WorldWideScience

Sample records for satellite attitude determination

  1. DOA estimation for attitude determination on communication satellites

    Directory of Open Access Journals (Sweden)

    Yang Bin

    2014-06-01

    Full Text Available In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA estimation of a ground signal source. It differs from optical measurement, magnetic field measurement, inertial measurement, and global positioning system (GPS attitude determination. The proposed method is characterized by taking the ground signal source as the attitude reference and acquiring attitude information from DOA estimation. Firstly, an attitude measurement equation with DOA estimation is derived in detail. Then, the error of the measurement equation is analyzed. Finally, an attitude determination algorithm is presented using a dynamic model, the attitude measurement equation, and measurement errors. A developing low Earth orbit (LEO satellite which tests mobile communication technology with smart antennas can be stabilized in three axes by corporately using a magnetometer, reaction wheels, and three-axis magnetorquer rods. Based on the communication satellite, simulation results demonstrate the effectiveness of the method. The method could be a backup of attitude determination to prevent a system failure on the satellite. Its precision depends on the number of snapshots and the input signal-to-noise ratio (SNR with DOA estimation.

  2. On-board attitude determination for the Explorer Platform satellite

    Science.gov (United States)

    Jayaraman, C.; Class, B.

    1992-01-01

    This paper describes the attitude determination algorithm for the Explorer Platform satellite. The algorithm, which is baselined on the Landsat code, is a six-element linear quadratic state estimation processor, in the form of a Kalman filter augmented by an adaptive filter process. Improvements to the original Landsat algorithm were required to meet mission pointing requirements. These consisted of a more efficient sensor processing algorithm and the addition of an adaptive filter which acts as a check on the Kalman filter during satellite slew maneuvers. A 1750A processor will be flown on board the satellite for the first time as a coprocessor (COP) in addition to the NASA Standard Spacecraft Computer. The attitude determination algorithm, which will be resident in the COP's memory, will make full use of its improved processing capabilities to meet mission requirements. Additional benefits were gained by writing the attitude determination code in Ada.

  3. Attitude Determination with Magnetometers and Accelerometers to Use in Satellite Simulator

    Directory of Open Access Journals (Sweden)

    Helio Koiti Kuga

    2013-01-01

    Full Text Available Attitude control of artificial satellites is dependent on information provided by its attitude determination process. This paper presents the implementation and tests of a fully self-contained algorithm for the attitude determination using magnetometers and accelerometers, for application on a satellite simulator based on frictionless air bearing tables. However, it is known that magnetometers and accelerometers need to be calibrated so as to allow that measurements are used to their ultimate accuracy. A calibration method is implemented which proves to be essential for improving attitude determination accuracy. For the stepwise real-time attitude determination, it was used the well-known QUEST algorithm which yields quick response with reduced computer resources. The algorithms are tested and qualified with actual data collected on the streets under controlled situations. For such street runaways, the experiment employs a solid-state magnetoresistive magnetometer and an IMU navigation block consisting of triads of accelerometers and gyros, with MEMS technology. A GPS receiver is used to record positional information. The collected measurements are processed through the developed algorithms, and comparisons are made for attitude determination using calibrated and noncalibrated data. The results show that the attitude accuracy reaches the requirements for real-time operation for satellite simulator platforms.

  4. Small satellite attitude determination based on GPS/IMU data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Golovan, Andrey [Navigation and Control Laboratory, M.V. Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow (Russian Federation); Cepe, Ali [Department of Applied Mechanics and Control, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-12-10

    In this paper, we present the mathematical models and algorithms that describe the problem of attitude determination for a small satellite using measurements from three angular rate sensors (ARS) and aiding measurements from multiple GPS receivers/antennas rigidly attached to the platform of the satellite.

  5. Semi-active Attitude Control and Off-line Attitude Determination for the SEETI-Express Student Micro-satellite

    DEFF Research Database (Denmark)

    Alminde, Lars

    This paper concerns the development of the Attitude Determination and Control System (ADCS) for the SSETI-Express micro-satellite mission. The mission is an educational project involving 14 universities and the European Space Agency (ESA). The satellite has been designed and built, by students...

  6. Semi-active Attitude Control and Off-line Attitude Determination for the SSETI-Express Student Micro-satellite

    DEFF Research Database (Denmark)

    Alminde, Lars

    2005-01-01

    This paper concerns the development of the Attitude Determination and Control System (ADCS) for the SSETI-Express micro-satellite mission. The mission is an educational project involving 14 universities and the European Space Agency (ESA). The satellite has been designed and built, by students...

  7. Visual attitude propagation for small satellites

    Science.gov (United States)

    Rawashdeh, Samir A.

    As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation

  8. Satellite single-axis attitude determination based on Automatic Dependent Surveillance - Broadcast signals

    Science.gov (United States)

    Zhou, Kaixing; Sun, Xiucong; Huang, Hai; Wang, Xinsheng; Ren, Guangwei

    2017-10-01

    The space-based Automatic Dependent Surveillance - Broadcast (ADS-B) is a new technology for air traffic management. The satellite equipped with spaceborne ADS-B system receives the broadcast signals from aircraft and transfers the message to ground stations, so as to extend the coverage area of terrestrial-based ADS-B. In this work, a novel satellite single-axis attitude determination solution based on the ADS-B receiving system is proposed. This solution utilizes the signal-to-noise ratio (SNR) measurement of the broadcast signals from aircraft to determine the boresight orientation of the ADS-B receiving antenna fixed on the satellite. The basic principle of this solution is described. The feasibility study of this new attitude determination solution is implemented, including the link budget and the access analysis. On this basis, the nonlinear least squares estimation based on the Levenberg-Marquardt method is applied to estimate the single-axis orientation. A full digital simulation has been carried out to verify the effectiveness and performance of this solution. Finally, the corresponding results are processed and presented minutely.

  9. A semi-physical simulation platform of attitude determination and control system for satellite

    Directory of Open Access Journals (Sweden)

    Yuanjin Yu

    2016-05-01

    Full Text Available A semi-physical simulation platform for attitude determination and control system is proposed to verify the attitude estimator and controller on ground. A simulation target, a host PC, many attitude sensors, and actuators compose the simulation platform. The simulation target is composed of a central processing unit board with VxWorks operating system and many input/output boards connected via Compact Peripheral Component Interconnect bus. The executable programs in target are automatically generated from the simulation models in Simulink based on Real-Time Workshop of MATLAB. A three-axes gyroscope, a three-axes magnetometer, a sun sensor, a star tracer, three flywheels, and a Global Positioning System receiver are connected to the simulation target, which formulates the attitude control cycle of a satellite. The simulation models of the attitude determination and control system are described in detail. Finally, the semi-physical simulation platform is used to demonstrate the availability and rationality of the control scheme of a micro-satellite. Comparing the results between the numerical simulation in Simulink and the semi-physical simulation, the semi-physical simulation platform is available and the control scheme successfully achieves three-axes stabilization.

  10. UKF-based attitude determination method for gyroless satellite

    Institute of Scientific and Technical Information of China (English)

    张红梅; 邓正隆

    2004-01-01

    UKF (unscented Kalman filtering) is a new filtering method suitable to nonlinear systems. The method need not linearize nonlinear systems at the prediction stage of filtering, which is indispensable in EKF (extended Kalman filtering). As a result, the linearization error is avoided, and the filtering accuracy is greatly improved. UKF is applied to the attitude determination for gyroless satellite. Simulations are made to compare the new filter with the traditional EKF.The results indicate that under same conditions, compared with EKF, UKF has faster convergence speed, higher filtering accuracy and more stable estimation performance.

  11. Design and Simulation of a Nano-Satellite Attitude Determination System

    Science.gov (United States)

    2009-12-01

    4 D. SURVEY OF CUBESAT ATTITUDE DETERMINATION SYSTEMS... 6 1. Pumpkin IMI ADCS...imagery satellites are going through the same trend in resolution. They have improved in the past decade, from relatively low resolution at about 5m to...this is the nearly complete lack of a pre-packaged ADS. Until August of 2009, there was only one ADS available on the market. It was the Pumpkin

  12. Small Satellite Passive Magnetic Attitude Control

    Science.gov (United States)

    Gerhardt, David T.

    Passive Magnetic Attitude Control (PMAC) is capable of aligning a satellite within 5 degrees of the local magnetic field at low resource cost, making it ideal for a small satellite. However, simulation attempts to date have not been able to predict the attitude dynamics at a level sufficient for mission design. Also, some satellites have suffered from degraded performance due to an incomplete understanding of PMAC system design. This dissertation alleviates these issues by discussing the design, inputs, and validation of PMAC systems for small satellites. Design rules for a PMAC system are defined using the Colorado Student Space Weather Experiment (CSSWE) CubeSat as an example. A Multiplicative Extended Kalman Filter (MEKF) is defined for the attitude determination of a PMAC satellite without a rate gyro. After on-orbit calibration of the off-the-shelf magnetometer and photodiodes and an on-orbit fit to the satellite magnetic moment, the MEKF regularly achieves a three sigma attitude uncertainty of 4 degrees or less. CSSWE is found to settle to the magnetic field in seven days, verifying its attitude design requirement. A Helmholtz cage is constructed and used to characterize the CSSWE bar magnet and hysteresis rods both individually and in the flight configuration. Fitted parameters which govern the magnetic material behavior are used as input to a PMAC dynamics simulation. All components of this simulation are described and defined. Simulation-based dynamics analysis shows that certain initial conditions result in abnormally decreased settling times; these cases may be identified by their dynamic response. The simulation output is compared to the MEKF output; the true dynamics are well modeled and the predicted settling time is found to possess a 20 percent error, a significant improvement over prior simulation.

  13. Error analysis of satellite attitude determination using a vision-based approach

    Science.gov (United States)

    Carozza, Ludovico; Bevilacqua, Alessandro

    2013-09-01

    Improvements in communication and processing technologies have opened the doors to exploit on-board cameras to compute objects' spatial attitude using only the visual information from sequences of remote sensed images. The strategies and the algorithmic approach used to extract such information affect the estimation accuracy of the three-axis orientation of the object. This work presents a method for analyzing the most relevant error sources, including numerical ones, possible drift effects and their influence on the overall accuracy, referring to vision-based approaches. The method in particular focuses on the analysis of the image registration algorithm, carried out through on-purpose simulations. The overall accuracy has been assessed on a challenging case study, for which accuracy represents the fundamental requirement. In particular, attitude determination has been analyzed for small satellites, by comparing theoretical findings to metric results from simulations on realistic ground-truth data. Significant laboratory experiments, using a numerical control unit, have further confirmed the outcome. We believe that our analysis approach, as well as our findings in terms of error characterization, can be useful at proof-of-concept design and planning levels, since they emphasize the main sources of error for visual based approaches employed for satellite attitude estimation. Nevertheless, the approach we present is also of general interest for all the affine applicative domains which require an accurate estimation of three-dimensional orientation parameters (i.e., robotics, airborne stabilization).

  14. Spacecraft Attitude Determination

    DEFF Research Database (Denmark)

    Bak, Thomas

    This thesis describes the development of an attitude determination system for spacecraft based only on magnetic field measurements. The need for such system is motivated by the increased demands for inexpensive, lightweight solutions for small spacecraft. These spacecraft demands full attitude...... determination based on simple, reliable sensors. Meeting these objectives with a single vector magnetometer is difficult and requires temporal fusion of data in order to avoid local observability problems. In order to guaranteed globally nonsingular solutions, quaternions are generally the preferred attitude...... is a detailed study of the influence of approximations in the modeling of the system. The quantitative effects of errors in the process and noise statistics are discussed in detail. The third contribution is the introduction of these methods to the attitude determination on-board the Ørsted satellite...

  15. ALGORITHM OF SAR SATELLITE ATTITUDE MEASUREMENT USING GPS AIDED BY KINEMATIC VECTOR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, in order to improve the accuracy of the Synthetic Aperture Radar (SAR)satellite attitude using Global Positioning System (GPS) wide-band carrier phase, the SAR satellite attitude kinematic vector and Kalman filter are introduced. Introducing the state variable function of GPS attitude determination algorithm in SAR satellite by means of kinematic vector and describing the observation function by the GPS wide-band carrier phase, the paper uses the Kalman filter algorithm to obtian the attitude variables of SAR satellite. Compared the simulation results of Kalman filter algorithm with the least square algorithm and explicit solution, it is indicated that the Kalman filter algorithm is the best.

  16. Satellite recovery - Attitude dynamics of the targets

    Science.gov (United States)

    Cochran, J. E., Jr.; Lahr, B. S.

    1986-01-01

    The problems of categorizing and modeling the attitude dynamics of uncontrolled artificial earth satellites which may be targets in recovery attempts are addressed. Methods of classification presented are based on satellite rotational kinetic energy, rotational angular momentum and orbit and on the type of control present prior to the benign failure of the control system. The use of approximate analytical solutions and 'exact' numerical solutions to the equations governing satellite attitude motions to predict uncontrolled attitude motion is considered. Analytical and numerical results are presented for the evolution of satellite attitude motions after active control termination.

  17. Engineering parameter determination from the radio astronomy explorer /RAE I/ satellite attitude data

    Science.gov (United States)

    Lawlor, E. A.; Davis, R. M.; Blanchard, D. L.

    1974-01-01

    An RAE-I satellite description is given, taking into account a dynamics experiment and the attitude sensing system. A computer program for analyzing flexible spacecraft attitude motions is considered, giving attention to the geometry of rod deformation. The characteristics of observed attitude data are discussed along with an analysis of the main boom root angle, the bending rigidity, and the damper plane angle.

  18. Satellite Attitude Control System Simulator

    Directory of Open Access Journals (Sweden)

    G.T. Conti

    2008-01-01

    Full Text Available Future space missions will involve satellites with great autonomy and stringent pointing precision, requiring of the Attitude Control Systems (ACS with better performance than before, which is function of the control algorithms implemented on board computers. The difficulties for developing experimental ACS test is to obtain zero gravity and torque free conditions similar to the SCA operate in space. However, prototypes for control algorithms experimental verification are fundamental for space mission success. This paper presents the parameters estimation such as inertia matrix and position of mass centre of a Satellite Attitude Control System Simulator (SACSS, using algorithms based on least square regression and least square recursive methods. Simulations have shown that both methods have estimated the system parameters with small error. However, the least square recursive methods have performance more adequate for the SACSS objectives. The SACSS platform model will be used to do experimental verification of fundamental aspects of the satellite attitude dynamics and design of different attitude control algorithm.

  19. Discussions on attitude determination and control system for micro/nano/pico-satellites considering survivability based on Hodoyoshi-3 and 4 experiences

    Science.gov (United States)

    Nakasuka, Shinichi; Miyata, Kikuko; Tsuruda, Yoshihiro; Aoyanagi, Yoshihide; Matsumoto, Takeshi

    2018-04-01

    The recent advancement of micro/nano/pico-satellites technologies encourages many universities to develop three axis stabilized satellites. As three axis stabilization is high level technology requiring the proper functioning of various sensors, actuators and control software, many early satellites failed in their initial operation phase because of shortage of solar power generation or inability to realize the initial step of missions because of unexpected attitude control system performance. These results come from failure to design the satellite attitude determination and control system (ADCS) appropriately and not considering "satellite survivability." ADCS should be designed such that even if some sensors or actuators cannot work as expected, the satellite can survive and carry out some of its missions, even if not full. This paper discusses how to realize ADCS while taking satellite survivability into account, based on our experiences of design and in-orbit operations of Hodoyoshi-3 and 4 satellites launched in 2014, which suffered from various component anomalies but could complete their missions.

  20. Attitude Model of a Reaction Wheel/Fixed Thruster Based Satellite Using Telemetry Data

    National Research Council Canada - National Science Library

    Smith, Jason E

    2005-01-01

    .... While there are a multitude of ways to determine a satellite's orientation, very little research has been done on determining if the attitude of a satellite can be determined directly from telemetry...

  1. Performance comparison of attitude determination, attitude estimation, and nonlinear observers algorithms

    Science.gov (United States)

    MOHAMMED, M. A. SI; BOUSSADIA, H.; BELLAR, A.; ADNANE, A.

    2017-01-01

    This paper presents a brief synthesis and useful performance analysis of different attitude filtering algorithms (attitude determination algorithms, attitude estimation algorithms, and nonlinear observers) applied to Low Earth Orbit Satellite in terms of accuracy, convergence time, amount of memory, and computation time. This latter is calculated in two ways, using a personal computer and also using On-board computer 750 (OBC 750) that is being used in many SSTL Earth observation missions. The use of this comparative study could be an aided design tool to the designer to choose from an attitude determination or attitude estimation or attitude observer algorithms. The simulation results clearly indicate that the nonlinear Observer is the more logical choice.

  2. Attitude Control Subsystem for the Advanced Communications Technology Satellite

    Science.gov (United States)

    Hewston, Alan W.; Mitchell, Kent A.; Sawicki, Jerzy T.

    1996-01-01

    This paper provides an overview of the on-orbit operation of the Attitude Control Subsystem (ACS) for the Advanced Communications Technology Satellite (ACTS). The three ACTS control axes are defined, including the means for sensing attitude and determining the pointing errors. The desired pointing requirements for various modes of control as well as the disturbance torques that oppose the control are identified. Finally, the hardware actuators and control loops utilized to reduce the attitude error are described.

  3. Satellite Attitude Control Using Only Electromagnetic Actuation

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    when a satellite is on a throughout this thesis. Confined computer capacity and a limit on electrical power supply were separate obstacles.They demanded computational simplicity and power optimality from the attitude control system. The design of quasi optimal controllers for a real-time implementation...... to provide four stable equilibria, one of which was the desired orientation. It was explained how the equilibria depended on the ratio of the satellite's moments of inertia. It was further investigated how to control the attitude, such that the satellite was globally asymptotically stable in the desired...

  4. Integrated orbit and attitude hardware-in-the-loop simulations for autonomous satellite formation flying

    Science.gov (United States)

    Park, Han-Earl; Park, Sang-Young; Kim, Sung-Woo; Park, Chandeok

    2013-12-01

    Development and experiment of an integrated orbit and attitude hardware-in-the-loop (HIL) simulator for autonomous satellite formation flying are presented. The integrated simulator system consists of an orbit HIL simulator for orbit determination and control, and an attitude HIL simulator for attitude determination and control. The integrated simulator involves four processes (orbit determination, orbit control, attitude determination, and attitude control), which interact with each other in the same way as actual flight processes do. Orbit determination is conducted by a relative navigation algorithm using double-difference GPS measurements based on the extended Kalman filter (EKF). Orbit control is performed by a state-dependent Riccati equation (SDRE) technique that is utilized as a nonlinear controller for the formation control problem. Attitude is determined from an attitude heading reference system (AHRS) sensor, and a proportional-derivative (PD) feedback controller is used to control the attitude HIL simulator using three momentum wheel assemblies. Integrated orbit and attitude simulations are performed for a formation reconfiguration scenario. By performing the four processes adequately, the desired formation reconfiguration from a baseline of 500-1000 m was achieved with meter-level position error and millimeter-level relative position navigation. This HIL simulation demonstrates the performance of the integrated HIL simulator and the feasibility of the applied algorithms in a real-time environment. Furthermore, the integrated HIL simulator system developed in the current study can be used as a ground-based testing environment to reproduce possible actual satellite formation operations.

  5. Incorporation of star measurements for the determination of orbit and attitude parameters of a geosynchronous satellite: An iterative application of linear regression

    Science.gov (United States)

    Phillips, D.

    1980-01-01

    Currently on NOAA/NESS's VIRGS system at the World Weather Building star images are being ingested on a daily basis. The image coordinates of the star locations are measured and stored. Subsequently, the information is used to determine the attitude, the misalignment angles between the spin axis and the principal axis of the satellite, and the precession rate and direction. This is done for both the 'East' and 'West' operational geosynchronous satellites. This orientation information is then combined with image measurements of earth based landmarks to determine the orbit of each satellite. The method for determining the orbit is simple. For each landmark measurement one determines a nominal position vector for the satellite by extending a ray from the landmark's position towards the satellite and intersecting the ray with a sphere with center coinciding with the Earth's center and with radius equal to the nominal height for a geosynchronous satellite. The apparent motion of the satellite around the Earth's center is then approximated with a Keplerian model. In turn the variations of the satellite's height, as a function of time found by using this model, are used to redetermine the successive satellite positions by again using the Earth based landmark measurements and intersecting rays from these landmarks with the newly determined spheres. This process is performed iteratively until convergence is achieved. Only three iterations are required.

  6. Touchless attitude correction for satellite with constant magnetic moment

    Science.gov (United States)

    Ao, Hou-jun; Yang, Le-ping; Zhu, Yan-wei; Zhang, Yuan-wen; Huang, Huan

    2017-09-01

    Rescue of satellite with attitude fault is of great value. Satellite with improper injection attitude may lose contact with ground as the antenna points to the wrong direction, or encounter energy problems as solar arrays are not facing the sun. Improper uploaded command may set the attitude out of control, exemplified by Japanese Hitomi spacecraft. In engineering practice, traditional physical contact approaches have been applied, yet with a potential risk of collision and a lack of versatility since the mechanical systems are mission-specific. This paper puts forward a touchless attitude correction approach, in which three satellites are considered, one having constant dipole and two having magnetic coils to control attitude of the first. Particular correction configurations are designed and analyzed to maintain the target's orbit during the attitude correction process. A reference coordinate system is introduced to simplify the control process and avoid the singular value problem of Euler angles. Based on the spherical triangle basic relations, the accurate varying geomagnetic field is considered in the attitude dynamic mode. Sliding mode control method is utilized to design the correction law. Finally, numerical simulation is conducted to verify the theoretical derivation. It can be safely concluded that the no-contact attitude correction approach for the satellite with uniaxial constant magnetic moment is feasible and potentially applicable to on-orbit operations.

  7. On-orbit real-time magnetometer bias determination for micro-satellites without attitude information

    Directory of Open Access Journals (Sweden)

    Zhang Zhen

    2015-10-01

    Full Text Available Due to the disadvantages such as complex calculation, low accuracy of estimation, and being non real time in present methods, a new real-time algorithm is developed for on-orbit magnetometer bias determination of micro-satellites without attitude knowledge in this paper. This method uses the differential value approach. It avoids the impact of quartic nature and uses the iterative method to satisfy real-time applications. Simulation results indicate that the new real-time algorithm is more accurate compared with other methods, which are also tested by an experiment system using real noise data. With the new real-time algorithm, a magnetometer calibration can be taken on-orbit and will reduce the demand for computing power effectively.

  8. Attitude Control of a Satellite by using Digital Signal Processing

    Directory of Open Access Journals (Sweden)

    Adirelle C. Santana

    2012-03-01

    Full Text Available This article has discussed the development of a three-axis attitude digital controller for an artificial satellite using a digital signal processor. The main motivation of this study is the attitude control system of the satellite Multi-Mission Platform, developed by the Brazilian National Institute for Space Research for application in different sort of missions. The controller design was based on the theory of the Linear Quadratic Gaussian Regulator, synthesized from the linearized model of the motion of the satellite, i.e., the kinematics and dynamics of attitude. The attitude actuators considered in this study are pairs of cold gas jets powered by a pulse width/pulse frequency modulator. In the first stage of the project development, a system controller for continuous time was studied with the aim of testing the adequacy of the adopted control. The next steps had included an analysis of discretization techniques, the setting time of sampling rate, and the testing of the digital version of the Linear Quadratic Gaussian Regulator controller in the MATLAB/SIMULINK. To fulfill the study, the controller was implemented in a digital signal processor, specifically the Blackfin BF537 from Analog Devices, along with the pulse width/pulse frequency modulator. The validation tests used a scheme of co-simulation, where the model of the satellite was simulated in MATLAB/SIMULINK, while the controller and modulator were processed in the digital signal processor with a tool called Processor-In-the-Loop, which acted as a data communication link between both environments.function and required time to achieve a given mission accuracy are determined, and results are provided as illustration.

  9. Development of a hardware-in-loop attitude control simulator for a CubeSat satellite

    Science.gov (United States)

    Tapsawat, Wittawat; Sangpet, Teerawat; Kuntanapreeda, Suwat

    2018-01-01

    Attitude control is an important part in satellite on-orbit operation. It greatly affects the performance of satellites. Testing of an attitude determination and control subsystem (ADCS) is very challenging since it might require attitude dynamics and space environment in the orbit. This paper develops a low-cost hardware-in-loop (HIL) simulator for testing an ADCS of a CubeSat satellite. The simulator consists of a numerical simulation part, a hardware part, and a HIL interface hardware unit. The numerical simulation part includes orbital dynamics, attitude dynamics and Earth’s magnetic field. The hardware part is the real ADCS board of the satellite. The simulation part outputs satellite’s angular velocity and geomagnetic field information to the HIL interface hardware. Then, based on this information, the HIL interface hardware generates I2C signals mimicking the signals of the on-board rate-gyros and magnetometers and consequently outputs the signals to the ADCS board. The ADCS board reads the rate-gyro and magnetometer signals, calculates control signals, and drives the attitude actuators which are three magnetic torquers (MTQs). The responses of the MTQs sensed by a separated magnetometer are feedback to the numerical simulation part completing the HIL simulation loop. Experimental studies are conducted to demonstrate the feasibility and effectiveness of the simulator.

  10. Using the global positioning satellite system to determine attitude rates using doppler effects

    Science.gov (United States)

    Campbell, Charles E. (Inventor)

    2003-01-01

    In the absence of a gyroscope, the attitude and attitude rate of a receiver can be determined using signals received by antennae on the receiver. Based on the signals received by the antennae, the Doppler difference between the signals is calculated. The Doppler difference may then be used to determine the attitude rate. With signals received from two signal sources by three antennae pairs, the three-dimensional attitude rate is determined.

  11. Low-power attitude determination for magnetometry planetary missions

    DEFF Research Database (Denmark)

    Christensen, Thorbjørn Helvig

    This work covers the subject of orientation or attitude in space and on the surface of a planet. Different attitude sensor technologies have been investigated with emphasis on very low power consumption and mass. In addition robust methods for attitude determination have been covered again...... with emphasis on the limited budget onboard very small satellites. A true low-power attitude sensor using the Anisotropic Magneto Resistor effect have been designed to late prototype state. Two prototypes of the AMR magnetometer have been built. One of the prototypes has an analog output and the second...... calibration has been performed on both of the prototypes of the AMR magnetometer with very good overall result. Different attitude representations such as orthogonal matrices, Euler angles and quaternions are presented. Also methods for attitude determination of a sensor platform with more than one vector...

  12. Sliding Mode Attitude Control for Magnetic Actuated Satellite

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    1998-01-01

    control torques can only be generated perpendicular to the local geomagnetic field vector. This has been a serious obstacle for using magnetorquer based control for three-axis attitude control. This paper deals with three-axis stabilization of a low earth orbit satellite. The problem of controlling...... the spacecraft attitude using only magnetic torquing is realized in the form of the sliding mode control. A three dimensional sliding manifold is proposed, and it is shown that the satellite motion on the sliding manifold is asymptotically stable...

  13. Quaternion normalization in additive EKF for spacecraft attitude determination

    Science.gov (United States)

    Bar-Itzhack, I. Y.; Deutschmann, J.; Markley, F. L.

    1991-01-01

    This work introduces, examines, and compares several quaternion normalization algorithms, which are shown to be an effective stage in the application of the additive extended Kalman filter (EKF) to spacecraft attitude determination, which is based on vector measurements. Two new normalization schemes are introduced. They are compared with one another and with the known brute force normalization scheme, and their efficiency is examined. Simulated satellite data are used to demonstrate the performance of all three schemes. A fourth scheme is suggested for future research. Although the schemes were tested for spacecraft attitude determination, the conclusions are general and hold for attitude determination of any three dimensional body when based on vector measurements, and use an additive EKF for estimation, and the quaternion for specifying the attitude.

  14. Microsatellite Attitude Determination and Control Subsystem Design and Implementation: Software-in-the-Loop Approach

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available The paper describes the development of a microsatellite attitude determination and control subsystem (ADCS and verification of its functionality by software-in-the-loop (SIL method. The role of ADCS is to provide attitude control functions, including the de-tumbling and stabilizing the satellite angular velocity, and as well as estimating the orbit and attitude information during the satellite operation. In Taiwan, Air Force Institute of Technology (AFIT, dedicating for students to design experimental low earth orbit micro-satellite, called AFITsat. For AFITsat, the operation of the ADCS consists of three modes which are initialization mode, detumbling mode, and normal mode, respectively. During the initialization mode, ADCS collects the early orbit measurement data from various sensors so that the data can be downlinked to the ground station for further analysis. As particularly emphasized in this paper, during the detumbling mode, ADCS implements the thrusters in plus-wide modulation control method to decrease the satellite angular velocity. ADCS provides the attitude determination function for the estimation of the satellite state, during normal mode. The three modes of microsatellite adopted Kalman filter algorithm estimate microsatellite attitude. This paper will discuss using the SIL validation ADCS function and verify its feasibility.

  15. High-Precision Attitude Post-Processing and Initial Verification for the ZY-3 Satellite

    Directory of Open Access Journals (Sweden)

    Xinming Tang

    2014-12-01

    Full Text Available Attitude data, which is the important data strongly correlated with the geometric accuracy of optical remote sensing satellite images, are generally obtained using a real-time Extended Kalman Filter (EKF with star-tracker and gyro data for current high-resolution satellites, such as Orb-view, IKONOS, Quickbird,Pleiades, and ZY-3.We propose a forward-backward Unscented Kalman Filter (UKF for post-processing, and the proposed method employs UKF to suppress noise by using an unscented transformation (UT rather than an EKF in a nonlinear attitude system. Moreover, this method makes full use of the collected data in the fixed-interval and computational resources on the ground, and it determines optimal attitude results by forward-backward filtering and weighted smoothing with the raw star-tracker and gyro data collected for a fixed period. In this study, the principle and implementation of the proposed method are described. The post-processed attitude was compared with the on-board attitude, and the absolute accuracy was evaluated by the two methods. One method compares the positioning accuracy of the object space coordinates with the post-processed and on-board attitude data without using ground control points (GCPs. The other method compares the tie-point residuals of the image coordinates after a free net adjustment. In addition, the internal and external parameters of the camera were accurately calibrated before use for an objective evaluation of the attitude accuracy. The experimental results reveal that the accuracy of the post-processed attitude is superior to the accuracy of the on-board processed attitude. This method has been applied to the ZiYuan-3 satellite system for processing the raw star-tracker and gyro data daily.

  16. Passivity Based Nonlinear Attitude Control of the Rømer Satellite

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt; Krogh-Sørensen, J.; Wisniewski, Rafal

    2001-01-01

    This paper suggests nonlinear attitude control of the Danish satellite Rømer. This satellite will be designed to fulfil two scientific objectives: The observation of stellar oscillations and the detection and localisation of gamma-ray bursts. The satellite will be equipped with a tetrahedron...

  17. Geocoding of SAR Image Using the Orbit and Attitude Determination of RADARSAT

    Directory of Open Access Journals (Sweden)

    Jin Wook So

    1998-06-01

    Full Text Available The Synthetic Aperture Radar (SAR image and the Digital Elevation Model (DEM of an target area are put into use to generate three dimensional image map. An method of image map generation is explained. The orbit and attitude determination of satellite makes it possible to model signal acquisition configuration precisely, which is a key to mapping image coordinates to geographic coordinates of concerned area. An application is made to RADARSAT in the purpose of testing its validity. To determine the orbit, zero Doppler range is used. And to determine the attitude, Doppler centroid frequency, which is the frequency observed when target is in the center of antenna's view, is used. Conventional geocoding has been performed on the basis of direct method(mapping image coordinates to geographic coordinates, but in this research the inverse method (mapping from geographic coordinates to image coordinates is taken. This paper shows that precise signal acquisition modeling based on the orbit and attitude determination of satellite as a platform leads to a satellite-centered accurate geocoding process. It also shows how to model relative motion between spaceborne radar and target. And the relative motion is described in ECIC (earth-centered initial coordinates using Doppler equation and signal acquisition geometry.

  18. Compensation of an attitude disturbance torque caused by magnetic substances in LEO satellites

    Science.gov (United States)

    Inamori, Takaya; Wang, Jihe; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    This research considers an attitude disturbance torque caused by ferromagnetic substances in a LEO satellite. In most LEO satellite missions, a gravity gradient torque, solar pressure torque, aerodynamic torque, and magnetic dipole moment torque are considered for their attitude control systems, however, the effect of the ferromagnetic substances causing a disturbance torque in the geomagnetic field is not considered in previous satellite missions. The ferromagnetic substances such as iron cores of MTQs and a magnetic hysteresis damper for a passive attitude control system are used in various small satellites. These substances cause a disturbance torque which is almost the same magnitude of the dipole magnetic disturbance and the dominant disturbance in the worst cases. This research proposes a method to estimate and compensate for the effect of the ferromagnetic substances using an extended Kalman filter. From simulation results, the research concludes that the proposed method is useful and attractive for precise attitude control for LEO satellite missions.

  19. Evaluation of geomagnetic field models using magnetometer measurements for satellite attitude determination system at low earth orbits: Case studies

    Science.gov (United States)

    Cilden-Guler, Demet; Kaymaz, Zerefsan; Hajiyev, Chingiz

    2018-01-01

    In this study, different geomagnetic field models are compared in order to study the errors resulting from the representation of magnetic fields that affect the satellite attitude system. For this purpose, we used magnetometer data from two Low Earth Orbit (LEO) spacecraft and the geomagnetic models IGRF-12 (Thébault et al., 2015) and T89 (Tsyganenko, 1989) models to study the differences between the magnetic field components, strength and the angle between the predicted and observed vector magnetic fields. The comparisons were made during geomagnetically active and quiet days to see the effects of the geomagnetic storms and sub-storms on the predicted and observed magnetic fields and angles. The angles, in turn, are used to estimate the spacecraft attitude and hence, the differences between model and observations as well as between two models become important to determine and reduce the errors associated with the models under different space environment conditions. We show that the models differ from the observations even during the geomagnetically quiet times but the associated errors during the geomagnetically active times increase. We find that the T89 model gives closer predictions to the observations, especially during active times and the errors are smaller compared to the IGRF-12 model. The magnitude of the error in the angle under both environmental conditions was found to be less than 1°. For the first time, the geomagnetic models were used to address the effects of the near Earth space environment on the satellite attitude.

  20. The inertial attitude augmentation for ambiguity resolution in SF/SE-GNSS attitude determination.

    Science.gov (United States)

    Zhu, Jiancheng; Hu, Xiaoping; Zhang, Jingyu; Li, Tao; Wang, Jinling; Wu, Meiping

    2014-06-26

    The Unaided Single Frequency/Single Epoch Global Navigation Satellite System (SF/SE GNSS) model is the most challenging scenario for ambiguity resolution in the GNSS attitude determination application. To improve the performance of SF/SE-GNSS ambiguity resolution without excessive cost, the Micro-Electro-Mechanical System Inertial Measurement Unit (MEMS-IMU) is a proper choice for the auxiliary sensor that carries out the inertial attitude augmentation. Firstly, based on the SF/SE-GNSS compass model, the Inertial Derived Baseline Vector (IDBV) is defined to connect the MEMS-IMU attitude measurement with the SF/SE-GNSS ambiguity search space, and the mechanism of inertial attitude augmentation is revealed from the perspective of geometry. Then, through the quantitative description of model strength by Ambiguity Dilution of Precision (ADOP), two ADOPs are specified for the unaided SF/SE-GNSS compass model and its inertial attitude augmentation counterparts, respectively, and a sufficient condition is proposed for augmenting the SF/SE-GNSS model strength with inertial attitude measurement. Finally, in the framework of an integer aperture estimator with fixed failure rate, the performance of SF/SE-GNSS ambiguity resolution with inertial attitude augmentation is analyzed when the model strength is varying from strong to weak. The simulation results show that, in the SF/SE-GNSS attitude determination application, MEMS-IMU can satisfy the requirements of ambiguity resolution with inertial attitude augmentation.

  1. The Inertial Attitude Augmentation for Ambiguity Resolution in SF/SE-GNSS Attitude Determination

    Science.gov (United States)

    Zhu, Jiancheng; Hu, Xiaoping; Zhang, Jingyu; Li, Tao; Wang, Jinling; Wu, Meiping

    2014-01-01

    The Unaided Single Frequency/Single Epoch Global Navigation Satellite System (SF/SE GNSS) model is the most challenging scenario for ambiguity resolution in the GNSS attitude determination application. To improve the performance of SF/SE-GNSS ambiguity resolution without excessive cost, the Micro-Electro-Mechanical System Inertial Measurement Unit (MEMS-IMU) is a proper choice for the auxiliary sensor that carries out the inertial attitude augmentation. Firstly, based on the SF/SE-GNSS compass model, the Inertial Derived Baseline Vector (IDBV) is defined to connect the MEMS-IMU attitude measurement with the SF/SE-GNSS ambiguity search space, and the mechanism of inertial attitude augmentation is revealed from the perspective of geometry. Then, through the quantitative description of model strength by Ambiguity Dilution of Precision (ADOP), two ADOPs are specified for the unaided SF/SE-GNSS compass model and its inertial attitude augmentation counterparts, respectively, and a sufficient condition is proposed for augmenting the SF/SE-GNSS model strength with inertial attitude measurement. Finally, in the framework of an integer aperture estimator with fixed failure rate, the performance of SF/SE-GNSS ambiguity resolution with inertial attitude augmentation is analyzed when the model strength is varying from strong to weak. The simulation results show that, in the SF/SE-GNSS attitude determination application, MEMS-IMU can satisfy the requirements of ambiguity resolution with inertial attitude augmentation. PMID:24971472

  2. Rotation Matrix Method Based on Ambiguity Function for GNSS Attitude Determination.

    Science.gov (United States)

    Yang, Yingdong; Mao, Xuchu; Tian, Weifeng

    2016-06-08

    Global navigation satellite systems (GNSS) are well suited for attitude determination. In this study, we use the rotation matrix method to resolve the attitude angle. This method achieves better performance in reducing computational complexity and selecting satellites. The condition of the baseline length is combined with the ambiguity function method (AFM) to search for integer ambiguity, and it is validated in reducing the span of candidates. The noise error is always the key factor to the success rate. It is closely related to the satellite geometry model. In contrast to the AFM, the LAMBDA (Least-squares AMBiguity Decorrelation Adjustment) method gets better results in solving the relationship of the geometric model and the noise error. Although the AFM is more flexible, it is lack of analysis on this aspect. In this study, the influence of the satellite geometry model on the success rate is analyzed in detail. The computation error and the noise error are effectively treated. Not only is the flexibility of the AFM inherited, but the success rate is also increased. An experiment is conducted in a selected campus, and the performance is proved to be effective. Our results are based on simulated and real-time GNSS data and are applied on single-frequency processing, which is known as one of the challenging case of GNSS attitude determination.

  3. Rotation Matrix Method Based on Ambiguity Function for GNSS Attitude Determination

    Directory of Open Access Journals (Sweden)

    Yingdong Yang

    2016-06-01

    Full Text Available Global navigation satellite systems (GNSS are well suited for attitude determination. In this study, we use the rotation matrix method to resolve the attitude angle. This method achieves better performance in reducing computational complexity and selecting satellites. The condition of the baseline length is combined with the ambiguity function method (AFM to search for integer ambiguity, and it is validated in reducing the span of candidates. The noise error is always the key factor to the success rate. It is closely related to the satellite geometry model. In contrast to the AFM, the LAMBDA (Least-squares AMBiguity Decorrelation Adjustment method gets better results in solving the relationship of the geometric model and the noise error. Although the AFM is more flexible, it is lack of analysis on this aspect. In this study, the influence of the satellite geometry model on the success rate is analyzed in detail. The computation error and the noise error are effectively treated. Not only is the flexibility of the AFM inherited, but the success rate is also increased. An experiment is conducted in a selected campus, and the performance is proved to be effective. Our results are based on simulated and real-time GNSS data and are applied on single-frequency processing, which is known as one of the challenging case of GNSS attitude determination.

  4. Sensor fault detection and recovery in satellite attitude control

    Science.gov (United States)

    Nasrolahi, Seiied Saeed; Abdollahi, Farzaneh

    2018-04-01

    This paper proposes an integrated sensor fault detection and recovery for the satellite attitude control system. By introducing a nonlinear observer, the healthy sensor measurements are provided. Considering attitude dynamics and kinematic, a novel observer is developed to detect the fault in angular rate as well as attitude sensors individually or simultaneously. There is no limit on type and configuration of attitude sensors. By designing a state feedback based control signal and Lyapunov stability criterion, the uniformly ultimately boundedness of tracking errors in the presence of sensor faults is guaranteed. Finally, simulation results are presented to illustrate the performance of the integrated scheme.

  5. The attitude inversion method of geostationary satellites based on unscented particle filter

    Science.gov (United States)

    Du, Xiaoping; Wang, Yang; Hu, Heng; Gou, Ruixin; Liu, Hao

    2018-04-01

    The attitude information of geostationary satellites is difficult to be obtained since they are presented in non-resolved images on the ground observation equipment in space object surveillance. In this paper, an attitude inversion method for geostationary satellite based on Unscented Particle Filter (UPF) and ground photometric data is presented. The inversion algorithm based on UPF is proposed aiming at the strong non-linear feature in the photometric data inversion for satellite attitude, which combines the advantage of Unscented Kalman Filter (UKF) and Particle Filter (PF). This update method improves the particle selection based on the idea of UKF to redesign the importance density function. Moreover, it uses the RMS-UKF to partially correct the prediction covariance matrix, which improves the applicability of the attitude inversion method in view of UKF and the particle degradation and dilution of the attitude inversion method based on PF. This paper describes the main principles and steps of algorithm in detail, correctness, accuracy, stability and applicability of the method are verified by simulation experiment and scaling experiment in the end. The results show that the proposed method can effectively solve the problem of particle degradation and depletion in the attitude inversion method on account of PF, and the problem that UKF is not suitable for the strong non-linear attitude inversion. However, the inversion accuracy is obviously superior to UKF and PF, in addition, in the case of the inversion with large attitude error that can inverse the attitude with small particles and high precision.

  6. Magnetic dipole moment estimation and compensation for an accurate attitude control in nano-satellite missions

    Science.gov (United States)

    Inamori, Takaya; Sako, Nobutada; Nakasuka, Shinichi

    2011-06-01

    Nano-satellites provide space access to broader range of satellite developers and attract interests as an application of the space developments. These days several new nano-satellite missions are proposed with sophisticated objectives such as remote-sensing and observation of astronomical objects. In these advanced missions, some nano-satellites must meet strict attitude requirements for obtaining scientific data or images. For LEO nano-satellite, a magnetic attitude disturbance dominates over other environmental disturbances as a result of small moment of inertia, and this effect should be cancelled for a precise attitude control. This research focuses on how to cancel the magnetic disturbance in orbit. This paper presents a unique method to estimate and compensate the residual magnetic moment, which interacts with the geomagnetic field and causes the magnetic disturbance. An extended Kalman filter is used to estimate the magnetic disturbance. For more practical considerations of the magnetic disturbance compensation, this method has been examined in the PRISM (Pico-satellite for Remote-sensing and Innovative Space Missions). This method will be also used for a nano-astrometry satellite mission. This paper concludes that use of the magnetic disturbance estimation and compensation are useful for nano-satellites missions which require a high accurate attitude control.

  7. Attitude determination for small satellites using GPS signal-to-noise ratio

    Science.gov (United States)

    Peters, Daniel

    An embedded system for GPS-based attitude determination (AD) using signal-to-noise (SNR) measurements was developed for CubeSat applications. The design serves as an evaluation testbed for conducting ground based experiments using various computational methods and antenna types to determine the optimum AD accuracy. Raw GPS data is also stored to non-volatile memory for downloading and post analysis. Two low-power microcontrollers are used for processing and to display information on a graphic screen for real-time performance evaluations. A new parallel inter-processor communication protocol was developed that is faster and uses less power than existing standard protocols. A shorted annular patch (SAP) antenna was fabricated for the initial ground-based AD experiments with the testbed. Static AD estimations with RMS errors in the range of 2.5° to 4.8° were achieved over a range of off-zenith attitudes.

  8. Prototype Design and Mission Analysis for a Small Satellite Exploiting Environmental Disturbances for Attitude Stabilization

    Science.gov (United States)

    2016-03-01

    AND MISSION ANALYSIS FOR A SMALL SATELLITE EXPLOITING ENVIRONMENTAL DISTURBANCES FOR ATTITUDE STABILIZATION by Halis C. Polat March 2016...FOR A SMALL SATELLITE EXPLOITING ENVIRONMENTAL DISTURBANCES FOR ATTITUDE STABILIZATION 5. FUNDING NUMBERS 6. AUTHOR(S) Halis C. Polat 7...need a robust and accurate attitude control system. Due to the mass- and volume-constrained design environment of CubeSat, conventional methods are

  9. CubeSat Attitude Determination and Helmholtz Cage Design

    Science.gov (United States)

    2012-03-01

    14]. Induction magnetometers can further be divided into ei- ther search-coil or fluxgate magnetometers . A search-coil magnetometer consists of a...PC). A fluxgate sensor, which is part of the magnetometer , along with the field control electronics and power supplies compensate for ambient...ENY/12-M03 Abstract A method of 3-axis satellite attitude determination utilizing six body-fixed light sensors and a 3-axis magnetometer is analyzed. A

  10. Advancements of in-flight mass moment of inertia and structural deflection algorithms for satellite attitude simulators

    Science.gov (United States)

    Wright, Jonathan W.

