radars are available can have access to more accurate flash flood guidance.

  14. Determination of Foton M-2 satellite attitude motion by the data of microacceleration measurements

    Science.gov (United States)

    Beuselinck, T.; van Bavinchove, C.; Sazonov, V. V.; Chebukov, S. Yu.

    2009-12-01

    The results of reconstruction of uncontrolled attitude motion of the Foton M-2 satellite using measurements with the accelerometer TAS-3 are presented. The attitude motion of this satellite has been previously determined by the measurement data of the Earth’s magnetic field and the angular velocity. The TAS-3 data for this purpose are used for the first time. These data contain a well-pronounced additional component which made impossible their direct employment for the reconstruction of the attitude motion and whose origin was unknown several years ago. Later it has become known that the additional component is caused by the influence of the Earth’s magnetic field. The disclosure of this fact allowed us to take into account a necessary correction in processing of TAS-3 data and to use them for the reconstruction of the attitude motion of Foton M-2. Here, a modified method of processing TAS-3 data is described, as well as results of its testing and employing. The testing consisted in the direct comparison of the motion reconstructed by the new method with the motion constructed by the magnetic measurements. The new method allowed us to find the actual motion of Foton M-2 in the period June 9, 2005-June 14, 2005, when no magnetic measurements were carried out.

  15. Global Carbon Monoxide Products from Combined AIRS, TES and MLS Measurements on A-Train Satellites

    Science.gov (United States)

    Warner, Juying X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attie, J. L.; El Amraoui, L.; Duncan, B.

    2014-01-01

    This study tests a novel methodology to add value to satellite data sets. This methodology, data fusion, is similar to data assimilation, except that the background modelbased field is replaced by a satellite data set, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these data sets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS-TES and AIRS-MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only version 5 CO retrievals, and improved daily coverage compared with TES and MLS CO data.

  16. Airborne Sunphotometer Measurements of Aerosol Optical Depth and Columnar Water Vapor During the Puerto Rico Dust Experiment, and Comparison with Land, Aircraft, and Satellite Measurements

    Science.gov (United States)

    Livingston, John M.; Russell, Philip B.; Reid, Jeffrey; Redemann, Jens; Schmid, Beat; Allen, Duane A.; Torres, Omar; Levy, Robert C.; Remer, Lorraine A.; Holben, Brent N.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    Analyses of aerosol optical depth (AOD) and columnar water vapor (CWV) measurements obtained with the six-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) mounted on a twin-engine aircraft during the summer 2000 Puerto Rico Dust Experiment are presented. In general, aerosol extinction values calculated from AATS-6 AOD measurements acquired during aircraft profiles up to 5 km ASL reproduce the vertical structure measured by coincident aircraft in-situ measurements of total aerosol number and surface area concentration. Calculations show that the spectral dependence of AOD was small (mean Angstrom wavelength exponents of approximately 0.20) within three atmospheric layers defined as the total column beneath the top of each aircraft profile, the region beneath the trade wind inversion, and the region within the Saharan Air Layer (SAL) above the trade inversion. This spectral behavior is consistent with attenuation of incoming solar radiation by large dust particles or by dust plus sea salt. Values of CWV calculated from profile measurements by AATS-6 at 941.9 nm and from aircraft in-situ measurements by a chilled mirror dewpoint hygrometer agree to within approximately 4% (0.13 g/sq cm). AATS-6 AOD values measured on the ground at Roosevelt Roads Naval Air Station and during low altitude aircraft runs over the adjacent Cabras Island aerosol/radiation ground site agree to within 0.004 to 0.030 with coincident data obtained with an AERONET Sun/sky Cimel radiometer located at Cabras Island. For the same observation times, AERONET retrievals of CWV exceed AATS-6 values by a mean of 0.74 g/sq cm (approximately 21 %) for the 2.9-3.9 g/sq cm measured by AATS-6. Comparison of AATS-6 aerosol extinction values obtained during four aircraft ascents over Cabras Island with corresponding values calculated from coincident aerosol backscatter measurements by a ground-based micro-pulse lidar (MPL-Net) located at Cabras yields a similar vertical structure above the trade

  17. Search for Best Astronomical Observatory Sites in the MENA Region using Satellite Measurements

    Science.gov (United States)

    Abdelaziz, G.; Guebsi, R.; Guessoum, N.; Flamant, C.

    2017-06-01

    We perform a systematic search for astronomical observatory sites in the MENA (Middle-East and North Africa) region using space-based data for all the relevant factors, i.e. altitude (DEM), cloud fraction (CF), light pollution (NTL), precipitable water vapor (PWV), aerosol optical depth (AOD), relative humidity (RH), wind speed (WS), Richardson Number (RN), and diurnal temperature range (DTR). We look for the best locations overall even where altitudes are low (the threshold that we normally consider being 1,500 m) or where the combination of the afore-mentioned determining factors had previously excluded all locations in a given country. In this aim, we use the rich data that Earth-observing satellites provide, e.g. the Terra and Aqua multi-national NASA research satellites, with their MODIS (Moderate Resolution Imaging Spectroradiometer) and AIRS (Atmospheric Infrared Sounder) instruments, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS), and other products from climate diagnostics archives (e.g. MERRA). We present preliminary results on the best locations for the region.

  18. REKF and RUKF for pico satellite attitude estimation in the presence of measurement faults

    Institute of Scientific and Technical Information of China (English)

    Halil Ersin Söken; Chingiz Hajiyev

    2014-01-01

    When a pico satel ite is under normal operational condi-tions, whether it is extended or unscented, a conventional Kalman filter gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunc-tions in the estimation system, the Kalman filter gives inaccurate results and diverges by time. This study compares two different robust Kalman filtering algorithms, robust extended Kalman filter (REKF) and robust unscented Kalman filter (RUKF), for the case of measurement malfunctions. In both filters, by the use of de-fined variables named as the measurement noise scale factor, the faulty measurements are taken into the consideration with a smal weight, and the estimations are corrected without affecting the characteristic of the accurate ones. The proposed robust Kalman filters are applied for the attitude estimation process of a pico satel-lite, and the results are compared.

  19. Ground-and satellite-based evidence of the biophysical mechanisms behind the greening Sahel

    DEFF Research Database (Denmark)

    Brandt, Martin Stefan; Mbow, Cheikh; Diouf, Abdoul A.

    2015-01-01

    of woody species, herb biomass, and woody species abundance in different ecosystems located in the Sahel zone of Senegal. We found that the positive trend observed in satellite vegetation time series (+36%) is caused by an increment of in situ measured biomass (+34%