    Experimental satellite attitude simulators have long been used to test and analyze control algorithms in order to drive down risk before implementation on an operational satellite. Ideally, the dynamic response of a terrestrial-based experimental satellite attitude simulator would be similar to that of an on-orbit satellite. Unfortunately, gravitational disturbance torques and poorly characterized moments of inertia introduce uncertainty into the system dynamics leading to questionable attitude control algorithm experimental results. This research consists of three distinct, but related contributions to the field of developing robust satellite attitude simulators. In the first part of this research, existing approaches to estimate mass moments and products of inertia are evaluated followed by a proposition and evaluation of a new approach that increases both the accuracy and precision of these estimates using typical on-board satellite sensors. Next, in order to better simulate the micro-torque environment of space, a new approach to mass balancing satellite attitude simulator is presented, experimentally evaluated, and verified. Finally, in the third area of research, we capitalize on the platform improvements to analyze a control moment gyroscope (CMG) singularity avoidance steering law. Several successful experiments were conducted with the CMG array at near-singular configurations. An evaluation process was implemented to verify that the platform remained near the desired test momentum, showing that the first two components of this research were effective in allowing us to conduct singularity avoidance experiments in a representative space-like test environment.

  11. Real time hardware-in-loop simulation of ESMO satellite attitude control system

    Directory of Open Access Journals (Sweden)

    Rune Finnset

    2006-04-01

    Full Text Available This paper studies attitude control of the ESMO satellite using six reaction thrusters. Bang-bang control with dead-zone and Pulse-Width Modulation (PWM for the modulation of the on-time of the thrusters are treated. Closed loop hardware-in-loop simulations, using themicrocontroller unit (MCU Microchip PIC18F452 for implementation of attitude control and MatLab in a standard PC for simulating satellite dynamics, are carried out. Results for real time simulation are compared with autonomous simulations. The controller gives a satisfactory performance in the real time environment.

  12. IRNSS/NavIC L5 Attitude Determination

    Directory of Open Access Journals (Sweden)

    Safoora Zaminpardaz

    2017-01-01

    Full Text Available The Indian Regional Navigation Satellite System (IRNSS has recently (May 2016 become fully-operational and has been provided with the operational name of NavIC (Navigation with Indian Constellation. It has been developed by the Indian Space Research Organization (ISRO with the objective of offering positioning, navigation and timing (PNT to the users in its service area. This contribution provides for the first time an assessment of the IRNSS L5-signal capability to achieve instantaneous attitude determination on the basis of data collected in Perth, Australia. Our evaluations are conducted for both a linear array of two antennas and a planar array of three antennas. A pre-requisite for precise and fast IRNSS attitude determination is the successful resolution of the double-differenced (DD integer carrier-phase ambiguities. In this contribution, we will compare the performances of different such methods, amongst which the unconstrained and the multivariate-constrained LAMBDA method for both linear and planar arrays. It is demonstrated that the instantaneous ambiguity success rates increase from 15% to 90% for the linear array and from 5% to close to 100% for the planar array, thus showing that standalone IRNSS can realize 24-h almost instantaneous precise attitude determination with heading and elevation standard deviations of 0.05 and 0.10 degrees, respectively.

  13. Attractive manifold-based adaptive solar attitude control of satellites in elliptic orbits

    Science.gov (United States)

    Lee, Keum W.; Singh, Sahjendra N.

    2011-01-01

    The paper presents a novel noncertainty-equivalent adaptive (NCEA) control system for the pitch attitude control of satellites in elliptic orbits using solar radiation pressure (SRP). The satellite is equipped with two identical solar flaps to produce control moments. The adaptive law is based on the attractive manifold design using filtered signals for synthesis, which is a modification of the immersion and invariance (I&I) method. The control system has a modular controller-estimator structure and has separate tunable gains. A special feature of this NCEA law is that the trajectories of the satellite converge to a manifold in an extended state space, and the adaptive law recovers the performance of a deterministic controller. This recovery of performance cannot be obtained with certainty-equivalent adaptive (CEA) laws. Simulation results are presented which show that the NCEA law accomplishes precise attitude control of the satellite in an elliptic orbit, despite large parameter uncertainties.

  14. Performance analysis of a GPS Interferometric attitude determination system for a gravity gradient stabilized spacecraft. M.S. Thesis

    Science.gov (United States)

    Stoll, John C.

    1995-01-01

    The performance of an unaided attitude determination system based on GPS interferometry is examined using linear covariance analysis. The modelled system includes four GPS antennae onboard a gravity gradient stabilized spacecraft, specifically the Air Force's RADCAL satellite. The principal error sources are identified and modelled. The optimal system's sensitivities to these error sources are examined through an error budget and by varying system parameters. The effects of two satellite selection algorithms, Geometric and Attitude Dilution of Precision (GDOP and ADOP, respectively) are examined. The attitude performance of two optimal-suboptimal filters is also presented. Based on this analysis, the limiting factors in attitude accuracy are the knowledge of the relative antenna locations, the electrical path lengths from the antennae to the receiver, and the multipath environment. The performance of the system is found to be fairly insensitive to torque errors, orbital inclination, and the two satellite geometry figures-of-merit tested.

  15. Effect of Electrodynamic Forces on the Attitude Stabilization of a Satellite in Ecliptic orbits

    Science.gov (United States)

    Abdel-Aziz, Yehia

    This work is based on the previous paper of the author [1]. The present paper is devoted to the investigation of the attitude dynamics of an ecliptic satellite moving in the magnetic field of the Earth. Eelectrodynamic forces result from the motion of a charged satelite relative to the magnetic field of the Earth. The torque due to electrodynamic effect of the Lorentz forces on the attitude stabilization of the satellite is studied with the detailed model of the Earth's magnetic field. A method for estimating the stable and unstable regions of the equilibrium positions based on Euler's equation is also discussed. The results show that Lorentz forces can affect the stablization of the satellite, in particular for highly eccentric orbits and also for large satellte. [1] Abdel-Aziz, Y. A. Attitude Stabilization of a Rigid Spacecraft in the Geomagnetic Field. AdSpR 40, 18-24, 2007.

  16. An orbit determination algorithm for small satellites based on the magnitude of the earth magnetic field

    Science.gov (United States)

    Zagorski, P.; Gallina, A.; Rachucki, J.; Moczala, B.; Zietek, S.; Uhl, T.

    2018-06-01

    Autonomous attitude determination systems based on simple measurements of vector quantities such as magnetic field and the Sun direction are commonly used in very small satellites. However, those systems always require knowledge of the satellite position. This information can be either propagated from orbital elements periodically uplinked from the ground station or measured onboard by dedicated global positioning system (GPS) receiver. The former solution sacrifices satellite autonomy while the latter requires additional sensors which may represent a significant part of mass, volume, and power budget in case of pico- or nanosatellites. Hence, it is thought that a system for onboard satellite position determination without resorting to GPS receivers would be useful. In this paper, a novel algorithm for determining the satellite orbit semimajor-axis is presented. The methods exploit only the magnitude of the Earth magnetic field recorded onboard by magnetometers. This represents the first step toward an extended algorithm that can determine all orbital elements of the satellite. The method is validated by numerical analysis and real magnetic field measurements.

  17. Attitude stability analyses for small artificial satellites

    International Nuclear Information System (INIS)

    Silva, W R; Zanardi, M C; Formiga, J K S; Cabette, R E S; Stuchi, T J

    2013-01-01

    The objective of this paper is to analyze the stability of the rotational motion of a symmetrical spacecraft, in a circular orbit. The equilibrium points and regions of stability are established when components of the gravity gradient torque acting on the spacecraft are included in the equations of rotational motion, which are described by the Andoyer's variables. The nonlinear stability of the equilibrium points of the rotational motion is analysed here by the Kovalev-Savchenko theorem. With the application of the Kovalev-Savchenko theorem, it is possible to verify if they remain stable under the influence of the terms of higher order of the normal Hamiltonian. In this paper, numerical simulations are made for a small hypothetical artificial satellite. Several stable equilibrium points were determined and regions around these points have been established by variations in the orbital inclination and in the spacecraft principal moment of inertia. The present analysis can directly contribute in the maintenance of the spacecraft's attitude

  18. An Attitude Heading and Reference System For Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2017-01-01

    One of the most challenging problems for marine satellite tracking antennas (MSTAs) is to estimate the antenna attitude, which is affected by the ship motion, especially the ship vibration and rotational motions caused by ocean waves. To overcome this problem, an attitude heading and reference...... conditions, an attitude estimator based on virtual horizontal reference is introduced for situations of accelerometer malfunction, where the ship is suffering from wave shocks in high sea states. The performance of the designed AHRS for MSTA is assessed through hardware experiments using a Stewart platform...

  19. Statistical Attitude Determination

    Science.gov (United States)

    Markley, F. Landis

    2010-01-01

    All spacecraft require attitude determination at some level of accuracy. This can be a very coarse requirement of tens of degrees, in order to point solar arrays at the sun, or a very fine requirement in the milliarcsecond range, as required by Hubble Space Telescope. A toolbox of attitude determination methods, applicable across this wide range, has been developed over the years. There have been many advances in the thirty years since the publication of Reference, but the fundamentals remain the same. One significant change is that onboard attitude determination has largely superseded ground-based attitude determination, due to the greatly increased power of onboard computers. The availability of relatively inexpensive radiation-hardened microprocessors has led to the development of "smart" sensors, with autonomous star trackers being the first spacecraft application. Another new development is attitude determination using interferometry of radio signals from the Global Positioning System (GPS) constellation. This article reviews both the classic material and these newer developments at approximately the level of, with emphasis on. methods suitable for use onboard a spacecraft. We discuss both "single frame" methods that are based on measurements taken at a single point in time, and sequential methods that use information about spacecraft dynamics to combine the information from a time series of measurements.

  20. Multi-platform Integrated Positioning and Attitude Determination using GNSS

    NARCIS (Netherlands)

    Buist, P.J.

    2013-01-01

    There is trend in spacecraft engineering toward distributed systems where a number of smaller spacecraft work as a larger satellite. However, in order to make the small satellites work together as a single large platform, the precise relative positions (baseline) and orientations (attitude) of the

  1. Linear Time Varying Approach to Satellite Attitude Control Using only Electromagnetic Actuation

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    1997-01-01

    , lightweight, and power efficient actuators is therefore crucial and viable. This paper discusses linear attitude control strategies for a low earth orbit satellite actuated by a set of mutually perpendicular electromagnetic coils. The principle is to use the interaction between the Earth's magnetic field...... systems is limited, nevertheless, a solution of the Riccati equation gives an excellent frame for investigations provided in this paper. An observation that geomagnetic field changes approximately periodically when a satellite is on a near polar orbit is used throughout this paper. Three types of attitude...... controllers are proposed: an infinite horizon, a finite horizon, and a constant gain controller. Their performance is evaluated and compared in the simulation study of the realistic environment....

  2. Linear Time Varying Approach to Satellite Attitude Control Using only Electromagnetic Actuation

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    , lightweight, and power efficient actuators is therefore crucial and viable. This paper discusser linear attitude control strategies for a low earth orbit satellite actuated by a set of mutually perpendicular electromagnetic coils. The principle is to use the interaction between the Earth's magnetic field......, nevertheless, a solution of the riccati equation gives an excellent frame for investigations provided in this paper. An observation that geomagnetic field changes approximately periodically when satellite is on a near polar orbit is used throughout this paper. Three types of attitude controllers are proposed......: an infinite horizon, a finite horizon, and a constant gain controller. Their performance is evaluated and compared in the simulation study of the environment...

  3. Passivity based nonlinear attitude control of the Rømer satellite

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt; Krogh-Sørensen, J.; Wisniewski, Rafal

    This paper suggests nonlinear attitude control of the Danish satellite Rømer. This satellite will be designed to fulfil two scientific objectives: The observation of stellar oscillations and the detection and localisation of gamma-ray bursts. The satellite will be equipped with a tetrahedron...... configuration of Wide Angle Telescopes for Cosmic Hard x-rays (WATCH), that server the dual purpose of X-ray detectors and momentum wheels. By employing passivity theory it is shown, that the satellite is a passive system. This paper shows, that global asymptotic can be obtained with a passive and an imput...... and output strictly passive system in a feedback interconnection. It is demonstrated in a simulation study that the resultant control has a potential for on-board implementation in the acquistion phase, where global stabillity of the control law is vital...

  4. Optimizing the Attitude Control of Small Satellite Constellations for Rapid Response Imaging

    Science.gov (United States)

    Nag, S.; Li, A.

    2016-12-01

    Distributed Space Missions (DSMs) such as formation flight and constellations, are being recognized as important solutions to increase measurement samples over space and time. Given the increasingly accurate attitude control systems emerging in the commercial market, small spacecraft now have the ability to slew and point within few minutes of notice. In spite of hardware development in CubeSats at the payload (e.g. NASA InVEST) and subsystems (e.g. Blue Canyon Technologies), software development for tradespace analysis in constellation design (e.g. Goddard's TAT-C), planning and scheduling development in single spacecraft (e.g. GEO-CAPE) and aerial flight path optimizations for UAVs (e.g. NASA Sensor Web), there is a gap in open-source, open-access software tools for planning and scheduling distributed satellite operations in terms of pointing and observing targets. This paper will demonstrate results from a tool being developed for scheduling pointing operations of narrow field-of-view (FOV) sensors over mission lifetime to maximize metrics such as global coverage and revisit statistics. Past research has shown the need for at least fourteen satellites to cover the Earth globally everyday using a LandSat-like sensor. Increasing the FOV three times reduces the need to four satellites, however adds image distortion and BRDF complexities to the observed reflectance. If narrow FOV sensors on a small satellite constellation were commanded using robust algorithms to slew their sensor dynamically, they would be able to coordinately cover the global landmass much faster without compensating for spatial resolution or BRDF effects. Our algorithm to optimize constellation satellite pointing is based on a dynamic programming approach under the constraints of orbital mechanics and existing attitude control systems for small satellites. As a case study for our algorithm, we minimize the time required to cover the 17000 Landsat images with maximum signal to noise ratio fall

  5. A MEMS-based Adaptive AHRS for Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Hussain, Dil Muhammed Akbar; Soltani, Mohsen

    2015-01-01

    Satellite tracking is a challenging task for marine applications. An attitude determination system should estimate the wave disturbances on the ship body accurately. To achieve this, an Attitude Heading Reference System (AHRS) based on Micro-Electro-Mechanical Systems (MEMS) sensors, composed...... of three-axis gyroscope, accelerometer and magnetometer, is developed for Marine Satellite Tracking Antenna (MSTA). In this paper, the attitude determination algorithm is improved using an adaptive mechanism that tunes the attitude estimator parameters based on an estimation of ship motion frequency...

  6. Star trackers for attitude determination

    DEFF Research Database (Denmark)

    Liebe, Carl Christian

    1995-01-01

    One problem comes to all spacecrafts using vector information. That is the problem of determining the attitude. This paper describes how the area of attitude determination instruments has evolved from simple pointing devices into the latest technology, which determines the attitude by utilizing...... a CCD camera and a powerful microcomputer. The instruments are called star trackers and they are capable of determining the attitude with an accuracy better than 1 arcsecond. The concept of the star tracker is explained. The obtainable accuracy is calculated, the numbers of stars to be included...... in the star catalogue are discussed and the acquisition of the initial attitude is explained. Finally the commercial market for star trackers is discussed...

  7. High Accuracy Attitude Control System Design for Satellite with Flexible Appendages

    Directory of Open Access Journals (Sweden)

    Wenya Zhou

    2014-01-01

    Full Text Available In order to realize the high accuracy attitude control of satellite with flexible appendages, attitude control system consisting of the controller and structural filter was designed. When the low order vibration frequency of flexible appendages is approximating the bandwidth of attitude control system, the vibration signal will enter the control system through measurement device to bring impact on the accuracy or even the stability. In order to reduce the impact of vibration of appendages on the attitude control system, the structural filter is designed in terms of rejecting the vibration of flexible appendages. Considering the potential problem of in-orbit frequency variation of the flexible appendages, the design method for the adaptive notch filter is proposed based on the in-orbit identification technology. Finally, the simulation results are given to demonstrate the feasibility and effectiveness of the proposed design techniques.

  8. The Implementation of Satellite Attitude Control System Software Using Object Oriented Design

    Science.gov (United States)

    Reid, W. Mark; Hansell, William; Phillips, Tom; Anderson, Mark O.; Drury, Derek

    1998-01-01

    NASA established the Small Explorer (SNMX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions. The SMEX program has produced five satellites, three of which have been successfully launched. The remaining two spacecraft are scheduled for launch within the coming year. NASA has recently developed a prototype for the next generation Small Explorer spacecraft (SMEX-Lite). This paper describes the object-oriented design (OOD) of the SMEX-Lite Attitude Control System (ACS) software. The SMEX-Lite ACS is three-axis controlled and is capable of performing sub-arc-minute pointing. This paper first describes high level requirements governing the SMEX-Lite ACS software architecture. Next, the context in which the software resides is explained. The paper describes the principles of encapsulation, inheritance, and polymorphism with respect to the implementation of an ACS software system. This paper will also discuss the design of several ACS software components. Specifically, object-oriented designs are presented for sensor data processing, attitude determination, attitude control, and failure detection. Finally, this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects.

  9. Low-cost attitude determination system using an extended Kalman filter (EKF) algorithm

    Science.gov (United States)

    Esteves, Fernando M.; Nehmetallah, Georges; Abot, Jandro L.

    2016-05-01

    Attitude determination is one of the most important subsystems in spacecraft, satellite, or scientific balloon mission s, since it can be combined with actuators to provide rate stabilization and pointing accuracy for payloads. In this paper, a low-cost attitude determination system with a precision in the order of arc-seconds that uses low-cost commercial sensors is presented including a set of uncorrelated MEMS gyroscopes, two clinometers, and a magnetometer in a hierarchical manner. The faster and less precise sensors are updated by the slower, but more precise ones through an Extended Kalman Filter (EKF)-based data fusion algorithm. A revision of the EKF algorithm fundamentals and its implementation to the current application, are presented along with an analysis of sensors noise. Finally, the results from the data fusion algorithm implementation are discussed in detail.

  10. Study on the Attitude Control of Spacecraft Using Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Ju-Young Du

    1998-06-01

    Full Text Available Attitude determination and control of satellite is important component which determines the accomplish satellite missions. In this study, attitude control using reaction wheels and momentum dumping of wheels are considered. Attitude control law is designed by Sliding control and LQR. Attitude maneuver control law is obtained by Shooting method. Wheels momentum dumping control law is designed by Bang-Bang control. Four reaction wheels are configurated for minimized the electric power consumption. Wheels control torque and magnetic moment of magnetic torquer are limited.

  11. Quaternion normalization in additive EKF for spacecraft attitude determination. [Extended Kalman Filters

    Science.gov (United States)

    Bar-Itzhack, I. Y.; Deutschmann, J.; Markley, F. L.

    1991-01-01

    This work introduces, examines and compares several quaternion normalization algorithms, which are shown to be an effective stage in the application of the additive extended Kalman filter to spacecraft attitude determination, which is based on vector measurements. Three new normalization schemes are introduced. They are compared with one another and with the known brute force normalization scheme, and their efficiency is examined. Simulated satellite data are used to demonstate the performance of all four schemes.

  12. Spin motion determination of the Envisat satellite through laser ranging measurements from a single pass measured by a single station

    Science.gov (United States)

    Pittet, Jean-Noël; Šilha, Jiří; Schildknecht, Thomas

    2018-02-01

    The Satellite Laser Ranging (SLR) technology is used to accurately determine the position of space objects equipped with so-called retro-reflectors or retro-reflector arrays (RRA). This type of measurement allows to measure the range to the spacecraft with high precision, which leads to determination of very accurate orbits for these targets. Non-active spacecraft, which are not attitude controlled any longer, tend to start to spin or tumble under influence of the external and internal torques and forces. If the return signal is measured for a non-spherical non-active rotating object, the signal in the range residuals with respect to the reference orbit is more complex. For rotating objects the return signal shows an oscillating pattern or patterns caused by the RRA moving around the satellite's centre of mass. This behaviour is projected onto the radial component measured by the SLR. In our work, we demonstrate how the SLR ranging technique from one sensor to a satellite equipped with a RRA can be used to precisely determine its spin motion during one passage. Multiple SLR measurements of one target over time allow to accurately monitor spin motion changes which can be further used for attitude predictions. We show our solutions of the spin motion determined for the non-active ESA satellite Envisat obtained from measurements acquired during years 2013-2015 by the Zimmerwald SLR station, Switzerland. All the necessary parameters are defined for our own so-called point-like model which describes the motion of a point in space around the satellite centre of mass.

  13. A Performance Improvement Method for Low-Cost Land Vehicle GPS/MEMS-INS Attitude Determination

    Directory of Open Access Journals (Sweden)

    Li Cong

    2015-03-01

    Full Text Available Global positioning system (GPS technology is well suited for attitude determination. However, in land vehicle application, low-cost single frequency GPS receivers which have low measurement quality are often used, and external factors such as multipath and low satellite visibility in the densely built-up urban environment further degrade the quality of the GPS measurements. Due to the low-quality receivers used and the challenging urban environment, the success rate of the single epoch ambiguity resolution for dynamic attitude determination is usually quite low. In this paper, a micro-electro-mechanical system (MEMS—inertial navigation system (INS-aided ambiguity resolution method is proposed to improve the GPS attitude determination performance, which is particularly suitable for land vehicle attitude determination. First, the INS calculated baseline vector is augmented with the GPS carrier phase and code measurements. This improves the ambiguity dilution of precision (ADOP, resulting in better quality of the unconstrained float solution. Second, the undesirable float solutions caused by large measurement errors are further filtered and replaced using the INS-aided ambiguity function method (AFM. The fixed solutions are then obtained by the constrained least squares ambiguity decorrelation (CLAMBDA algorithm. Finally, the GPS/MEMS-INS integration is realized by the use of a Kalman filter. Theoretical analysis of the ADOP is given and experimental results demonstrate that our proposed method can significantly improve the quality of the float ambiguity solution, leading to high success rate and better accuracy of attitude determination.

  14. A Performance Improvement Method for Low-Cost Land Vehicle GPS/MEMS-INS Attitude Determination

    Science.gov (United States)

    Cong, Li; Li, Ercui; Qin, Honglei; Ling, Keck Voon; Xue, Rui

    2015-01-01

    Global positioning system (GPS) technology is well suited for attitude determination. However, in land vehicle application, low-cost single frequency GPS receivers which have low measurement quality are often used, and external factors such as multipath and low satellite visibility in the densely built-up urban environment further degrade the quality of the GPS measurements. Due to the low-quality receivers used and the challenging urban environment, the success rate of the single epoch ambiguity resolution for dynamic attitude determination is usually quite low. In this paper, a micro-electro-mechanical system (MEMS)—inertial navigation system (INS)-aided ambiguity resolution method is proposed to improve the GPS attitude determination performance, which is particularly suitable for land vehicle attitude determination. First, the INS calculated baseline vector is augmented with the GPS carrier phase and code measurements. This improves the ambiguity dilution of precision (ADOP), resulting in better quality of the unconstrained float solution. Second, the undesirable float solutions caused by large measurement errors are further filtered and replaced using the INS-aided ambiguity function method (AFM). The fixed solutions are then obtained by the constrained least squares ambiguity decorrelation (CLAMBDA) algorithm. Finally, the GPS/MEMS-INS integration is realized by the use of a Kalman filter. Theoretical analysis of the ADOP is given and experimental results demonstrate that our proposed method can significantly improve the quality of the float ambiguity solution, leading to high success rate and better accuracy of attitude determination. PMID:25760057

  15. A simple orbit-attitude coupled modelling method for large solar power satellites

    Science.gov (United States)

    Li, Qingjun; Wang, Bo; Deng, Zichen; Ouyang, Huajiang; Wei, Yi

    2018-04-01

    A simple modelling method is proposed to study the orbit-attitude coupled dynamics of large solar power satellites based on natural coordinate formulation. The generalized coordinates are composed of Cartesian coordinates of two points and Cartesian components of two unitary vectors instead of Euler angles and angular velocities, which is the reason for its simplicity. Firstly, in order to develop natural coordinate formulation to take gravitational force and gravity gradient torque of a rigid body into account, Taylor series expansion is adopted to approximate the gravitational potential energy. The equations of motion are constructed through constrained Hamilton's equations. Then, an energy- and constraint-conserving algorithm is presented to solve the differential-algebraic equations. Finally, the proposed method is applied to simulate the orbit-attitude coupled dynamics and control of a large solar power satellite considering gravity gradient torque and solar radiation pressure. This method is also applicable to dynamic modelling of other rigid multibody aerospace systems.

  16. Image Positioning Accuracy Analysis for Super Low Altitude Remote Sensing Satellites

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2012-10-01

    Full Text Available Super low altitude remote sensing satellites maintain lower flight altitudes by means of ion propulsion in order to improve image resolution and positioning accuracy. The use of engineering data in design for achieving image positioning accuracy is discussed in this paper based on the principles of the photogrammetry theory. The exact line-of-sight rebuilding of each detection element and this direction precisely intersecting with the Earth's elliptical when the camera on the satellite is imaging are both ensured by the combined design of key parameters. These parameters include: orbit determination accuracy, attitude determination accuracy, camera exposure time, accurately synchronizing the reception of ephemeris with attitude data, geometric calibration and precise orbit verification. Precise simulation calculations show that image positioning accuracy of super low altitude remote sensing satellites is not obviously improved. The attitude determination error of a satellite still restricts its positioning accuracy.

  17. Multiple Model Adaptive Attitude Control of LEO Satellite with Angular Velocity Constraints

    Science.gov (United States)

    Shahrooei, Abolfazl; Kazemi, Mohammad Hosein

    2018-04-01

    In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.

  18. Noise Originating from Intra-pixel Structure and Satellite Attitude Jitter on COROT

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Arentoft, Torben; Kjeldsen, Hans

    2006-01-01

    We present a study on noise in space-based photometry originating from sensitivity variations within individual pixels, known as intra-pixel variations, and satellite attitude jitter. We have measured the intra-pixel structure on an e2v 47-20 CCD and made simulations of the effects these structur...

  19. Planar attitude motion of a satellite with a variable mass distribution in field of gravity of attracting center

    Science.gov (United States)

    Burov, Alexander; Kosenko, Ivan

    2018-05-01

    Dynamics of a spacecraft with a variable mass distribution in a central field of Newtonian attraction is considered. Using another viewpoint one can regard sufficiently compact formation instead of a spacecraft. This formation can vary distances between its particular spacecrafts thus implementing pulsing motions of the system as a whole. Within the so-called "satellite approximation" the equations of spatial attitude motion are obtained. Rules of the mass redistribution providing prescribed in advance attitude motions are indicated. For classes of relative equilibria previously found and existing under appropriate rules of the mass redistribution, stability study is performed. The investigation splits into two topics: (a) general dynamical consideration for the planar attitude satellite motion with use of the KAM theory; (b) constructing the families of periodic solutions represented by means of convergent series in powers of eccentricity and describing satellite motions emanating from its relative equilibria.

  20. Orbit determination for ISRO satellite missions

    Science.gov (United States)

    Rao, Ch. Sreehari; Sinha, S. K.

    Indian Space Research Organisation (ISRO) has been successful in using the in-house developed orbit determination and prediction software for satellite missions of Bhaskara, Rohini and APPLE. Considering the requirements of satellite missions, software packages are developed, tested and their accuracies are assessed. Orbit determination packages developed are SOIP, for low earth orbits of Bhaskara and Rohini missions, ORIGIN and ODPM, for orbits related to all phases of geo-stationary missions and SEGNIP, for drift and geo-stationary orbits. Software is tested and qualified using tracking data of SIGNE-3, D5-B, OTS, SYMPHONIE satellites with the help of software available with CNES, ESA and DFVLR. The results match well with those available from these agencies. These packages have supported orbit determination successfully throughout the mission life for all ISRO satellite missions. Member-Secretary

  1. The determination of the attitude and attitude dynamics of TeamSat

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Riis, Troels

    1999-01-01

    , in space, multiple autonomous processes intended for spacecraft applications such as autonomous star identification, attitude determination and identification and tracking of non-stellar objects, imaging and real-time compression of image and science data for further ground analysis. AVS successfully...... determined the attitude and attitude dynamics of TeamSat....

  2. Development of a computationally efficient algorithm for attitude estimation of a remote sensing satellite

    Science.gov (United States)

    Labibian, Amir; Bahrami, Amir Hossein; Haghshenas, Javad

    2017-09-01

    This paper presents a computationally efficient algorithm for attitude estimation of remote a sensing satellite. In this study, gyro, magnetometer, sun sensor and star tracker are used in Extended Kalman Filter (EKF) structure for the purpose of Attitude Determination (AD). However, utilizing all of the measurement data simultaneously in EKF structure increases computational burden. Specifically, assuming n observation vectors, an inverse of a 3n×3n matrix is required for gain calculation. In order to solve this problem, an efficient version of EKF, namely Murrell's version, is employed. This method utilizes measurements separately at each sampling time for gain computation. Therefore, an inverse of a 3n×3n matrix is replaced by an inverse of a 3×3 matrix for each measurement vector. Moreover, gyro drifts during the time can reduce the pointing accuracy. Therefore, a calibration algorithm is utilized for estimation of the main gyro parameters.

  3. The Advanced Stellar Compass onboard the Oersted satellite

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Eisenman, Allan R.; Liebe, Carl Christian

    1997-01-01

    In 1997 the first Danish satellite will be launched. The primarily scientific objective of the satellite is to map the magnetic field of the Earth. The attitude of the satellite is determined by an advanced stellar compass (star tracker). An advanced stellar compass consists of a CCD camera...

  4. History of Satellite Orbit Determination at NSWCDD

    Science.gov (United States)

    2018-01-31

    meeting of the Satellite Division of ION, Palm Springs, CA., 12–15 Sep 1995. Hughey, Raymond H., Jr., “ History of Mathematics and Computing Technology ...TR-17/229 HISTORY OF SATELLITE ORBIT DETERMINATION AT NSWCDD BY EVERETT R. SWIFT WARFARE SYSTEMS ENGINEERING AND INTEGRATION...AND SUBTITLE History of Satellite Orbit Determination at NSWCDD 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  5. An adaptive Multiplicative Extened Kalman Filter for Attitude Estimation of Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    , an adaptive Multiplicative Extended Kalman Filter (MEKF) for attitude estimation of Marine Satellite Tracking Antenna (MSTA) is presented with the measurement noise covariance matrix adjusted according to the norm of accelerometer measurements, which can significantly reduce the slamming influence from waves...

  6. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft......-axis magnetometer, three piezoelectric gyros, and four reaction wheels in a tetrahedron configuration. The operation of the spacecraft is fully autonomous. The data flow between the transducers and the onboard computer placed physically outside the satellite is provided by a radio link. The purpose...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements....

  7. Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Abbas Ajorkar

    2015-04-01

    Full Text Available In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control has been designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, a multilayer neural network with back-propagation law is designed. In this structure, the parameters of the moment of inertia matrix and external disturbances are estimated and used in feedback linearization control law. Finally, the performance of the designed attitude controller is investigated by several simulations.

  8. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements...

  9. Attitude and vibration control of a satellite containing flexible solar arrays by using reaction wheels, and piezoelectric transducers as sensors and actuators

    Science.gov (United States)

    da Fonseca, Ijar M.; Rade, Domingos A.; Goes, Luiz C. S.; de Paula Sales, Thiago

    2017-10-01

    The primary purpose of this paper is to provide insight into control-structure interaction for satellites comprising flexible appendages and internal moving components. The physical model considered herein aiming to attend such purpose is a rigid-flexible satellite consisting of a rigid platform containing two rotating flexible solar panels. The solar panels rotation is assumed to be in a sun-synchronous configuration mode. The panels contain surface-bonded piezoelectric patches that can be used either as sensors for the elastic displacements or as actuators to counteract the vibration motion. It is assumed that in the normal mode operation the satellite platform points towards the Earth while the solar arrays rotate so as to follow the Sun. The vehicle moves in a low Earth polar orbit. The technique used to obtain the mathematical model combines the Lagrangian formulation with the Finite Elements Method used to describe the dynamics of the solar panel. The gravity-gradient torque as well as the torque due to the interaction of the Earth magnetic field and the satellite internal residual magnetic moment is included as environmental perturbations. The actuators are three reaction wheels for attitude control and piezoelectric actuators to control the flexible motion of the solar arrays. Computer simulations are performed using the MATLAB® software package. The following on-orbit satellite operating configurations are object of analysis: i) Satellite pointing towards the Earth (Earth acquisition maneuver) by considering the initial conditions in the elastic displacement equal to zero, aiming the assessment of the flexible modes excitation by the referred maneuver; ii) the satellite pointing towards the Earth with the assumption of an initial condition different from zero for the flexible motion such that the attitude alterations are checked against the elastic motion disturbance; and iii) attitude acquisition accomplished by taking into account initial conditions

  10. The Inertial Stellar Compass (ISC): A Multifunction, Low Power, Attitude Determination Technology Breakthrough

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Dennehy, Neil; Gambino, Joel; Maynard, Andrew; Brady, T.; Buckley, S.; Zinchuk, J.

    2003-01-01

    The Inertial Stellar Compass (ISC) is a miniature, low power, stellar inertial attitude determination system with an accuracy of better than 0.1 degree (1 sigma) in three axes. The ISC consumes only 3.5 Watts of power and is contained in a 2.5 kg package. With its embedded on-board processor, the ISC provides attitude quaternion information and has Lost-in-Space (LIS) initialization capability. The attitude accuracy and LIS capability are provided by combining a wide field of view Active Pixel Sensor (APS) star camera and Micro- ElectroMechanical System (MEMS) inertial sensor information in an integrated sensor system. The performance and small form factor make the ISC a useful sensor for a wide range of missions. In particular, the ISC represents an enabling, fully integrated, micro-satellite attitude determination system. Other applications include using the ISC as a single sensor solution for attitude determination on medium performance spacecraft and as a bolt on independent safe-hold sensor or coarse acquisition sensor for many other spacecraft. NASA's New Millennium Program (NMP) has selected the ISC technology for a Space Technology 6 (ST6) flight validation experiment scheduled for 2004. NMP missions, such a s ST6, are intended to validate advanced technologies that have not flown in space in order to reduce the risk associated with their infusion into future NASA missions. This paper describes the design, operation, and performance of the ISC and outlines the technology validation plan. A number of mission applications for the ISC technology are highlighted, both for the baseline ST6 ISC configuration and more ambitious applications where ISC hardware and software modifications would be required. These applications demonstrate the wide range of Space and Earth Science missions that would benefit from infusion of the ISC technology.

  11. Design of a Low-Cost 2-Axes Fluxgate Magnetometer for Small Satellite Applications

    Directory of Open Access Journals (Sweden)

    Su-Jeoung Kim

    2005-03-01

    Full Text Available This paper addresses the design and analysis results of a 2-axes magnetometer for attitude determination of small satellite. A low-cost and efficient 2-axes fluxgate magnetometer was selected as the most suitable attitude sensor for LEO microsatellites which require a low-to-medium level pointing accuracy. An optimization trade-off study has been performed for the development of 2-axes fluxgate magnetometer. All the relevant parameters such as permeability, demagnetization factor, coil diameter, core thickness, and number of coil turns were considered for the sizing of a small satellite magnetometer. The magnetometer which is designed, manufactured, and tested in-house as described in this paper satisfies linearity requirement for determining attitude position of small satellites. On the basis of magnetometer which is designed in Space System Research Lab. (SSRL, commercial magnetometer will be developed.

  12. Personal and contextual determinants of attitudes towards immigrants

    Directory of Open Access Journals (Sweden)

    Petrović Boban

    2016-01-01

    Full Text Available The issues of immigrants and attitudes towards immigrants are an important social issue in our country, and in recent years these issues have become more topical due to the large number of immigrants from the Middle East and Africa who pass through Serbia. This research was aimed at identifying the determinants of social attitudes towards immigrants. Contextual determinants, first of all, economic security and life in a multiethnic environment, as well as individual determinants, operationalized through the HEXACO model of personality, were examined. The research was conducted on the convenience sample of 540 participants. The results have shown that economic security has no direct effect on the attitudes towards immigrants, while the multiethnic environment is an important determinant of these attitudes. Personality traits, especially Openness, as well as Honesty- Humility, have better predictive power than the contextual variables. The factors of economic security are significant moderators of the relationship between personality and attitudes towards immigrants. The importance of the obtained results for understanding the formation of attitudes towards immigrants is discussed, as well as the methodological framework for future studies of attitudes towards immigrants and other social groups.

  13. An Integrated Vision-Based System for Spacecraft Attitude and Topology Determination for Formation Flight Missions

    Science.gov (United States)

    Rogers, Aaron; Anderson, Kalle; Mracek, Anna; Zenick, Ray

    2004-01-01

    With the space industry's increasing focus upon multi-spacecraft formation flight missions, the ability to precisely determine system topology and the orientation of member spacecraft relative to both inertial space and each other is becoming a critical design requirement. Topology determination in satellite systems has traditionally made use of GPS or ground uplink position data for low Earth orbits, or, alternatively, inter-satellite ranging between all formation pairs. While these techniques work, they are not ideal for extension to interplanetary missions or to large fleets of decentralized, mixed-function spacecraft. The Vision-Based Attitude and Formation Determination System (VBAFDS) represents a novel solution to both the navigation and topology determination problems with an integrated approach that combines a miniature star tracker with a suite of robust processing algorithms. By combining a single range measurement with vision data to resolve complete system topology, the VBAFDS design represents a simple, resource-efficient solution that is not constrained to certain Earth orbits or formation geometries. In this paper, analysis and design of the VBAFDS integrated guidance, navigation and control (GN&C) technology will be discussed, including hardware requirements, algorithm development, and simulation results in the context of potential mission applications.

  14. A new star tracker concept for satellite attitude determination based on a multi-purpose panoramic camera

    Science.gov (United States)

    Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele; Pernechele, Claudio; Dionisio, Cesare

    2017-11-01

    This paper presents an innovative algorithm developed for attitude determination of a space platform. The algorithm exploits images taken from a multi-purpose panoramic camera equipped with hyper-hemispheric lens and used as star tracker. The sensor architecture is also original since state-of-the-art star trackers accurately image as many stars as possible within a narrow- or medium-size field-of-view, while the considered sensor observes an extremely large portion of the celestial sphere but its observation capabilities are limited by the features of the optical system. The proposed original approach combines algorithmic concepts, like template matching and point cloud registration, inherited from the computer vision and robotic research fields, to carry out star identification. The final aim is to provide a robust and reliable initial attitude solution (lost-in-space mode), with a satisfactory accuracy level in view of the multi-purpose functionality of the sensor and considering its limitations in terms of resolution and sensitivity. Performance evaluation is carried out within a simulation environment in which the panoramic camera operation is realistically reproduced, including perturbations in the imaged star pattern. Results show that the presented algorithm is able to estimate attitude with accuracy better than 1° with a success rate around 98% evaluated by densely covering the entire space of the parameters representing the camera pointing in the inertial space.

  15. Spin-Stabilized Spacecrafts: Analytical Attitude Propagation Using Magnetic Torques

    Directory of Open Access Journals (Sweden)

    Roberta Veloso Garcia

    2009-01-01

    Full Text Available An analytical approach for spin-stabilized satellites attitude propagation is presented, considering the influence of the residual magnetic torque and eddy currents torque. It is assumed two approaches to examine the influence of external torques acting during the motion of the satellite, with the Earth's magnetic field described by the quadripole model. In the first approach is included only the residual magnetic torque in the motion equations, with the satellites in circular or elliptical orbit. In the second approach only the eddy currents torque is analyzed, with the satellite in circular orbit. The inclusion of these torques on the dynamic equations of spin stabilized satellites yields the conditions to derive an analytical solution. The solutions show that residual torque does not affect the spin velocity magnitude, contributing only for the precession and the drift of the spacecraft's spin axis and the eddy currents torque causes an exponential decay of the angular velocity magnitude. Numerical simulations performed with data of the Brazilian Satellites (SCD1 and SCD2 show the period that analytical solution can be used to the attitude propagation, within the dispersion range of the attitude determination system performance of Satellite Control Center of Brazil National Research Institute.

  16. PROBLEMS AND LIMITATIONS OF SATELLITE IMAGE ORIENTATION FOR DETERMINATION OF HEIGHT MODELS

    Directory of Open Access Journals (Sweden)

    K. Jacobsen

    2017-05-01

    Full Text Available The usual satellite image orientation is based on bias corrected rational polynomial coefficients (RPC. The RPC are describing the direct sensor orientation of the satellite images. The locations of the projection centres today are without problems, but an accuracy limit is caused by the attitudes. Very high resolution satellites today are very agile, able to change the pointed area over 200km within 10 to 11 seconds. The corresponding fast attitude acceleration of the satellite may cause a jitter which cannot be expressed by the third order RPC, even if it is recorded by the gyros. Only a correction of the image geometry may help, but usually this will not be done. The first indication of jitter problems is shown by systematic errors of the y-parallaxes (py for the intersection of corresponding points during the computation of ground coordinates. These y-parallaxes have a limited influence to the ground coordinates, but similar problems can be expected for the x-parallaxes, determining directly the object height. Systematic y-parallaxes are shown for Ziyuan-3 (ZY3, WorldView-2 (WV2, Pleiades, Cartosat-1, IKONOS and GeoEye. Some of them have clear jitter effects. In addition linear trends of py can be seen. Linear trends in py and tilts in of computed height models may be caused by limited accuracy of the attitude registration, but also by bias correction with affinity transformation. The bias correction is based on ground control points (GCPs. The accuracy of the GCPs usually does not cause some limitations but the identification of the GCPs in the images may be difficult. With 2-dimensional bias corrected RPC-orientation by affinity transformation tilts of the generated height models may be caused, but due to large affine image deformations some satellites, as Cartosat-1, have to be handled with bias correction by affinity transformation. Instead of a 2-dimensional RPC-orientation also a 3-dimensional orientation is possible, respecting the

  17. Problems and Limitations of Satellite Image Orientation for Determination of Height Models

    Science.gov (United States)

    Jacobsen, K.

    2017-05-01

    The usual satellite image orientation is based on bias corrected rational polynomial coefficients (RPC). The RPC are describing the direct sensor orientation of the satellite images. The locations of the projection centres today are without problems, but an accuracy limit is caused by the attitudes. Very high resolution satellites today are very agile, able to change the pointed area over 200km within 10 to 11 seconds. The corresponding fast attitude acceleration of the satellite may cause a jitter which cannot be expressed by the third order RPC, even if it is recorded by the gyros. Only a correction of the image geometry may help, but usually this will not be done. The first indication of jitter problems is shown by systematic errors of the y-parallaxes (py) for the intersection of corresponding points during the computation of ground coordinates. These y-parallaxes have a limited influence to the ground coordinates, but similar problems can be expected for the x-parallaxes, determining directly the object height. Systematic y-parallaxes are shown for Ziyuan-3 (ZY3), WorldView-2 (WV2), Pleiades, Cartosat-1, IKONOS and GeoEye. Some of them have clear jitter effects. In addition linear trends of py can be seen. Linear trends in py and tilts in of computed height models may be caused by limited accuracy of the attitude registration, but also by bias correction with affinity transformation. The bias correction is based on ground control points (GCPs). The accuracy of the GCPs usually does not cause some limitations but the identification of the GCPs in the images may be difficult. With 2-dimensional bias corrected RPC-orientation by affinity transformation tilts of the generated height models may be caused, but due to large affine image deformations some satellites, as Cartosat-1, have to be handled with bias correction by affinity transformation. Instead of a 2-dimensional RPC-orientation also a 3-dimensional orientation is possible, respecting the object height

  18. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements

    Science.gov (United States)

    Tang, Chengpan; Hu, Xiaogong; Zhou, Shanshi; Liu, Li; Pan, Junyang; Chen, Liucheng; Guo, Rui; Zhu, Lingfeng; Hu, Guangming; Li, Xiaojie; He, Feng; Chang, Zhiqiao

    2018-01-01

    Autonomous orbit determination is the ability of navigation satellites to estimate the orbit parameters on-board using inter-satellite link (ISL) measurements. This study mainly focuses on data processing of the ISL measurements as a new measurement type and its application on the centralized autonomous orbit determination of the new-generation Beidou navigation satellite system satellites for the first time. The ISL measurements are dual one-way measurements that follow a time division multiple access (TDMA) structure. The ranging error of the ISL measurements is less than 0.25 ns. This paper proposes a derivation approach to the satellite clock offsets and the geometric distances from TDMA dual one-way measurements without a loss of accuracy. The derived clock offsets are used for time synchronization, and the derived geometry distances are used for autonomous orbit determination. The clock offsets from the ISL measurements are consistent with the L-band two-way satellite, and time-frequency transfer clock measurements and the detrended residuals vary within 0.5 ns. The centralized autonomous orbit determination is conducted in a batch mode on a ground-capable server for the feasibility study. Constant hardware delays are present in the geometric distances and become the largest source of error in the autonomous orbit determination. Therefore, the hardware delays are estimated simultaneously with the satellite orbits. To avoid uncertainties in the constellation orientation, a ground anchor station that "observes" the satellites with on-board ISL payloads is introduced into the orbit determination. The root-mean-square values of orbit determination residuals are within 10.0 cm, and the standard deviation of the estimated ISL hardware delays is within 0.2 ns. The accuracy of the autonomous orbits is evaluated by analysis of overlap comparison and the satellite laser ranging (SLR) residuals and is compared with the accuracy of the L-band orbits. The results indicate

  19. Equilibria of a charged artificial satellite subject to gravitational and Lorentz torques

    International Nuclear Information System (INIS)

    Abdel-Aziz, Yehia A.; Shoaib, Muhammad

    2014-01-01

    The attitude dynamics of a rigid artificial satellite subject to a gravity gradient and Lorentz torques in a circular orbit are considered. Lorentz torque is developed on the basis of the electrodynamic effects of the Lorentz force acting on the charged satellite's surface. We assume that the satellite is moving in a Low Earth Orbit in the geomagnetic field, which is considered to be a dipole. Our model of torque due to the Lorentz force is developed for an artificial satellite with a general shape, and the nonlinear differential equations of Euler are used to describe its attitude orientation. All equilibrium positions are determined and conditions for their existence are obtained. The numerical results show that the charge q and radius ρ 0 of the center of charge for the satellite provide a certain type of semi-passive control for the attitude of the satellite. The technique for this kind of control would be to increase or decrease the electrostatic screening on the satellite. The results obtained confirm that the change in charge can affect the magnitude of the Lorentz torque, which can also affect control of the satellite. Moreover, the relationship between magnitude of the Lorentz torque and inclination of the orbit is investigated. (research papers)

  20. Equilibria of a charged artificial satellite subject to gravitational and Lorentz torques

    Science.gov (United States)

    Abdel-Aziz, Yehia A.; Shoaib, Muhammad

    2014-07-01

    The attitude dynamics of a rigid artificial satellite subject to a gravity gradient and Lorentz torques in a circular orbit are considered. Lorentz torque is developed on the basis of the electrodynamic effects of the Lorentz force acting on the charged satellite's surface. We assume that the satellite is moving in a Low Earth Orbit in the geomagnetic field, which is considered to be a dipole. Our model of torque due to the Lorentz force is developed for an artificial satellite with a general shape, and the nonlinear differential equations of Euler are used to describe its attitude orientation. All equilibrium positions are determined and conditions for their existence are obtained. The numerical results show that the charge q and radius ρ0 of the center of charge for the satellite provide a certain type of semi-passive control for the attitude of the satellite. The technique for this kind of control would be to increase or decrease the electrostatic screening on the satellite. The results obtained confirm that the change in charge can affect the magnitude of the Lorentz torque, which can also affect control of the satellite. Moreover, the relationship between magnitude of the Lorentz torque and inclination of the orbit is investigated.

  1. Satellite Photometric Error Determination

    Science.gov (United States)

    2015-10-18

    Satellite Photometric Error Determination Tamara E. Payne, Philip J. Castro, Stephen A. Gregory Applied Optimization 714 East Monument Ave, Suite...advocate the adoption of new techniques based on in-frame photometric calibrations enabled by newly available all-sky star catalogs that contain highly...filter systems will likely be supplanted by the Sloan based filter systems. The Johnson photometric system is a set of filters in the optical

  2. Attitude and Trajectory Estimation Using Earth Magnetic Field Data

    Science.gov (United States)

    Deutschmann, Julie; Bar-Itzhack, Itzhack Y.

    1996-01-01

    The magnetometer has long been a reliable, inexpensive sensor used in spacecraft momentum management and attitude estimation. Recent studies show an increased accuracy potential for magnetometer-only attitude estimation systems. Since the Earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computer and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both the spacecraft trajectory and attitude errors. Therefore, these errors can be used to estimate both trajectory and attitude. Traditionally, satellite attitude and trajectory have been estimated with completely separate system, using different measurement data. Recently, trajectory estimation for low earth orbit satellites was successfully demonstrated in ground software using only magnetometer data. This work proposes a single augmented extended Kalman Filter to simultaneously and autonomously estimate both spacecraft trajectory and attitude with data from a magnetometer and either dynamically determined rates or gyro-measured body rates.

  3. Attitude Determination Error Analysis System (ADEAS) mathematical specifications document

    Science.gov (United States)

    Nicholson, Mark; Markley, F.; Seidewitz, E.

    1988-01-01

    The mathematical specifications of Release 4.0 of the Attitude Determination Error Analysis System (ADEAS), which provides a general-purpose linear error analysis capability for various spacecraft attitude geometries and determination processes, are presented. The analytical basis of the system is presented. The analytical basis of the system is presented, and detailed equations are provided for both three-axis-stabilized and spin-stabilized attitude sensor models.

  4. On-the Fly Merging of Attitude Solutions

    DEFF Research Database (Denmark)

    Jørgensen, Peter Siegbjørn; Jørgensen, John Leif; Denver, Troelz

    2008-01-01

    Recent advances in autonomous attitude determination instrumentation enable even small satellites flying fully autonomous multi head star trackers providing full accurate and robust attitude information. Each sensor provides the full attitude information but for robustness and optimal usage...... of the available information, i.e. optimal accuracy, methods for merging such data should be investigated. The need for and desirability of attitude merging depends on the mission objective and available resources. To enable real-time attitude control and reduce requirements on download budget, on-board merging...... of attitude data will often be advantageous. This should be weighted against the need for post observation reconstruction of attitudes, especially needed when end products are sensitive to optimal attitude reconstruction. Instrument integrated merging algorithms will reduce the complexity of on-board AOCS...

  5. Modeling and control of a gravity gradient stabilised satellite

    Directory of Open Access Journals (Sweden)

    Aage Skullestad

    1999-01-01

    Full Text Available This paper describes attitude control, i.e., 3-axes stabilisation and pointing, of a proposed Norwegian small gravity gradient stabilized satellite to be launched into low earth orbit. Generally, a gravity gradient stabilised system has limited stability and pointing capabilities, and wheels and/or magnetic coils are added in order to improve the attitude control. The best attitude accuracy is achieved using wheels, which can give accuracies down to less than one degree, but wheels increase the complexity and cost of the satellite. Magnetic coils allow cheaper satellites, and are an attractive solution to small, inexpensive satellites in low earth orbits and may provide an attitude control accuracy of a few degrees. Scientific measurements often require accurate attitude control in one or two axes only. Combining wheel and coil control may, in these cases, provide the best solutions. The simulation results are based on a linearised mathematical model of the satellite.

  6. Toward Accurate On-Ground Attitude Determination for the Gaia Spacecraft

    Science.gov (United States)

    Samaan, Malak A.

    2010-03-01

    The work presented in this paper concerns the accurate On-Ground Attitude (OGA) reconstruction for the astrometry spacecraft Gaia in the presence of disturbance and of control torques acting on the spacecraft. The reconstruction of the expected environmental torques which influence the spacecraft dynamics will be also investigated. The telemetry data from the spacecraft will include the on-board real-time attitude, which is of order of several arcsec. This raw attitude is the starting point for the further attitude reconstruction. The OGA will use the inputs from the field coordinates of known stars (attitude stars) and also the field coordinate differences of objects on the Sky Mapper (SM) and Astrometric Field (AF) payload instruments to improve this raw attitude. The on-board attitude determination uses a Kalman Filter (KF) to minimize the attitude errors and produce a more accurate attitude estimation than the pure star tracker measurement. Therefore the first approach for the OGA will be an adapted version of KF. Furthermore, we will design a batch least squares algorithm to investigate how to obtain a more accurate OGA estimation. Finally, a comparison between these different attitude determination techniques in terms of accuracy, robustness, speed and memory required will be evaluated in order to choose the best attitude algorithm for the OGA. The expected resulting accuracy for the OGA determination will be on the order of milli-arcsec.

  7. A Novel Attitude Determination System Aided by Polarization Sensor

    Directory of Open Access Journals (Sweden)

    Wei Zhi

    2018-01-01

    Full Text Available This paper aims to develop a novel attitude determination system aided by polarization sensor. An improved heading angle function is derived using the perpendicular relationship between directions of E-vector of linearly polarized light and solar vector in the atmospheric polarization distribution model. The Extended Kalman filter (EKF with quaternion differential equation as a dynamic model is applied to fuse the data from sensors. The covariance functions of filter process and measurement noises are deduced in detail. The indoor and outdoor tests are conducted to verify the validity and feasibility of proposed attitude determination system. The test results showed that polarization sensor is not affected by magnetic field, thus the proposed system can work properly in environments containing the magnetic interference. The results also showed that proposed system has higher measurement accuracy than common attitude determination system and can provide precise parameters for Unmanned Aerial Vehicle (UAV flight control. The main contribution of this paper is implementation of the EKF for incorporating the self-developed polarization sensor into the conventional attitude determination system. The real-world experiment with the quad-rotor proved that proposed system can work in a magnetic interference environment and provide sufficient accuracy in attitude determination for autonomous navigation of vehicle.

  8. A Novel Attitude Determination System Aided by Polarization Sensor.

    Science.gov (United States)

    Zhi, Wei; Chu, Jinkui; Li, Jinshan; Wang, Yinlong

    2018-01-09

    This paper aims to develop a novel attitude determination system aided by polarization sensor. An improved heading angle function is derived using the perpendicular relationship between directions of E-vector of linearly polarized light and solar vector in the atmospheric polarization distribution model. The Extended Kalman filter (EKF) with quaternion differential equation as a dynamic model is applied to fuse the data from sensors. The covariance functions of filter process and measurement noises are deduced in detail. The indoor and outdoor tests are conducted to verify the validity and feasibility of proposed attitude determination system. The test results showed that polarization sensor is not affected by magnetic field, thus the proposed system can work properly in environments containing the magnetic interference. The results also showed that proposed system has higher measurement accuracy than common attitude determination system and can provide precise parameters for Unmanned Aerial Vehicle (UAV) flight control. The main contribution of this paper is implementation of the EKF for incorporating the self-developed polarization sensor into the conventional attitude determination system. The real-world experiment with the quad-rotor proved that proposed system can work in a magnetic interference environment and provide sufficient accuracy in attitude determination for autonomous navigation of vehicle.

  9. Sensitivity of Attitude Determination on the Model Assumed for ISAR Radar Mappings

    Science.gov (United States)

    Lemmens, S.; Krag, H.

    2013-09-01

    Inverse synthetic aperture radars (ISAR) are valuable instrumentations for assessing the state of a large object in low Earth orbit. The images generated by these radars can reach a sufficient quality to be used during launch support or contingency operations, e.g. for confirming the deployment of structures, determining the structural integrity, or analysing the dynamic behaviour of an object. However, the direct interpretation of ISAR images can be a demanding task due to the nature of the range-Doppler space in which these images are produced. Recently, a tool has been developed by the European Space Agency's Space Debris Office to generate radar mappings of a target in orbit. Such mappings are a 3D-model based simulation of how an ideal ISAR image would be generated by a ground based radar under given processing conditions. These radar mappings can be used to support a data interpretation process. E.g. by processing predefined attitude scenarios during an observation sequence and comparing them with actual observations, one can detect non-nominal behaviour. Vice versa, one can also estimate the attitude states of the target by fitting the radar mappings to the observations. It has been demonstrated for the latter use case that a coarse approximation of the target through an 3D-model is already sufficient to derive the attitude information from the generated mappings. The level of detail required for the 3D-model is determined by the process of generating ISAR images, which is based on the theory of scattering bodies. Therefore, a complex surface can return an intrinsically noisy ISAR image. E.g. when many instruments on a satellite are visible to the observer, the ISAR image can suffer from multipath reflections. In this paper, we will further analyse the sensitivity of the attitude fitting algorithms to variations in the dimensions and the level of detail of the underlying 3D model. Moreover, we investigate the ability to estimate the orientations of different

  10. Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison

    Science.gov (United States)

    Guo, Jing; Xu, Xiaolong; Zhao, Qile; Liu, Jingnan

    2016-02-01

    This contribution summarizes the strategy used by Wuhan University (WHU) to determine precise orbit and clock products for Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS). In particular, the satellite attitude, phase center corrections, solar radiation pressure model developed and used for BDS satellites are addressed. In addition, this contribution analyzes the orbit and clock quality of the quad-constellation products from MGEX Analysis Centers (ACs) for a common time period of 1 year (2014). With IGS final GPS and GLONASS products as the reference, Multi-GNSS products of WHU (indicated by WUM) show the best agreement among these products from all MGEX ACs in both accuracy and stability. 3D Day Boundary Discontinuities (DBDs) range from 8 to 27 cm for Galileo-IOV satellites among all ACs' products, whereas WUM ones are the largest (about 26.2 cm). Among three types of BDS satellites, MEOs show the smallest DBDs from 10 to 27 cm, whereas the DBDs for all ACs products are at decimeter to meter level for GEOs and one to three decimeter for IGSOs, respectively. As to the satellite laser ranging (SLR) validation for Galileo-IOV satellites, the accuracy evaluated by SLR residuals is at the one decimeter level with the well-known systematic bias of about -5 cm for all ACs. For BDS satellites, the accuracy could reach decimeter level, one decimeter level, and centimeter level for GEOs, IGSOs, and MEOs, respectively. However, there is a noticeable bias in GEO SLR residuals. In addition, systematic errors dependent on orbit angle related to mismodeled solar radiation pressure (SRP) are present for BDS GEOs and IGSOs. The results of Multi-GNSS combined kinematic PPP demonstrate that the best accuracy of position and fastest convergence speed have been achieved using WUM products, particularly in the Up direction. Furthermore, the accuracy of static BDS only PPP degrades when the BDS IGSO and MEO satellites switches to orbit-normal orientation

  11. A motion-based integer ambiguity resolution method for attitude determination using the global positioning system (GPS)

    International Nuclear Information System (INIS)

    Wang, Bo; Deng, Zhihong; Wang, Shunting; Fu, Mengyin

    2010-01-01

    Loss of the satellite signal and noise disturbance will cause cycle slips to occur in the carrier phase observation of the attitude determination system using the global positioning system (GPS), especially in the dynamic situation. Therefore, in order to reject the error by cycle slips, the integer ambiguity should be re-computed. A motion model-based Kalman predictor is used for the ambiguity re-computation in dynamic applications. This method utilizes the correct observation of the last step to predict the current ambiguities. With the baseline length as a constraint to reject invalid values, we can solve the current integer ambiguity and the attitude angles, by substituting the obtained ambiguities into the constrained LAMBDA method. Experimental results demonstrate that the proposed method is more efficient in the dynamic situation, which takes less time to obtain new fixed ambiguities with a higher mean success rate

  12. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  13. Optical neural network system for pose determination of spinning satellites

    Science.gov (United States)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  14. Observability of satellite launcher navigation with INS, GPS, attitude sensors and reference trajectory

    Science.gov (United States)

    Beaudoin, Yanick; Desbiens, André; Gagnon, Eric; Landry, René

    2018-01-01

    The navigation system of a satellite launcher is of paramount importance. In order to correct the trajectory of the launcher, the position, velocity and attitude must be known with the best possible precision. In this paper, the observability of four navigation solutions is investigated. The first one is the INS/GPS couple. Then, attitude reference sensors, such as magnetometers, are added to the INS/GPS solution. The authors have already demonstrated that the reference trajectory could be used to improve the navigation performance. This approach is added to the two previously mentioned navigation systems. For each navigation solution, the observability is analyzed with different sensor error models. First, sensor biases are neglected. Then, sensor biases are modelled as random walks and as first order Markov processes. The observability is tested with the rank and condition number of the observability matrix, the time evolution of the covariance matrix and sensitivity to measurement outlier tests. The covariance matrix is exploited to evaluate the correlation between states in order to detect structural unobservability problems. Finally, when an unobservable subspace is detected, the result is verified with theoretical analysis of the navigation equations. The results show that evaluating only the observability of a model does not guarantee the ability of the aiding sensors to correct the INS estimates within the mission time. The analysis of the covariance matrix time evolution could be a powerful tool to detect this situation, however in some cases, the problem is only revealed with a sensitivity to measurement outlier test. None of the tested solutions provide GPS position bias observability. For the considered mission, the modelling of the sensor biases as random walks or Markov processes gives equivalent results. Relying on the reference trajectory can improve the precision of the roll estimates. But, in the context of a satellite launcher, the roll

  15. Programming a real-time operating system for satellite control applications Satellite Control Applications

    International Nuclear Information System (INIS)

    Omer, M.; Anjum, O.; Suddle, M.R.

    2004-01-01

    With the realization of ideas like formation flights and multi-body space vehicles the demands on an attitude control system have become increasingly complex. Even in its most simplified form, the control system for a typical geostationary satellite has to run various supervisory functions along with determination and control algorithms side by side. Within each algorithm it has to employ multiple actuation and sensing mechanisms and service real time interrupts, for example, in the case of actuator saturation and sensor data fusion. This entails the idea of thread scheduling and program synchronization, tasks specifically meant for a real time OS. This paper explores the embedding of attitude determination and control loop within the framework of a real time operating system provided for TI's DSP C6xxx series. The paper details out the much functionality provided within the scaleable real time kernel and the analysis and configuration tools available, It goes on to describe a layered implementation stack associated with a typical control for Geo Stationary satellites. An application for control is then presented in which state of the art analysis tools are employed to view program threads, synchronization semaphores, hardware interrupts and data exchange pipes operating in real time. (author)

  16. Signal Conditioning for the Kalman Filter: Application to Satellite Attitude Estimation with Magnetometer and Sun Sensors.

    Science.gov (United States)

    Esteban, Segundo; Girón-Sierra, Jose M; Polo, Óscar R; Angulo, Manuel

    2016-10-31

    Most satellites use an on-board attitude estimation system, based on available sensors. In the case of low-cost satellites, which are of increasing interest, it is usual to use magnetometers and Sun sensors. A Kalman filter is commonly recommended for the estimation, to simultaneously exploit the information from sensors and from a mathematical model of the satellite motion. It would be also convenient to adhere to a quaternion representation. This article focuses on some problems linked to this context. The state of the system should be represented in observable form. Singularities due to alignment of measured vectors cause estimation problems. Accommodation of the Kalman filter originates convergence difficulties. The article includes a new proposal that solves these problems, not needing changes in the Kalman filter algorithm. In addition, the article includes assessment of different errors, initialization values for the Kalman filter; and considers the influence of the magnetic dipole moment perturbation, showing how to handle it as part of the Kalman filter framework.

  17. Signal Conditioning for the Kalman Filter: Application to Satellite Attitude Estimation with Magnetometer and Sun Sensors

    Directory of Open Access Journals (Sweden)

    Segundo Esteban

    2016-10-01

    Full Text Available Most satellites use an on-board attitude estimation system, based on available sensors. In the case of low-cost satellites, which are of increasing interest, it is usual to use magnetometers and Sun sensors. A Kalman filter is commonly recommended for the estimation, to simultaneously exploit the information from sensors and from a mathematical model of the satellite motion. It would be also convenient to adhere to a quaternion representation. This article focuses on some problems linked to this context. The state of the system should be represented in observable form. Singularities due to alignment of measured vectors cause estimation problems. Accommodation of the Kalman filter originates convergence difficulties. The article includes a new proposal that solves these problems, not needing changes in the Kalman filter algorithm. In addition, the article includes assessment of different errors, initialization values for the Kalman filter; and considers the influence of the magnetic dipole moment perturbation, showing how to handle it as part of the Kalman filter framework.

  18. Attitude determination with three-axis accelerometer for emergency atmospheric entry

    Science.gov (United States)

    Garcia-Llama, Eduardo (Inventor)

    2012-01-01

    Two algorithms are disclosed that, with the use of a 3-axis accelerometer, will be able to determine the angles of attack, sideslip and roll of a capsule-type spacecraft prior to entry (at very high altitudes, where the atmospheric density is still very low) and during entry. The invention relates to emergency situations in which no reliable attitude and attitude rate are available. Provided that the spacecraft would not attempt a guided entry without reliable attitude information, the objective of the entry system in such case would be to attempt a safe ballistic entry. A ballistic entry requires three controlled phases to be executed in sequence: First, cancel initial rates in case the spacecraft is tumbling; second, maneuver the capsule to a heat-shield-forward attitude, preferably to the trim attitude, to counteract the heat rate and heat load build up; and third, impart a ballistic bank or roll rate to null the average lift vector in order to prevent prolonged lift down situations. Being able to know the attitude, hence the attitude rate, will allow the control system (nominal or backup, automatic or manual) to cancel any initial angular rates. Also, since a heat-shield forward attitude and the trim attitude can be specified in terms of the angles of attack and sideslip, being able to determine the current attitude in terms of these angles will allow the control system to maneuver the vehicle to the desired attitude. Finally, being able to determine the roll angle will allow for the control of the roll ballistic rate during entry.

  19. Comparison of attitude determination approaches using multiple Global Positioning System (GPS antennas

    Directory of Open Access Journals (Sweden)

    Wang Bing

    2013-02-01

    Full Text Available GPS-based attitude system is an important research field, since it is a valuable technique for the attitude determination of platforms. There exist two classes approaches for attitude determination using the GPS. The one determines attitude via baseline estimates in two frames, the other one solves for attitude by incorporating the attitude parameters directly into the GPS measurements. However, comparisons between these two classes approaches have been unexplored. First of all, two algorithms are introduced in detail which on behalf of these two kinds of approaches. Then we present numerical simulations demonstrating the performance of our algorithms and provide a comparison evaluating.

  20. The accuracy of dynamic attitude propagation

    Science.gov (United States)

    Harvie, E.; Chu, D.; Woodard, M.

    1990-01-01

    Propagating attitude by integrating Euler's equation for rigid body motion has long been suggested for the Earth Radiation Budget Satellite (ERBS) but until now has not been implemented. Because of limited Sun visibility, propagation is necessary for yaw determination. With the deterioration of the gyros, dynamic propagation has become more attractive. Angular rates are derived from integrating Euler's equation with a stepsize of 1 second, using torques computed from telemetered control system data. The environmental torque model was quite basic. It included gravity gradient and unshadowed aerodynamic torques. Knowledge of control torques is critical to the accuracy of dynamic modeling. Due to their coarseness and sparsity, control actuator telemetry were smoothed before integration. The dynamic model was incorporated into existing ERBS attitude determination software. Modeled rates were then used for attitude propagation in the standard ERBS fine-attitude algorithm. In spite of the simplicity of the approach, the dynamically propagated attitude matched the attitude propagated with good gyros well for roll and yaw but diverged up to 3 degrees for pitch because of the very low resolution in pitch momentum wheel telemetry. When control anomalies significantly perturb the nominal attitude, the effect of telemetry granularity is reduced and the dynamically propagated attitudes are accurate on all three axes.

  1. Attitude Determination and Control Systems

    Science.gov (United States)

    Starin, Scott R.; Eterno, John

    2011-01-01

    In the year 1900, Galveston, Texas, was a bustling community of approximately 40,000 people. The former capital of the Republic of Texas remained a trade center for the state and was one of the largest cotton ports in the United States. On September 8 of that year, however, a powerful hurricane struck Galveston island, tearing the Weather Bureau wind gauge away as the winds exceeded 100 mph and bringing a storm surge that flooded the entire city. The worst natural disaster in United States history even today the hurricane caused the deaths of between 6000 and 8000 people. Critical in the events that led to such a terrible loss of life was the lack of precise knowledge of the strength of the storm before it hit. In 2008, Hurricane Ike, the third costliest hurricane ever to hit the United States coast, traveled through the Gulf of Mexico. Ike was gigantic, and the devastation in its path included the Turk and Caicos Islands, Haiti, and huge swaths of the coast of the Gulf of Mexico. Once again, Galveston, now a city of nearly 60,000, took the direct hit as Ike came ashore. Almost 200 people in the Caribbean and the United States lost their lives; a tragedy to be sure, but far less deadly than the 1900 storm. This time, people were prepared, having received excellent warning from the GOES satellite network. The Geostationary Operational Environmental Satellites have been a continuous monitor of the world's weather since 1975, and they have since been joined by other Earth-observing satellites. This weather surveillance to which so many now owe their lives is possible in part because of the ability to point accurately and steadily at the Earth below. The importance of accurately pointing spacecraft to our daily lives is pervasive, yet somehow escapes the notice of most people. But the example of the lives saved from Hurricane Ike as compared to the 1900 storm is something no one should ignore. In this section, we will summarize the processes and technologies used in

  2. Development of a green bipropellant hydrogen peroxide thruster for attitude control on satellites

    Science.gov (United States)

    Woschnak, A.; Krejci, D.; Schiebl, M.; Scharlemann, C.

    2013-03-01

    This document describes the selection assessment of propellants for a 1-newton green bipropellant thruster for attitude control on satellites. The development of this thruster was conducted as a part of the project GRASP (Green Advanced Space Propellants) within the European FP7 research program. The green propellant combinations hydrogen peroxide (highly concentrated with 87.5 %(wt.)) with kerosene or hydrogen peroxide (87.5 %(wt.)) with ethanol were identified as interesting candidates and were investigated in detail with the help of an experimental combustion chamber in the chemical propulsion laboratory at the Forschungsund Technologietransfer GmbH ― Fotec. Based on the test results, a final selection of propellants was performed.

  3. HIGH-PRECISION ATTITUDE ESTIMATION METHOD OF STAR SENSORS AND GYRO BASED ON COMPLEMENTARY FILTER AND UNSCENTED KALMAN FILTER

    Directory of Open Access Journals (Sweden)

    C. Guo

    2017-07-01

    Full Text Available Determining the attitude of satellite at the time of imaging then establishing the mathematical relationship between image points and ground points is essential in high-resolution remote sensing image mapping. Star tracker is insensitive to the high frequency attitude variation due to the measure noise and satellite jitter, but the low frequency attitude motion can be determined with high accuracy. Gyro, as a short-term reference to the satellite’s attitude, is sensitive to high frequency attitude change, but due to the existence of gyro drift and integral error, the attitude determination error increases with time. Based on the opposite noise frequency characteristics of two kinds of attitude sensors, this paper proposes an on-orbit attitude estimation method of star sensors and gyro based on Complementary Filter (CF and Unscented Kalman Filter (UKF. In this study, the principle and implementation of the proposed method are described. First, gyro attitude quaternions are acquired based on the attitude kinematics equation. An attitude information fusion method is then introduced, which applies high-pass filtering and low-pass filtering to the gyro and star tracker, respectively. Second, the attitude fusion data based on CF are introduced as the observed values of UKF system in the process of measurement updating. The accuracy and effectiveness of the method are validated based on the simulated sensors attitude data. The obtained results indicate that the proposed method can suppress the gyro drift and measure noise of attitude sensors, improving the accuracy of the attitude determination significantly, comparing with the simulated on-orbit attitude and the attitude estimation results of the UKF defined by the same simulation parameters.

  4. Attitude estimation from magnetometer and earth-albedo-corrected coarse sun sensor measurements

    Science.gov (United States)

    Appel, Pontus

    2005-01-01

    For full 3-axes attitude determination the magnetic field vector and the Sun vector can be used. A Coarse Sun Sensor consisting of six solar cells placed on each of the six outer surfaces of the satellite is used for Sun vector determination. This robust and low cost setup is sensitive to surrounding light sources as it sees the whole sky. To compensate for the largest error source, the Earth, an albedo model is developed. The total albedo light vector has contributions from the Earth surface which is illuminated by the Sun and visible from the satellite. Depending on the reflectivity of the Earth surface, the satellite's position and the Sun's position the albedo light changes. This cannot be calculated analytically and hence a numerical model is developed. For on-board computer use the Earth albedo model consisting of data tables is transferred into polynomial functions in order to save memory space. For an absolute worst case the attitude determination error can be held below 2∘. In a nominal case it is better than 1∘.

  5. Analytical Prediction of the Spin Stabilized Satellite's Attitude Using The Solar Radiation Torque

    International Nuclear Information System (INIS)

    Motta, G B; Carvalho, M V; Zanardi, M C

    2013-01-01

    The aim of this paper is to present an analytical solution for the spin motion equations of spin-stabilized satellite considering only the influence of solar radiation torque. The theory uses a cylindrical satellite on a circular orbit and considers that the satellite is always illuminated. The average components of this torque were determined over an orbital period. These components are substituted in the spin motion equations in order to get an analytical solution for the right ascension and declination of the satellite spin axis. The time evolution for the pointing deviation of the spin axis was also analyzed. These solutions were numerically implemented and compared with real data of the Brazilian Satellite of Data Collection – SCD1 an SCD2. The results show that the theory has consistency and can be applied to predict the spin motion of spin-stabilized artificial satellites

  6. Robust Fault-Tolerant Control for Satellite Attitude Stabilization Based on Active Disturbance Rejection Approach with Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Fei Song

    2014-01-01

    Full Text Available This paper proposed a robust fault-tolerant control algorithm for satellite stabilization based on active disturbance rejection approach with artificial bee colony algorithm. The actuating mechanism of attitude control system consists of three working reaction flywheels and one spare reaction flywheel. The speed measurement of reaction flywheel is adopted for fault detection. If any reaction flywheel fault is detected, the corresponding fault flywheel is isolated and the spare reaction flywheel is activated to counteract the fault effect and ensure that the satellite is working safely and reliably. The active disturbance rejection approach is employed to design the controller, which handles input information with tracking differentiator, estimates system uncertainties with extended state observer, and generates control variables by state feedback and compensation. The designed active disturbance rejection controller is robust to both internal dynamics and external disturbances. The bandwidth parameter of extended state observer is optimized by the artificial bee colony algorithm so as to improve the performance of attitude control system. A series of simulation experiment results demonstrate the performance superiorities of the proposed robust fault-tolerant control algorithm.

  7. Determining Attitudes toward Ability: A New Tool for New Understanding

    Science.gov (United States)

    Szymanski, Antonia; Croft, Laurie; Godor, Brian

    2018-01-01

    The purpose of this study is to explore teacher attitudes toward gifted students in several distinct areas and to provide psychometric evidence of reliability and validity for the use of an instrument titled "Determining Attitudes Toward Ability" (DATA) to measure specific components of teacher attitudes. Subscales of Focus on Others,…

  8. Using a Smartphone Camera for Nanosatellite Attitude Determination

    Science.gov (United States)

    Shimmin, R.

    2014-09-01

    The PhoneSat project at NASA Ames Research Center has repeatedly flown a commercial cellphone in space. As this project continues, additional utility is being extracted from the cell phone hardware to enable more complex missions. The camera in particular shows great potential as an instrument for position and attitude determination, but this requires complex image processing. This paper outlines progress towards that image processing capability. Initial tests on a small collection of sample images have demonstrated the determination of a Moon vector from an image by automatic thresholding and centroiding, allowing the calibration of existing attitude control systems. Work has been undertaken on a further set of sample images towards horizon detection using a variety of techniques including thresholding, edge detection, applying a Hough transform, and circle fitting. Ultimately it is hoped this will allow calculation of an Earth vector for attitude determination and an approximate altitude. A quick discussion of work towards using the camera as a star tracker is then presented, followed by an introduction to further applications of the camera on space missions.

  9. Innovative power management, attitude determination and control tile for CubeSat standard NanoSatellites

    Science.gov (United States)

    Ali, Anwar; Mughal, M. Rizwan; Ali, Haider; Reyneri, Leonardo

    2014-03-01

    Electric power supply (EPS) and attitude determination and control subsystem (ADCS) are the most essential elements of any aerospace mission. Efficient EPS and precise ADCS are the core of any spacecraft mission. So keeping in mind their importance, they have been integrated and developed on a single tile called CubePMT module. Modular power management tiles (PMTs) are already available in the market but they are less efficient, heavier in weight, consume more power and contain less number of subsystems. Commercial of the shelf (COTS) components have been used for CubePMT implementation which are low cost and easily available from the market. CubePMT is developed on the design approach of AraMiS architecture: a project developed at Politecnico di Torino that provides low cost and higher performance space missions with dimensions larger than CubeSats. The feature of AraMiS design approach is its modularity. These modules can be reused for multiple missions which helps in significant reduction of the overall budget, development and testing time. One has just to reassemble the required subsystems to achieve the targeted specific mission.

  10. The Impact of Eclipsing GNSS Satellites on the Precise Point Positioning

    Directory of Open Access Journals (Sweden)

    Xinyun Cao

    2018-01-01

    Full Text Available When satellites enter into the noon maneuver or the shadow crossing regimes, the actual attitudes will depart from their nominal values. If improper attitude models are used, the induced-errors due to the wind-up effect and satellite antenna PCO (Phase Center Offset will deteriorate the positioning accuracy. Because different generations of satellites adopt different attitude control models, the influences on the positioning performances deserve further study. Consequently, the impact of three eclipsing strategies on the single-system and multi-GNSS (Global Navigation Satellite System Precise Point Positioning (PPP are analyzed. According to the results of the eclipsing monitor, 65 globally distributed MGEX (Multi-GNSS EXperiment stations for 31-day period in July 2017 are selected to perform G/R/E/C/GR/GREC PPP in both static and kinematic modes. The results show that the influences of non-nominal attitudes are related to the magnitude of the PCO values, maximum yaw angle differences, the duration of maneuver, the value of the sun angle and the satellite geometric strength. For single-system, using modeled attitudes rather than the nominal ones will greatly improve the positioning accuracy of GLONASS-only and BDS-only PPP while slightly contributions to the GPS-only and GALILEO-only PPP. Deleting the eclipsing satellites may sometimes induce a longer convergence time and a worse solution due to the poor satellite geometry, especially for GLONASS kinematic PPP when stations are located in the low latitude and BDS kinematic PPP. When multi-GNSS data are available, especially four navigation systems, the accuracy improvements of using the modeled attitudes or deleting eclipsing satellites are non-significant.

  11. Multi-GNSS orbit determination using satellite laser ranging

    Science.gov (United States)

    Bury, Grzegorz; Sośnica, Krzysztof; Zajdel, Radosław

    2018-04-01

    Galileo, BeiDou, QZSS, and NavIC are emerging global navigation satellite systems (GNSSs) and regional navigation satellite systems all of which are equipped with laser retroreflector arrays for range measurements. This paper summarizes the GNSS-intensive tracking campaigns conducted by the International Laser Ranging Service and provides results from multi-GNSS orbit determination using solely SLR observations. We consider the whole constellation of GLONASS, all active Galileo, four BeiDou satellites: 1 MEO, 3 IGSO, and one QZSS. We analyze the influence of the number of SLR observations on the quality of the 3-day multi-GNSS orbit solution. About 60 SLR observations are needed for obtaining MEO orbits of sufficient quality with the root mean square (RMS) of 3 cm for the radial component when compared to microwave-based orbits. From the analysis of a minimum number of tracking stations, when considering the 3-day arcs, 5 SLR stations do not provide a sufficient geometry of observations. The solution obtained using ten stations is characterized with RMS of 4, 9, and 18 cm in the radial, along-track, and cross-track direction, respectively, for MEO satellites. We also investigate the impact of the length of orbital arc on the quality of SLR-derived orbits. Hence, 5- and 7-day arcs constitute the best solution, whereas 3-day arcs are of inferior quality due to an insufficient number of SLR observations and 9-day arcs deteriorate the along-track component. The median RMS from the comparison between 7-day orbital arcs determined using SLR data with microwave-based orbits assumes values in the range of 3-4, 11-16, and 15-27 cm in radial, along-track, and cross-track, respectively, for MEO satellites. BeiDou IGSO and QZSS are characterized by RMS values higher by a factor of 8 and 24, respectively, than MEO orbits.

  12. Satellite Dynamic Damping via Active Force Control Augmentation

    Science.gov (United States)

    Varatharajoo, Renuganth

    2012-07-01

    An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC

  13. Vision-Based Attitude and Formation Determination System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To determine pointing and position vectors in both local and inertial coordinate frames, multi-spacecraft missions typically utilize separate attitude determination...

  14. Fuzzy Logic Controller for Small Satellites Navigation

    National Research Council Canada - National Science Library

    Della Pietra, G; Falzini, S; Colzi, E; Crisconio, M

    2005-01-01

    .... The navigator aims at operating satellites in orbit with a minimum ground support and very good performances, by the adoption of innovative technologies, such as attitude observation GPS, attitude...

  15. GNSS satellite transmit power and its impact on orbit determination

    Science.gov (United States)

    Steigenberger, Peter; Thoelert, Steffen; Montenbruck, Oliver

    2018-06-01

    Antenna thrust is a small acceleration acting on Global Navigation Satellite System satellites caused by the transmission of radio navigation signals. Knowledge about the transmit power and the mass of the satellites is required for the computation of this effect. The actual transmit power can be obtained from measurements with a high-gain antenna and knowledge about the properties of the transmit and receive antennas as well as losses along the propagation path. Transmit power measurements for different types of GPS, GLONASS, Galileo, and BeiDou-2 satellites were taken with a 30-m dish antenna of the German Aerospace Center (DLR) located at its ground station in Weilheim. For GPS, total L-band transmit power levels of 50-240 W were obtained, 20-135 W for GLONASS, 95-265 W for Galileo, and 130-185 W for BeiDou-2. The transmit power differs usually only slightly for individual spacecraft within one satellite block. An exception are the GLONASS-M satellites where six subgroups with different transmit power levels could be identified. Considering the antenna thrust in precise orbit determination of GNSS satellites decreases the orbital radius by 1-27 mm depending on the transmit power, the satellite mass, and the orbital period.

  16. Determination of Factors Affecting Preschool Teacher Candidates' Attitudes towards Science Teaching

    Science.gov (United States)

    Timur, Betul

    2012-01-01

    The purpose of this study was to determine preschool teacher candidates' attitudes towards science teaching and to examine the reasons behind their attitudes in depth. In this study, mixed methods were used including quantitative and qualitative data. Quantitative data gained by attitudes towards science teaching scale, qualitative data gained by…

  17. Orbit Propagation and Determination of Low Earth Orbit Satellites

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available This paper represents orbit propagation and determination of low Earth orbit (LEO satellites. Satellite global positioning system (GPS configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP. The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF. As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.

  18. Orbit Determination of the SELENE Satellites Using Multi-Satellite Data Types and Evaluation of SELENE Gravity Field Models

    Science.gov (United States)

    Goossens, S.; Matsumoto, K.; Noda, H.; Araki, H.; Rowlands, D. D.; Lemoine, F. G.

    2011-01-01

    The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether l-day data overlaps or I-day predictions are used.

  19. GNSS Single Frequency, Single Epoch Reliable Attitude Determination Method with Baseline Vector Constraint

    Directory of Open Access Journals (Sweden)

    Ang Gong

    2015-12-01

    Full Text Available For Global Navigation Satellite System (GNSS single frequency, single epoch attitude determination, this paper proposes a new reliable method with baseline vector constraint. First, prior knowledge of baseline length, heading, and pitch obtained from other navigation equipment or sensors are used to reconstruct objective function rigorously. Then, searching strategy is improved. It substitutes gradually Enlarged ellipsoidal search space for non-ellipsoidal search space to ensure correct ambiguity candidates are within it and make the searching process directly be carried out by least squares ambiguity decorrelation algorithm (LAMBDA method. For all vector candidates, some ones are further eliminated by derived approximate inequality, which accelerates the searching process. Experimental results show that compared to traditional method with only baseline length constraint, this new method can utilize a priori baseline three-dimensional knowledge to fix ambiguity reliably and achieve a high success rate. Experimental tests also verify it is not very sensitive to baseline vector error and can perform robustly when angular error is not great.

  20. Improving BeiDou precise orbit determination using observations of onboard MEO satellite receivers

    Science.gov (United States)

    Ge, Haibo; Li, Bofeng; Ge, Maorong; Shen, Yunzhong; Schuh, Harald

    2017-12-01

    In recent years, the precise orbit determination (POD) of the regional Chinese BeiDou Navigation Satellite System (BDS) has been a hot spot because of its special constellation consisting of five geostationary earth orbit (GEO) satellites and five inclined geosynchronous satellite orbit (IGSO) satellites besides four medium earth orbit (MEO) satellites since the end of 2012. GEO and IGSO satellites play an important role in regional BDS applications. However, this brings a great challenge to the POD, especially for the GEO satellites due to their geostationary orbiting. Though a number of studies have been carried out to improve the POD performance of GEO satellites, the result is still much worse than that of IGSO and MEO, particularly in the along-track direction. The major reason is that the geostationary characteristic of a GEO satellite results in a bad geometry with respect to the ground tracking network. In order to improve the tracking geometry of the GEO satellites, a possible strategy is to mount global navigation satellite system (GNSS) receivers on MEO satellites to collect the signals from GEO/IGSO GNSS satellites so as that these observations can be used to improve GEO/IGSO POD. We extended our POD software package to simulate all the related observations and to assimilate the MEO-onboard GNSS observations in orbit determination. Based on GPS and BDS constellations, simulated studies are undertaken for various tracking scenarios. The impact of the onboard GNSS observations is investigated carefully and presented in detail. The results show that MEO-onboard observations can significantly improve the orbit precision of GEO satellites from metres to decimetres, especially in the along-track direction. The POD results of IGSO satellites also benefit from the MEO-onboard data and the precision can be improved by more than 50% in 3D direction.

  1. Low-frequency Periodic Error Identification and Compensation for Star Tracker Attitude Measurement

    Institute of Scientific and Technical Information of China (English)

    WANG Jiongqi; XIONG Kai; ZHOU Haiyin

    2012-01-01

    The low-frequency periodic error of star tracker is one of the most critical problems for high-accuracy satellite attitude determination.In this paper an approach is proposed to identify and compensate the low-frequency periodic error for star tracker in attitude measurement.The analytical expression between the estimated gyro drift and the low-frequency periodic error of star tracker is derived firstly.And then the low-frequency periodic error,which can be expressed by Fourier series,is identified by the frequency spectrum of the estimated gyro drift according to the solution of the first step.Furthermore,the compensated model of the low-frequency periodic error is established based on the identified parameters to improve the attitude determination accuracy.Finally,promising simulated experimental results demonstrate the validity and effectiveness of the proposed method.The periodic error for attitude determination is eliminated basically and the estimation precision is improved greatly.

  2. Auto Code Generation for Simulink-Based Attitude Determination Control System

    Science.gov (United States)

    MolinaFraticelli, Jose Carlos

    2012-01-01

    This paper details the work done to auto generate C code from a Simulink-Based Attitude Determination Control System (ADCS) to be used in target platforms. NASA Marshall Engineers have developed an ADCS Simulink simulation to be used as a component for the flight software of a satellite. This generated code can be used for carrying out Hardware in the loop testing of components for a satellite in a convenient manner with easily tunable parameters. Due to the nature of the embedded hardware components such as microcontrollers, this simulation code cannot be used directly, as it is, on the target platform and must first be converted into C code; this process is known as auto code generation. In order to generate C code from this simulation; it must be modified to follow specific standards set in place by the auto code generation process. Some of these modifications include changing certain simulation models into their atomic representations which can bring new complications into the simulation. The execution order of these models can change based on these modifications. Great care must be taken in order to maintain a working simulation that can also be used for auto code generation. After modifying the ADCS simulation for the auto code generation process, it is shown that the difference between the output data of the former and that of the latter is between acceptable bounds. Thus, it can be said that the process is a success since all the output requirements are met. Based on these results, it can be argued that this generated C code can be effectively used by any desired platform as long as it follows the specific memory requirements established in the Simulink Model.

  3. Instantaneous Attitude Determination Based on Original Multi-antenna Observations Using Adaptively Robust Kalman Filtering

    Directory of Open Access Journals (Sweden)

    GAN Yu

    2015-09-01

    Full Text Available Attitude determination directly by carrier phase observation makes optimal use of observation and attitude constraints. The phase models based on misalignment angle and multiplicative quaternion error are derived. The state models for attitude estimation with and without external angular rate sensors are both erected. The attitude errors are estimated by adaptively robust filtering, in which the adaptive factors of ambiguity and attitude error are decided respectively following the idea of multi adaptive factor filtering. The factor of attitude is determined by a three-section function containing Ratio. Adaptively robust filtering makes the best use of constraint and historical information, fusing them in the calculation of float solution. As the accuracy of float solution and the structure of covariance matrix are improved greatly, the fix solution can be searched efficiently using LAMBDA (least-squares ambiguity decorrelation adjustment method merely, perfectly fulfilling the real-time requirement. Field test of a ship-based three-antenna attitude system is used to validate the proposed method. It is showed that direct attitude determination based on adaptively robust filtering has obvious advantages in efficiency and reliability.

  4. Error compensation of single-antenna attitude determination using GNSS for Low-dynamic applications

    Science.gov (United States)

    Chen, Wen; Yu, Chao; Cai, Miaomiao

    2017-04-01

    GNSS-based single-antenna pseudo-attitude determination method has attracted more and more attention from the field of high-dynamic navigation due to its low cost, low system complexity, and no temporal accumulated errors. Related researches indicate that this method can be an important complement or even an alternative to the traditional sensors for general accuracy requirement (such as small UAV navigation). The application of single-antenna attitude determining method to low-dynamic carrier has just started. Different from the traditional multi-antenna attitude measurement technique, the pseudo-attitude attitude determination method calculates the rotation angle of the carrier trajectory relative to the earth. Thus it inevitably contains some deviations comparing with the real attitude angle. In low-dynamic application, these deviations are particularly noticeable, which may not be ignored. The causes of the deviations can be roughly classified into three categories, including the measurement error, the offset error, and the lateral error. Empirical correction strategies for the formal two errors have been promoted in previous study, but lack of theoretical support. In this paper, we will provide quantitative description of the three type of errors and discuss the related error compensation methods. Vehicle and shipborne experiments were carried out to verify the feasibility of the proposed correction methods. Keywords: Error compensation; Single-antenna; GNSS; Attitude determination; Low-dynamic

  5. About Nano-JASMINE Satellite System and Project Status

    Science.gov (United States)

    Sako, Nobutada

    Intelligent Space Systems Laboratory, The University of Tokyo (ISSL) and National Astronomical Observatory of Japan (NAO) have been developing a small infrared astrometry satellite named “Nano-JASMINE”. The satellite size is about 50cm cubic and 20kg, which plays a pre-cursor role of JASMINE Project which is programmed by NAO and JAXA. In addition, since there has been only one astrometry satellite HIPPARCOS by ESA in the past, Nano-JASMINE is also expected to achieve certain scientific results in the field of astrometry. In this project, ISSL aims to develop new advanced small satellite bus system whose performance is comparable to that of 100-500kg sized satellites, including attitude stability of 1 arc-second and thermal stability of the mission subsystem of 1 mK. This paper overviews the Nano-JASMINE bus system with emphasis on attitude and thermal control systems.

  6. 3-Axis magnetic control: flight results of the TANGO satellite in the PRISMA mission

    Science.gov (United States)

    Chasset, C.; Noteborn, R.; Bodin, P.; Larsson, R.; Jakobsson, B.

    2013-09-01

    PRISMA implements guidance, navigation and control strategies for advanced formation flying and rendezvous experiments. The project is funded by the Swedish National Space Board and run by OHB-Sweden in close cooperation with DLR, CNES and the Danish Technical University. The PRISMA test bed consists of a fully manoeuvrable MANGO satellite as well as a 3-axis controlled TANGO satellite without any Δ V capability. PRISMA was launched on the 15th of June 2010 on board DNEPR. The TANGO spacecraft is the reference satellite for the experiments performed by MANGO, either with a "cooperative" or "non-cooperative" behaviour. Small, light and low-cost were the keywords for the TANGO design. The attitude determination is based on Sun sensors and magnetometers, and the active attitude control uses magnetic torque rods only. In order to perform the attitude manoeuvres required to fulfil the mission objectives, using any additional gravity gradient boom to passively stabilize the spacecraft was not allowed. After a two-month commissioning phase, TANGO separated from MANGO on the 11th of August 2010. All operational modes have been successfully tested, and the pointing performance in flight is in accordance with expectations. The robust Sun Acquisition mode reduced the initial tip-off rate and placed TANGO into a safe attitude in MANGO. At the same time, it points its solar panel towards the Sun, and all payload equipments can be switched on without any restriction. This paper gives an overview of the TANGO Attitude Control System design. It then presents the flight results in the different operating modes. Finally, it highlights the key elements at the origin of the successful 3-axis magnetic control strategy on the TANGO satellite.

  7. Spacecraft attitude determination using the earth's magnetic field

    Science.gov (United States)

    Simpson, David G.

    1989-01-01

    A method is presented by which the attitude of a low-Earth orbiting spacecraft may be determined using a vector magnetometer, a digital Sun sensor, and a mathematical model of the Earth's magnetic field. The method is currently being implemented for the Solar Maximum Mission spacecraft (as a backup for the failing star trackers) as a way to determine roll gyro drift.

  8. Integrated Power and Attitude Control Design of Satellites Based on a Fuzzy Adaptive Disturbance Observer Using Variable-Speed Control Moment Gyros

    Directory of Open Access Journals (Sweden)

    Zhongyi Chu

    2016-01-01

    Full Text Available To satisfy the requirements for small satellites that seek agile slewing with peak power, this paper investigates integrated power and attitude control using variable-speed control moment gyros (VSCMGs that consider the mass and inertia of gimbals and wheels. The paper also details the process for developing the controller by considering various environments in which the controller may be implemented. A fuzzy adaptive disturbance observer (FADO is proposed to estimate and compensate for the effects of equivalent disturbances. The algorithms can simultaneously track attitude and power. The simulation results illustrate the effectiveness of the control approach, which exhibits an improvement of 80 percent compared with alternate approaches that do not employ a FADO.

  9. Multi-Satellite Orbit Determination Using Interferometric Observables with RF Localization Applications

    Science.gov (United States)

    Geeraert, Jeroen L.

    Very long baseline interferometry (VLBI) specifically same-beam interferometry (SBI), and dual-satellite geolocation are two fields of research not previously connected. This is due to the different application of each field, SBI is used for relative interplanetary navigation of two satellites while dual-satellite geolocation is used to locate the source of a radio frequency (RF) signal. In this dissertation however, we leverage both fields to create a novel method for multi-satellite orbit determination (OD) using time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements. The measurements are double differenced between the satellites and the stations, in so doing, many of the common errors are canceled which can significantly improve measurement precision. Provided with this novel OD technique, the observability is first analyzed to determine the benefits and limitations of this method. In all but a few scenarios the measurements successfully reduce the covariance when examining the Cramer-Rao Lower Bound (CRLB). Reduced observability is encountered with geostationary satellites as their motion with respect to the stations is limited, especially when only one baseline is used. However, when using satellite pairs with greater relative motion with respect to the stations, even satellites that are close to, but not exactly in a geostationary orbit can be estimated accurately. We find that in a strong majority of cases the OD technique provides lower uncertainties and solutions far more accurate than using conventional OD observables such as range and range-rate while also not being affected by common errors and biases. We specifically examine GEO-GEO, GEO-MEO, and GEO-LEO dual-satellite estimation cases. The work is further extended by developing a relative navigation scenario where the chief satellite is assumed to have perfect knowledge, or some small amount of uncertainty considered but not estimated, while estimating the deputy

  10. Jitter reduction of a reaction wheel by management of angular momentum using magnetic torquers in nano- and micro-satellites

    Science.gov (United States)

    Inamori, Takaya; Wang, Jihe; Saisutjarit, Phongsatorn; Nakasuka, Shinichi

    2013-07-01

    Nowadays, nano- and micro-satellites, which are smaller than conventional large satellites, provide access to space to many satellite developers, and they are attracting interest as an application of space development because development is possible over shorter time period at a lower cost. In most of these nano- and micro-satellite missions, the satellites generally must meet strict attitude requirements for obtaining scientific data under strict constraints of power consumption, space, and weight. In many satellite missions, the jitter of a reaction wheel degrades the performance of the mission detectors and attitude sensors; therefore, jitter should be controlled or isolated to reduce its effect on sensor devices. In conventional standard-sized satellites, tip-tilt mirrors (TTMs) and isolators are used for controlling or isolating the vibrations from reaction wheels; however, it is difficult to use these devices for nano- and micro-satellite missions under the strict power, space, and mass constraints. In this research, the jitter of reaction wheels is reduced by using accurate sensors, small reaction wheels, and slow rotation frequency reaction wheel instead of TTMs and isolators. The objective of a reaction wheel in many satellite missions is the management of the satellite's angular momentum, which increases because of attitude disturbances. If the magnitude of the disturbance is reduced in orbit or on the ground, the magnitude of the angular momentum that the reaction wheels gain from attitude disturbances in orbit becomes smaller; therefore, satellites can stabilize their attitude using only smaller reaction wheels or slow rotation speed, which cause relatively smaller vibration. In nano- and micro-satellite missions, the dominant attitude disturbance is a magnetic torque, which can be cancelled by using magnetic actuators. With the magnetic compensation, the satellite reduces the angular momentum that the reaction wheels gain, and therefore, satellites do

  11. Hybrid spacecraft attitude control system

    OpenAIRE

    Renuganth Varatharajoo; Ramly Ajir; Tamizi Ahmad

    2016-01-01

    The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS) consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl...

  12. Multi-agent robotic systems and applications for satellite missions

    Science.gov (United States)

    Nunes, Miguel A.

    A revolution in the space sector is happening. It is expected that in the next decade there will be more satellites launched than in the previous sixty years of space exploration. Major challenges are associated with this growth of space assets such as the autonomy and management of large groups of satellites, in particular with small satellites. There are two main objectives for this work. First, a flexible and distributed software architecture is presented to expand the possibilities of spacecraft autonomy and in particular autonomous motion in attitude and position. The approach taken is based on the concept of distributed software agents, also referred to as multi-agent robotic system. Agents are defined as software programs that are social, reactive and proactive to autonomously maximize the chances of achieving the set goals. Part of the work is to demonstrate that a multi-agent robotic system is a feasible approach for different problems of autonomy such as satellite attitude determination and control and autonomous rendezvous and docking. The second main objective is to develop a method to optimize multi-satellite configurations in space, also known as satellite constellations. This automated method generates new optimal mega-constellations designs for Earth observations and fast revisit times on large ground areas. The optimal satellite constellation can be used by researchers as the baseline for new missions. The first contribution of this work is the development of a new multi-agent robotic system for distributing the attitude determination and control subsystem for HiakaSat. The multi-agent robotic system is implemented and tested on the satellite hardware-in-the-loop testbed that simulates a representative space environment. The results show that the newly proposed system for this particular case achieves an equivalent control performance when compared to the monolithic implementation. In terms on computational efficiency it is found that the multi

  13. Attitude stabilization of a spacecraft equipped with large electrostatic protection screens

    Science.gov (United States)

    Nikitin, D. Yu.; Tikhonov, A. A.

    2018-05-01

    A satellite with a system of three electrostatic radiation protection (ERP) screens is under consideration. The screens are constructed as electrostatically charged toroidal shields with characteristic size of order equal to 100 m. The interaction of electric charge with the Earth's magnetic field (EMF) give rise to the Lorentz torque acting upon a satellite attitude motion. As the sizes of ERP system are large, we derive the Lorentz torque taking into account the complex form of ERP screens and gradient of the EMF in the screen volume. It is assumed that the satellite center of charge coincides with the satellite mass center. The EMF is modeled by the straight magnetic dipole. In the paper we investigate the usage of Lorentz torque for passive attitude stabilization for satellite in a circular equatorial orbit. Mathematical model for attitude dynamics of a satellite equipped with ERP interacting with the EMF is derived and first integral of corresponding differential equations is constructed. The straight equilibrium position of the satellite in the orbital frame is found. Sufficient conditions for stability of satellite equilibrium position are constructed with the use of the first integral. The gravity gradient torque is taken into account. The satellite equilibrium stability domain is constructed.

  14. AE-C attitude determination and control prelaunch analysis and operations plan

    Science.gov (United States)

    Werking, R. D.; Headrick, R. D.; Manders, C. F.; Woolley, R. D.

    1973-01-01

    A description of attitude control support being supplied by the Mission and Data Operations Directorate is presented. Included are descriptions of the computer programs being used to support the missions for attitude determination, prediction, and control. In addition, descriptions of the operating procedures which will be used to accomplish mission objectives are provided.

  15. A New Satellite System for Measuring BRDF from Space

    Science.gov (United States)

    Wiscombe, W.; Kaufman, Y.; Herman, J.

    1999-01-01

    Formation flying of satellites is at the beginning of an explosive growth curve. Spacecraft buses are shrinking to the point where we will soon be able to launch 10 micro-satellites or 100 nano-satellites on a single launch vehicle. Simultaneously, spectrometers are just beginning to be flown in space by both the U.S. and Europe. On-board programmable band aggregation will soon allow exactly the spectral bands desired to be returned to Earth. Further efforts are being devoted to radically shrink spectrometers both in size and weight. And GPS positioning and attitude determination, plus new technologies for attitude control, will allow fleets of satellites to all point at the same Earth target. All these advances, in combination, make possible for the first time the proper measurement of Bidirectional Reflectance Distribution (BRDF) form space. Previously space BDRF's were mere composites, built up over time by viewing different types of scenes at different times, then creating catalogs of BDRF functions whose use relied upon correct "scene identification" --the weak link. Formation-flying micro-satellites, carrying programmable spectrometers and precision-pointing at the same Earth target, can measure the full BDRF simultaneously, in real time. This talk will review these technological advances and discuss an actual proposed concept, based on these advances, to measure Earth-target BDRF's (clouds as well as surface) across the full solar spectrum in the 2010 timeframe. This concept is part of a larger concept called Leonardo for properly measuring the radiative forcing of Earth for climate purposes; lack of knowing of BDRF and of diurnal cycle are at present the two limiting factors preventing improved estimates of this forcing.

  16. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Directory of Open Access Journals (Sweden)

    Ghangho Kim

    2015-04-01

    Full Text Available A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO satellite using single-epoch measurements from a Global Positioning System (GPS receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS. Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state.

  17. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Science.gov (United States)

    Kim, Ghangho; Kim, Chongwon; Kee, Changdon

    2015-01-01

    A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO) satellite using single-epoch measurements from a Global Positioning System (GPS) receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS). Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF) tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state. PMID:25835299

  18. Determination of the High School Students’ Attitudes towards Their Teachers

    Directory of Open Access Journals (Sweden)

    Yücel Gelişli

    2017-10-01

    Full Text Available In the current study, the aim is to determine the high school students’ attitudes towards their teachers depending on some variables and the relationship between their attitudes and achievements. Thus, the study was designed according to relational survey model. The population of the study, which was specified based on the purposive sampling method, was comprised of 220 ninth and twelfth graders attending a state high school in the city of Ankara. In the current study, “The Scale of Students’ Attitudes towards the Teacher (SOSATT” was used as a data collection instrument to elicit the students’ attitudes towards their teachers. The reliability co-efficient of the scale was 0.886. A positive and moderately significant correlation was found between the ninth grade students’ achievement scores and their attitude scores taken from the sub-dimensions of the scale and from the whole scale. Finally, teachers can be suggested to establish more effective communication with their students and to use methods and strategies that can enhance academic achievement.

  19. Determinants of consumer attitudes and purchase intentions with regard to genetically modifed foods

    DEFF Research Database (Denmark)

    Bredahl, Lone

    2001-01-01

    of the technology. Purchase decisions with regard to the two product examples were almost exclusively determined by attitudes towards purchasing the products. These were, in turn, significantly influenced by the overall attitude towards genetic modification in food production through their effects on beliefs held...... which was carried out in Denmark, Germany, Italy and the United Kingdom to investigate the formation of consumer attitudes towards genetic modification in food production and of purchase decisions with regard to genetically modified yoghurt and beer. Altogether, 2031 consumers were interviewed...... consumers. Across countries, the attitude towards genetic modification in food production was deeply embedded in more general attitudes held by the consumers, in particular attitude towards nature and attitude towards technology. These general attitudes were found to influence perceived risks and benefits...

  20. Band co-registration modeling of LAPAN-A3/IPB multispectral imager based on satellite attitude

    Science.gov (United States)

    Hakim, P. R.; Syafrudin, A. H.; Utama, S.; Jayani, A. P. S.

    2018-05-01

    One of significant geometric distortion on images of LAPAN-A3/IPB multispectral imager is co-registration error between each color channel detector. Band co-registration distortion usually can be corrected by using several approaches, which are manual method, image matching algorithm, or sensor modeling and calibration approach. This paper develops another approach to minimize band co-registration distortion on LAPAN-A3/IPB multispectral image by using supervised modeling of image matching with respect to satellite attitude. Modeling results show that band co-registration error in across-track axis is strongly influenced by yaw angle, while error in along-track axis is fairly influenced by both pitch and roll angle. Accuracy of the models obtained is pretty good, which lies between 1-3 pixels error for each axis of each pair of band co-registration. This mean that the model can be used to correct the distorted images without the need of slower image matching algorithm, nor the laborious effort needed in manual approach and sensor calibration. Since the calculation can be executed in order of seconds, this approach can be used in real time quick-look image processing in ground station or even in satellite on-board image processing.

  1. Model predictive and reallocation problem for CubeSat fault recovery and attitude control

    Science.gov (United States)

    Franchi, Loris; Feruglio, Lorenzo; Mozzillo, Raffaele; Corpino, Sabrina

    2018-01-01

    In recent years, thanks to the increase of the know-how on machine-learning techniques and the advance of the computational capabilities of on-board processing, expensive computing algorithms, such as Model Predictive Control, have begun to spread in space applications even on small on-board processor. The paper presents an algorithm for an optimal fault recovery of a 3U CubeSat, developed in MathWorks Matlab & Simulink environment. This algorithm involves optimization techniques aiming at obtaining the optimal recovery solution, and involves a Model Predictive Control approach for the attitude control. The simulated system is a CubeSat in Low Earth Orbit: the attitude control is performed with three magnetic torquers and a single reaction wheel. The simulation neglects the errors in the attitude determination of the satellite, and focuses on the recovery approach and control method. The optimal recovery approach takes advantage of the properties of magnetic actuation, which gives the possibility of the redistribution of the control action when a fault occurs on a single magnetic torquer, even in absence of redundant actuators. In addition, the paper presents the results of the implementation of Model Predictive approach to control the attitude of the satellite.

  2. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  3. German telecommunications satellite (Deutscher fernmelde satellit) (DFS-1 and -2)

    Science.gov (United States)

    Hiendlmeier, G.; Schmeller, H.

    1991-01-01

    The German Telecommunications Satellite (DFS) Program is to provide telecommunications service for high data rate transmission of text and video data to the Federal Republic of Germany within the 11-14 GHz and 20-30 GHz bands. The space segment of this program is composed of three satellites, DFS-1, DFS-2, and DFS-3, which will be located at 23.5 degrees E longitude of the geostationary orbit. The DFS will be launched from the Center Spatial Guyanis in French Giana on an Ariane launch vehicle. The mission follows the typical injection sequence: parking orbit, transfer orbit, and earth orbit. Attitude maneuvers will be performed to orient the spacecraft prior to Apogee Kick Motor (AKM) firing. After AKM firing, drift phase orbital and attitude maneuvers will be performed to place the spacecraft in its final geostationary position. The Deep Space Network (DSN) will support the transfer and drift orbit mission phases. Information is presented in tabular form for the following areas: DSN support, compatibility testing, frequency assignments, telemetry, command, and tracking support responsibilities.

  4. Determination of atmospheric aerosol properties over land using satellite measurements

    NARCIS (Netherlands)

    Kokhanovsky, A.A.; Leeuw, G. de

    2009-01-01

    Mostly, aerosol properties are poorly understood because the aerosol properties are very sparse. The first workshop on the determination of atmospheric aerosol properties over land using satellite measurements is convened in Bremen, Germany. In this workshop, the topics of discussions included a

  5. Study of chaos in chaotic satellite systems

    Indian Academy of Sciences (India)

    Ayub Khan

    2017-12-27

    Dec 27, 2017 ... through strange attractor which is framed of the com- plex patterns. The one ... jectory of the Slave satellite be the measured attitude of the Master satellite [12 ... Bifurcation occurs when a tiny smooth change is made to the parameter .... negative and one of these tends to zero which is the required condition ...

  6. Simulation analysis of photometric data for attitude estimation of unresolved space objects

    Science.gov (United States)

    Du, Xiaoping; Gou, Ruixin; Liu, Hao; Hu, Heng; Wang, Yang

    2017-10-01

    The attitude information acquisition of unresolved space objects, such as micro-nano satellites and GEO objects under the way of ground-based optical observations, is a challenge to space surveillance. In this paper, a useful method is proposed to estimate the SO attitude state according to the simulation analysis of photometric data in different attitude states. The object shape model was established and the parameters of the BRDF model were determined, then the space object photometric model was established. Furthermore, the photometric data of space objects in different states are analyzed by simulation and the regular characteristics of the photometric curves are summarized. The simulation results show that the photometric characteristics are useful for attitude inversion in a unique way. Thus, a new idea is provided for space object identification in this paper.

  7. REKF and RUKF for pico satellite attitude estimation in the presence of measurement faults

    Institute of Scientific and Technical Information of China (English)

    Halil Ersin Söken; Chingiz Hajiyev

    2014-01-01

    When a pico satel ite is under normal operational condi-tions, whether it is extended or unscented, a conventional Kalman filter gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunc-tions in the estimation system, the Kalman filter gives inaccurate results and diverges by time. This study compares two different robust Kalman filtering algorithms, robust extended Kalman filter (REKF) and robust unscented Kalman filter (RUKF), for the case of measurement malfunctions. In both filters, by the use of de-fined variables named as the measurement noise scale factor, the faulty measurements are taken into the consideration with a smal weight, and the estimations are corrected without affecting the characteristic of the accurate ones. The proposed robust Kalman filters are applied for the attitude estimation process of a pico satel-lite, and the results are compared.

  8. Framework of Jitter Detection and Compensation for High Resolution Satellites

    Directory of Open Access Journals (Sweden)

    Xiaohua Tong

    2014-05-01

    Full Text Available Attitude jitter is a common phenomenon in the application of high resolution satellites, which may result in large errors of geo-positioning and mapping accuracy. Therefore, it is critical to detect and compensate attitude jitter to explore the full geometric potential of high resolution satellites. In this paper, a framework of jitter detection and compensation for high resolution satellites is proposed and some preliminary investigation is performed. Three methods for jitter detection are presented as follows. (1 The first one is based on multispectral images using parallax between two different bands in the image; (2 The second is based on stereo images using rational polynomial coefficients (RPCs; (3 The third is based on panchromatic images employing orthorectification processing. Based on the calculated parallax maps, the frequency and amplitude of the detected jitter are obtained. Subsequently, two approaches for jitter compensation are conducted. (1 The first one is to conduct the compensation on image, which uses the derived parallax observations for resampling; (2 The second is to conduct the compensation on attitude data, which treats the influence of jitter on attitude as correction of charge-coupled device (CCD viewing angles. Experiments with images from several satellites, such as ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiaometer, LRO (Lunar Reconnaissance Orbiter and ZY-3 (ZiYuan-3 demonstrate the promising performance and feasibility of the proposed framework.

  9. Determinants of a hopeful attitude among family caregivers in a palliative care setting.

    Science.gov (United States)

    Kim, Seon-Young; Kim, Jae-Min; Kim, Sung-Wan; Kang, Hee-Ju; Shin, Il-Seon; Shim, Hyun-Jeong; Cho, Sang-Hee; Chung, Ik-Joo; Yoon, Jin-Sang

    2014-01-01

    This study investigated the determinants of a hopeful attitude among family caregivers involved with palliative care. We investigated a broad range of factors for the patient-family dyad in a palliative care setting using a cross-sectional design. The patients' sociodemographic, clinical and psychological factors were evaluated, as well as caregiver-related sociodemographic and psychological factors, including depressive symptoms, burden, coping style and religiosity. Caregivers were divided into two groups based on a hopeful or nonhopeful attitude and assessed using the abbreviated version of the seven-item Beck Hopelessness Scale (BHS-7). Of 304 analyzed dyads, 210 (69.1%) caregivers showed a hopeful attitude, with a BHS-7 score of 0. The adjusted logistic regression analyses showed that caregivers' hopeful attitude was determined by only their psychological status: less depressive symptoms [odds ratio (OR), 0.86; 95% confidence interval (CI), 0.83-0.90], active coping strategy (OR, 1.12; 95% CI, 1.07-1.18) and lower burden (OR, 0.93; 95% CI, 0.88-0.99). In a subpopulation analysis (n=200), higher religiosity was a significantly associated factor. Healthcare providers need to pay attention to the psychological vulnerability of caregivers to encourage a hopeful attitude. Additional studies of longitudinal design for hopeful attitude throughout the trajectory of palliative care are necessary. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Psychological Determinants of Attitude Toward Euthanasia: A Comparative Study of Female Nurses and Female Nonmedical Professionals.

    Science.gov (United States)

    Głębocka, Alicja

    2018-03-30

    Moral, legal, and psychological aspects of the legality of euthanasia are subject to debates and studies of various communities. Diagnosing attitudes toward euthanasia should involve not only determining the proportion between its supporters and opponents but also the describing of mechanisms behind the development of particular views. The aim of the present study was to determine the psychological determinants of attitudes, such as fear of death-dying, self-esteem, and mood. The methods consisted of using the following questionnaires: the Głębocka-Gawor Attitudes Toward Euthanasia Inventory, the Ochsmann Fear of Death and Dying Inventory, the Dymkowski Self-Description Scale, the Adamczyk-Glebocka Negative Mood Inventory, and a measure of unconscious fear of death. The study involved 49 female nurses and 43 female nonmedical professionals. The results demonstrate that the attitudes and fear of death-dying did not differentiate the two groups of participants. Although the fear of dying weakened the strength of conservative views, it also reinforced the need for informational and psychological support. A high self-esteem was a predictor of conservative attitudes, while negative mood predicted liberal attitudes. Conservative attitudes were connected to a hidden fear of death and high self-esteem, while liberal attitudes were linked to a conscious fear and a rational vision of the self, the world, and the future.

  11. Magsat - A new satellite to survey the earth's magnetic field

    Science.gov (United States)

    Mobley, F. F.; Eckard, L. D.; Fountain, G. H.; Ousley, G. W.

    1980-01-01

    The Magsat satellite was launched on Oct. 30, 1979 into a sun-synchronous dawn-dusk orbit, of 97 deg inclination, 350 km perigee, and 550 km apogee. It contains a precision vector magnetometer and a cesium-vapor scalar magnetometer at the end of a 6-m long graphite epoxy scissors boom. The magnetometers are accurate to 2 nanotesla. A pair of star cameras are used to define the body orientation to 10 arc sec rms. An 'attitude transfer system' measures the orientation of the magnetometer sensors relative to the star cameras to approximately 5 arc sec rms. The satellite position is determined to 70 meters rms by Doppler tracking. The overall objective is to determine each component of the earth's vector magnetic field to an accuracy of 6 nanotesla rms. The Magsat satellite gathers a complete picture of the earth's magnetic field every 12 hours. The vector components are sampled 16 times per second with a resolution of 0.5 nanotesla. The data will be used by the U.S. Geological Survey to prepare 1980 world magnetic field charts and to detect large-scale magnetic anomalies in the earth's crust for use in planning resource exploration strategy.

  12. Characterization and compensation of thermo-elastic instability of SWARM optical bench on Micro Advanced Stellar Compass attitude observations

    DEFF Research Database (Denmark)

    Herceg, Matija; Jørgensen, Peter Siegbjørn; Jørgensen, John Leif

    2017-01-01

    Launched into orbit on November 22, 2013, the Swarm constellation of three satellites precisely measures magnetic signal of the Earth. To ensure the high accuracy of magnetic observation by vector magnetometer (VFM), its inertial attitude is precisely determined by µASC (micro Advanced Stellar Co...

  13. Improving the Determination of Eastern Elongations of Planetary Satellites in the Astronomical Almanac

    Science.gov (United States)

    Rura, Christopher; Stollberg, Mark

    2018-01-01

    The Astronomical Almanac is an annual publication of the US Naval Observatory (USNO) and contains a wide variety of astronomical data used by astronomers worldwide as a general reference or for planning observations. Included in this almanac are the times of greatest eastern and northern elongations of the natural satellites of the planets, accurate to 0.1 hour UT. The production code currently used to determine elongation times generates X and Y coordinates for each satellite (16 total) in 5 second intervals. This consequentially caused very large data files, and resulted in the program devoted to determining the elongation times to be computationally intensive. To make this program more efficient, we wrote a Python program to fit a cubic spline to data generated with a 6-minute time step. This resulted in elongation times that were found to agree with those determined from the 5 second data currently used in a large number of cases and was tested for 16 satellites between 2017 and 2019. The accuracy of this program is being tested for the years past 2019 and, if no problems are found, the code will be considered for production of this section of The Astronomical Almanac.

  14. Precise Orbit Determination of QZS-1

    Science.gov (United States)

    Hugentobler, U.; Steigenberger, P.; Rodriguez-Solano, C.; Hauschild, A.

    2011-12-01

    QZS-1, the first satellite of the Japanese Quasi Zenith Satellite System (QZSS) was launched in September 2010. Transmission of the standard codes started in December 2010 and the satellite was declared healthy in June 2011. Five stations of the COoperative Network for GIOVE Observation (CONGO) were upgraded to provide QZSS tracking capability. These five stations provide the basis for the precise orbit determination (POD) of the QZS-1 spacecraft. The stability and consistency of different orbital arc lengths is analyzed based on orbit fit residuals, day boundary discontinuities, and Satellite Laser Ranging residuals. As QZS-1 simultaneously transmits navigation signals on three frequencies in the L1, L2, and L5 band, different ionosphere-free linear combinations can be formed. The differences of the orbits computed from these different observables (ionosphere-free linear combination of L1/L2 and L1/L5) as well as the stability of the differential code biases estimated within the POD are studied. Finally, results of the attitude determination based on the navigation signal transmission from two different antennas onboard QZS-1 are presented.

  15. H infinity controller design to a rigid-flexible satellite with two vibration modes

    International Nuclear Information System (INIS)

    De Souza, A G; De Souza, L C G

    2015-01-01

    The satellite attitude control system (ACS) design becomes more complex when the satellite structure has components like, flexible solar panels, antennas and mechanical manipulators. These flexible structures can interact with the satellite rigid parts during translational and/or rotational manoeuvre damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. This paper deals with the rigid-flexible satellite ACS design using the H infinity method. The rigid-flexible satellite is represented by a beam connected to a central rigid hub at one end and free at the other one. The equations of motions are obtained considering small flexible deformations and the Euler-Bernoulli hypothesis. The results of the simulations have shown that the H-infinity controller was able to control the rigid motion and suppress the vibrations. (paper)

  16. Advanced Attitude Control af Pico Sized Satellites

    DEFF Research Database (Denmark)

    Larsen, Jesper A.; Amini, Rouzbeh; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    accuracy of better than 5 degrees. Cost, size, weight and power requirements, on the other hand, impose selecting relative simple sensors and actuators which leads to an attitude control requirement of less than 1 degree. This precision is obtained by a combination of magnetorquers and momentum wheels...

  17. Development of Star Tracker System for Accurate Estimation of Spacecraft Attitude

    Science.gov (United States)

    2009-12-01

    For a high- cost spacecraft with accurate pointing requirements, the use of a star tracker is the preferred method for attitude determination. The...solutions, however there are certain costs with using this algorithm. There are significantly more features a triangle can provide when compared to an...to the other. The non-rotating geocentric equatorial frame provides an inertial frame for the two-body problem of a satellite in orbit. In this

  18. Earth rotation, station coordinates and orbit determination from satellite laser ranging

    Science.gov (United States)

    Murata, Masaaki

    The Project MERIT, a special program of international colaboration to Monitor Earth Rotation and Intercompare the Techniques of observation and analysis, has come to an end with great success. Its major objective was to evaluate the ultimate potential of space techniques such as VLBI and satellite laser ranging, in contrast with the other conventional techniques, in the determination of rotational dynamics of the earth. The National Aerospace Laboratory (NAL) has officially participated in the project as an associate analysis center for satellite laser technique for the period of the MERIT Main Campaign (September 1983-October 1984). In this paper, the NAL analysis center results are presented.

  19. Attitude Design for the LADEE Mission

    Science.gov (United States)

    Galal, Ken; Nickel, Craig; Sherman, Ryan

    2015-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) satellite successfully completed its 148-day science investigation in a low-altitude, near-equatorial lunar orbit on April 18, 2014. The LADEE spacecraft was built, managed and operated by NASA's Ames Research Center (ARC). The Mission Operations Center (MOC) was located at Ames and was responsible for activity planning, command sequencing, trajectory and attitude design, orbit determination, and spacecraft operations. The Science Operations Center (SOC) was located at Goddard Space Flight Center and was responsible for science planning, data archiving and distribution. This paper details attitude design and operations support for the LADEE mission. LADEE's attitude design was shaped by a wide range of instrument pointing requirements that necessitated regular excursions from the baseline one revolution per orbit "Ram" attitude. Such attitude excursions were constrained by a number of flight rules levied to protect instruments from the Sun, avoid geometries that would result in simultaneous occlusion of LADEE's two star tracker heads, and maintain the spacecraft within its thermal and power operating limits. To satisfy LADEE's many attitude requirements and constraints, a set of rules and conventions was adopted to manage the complexity of this design challenge and facilitate the automation of ground software that generated pointing commands spanning multiple days of operations at a time. The resulting LADEE Flight Dynamics System (FDS) that was developed used Visual Basic scripts that generated instructions to AGI's Satellite Tool Kit (STK) in order to derive quaternion commands at regular intervals that satisfied LADEE's pointing requirements. These scripts relied heavily on the powerful "align and constrain" capability of STK's attitude module to construct LADEE's attitude profiles and the slews to get there. A description of the scripts and the attitude modeling they embodied is provided. One particular

  20. Optimal magnetic attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Markley, F.L.

    1999-01-01

    because control torques can only be generated perpendicular to the local geomagnetic field vector. This has been a serious obstacle for using magnetorquer based control for three-axis stabilization of a low earth orbit satellite. The problem of controlling the spacecraft attitude using only magnetic...

  1. Spacecraft Attitude Determination with Earth Albedo Corrected Sun Sensor Measurements

    DEFF Research Database (Denmark)

    Bhanderi, Dan

    -Method, Extended Kalman Filter, and Unscented Kalman Filter algorithms are presented and the results are compared. Combining the Unscented Kalman Filter with Earth albedo and enhanced Sun sensor modeling allows for three-axis attitude determination from Sun sensor only, which previously has been perceived...

  2. Satellite power system in the service of man

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, F.W.

    1981-01-01

    The solar power satellite concept is discussed in its various aspects: technical assumptions; unit power output; economic impact; impact on resources; environmental impacts; primary system functions; transmission of energy to earth; reception and conversion to usable energy on earth; space transport; station-keeping and attitude control; fabrication and assembly in space; power beam phase control; satellite maintenance; ancillary functions at rectenna site; and emerging technologies.

  3. Nonlinear bias compensation of ZiYuan-3 satellite imagery with cubic splines

    Science.gov (United States)

    Cao, Jinshan; Fu, Jianhong; Yuan, Xiuxiao; Gong, Jianya

    2017-11-01

    Like many high-resolution satellites such as the ALOS, MOMS-2P, QuickBird, and ZiYuan1-02C satellites, the ZiYuan-3 satellite suffers from different levels of attitude oscillations. As a result of such oscillations, the rational polynomial coefficients (RPCs) obtained using a terrain-independent scenario often have nonlinear biases. In the sensor orientation of ZiYuan-3 imagery based on a rational function model (RFM), these nonlinear biases cannot be effectively compensated by an affine transformation. The sensor orientation accuracy is thereby worse than expected. In order to eliminate the influence of attitude oscillations on the RFM-based sensor orientation, a feasible nonlinear bias compensation approach for ZiYuan-3 imagery with cubic splines is proposed. In this approach, no actual ground control points (GCPs) are required to determine the cubic splines. First, the RPCs are calculated using a three-dimensional virtual control grid generated based on a physical sensor model. Second, one cubic spline is used to model the residual errors of the virtual control points in the row direction and another cubic spline is used to model the residual errors in the column direction. Then, the estimated cubic splines are used to compensate the nonlinear biases in the RPCs. Finally, the affine transformation parameters are used to compensate the residual biases in the RPCs. Three ZiYuan-3 images were tested. The experimental results showed that before the nonlinear bias compensation, the residual errors of the independent check points were nonlinearly biased. Even if the number of GCPs used to determine the affine transformation parameters was increased from 4 to 16, these nonlinear biases could not be effectively compensated. After the nonlinear bias compensation with the estimated cubic splines, the influence of the attitude oscillations could be eliminated. The RFM-based sensor orientation accuracies of the three ZiYuan-3 images reached 0.981 pixels, 0.890 pixels, and 1

  4. Determinants of stakeholders' attitudes towards biodiesel.

    Science.gov (United States)

    Amin, Latifah; Hashim, Hasrizul; Mahadi, Zurina; Ibrahim, Maznah; Ismail, Khaidzir

    2017-01-01

    Concern about the inevitable depletion of global energy resources is rising and many countries are shifting their focus to renewable energy. Biodiesel is one promising energy source that has garnered much public attention in recent years. Many believe that this alternative source of energy will be able to sustain the need for increased energy security while at the same time being friendly to the environment. Public opinion, as well as proactive measures by key players in industry, may play a decisive role in steering the direction of biodiesel development throughout the world. Past studies have suggested that public acceptance of biofuels could be shaped by critical consideration of the risk-benefit perceptions of the product, in addition to the impact on the economy and environment. The purpose of this study was to identify the relevant factors influencing stakeholders' attitudes towards biodiesel derived from crops such as palm oil for vehicle use, as well as to analyse the interrelationships of these factors in an attitude model. A survey of 509 respondents, consisting of various stakeholder groups in the Klang Valley region of Malaysia, was undertaken. The results of the study have substantiated the premise that the most important direct predictor of attitude to biodiesel is the perceived benefits ( β  = 0.80, p  < 0.001). Attitude towards biodiesel also involves the interplay between other factors, such as engagement to biotechnology, trust of key players, attitude to technology, and perceived risk. Although perceived benefit has emerged as the main predictor of public support of biodiesel, the existence of other significant interactions among variables leads to the conclusion that public attitude towards biodiesel should be seen as a multi-faceted process and should be strongly considered prior to its commercialisation.

  5. ATTITUDE DETERMINATION AND CONTROL SYSTEM OF KITSAT-1

    Directory of Open Access Journals (Sweden)

    Hyunwoo Lee

    1996-06-01

    Full Text Available The attitude dynamics of KITSAT-1 are modeled including the gravity gradient stabilization method. We define the operation scenario during the initial attitude stabilization period by means of a magnetorquering control algorithm. The required constraints for the gravity gradient boom deployment are also examined. Attitude dynamics model and control laws are verified by analyzing in-orbit attitude sensor telemetry data.

  6. Combined spacecraft orbit and attitude control through extended Kalman filtering of magnetometer, gyro, and GPS measurements

    Directory of Open Access Journals (Sweden)

    Tamer Mekky Ahmed Habib

    2014-06-01

    Full Text Available The main goal of this research is to establish spacecraft orbit and attitude control algorithms based on extended Kalman filter which provides estimates of spacecraft orbital and attitude states. The control and estimation algorithms must be capable of dealing with the spacecraft conditions during the detumbling and attitude acquisition modes of operation. These conditions are characterized by nonlinearities represented by large initial attitude angles, large initial angular velocities, large initial attitude estimation error, and large initial position estimation error. All of the developed estimation and control algorithms are suitable for application to the next Egyptian scientific satellite, EGYPTSAT-2. The parameters of the case-study spacecraft are similar but not identical to the former Egyptian satellite EGYPTSAT-1. This is done because the parameters of EGYPTSAT-2 satellite have not been consolidated yet. The sensors utilized are gyro, magnetometer, and GPS. Gyro and magnetometer are utilized to provide measurements for the estimates of spacecraft attitude state vector where as magnetometer and GPS are utilized to provide measurements for the estimates of spacecraft orbital state vector.

  7. Personality traits as determinants of the attitude towards women leaders in Montenegrin society

    Directory of Open Access Journals (Sweden)

    Mašnić Jelena

    2011-01-01

    Full Text Available This research aims at defining the determining influence of some psychological characteristics (authoritarianism, self-efficacy, life satisfaction and willingness to change on the attitude towards women leaders. We have used non-experimental research on the sample of 361 respondents from four Montenegrin municipalities (Podgorica, Bar, Nikšić and Berane. Most of the observed social-status characteristics are not important determinants of the observed attitude, which could indicate the presence of traditionalist beliefs about the role of women in the society. Authoritarian people are more prone to negative attitude towards the observed phenomenon. It is also advisable to consider this attitude in light of the resistance to change. Our results suggest the importance of improving the system of professional promotion of staff in modern organizations, especially in the direction of providing gender equality training, both when it comes to overall career development and when it comes to their acceptance of women in leading roles. An equal starting point for taking the leadership position would be provided by a redefinition of gender expectations as well as by the change in the perception of features and the role of leaders. .

  8. Essential Technology and Application of Jitter Detection and Compensation for High Resolution Satellites

    Directory of Open Access Journals (Sweden)

    TONG Xiaohua

    2017-10-01

    Full Text Available Satellite jitter is a common and complex phenomenon for the on-orbit high resolution satellites, which may affect the mapping accuracy and quality of imagery. A framework of jitter detection and compensation integrating data processing of multiple sensors is proposed in this paper. Jitter detection is performed based on multispectral imagery, three-line-array imagery, dense ground control and attitude measurement data, and jitter compensation is conducted both on image and on attitude with the sensor model. The platform jitter of ZY-3 satellite is processed and analyzed using the proposed technology, and the results demonstrate the feasibility and reliability of jitter detection and compensation. The variation law analysis of jitter indicates that the frequencies of jitter of ZY-3 satellite hold in the range between 0.6 and 0.7 Hz, while the amplitudes of jitter of ZY-3 satellite drop from 1 pixel in the early stage to below 0.4 pixels and tend to remain stable in the following stage.

  9. Determinants of Attitude toward Proposed Good and Services Tax among Business Communities in Malaysia

    OpenAIRE

    Bidin, Zainol; Marimuthu, Munusamy; Derashid, Chek; Idris, Kamil Md; Ahmad, Norsiah

    2016-01-01

    Goods and Services Tax (GST) is an indirect tax reform. The decision to implement GST was made on 1 April 2015. The Malaysian business communities are concerned that Goods and Service Tax (GST) would affect their business. In order to comply with the new system, GST, Malaysian citizen need to have a positive attitude toward the GST. The rational is that taxpayers need to be positive in attitude for voluntarily compliance. By determining what factors could possibly influence attitude towards ...

  10. Determination of nursing students' attitudes towards the use of technology.

    Science.gov (United States)

    Terkes, Nurten; Celik, Ferya; Bektas, Hicran

    2018-03-11

    The use of technology is increasingly important in nursing education and practice. For this reason, it is necessary to determine the attitudes of nursing students towards technology. This study was conducted with 508 nursing students. A personal information form that was prepared by the researchers and the Attitudes Toward Technology Scale were used as the data collection tools. The mean score that was obtained by the nursing students from the Attitudes Toward Technology Scale was 61.53 ± 1.13. The Cronbach's alpha coefficient was found to be 0.90. There was a statistically significant difference between the sexes, using a computer, tablet, or laptop, using technology to reach health-related information, and for professional development, using mobile applications related to drug information. There was also a statistical difference between using the Periscope and Scorpio accounts from social media and using Excel and PowerPoint from Microsoft programs. Nursing students are capable of technology-based teaching, which can be expanded as a result. © 2018 Japan Academy of Nursing Science.

  11. Orbit Determination from Tracking Data of Artificial Satellite Using the Method of Differential Correction

    OpenAIRE

    Byoung-Sun Lee; Jung-Hyun Jo; Sang-Young Park; Kyu-Hong Choi; Chun-Hwey Kim

    1988-01-01

    The differential correction process determining osculating orbital elements as correct as possible at a given instant of time from tracking data of artificial satellite was accomplished. Preliminary orbital elements were used as an initial value of the differential correction procedure and iterated until the residual of real observation(O) and computed observation(C) was minimized. Tracking satellite was NOAA-9 or TIROS-N series. Two types of tracking data were prediction data precomputed fro...

  12. Investigation of Adaptive-threshold Approaches for Determining Area-Time Integrals from Satellite Infrared Data to Estimate Convective Rain Volumes

    Science.gov (United States)

    Smith, Paul L.; VonderHaar, Thomas H.

    1996-01-01

    The principal goal of this project is to establish relationships that would allow application of area-time integral (ATI) calculations based upon satellite data to estimate rainfall volumes. The research is being carried out as a collaborative effort between the two participating organizations, with the satellite data analysis to determine values for the ATIs being done primarily by the STC-METSAT scientists and the associated radar data analysis to determine the 'ground-truth' rainfall estimates being done primarily at the South Dakota School of Mines and Technology (SDSM&T). Synthesis of the two separate kinds of data and investigation of the resulting rainfall-versus-ATI relationships is then carried out jointly. The research has been pursued using two different approaches, which for convenience can be designated as the 'fixed-threshold approach' and the 'adaptive-threshold approach'. In the former, an attempt is made to determine a single temperature threshold in the satellite infrared data that would yield ATI values for identifiable cloud clusters which are closely related to the corresponding rainfall amounts as determined by radar. Work on the second, or 'adaptive-threshold', approach for determining the satellite ATI values has explored two avenues: (1) attempt involved choosing IR thresholds to match the satellite ATI values with ones separately calculated from the radar data on a case basis; and (2) an attempt involved a striaghtforward screening analysis to determine the (fixed) offset that would lead to the strongest correlation and lowest standard error of estimate in the relationship between the satellite ATI values and the corresponding rainfall volumes.

  13. DebriSat: The New Hypervelocity Impact Test for Satellite Breakup Fragment Characterization

    Science.gov (United States)

    Cowardin, Heather

    2015-01-01

    To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models: DebriSat is intended to be representative of modern LEO satellites. Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. center dotA key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992. Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.

  14. Attitude Determination Algorithm based on Relative Quaternion Geometry of Velocity Incremental Vectors for Cost Efficient AHRS Design

    Science.gov (United States)

    Lee, Byungjin; Lee, Young Jae; Sung, Sangkyung

    2018-05-01

    A novel attitude determination method is investigated that is computationally efficient and implementable in low cost sensor and embedded platform. Recent result on attitude reference system design is adapted to further develop a three-dimensional attitude determination algorithm through the relative velocity incremental measurements. For this, velocity incremental vectors, computed respectively from INS and GPS with different update rate, are compared to generate filter measurement for attitude estimation. In the quaternion-based Kalman filter configuration, an Euler-like attitude perturbation angle is uniquely introduced for reducing filter states and simplifying propagation processes. Furthermore, assuming a small angle approximation between attitude update periods, it is shown that the reduced order filter greatly simplifies the propagation processes. For performance verification, both simulation and experimental studies are completed. A low cost MEMS IMU and GPS receiver are employed for system integration, and comparison with the true trajectory or a high-grade navigation system demonstrates the performance of the proposed algorithm.

  15. Long-Term Rotational Dynamics of Defunct Earth-Orbiting Satellites

    Data.gov (United States)

    National Aeronautics and Space Administration — While extensive research has been conducted to predict the trajectories of defunct high altitude satellites, the attitude dynamics of these objects are not well...

  16. Attitude dynamics and control of a spacecraft using shifting mass distribution

    Science.gov (United States)

    Ahn, Young Tae

    Spacecraft need specific attitude control methods that depend on the mission type or special tasks. The dynamics and the attitude control of a spacecraft with a shifting mass distribution within the system are examined. The behavior and use of conventional attitude control actuators are widely developed and performing at the present time. However, the advantage of a shifting mass distribution concept can complement spacecraft attitude control, save mass, and extend a satellite's life. This can be adopted in practice by moving mass from one tank to another, similar to what an airplane does to balance weight. Using this shifting mass distribution concept, in conjunction with other attitude control devices, can augment the three-axis attitude control process. Shifting mass involves changing the center-of-mass of the system, and/or changing the moments of inertia of the system, which then ultimately can change the attitude behavior of the system. This dissertation consists of two parts. First, the equations of motion for the shifting mass concept (also known as morphing) are developed. They are tested for their effects on attitude control by showing how shifting the mass changes the spacecraft's attitude behavior. Second, a method for optimal mass redistribution is shown using a combinatorial optimization theory under constraints. It closes with a simple example demonstrating an optimal reconfiguration. The procedure of optimal reconfiguration from one mass distribution to another to accomplish attitude control has been demonstrated for several simple examples. Mass shifting could work as an attitude controller for fine-tuning attitude behavior in small satellites. Various constraints can be applied for different situations, such as no mass shift between two tanks connected by a failed pipe or total amount of shifted mass per pipe being set for the time optimum solution. Euler angle changes influenced by the mass reconfiguration are accomplished while stability

  17. ISS Has an Attitude! Determining ISS Attitude at the ISS Window Observational Research Facility (WORF) Using Landmarks

    Science.gov (United States)

    Runco, Susan K.; Pickard,Henry; Kowtha, Vijayanand; Jackson, Dan

    2011-01-01

    Universities and secondary schools can help solve a real issue for remote sensing from the ISS WORF through hands-on engineering and activities. Remote sensing technology is providing scientists with higher resolution, higher sensitivity sensors. Where is it pointing? - To take full advantage of these improved sensors, space platforms must provide commensurate improvements in attitude determination

  18. Determination of Pole and Rotation Period of not Stabilized Artificial Satellite by Use of Model "diffuse Cylinder"

    Science.gov (United States)

    Kolesnik, S. Ya.; Dobrovolsky, A. V.; Paltsev, N. G.

    The algorithm of determination of orientation of rotation axis (pole) and rotation period of satellite, simulated by a cylinder, which is precessing around of vector of angular moment of pulse with constant nutation angle is offered. The Lambert's law of light reflection is accepted. Simultaneously, dependence of light reflection coefficient versus phase angle is determined. The model's simulation confirm applicability of this method. Results of the calculations for artificial satellite No 28506 are carried out.

  19. Estimating spacecraft attitude based on in-orbit sensor measurements

    DEFF Research Database (Denmark)

    Jakobsen, Britt; Lyn-Knudsen, Kevin; Mølgaard, Mathias

    2014-01-01

    of 2014/15. To better evaluate the performance of the payload, it is desirable to couple the payload data with the satellite's orientation. With AAUSAT3 already in orbit it is possible to collect data directly from space in order to evaluate the performance of the attitude estimation. An extended kalman...... filter (EKF) is used for quaternion-based attitude estimation. A Simulink simulation environment developed for AAUSAT3, containing a "truth model" of the satellite and the orbit environment, is used to test the performance The performance is tested using different sensor noise parameters obtained both...... from a controlled environment on Earth as well as in-orbit. By using sensor noise parameters obtained on Earth as the expected parameters in the attitude estimation, and simulating the environment using the sensor noise parameters from space, it is possible to assess whether the EKF can be designed...

  20. Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites

    DEFF Research Database (Denmark)

    Amini, Rouzbeh; Larsen, Jesper A.; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    This paper presents a developed toolbox for space environment model in SIMULINK that facilitates development and design of Attitude Determination and Control Systems (ADCS) for a Low Earth Orbit (LEO) spacecraft. The toolbox includes, among others, models of orbit propagators, disturbances, Earth...... gravity field, Earth magnetic field and eclipse. The structure and facilities within the toolbox are described and exemplified using a student satellite case (AAUSAT-II). The validity of developed models is confirmed by comparing the simulation results with the realistic data obtained from the Danish...

  1. Attitude Control of Nanosatellites by Paddle Motion Using Elastic Hinges Actuated by Shape Memory Alloy

    Science.gov (United States)

    Iai, Masafumi; Durali, Mohammad; Hatsuzawa, Takeshi

    Recent research has been extending the applications of small satellites called microsatellites, nanosatellites, or picosatellites. To further improve capability of those satellites, a lightweight, active attitude-control mechanism is needed. This paper proposes a concept of inertial orientation control, an attitude control method using movable solar arrays. This method is made suitable for nanosatellites by the use of shape memory alloy (SMA)-actuated elastic hinges and a simple maneuver generation algorithm. The combination of SMA and an elastic hinge allows the hinge to remain lightweight and free of frictional or rolling contacts. Changes in the shrinking and stretching speeds of the SMA were measured in a vacuum chamber. The proposed algorithm constructs a maneuver to achieve arbitrary attitude change by repeating simple maneuvers called unit maneuvers. Provided with three types of unit maneuvers, each degree of freedom of the satellite can be controlled independently. Such construction requires only simple calculations, making it a practical algorithm for a nanosatellite with limited computational capability. In addition, power generation variation caused by maneuvers was analyzed to confirm that a maneuver from any initial attitude to an attitude facing the sun was justifiable in terms of the power budget.

  2. Advanced domestic digital satellite communications systems experiments

    Science.gov (United States)

    Iso, A.; Izumisawa, T.; Ishida, N.

    1984-02-01

    The characteristics of advanced digital transmission systems were measured, using newly developed small earth stations and a K-band and C-band communication satellite. Satellite link performance for data, facsimile, video and packet switching information transmission at bit rates ranging from 6.4 kbit/s to 6.3 Mbit/s have been confirmed, using a small K-band earth station and a demand-assignment time division multiple access system. A low-capacity omni-use C-band terminal experiment has verified a telephone channel transmission performance by spread-spectrum multiple access. Single point to multipoint transmission characteristics of the 64 kbit/s data signals from the computer center were tested, using a receive-only 4 GHz earth terminal. Basic satellite link performance was confirmed under clear-sky conditions. Precise satellite orbit and attitude keeping experiments were carried out to obtain precise satellite antenna pointing accuracy for development of K-band earth stations that do not require satellite tracking equipment. Precise station keeping accuracy of 0.02 degrees was obtained.

  3. Spherical gyroscopic moment stabilizer for attitude control of microsatellites

    Science.gov (United States)

    Keshtkar, Sajjad; Moreno, Jaime A.; Kojima, Hirohisa; Uchiyama, Kenji; Nohmi, Masahiro; Takaya, Keisuke

    2018-02-01

    This paper presents a new and improved concept of recently proposed two-degrees of freedom spherical stabilizer for triaxial orientation of microsatellites. The analytical analysis of the advantages of the proposed mechanism over the existing inertial attitude control devices are introduced. The extended equations of motion of the stabilizing satellite including the spherical gyroscope, for control law design and numerical simulations, are studied in detail. A new control algorithm based on continuous high-order sliding mode algorithms, for managing the torque produced by the stabilizer and therefore the attitude control of the satellite in the presence of perturbations/uncertainties, is presented. Some numerical simulations are carried out to prove the performance of the proposed mechanism and control laws.

  4. Real time prediction and correction of ADCS problems in LEO satellites using fuzzy logic

    Directory of Open Access Journals (Sweden)

    Yassin Mounir Yassin

    2017-06-01

    Full Text Available This approach is concerned with adapting the operations of attitude determination and control subsystem (ADCS of low earth orbit LEO satellites through analyzing the telemetry readings received by mission control center, and then responding to ADCS off-nominal situations. This can be achieved by sending corrective operational Tele-commands within real time. Our approach is related to the fuzzy membership of off-nominal telemetry readings of corrective actions through a set of fuzzy rules based on understanding the ADCS modes resulted from the satellite telemetry readings. Response in real time gives us a chance to avoid risky situations. The approach is tested on the EgyptSat-1 engineering model, which is our method to simulate the results.

  5. Larger Optics and Improved Calibration Techniques for Small Satellite Observations with the ERAU OSCOM System

    Science.gov (United States)

    Bilardi, S.; Barjatya, A.; Gasdia, F.

    OSCOM, Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a system capable of providing time-resolved satellite photometry using commercial-off-the-shelf (COTS) hardware and custom tracking and analysis software. This system has acquired photometry of objects as small as CubeSats using a Celestron 11” RASA and an inexpensive CMOS machine vision camera. For satellites with known shapes, these light curves can be used to verify a satellite’s attitude and the state of its deployed solar panels or antennae. While the OSCOM system can successfully track satellites and produce light curves, there is ongoing improvement towards increasing its automation while supporting additional mounts and telescopes. A newly acquired Celestron 14” Edge HD can be used with a Starizona Hyperstar to increase the SNR for small objects as well as extend beyond the limiting magnitude of the 11” RASA. OSCOM currently corrects instrumental brightness measurements for satellite range and observatory site average atmospheric extinction, but calibrated absolute brightness is required to determine information about satellites other than their spin rate, such as surface albedo. A calibration method that automatically detects and identifies background stars can use their catalog magnitudes to calibrate the brightness of the satellite in the image. We present a photometric light curve from both the 14” Edge HD and 11” RASA optical systems as well as plans for a calibration method that will perform background star photometry to efficiently determine calibrated satellite brightness in each frame.

  6. Energy dissipation/transfer and stable attitude of spatial on-orbit tethered system

    Science.gov (United States)

    Hu, Weipeng; Song, Mingzhe; Deng, Zichen

    2018-01-01

    For the Tethered Satellite System, the coupling between the platform system and the solar panel is a challenge in the dynamic analysis. In this paper, the coupling dynamic behaviors of the Tethered Satellite System that is idealized as a planar flexible damping beam-spring-mass composite system are investigated via a structure-preserving method. Considering the coupling between the plane motion of the system, the oscillation of the spring and the transverse vibration of the beam, the dynamic model of the composite system is established based on the Hamiltonian variational principle. A symplectic dimensionality reduction method is proposed to decouple the dynamic system into two subsystems approximately. Employing the complex structure-preserving approach presented in our previous work, numerical iterations are performed between the two subsystems with weak damping to study the energy dissipation/transfer in the composite system, the effect of the spring stiffness on the energy distribution and the effect of the particle mass on the stability of the composite system. The numerical results show that: the energy transfer approach is uniquely determined by the initial attitude angle, while the energy dissipation speed is mainly depending on the initial attitude angle and the spring stiffness besides the weak damping. In addition, the mass ratio between the platform system and the solar panel determines the stable state as well as the time needed to reach the stable state of the composite system. The numerical approach presented in this paper provides a new way to deal with the coupling dynamic system and the conclusions obtained give some useful advices on the overall design of the Tethered Satellite System.

  7. Integrated identification and control for nanosatellites reclaiming failed satellite

    Science.gov (United States)

    Han, Nan; Luo, Jianjun; Ma, Weihua; Yuan, Jianping

    2018-05-01

    Using nanosatellites to reclaim a failed satellite needs nanosatellites to attach to its surface to take over its attitude control function. This is challenging, since parameters including the inertia matrix of the combined spacecraft and the relative attitude information of attached nanosatellites with respect to the given body-fixed frame of the failed satellite are all unknown after the attachment. Besides, if the total control capacity needs to be increased during the reclaiming process by new nanosatellites, real-time parameters updating will be necessary. For these reasons, an integrated identification and control method is proposed in this paper, which enables the real-time parameters identification and attitude takeover control to be conducted concurrently. Identification of the inertia matrix of the combined spacecraft and the relative attitude information of attached nanosatellites are both considered. To guarantee sufficient excitation for the identification of the inertia matrix, a modified identification equation is established by filtering out sample points leading to ill-conditioned identification, and the identification performance of the inertia matrix is improved. Based on the real-time estimated inertia matrix, an attitude takeover controller is designed, the stability of the controller is analysed using Lyapunov method. The commanded control torques are allocated to each nanosatellite while the control saturation constraint being satisfied using the Quadratic Programming (QP) method. Numerical simulations are carried out to demonstrate the feasibility and effectiveness of the proposed integrated identification and control method.

  8. SmartScan: a robust pushbroom imaging concept for moderate spacecraft attitude stability

    Science.gov (United States)

    Janschek, K.; Tchernykh, V.; Dyblenko, S.; Harnisch, B.

    2017-11-01

    Pushbroom scan cameras with linear image sensors, commonly used for Earth observation from satellites, require high attitude stability during the image acquisition. Especially noticeable are the effects of high frequency attitude variations originating from micro shocks and vibrations, produced by momentum and reaction wheels, mechanically activated coolers, steering and deployment mechanics and other reasons. The SMARTSCAN imaging concept offers high quality imaging even with moderate satellite attitude stability on a sole opto-electronic basis without any moving parts. It uses real-time recording of the actual image motion in the focal plane of the remote sensing camera during the frame acquisition and a posteriori correction of the obtained image distortions on base of the image motion record. Exceptional real-time performances with subpixel accuracy image motion measurement are provided by an innovative high-speed onboard optoelectronic correlation processor. SMARTSCAN allows therefore using smart pushbroom cameras for hyper-spectral imagers on satellites and platforms which are not specially intended for imaging missions, e.g. micro satellites. The paper gives an overview on the system concept and main technologies used (advanced optical correlator for ultra high-speed image motion tracking), it discusses the conceptual design for a smart compact space camera and it reports on airborne test results of a functional breadboard model.

  9. Experimental study on the precise orbit determination of the BeiDou navigation satellite system.

    Science.gov (United States)

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-03-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better.

  10. Miniaurizable, High Performance, Fiber-Optic Gyroscopes for Small Satellites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Small satellites require much lighter weight, smaller, and long life Attitude control components that can withstand stressing launch conditions and space vibration...

  11. Development of Mission and Spacecraft Dynamics Analysis System for Geostationary Communication Satellite

    Directory of Open Access Journals (Sweden)

    Hyeon Cheol Gong

    1998-06-01

    Full Text Available We consider the motion of the subsystems as separate bodies as well as the entire satellite for the attitude and orbit control of a communication satellite by multi-body modeling technique. Thus, the system can be applied to a general communication satellite as well as a specific communication satellite, i.e. Koreasat I, II. The simulation results can be viewed by two-dimensional graphics and three-dimensional animation. The graphical user interface (GUI makes its usage much simpler. We have simulated a couple of scenarios for Koreasat I, II which are being operated as geostationary communication satellites to verify the system performance.

  12. Solar Anomalous and Magnetospheric Particle Explorer attitude control electronics box design and performance

    Science.gov (United States)

    Chamberlin, K.; Clagett, C.; Correll, T.; Gruner, T.; Quinn, T.; Shiflett, L.; Schnurr, R.; Wennersten, M.; Frederick, M.; Fox, S. M.

    1993-01-01

    The attitude Control Electronics (ACE) Box is the center of the Attitude Control Subsystem (ACS) for the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) satellite. This unit is the single point interface for all of the Attitude Control Subsystem (ACS) related sensors and actuators. Commands and telemetry between the SAMPEX flight computer and the ACE Box are routed via a MIL-STD-1773 bus interface, through the use of an 80C85 processor. The ACE Box consists of the flowing electronic elements: power supply, momentum wheel driver, electromagnet driver, coarse sun sensor interface, digital sun sensor interface, magnetometer interface, and satellite computer interface. In addition, the ACE Box also contains an independent Safehold electronics package capable of keeping the satellite pitch axis pointing towards the sun. The ACE Box has dimensions of 24 x 31 x 8 cm, a mass of 4.3 kg, and an average power consumption of 10.5 W. This set of electronics was completely designed, developed, integrated, and tested by personnel at NASA GSFC. SAMPEX was launched on July 3, 1992, and the initial attitude acquisition was successfully accomplished via the analog Safehold electronics in the ACE Box. This acquisition scenario removed the excess body rates via magnetic control and precessed the satellite pitch axis to within 10 deg of the sun line. The performance of the SAMPEX ACS in general and the ACE Box in particular has been quite satisfactory.

  13. Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences

    Science.gov (United States)

    Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.

    2003-01-01

    The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.

  14. Analysis of orbit determination from Earth-based tracking for relay satellites in a perturbed areostationary orbit

    Science.gov (United States)

    Romero, P.; Pablos, B.; Barderas, G.

    2017-07-01

    Areostationary satellites are considered a high interest group of satellites to satisfy the telecommunications needs of the foreseen missions to Mars. An areostationary satellite, in an areoequatorial circular orbit with a period of 1 Martian sidereal day, would orbit Mars remaining at a fixed location over the Martian surface, analogous to a geostationary satellite around the Earth. This work addresses an analysis of the perturbed orbital motion of an areostationary satellite as well as a preliminary analysis of the aerostationary orbit estimation accuracy based on Earth tracking observations. First, the models for the perturbations due to the Mars gravitational field, the gravitational attraction of the Sun and the Martian moons, Phobos and Deimos, and solar radiation pressure are described. Then, the observability from Earth including possible occultations by Mars of an areostationary satellite in a perturbed areosynchronous motion is analyzed. The results show that continuous Earth-based tracking is achievable using observations from the three NASA Deep Space Network Complexes in Madrid, Goldstone and Canberra in an occultation-free scenario. Finally, an analysis of the orbit determination accuracy is addressed considering several scenarios including discontinuous tracking schedules for different epochs and different areoestationary satellites. Simulations also allow to quantify the aerostationary orbit estimation accuracy for various tracking series durations and observed orbit arc-lengths.

  15. Modeling and simulation of satellite subsystems for end-to-end spacecraft modeling

    Science.gov (United States)

    Schum, William K.; Doolittle, Christina M.; Boyarko, George A.

    2006-05-01

    During the past ten years, the Air Force Research Laboratory (AFRL) has been simultaneously developing high-fidelity spacecraft payload models as well as a robust distributed simulation environment for modeling spacecraft subsystems. Much of this research has occurred in the Distributed Architecture Simulation Laboratory (DASL). AFRL developers working in the DASL have effectively combined satellite power, attitude pointing, and communication link analysis subsystem models with robust satellite sensor models to create a first-order end-to-end satellite simulation capability. The merging of these two simulation areas has advanced the field of spacecraft simulation, design, and analysis, and enabled more in-depth mission and satellite utility analyses. A core capability of the DASL is the support of a variety of modeling and analysis efforts, ranging from physics and engineering-level modeling to mission and campaign-level analysis. The flexibility and agility of this simulation architecture will be used to support space mission analysis, military utility analysis, and various integrated exercises with other military and space organizations via direct integration, or through DOD standards such as Distributed Interaction Simulation. This paper discusses the results and lessons learned in modeling satellite communication link analysis, power, and attitude control subsystems for an end-to-end satellite simulation. It also discusses how these spacecraft subsystem simulations feed into and support military utility and space mission analyses.

  16. Tilted wheel satellite attitude control with air-bearing table experimental results

    Science.gov (United States)

    Inumoh, Lawrence O.; Forshaw, Jason L.; Horri, Nadjim M.

    2015-12-01

    Gyroscopic actuators for satellite control have attracted significant research interest over the years, but their viability for the control of small satellites has only recently started to become clear. Research on variable speed gyroscopic actuators has long been focused on single gimbal actuators; double gimbal actuators typically operate at constant wheel spin rate and allow tilt angle ranges far larger than the ranges needed to operate most satellite missions. This research examines a tilted wheel, a newly proposed type of inertial actuator that can generate torques in all three principal axes of a rigid satellite using a spinning wheel and a double tilt mechanism. The tilt mechanism tilts the angular momentum vector about two axes providing two degree of freedom control, while variation of the wheel speed provides the third. The equations of motion of the system lead to a singularity-free system during nominal operation avoiding the need for complex steering logic. This paper describes the hardware design of the tilted wheel and the experimental setup behind both standalone and spherical air-bearing tables used to test it. Experimental results from the air bearing table are provided with the results depicting the high performance capabilities of the proposed actuator in torque generation.

  17. GPS Attitude Determination for Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Toyon Research Corporation proposes to develop a family of compact, low-cost GPS-based attitude (GPS/A) sensors for launch vehicles. In order to obtain 3-D attitude...

  18. Relative navigation and attitude determination using a GPS/INS integrated system near the International Space Station

    Science.gov (United States)

    Um, Jaeyong

    2001-08-01

    The Space Integrated GPS/INS (SIGI) sensor is the primary navigation and attitude determination source for the International Space Station (ISS). The SIGI was successfully demonstrated on-orbit for the first time in the SIGI Orbital Attitude Readiness (SOAR) demonstration on the Space Shuttle Atlantis in May 2000. Numerous proximity operations near the ISS have been and will be performed over the lifetime of the Station. The development of an autonomous relative navigation system is needed to improve the safety and efficiency of vehicle operations near the ISS. A hardware simulation study was performed for the GPS-based relative navigation using the state vector difference approach and the interferometric approach in the absence of multipath. The interferometric approach, where the relative states are estimated directly, showed comparable results for a 1 km baseline. One of the most pressing current technical issues is the design of an autonomous relative navigation system in the proximity of the ISS, where GPS signals are blocked and maneuvers happen frequently. An integrated GPS/INS system is investigated for the possibility of a fully autonomous relative navigation system. Another application of GPS measurements is determination of the vehicle's orientation in space. This study used the SOAR experiment data to characterize the SICI's on-orbit performance for attitude determination. A cold start initialization algorithm was developed for integer ambiguity resolution in any initial orientation. The original algorithm that was used in the SIGI had an operational limitation in the integer ambiguity resolution, which was developed for terrestrial applications, and limited its effectiveness in space. The new algorithm was tested using the SOAR data and has been incorporated in the current SIGI flight software. The attitude estimation performance was examined using two different GPS/INS integration algorithms. The GPS/INS attitude solution using the SOAR data was as

  19. The synchronization method for distributed small satellite SAR

    Science.gov (United States)

    Xing, Lei; Gong, Xiaochun; Qiu, Wenxun; Sun, Zhaowei

    2007-11-01

    One of critical requirement for distributed small satellite SAR is the trigger time precision when all satellites turning on radar loads. This trigger operation is controlled by a dedicated communication tool or GPS system. In this paper a hardware platform is proposed which has integrated navigation, attitude control, and data handling system together. Based on it, a probabilistic synchronization method is proposed for SAR time precision requirement with ring architecture. To simplify design of transceiver, half-duplex communication way is used in this method. Research shows that time precision is relevant to relative frequency drift rate, satellite number, retry times, read error and round delay length. Installed with crystal oscillator short-term stability 10 -11 magnitude, this platform can achieve and maintain nanosecond order time error with a typical three satellites formation experiment during whole operating process.

  20. Determinants of Teachers' Attitudes towards E- Learning in Tanzanian Higher Learning Institutions

    Science.gov (United States)

    Kisanga, Dalton H.

    2016-01-01

    This survey research study presents the findings on determinants of teachers' attitudes towards e-learning in Tanzanian higher learning institutions. The study involved 258 teachers from 4 higher learning institutions obtained through stratified, simple random sampling. Questionnaires and documentary review were used in data collection. Data were…

  1. Embedding of attitude determination in n-dimensional spaces

    Science.gov (United States)

    Bar-Itzhack, Itzhack Y.; Markley, F. Landis

    1988-01-01

    The problem of attitude determination in n-dimensional spaces is addressed. The proper parameters are found, and it is shown that not all three-dimensional methods have useful extensions to higher dimensions. It is demonstrated that Rodriguez parameters are conveniently extendable to other dimensions. An algorithm for using these parameters in the general n-dimensional case is developed and tested with a four-dimensional example. The correct mathematical description of angular velocities is addressed, showing that angular velocity in n dimensions cannot be represented by a vector but rather by a tensor of the second rank. Only in three dimensions can the angular velocity be described by a vector.

  2. A Numerical Approach to Determine Attitude Dynamics of Floating Bodies with Irregular Configurations

    Directory of Open Access Journals (Sweden)

    Jiann-Lin Chen

    2014-07-01

    Full Text Available This study acquires the attitude dynamics of floating bodies with irregular configurations using an effective computational model, which has been validated theoretically and verified by experiments. By comparison a correlation formula was described to predict inclinations for the floating slender body imitating an excise torpedo. Thereafter a computational model was developed to account for bodies with attitudes in more general situations. For demonstration, a submersible was simulated to reveal that the inclinations vary abruptly around certain longitudinal locations of center of gravity. The property variations during water ingress assumption were presented. Similar to the virtue tank, an innovative concept of building the numerical data base for a specific floating body has been proposed, by which the position of its center of gravity can be obtained by interpolation from attitude data in tables as determined by the present computational model.

  3. The Global Positioning System (GPS) and attitude determination: Applications and activities in the Flight Dynamics Division

    Science.gov (United States)

    Ketchum, Eleanor; Garrick, Joe

    1995-01-01

    The application of GPS to spacecraft attitude determination is a new and growing field. Although the theoretical literature is extensive, space flight testing is currently sparse and inadequate. As an operations organization, the Flight Dynamics Division (FDD) has the responsibility to investigate this new technology, and determine how best to implement the innovation to provide adequate support for future missions. This paper presents some of the current efforts within FDD with regard to GPS attitude determination. This effort specifically addresses institutional capabilities to accommodate a new type of sensor, critically evaluating the literature for recent advancements, and in examining some available -albeit crude- flight data.

  4. ATS-6 engineering performance report. Volume 2: Orbit and attitude controls

    Science.gov (United States)

    Wales, R. O. (Editor)

    1981-01-01

    Attitude control is reviewed, encompassing the attitude control subsystem, spacecraft attitude precision pointing and slewing adaptive control experiment, and RF interferometer experiment. The spacecraft propulsion system (SPS) is discussed, including subsystem, SPS design description and validation, orbital operations and performance, in-orbit anomalies and contingency operations, and the cesium bombardment ion engine experiment. Thruster failure due to plugging of the propellant feed passages, a major cause for mission termination, are considered among the critical generic failures on the satellite.

  5. Combined Geometric and Neural Network Approach to Generic Fault Diagnosis in Satellite Actuators and Sensors

    DEFF Research Database (Denmark)

    Baldi, P.; Blanke, Mogens; Castaldi, P.

    2016-01-01

    This paper presents a novel scheme for diagnosis of faults affecting the sensors measuring the satellite attitude, body angular velocity and flywheel spin rates as well as defects related to the control torques provided by satellite reaction wheels. A nonlinear geometric design is used to avoid t...

  6. Attitude control for on-orbit servicing spacecraft using hybrid actuator

    Science.gov (United States)

    Wu, Yunhua; Han, Feng; Zheng, Mohong; He, Mengjie; Chen, Zhiming; Hua, Bing; Wang, Feng

    2018-03-01

    On-orbit servicing is one of the research hotspots of space missions. A small satellite equipped with multiple robotic manipulators is expected to carry out device replacement task for target large spacecraft. Attitude hyperstable control of a small satellite platform under rotations of the manipulators is a challenging problem. A hybrid momentum exchanging actuator consists of Control Moment Gyro (CMG) and Reaction Wheel (RW) is proposed to tackle the above issue, due to its huge amount of momentum storage capacity of the CMG and high control accuracy of the RW, in which the CMG produces large command torque while the RW offers additional control degrees. The constructed dynamic model of the servicing satellite advises that it's feasible for attitude hyperstable control of the platform with arbitrary manipulators through compensating the disturbance generated by rapid rotation of the manipulators. Then, null motion between the CMG and RW is exploited to drive the system to the expected target with favorable performance, and to overcome the CMG inherent geometric singularity and RW saturation. Simulations with different initial situations, including CMG hyperbolic and elliptic singularities and RW saturation, are executed. Compared to the scenarios where the CMG or RW fails stabilizing the platform, large control torque, precise control effect and escape of singularity are guaranteed by the introduced hybrid actuator, CMGRW (CMGRW refers to the hybrid momentum exchanging devices in this paper, consisting of 4 CMGs in classical pyramid cluster and 3 RWs in an orthogonal group (specific description can been found in Section 4)). The feasible performance of the satellite, CMG and RW under large disturbance demonstrates that the control architecture proposed is capable of attitude control for on-orbit servicing satellite with multiple robotic manipulators.

  7. Predictors of Maternal and Early Adolescent Attitudes Toward Children's Nurturance and Self-Determination Rights

    Science.gov (United States)

    Peterson-Badali, Michele; Morine, Stephany L.; Ruck, Martin D.; Slonim, Naomi

    2004-01-01

    Children's rights to nurturance and self-determination have been included in social policy agendas for many years. Children's and parents' attitudes concerning children's rights are likely an important determinant of whether rights on paper actually serve to protect the well-being of children, yet there is little research on factors associated…

  8. Fuzzy attitude control for a nanosatellite in leo orbit

    Science.gov (United States)

    Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria; Aviles, Taisir

    Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In this work, a tailored fuzzy controller is designed for a nanosatellite and is compared with a traditional Proportional Integrative Derivative (PID) controller. Both control methodologies are compared within the same specific mission. The orbit height varies along the mission from injection at around 380 km down to a 200 km height orbit, and the mission requires pointing accuracy over the whole time. Due to both the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, a robust and efficient ADCS is required. For these reasons a fuzzy logic controller is implemented as the brain of the ADCS and its performance and efficiency are compared to a traditional PID. The fuzzy controller is designed in three separated controllers, each one acting on one of the Euler angles of the satellite in an orbital frame. The fuzzy memberships are constructed taking into account the mission requirements, the physical properties of the satellite and the expected performances. Both methodologies, fuzzy and PID, are fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. Finally both methods are probed in different environments to test their characteristics. The simulations show that the fuzzy controller is much more efficient (up to 65% less power required) in single maneuvers, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. A brief mission description is depicted as well as the design process of both ADCS controllers. Finally the validation process and the results obtained during the simulations are described. Those results show that the fuzzy logic methodology is valid for small

  9. Turkish high school students' attitudes toward addictive substances: association with perceived parental attitudes.

    Science.gov (United States)

    Ustüner, Mehmet; Aksoy, Kasim; Ozer, Niyazi

    2009-01-01

    The aim of this research is twofold: 1) to determine attitudes of high school students toward addictive substances; and 2) to determine students' attitudes toward addictive substances in terms of some variables including gender, grade, and perceived parental attitudes. To this end, Addictive Substances Attitudes Scale and Parental Attitudes Scale were given to a sample of 745 high school students (F = 330, M = 415) chosen by purposive sampling method. Results showed that compared to the males, females had more negative attitudes toward addictive substances. And compared to students from the upper grades, students from lower grades had more negative attitudes toward addictive substances. It is also found that students' attitudes toward addictive substances correlate with perceived parental attitudes. The correlation is low and positive for perceived democratic parental attitudes (r = .29), negative and low for perceived authoritarian parental attitudes (r = -.27).

  10. Sensors for x-ray astronomy satellite

    International Nuclear Information System (INIS)

    Makino, Fumiyoshi; Kondo, Ichiro; Nishioka, Yonero; Kameda, Yoshihiko; Kubo, Masaki.

    1980-01-01

    For the purpose of observing the cosmic X-ray, the cosmic X-ray astronomy satellite (CORSA-b, named ''Hakucho'', Japanese for cygnus,) was launched Feb. 21, 1979 by Institute of Space and Aeronautical Science, University of Tokyo. The primary objectives of the satellite are: to perform panoramic survey of the space for X-ray bursts and to perform the spectral and temporal measurement of X-ray sources. The very soft X-ray sensor for X-ray observation and the horizon sensor for spacecraft attitude sensing were developed by Toshiba Corporation under technical support by University of Tokyo and Nagoya University for ''Hakucho''. The features of these sensors are outlined in this paper. (author)

  11. Modeling of tethered satellite formations using graph theory

    DEFF Research Database (Denmark)

    Larsen, Martin Birkelund; Smith, Roy S; Blanke, Mogens

    2011-01-01

    satellite formation and proposes a method to deduce the equations of motion for the attitude dynamics of the formation in a compact form. The use of graph theory and Lagrange mechanics together allows a broad class of formations to be described using the same framework. A method is stated for finding...

  12. Roll Attitude Determination of Spin Projectile Based on GPS and Magnetoresistive Sensor

    Directory of Open Access Journals (Sweden)

    Dandan Yuan

    2017-01-01

    Full Text Available Improvement in attack accuracy of the spin projectiles is a very significant objective, which increases the overall combat efficiency of projectiles. The accurate determination of the projectile roll attitude is the recent objective of the efficient guidance and control. The roll measurement system for the spin projectile is commonly based on the magnetoresistive sensor. It is well known that the magnetoresistive sensor produces a sinusoidally oscillating signal whose frequency slowly decays with time, besides the possibility of blind spot. On the other hand, absolute sensors such as GPS have fixed errors even though the update rates are generally low. To earn the benefit while eliminating weaknesses from both types of sensors, a mathematical model using filtering technique can be designed to integrate the magnetoresistive sensor and GPS measurements. In this paper, a mathematical model is developed to integrate the magnetoresistive sensor and GPS measurements in order to get an accurate prediction of projectile roll attitude in a real flight time. The proposed model is verified using numerical simulations, which illustrated that the accuracy of the roll attitude measurement is improved.

  13. [Volunteering in psychiatry: determining factors of attitude and actual commitment].

    Science.gov (United States)

    Lauber, C; Nordt, C; Falcato, L; Rössler, W

    2000-10-01

    To assess public attitude, actual working commitment and the respective influence of demographic, psychological and sociological variables on voluntary help in psychiatry. Multiple logistic regression analysis of the results of a representative population survey in Switzerland. Public attitude is mostly positive, but the respective working commitment is small. Attitude depends on gender, psychological factors (social distance, stereotypes), and on attitude to community psychiatry. For the working commitment, clearly distinct predictors are found: age, emotions, participation, and perceived discrimination to the mentally ill. For both attitude and commitment, having a social profession and interest in mass media are predictors. Internationally compared, Switzerland has a positive attitude and a big commitment in lay helping in psychiatry. But attitude is different from actual commitment. Lay helpers' work must be limited to realizable tasks and they need professional recruitment, instruction, and supervision otherwise they tend to be over-burden. The unused potential of voluntary helpers has to be opened specifically, e.g. by involving mass media and opinion-makers.

  14. Determinants of attitude and buying intention of organic milk

    Directory of Open Access Journals (Sweden)

    Ivica Faletar

    2016-01-01

    Full Text Available The consumption of organic milk is increasing rapidly. However, the behaviour of organic milk consumers is still not enough investigated. The purpose of this study was to determine variables which influence the attitude towards organic milk consumption, as well as variables which influence the buying intention of organic milk. Thereat, factors such as positive opinion toward organic milk and food related lifestyle, as well as level of trust in home as in EU organic food label, objective knowledge and gender of respondents showed to have a significant influence on organic milk buying intention. More precisely, a significant and positive influence on buying intention of organic milk was observed considering the belief in positive aspects of organic milk, subjective knowledge, objective knowledge, and attitude towards buying organic milk. According to the results of this study recommendations for marketing practice and especially for communication policy might be created. Communication directed to female population should use classic advertising based on functional information, while the one directed to male population should use more emotional advertising. By using classic advertising education of consumers should be performed in order to promote benefits of organic milk in regards to conventional milk.

  15. A Satellite Data Analysis and CubeSat Instrument Simulator Tool for Simultaneous Multi-spacecraft Measurements of Solar Energetic Particles

    Science.gov (United States)

    Vannitsen, Jordan; Rizzitelli, Federico; Wang, Kaiti; Segret, Boris; Juang, Jyh-Ching; Miau, Jiun-Jih

    2017-12-01

    This paper presents a Multi-satellite Data Analysis and Simulator Tool (MDAST), developed with the original goal to support the science requirements of a Martian 3-Unit CubeSat mission profile named Bleeping Interplanetary Radiation Determination Yo-yo (BIRDY). MDAST was firstly designed and tested by taking into account the positions, attitudes, instruments field of view and energetic particles flux measurements from four spacecrafts (ACE, MSL, STEREO A, and STEREO B). Secondly, the simulated positions, attitudes and instrument field of view from the BIRDY CubeSat have been adapted for input. And finally, this tool can be used for data analysis of the measurements from the four spacecrafts mentioned above so as to simulate the instrument trajectory and observation capabilities of the BIRDY CubeSat. The onset, peak and end time of a solar particle event is specifically defined and identified with this tool. It is not only useful for the BIRDY mission but also for analyzing data from the four satellites aforementioned and can be utilized for other space weather missions with further customization.

  16. Orbit Determination from Tracking Data of Artificial Satellite Using the Method of Differential Correction

    Directory of Open Access Journals (Sweden)

    Byoung-Sun Lee

    1988-06-01

    Full Text Available The differential correction process determining osculating orbital elements as correct as possible at a given instant of time from tracking data of artificial satellite was accomplished. Preliminary orbital elements were used as an initial value of the differential correction procedure and iterated until the residual of real observation(O and computed observation(C was minimized. Tracking satellite was NOAA-9 or TIROS-N series. Two types of tracking data were prediction data precomputed from mean orbital elements of TBUS and real data obtained from tracking 1.707GHz HRPT signal of NOAA-9 using 5 meter auto-track antenna in Radio Research Laboratory. According to tracking data either Gauss method or Herrick-Gibbs method was applied to preliminary orbit determination. In the differential correction stage we used both of the Escobal(1975's analytical method and numerical ones are nearly consistent. And the differentially corrected orbit converged to the same value in spite of the differences between preliminary orbits of each time span.

  17. Study of Pitch Attitude Estimation Using a High-Definition TV (HDTV) Camera on the Japanese Lunar Explorer SELENE (KAGUYA)

    Science.gov (United States)

    Sobue, Shinichi; Yamazaki, Junichi; Matsumoto, Shuichi; Konishi, Hisahiro; Maejima, Hironori; Sasaki, Susumu; Kato, Manabu; Mitsuhashi, Seiji; Tachino, Junichi

    The lunar explorer SELENE (also called KAGUYA) carried thirteen scientific mission instruments to reveal the origin and evolution of Moon and to investigate the possible future utilization of Moon. In addition to the scientific instruments, a high-definition TV (HDTV) camera provided by the Japan Broadcasting Corporation (NHK) was carried on KAGUYA to promote public outreach. We usually use housekeeping telemetry data to derive the satellite attitude along with orbital determination and propagated information. However, it takes time to derive this information, since orbital determination and propagation calculation require the use of the orbital model. When a malfunction of the KAGUYA reaction wheel occurred, we could not have correct attitude information. This means that we don’t have a correct orbital determination in timely fashion. However, when we checked HDTV movies, we found that horizon information on the lunar surface derived from HDTV moving images as a horizon sensor was very useful for the detection of the attitude of KAGUYA. We then compared this information with the attitude information derived from orbital telemetry to validate the accuracy of the HDTV derived estimation. As a result of this comparison, there are good pitch attitude estimation using HDTV derived estimation and we could estimate the pitch angle change during the KAGUYA mission operation simplify and quickly. In this study, we show the usefulness of this HDTV camera as a horizon sensor.

  18. The Attitude Determination Scale for Value Acquisition: A Validity and Reliability Study

    Science.gov (United States)

    Cetin, Saban

    2017-01-01

    This study aims to develop a measurement tool having measurement reliability with the aim of determining attitudes for values acquisition of secondary school students. The study was conducted on totally 325 high school senior students as 200 female and 125 male students in spring semester of 2014-2015 educational year. In the study, expert opinion…

  19. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  20. Development and control of a three-axis satellite simulator for the bifocal relay mirror initiative

    OpenAIRE

    Chernesky, Vincent S.

    2001-01-01

    The Three Axis Satellite Simulator (TASS) is a 4-foot diameter octagonal platform supported on a spherical air bearing. The platform hosts several satellite subsystems, including rate gyros, reaction wheels, thrusters, sun sensors, and an onboard control computer. This free-floating design allows for realistic emulation of satellite attitude dynamics in a laboratory environment. The bifocal relay mirror spacecraft system is composed of two optically coupled telescopes used to redirect the las...

  1. Didactic satellite based on Android platform for space operation demonstration and development

    Science.gov (United States)

    Ben Bahri, Omar; Besbes, Kamel

    2018-03-01

    Space technology plays a pivotal role in society development. It offers new methods for telemetry, monitoring and control. However, this sector requires training, research and skills development but the lack of instruments, materials and budgets affects the ambiguity to understand satellite technology. The objective of this paper is to describe a demonstration prototype of a smart phone device for space operations study. Therefore, the first task was carried out to give a demonstration for spatial imagery and attitude determination missions through a wireless communication. The smart phone's Bluetooth was used to achieve this goal inclusive of a new method to enable real time transmission. In addition, an algorithm around a quaternion based Kalman filter was included in order to detect the reliability of the prototype's orientation. The second task was carried out to provide a demonstration for the attitude control mission using the smart phone's orientation sensor, including a new method for an autonomous guided mode. As a result, the acquisition platform showed real time measurement with good accuracy for orientation detection and image transmission. In addition, the prototype kept the balance during the demonstration based on the attitude control method.

  2. The determinations of remote sensing satellite data delivery service quality: A positivistic case study in Chinese context

    Science.gov (United States)

    Jin, Jiahua; Yan, Xiangbin; Tan, Qiaoqiao; Li, Yijun

    2014-03-01

    With the development of remote sensing technology, remote-sensing satellite has been widely used in many aspects of national construction. Big data with different standards and massive users with different needs, make the satellite data delivery service to be a complex giant system. How to deliver remote-sensing satellite data efficiently and effectively is a big challenge. Based on customer service theory, this paper proposes a hierarchy conceptual model for examining the determinations of remote-sensing satellite data delivery service quality in the Chinese context. Three main dimensions: service expectation, service perception and service environment, and 8 sub-dimensions are included in the model. Large amount of first-hand data on the remote-sensing satellite data delivery service have been obtained through field research, semi-structured questionnaire and focused interview. A positivist case study is conducted to validate and develop the proposed model, as well as to investigate the service status and related influence mechanisms. Findings from the analysis demonstrate the explanatory validity of the model, and provide potentially helpful insights for future practice.

  3. The determinations of remote sensing satellite data delivery service quality: A positivistic case study in Chinese context

    International Nuclear Information System (INIS)

    Jin, Jiahua; Yan, Xiangbin; Tan, Qiaoqiao; Li, Yijun

    2014-01-01

    With the development of remote sensing technology, remote-sensing satellite has been widely used in many aspects of national construction. Big data with different standards and massive users with different needs, make the satellite data delivery service to be a complex giant system. How to deliver remote-sensing satellite data efficiently and effectively is a big challenge. Based on customer service theory, this paper proposes a hierarchy conceptual model for examining the determinations of remote-sensing satellite data delivery service quality in the Chinese context. Three main dimensions: service expectation, service perception and service environment, and 8 sub-dimensions are included in the model. Large amount of first-hand data on the remote-sensing satellite data delivery service have been obtained through field research, semi-structured questionnaire and focused interview. A positivist case study is conducted to validate and develop the proposed model, as well as to investigate the service status and related influence mechanisms. Findings from the analysis demonstrate the explanatory validity of the model, and provide potentially helpful insights for future practice

  4. Smallholder farmers’ attitudes and determinants of adaptation to climate risks in East Africa

    NARCIS (Netherlands)

    Shikuku, Kelvin M.; Winowiecki, Leigh; Twyman, Jennifer; Eitzinger, Anton; Perez, Juan G.; Mwongera, Caroline; Läderach, Peter

    2017-01-01

    Adapting to climate risks is central to the goal of increasing food security and enhancing resilience of farming systems in East Africa. We examined farmers’ attitudes and assessed determinants of adaptation using data from a random sample of 500 households in Borana, Ethiopia; Nyando, Kenya;

  5. Initial Performance of the Attitude Control and Aspect Determination Subsystems on the Chandra Observatory

    Science.gov (United States)

    Cameron, R.; Aldcroft, T.; Podgorski, W. A.; Freeman, M. D.

    2000-01-01

    The aspect determination system of the Chandra X-ray Observatory plays a key role in realizing the full potential of Chandra's X-ray optics and detectors. We review the performance of the spacecraft hardware components and sub-systems, which provide information for both real time control of the attitude and attitude stability of the Chandra Observatory and also for more accurate post-facto attitude reconstruction. These flight components are comprised of the aspect camera (star tracker) and inertial reference units (gyros), plus the fiducial lights and fiducial transfer optics which provide an alignment null reference system for the science instruments and X-ray optics, together with associated thermal and structural components. Key performance measures will be presented for aspect camera focal plane data, gyro performance both during stable pointing and during maneuvers, alignment stability and mechanism repeatability.

  6. Real-Time Single-Frequency GPS/MEMS-IMU Attitude Determination of Lightweight UAVs

    Science.gov (United States)

    Eling, Christian; Klingbeil, Lasse; Kuhlmann, Heiner

    2015-01-01

    In this paper, a newly-developed direct georeferencing system for the guidance, navigation and control of lightweight unmanned aerial vehicles (UAVs), having a weight limit of 5 kg and a size limit of 1.5 m, and for UAV-based surveying and remote sensing applications is presented. The system is intended to provide highly accurate positions and attitudes (better than 5 cm and 0.5∘) in real time, using lightweight components. The main focus of this paper is on the attitude determination with the system. This attitude determination is based on an onboard single-frequency GPS baseline, MEMS (micro-electro-mechanical systems) inertial sensor readings, magnetic field observations and a 3D position measurement. All of this information is integrated in a sixteen-state error space Kalman filter. Special attention in the algorithm development is paid to the carrier phase ambiguity resolution of the single-frequency GPS baseline observations. We aim at a reliable and instantaneous ambiguity resolution, since the system is used in urban areas, where frequent losses of the GPS signal lock occur and the GPS measurement conditions are challenging. Flight tests and a comparison to a navigation-grade inertial navigation system illustrate the performance of the developed system in dynamic situations. Evaluations show that the accuracies of the system are 0.05∘ for the roll and the pitch angle and 0.2∘ for the yaw angle. The ambiguities of the single-frequency GPS baseline can be resolved instantaneously in more than 90% of the cases. PMID:26501281

  7. Dynamic and reduced-dynamic precise orbit determination of satellites in low earth orbits

    International Nuclear Information System (INIS)

    Swatschina, P.

    2009-01-01

    The precise positioning of satellites in Low Earth Orbits (LEO) has become a key technology for advanced space missions. Dedicated satellite missions, such as CHAMP, GRACE and GOCE, that aim to map the Earths gravity field and its variation over time with unprecedented accuracy, initiated the demand for highly precise orbit solutions of LEO satellites. Furthermore, a wide range of additional science opportunities opens up with the capability to generate accurate LEO orbits. For all considered satellite missions, the primary measurement system for navigation is a spaceborne GPS receiver. The goal of this thesis is to establish and implement methods for Precise Orbit Determination (POD) of LEO satellites using GPS. Striving for highest precision using yet efficient orbit generation strategies, the attained orbit solutions are aimed to be competitive with the most advanced solutions of other institutions. Dynamic and reduced-dynamic orbit models provide the basic concepts of this work. These orbit models are subsequently adjusted to the highly accurate GPS measurements. The GPS measurements are introduced at the zero difference level in the ionosphere free linear combination. Appropriate procedures for GPS data screening and editing are established to detect erroneous data and to employ measurements of good quality only. For the dynamic orbit model a sophisticated force model, especially designed for LEO satellites, has been developed. In order to overcome the limitations that are induced by the deficiencies of the purely dynamical model, two different types of empirical parameters are introduced into the force model. These reduced-dynamic orbit models allow for the generation of much longer orbital arcs while preserving the spacecraft dynamics to the most possible extent. The two methods for reduced-dynamic orbit modeling are instantaneous velocity changes (pulses) or piecewise constant accelerations. For both techniques highly efficient modeling algorithms are

  8. Determinants of public attitudes to genetically modified salmon.

    Directory of Open Access Journals (Sweden)

    Latifah Amin

    Full Text Available The objective of this paper is to assess the attitude of Malaysian stakeholders to genetically modified (GM salmon and to identify the factors that influence their acceptance of GM salmon using a structural equation model. A survey was carried out on 434 representatives from various stakeholder groups in the Klang Valley region of Malaysia. Public attitude towards GM salmon was measured using self-developed questionnaires with seven-point Likert scales. The findings of this study have confirmed that public attitudes towards GM salmon is a complex issue and should be seen as a multi-faceted process. The most important direct predictors for the encouragement of GM salmon are the specific application-linked perceptions about religious acceptability of GM salmon followed by perceived risks and benefits, familiarity, and general promise of modern biotechnology. Encouragement of GM salmon also involves the interplay among other factors such as general concerns of biotechnology, threatening the natural order of things, the need for labeling, the need for patenting, confidence in regulation, and societal values. The research findings can serve as a database that will be useful for understanding the social construct of public attitude towards GM foods in a developing country.

  9. About the parametric interplay between ionic mach number, body-size, and satellite potential in determining the ion depletion in the wake of the S3-2 Satellite

    International Nuclear Information System (INIS)

    Samir, U.; Wildman, P.J.; Rich, F.; Brinton, H.C.; Sagalyn, R.C.

    1981-01-01

    Measurements of ion current, electron temperature, and density and values of satellite potential from the U.S. Air Force Satellite S3-2 together with ion composition measurements from the Atmosphere Explorer (AE-E) satellite were used to examine the variation of the ratio α = [I/sub +/(wake)]/[I/sub +/(ambient)] (where I/sub +/ is the ion current) with altitude and to examine the significance of the parametric interplay between ionic Mach number, normalized body size R/sub D/( = R0/lambda/sub D/, where R 0 is the satellite radius and lambda/sub D/ is the ambient debye length) and normalized body potenital phi/sub N/( = ephis/KT/sub e/, where phi/sub s/ is the satellite potential, T/sub e/ is the electron temperature, and e and K are constants). It was possible to separate between the influence of R/sub D/ and phi/sub N/ on α for a specific range parameters. Uncertainty, however, remains regarding the competiton between R/sub D/ and S(H + ) and S(O + ) are oxygen and hydrogen ionic Mach numbers, respectively) in determining the ion distribution in the nearest vicincity to the satellite surface. A brief discussion relevant to future experiments in the area of body plasma flow interactions to be conducted on board the Shuttle/Spacelab facility, is also included

  10. Determining Attitude of Object from Needle Map Using Extended Gaussian Image.

    Science.gov (United States)

    1983-04-01

    D Images," Artificial Intellignece , Vol 17, August, 1981, 285-349. [6] Marr, D., Vision W.H. Freeman, San Francisco, 1982. [7] Brady, M...Witkin, A.P. "Recovering Surface Shape and Orientation from texture," Artificial Intellignec , Vol. 17, 1982, 17-47. [22] Horn, B.K.P., "SEQUINS and...AD-R131 617 DETERMINING ATTITUDE OF OBJECT FROM NEEDLE MAP USING I/i EXTENDED GAUSSIAN IMRGE(U) MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL

  11. MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16

    DEFF Research Database (Denmark)

    Yin, Hang; Pasut, Alessandra; Soleimani, Vahab D

    2013-01-01

    Brown adipose tissue (BAT) is an energy-dispensing thermogenic tissue that plays an important role in balancing energy metabolism. Lineage-tracing experiments indicate that brown adipocytes are derived from myogenic progenitors during embryonic development. However, adult skeletal muscle stem cells...... (satellite cells) have long been considered uniformly determined toward the myogenic lineage. Here, we report that adult satellite cells give rise to brown adipocytes and that microRNA-133 regulates the choice between myogenic and brown adipose determination by targeting the 3'UTR of Prdm16. Antagonism...... of microRNA-133 during muscle regeneration increases uncoupled respiration, glucose uptake, and thermogenesis in local treated muscle and augments whole-body energy expenditure, improves glucose tolerance, and impedes the development of diet-induced obesity. Finally, we demonstrate that miR-133 levels...

  12. College curriculum-sharing via CTS. [Communications Technology Satellite

    Science.gov (United States)

    Hudson, H. E.; Guild, P. D.; Coll, D. C.; Lumb, D. R.

    1975-01-01

    Domestic communication satellites and video compression techniques will increase communication channel capacity and reduce cost of video transmission. NASA Ames Research Center, Stanford University and Carleton University are participants in an experiment to develop, demonstrate, and evaluate college course sharing techniques via satellite using video compression. The universities will exchange televised seminar and lecture courses via CTS. The experiment features real-time video compression with channel coding and quadra-phase modulation for reducing transmission bandwidth and power requirements. Evaluation plans and preliminary results of Carleton surveys on student attitudes to televised teaching are presented. Policy implications for the U.S. and Canada are outlined.

  13. Determining criminal responsibility: How relevant are insight and personal attitudes to mock jurors?

    Science.gov (United States)

    Jung, Sandy

    2015-01-01

    High levels of insight are interpreted as indications of a treatment compliance and good outcome by clinical professionals. However, it is unclear whether a defendant's insight plays a role in the decision-making of jurors when determining criminal responsibility. It may be the case that personal biases and attitudes toward the mentally ill and the insanity defense are more relevant in such decisions. This study examines the influence of two core dimensions of insight and personal attitudes on juror decision-making. Participants read trial scenarios describing a defendant who is accused of a violent crime and is diagnosed with schizophrenia. Assigning a verdict of not criminally responsible to the defendant was not influenced by insight, but instead, by supportive attitudes of the insanity defense and higher attributions of blame to external factors and to psychological factors. These findings highlight the need for continued investigation in the area of extra-legal factors that guide legal decision-making when defendants have a mental disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Managing Cassini Safe Mode Attitude at Saturn

    Science.gov (United States)

    Burk, Thomas A.

    2010-01-01

    The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. In the event safe mode interrupts normal orbital operations, Cassini has flight software fault protection algorithms to detect, isolate, and recover to a thermally safe and commandable attitude and then wait for further instructions from the ground. But the Saturn environment is complex, and safety hazards change depending on where Cassini is in its orbital trajectory around Saturn. Selecting an appropriate safe mode attitude that insures safe operation in the Saturn environment, including keeping the star tracker field of view clear of bright bodies, while maintaining a quiescent, commandable attitude, is a significant challenge. This paper discusses the Cassini safe table management strategy and the key criteria that must be considered, especially during low altitude flybys of Titan, in deciding what spacecraft attitude should be used in the event of safe mode.

  15. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  16. Young Adults' Belief in Genetic Determinism, and Knowledge and Attitudes towards Modern Genetics and Genomics: The PUGGS Questionnaire.

    Science.gov (United States)

    Carver, Rebecca Bruu; Castéra, Jérémy; Gericke, Niklas; Evangelista, Neima Alice Menezes; El-Hani, Charbel N

    2017-01-01

    In this paper we present the development and validation a comprehensive questionnaire to assess college students' knowledge about modern genetics and genomics, their belief in genetic determinism, and their attitudes towards applications of modern genetics and genomic-based technologies. Written in everyday language with minimal jargon, the Public Understanding and Attitudes towards Genetics and Genomics (PUGGS) questionnaire is intended for use in research on science education and public understanding of science, as a means to investigate relationships between knowledge, determinism and attitudes about modern genetics, which are to date little understood. We developed a set of core ideas and initial items from reviewing the scientific literature on genetics and previous studies on public and student knowledge and attitudes about genetics. Seventeen international experts from different fields (e.g., genetics, education, philosophy of science) reviewed the initial items and their feedback was used to revise the questionnaire. We validated the questionnaire in two pilot tests with samples of university freshmen students. The final questionnaire contains 45 items, including both multiple choice and Likert scale response formats. Cronbach alpha showed good reliability for each section of the questionnaire. In conclusion, the PUGGS questionnaire is a reliable tool for investigating public understanding and attitudes towards modern genetics and genomic-based technologies.

  17. Young Adults’ Belief in Genetic Determinism, and Knowledge and Attitudes towards Modern Genetics and Genomics: The PUGGS Questionnaire

    Science.gov (United States)

    Carver, Rebecca Bruu; Castéra, Jérémy; Gericke, Niklas; Evangelista, Neima Alice Menezes

    2017-01-01

    In this paper we present the development and validation a comprehensive questionnaire to assess college students’ knowledge about modern genetics and genomics, their belief in genetic determinism, and their attitudes towards applications of modern genetics and genomic-based technologies. Written in everyday language with minimal jargon, the Public Understanding and Attitudes towards Genetics and Genomics (PUGGS) questionnaire is intended for use in research on science education and public understanding of science, as a means to investigate relationships between knowledge, determinism and attitudes about modern genetics, which are to date little understood. We developed a set of core ideas and initial items from reviewing the scientific literature on genetics and previous studies on public and student knowledge and attitudes about genetics. Seventeen international experts from different fields (e.g., genetics, education, philosophy of science) reviewed the initial items and their feedback was used to revise the questionnaire. We validated the questionnaire in two pilot tests with samples of university freshmen students. The final questionnaire contains 45 items, including both multiple choice and Likert scale response formats. Cronbach alpha showed good reliability for each section of the questionnaire. In conclusion, the PUGGS questionnaire is a reliable tool for investigating public understanding and attitudes towards modern genetics and genomic-based technologies. PMID:28114357

  18. Baseline configuration for GNSS attitude determination with an analytical least-squares solution

    International Nuclear Information System (INIS)

    Chang, Guobin; Wang, Qianxin; Xu, Tianhe

    2016-01-01

    The GNSS attitude determination using carrier phase measurements with 4 antennas is studied on condition that the integer ambiguities have been resolved. The solution to the nonlinear least-squares is often obtained iteratively, however an analytical solution can exist for specific baseline configurations. The main aim of this work is to design this class of configurations. Both single and double difference measurements are treated which refer to the dedicated and non-dedicated receivers respectively. More realistic error models are employed in which the correlations between different measurements are given full consideration. The desired configurations are worked out. The configurations are rotation and scale equivariant and can be applied to both the dedicated and non-dedicated receivers. For these configurations, the analytical and optimal solution for the attitude is also given together with its error variance–covariance matrix. (paper)

  19. Determination Gradients of the Earth's Magnetic Field from the Measurements of the Satellites and Inversion of the Kursk Magnetic Anomaly

    Science.gov (United States)

    Karoly, Kis; Taylor, Patrick T.; Geza, Wittmann

    2014-01-01

    We computed magnetic field gradients at satellite altitude, over Europe with emphasis on the Kursk Magnetic Anomaly (KMA). They were calculated using the CHAMP satellite total magnetic anomalies. Our computations were done to determine how the magnetic anomaly data from the new ESA/Swarm satellites could be utilized to determine the structure of the magnetization of the Earths crust, especially in the region of the KMA. Since the ten years of 2 CHAMP data could be used to simulate the Swarm data. An initial East magnetic anomaly gradient map of Europe was computed and subsequently the North, East and Vertical magnetic gradients for the KMA region were calculated. The vertical gradient of the KMA was determined using Hilbert transforms. Inversion of the total KMA was derived using Simplex and Simulated Annealing algorithms. Our resulting inversion depth model is a horizontal quadrangle with upper 300-329 km and lower 331-339 km boundaries.

  20. In-flight Quality and Accuracy of Attitude Measurements from the CHAMP Advanced Stellar Compass

    DEFF Research Database (Denmark)

    Jørgensen, Peter Siegbjørn; Jørgensen, John Leif; Denver, Troelz

    2005-01-01

    The German geo-observations satellite CHAMP carries highly accurate vector instruments. The orientation of these relative to the inertial reference frame is obtained using star trackers. These advanced stellar compasses (ASC) are fully autonomous units, which provide, in real time, the absolute...... attitude with accuracy in the arc second range. In order to investigate the in-flight accuracy of the ASC, the terminology to characterize noise and biases is introduced. Relative instrument accuracy (RIA) and absolute instrument accuracy (AIA) can in principle be determined in-flight. However problems...

  1. Determinants of attitude to volunteering in psychiatry: results of a public opinion survey in Switzerland.

    Science.gov (United States)

    Lauber, Christoph; Nordt, Carlos; Falcato, Luis; Rössler, Wulf

    2002-09-01

    The United Nations proclaimed 2001 the "International Year of Volunteers". Little is known about factors influencing the attitude to volunteering in psychiatry. However, knowledge about these factors is important as target groups to be addressed by an awareness and promotion campaign could be identified. To determine the influence of demographic, psychological and sociological factors on the attitude to volunteering in psychiatry. Multiple logistic regression analysis of the results of an opinion survey conducted on a representative population sample in Switzerland (n = 1737). Public attitude is mostly positive. It depends, however, on the form of volunteering. Two explanatory models for volunteering in psychiatry were found: first, the "antipathetic person" having social distance to and negative stereotypes towards the mentally ill. Second, the "people with social responsibility and commitment" who have former experience in volunteering, a positive attitude to community psychiatry, interest in mass media, a social profession and perceive discrimination of mentally ill persons. Age and gender are significant predictors. An awareness and promotion campaign to use the vast potential of people willing to volunteer in psychiatry can be primarily focused on those with a basic interest in social issues. Volunteering must be limited in time and responsibility. Contacting people with a positive attitude by mass media is a promising way.

  2. High speed reaction wheels for satellite attitude control and energy storage

    Science.gov (United States)

    Studer, P.; Rodriguez, E.

    1985-01-01

    The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.

  3. First Attempt of Orbit Determination of SLR Satellites and Space Debris Using Genetic Algorithms

    Science.gov (United States)

    Deleflie, F.; Coulot, D.; Descosta, R.; Fernier, A.; Richard, P.

    2013-08-01

    We present an orbit determination method based on genetic algorithms. Contrary to usual estimation methods mainly based on least-squares methods, these algorithms do not require any a priori knowledge of the initial state vector to be estimated. These algorithms can be applied when a new satellite is launched or for uncatalogued objects that appear in images obtained from robotic telescopes such as the TAROT ones. We show in this paper preliminary results obtained from an SLR satellite, for which tracking data acquired by the ILRS network enable to build accurate orbital arcs at a few centimeter level, which can be used as a reference orbit ; in this case, the basic observations are made up of time series of ranges, obtained from various tracking stations. We show as well the results obtained from the observations acquired by the two TAROT telescopes on the Telecom-2D satellite operated by CNES ; in that case, the observations are made up of time series of azimuths and elevations, seen from the two TAROT telescopes. The method is carried out in several steps: (i) an analytical propagation of the equations of motion, (ii) an estimation kernel based on genetic algorithms, which follows the usual steps of such approaches: initialization and evolution of a selected population, so as to determine the best parameters. Each parameter to be estimated, namely each initial keplerian element, has to be searched among an interval that is preliminary chosen. The algorithm is supposed to converge towards an optimum over a reasonable computational time.

  4. Smoking prevalence, determinants, knowledge, attitudes and habits among Buddhist monks in Lao PDR.

    Science.gov (United States)

    Vanphanom, Sychareun; Phengsavanh, Alongkon; Hansana, Visanou; Menorath, Sing; Tomson, Tanja

    2009-06-08

    This cross-sectional study, the first of its kind, uses baseline data on smoking prevalence among Buddhist monks in Northern and Central provinces of Lao PDR. Between March and September 2006, 390 monks were interviewed, using questionnaires, to assess smoking prevalence including determinants, knowledge and attitudes. Data entry was performed with Epi-Info (version 6.04) and data analysis with SPSS version 11. Descriptive analysis was employed for all independent and dependent variables. Chi-square or Fisher's exact test were used for categorical variables to compare smoking status, knowledge, attitudes and province. Logistic regression was applied to identify determinants of smoking. Daily current smoking was 11.8%. Controlling for confounding variables, age at start of monkhood and the length of religious education were significant determinants of smoking. The majority of the monks 67.9% were in favor of the idea that offerings of cigarettes should be prohibited and that they should refuse the cigarettes offered to them (30.3%) but, in fact, 34.8% of the monks who were current smokers accepted cigarettes from the public. Some monks were smokers, whilst they, in fact, should be used as non-smoking role models. There was no anti-smoking policy in temples. This needs to be addressed when setting up smoke-free policies at temples.

  5. Modeling determinants of medication attitudes and poor adherence in early nonaffective psychosis: implications for intervention.

    Science.gov (United States)

    Drake, Richard J; Nordentoft, Merete; Haddock, Gillian; Arango, Celso; Fleischhacker, W Wolfgang; Glenthøj, Birte; Leboyer, Marion; Leucht, Stefan; Leweke, Markus; McGuire, Phillip; Meyer-Lindenberg, Andreas; Rujescu, Dan; Sommer, Iris E; Kahn, René S; Lewis, Shon W

    2015-05-01

    We aimed to design a multimodal intervention to improve adherence following first episode psychosis, consistent with current evidence. Existing literature identified medication attitudes, insight, and characteristics of support as important determinants of adherence to medication: we examined medication attitudes, self-esteem, and insight in an early psychosis cohort better to understand their relationships. Existing longitudinal data from 309 patients with early Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, nonaffective psychosis (83% first episode) were analyzed to test the hypothesis that medication attitudes, while meaningfully different from "insight," correlated with insight and self-esteem, and change in each influenced the others. Rosenberg Self-Esteem Scale, Birchwood Insight Scale, and Positive and Negative Syndrome Scale insight were assessed at presentation, after 6 weeks and 3 and 18 months. Drug Attitudes Inventory (DAI) and treatment satisfaction were rated from 6 weeks onward. Structural equation models of their relationships were compared. Insight measures' and DAI's predictive validity were compared against relapse, readmission, and remission. Analysis found five latent constructs best fitted the data: medication attitudes, self-esteem, accepting need for treatment, self-rated insight, and objective insight. All were related and each affected the others as it changed, except self-esteem and medication attitudes. Low self-reported insight at presentation predicted readmission. Good 6-week insight (unlike drug attitudes) predicted remission. Literature review and data modeling indicated that a multimodal intervention using motivational interviewing, online psychoeducation, and SMS text medication reminders to enhance adherence without damaging self-concept was feasible and appropriate. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For

  6. Determination of the Impact of Urbanization on Agricultural Lands using Multi-temporal Satellite Sensor Images

    Science.gov (United States)

    Kaya, S.; Alganci, U.; Sertel, E.; Ustundag, B.

    2015-12-01

    Throughout the history, agricultural activities have been performed close to urban areas. Main reason behind this phenomenon is the need of fast marketing of the agricultural production to urban residents and financial provision. Thus, using the areas nearby cities for agricultural activities brings out advantage of easy transportation of productions and fast marketing. For decades, heavy migration to cities has directly and negatively affected natural grasslands, forests and agricultural lands. This pressure has caused agricultural lands to be changed into urban areas. Dense urbanization causes increase in impervious surfaces, heat islands and many other problems in addition to destruction of agricultural lands. Considering the negative impacts of urbanization on agricultural lands and natural resources, a periodic monitoring of these changes becomes indisputably important. At this point, satellite images are known to be good data sources for land cover / use change monitoring with their fast data acquisition, large area coverages and temporal resolution properties. Classification of the satellite images provides thematic the land cover / use maps of the earth surface and changes can be determined with GIS based analysis multi-temporal maps. In this study, effects of heavy urbanization over agricultural lands in Istanbul, metropolitan city of Turkey, were investigated with use of multi-temporal Landsat TM satellite images acquired between 1984 and 2011. Images were geometrically registered to each other and classified using supervised maximum likelihood classification algorithm. Resulting thematic maps were exported to GIS environment and destructed agricultural lands by urbanization were determined using spatial analysis.

  7. A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking

    Science.gov (United States)

    Densmore, Arthur C.; Jamnejad, Vahraz; Woo, Kenneth E.

    1995-03-01

    A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  8. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  9. East–West GEO Satellite Station-Keeping with Degraded Thruster Response

    Directory of Open Access Journals (Sweden)

    Stoian Borissov

    2015-09-01

    Full Text Available The higher harmonic terms of Earth’s gravitational potential slowly modify the nominal longitude of geostationary Earth orbit (GEO satellites, while the third-body presence (Moon and Sun mainly affects their latitude. For this reason, GEO satellites periodically need to perform station-keeping maneuvers, namely, east–west and north–south maneuvers to compensate for longitudinal and latitudinal variations, respectively. During the operational lifetime of GEO satellites, the thrusters’ response when commanded to perform these maneuvers slowly departs from the original nominal impulsive behavior. This paper addresses the practical problem of how to perform reliable east–west station-keeping maneuvers when thruster response is degraded. The need for contingency intervention from ground-based satellite operators is reduced by breaking apart the scheduled automatic station-keeping maneuvers into smaller maneuvers. Orbital alignment and attitude are tracked on-board during and in between sub-maneuvers, and any off nominal variations are corrected for with subsequent maneuvers. These corrections are particularly important near the end of the lifetime of GEO satellites, where thruster response is farthest from nominal performance.

  10. Study to forecast and determine characteristics of world satellite communications market

    Science.gov (United States)

    Filep, R. T.; Schnapf, A.; Fordyce, S. W.

    1983-01-01

    The world commercial communications satellite market during the spring and summer of 1983 was examined and characteristics and forecasts of the market extending to the year 2000 were developed. Past, present and planned satellites were documented in relation to frequencies, procurement and launch dates, costs, transponders, and prime contractor. Characteristics of the market are outlined for the periods 1965 - 1985, 1986 - 1989, and 1990 - 2000. Market share forecasts, discussions of potential competitors in various world markets, and profiles of major communication satellite manufacturing and user countries are documented.

  11. Automatic astronomical coordinate determination using digital zenith cameras

    Directory of Open Access Journals (Sweden)

    S Farzaneh

    2009-12-01

    Full Text Available Celestial positioning has been used for navigation purposes for many years. Stars as the extra-terrestrial benchmarks provide unique opportunity in absolute point positioning. However, astronomical field data acquisition and data processing of the collected data is very time-consuming. The advent of the Global Positioning System (GPS nearly made the celestial positioning system obsolete. The new satellite-based positioning system has been very popular since it is very efficient and convenient for many daily life applications. Nevertheless, the celestial positioning method is never replaced by satellite-based positioning in absolute point positioning sense. The invention of electro-optical devices at the beginning of the 21st century was really a rebirth in geodetic astronomy. Today, the digital cameras with relatively high geometric and radiometric accuracy has opened a new insight in satellite attitude determination and the study of the Earth's surface geometry and physics of its interior, i.e., computation of astronomical coordinates and the vertical deflection components. This method or the so-called astrogeodetic vision-based method help us to determine astronomical coordinates with an accuracy better than 0.1 arc second. The theoretical background, an innovative transformation approach and the preliminary numerical results are addressed in this paper.

  12. Smoking prevalence, determinants, knowledge, attitudes and habits among Buddhist monks in Lao PDR

    Directory of Open Access Journals (Sweden)

    Menorath Sing

    2009-06-01

    Full Text Available Abstract Background This cross-sectional study, the first of its kind, uses baseline data on smoking prevalence among Buddhist monks in Northern and Central provinces of Lao PDR. Findings Between March and September 2006, 390 monks were interviewed, using questionnaires, to assess smoking prevalence including determinants, knowledge and attitudes. Data entry was performed with Epi-Info (version 6.04 and data analysis with SPSS version 11. Descriptive analysis was employed for all independent and dependent variables. Chi-square or Fisher's exact test were used for categorical variables to compare smoking status, knowledge, attitudes and province. Logistic regression was applied to identify determinants of smoking. Daily current smoking was 11.8%. Controlling for confounding variables, age at start of monkhood and the length of religious education were significant determinants of smoking. The majority of the monks 67.9% were in favor of the idea that offerings of cigarettes should be prohibited and that they should refuse the cigarettes offered to them (30.3% but, in fact, 34.8% of the monks who were current smokers accepted cigarettes from the public. Conclusion Some monks were smokers, whilst they, in fact, should be used as non-smoking role models. There was no anti-smoking policy in temples. This needs to be addressed when setting up smoke-free policies at temples.

  13. Atmospheric density determination using high-accuracy satellite GPS data

    Science.gov (United States)

    Tingling, R.; Miao, J.; Liu, S.

    2017-12-01

    Atmospheric drag is the main error source in the orbit determination and prediction of low Earth orbit (LEO) satellites, however, empirical models which are used to account for atmosphere often exhibit density errors around 15 30%. Atmospheric density determination thus become an important topic for atmospheric researchers. Based on the relation between atmospheric drag force and the decay of orbit semi-major axis, we derived atmospheric density along the trajectory of CHAMP with its Rapid Science Orbit (RSO) data. Three primary parameters are calculated, including the ratio of cross sectional area to mass, drag coefficient, and the decay of semi-major axis caused by atmospheric drag. We also analyzed the source of error and made a comparison between GPS-derived and reference density. Result on 2 Dec 2008 shows that the mean error of GPS-derived density can decrease from 29.21% to 9.20% when time span adopted on the process of computation increase from 10min to 50min. Result for the whole December indicates that when the time span meet the condition that the amplitude of the decay of semi-major axis is much greater than its standard deviation, then density precision of 10% can be achieved.

  14. Computing Thermal Imbalance Forces On Satellites

    Science.gov (United States)

    Vigue, Yvonne; Schutz, Robert E.; Sewell, Granville; Abusali, Pothai A. M.

    1994-01-01

    HEAT.PRO computer program calculates imbalance force caused by heating of surfaces of satellite. Calculates thermal imbalance force and determines its effect on orbit of satellite, especially where shadow cast by Earth Causes periodic changes in thermal environment around satellite. Written in FORTRAN 77.

  15. GNSS, Satellite Altimetry and Formosat-3/COSMIC for Determination of Ionosphere Parameters

    Science.gov (United States)

    Mahdi Alizadeh Elizei, M.; Schuh, Harald; Schmidt, Michael; Todorova, Sonya

    The dispersion of ionosphere with respect to the microwave signals allows gaining information about the parameters of this medium in terms of the electron density (Ne), or the Total Elec-tron Content (TEC). In the last decade space geodetic techniques, such as Global Navigation Satellite System (GNSS), satellite altimetry missions, and Low Earth Orbiting (LEO) satel-lites have turned into a promising tool for remote sensing the ionosphere. The dual-frequency GNSS observations provide the main input data for development of Global Ionosphere Maps (GIM). However, the GNSS stations are heterogeneously distributed, with large gaps particu-larly over the sea surface, which lowers the precision of the GIM over these areas. Conversely, dual-frequency satellite altimetry missions provide information about the ionosphere precisely above the sea surface. In addition, LEO satellites such as Formosat-3/COSMIC (F-3/C) pro-vide well-distributed information of ionosphere around the world. In this study we developed GIMs of VTEC from combination of GNSS, satellite altimetry and F-3/C data with temporal resolution of 2 hours and spatial resolution of 5 degree in longitude and 2.5 degree in latitude. The combined GIMs provide a more homogeneous global coverage and higher precision and reliability than results of each individual technique.

  16. Consumers’ attitudes towards green food in China

    DEFF Research Database (Denmark)

    Perrea, Toula; Grunert, Klaus G; Krystallis Krontalis, Athanasios

    Green food is perceived by Chinese consumers as environmentally friendly and safe to consume. Through a Value-Attitude model, the paper examines the degree to which attitudes towards green food is determined by consumers’ values and their general attitudes towards environment and technology....... The link between collectivism, attitudes towards environment and attitudes towards green food is the strongest one. Collectivism also influences attitudes towards technology, which in turn influence attitudes towards green food. However, the lack of significant relationship between individualism...... and attitudes towards technology points towards the belief of Chinese people that technology is a positive determinant of food safety, and that interest in technology steams from altruistic predispositions....

  17. Attitude Control System Design for the Solar Dynamics Observatory

    Science.gov (United States)

    Starin, Scott R.; Bourkland, Kristin L.; Kuo-Chia, Liu; Mason, Paul A. C.; Vess, Melissa F.; Andrews, Stephen F.; Morgenstern, Wendy M.

    2005-01-01

    The Solar Dynamics Observatory mission, part of the Living With a Star program, will place a geosynchronous satellite in orbit to observe the Sun and relay data to a dedicated ground station at all times. SDO remains Sun- pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system is a single-fault tolerant design. Its fully redundant attitude sensor complement includes 16 coarse Sun sensors, a digital Sun sensor, 3 two-axis inertial reference units, 2 star trackers, and 4 guide telescopes. Attitude actuation is performed using 4 reaction wheels and 8 thrusters, and a single main engine nominally provides velocity-change thrust. The attitude control software has five nominal control modes-3 wheel-based modes and 2 thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. The paper details the mode designs and their uses.

  18. Concept of AHRS Algorithm Designed for Platform Independent Imu Attitude Alignment

    Science.gov (United States)

    Tomaszewski, Dariusz; Rapiński, Jacek; Pelc-Mieczkowska, Renata

    2017-12-01

    Nowadays, along with the advancement of technology one can notice the rapid development of various types of navigation systems. So far the most popular satellite navigation, is now supported by positioning results calculated with use of other measurement system. The method and manner of integration will depend directly on the destination of system being developed. To increase the frequency of readings and improve the operation of outdoor navigation systems, one will support satellite navigation systems (GPS, GLONASS ect.) with inertial navigation. Such method of navigation consists of several steps. The first stage is the determination of initial orientation of inertial measurement unit, called INS alignment. During this process, on the basis of acceleration and the angular velocity readings, values of Euler angles (pitch, roll, yaw) are calculated allowing for unambiguous orientation of the sensor coordinate system relative to external coordinate system. The following study presents the concept of AHRS (Attitude and heading reference system) algorithm, allowing to define the Euler angles.The study were conducted with the use of readings from low-cost MEMS cell phone sensors. Subsequently the results of the study were analyzed to determine the accuracy of featured algorithm. On the basis of performed experiments the legitimacy of developed algorithm was stated.

  19. The GLAS Algorithm Theoretical Basis Document for Precision Attitude Determination (PAD)

    Science.gov (United States)

    Bae, Sungkoo; Smith, Noah; Schutz, Bob E.

    2013-01-01

    The Geoscience Laser Altimeter System (GLAS) was the sole instrument for NASAs Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry mission. The primary purpose of the ICESat mission was to make ice sheet elevation measurements of the polar regions. Additional goals were to measure the global distribution of clouds and aerosols and to map sea ice, land topography and vegetation. ICESat was the benchmark Earth Observing System (EOS) mission to be used to determine the mass balance of the ice sheets, as well as for providing cloud property information, especially for stratospheric clouds common over polar areas.

  20. The determination of infant feeding attitudes among Turkish mothers using the Iowa Infant Feeding Attitude Scale.

    Science.gov (United States)

    Topal, Sumeyra; Yuvaci, Hilal Uslu; Erkorkmaz, Unal; Cinar, Nursan; Altinkaynak, Sevin

    2017-10-01

    To assess whether the Iowa Infant Feeding Attitude Scale is a valid and reliable scale for Turkish mothers, and to assess maternal attitudes toward various aspects of infant feeding. This methodological, analytical study was conducted at the obstetrics and gynaecology department of Sakarya Training and Research Hospital, Sakarya, Turkey, from June to August 2015, and comprised mothers of newborn babies. Data was collected using the Turkish version of Iowa Infant Feeding Attitude Scale. SPSS 23 was used for data analysis. There were 391 participants in the study. Five items of the original Iowa Infant Feeding Attitude Scale were excluded due to the low correlation with the scale integrity (Cronbach's alpha=0.67). The total mean score of the mothers was 48.11±6.57. A statistically significant difference was found between the educational status, having social security, what the mothers having other children fed these children in the first 6 months and family types (p=0.05 each). Significant difference was also found between the mothers only breastfeeding and the mothers feeding with mother's milk and formula (p=0.008). The scale was found to be culturally acceptable, reliable and valid scale for Turkish mothers.

  1. 76 FR 591 - Determination of Rates and Terms for Preexisting Subscription and Satellite Digital Audio Radio...

    Science.gov (United States)

    2011-01-05

    ... with the $150 filing fee, must be addressed to: Copyright Royalty Board, P.O. Box 70977, Washington, DC..., parties must pay the filing fee with a check or money order made payable to the ``Copyright Royalty Board... LIBRARY OF CONGRESS Copyright Royalty Board [Docket No. 2011-1 CRB PSS/Satellite II] Determination...

  2. Analysis on Sealing Reliability of Bolted Joint Ball Head Component of Satellite Propulsion System

    Science.gov (United States)

    Guo, Tao; Fan, Yougao; Gao, Feng; Gu, Shixin; Wang, Wei

    2018-01-01

    Propulsion system is one of the important subsystems of satellite, and its performance directly affects the service life, attitude control and reliability of the satellite. The Paper analyzes the sealing principle of bolted joint ball head component of satellite propulsion system and discuss from the compatibility of hydrazine anhydrous and bolted joint ball head component, influence of ground environment on the sealing performance of bolted joint ball heads, and material failure caused by environment, showing that the sealing reliability of bolted joint ball head component is good and the influence of above three aspects on sealing of bolted joint ball head component can be ignored.

  3. [Attitude change toward body image: the role of elaboration on attitude strength].

    Science.gov (United States)

    Gasco, Margarita; Briñol, Pablo; Horcajo, Javier

    2010-02-01

    Attitude change toward body image: The role of elaboration on attitude strength. Attitudes toward body image have been shown to play a central role in the understanding and treating of eating disorders. In the present research, participants' attitudes toward their body image were changed through a persuasive procedure involving high mental elaboration (self-persuasion) or through a less engaging procedure involving less active participation (passive exposure). As expected, participants in these two groups showed more favourable attitudes toward their bodies than those in the control group. Despite that both treatments were equally efficient in changing attitudes, the strength associated with those attitudes was significantly different depending on the amount of thinking involved in the process of change. Specifically, attitudes were stronger in the high rather than low thinking group of treatment. This finding is important because the strength of the attitude may determine the long-term consequences of an intervention.

  4. Attitude Estimation Based on the Spherical Simplex Transformation Modified Unscented Kalman Filter

    Directory of Open Access Journals (Sweden)

    Jianwei Zhao

    2014-01-01

    Full Text Available An antenna attitude estimation algorithm is proposed to improve the antenna pointing accuracy for the satellite communication on-the-move. The extrapolated angular acceleration is adopted to improve the performance of the time response. The states of the system are modified according to the modification rules. The spherical simplex transformation unscented Kalman filter is used to improve the precision of the estimated attitude and decrease the calculation of the unscented Kalman filter. The experiment results show that the proposed algorithm can improve the instantaneity of the estimated attitude and the precision of the antenna pointing, which meets the requirement of the antenna pointing.

  5. Personality and Attitude Determinants of Voting Behavior

    Science.gov (United States)

    Brigham, John C.; Severy, Lawrence J.

    1976-01-01

    Measures of racial attitude, conceptual style, commitment to candidate and electoral process, social-political evaluation, and voting intentions, were administered to white college students (N=320) before the 1972 Presidential election. Prediction of behavioral intentions becomes more powerful as attitudinal measures are made more directly…

  6. Determination of attitude and knowledge of type 2 diabetic patients towards insulin therapy in Northern Cyprus

    International Nuclear Information System (INIS)

    Yilmaz, U.D.; Tarhan, S.

    2017-01-01

    To determine the attitude and knowledge of type-2 diabetics related to insulin therapy. Methods: The descriptive cross-sectional study was conducted from January to March 2014 at the Dr. Burhan Nalbantoglu Public Hospital, Nicosia in the Turkish Republic of Northern Cyprus, and comprised patients with type-2 diabetes. The Likert scale was used to score participants' response to questions using the following scoring system: 0 (disagree), 1 (neutral) and 2 (agree). The minimum scoring value for all the questions combined was 0 whereas the maximum scoring value was 50. Patients' attitudes were classified as either high, medium or low based on scores between 0-16, 17-33 and 34-50, respectively. SPSS 16 was used for data analysis. Results: Of the 271 participants, 165(60.9%) were female and 106(39.1%) male. The overall mean age was 60.3+-32.4 years. Moreover, 136(50.3%) participants had a medium attitude and knowledge score towards insulin therapy. men scored significantly better than females (p<0.05). Only 25(9.2%) participants had a high score towards insulin therapy. Conclusion: The participants were found to have an inadequate attitude and knowledge response to insulin therapy. (author)

  7. Informing future NRT satellite distribution capabilities: Lessons learned from NASA's Land Atmosphere NRT capability for EOS (LANCE)

    Science.gov (United States)

    Davies, D.; Murphy, K. J.; Michael, K.

    2013-12-01

    NASA's Land Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery from Terra, Aqua and Aura satellites in less than 3 hours from satellite observation, to meet the needs of the near real-time (NRT) applications community. This article describes the architecture of the LANCE and outlines the modifications made to achieve the 3-hour latency requirement with a view to informing future NRT satellite distribution capabilities. It also describes how latency is determined. LANCE is a distributed system that builds on the existing EOS Data and Information System (EOSDIS) capabilities. To achieve the NRT latency requirement, many components of the EOS satellite operations, ground and science processing systems have been made more efficient without compromising the quality of science data processing. The EOS Data and Operations System (EDOS) processes the NRT stream with higher priority than the science data stream in order to minimize latency. In addition to expediting transfer times, the key difference between the NRT Level 0 products and those for standard science processing is the data used to determine the precise location and tilt of the satellite. Standard products use definitive geo-location (attitude and ephemeris) data provided daily, whereas NRT products use predicted geo-location provided by the instrument Global Positioning System (GPS) or approximation of navigational data (depending on platform). Level 0 data are processed in to higher-level products at designated Science Investigator-led Processing Systems (SIPS). The processes used by LANCE have been streamlined and adapted to work with datasets as soon as they are downlinked from satellites or transmitted from ground stations. Level 2 products that require ancillary data have modified production rules to relax the requirements for ancillary data so reducing processing times. Looking to the future, experience gained from LANCE can provide valuable lessons on

  8. Photon Pressure Force on Space Debris TOPEX/Poseidon Measured by Satellite Laser Ranging

    Science.gov (United States)

    Kucharski, D.; Kirchner, G.; Bennett, J. C.; Lachut, M.; Sośnica, K.; Koshkin, N.; Shakun, L.; Koidl, F.; Steindorfer, M.; Wang, P.; Fan, C.; Han, X.; Grunwaldt, L.; Wilkinson, M.; Rodríguez, J.; Bianco, G.; Vespe, F.; Catalán, M.; Salmins, K.; del Pino, J. R.; Lim, H.-C.; Park, E.; Moore, C.; Lejba, P.; Suchodolski, T.

    2017-10-01

    The (TOPography EXperiment) TOPEX/Poseidon (T/P) altimetry mission operated for 13 years before the satellite was decommissioned in January 2006, becoming a large space debris object at an altitude of 1,340 km. Since the end of the mission, the interaction of T/P with the space environment has driven the satellite's spin dynamics. Satellite laser ranging (SLR) measurements collected from June 2014 to October 2016 allow for the satellite spin axis orientation to be determined with an accuracy of 1.7°. The spin axis coincides with the platform yaw axis (formerly pointing in the nadir direction) about which the body rotates in a counterclockwise direction. The combined photometric and SLR data collected over the 11 year time span indicates that T/P has continuously gained rotational energy at an average rate of 2.87 J/d and spins with a period of 10.73 s as of 19 October 2016. The satellite attitude model shows a variation of the cross-sectional area in the Sun direction between 8.2 m2 and 34 m2. The direct solar radiation pressure is the main factor responsible for the spin-up of the body, and the exerted photon force varies from 65 μN to 228 μN around the mean value of 138.6 μN. Including realistic surface force modeling in orbit propagation algorithms will improve the prediction accuracy, giving better conjunction warnings for scenarios like the recent close approach reported by the ILRS Space Debris Study Group—an approximate 400 m flyby between T/P and Jason-2 on 20 June 2017.

  9. Consumers’ Attitudes towards Green Food production in China: A test of the values-attitudes hierarchy

    OpenAIRE

    Perrea, Toula; Grunert, Klaus G.; Krystallis, Athanasios; Zhou, Yanfeng

    2011-01-01

    Green food is perceived by Chinese consumers as environmentally friendly and safe to consume. Through a hierarchical values-attitudes model, the paper examines the degree to which attitudes towards green food is determined by consumers’ values and their general attitudes towards environment and nature and technological progress. The link between collectivism, attitudes towards environment and nature, and attitudes towards green food is the strongest link of the hierarchical model. However, co...

  10. Determining the Cost Effectiveness of Nano-Satellites

    Science.gov (United States)

    2014-09-01

    purchased as little as $7,500 ( Pumpkin 2014) for academic focused missions. Traditional satellites often cost hundreds of millions of dollars. For...and was not easily modified. The costs for the six-year scenario were only spread over five years. If the cost model were updated to spread the...files/national_space_policy_6-28-10.pdf. Pumpkin . “ Pumpkin Price List.” Pumpkin . May 23, 2014. http://www.pumpkininc.com/content/doc/forms

  11. Fault Diagnosis for Satellite Sensors and Actuators using Nonlinear Geometric Approach and Adaptive Observers

    DEFF Research Database (Denmark)

    Baldi, P.; Blanke, Mogens; Castaldi, P.

    2018-01-01

    This paper presents a novel scheme for diagnosis of faults affecting sensors that measure the satellite attitude, body angular velocity, flywheel spin rates, and defects in control torques from reaction wheel motors. The proposed methodology uses adaptive observers to provide fault estimates that...

  12. Estimating Attitude, Trajectory, and Gyro Biases in an Extended Kalman Filter using Earth Magnetic Field Data from the Rossi X-Ray Timing Explorer

    Science.gov (United States)

    Deutschmann, Julie; Bar-Itzhack, Itzhack

    1997-01-01

    Traditionally satellite attitude and trajectory have been estimated with completely separate systems, using different measurement data. The estimation of both trajectory and attitude for low earth orbit satellites has been successfully demonstrated in ground software using magnetometer and gyroscope data. Since the earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both the spacecraft trajectory and attitude errors. Therefore, these errors can be used to estimate both trajectory and attitude. This work further tests the single augmented Extended Kalman Filter (EKF) which simultaneously and autonomously estimates spacecraft trajectory and attitude with data from the Rossi X-Ray Timing Explorer (RXTE) magnetometer and gyro-measured body rates. In addition, gyro biases are added to the state and the filter's ability to estimate them is presented.

  13. Knowledge, attitude and behavioral determinants of tobacco use among 13-15 year old school children.

    Science.gov (United States)

    Raina, Romshi; Krishna, Madhusudan; Murali, R; Shamala, A; Yalamalli, Maanasi; Kumar, A Vinod

    2015-01-01

    The epidemic of tobacco use is one of the greatest threats to global health today. Tobacco attributable deaths in India currently range from 800,000 to 900,000 per year. Adolescents are among the most vulnerable group to start tobacco use. Information on tobacco use among the youth is necessary to establish control measures against it. To assess the knowledge, attitude, and behavioral determinants of tobacco use among high school students (age13-15 years) in Bangalore. A cross-sectional study was conducted over a period of 3 weeks in the month of September 2012. A structured, pretested questionnaire was administered randomly to 500 high school students in Bangalore to assess the knowledge, attitude, and behavioral determinants of tobacco use. Majority of the study population [94.4% (472/500)] believed that smoking is definitely harmful to our health. Also, 39.0% of the participants of age 13 years believed that smoking does not help in socializing and 92.2% of study subjects had negative attitude toward starting the habit. Most of them (83.9%) had a negative perception about smokers that they lack confidence. However, less than 1% of the study population had a habit of smoking at this young age. Awareness of the harmful effects of smoking was high among the study population. The study provides insight into the factors to consider while planning adolescent anti-smoking programs in this and similar settings.

  14. Trends in the Global Small Satellite Ecosystem: Implications for Science Missions

    Science.gov (United States)

    Behrens, J.; Lal, B.

    2017-12-01

    Activity in the small satellite industry has increased in the recent years. New actors and nations have joined the evolving market globally in both the private and public sector. Progress in the smallsat sector has been driven, in part, by growing capabilities and falling costs of smallsats. Advancements include the miniaturization of technology for the small satellite platform, increased data processing capabilities, the ubiquitous presence of GPS enabling location and attitude determination, improvements in ground system costs and signal processing capabilities, and the deployment of inexpensive COTS parts. The emerging trends in the state of the art for smallsat technology, paired with planned smallsat constellation missions by both private and public actors, open the opportunity for new earth and remote sensing scientific endeavors. This presentation will characterize the drivers influencing the development of smallsat technology and the industry more generally. An overview will be provided for trends in the state of the art of smallsat technology, and secondary trends that influence the smallsat sector including infrastructure, demand, the satellite launch market, and the policy environment. These trends are mapped onto current and projected Earth observation needs, as identified by academic and governmental communities, to identify those that could be fulfilled by smallsats in the near and long term. A set of notional science missions that could be enabled, based on the various drivers identified, will be presented for both the near (3 years) and farther term (10 years).

  15. Semi-analytical study of the rotational motion stability of artificial satellites using quaternions

    International Nuclear Information System (INIS)

    Dos Santos, Josué C; Zanardi, Maria Cecília; Matos, Nicholas

    2013-01-01

    This study at aims performing the stability analysis of the rotational motion to artificial satellites using quaternions to describe the satellite attitude (orientation on the space). In the system of rotational motion equations, which is composed by four kinematic equations of the quaternions and by the three Euler equations in terms of the rotational spin components. The influence of the gravity gradient and the direct solar radiation pressure torques have been considered. Equilibrium points were obtained through numerical simulations using the softwares Matlab and Octave, which are then analyzed by the Routh-Hurwitz Stability Criterion

  16. Probability of satellite collision

    Science.gov (United States)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  17. Neural networks based three-axis satellite attitude control using only magnetic torquers

    International Nuclear Information System (INIS)

    Sivaprakash, N.; Shanmugam, J.; Natarajan, P.

    2005-01-01

    Full text: Magnetic control is a favorable way to stabilize small satellites. Often, the hardware is simple and lightweight, and does not degrade or change mass over time. However, a magnetic control system does have some disadvantages and limitations. The control, which is in the form of magnetic moment, can only be applied perpendicular to the local magnetic field. In addition, there is uncertainty in the Earth magnetic field models due to the complicated dynamic nature of the field. Also, the magnetic hardware and the spacecraft can interact, causing both to behave in undesirable ways. To overcome these limitations some intelligence is incorporated in the controller. In this paper, control laws are developed to stabilize spacecraft on Three axes. The motivation for this project is ANUSAT, which is a micro-satellite under development at Anna University in collaboration with ISRO. This control could be carried out solely with satellite's magnetometer measurements and its position in orbit. The magnetic dipole moment for control is: M = K p (B o - B r ) + K d (dB o /dt - dB r /dt) Where B o is the measured magnetic field, B r is the reference magnetic field, and K p and K d are the control position and rate gains respectively. The value of the controller gains are selected by the Intelligent Neural Network System in the feedback path. Control laws are numerically tested to show that the magnetic control system works within resolution limits

  18. In-flight performance analysis of MEMS GPS receiver and its application to precise orbit determination of APOD-A satellite

    Science.gov (United States)

    Gu, Defeng; Liu, Ye; Yi, Bin; Cao, Jianfeng; Li, Xie

    2017-12-01

    An experimental satellite mission termed atmospheric density detection and precise orbit determination (APOD) was developed by China and launched on 20 September 2015. The micro-electro-mechanical system (MEMS) GPS receiver provides the basis for precise orbit determination (POD) within the range of a few decimetres. The in-flight performance of the MEMS GPS receiver was assessed. The average number of tracked GPS satellites is 10.7. However, only 5.1 GPS satellites are available for dual-frequency navigation because of the loss of many L2 observations at low elevations. The variations in the multipath error for C1 and P2 were estimated, and the maximum multipath error could reach up to 0.8 m. The average code noises are 0.28 m (C1) and 0.69 m (P2). Using the MEMS GPS receiver, the orbit of the APOD nanosatellite (APOD-A) was precisely determined. Two types of orbit solutions are proposed: a dual-frequency solution and a single-frequency solution. The antenna phase center variations (PCVs) and code residual variations (CRVs) were estimated, and the maximum value of the PCVs is 4.0 cm. After correcting the antenna PCVs and CRVs, the final orbit precision for the dual-frequency and single-frequency solutions were 7.71 cm and 12.91 cm, respectively, validated using the satellite laser ranging (SLR) data, which were significantly improved by 3.35 cm and 25.25 cm. The average RMS of the 6-h overlap differences in the dual-frequency solution between two consecutive days in three dimensions (3D) is 4.59 cm. The MEMS GPS receiver is the Chinese indigenous onboard receiver, which was successfully used in the POD of a nanosatellite. This study has important reference value for improving the MEMS GPS receiver and its application in other low Earth orbit (LEO) nanosatellites.

  19. Orbit and clock determination of BDS regional navigation satellite system based on IGS M-GEX and WHU BETS tracking network

    Science.gov (United States)

    GENG, T.; Zhao, Q.; Shi, C.; Shum, C.; Guo, J.; Su, X.

    2013-12-01

    BeiDou Navigation Satellite System (BDS) began to provide the regional open service on December 27th 2012 and will provide the global open service by the end of 2020. Compared to GPS, the space segment of BDS Regional System consists of 5 Geostationary Earth Orbit satellites (GEO), 5 Inclined Geosynchronous Orbit satellites (IGSO) and 4 Medium Earth orbit (MEO) satellites. Since 2011, IGS Multiple-GNSS Experiment (M-GEX) focuses on tracking the newly available GNSS signals. This includes all signals from the modernized satellites of the GPS and GLONASS systems, as well as signals of the BDS, Galileo and QZSS systems. Up to now, BDS satellites are tracked by around 25 stations with a variety of different antennas and receivers from different GNSS manufacture communities in M-GEX network. Meanwhile, there are 17 stations with Unicore Communications Incorporation's GPS/BDS receivers in BeiDou Experimental Tracking Stations (BETS) network by Wuhan University. In addition, 5 BDS satellites have been tracking by the International Laser Ranging Service (ILRS). BDS performance is expected to be further studied by the GNSS communities. Following an introduction of the BDS system and above different tracking network, this paper discusses the achieved BDS characterization and performance assessment. Firstly, the BDS signal and measurement quality are analyzed with different antennas and receivers in detail compared to GPS. This includes depth of coverage for satellite observation, carrier-to-noise-density ratios, code noise and multipath, carrier phase errors. Secondly, BDS Precise Orbit Determination (POD) is processed. Different arc lengths and sets of orbit parameters are tested using Position And Navigation Data Analysis software (PANDA) which is developed at the Wuhan University. GEO, IGSO and MEO satellites orbit quality will be assessed using overlap comparison, 2-day orbit fit and external validations with Satellite Laser Range (SLR). Then BDS satellites are equipped

  20. Comprehensive evaluation of attitude and orbit estimation using real earth magnetic field data

    Science.gov (United States)

    Deutschmann, Julie; Bar-Itzhack, Itzhack

    1997-01-01

    A single, augmented extended Kalman filter (EKF) which simultaneously and autonomously estimates spacecraft attitude and orbit was developed and tested with simulated and real magnetometer and rate data. Since the earth's magnetic field is a function of time and position, and since time is accurately known, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft's orbit, are a function of orbit and attitude errors. These differences can be used to estimate the orbit and attitude. The test results of the EKF with magnetometer and gyro data from three NASA satellites are presented and evaluated.

  1. Vision and dual IMU integrated attitude measurement system

    Science.gov (United States)

    Guo, Xiaoting; Sun, Changku; Wang, Peng; Lu, Huang

    2018-01-01

    To determination relative attitude between two space objects on a rocking base, an integrated system based on vision and dual IMU (inertial determination unit) is built up. The determination system fuses the attitude information of vision with the angular determinations of dual IMU by extended Kalman filter (EKF) to obtain the relative attitude. One IMU (master) is attached to the measured motion object and the other (slave) to the rocking base. As the determination output of inertial sensor is relative to inertial frame, thus angular rate of the master IMU includes not only motion of the measured object relative to inertial frame but also the rocking base relative to inertial frame, where the latter can be seen as redundant harmful movement information for relative attitude determination between the measured object and the rocking base. The slave IMU here assists to remove the motion information of rocking base relative to inertial frame from the master IMU. The proposed integrated attitude determination system is tested on practical experimental platform. And experiment results with superior precision and reliability show the feasibility and effectiveness of the proposed attitude determination system.

  2. Odyssey, an optimized personal communications satellite system

    Science.gov (United States)

    Rusch, Roger J.

    Personal communications places severe demands on service providers and transmission facilities. Customers are not satisfied with the current levels of service and want improvements. Among the characteristics that users seek are: lower service rates, hand held convenience, acceptable time delays, ubiquitous service, high availability, reliability, and high quality. The space industry is developing commercial space systems for providing mobile communications to personal telephones. Provision of land mobile satellite service is fundamentally different from the fixed satellite service provided by geostationary satellites. In fixed service, the earth based antennas can depend on a clear path from user to satellite. Mobile users in a terrestrial environment commonly encounter blockage due to vegetation, terrain or buildings. Consequently, high elevation angles are of premium value. TRW studied the issues and concluded that a Medium Earth Orbit constellation is the best solution for Personal Communications Satellite Service. TRW has developed Odyssey, which uses twelve satellites in medium altitude orbit to provide personal communications satellite service. The Odyssey communications system projects a multibeam antenna pattern to the Earth. The attitude control system orients the satellites to ensure constant coverage of land mass and coastal areas. Pointing can be reprogrammed by ground control to ensure optimized coverage of the desired service areas. The payload architecture features non-processing, "bent pipe" transponders and matrix amplifiers to ensure dynamic power delivery to high demand areas. Circuit capacity is 3000 circuits per satellite. Each satellite weighs 1917 kg (4226 pounds) at launch and the solar arrays provide 3126 Watts of power. Satellites are launched in pairs on Ariane, Atlas, or other vehicles. Each satellite is placed in a circular orbit at an altitude of 10,354 km. There are three orbit planes inclined at 55° to the equatorial plane

  3. Precise Determination of the Baseline Between the TerraSAR-X and TanDEM-X Satellites

    Science.gov (United States)

    Koenig, Rolf; Rothacher, Markus; Michalak, Grzegorz; Moon, Yongjin

    TerraSAR-X, launched on June 15, 2007, and TanDEM-X, to be launched in September 2009, both carry the Tracking, Occultation and Ranging (TOR) category A payload instrument package. The TOR consists of a high-precision dual-frequency GPS receiver, called Integrated GPS Occultation Receiver (IGOR), for precise orbit determination and atmospheric sounding and a Laser retro-reflector (LRR) serving as target for the global Satellite Laser Ranging (SLR) ground station network. The TOR is supplied by the GeoForschungsZentrum Potsdam (GFZ) Germany, and the Center for Space Research (CSR), Austin, Texas. The objective of the German/US collaboration is twofold: provision of atmospheric profiles for use in numerical weather predictions and climate studies from the occultation data and precision SAR data processing based on precise orbits and atmospheric products. For the scientific objectives of the TanDEM- X mission, i.e., bi-static SAR together with TerraSAR-X, the dual-frequency GPS receiver is of vital importance for the millimeter level determination of the baseline or distance between the two spacecrafts. The paper discusses the feasibility of generating millimeter baselines by the example of GRACE, where for validation the distance between the two GRACE satellites is directly available from the micrometer-level intersatellite link measurements. The distance of the GRACE satellites is some 200 km, the distance of the TerraSAR-X/TanDEM-X formation will be some 200 meters. Therefore the proposed approach is then subject to a simulation of the foreseen TerraSAR-X/TanDEM-X formation. The effect of varying space environmental conditions, of possible phase center variations, multi path, and of varying center of mass of the spacecrafts are evaluated and discussed.

  4. The relationship between maternal attitudes and young people's attitudes toward children's rights.

    Science.gov (United States)

    Day, David M; Peterson-Badali, Michele; Ruck, Martin D

    2006-04-01

    Relations between maternal socio-political attitudes and parenting style and young people's and mothers' attitudes toward young people's nurturance and self-determination rights were examined. Both young people (n = 121) and mothers (n = 67) were more supportive of nurturance than self-determination rights, although young people were more supportive than their mothers of self-determination rights and mothers were more supportive than young people of nurturance rights. Maternal conservatism was unrelated to young people's support for rights and negatively related to mothers' support for both types of rights. Last, young people who perceived their mother to be either authoritarian or uninvolved showed stronger endorsement of self-determination rights than young people who perceived their mother to be authoritative. The implications of these findings for the development of young people's attitudes toward rights within the context of various family factors are discussed. In particular, it is suggested that a balance needs to be achieved between assertion of rights and a respect for the rights of others.

  5. Detumbling control for kinematically redundant space manipulator post-grasping a rotational satellite

    Science.gov (United States)

    Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich

    2017-12-01

    The objective of this paper is to establish a detumbling strategy and a coordination control scheme for a kinematically redundant space manipulator post-grasping a rotational satellite. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling and motion planning strategy for the post-capture phase is proposed based on the quartic Bézier curves and adaptive differential evolution (DE) algorithm subject to the specific constraints. Both detumbling time and control torques are taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is presented to track the designed reference path while regulating the attitude of the chaser to a desired value, which successfully dumps the initial angular velocity of the rotational satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a 7 degree-of-freedom (DOF) redundant space manipulator, which demonstrates the effectiveness of the proposed method.

  6. Sensor and computing resource management for a small satellite

    Science.gov (United States)

    Bhatia, Abhilasha; Goehner, Kyle; Sand, John; Straub, Jeremy; Mohammad, Atif; Korvald, Christoffer; Nervold, Anders Kose

    A small satellite in a low-Earth orbit (e.g., approximately a 300 to 400 km altitude) has an orbital velocity in the range of 8.5 km/s and completes an orbit approximately every 90 minutes. For a satellite with minimal attitude control, this presents a significant challenge in obtaining multiple images of a target region. Presuming an inclination in the range of 50 to 65 degrees, a limited number of opportunities to image a given target or communicate with a given ground station are available, over the course of a 24-hour period. For imaging needs (where solar illumination is required), the number of opportunities is further reduced. Given these short windows of opportunity for imaging, data transfer, and sending commands, scheduling must be optimized. In addition to the high-level scheduling performed for spacecraft operations, payload-level scheduling is also required. The mission requires that images be post-processed to maximize spatial resolution and minimize data transfer (through removing overlapping regions). The payload unit includes GPS and inertial measurement unit (IMU) hardware to aid in image alignment for the aforementioned. The payload scheduler must, thus, split its energy and computing-cycle budgets between determining an imaging sequence (required to capture the highly-overlapping data required for super-resolution and adjacent areas required for mosaicking), processing the imagery (to perform the super-resolution and mosaicking) and preparing the data for transmission (compressing it, etc.). This paper presents an approach for satellite control, scheduling and operations that allows the cameras, GPS and IMU to be used in conjunction to acquire higher-resolution imagery of a target region.

  7. Poisson equations of rotational motion for a rigid triaxial body with application to a tumbling artificial satellite

    Science.gov (United States)

    Liu, J. J. F.; Fitzpatrick, P. M.

    1975-01-01

    A mathematical model is developed for studying the effects of gravity gradient torque on the attitude stability of a tumbling triaxial rigid satellite. Poisson equations are used to investigate the rotation of the satellite (which is in elliptical orbit about an attracting point mass) about its center of mass. An averaging method is employed to obtain an intermediate set of differential equations for the nonresonant, secular behavior of the osculating elements which describe the rotational motions of the satellite, and the averaged equations are then integrated to obtain long-term secular solutions for the osculating elements.

  8. Satellite constellation design and radio resource management using genetic algorithm.

    OpenAIRE

    Asvial, Muhamad.

    2003-01-01

    A novel strategy for automatic satellite constellation design with satellite diversity is proposed. The automatic satellite constellation design means some parameters of satellite constellation design can be determined simultaneously. The total number of satellites, the altitude of satellite, the angle between planes, the angle shift between satellites and the inclination angle are considered for automatic satellite constellation design. Satellite constellation design is modelled using a mult...

  9. Small Satellite Constellations for Geospace Sciences

    Science.gov (United States)

    Spence, H. E.

    2016-12-01

    The recent National Academy of Sciences Solar and Space Physics Decadal Survey (DS) identified community-consensus science priorities for the decade spanning 2013 - 2022. In this talk, we discuss the ways by which small satellite constellations are already and may soon accelerate progress toward achieving many of these science targets. The DS outlined four overarching science goals: (1) determine the origins of the Sun's activity and predict the variations in the space environment; (2) determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs; (3) determine the interaction of the Sun with the solar system and the interstellar medium; and, (4) discover and characterize fundamental processes that occur both within the heliosphere and throughout the universe. These DS science goals provide the context for key science challenges in the three connected parts of the system that encompass all of solar and space physics, herein referred to as geospace: the Sun and heliosphere; the coupled solar wind-magnetosphere system; and, the coupled atmosphere-ionosphere-magnetosphere system. The DS further presented the role that small satellites play in resolving many of these science challenges, with a particular emphasis on the role that constellations of small satellites will play. While once considered by many as being "futuristic" or even "unrealizable", constellations of small satellites are already making important contributions to geospace science and with the promise for more to come. Using the DS as a guidepost, in this presentation, we outline representative small satellite constellation missions alread underway, some in development, and others notionally proposed over the next several years that employ small satellite constellations to tackle large science imperatives. Finally, we give examples of key small satellite technologies in development that will potentially enable great scientific

  10. LQG/LTR optimal attitude control of small flexible spacecraft using free-free boundary conditions

    Science.gov (United States)

    Fulton, Joseph M.

    Due to the volume and power limitations of a small satellite, careful consideration must be taken while designing an attitude control system for 3-axis stabilization. Placing redundancy in the system proves difficult and utilizing power hungry, high accuracy, active actuators is not a viable option. Thus, it is customary to find dependable, passive actuators used in conjunction with small scale active control components. This document describes the application of Elastic Memory Composite materials in the construction of a flexible spacecraft appendage, such as a gravity gradient boom. Assumed modes methods are used with Finite Element Modeling information to obtain the equations of motion for the system while assuming free-free boundary conditions. A discussion is provided to illustrate how cantilever mode shapes are not always the best assumption when modeling small flexible spacecraft. A key point of interest is first resonant modes may be needed in the system design plant in spite of these modes being greater than one order of magnitude in frequency when compared to the crossover frequency of the controller. LQG/LTR optimal control techniques are implemented to compute attitude control gains while controller robustness considerations determine appropriate reduced order controllers and which flexible modes to include in the design model. Key satellite designer concerns in the areas of computer processor sizing, material uncertainty impacts on the system model, and system performance variations resulting from appendage length modifications are addressed.

  11. The use of absolute gravity data for the validation of Global Geopotential Models and for improving quasigeoid heights determined from satellite-only Global Geopotential Models

    Science.gov (United States)

    Godah, Walyeldeen; Krynski, Jan; Szelachowska, Malgorzata

    2018-05-01

    The objective of this paper is to demonstrate the usefulness of absolute gravity data for the validation of Global Geopotential Models (GGMs). It is also aimed at improving quasigeoid heights determined from satellite-only GGMs using absolute gravity data. The area of Poland, as a unique one, covered with a homogeneously distributed set of absolute gravity data, has been selected as a study area. The gravity anomalies obtained from GGMs were validated using the corresponding ones determined from absolute gravity data. The spectral enhancement method was implemented to overcome the spectral inconsistency in data being validated. The quasigeoid heights obtained from the satellite-only GGM as well as from the satellite-only GGM in combination with absolute gravity data were evaluated with high accuracy GNSS/levelling data. Estimated accuracy of gravity anomalies obtained from GGMs investigated is of 1.7 mGal. Considering omitted gravity signal, e.g. from degree and order 101 to 2190, satellite-only GGMs can be validated at the accuracy level of 1 mGal using absolute gravity data. An improvement up to 59% in the accuracy of quasigeoid heights obtained from the satellite-only GGM can be observed when combining the satellite-only GGM with absolute gravity data.

  12. Altitude Distribution of the Auroral Acceleration Potential Determined from Cluster Satellite Data at Different Heights

    International Nuclear Information System (INIS)

    Marklund, Goeran T.; Sadeghi, Soheil; Karlsson, Tomas; Lindqvist, Per-Arne; Nilsson, Hans; Forsyth, Colin; Fazakerley, Andrew; Lucek, Elizabeth A.; Pickett, Jolene

    2011-01-01

    Aurora, commonly seen in the polar sky, is a ubiquitous phenomenon occurring on Earth and other solar system planets. The colorful emissions are caused by electron beams hitting the upper atmosphere, after being accelerated by quasistatic electric fields at 1-2 R E altitudes, or by wave electric fields. Although aurora was studied by many past satellite missions, Cluster is the first to explore the auroral acceleration region with multiprobes. Here, Cluster data are used to determine the acceleration potential above the aurora and to address its stability in space and time. The derived potential comprises two upper, broad U-shaped potentials and a narrower S-shaped potential below, and is stable on a 5 min time scale. The scale size of the electric field relative to that of the current is shown to depend strongly on altitude within the acceleration region. To reveal these features was possible only by combining data from the two satellites.

  13. A Comparative Study of Actuator Configurations for Satellite Attitude Control

    Directory of Open Access Journals (Sweden)

    Raymond Kristiansen

    2005-10-01

    Full Text Available In this paper a controllability study of different actuator configurations consisting of magnetic torquers, reaction wheels and a gravity boom is presented. The theoretical analysis is performed with use of controllability gramians, and simulation results with the different configurations are presented and compared regarding settling time and power consumption to substantiate the theoretical analysis. A reference model is also introduced to show how the power consumption can he lowered to the same magnitude as when magnetic torquers are used, without degrading the satellite response significantly.

  14. Attitude Modeling Using Kalman Filter Approach for Improving the Geometric Accuracy of Cartosat-1 Data Products

    Directory of Open Access Journals (Sweden)

    Nita H. SHAH

    2010-07-01

    Full Text Available This paper deals with the rigorous photogrammetric solution to model the uncertainty in the orientation parameters of Indian Remote Sensing Satellite IRS-P5 (Cartosat-1. Cartosat-1 is a three axis stabilized spacecraft launched into polar sun-synchronous circular orbit at an altitude of 618 km. The satellite has two panchromatic (PAN cameras with nominal resolution of ~2.5 m. The camera looking ahead is called FORE mounted with +26 deg angle and the other looking near nadir is called AFT mounted with -5 deg, in along track direction. Data Product Generation Software (DPGS system uses the rigorous photogrammetric Collinearity model in order to utilize the full system information, together with payload geometry & control points, for estimating the uncertainty in attitude parameters. The initial orbit, attitude knowledge is obtained from GPS bound orbit measurement, star tracker and gyros. The variations in satellite attitude with time are modelled using simple linear polynomial model. Also, based on this model, Kalman filter approach is studied and applied to improve the uncertainty in the orientation of spacecraft with high quality ground control points (GCPs. The sequential estimator (Kalman filter is used in an iterative process which corrects the parameters at each time of observation rather than at epoch time. Results are presented for three stereo data sets. The accuracy of model depends on the accuracy of the control points.

  15. A PRECISE POSITION AND ATTITUDE DETERMINATION SYSTEM FOR LIGHTWEIGHT UNMANNED AERIAL VEHICLES

    Directory of Open Access Journals (Sweden)

    C. Eling

    2013-08-01

    Full Text Available In many unmanned aerial vehicle (UAV applications a direct georeferencing is required. The reason can be that the UAV flies autonomous and must be navigated precisely, or that the UAV performs a remote sensing operation, where the position of the camera has to be known at the moment of the recording. In our application, a project called Mapping on Demand, we are motivated by both of these reasons. The goal of this project is to develop a lightweight autonomously flying UAV that is able to identify and measure inaccessible three-dimensional objects by use of visual information. Due to payload and space limitations, precise position and attitude determination of micro- and mini-sized UAVs is very challenging. The limitations do not only affect the onboard computing capacity, but they are also noticeable when choosing the georeferencing sensors. In this article, we will present a new developed onboard direct georeferencing system which is real-time capable, applicable for lightweight UAVs and provides very precise results (position accuracy σ σ < 0.5 deg. In this system GPS, inertial sensors, magnetic field sensors, a barometer as well as stereo video cameras are used as georeferencing sensors. We will describe the hardware development and will go into details of the implemented software. In this context especially the RTK-GPS software and the concept of the attitude determination by use of inertial sensors, magnetic field sensors as well as an onboard GPS baseline will be highlighted. Finally, results of first field tests as well as an outlook on further developments will conclude this contribution.

  16. The Implementation of Satellite Control System Software Using Object Oriented Design

    Science.gov (United States)

    Anderson, Mark O.; Reid, Mark; Drury, Derek; Hansell, William; Phillips, Tom

    1998-01-01

    NASA established the Small Explorer (SMEX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions that can be launched into low earth orbit by small expendable vehicles. The development schedule for each SMEX spacecraft was three years from start to launch. The SMEX program has produced five satellites; Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX), Fast Auroral Snapshot Explorer (FAST), Submillimeter Wave Astronomy Satellite (SWAS), Transition Region and Coronal Explorer (TRACE) and Wide-Field Infrared Explorer (WIRE). SAMPEX and FAST are on-orbit, TRACE is scheduled to be launched in April of 1998, WIRE is scheduled to be launched in September of 1998, and SWAS is scheduled to be launched in January of 1999. In each of these missions, the Attitude Control System (ACS) software was written using a modular procedural design. Current program goals require complete spacecraft development within 18 months. This requirement has increased pressure to write reusable flight software. Object-Oriented Design (OOD) offers the constructs for developing an application that only needs modification for mission unique requirements. This paper describes the OOD that was used to develop the SMEX-Lite ACS software. The SMEX-Lite ACS is three-axis controlled, momentum stabilized, and is capable of performing sub-arc-minute pointing. The paper first describes the high level requirements which governed the architecture of the SMEX-Lite ACS software. Next, the context in which the software resides is explained. The paper describes the benefits of encapsulation, inheritance and polymorphism with respect to the implementation of an ACS software system. This paper will discuss the design of several software components that comprise the ACS software. Specifically, Object-Oriented designs are presented for sensor data processing, attitude control, attitude determination and failure detection. The paper addresses

  17. Validity and Reliability Dissertation of the Scale Used for Determination of Perceptions and Attitudes of Teacher's Proficiency in Tablet PC-Supported Education

    Science.gov (United States)

    Tugun, Vasfi

    2016-01-01

    It is important to determine the proficiency perceptions and attitudes of the teachers towards Technologies of learning about the tablets in order to integrate the mobile learning technologies and to use the tablet PCs in the educational environments in an efficient way. Therefore, proficiency perceptions and attitudes of the teachers towards the…

  18. Satellite failures revisited

    Science.gov (United States)

    Balcerak, Ernie

    2012-12-01

    In January 1994, the two geostationary satellites known as Anik-E1 and Anik-E2, operated by Telesat Canada, failed one after the other within 9 hours, leaving many northern Canadian communities without television and data services. The outage, which shut down much of the country's broadcast television for hours and cost Telesat Canada more than $15 million, generated significant media attention. Lam et al. used publicly available records to revisit the event; they looked at failure details, media coverage, recovery effort, and cost. They also used satellite and ground data to determine the precise causes of those satellite failures. The researchers traced the entire space weather event from conditions on the Sun through the interplanetary medium to the particle environment in geostationary orbit.

  19. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  20. Design, dynamics and control of an Adaptive Singularity-Free Control Moment Gyroscope actuator for microspacecraft Attitude Determination and Control System

    Science.gov (United States)

    Viswanathan, Sasi Prabhakaran

    how they lead to CMG singularities, are described. General ideas on control of the angular momentum of the spacecraft using changes in the momentum variables of a finite number of ASCMGs, are provided. Control schemes for agile and precise attitude maneuvers using ASCMG cluster in the absence of external torques and when the total angular momentum of the spacecraft is zero, is presented for both constant speed and variable speed modes. A Geometric Variational Integrator (GVI) that preserves the geometry of the state space and the conserved norm of the total angular momentum is constructed for numerical simulation and microcontroller implementation of the control scheme. The GVI is obtained by discretizing the Lagrangian of the rnultibody systems, in which the rigid body attitude is globally represented on the Lie group of rigid body rotations. Hardware and software architecture of a novel spacecraft Attitude Determination and Control System (ADCS) based on commercial smartphones and a bare minimum hardware prototype of an ASCMG using low cost COTS components is also described. A lightweight, dynamics model-free Variational Attitude Estimator (VAE) suitable for smartphone implementation is employed for attitude determination and the attitude control is performed by ASCMG actuators. The VAE scheme presented here is implemented and validated onboard an Unmanned Aerial Vehicle (UAV) platform and the real time performance is analyzed. On-board sensing, data acquisition, data uplink/downlink, state estimation and real-time feedback control objectives can be performed using this novel spacecraft ADCS. The mechatronics realization of the attitude determination through variational attitude estimation scheme and control implementation using ASCMG actuators are presented here. Experimental results of the attitude estimation (filtering) scheme using smartphone sensors as an Inertial Measurement Unit (IMU) on the Hardware In the Loop (HIL) simulator testbed are given. These

  1. Electric Propellant Solid Rocket Motor Thruster Results Enabling Small Satellites

    OpenAIRE

    Koehler, Frederick; Langhenry, Mark; Summers, Matt; Villarreal, James; Villarreal, Thomas

    2017-01-01

    Raytheon Missile Systems has developed and tested true on/off/restart solid propellant thrusters which are controlled only by electrical current. This new patented class of energetic rocket propellant is safe, controllable and simple. The range of applications for this game changing technology includes attitude control systems and a safe alternative to higher impulse space satellite thrusters. Described herein are descriptions and performance data for several small electric propellant solid r...

  2. Imaging X-Ray Polarimetry Explorer Mission Attitude Determination and Control Concept

    Science.gov (United States)

    Bladt, Jeff; Deininger, William D.; Kalinowski, William C.; Boysen, Mary; Bygott, Kyle; Guy, Larry; Pentz, Christina; Seckar, Chris; Valdez, John; Wedmore, Jeffrey; hide

    2018-01-01

    The goal of the Imaging X-Ray Polarimetry Explorer (IXPE) Mission is to expand understanding of high-energy astrophysical processes and sources, in support of NASA's first science objective in Astrophysics: "Discover how the universe works." X-ray polarimetry is the focus of the IXPE science mission. Polarimetry uniquely probes physical anisotropies-ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin-that are not otherwise measurable. The IXPE Observatory consists of Spacecraft and Payload modules. The Payload includes three polarization sensitive, X-ray detector units (DU), each paired with its corresponding grazing incidence mirror module assemblies (MMA). A deployable boom provides the correct separation (focal length) between the DUs and MMAs. These Payload elements are supported by the IXPE Spacecraft. A star tracker is mounted directly with the deployed Payload to minimize alignment errors between the star tracker line of sight (LoS) and Payload LoS. Stringent pointing requirements coupled with a flexible structure and a non-collocated attitude sensor-actuator configuration requires a thorough analysis of control-structure interactions. A non-minimum phase notch filter supports robust control loop stability margins. This paper summarizes the IXPE mission science objectives and Observatory concepts, and then it describes IXPE attitude determination and control implementation. IXPE LoS pointing accuracy, control loop stability, and angular momentum management are discussed.

  3. Integration of an ion engine on the Communications Technology Satellite.

    Science.gov (United States)

    Payne, W. F.; Finke, R. C.

    1972-01-01

    An ion engine subsystem intended for satellite stationkeeping tasks is described. Ion thrusters are chosen to perform the task because the specific impulse is at least an order of magnitude higher than the commonly used reaction control jets. The higher the value of specific impulse, the greater the total impulse that can be attained for a given weight of propellant, hence cost benefits result. The integration, subsystem testing, and the operating plans for the ion engine experiment to be flown in 1975 on the Canadian Communications Technology Satellite (CTS) are described. The subsystem is designed to demonstrate north-south stationkeeping, attitude control by means of thrust vectoring, long-term space storage and restart capability, and compatibility with a high powered communications transponder.

  4. Maui Space Surveillance System Satellite Categorization Laboratory

    Science.gov (United States)

    Deiotte, R.; Guyote, M.; Kelecy, T.; Hall, D.; Africano, J.; Kervin, P.

    The MSSS satellite categorization laboratory is a fusion of robotics and digital imaging processes that aims to decompose satellite photometric characteristics and behavior in a controlled setting. By combining a robot, light source and camera to acquire non-resolved images of a model satellite, detailed photometric analyses can be performed to extract relevant information about shape features, elemental makeup, and ultimately attitude and function. Using the laboratory setting a detailed analysis can be done on any type of material or design and the results cataloged in a database that will facilitate object identification by "curve-fitting" individual elements in the basis set to observational data that might otherwise be unidentifiable. Currently the laboratory has created, an ST-Robotics five degree of freedom robotic arm, collimated light source and non-focused Apogee camera have all been integrated into a MATLAB based software package that facilitates automatic data acquisition and analysis. Efforts to date have been aimed at construction of the lab as well as validation and verification of simple geometric objects. Simple tests on spheres, cubes and simple satellites show promising results that could lead to a much better understanding of non-resolvable space object characteristics. This paper presents a description of the laboratory configuration and validation test results with emphasis on the non-resolved photometric characteristics for a variety of object shapes, spin dynamics and orientations. The future vision, utility and benefits of the laboratory to the SSA community as a whole are also discussed.

  5. Habitats used by black and surf scoters in eastern North America as determined by satellite radio telemetry

    Science.gov (United States)

    Perry, M.C.; Kidwell, D.M.; Wells-Berlin, A. M.; Lohnes, E.J.R.; Olsen, Glenn H.; Osenton, P.C.

    2005-01-01

    Satellite radio telemetry was used to determine the movements and habitats of black scoters (Melanitta nigra) and surf scoters (Melanitta perspicillata) in eastern North America. A total of 21 surf scoters were instrumented during five years (2001-05) and 32 black scoters were instrumented during three years (2002-04) with implanted PTT 100 satellite transmitters (39 g) with external antenna. Nesting habitat of black scoters was more open than surf scoters (44% vs. 11%), whereas nesting habitat for surf scoters was located in more forested areas (66% vs. 20%). Locations of black scoters in breeding areas on average were at significantly higher latitude and lower elevations than sites used by surf scoters. Satellite telemetry determined that James Bay was the major molting area for male black and surf scoters, although some males molted along the coast of Labrador-Newfoundland. Black scoters instrumented on the Restigouche River, which is a major staging area, were widely distributed along the Atlantic Coast from Cape Cod to Georgia during winter. Major wintering areas for black scoters were Cape Cod (Martha's Vineyard and Nantucket Island), Long Island, and New Jersey. In these northern marine wintering areas, black scoters were located farther from shore (4.2 km) and in deeper water (8.3 m) than black scoters in more southern estuarine areas, where distance from shore was 3.1 km and water depth was 5.2 m. Surf scoters instrumented in Chesapeake Bay in late winter showed a strong tendency to return to the Bay the following winter after they had migrated to and from breeding areas. In Chesapeake Bay, black scoters and surf scoters were located mostly in mesohaline areas that had similar water depths (5.1 m vs. 7.5 m) and distances from shore (3.0 km vs. 2.9 km). Distance from shore and depth of water increased over time during the winter for both species. Updated information from the ARGOS Systems aboard the NOAA satellites on scoter movements was made accessible on

  6. Attitude Accessibility and Motivation as Determinants of Biased Processing: A Test of the MODE Model.

    Science.gov (United States)

    Schuette, Robert A.; Fazio, Russell H.

    1995-01-01

    Examined hypothesis that attitude accessibility and motivational level moderate the relation between attitudes and information processing. Found that the attitude/judgment relation depended on both attitude accessibility and motivation. Only subjects who reiterated their attitude and who lacked motivation to consider the information thoroughly…

  7. FACOTRS TO DETERMINE RISK PERCEPTION OF CLIMATE CHANGE, AND ATTITUDE TOWARD ADAPTATION POLICY OF THE PUBLIC

    Science.gov (United States)

    Baba, Kenshi; Sugimoto, Takuya; Kubota, Hiromi; Hijioka, Yasuaki; Tanaka, Mitsuru

    This study clarifies the factors to determine risk perception of climate change and attitudes toward adaptation policy by analyzing the data collecting from Internet survey to the general public. The results indicate the followings: 1) more than 70% people perceive some sort of risk of climate change, and most people are awaken to wind and flood damage. 2) most people recognize that mitigation policy is much more important than adaptation policy, whereas most people assume to accept adaptation policy as self-reponsibility, 3) the significant factors to determinane risk perception of climate chage and attitude towerd adaptation policy are cognition of benefits on the policy and procedural justice in the policy process in addion to demographics such as gender, experience of disaster, intension of inhabitant.

  8. Determining Attitudes of Postgraduate Students towards Scientific Research and Codes of Conduct, Supported by Digital Script

    Science.gov (United States)

    Tavukcu, Tahir

    2016-01-01

    In this research, it is aimed to determine the effect of the attitudes of postgraduate students towards scientific research and codes of conduct, supported by digital script. This research is a quantitative study, and it has been formed according to pre-test & post-test research model of experiment and control group. In both groups, lessons…

  9. A study on determinants of risk perception and attitude structures concerning nuclear power technology

    International Nuclear Information System (INIS)

    Tsuchida, Shoji; Kitada, Atsuko; Ato, Kazunori

    2000-01-01

    attitude structures, in order to manage the risks of mega-technologies, especially the risk of nuclear technology. Social surveys on people's attitudes toward nuclear power plants carried out in Japan showed that cognition of necessity and safety of them and fear of them had strong effects on the attitudes, and that the female had more negative attitudes than the male, and that people on administrative positions by occupation had most affirmative attitudes. However, there are few social survey researches that focus on the people's tendencies to zero-risk perception or comparative-risk perception to clarify the nature and determinants of attitude structures toward nuclear power technology. In this presentation we try to point out the factors which should be considered to manage the risks of mega-technologies in the social decision making processes by describing the survey data of zero-risk perception, comparative-risk perception, and over-sensibility to hazards relating to the attitude structures toward nuclear power technology. (author)

  10. Astrometric observations of Saturn's satellites from McDonald Observatory, 1972

    Science.gov (United States)

    Abbot, R. I.; Mulholland, J. D.; Shelus, P. J.

    1975-01-01

    Observations of Saturn's satellites have been reduced by means of secondary reference stars obtained by reduction of Palomar Sky Survey plates. This involved the use of 29 SAO stars and plate overlap technique to determine the coordinates of 59 fainter stars in the satellite field. Fourteen plate constants were determined for each of the two PSS plates. Comparison of two plate measurement and reduction techniques on the satellite measures appears to demonstrate the existence of a serious background gradient effect and the utility of microdensitometry to eliminate this error source in positional determinations of close satellites.

  11. Precise Orbit Determination of GPS Satellites Using Phase Observables

    Directory of Open Access Journals (Sweden)

    Myung-Kook Jee

    1997-12-01

    Full Text Available The accuracy of user position by GPS is heavily dependent upon the accuracy of satellite position which is usually transmitted to GPS users in radio signals. The real-time satellite position information directly obtained from broadcast ephimerides has the accuracy of 3 x 10 meters which is very unsatisfactory to measure 100km baseline to the accuracy of less than a few mili-meters. There are globally at present seven orbit analysis centers capable of generating precise GPS ephimerides and their orbit quality is of the order of about 10cm. Therefore, precise orbit model and phase processing technique were reviewed and consequently precise GPS ephimerides were produced after processing the phase observables of 28 global GPS stations for 1 day. Initial 6 orbit parameters and 2 solar radiation coefficients were estimated using batch least square algorithm and the final results were compared with the orbit of IGS, the International GPS Service for Geodynamics.

  12. Modeling determinants of medication attitudes and poor adherence in early nonaffective psychosis

    DEFF Research Database (Denmark)

    Drake, Richard J; Nordentoft, Merete; Haddock, Gillian

    2015-01-01

    the hypothesis that medication attitudes, while meaningfully different from "insight," correlated with insight and self-esteem, and change in each influenced the others. Rosenberg Self-Esteem Scale, Birchwood Insight Scale, and Positive and Negative Syndrome Scale insight were assessed at presentation, after 6...... medication attitudes, self-esteem, and insight in an early psychosis cohort better to understand their relationships. Existing longitudinal data from 309 patients with early Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, nonaffective psychosis (83% first episode) were analyzed to test...... five latent constructs best fitted the data: medication attitudes, self-esteem, accepting need for treatment, self-rated insight, and objective insight. All were related and each affected the others as it changed, except self-esteem and medication attitudes. Low self-reported insight at presentation...

  13. Determining the orientation and spin period of TOPEX/Poseidon satellite by a photometric method

    Science.gov (United States)

    Kudak, V. I.; Epishev, V. P.; Perig, V. M.; Neybauer, I. F.

    2017-07-01

    We present the results of photometric observations of the TOPEX/Poseidon satellite performed during 2008-2016. The satellite become space debris after a failure in January, 2006, in a low Earth orbit. In the Laboratory of Space Research of Uzhhorod National University 73 light curves of the spacecraft were obtained. Standardization of photometric light curves is briefly explained. We have calculated the color indices of reflecting surfaces and the spin rate change. The general tendency of the latter is described by an exponential decay function. The satellite spin periods based on 126 light curves (including 53 light curves from the MMT-9 project operating since 2014) were taken into account. In 2016 the period of its own rotation reached its minimum of 10.6 s. A method to derive the direction of the spin axis of an artificial satellite and the angles of the light scattered by its surface has been developed in the Laboratory of Space Research of Uzhhorod National University. We briefly describe the "Orientation" program used for these purposes. The orientation of the TOPEX/Poseidon satellite in mid-2016 is given. The angle of precession β = 45°-50° and period of precession P pr = 141.5 s have been defined. The reasons for the identified nature of the satellite's own rotation have been found. They amount to the perturbation caused by a deviation of the Earth gravity field from a central-symmetric shape and the presence of moving parts on the satellite.

  14. MODELING AND SIMULATION OF HIGH RESOLUTION OPTICAL REMOTE SENSING SATELLITE GEOMETRIC CHAIN

    Directory of Open Access Journals (Sweden)

    Z. Xia

    2018-04-01

    Full Text Available The high resolution satellite with the longer focal length and the larger aperture has been widely used in georeferencing of the observed scene in recent years. The consistent end to end model of high resolution remote sensing satellite geometric chain is presented, which consists of the scene, the three line array camera, the platform including attitude and position information, the time system and the processing algorithm. The integrated design of the camera and the star tracker is considered and the simulation method of the geolocation accuracy is put forward by introduce the new index of the angle between the camera and the star tracker. The model is validated by the geolocation accuracy simulation according to the test method of the ZY-3 satellite imagery rigorously. The simulation results show that the geolocation accuracy is within 25m, which is highly consistent with the test results. The geolocation accuracy can be improved about 7 m by the integrated design. The model combined with the simulation method is applicable to the geolocation accuracy estimate before the satellite launching.

  15. Knowledge, attitude, practice, and determinants emergency contraceptive use among women seeking abortion services in Dire Dawa, Ethiopia.

    Directory of Open Access Journals (Sweden)

    Meskerem Abate

    Full Text Available Unplanned pregnancy from casual sex, unplanned sexual activity, and sexual violence are increasing. Emergency Contraceptives (EC are used to prevent unplanned pregnancies thereby preventing the occurrence and consequences of unplanned pregnancy. Emergency contraception is widely available in Ethiopia particularly in major cities. Yet the use of EC is very low and abortion rate in cities is high compared to the national average.To assess knowledge, attitude and practice and determinants on the use of emergency contraception among women obtaining abortion service at selected health institutions in Dire Dawa, Eastern Ethiopia.A facility based cross-sectional study was conducted on 390 women selected by multi-stage random sampling technique. The samples were generated from government and private for non profit health facilities. Participant's knowledge and attitude towards emergency contraception were measured using composite index based on 7 and 9 questions, respectively and analyzed using mean score to classify them as knowledgeable or not, and have positive attitude or not. Practice was assessed if the women reported ever use of emergency contraception. Determinants of use of emergency contraception were analyzed using logistic regression.Out of 390 women interviewed, 162 women (41.5% heard about EC, only 133 (34.1% had good knowledge, and 200 (51.3% of the respondents had positive attitudes towards to EC. Ever use of EC was reported by 38 (9.7%. Age, living arrangement, education, marital status, religion were found to be significantly associated with the use of emergency contraceptives. Women with poor knowledge were less likely to use EC compared to the knowledgeable ones [AOR = 0.027, 95% CI (0.007, 0.105].The study identified that most respondents lack adequate knowledge on the method of EC. In addition ever use of EC is very low.Health professions should give attention in increasing knowledge and uptake of Emergency Contraception.

  16. The failing measurement of attitudes: How semantic determinants of individual survey responses come to replace measures of attitude strength.

    Science.gov (United States)

    Arnulf, Jan Ketil; Larsen, Kai Rune; Martinsen, Øyvind Lund; Egeland, Thore

    2018-01-12

    The traditional understanding of data from Likert scales is that the quantifications involved result from measures of attitude strength. Applying a recently proposed semantic theory of survey response, we claim that survey responses tap two different sources: a mixture of attitudes plus the semantic structure of the survey. Exploring the degree to which individual responses are influenced by semantics, we hypothesized that in many cases, information about attitude strength is actually filtered out as noise in the commonly used correlation matrix. We developed a procedure to separate the semantic influence from attitude strength in individual response patterns, and compared these results to, respectively, the observed sample correlation matrices and the semantic similarity structures arising from text analysis algorithms. This was done with four datasets, comprising a total of 7,787 subjects and 27,461,502 observed item pair responses. As we argued, attitude strength seemed to account for much information about the individual respondents. However, this information did not seem to carry over into the observed sample correlation matrices, which instead converged around the semantic structures offered by the survey items. This is potentially disturbing for the traditional understanding of what survey data represent. We argue that this approach contributes to a better understanding of the cognitive processes involved in survey responses. In turn, this could help us make better use of the data that such methods provide.

  17. Attitude Operation Results of Solar Sail Demonstrator IKAROS

    Science.gov (United States)

    Saiki, Takanao; Tsuda, Yuichi; Funase, Ryu; Mimasu, Yuya; Shirasawa, Yoji; Ikaros Demonstration Team,

    This paper shows the attitude operation results of Japanese interplanetary solar sail demonstration spacecraft IKAROS. IKAROS was launched on 21 May 2010(JST) aboard an H-IIA rocket, together with the AKATSUKI Venus climate orbiter. As IKAROS is the secondary payload, the development cost and period were restricted and the onboard attitude system is very simple. This paper introduces the attitude determination and control system. And as IKAROS is spin type spacecraft and it has the large membrane, the attitude control is not easy and it is very important to determine the long-term attitude plan in advance. This paper also shows the outline of the IKAROS attitude operation plan and its operation results.

  18. Construction of exercise attitude questionnaire-18 to evaluate patients' attitudes toward exercises.

    Science.gov (United States)

    Manigandan, C; Charles, J; Divya, I; Edward, S J; Aaron, A

    2004-09-01

    The importance of exercise for health and the long-term management of various diseases is now well documented and established. However, the challenge is the lack of patient compliance to exercises, which is true for almost all diseases, from acute back pain to chronic arthritis. One of the factors for compliance is the perception that exercises are effective in ameliorating unpleasant symptoms. Precisely, people's perception and their attitude towards exercises matter the most in determining the treatment outcome in such conditions. Unfortunately, the psychology of exercise initiation and adherence in the patient population is seriously under-researched. Recent literature has identified the need to consider various similar factors like motivation, barriers to exercise, exercise-related beliefs, attitudes, and the formulation of self-perceptions and self-identity towards exercises. However, no good instrument exists that is sensitive and standardized to evaluate people's attitude towards exercises, which is fundamental and crucial in determining the final outcome of exercise-treatable diseases. Hence we have attempted to design a questionnaire to 'evaluate the level of people's attitude towards exercises'.

  19. Video-Aided GPS/INS Positioning and Attitude Determination

    National Research Council Canada - National Science Library

    Brown, Alison; Silva, Randy

    2006-01-01

    ... precise positioning and attitude information to be maintained, even during periods of extended GPS dropouts. This relies on information extracted from the video images of reference points and features to continue to update the inertial navigation solution. In this paper, the principles of the video-update method aredescribed.

  20. Preservice Science Teachers' Attitudes toward Environment

    Science.gov (United States)

    Koc, Isil; Kuvac, Meltem

    2016-01-01

    The purpose of this study was to determine preservice science teachers' attitudes toward environment and to investigate whether their environmental attitudes differ in terms of gender and grade level. A total of 197 preservice science teachers participated in the study. Personal Information Form and the Environmental Attitudes Inventory (EAI)…

  1. Chaos as the hub of systems dynamics. The part I-The attitude control of spacecraft by involving in the heteroclinic chaos

    Science.gov (United States)

    Doroshin, Anton V.

    2018-06-01

    In this work the chaos in dynamical systems is considered as a positive aspect of dynamical behavior which can be applied to change systems dynamical parameters and, moreover, to change systems qualitative properties. From this point of view, the chaos can be characterized as a hub for the system dynamical regimes, because it allows to interconnect separated zones of the phase space of the system, and to fulfill the jump into the desirable phase space zone. The concretized aim of this part of the research is to focus on developing the attitude control method for magnetized gyrostat-satellites, which uses the passage through the intentionally generated heteroclinic chaos. The attitude dynamics of the satellite/spacecraft in this case represents the series of transitions from the initial dynamical regime into the chaotic heteroclinic regime with the subsequent exit to the final target dynamical regime with desirable parameters of the attitude dynamics.

  2. Epistemics and attitudes

    Directory of Open Access Journals (Sweden)

    Pranav Anand

    2013-10-01

    Full Text Available This paper investigates the distribution of epistemic modals in attitude contexts in three Romance languages, as well as their potential interaction with mood selection. We show that epistemics can appear in complements of attitudes of acceptance (Stalnaker 1984, but not desideratives or directives; in addition, emotive doxastics (hope, fear and dubitatives (doubt permit epistemic possibility modals, but not their necessity counterparts. We argue that the embedding differences across attitudes indicate that epistemics are sensitive to the type of attitude an attitude predicate reports. We show that this sensitivity can be derived by adopting two types of proposals from the literature on epistemic modality and on attitude verbs: First, we assume that epistemics do not target knowledge uniformly, but rather quantify over an information state determined by the content of the embedding attitude (Hacquard 2006, 2010, Yalcin 2007. In turn, we adopt a fundamental split in the semantics of attitude verbs between ‘representational’ and ‘non-representational’ attitudes (Bolinger 1968: representational attitudes quantify over an information state (e.g., a set of beliefs for believe, which, we argue, epistemic modals can be anaphoric to. Non-representational attitudes do not quantify over an information state; instead, they combine with their complement via a comparison with contextually-provided alternatives using a logic of preference (cf. Bolinger 1968, Stalnaker 1984, Farkas 1985, Heim 1992, Villalta 2000, 2008. Finally, we argue that emotive doxastics and dubitatives have a hybrid semantics, which combines a representational component (responsible for licensing epistemic possibility modals, and a preference component (responsible for disallowing epistemic necessity modals. http://dx.doi.org/10.3765/sp.6.8 BibTeX info

  3. Food Recall Attitudes and Behaviors of School Nutrition Directors

    Science.gov (United States)

    Grisamore, Amber; Roberts, Kevin R.

    2014-01-01

    Purpose/Objectives: The purpose of this study was to explore school nutrition directors' attitudes and behaviors about food recalls. Specific objectives included: 1) Determine current food recall attitudes and the relationship between demographics and these attitudes; 2) Determine current practices of school nutrition directors related to…

  4. Investigating Student Attitudes toward Augmented Reality

    Science.gov (United States)

    Sirakaya, Mustafa; Kiliç Çakmak, Ebru

    2018-01-01

    This study aimed at identifying the attitudes of secondary school students toward AR applications and to investigate the change in these attitudes according to different variables. The study also aspired to determine the relationship between attitudes toward AR and achievement. The general survey model was used in the study. The study group was…

  5. Attitude: A Component of Competent Performance.

    Science.gov (United States)

    Meussling, Vonne

    The findings of a survey of attitude studies to determine the effect of students' attitudes on communication competence as they enter the work force and develop their careers are reported in this paper. The paper explains how attitude improvement is an effective management tool in controlling costly absenteeism, output, job productivity, work…

  6. IMPLEMENTATION OF AERONAUTICAL LOCAL SATELLITE AUGMENTATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Stojce Ilcev

    2011-03-01

    Full Text Available Abstract. This paper introduces development and implementation of new Local Satellite AugmentationSystem as an integration component of the Regional Satellite Augmentation System (RSAS employingcurrent and new Satellite Communications, Navigation and Surveillance (CNS for improvement of the AirTraffic Control (ATC and Air Traffic Management (ATM and for enhancement safety systems includingtransport security and control of flights in all stages, airport approaching, landing, departures and allmovements over airport surface areas. The current first generation of the Global Navigation Satellite SystemGNSS-1 applications are represented by fundamental military solutions for Position, Velocity and Time ofthe satellite navigation and determination systems such as the US GPS and Russian GLONASS (Former-USSR requirements, respectively. The establishment of Aeronautical CNS is also discussed as a part ofGlobal Satellite Augmentation Systems of GPS and GLONASS systems integrated with existing and futureRSAS and LSAS in airports areas. Specific influence and factors related to the Comparison of the Currentand New Aeronautical CNS System including the Integration of RSAS and GNSS solutions are discussedand packet of facts is determined to maximize the new satellite Automatic Dependent Surveillance System(ADSS and Special Effects of the RSAS Networks. The possible future integration of RSAS and GNSS andthe common proposal of the satellite Surface Movement Guidance and Control are presented in thechangeless ways as of importance for future enfacements of ATC and ATM for any hypothetical airportinfrastructure.Keywords: ADSS, ATC, ATM, CNS, GSAS, LRAS, RSAS, SMGC, Special Effects of RSAS.

  7. Comprehensive Evaluation of Attitude and Orbit Estimation Using Actual Earth Magnetic Field Data

    Science.gov (United States)

    Deutschmann, Julie K.; Bar-Itzhack, Itzhack Y.

    2000-01-01

    A single, augmented Extended Kalman Filter (EKF), which simultaneously and autonomously estimates spacecraft attitude and orbit has been developed and successfully tested with real magnetometer and gyro data only. Because the earth magnetic field is a function of time and position, and because time is known quite precisely, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both orbit and attitude errors. Thus, conceivably these differences could be used to estimate both orbit and attitude; an observability study validated this assumption. The results of testing the EKF with actual magnetometer and gyro data, from four satellites supported by the NASA Goddard Space Flight Center (GSFC) Guidance, Navigation, and Control Center, are presented and evaluated. They confirm the assumption that a single EKF can estimate both attitude and orbit when using gyros and magnetometers only.

  8. Public attitudes toward nuclear power generation. Preliminary study focusing on characteristics of the attitudes of men and women

    International Nuclear Information System (INIS)

    Maruyama, Naoko; Misumi, Jyuji; Yanagihara, Ryozo; Hayashi, Chikio.

    1996-01-01

    The purpose of this study is to approach the public attitudes toward nuclear power generation and related matters by focusing on the viewpoint of differences between men and women. More specifically, it was attempted to determine what types of lifestyles and ways of thinking are associated with persons indicating the respective attitudes, what types of anxiety these people have with respect to nuclear power generation, as well as the nature of the inflexibility of those attitudes. As a result, well-defined characteristics were found to be associated with each attitude. In addition, the types of anxiety with respect to nuclear power generation were able to be broadly classified into emotional anxiety and logical anxiety. Regarding the inflexibility of these attitudes, although men tended to exhibit little change concerning positive attitudes, they tended to easily change in the negative direction as a result of negative information. In the case of women, conversely, although their attitudes tended to change easily toward the affirmative direction when presented with positive information, it was determined that women tend to change very little toward the negative direction. (author)

  9. GUST86 - An analytical ephemeris of the Uranian satellites. [General Uranus Satellite Theory

    Science.gov (United States)

    Laskar, J.; Jacobson, R. A.

    1987-01-01

    The General Uranus Satellite Theory GUST (Laskar, 1986) is used for the construction of an analytical ephemeris for the Uranian satellites. The theory is fitted against earth-based observations from 1911 to 1986, and all radio and optical data obtained during Voyager encounter with Uranus. Earth-based observations alone allow the determination of masses which are within 15 percent of the values determined by the Uranus flyby. The analysis of all the observations confirm the values of the masses obtained during the encounter (Stone and Miner, 1986) and give a complete set of dynamical parameters for the analytical theory. An analytical ephemeris, GUST86, with an estimated precision of about 100 km with respect to Uranus is obtained.

  10. GPS-based satellite tracking system for precise positioning

    Science.gov (United States)

    Yunck, T. P.; Melbourne, W. G.; Thornton, C. L.

    1985-01-01

    NASA is developing a Global Positioning System (GPS) based measurement system to provide precise determination of earth satellite orbits, geodetic baselines, ionospheric electron content, and clock offsets between worldwide tracking sites. The system will employ variations on the differential GPS observing technique and will use a network of nine fixed ground terminals. Satellite applications will require either a GPS flight receiver or an on-board GPS beacon. Operation of the system for all but satellite tracking will begin by 1988. The first major satellite application will be a demonstration of decimeter accuracy in determining the altitude of TOPEX in the early 1990's. By then the system is expected to yield long-baseline accuracies of a few centimeters and instantaneous time synchronization to 1 ns.

  11. Science Teaching Attitudes and Scientific Attitudes of Pre-Service Teachers of Gifted Students

    Science.gov (United States)

    Erdogan, Sezen Camci

    2017-01-01

    The purpose of this study is to determine science teaching attitudes and scientific attitudes of pre-service teachers of gifted students due to gender and grade level and also correlation among these variables. It is a survey study that the group is 82 students attending Gifted Education undergraduate level. Data is gathered by Scientific Attitude…

  12. Attitude control analysis of tethered de-orbiting

    Science.gov (United States)

    Peters, T. V.; Briz Valero, José Francisco; Escorial Olmos, Diego; Lappas, V.; Jakowski, P.; Gray, I.; Tsourdos, A.; Schaub, H.; Biesbroek, R.

    2018-05-01

    The increase of satellites and rocket upper stages in low earth orbit (LEO) has also increased substantially the danger of collisions in space. Studies have shown that the problem will continue to grow unless a number of debris are removed every year. A typical active debris removal (ADR) mission scenario includes launching an active spacecraft (chaser) which will rendezvous with the inactive target (debris), capture the debris and eventually deorbit both satellites. Many concepts for the capture of the debris while keeping a connection via a tether, between the target and chaser have been investigated, including harpoons, nets, grapples and robotic arms. The paper provides an analysis on the attitude control behaviour for a tethered de-orbiting mission based on the ESA e.Deorbit reference mission, where Envisat is the debris target to be captured by a chaser using a net which is connected to the chaser with a tether. The paper provides novel insight on the feasibility of tethered de-orbiting for the various mission phases such as stabilization after capture, de-orbit burn (plus stabilization), stabilization during atmospheric pass, highlighting the importance of various critical mission parameters such as the tether material. It is shown that the selection of the appropriate tether material while using simple controllers can reduce the effort needed for tethered deorbiting and can safely control the attitude of the debris/chaser connected with a tether, without the danger of a collision.

  13. Attitudes and attitude change.

    Science.gov (United States)

    Bohner, Gerd; Dickel, Nina

    2011-01-01

    Attitudes and attitude change remain core topics of contemporary social psychology. This selective review emphasizes work published from 2005 to 2009. It addresses constructionist and stable-entity conceptualizations of attitude, the distinction between implicit and explicit measures of attitude, and implications of the foregoing for attitude change. Associative and propositional processes in attitude change are considered at a general level and in relation to evaluative conditioning. The role of bodily states and physical perceptions in attitude change is reviewed. This is followed by an integrative perspective on processing models of persuasion and the consideration of meta-cognitions in persuasion. Finally, effects of attitudes on information processing, social memory, and behavior are highlighted. Core themes cutting across the areas reviewed are attempts at integrative theorizing bringing together formerly disparate phenomena and viewpoints.

  14. Safehold Attitude Determination Approach for GPM

    Science.gov (United States)

    Fitzpatrick, Henry; DeWeese, Keith

    2012-01-01

    Spacecraft sating designs generally have minimal goals with loose pointing requirements. Safe pointing orientations for three-axis stabilized spacecraft are usually chosen to put the spacecraft into a thermally safe and power-positive orientation. In addition, safe mode designs are required to be simple and reliable. This simplicity lends itself to the usage of analog sun sensors, because digital sun sensors will add unwanted complexity to the safe hold mode. The Global Precipitation Measurement (GPM) Mission Core Observatory will launch into lower earth orbit (LEO) at an inclination of 65 degrees. The GPM instrument suite consists of an active radar system and a passive microwave imager to provide the next-generation global observations of rain and snow. The complexity and precision of these instruments along with the operational constraints of the mission result in tight pointing requirements during all phases of the mission. To ensure the instruments are not damaged during spacecraft safing, thermal constraints dictate that the solar pointing orientation must be maintained to better than 6.5 degrees. This requirement is outside the capabilities of a typical analog sun sensor suite, primarily due to the effects of Earth's albedo. To ensure mission success, a new analog sensor, along with the appropriate algorithms, is needed. This paper discusses the design issues involving albedo effects on spacecraft pointing and the development of a simple, low-cost analog sensor and algorithm that will address the needs of the GPM mission. In addition, the algorithms are designed to be easily integrated into the existing attitude determination software by using common interfaces. The sensor design is based on a heritage, commercial off-the-shelf analog sun sensors with a limited field-of-view to reduce the effects of Earth's albedo. High fidelity simulation results are presented that demonstrate the efficacy of the design.

  15. Orbit Determination of GPS and Koreasat 2 Satellite Using Angle-Only Data and Requirements for Optical Tracking System

    Directory of Open Access Journals (Sweden)

    Woo-Kyoung Lee

    2004-09-01

    Full Text Available Gauss method for the initial orbit determination was tested using angle-only data obtained by orbit propagation using TLE and SGP4/SDP4 orbit propagation model. As the analysis of this simulation, a feasible time span between observation time of satellite resulting the minimum error to the true orbit was found. Initial orbit determination is performed using observational data of GPS 26 and Koreasat 2 from 0.6m telescope of KAO(Korea Astronomy Observatory and precise orbit determination is also performed using simulated data. The result of precise orbit determination shows that the accuracy of resulting orbit is related to the accuracy of the observations and the number of data.

  16. Kinematic Orbit Determination Method Optimization and Test Analysis for BDS Satellites with Short-arc Tracking Data

    Directory of Open Access Journals (Sweden)

    GUO Rui

    2017-04-01

    Full Text Available Rapid orbit recovery is a puzzle for the BDS satellites after orbit maneuvers. Two kinematic orbit determination methods are studied, with two orbit determination models being established. The receiver system error and serious multipath error exist in the BDS system. The co-location method is proposed to estimate and calibrate the receiver system errors. A CNMC (code noise and multipath correction method is introduced to weaken the multipath error. Therefore the data quality is controlled efficiently for the receivers in the short tracking arc. The GEO/IGSO/MEO real data is emploied to carry out tests and validation. Using 10 min short tracking arc, the kinematic precise orbit determination accuracy is about 3.27 m for the GEOs, and 8.19 m for the IGSOs, and 5.9 m for the MEOs. Rapid orbit determination is achieved, which satisfying the orbit requirements from the BDS RDSS services. The kinematic precise orbit determination method also supports the RDSS service walking up to the global world.

  17. Teachers' Attitude and Gender Factor as Determinant of Pupils ...

    African Journals Online (AJOL)

    Nekky Umera

    Abstract. Teachers are regarded as the basic tools in education and curriculum .... The analysis in table 1 showed that teachers' attitude have significant effect ... Iroegbu, T.O (1998) Problem based learning, numerical ability and gender as.

  18. A novel KFCM based fault diagnosis method for unknown faults in satellite reaction wheels.

    Science.gov (United States)

    Hu, Di; Sarosh, Ali; Dong, Yun-Feng

    2012-03-01

    Reaction wheels are one of the most critical components of the satellite attitude control system, therefore correct diagnosis of their faults is quintessential for efficient operation of these spacecraft. The known faults in any of the subsystems are often diagnosed by supervised learning algorithms, however, this method fails to work correctly when a new or unknown fault occurs. In such cases an unsupervised learning algorithm becomes essential for obtaining the correct diagnosis. Kernel Fuzzy C-Means (KFCM) is one of the unsupervised algorithms, although it has its own limitations; however in this paper a novel method has been proposed for conditioning of KFCM method (C-KFCM) so that it can be effectively used for fault diagnosis of both known and unknown faults as in satellite reaction wheels. The C-KFCM approach involves determination of exact class centers from the data of known faults, in this way discrete number of fault classes are determined at the start. Similarity parameters are derived and determined for each of the fault data point. Thereafter depending on the similarity threshold each data point is issued with a class label. The high similarity points fall into one of the 'known-fault' classes while the low similarity points are labeled as 'unknown-faults'. Simulation results show that as compared to the supervised algorithm such as neural network, the C-KFCM method can effectively cluster historical fault data (as in reaction wheels) and diagnose the faults to an accuracy of more than 91%. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Micro technology based sun sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Pedersen, Martin; Fléron, René

    2003-01-01

    various payloads and platforms. The conventional and commercial actuators and attitude sensors are in most cases not suited for these satellites, which again lead to new design considerations. Another important property is the launch cost, which can be kept relatively low as a result of the concept....... This fact enables students to get hands-on experience with satellite systems design and project management. This paper describes the attitude control and determination system of a Danish student satellite (DTUsat), with main focus on the two-axis MOEMS sun sensor developed. On the magnetotorquer controlled...... DTUsat sun sensors are needed along with a magnetometer to obtain unambiguous attitude determination for the ACDS and the payloads - an electrodynamic tether and a camera. The accuracy needed was not obtainable by employing conventional attitude sensors. Hence a linear slit sensor was designed...

  20. The Determinants of Occupational Therapy Students' Attitudes: Mindfulness and Well-Being

    Science.gov (United States)

    Akyurek, Gokcen; Kars, Sinem; Bumin, Gonca

    2018-01-01

    There are 12.5 million people with disabilities in Turkey according to the research conducted in recent years. It is an unquestionable fact that attitudes and behaviors towards people with disabilities. Their lives and harmony with the society describe social interactions. The awareness and attitudes of health professionals towards people with…

  1. Satellite-Based Sunshine Duration for Europe

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-06-01

    Full Text Available In this study, two different methods were applied to derive daily and monthly sunshine duration based on high-resolution satellite products provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT Satellite Application Facility on Climate Monitoring using data from Meteosat Second Generation (MSG SEVIRI (Spinning Enhanced Visible and Infrared Imager. The satellite products were either hourly cloud type or hourly surface incoming direct radiation. The satellite sunshine duration estimates were not found to be significantly different using the native 15-minute temporal resolution of SEVIRI. The satellite-based sunshine duration products give additional spatial information over the European continent compared with equivalent in situ-based products. An evaluation of the satellite sunshine duration by product intercomparison and against station measurements was carried out to determine their accuracy. The satellite data were found to be within ±1 h/day compared to high-quality Baseline Surface Radiation Network or surface synoptic observations (SYNOP station measurements. The satellite-based products differ more over the oceans than over land, mainly because of the treatment of fractional clouds in the cloud type-based sunshine duration product. This paper presents the methods used to derive the satellite sunshine duration products and the performance of the different retrievals. The main benefits and disadvantages compared to station-based products are also discussed.

  2. Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations

    Science.gov (United States)

    Montenbruck, Oliver; Hackel, Stefan; Jäggi, Adrian

    2017-11-01

    The Sentinel-3 mission takes routine measurements of sea surface heights and depends crucially on accurate and precise knowledge of the spacecraft. Orbit determination with a targeted uncertainty of less than 2 cm in radial direction is supported through an onboard Global Positioning System (GPS) receiver, a Doppler Orbitography and Radiopositioning Integrated by Satellite instrument, and a complementary laser retroreflector for satellite laser ranging. Within this study, the potential of ambiguity fixing for GPS-only precise orbit determination (POD) of the Sentinel-3 spacecraft is assessed. A refined strategy for carrier phase generation out of low-level measurements is employed to cope with half-cycle ambiguities in the tracking of the Sentinel-3 GPS receiver that have so far inhibited ambiguity-fixed POD solutions. Rather than explicitly fixing double-difference phase ambiguities with respect to a network of terrestrial reference stations, a single-receiver ambiguity resolution concept is employed that builds on dedicated GPS orbit, clock, and wide-lane bias products provided by the CNES/CLS (Centre National d'Études Spatiales/Collecte Localisation Satellites) analysis center of the International GNSS Service. Compared to float ambiguity solutions, a notably improved precision can be inferred from laser ranging residuals. These decrease from roughly 9 mm down to 5 mm standard deviation for high-grade stations on average over low and high elevations. Furthermore, the ambiguity-fixed orbits offer a substantially improved cross-track accuracy and help to identify lateral offsets in the GPS antenna or center-of-mass (CoM) location. With respect to altimetry, the improved orbit precision also benefits the global consistency of sea surface measurements. However, modeling of the absolute height continues to rely on proper dynamical models for the spacecraft motion as well as ground calibrations for the relative position of the altimeter reference point and the CoM.

  3. Causal relationships between solar proton events and single event upsets for communication satellites

    Science.gov (United States)

    Lohmeyer, W. Q.; Cahoy, K.; Liu, Shiyang

    In this work, we analyze a historical archive of single event upsets (SEUs) maintained by Inmarsat, one of the world's leading providers of global mobile satellite communications services. Inmarsat has operated its geostationary communication satellites and collected extensive satellite anomaly and telemetry data since 1990. Over the course of the past twenty years, the satellites have experienced more than 226 single event upsets (SEUs), a catch-all term for anomalies that occur in a satellite's electronics such as bit-flips, trips in power supplies, and memory changes in attitude control systems. While SEUs are seemingly random and difficult to predict, we correlate their occurrences to space weather phenomena, and specifically show correlations between SEUs and solar proton events (SPEs). SPEs are highly energetic protons that originate from solar coronal mass ejections (CMEs). It is thought that when these particles impact geostationary (GEO) satellites they can cause SEUs as well as solar array degradation. We calculate the associated statistical correlations that each SEU occurs within one day, one week, two weeks, and one month of 10 MeV SPEs between 10 - 10,000 particle flux units (pfu). However, we find that SPEs are most prevalent at solar maximum and that the SEUs on Inmarsat's satellites occur out of phase with the solar maximum. Ultimately, this suggests that SPEs are not the primary cause of the Inmarsat SEUs. A better understanding of the causal relationship between SPEs and SEUs will help the satellite communications industry develop component and operational space weather mitigation techniques as well as help the space weather community to refine radiation models.

  4. Attitudes and attitude change

    DEFF Research Database (Denmark)

    Scholderer, Joachim

    2010-01-01

    An attitude can be defined as the evaluation of an object as positive or negative. The term "object" in this definition should be understood in a broad sense; an attitude object may be any concrete or abstract entity that is in some way represented in our thoughts and memory. In other words......, attitude objects are simply the things we like or dislike. Consumer researchers are mainly interested in attitude objects of two classes, products and services, including the attributes, issues, persons, communications, situations, and behaviours related to them. Research on consumer attitudes takes two...... perspectives: Understanding attitude structure: how is an attitude cognitively represented in a consumer's mind, including its components (intra-attitudinal structure) and its associations with other psychological variables (inter-attitudinal structure)? Understanding information processing: what...

  5. Attitudes and Attitude Change.

    Science.gov (United States)

    Albarracin, Dolores; Shavitt, Sharon

    2018-01-04

    This review covers research on attitudes and attitude change published between 2010 and 2017. We characterize this period as one of significant progress toward an understanding of how attitudes form and change in three critical contexts. The first context is the person, as attitudes change in connection to values, general goals, language, emotions, and human development. The second context is social relationships, which link attitude change to the communicator of persuasive messages, social media, and culture. The third context is sociohistorical and highlights the influence of unique events, including sociopolitical, economic, and climatic occurrences. In conclusion, many important recent findings reflect the fact that holism, with a focus on situating attitudes within their personal, social, and historical contexts, has become the zeitgeist of attitude research during this period.

  6. Space Debris Attitude Simulation - IOTA (In-Orbit Tumbling Analysis)

    Science.gov (United States)

    Kanzler, R.; Schildknecht, T.; Lips, T.; Fritsche, B.; Silha, J.; Krag, H.

    Today, there is little knowledge on the attitude state of decommissioned intact objects in Earth orbit. Observational means have advanced in the past years, but are still limited with respect to an accurate estimate of motion vector orientations and magnitude. Especially for the preparation of Active Debris Removal (ADR) missions as planned by ESA's Clean Space initiative or contingency scenarios for ESA spacecraft like ENVISAT, such knowledge is needed. The In-Orbit Tumbling Analysis tool (IOTA) is a prototype software, currently in development within the framework of ESA's “Debris Attitude Motion Measurements and Modelling” project (ESA Contract No. 40000112447), which is led by the Astronomical Institute of the University of Bern (AIUB). The project goal is to achieve a good understanding of the attitude evolution and the considerable internal and external effects which occur. To characterize the attitude state of selected targets in LEO and GTO, multiple observation methods are combined. Optical observations are carried out by AIUB, Satellite Laser Ranging (SLR) is performed by the Space Research Institute of the Austrian Academy of Sciences (IWF) and radar measurements and signal level determination are provided by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). Developed by Hyperschall Technologie Göttingen GmbH (HTG), IOTA will be a highly modular software tool to perform short- (days), medium- (months) and long-term (years) propagation of the orbit and attitude motion (six degrees-of-freedom) of spacecraft in Earth orbit. The simulation takes into account all relevant acting forces and torques, including aerodynamic drag, solar radiation pressure, gravitational influences of Earth, Sun and Moon, eddy current damping, impulse and momentum transfer from space debris or micro meteoroid impact, as well as the optional definition of particular spacecraft specific influences like tank sloshing, reaction wheel behaviour

  7. A METHOD FOR SELF-CALIBRATION IN SATELLITE WITH HIGH PRECISION OF SPACE LINEAR ARRAY CAMERA

    Directory of Open Access Journals (Sweden)

    W. Liu

    2016-06-01

    Full Text Available At present, the on-orbit calibration of the geometric parameters of a space surveying camera is usually processed by data from a ground calibration field after capturing the images. The entire process is very complicated and lengthy and cannot monitor and calibrate the geometric parameters in real time. On the basis of a large number of on-orbit calibrations, we found that owing to the influence of many factors, e.g., weather, it is often difficult to capture images of the ground calibration field. Thus, regular calibration using field data cannot be ensured. This article proposes a real time self-calibration method for a space linear array camera on a satellite using the optical auto collimation principle. A collimating light source and small matrix array CCD devices are installed inside the load system of the satellite; these use the same light path as the linear array camera. We can extract the location changes of the cross marks in the matrix array CCD to determine the real-time variations in the focal length and angle parameters of the linear array camera. The on-orbit status of the camera is rapidly obtained using this method. On one hand, the camera’s change regulation can be mastered accurately and the camera’s attitude can be adjusted in a timely manner to ensure optimal photography; in contrast, self-calibration of the camera aboard the satellite can be realized quickly, which improves the efficiency and reliability of photogrammetric processing.

  8. Global determination of rating curves in the Amazon basin from satellite altimetry

    Science.gov (United States)

    Paris, Adrien; Paiva, Rodrigo C. D.; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Calmant, Stéphane; Collischonn, Walter; Bonnet, Marie-Paule; Seyler, Frédérique

    2014-05-01

    The Amazonian basin is the largest hydrological basin all over the world. Over the past few years, it has experienced an unusual succession of extreme droughts and floods, which origin is still a matter of debate. One of the major issues in understanding such events is to get discharge series distributed over the entire basin. Satellite altimetry can be used to improve our knowledge of the hydrological stream flow conditions in the basin, through rating curves. Rating curves are mathematical relationships between stage and discharge at a given place. The common way to determine the parameters of the relationship is to compute the non-linear regression between the discharge and stage series. In this study, the discharge data was obtained by simulation through the entire basin using the MGB-IPH model with TRMM Merge input rainfall data and assimilation of gage data, run from 1998 to 2009. The stage dataset is made of ~900 altimetry series at ENVISAT and Jason-2 virtual stations, sampling the stages over more than a hundred of rivers in the basin. Altimetry series span between 2002 and 2011. In the present work we present the benefits of using stochastic methods instead of probabilistic ones to determine a dataset of rating curve parameters which are hydrologicaly meaningful throughout the entire Amazon basin. The rating curve parameters have been computed using an optimization technique based on Markov Chain Monte Carlo sampler and Bayesian inference scheme. This technique provides an estimate of the best value for the parameters together with their posterior probability distribution, allowing the determination of a credibility interval for calculated discharge. Also the error over discharges estimates from the MGB-IPH model is included in the rating curve determination. These MGB-IPH errors come from either errors in the discharge derived from the gage readings or errors in the satellite rainfall estimates. The present experiment shows that the stochastic approach

  9. Psychological determinants of attitude towards and willingness to pay for green electricity

    Energy Technology Data Exchange (ETDEWEB)

    Hansla, Andre; Gamble, Amelie; Juliusson, Asgeir; Gaerling, Tommy [Department of Psychology, Goeteborg University, P.O. Box 500, SE-40530 Goeteborg (Sweden)

    2008-02-15

    The results of a mail survey of 855 Swedish household consumers showed that willingness to pay for green electricity increased with a positive attitude towards green electricity and decreased with electricity costs. Attitude towards green electricity was in turn related to awareness of consequences of environmental problems for oneself, others, and the biosphere, concerns for these consequences, and self-transcendent value types. (author)

  10. Psychological determinants of attitude towards and willingness to pay for green electricity

    International Nuclear Information System (INIS)

    Hansla, Andre; Gamble, Amelie; Juliusson, Asgeir; Gaerling, Tommy

    2008-01-01

    The results of a mail survey of 855 Swedish household consumers showed that willingness to pay for green electricity increased with a positive attitude towards green electricity and decreased with electricity costs. Attitude towards green electricity was in turn related to awareness of consequences of environmental problems for oneself, others, and the biosphere, concerns for these consequences, and self-transcedent value types

  11. Relative Status Determination for Spacecraft Relative Motion Based on Dual Quaternion

    Directory of Open Access Journals (Sweden)

    Jun Sun

    2014-01-01

    Full Text Available For the two-satellite formation, the relative motion and attitude determination algorithm is a key component that affects the flight quality and mission efficiency. The relative status determination algorithm is proposed based on the Extended Kalman Filter (EKF and the system state optimal estimate linearization. Aiming at the relative motion of the spacecraft formation navigation problem, the spacecraft relative kinematics and dynamics model are derived from the dual quaternion in the algorithm. Then taking advantage of EKF technique, combining with the dual quaternion integrated dynamic models, considering the navigation algorithm using the fusion measurement by the gyroscope and star sensors, the relative status determination algorithm is designed. At last the simulation is done to verify the feasibility of the algorithm. The simulation results show that the EKF algorithm has faster convergence speed and higher accuracy.

  12. Laser Guidestar Satellite for Ground-based Adaptive Optics Imaging of Geosynchronous Satellites and Astronomical Targets

    Science.gov (United States)

    Marlow, W. A.; Cahoy, K.; Males, J.; Carlton, A.; Yoon, H.

    2015-12-01

    30 cm with laser power on the order of milliwatts, and a commercial off the shelf based attitude determination and control system, among others. Different from standard 1U and 3U buses, the 6U form factor allows for a propulsion system for navigating around multiple targets in the GEO belt.

  13. DEMOCRATIC ATTITUDES OF ELEMENTARY SCHOOL TEACHERS

    Directory of Open Access Journals (Sweden)

    Müge TAÇMAN

    2006-06-01

    Full Text Available The primary aim of this study was to determine the democratic attitudes of the classroomteachers. This study is a descriptive research. In this research, democratic attitude scala which was developed by“published for the attitude research labaratory” and adapted to Turkish educational system by Gözütok (1995 wasused. Research group consisted fifty teachers from four private primary schools in Ankara. The data were analyzed byone way ANOVA. According of the results of the research, democratic attitudes of teachers have been discriminated onteachers’ sexuality, seniority and graduate level

  14. Improved Orbit Determination and Forecasts with an Assimilative Tool for Atmospheric Density and Satellite Drag Specification

    Science.gov (United States)

    Crowley, G.; Pilinski, M.; Sutton, E. K.; Codrescu, M.; Fuller-Rowell, T. J.; Matsuo, T.; Fedrizzi, M.; Solomon, S. C.; Qian, L.; Thayer, J. P.

    2016-12-01

    Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by the variability in density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of LEO satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. We describe ongoing work to build a comprehensive nowcast and forecast system for specifying the neutral atmospheric state related to orbital drag conditions. The system outputs include neutral density, winds, temperature, composition, and the satellite drag derived from these parameters. This modeling tool is based on several state-of-the-art coupled models of the thermosphere-ionosphere as well as several empirical models running in real-time and uses assimilative techniques to produce a thermospheric nowcast. This software will also produce 72 hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition and using near real-time and predicted space weather data and indices as the inputs. Features of this technique include: • Satellite drag specifications with errors lower than current models • Altitude coverage up to 1000km • Background state representation using both first principles and empirical models • Assimilation of satellite drag and other datatypes • Real time capability • Ability to produce 72-hour forecasts of the atmospheric state In this paper, we will summarize the model design and assimilative architecture, and present preliminary validation results. Validation results will be presented in the context of satellite orbit errors and compared with several leading atmospheric models including the High Accuracy Satellite Drag Model, which is currently used

  15. Determining origin in a migratory marine vertebrate: a novel method to integrate stable isotopes and satellite tracking

    Science.gov (United States)

    Vander Zanden, Hannah B.; Tucker, Anton D.; Hart, Kristen M.; Lamont, Margaret M.; Fujisaki, Ikuko; Addison, David S.; Mansfield, Katherine L.; Phillips, Katrina F.; Wunder, Michael B.; Bowen, Gabriel J.; Pajuelo, Mariela; Bolten, Alan B.; Bjorndal, Karen A.

    2015-01-01

    Stable isotope analysis is a useful tool to track animal movements in both terrestrial and marine environments. These intrinsic markers are assimilated through the diet and may exhibit spatial gradients as a result of biogeochemical processes at the base of the food web. In the marine environment, maps to predict the spatial distribution of stable isotopes are limited, and thus determining geographic origin has been reliant upon integrating satellite telemetry and stable isotope data. Migratory sea turtles regularly move between foraging and reproductive areas. Whereas most nesting populations can be easily accessed and regularly monitored, little is known about the demographic trends in foraging populations. The purpose of the present study was to examine migration patterns of loggerhead nesting aggregations in the Gulf of Mexico (GoM), where sea turtles have been historically understudied. Two methods of geographic assignment using stable isotope values in known-origin samples from satellite telemetry were compared: 1) a nominal approach through discriminant analysis and 2) a novel continuous-surface approach using bivariate carbon and nitrogen isoscapes (isotopic landscapes) developed for this study. Tissue samples for stable isotope analysis were obtained from 60 satellite-tracked individuals at five nesting beaches within the GoM. Both methodological approaches for assignment resulted in high accuracy of foraging area determination, though each has advantages and disadvantages. The nominal approach is more appropriate when defined boundaries are necessary, but up to 42% of the individuals could not be considered in this approach. All individuals can be included in the continuous-surface approach, and individual results can be aggregated to identify geographic hotspots of foraging area use, though the accuracy rate was lower than nominal assignment. The methodological validation provides a foundation for future sea turtle studies in the region to inexpensively

  16. Gender and Computers: Two Surveys of Computer-Related Attitudes.

    Science.gov (United States)

    Wilder, Gita; And Others

    1985-01-01

    Describes two surveys used to (1) determine sex differences in attitudes toward computers and video games among schoolchildren and the relationship of these attitudes to attitudes about science, math, and writing; and (2) sex differences in attitudes toward computing among a select group of highly motivated college freshmen. (SA)

  17. Attitudes of Young Adult Men Toward Domestic Violence and Factors Affecting Their Attitudes in Turkey.

    Science.gov (United States)

    Adıbelli, Derya; Ünal, Ayşe Sevim; Şen, Tülay

    2016-10-01

    Domestic violence is commonly observed worldwide; however, exposure to violence is not often mentioned directly. Prevention of domestic violence may be one of the most important social problems and requires much time and effort to resolve. This study was conducted to determine the attitudes toward domestic violence of Turkish males who are young adult and undertake military service, and the factors that affect these attitudes. A cross-sectional study design was used. This study was conducted with 221 young adult men who applied to Sarıkamış Military Hospital between December 2012 and February 2013. A questionnaire and the Attitude Toward Domestic Violence Scale were used for the collection of data. One-way ANOVA, T test, Kruskal-Wallis test, and Mann-Whitney U test were used in the process of analyzing the data. In the study, it was found that 10% of the young adult men were exposed to violence within their own family and the average of their total scores from the Attitude Toward Domestic Violence Scale was 49.41 ± 7.27. It was confirmed that undereducated men have more negative attitudes toward domestic violence than other groups. The present study determined that men who have negative attitudes toward domestic violence and who have a low education level affected attitudes toward domestic violence negatively. It is important that violence is prevented before it occurs. In this respect, health professionals, politicians, teachers, academics, and all community leaders have an important role in preventing initiatives on violence.

  18. Communication, Ethics and Values: The Effect of Attitude toward Capital Punishment on the Evaluation of Evidence and the Determination of Guilt.

    Science.gov (United States)

    Taylor, K. Phillip; Buchanan, Raymond W.

    A study examined the effect of attitude toward capital punishment on the evaluation of evidence and the determination of guilt. Subjects were 224 undergraduate students who read a description of a murder. They then received two, four, or six items of evidence relevant to the defendant's guilt. Subjects were asked to determine a verdict and…

  19. Satellite Power Systems (SPS) concept definition study. Volume 5: Special emphasis studies. [rectenna and solar power satellite design studies

    Science.gov (United States)

    Hanley, G. M.

    1980-01-01

    Satellite configurations based on the Satellite Power System baseline requirements were analyzed and a preferred concept selected. A satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Rectenna construction requirement were also addressed. Mass flow to orbit requirements were revised and traffic models established based on construction of 60 instead of 120 satellites. Analyses were conducted to determine satellite control, resources, manufacturing, and propellant requirements. The impact of the laser beam used for space-to-Earth power transmission upon the intervening atmosphere was examined as well as the inverse effect. The significant space environments and their effects on spacecraft components were investigated to define the design and operational limits imposed by the environments on an orbit transfer vehicle. The results show that LEO altitude 300 nmi and transfer orbit duration 6 months are preferrable.

  20. Astrometric observations of Saturn's satellites from McDonald Observatory, 1972. [using reference stars

    Science.gov (United States)

    Abbot, R. I.; Mulholland, J. D.; Shelus, P. J.

    1974-01-01

    Observations of Saturn's satellites were reduced by means of secondary reference stars obtained by reduction of Palomar Sky Survey (PSS) plates. This involved the use of 39 SAO stars and plate overlap technique to determine the coordinates of 59 fainter stars in the satellite field. Fourteen plate constants were determined for each of the two PSS plates. Comparison of two plate measurement and reduction techniques on the satellite measurements demonstrate the existence of a serious background gradient effect and the utility of microdensitometry to eliminate this error source in positional determinations of close satellites.

  1. Spectroscopic Observations of Geo-Stationary Satellites Over the Korean Peninsula

    Directory of Open Access Journals (Sweden)

    D. K. Lee

    2001-11-01

    Full Text Available Low resolution spectroscopic observations of geo-stationary satellites over the Korean peninsula have been carried out at the KyungHee Optical Satellite Observing Facility (KOSOF with a 40cm telescope. We have observed 9 telecommunication satellites and 1 weather satellite of 6 countries. The obtained spectral data showed that satellites could be classified and grouped with similar basic spectral feature. We divided the 10 satellites into 4 groups based on spectral slop and reflectance. It is suggested that the material types of the satellites can be determined through spectral comparisons with the ground laboratory data. We will continuously observe additional geo-stationary satellites for the accurate classification of spectral features.

  2. Astrometry and Geostationary Satellites in Venezuela

    Science.gov (United States)

    Lacruz, E.; Abad, C.

    2015-10-01

    We present the current status and the first results of the astrometric project CIDA - ABAE for tracking geo-stationary satellites. This project aims to determine a preliminary orbit for the Venezuelan satellite VENESAT-1, using astrometric positions obtained from an optical telescope. The results presented here are based on observations from the Luepa space tracking ground station in Venezuela, which were processed using astrometric procedures.

  3. Dynamics of satellites, asteroids, and rings

    International Nuclear Information System (INIS)

    Dermott, S.F.

    1987-01-01

    Work is reported on: (1) the shapes and the internal structures of satellites; (2) the tidal heating of Miranda; (3) the dynamics of arc-like rings; and (4) the structure of the zodiacal cloud that was revealed by the Infrared Astronomy Satellite. Significant progress was made in determining the shape and internal structure of Mimas and in understanding the dynamical evolution of Miranda's orbit

  4. Determinants of Problematic Internet use and its Association with Disordered Eating Attitudes among Minia University Students.

    Science.gov (United States)

    Kamal, Nashwa Nabil; Kamal, Nashaat Nabil

    2018-01-01

    To determine the association between problematic Internet use (PIU) and disordered eating attitudes (DEAs) and to detect the potential risk factors for PIU among University students in Minia, Egypt. A cross-sectional study was carried out among a random sample ( n = 2365) of Minia University students. PIU was assessed using The Problematic Internet Use Scale (PIUS), and the DEAs were assessed using eating attitudes test-26 questionnaire. Of the 2365 students, 424 (17.9%) had DEAs, and it was more in females than males (22.3% and 14.5%, respectively). The mean of the PIUS score also was significantly higher in males than females (120.3 ± 30.5, and 117.5 ± 30.6, respectively). A positive moderate correlation ( r = 0.48, P < 0.05) was detected between PIU and DEAs. The results of this study indicate that PIU is significantly correlated with DEAs among University students in Minia, Egypt, and further studies are needed to identify the association between DEAs and PIU.

  5. An Autonomous Ultra-Wide Band-Based Attitude and Position Determination Technique for Indoor Mobile Laser Scanning

    Directory of Open Access Journals (Sweden)

    Lawrence Lau

    2018-04-01

    Full Text Available Mobile laser scanning (MLS has been widely used in three-dimensional (3D city modelling data collection, such as Google cars for Google Map/Earth. Building Information Modelling (BIM has recently emerged and become prominent. 3D models of buildings are essential for BIM. Static laser scanning is usually used to generate 3D models for BIM, but this method is inefficient if a building is very large, or it has many turns and narrow corridors. This paper proposes using MLS for BIM 3D data collection. The positions and attitudes of the mobile laser scanner are important for the correct georeferencing of the 3D models. This paper proposes using three high-precision ultra-wide band (UWB tags to determine the positions and attitudes of the mobile laser scanner. The accuracy of UWB-based MLS 3D models is assessed by comparing the coordinates of target points, as measured by static laser scanning and a total station survey.

  6. Investigating On-Orbit Attitude Determination Anomalies for the Solar Dynamics Observatory Mission

    Science.gov (United States)

    Vess, Melissa F.; Starin, Scott R.; Chia-Kuo, Alice Liu

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010 from Kennedy Space Center on an Atlas V launch vehicle into a geosynchronous transfer orbit. SDO carries a suite of three scientific instruments, whose observations are intended to promote a more complete understanding of the Sun and its effects on the Earth's environment. After a successful launch, separation, and initial Sun acquisition, the launch and flight operations teams dove into a commissioning campaign that included, among other things, checkout and calibration of the fine attitude sensors and checkout of the Kalman filter (KF) and the spacecraft s inertial pointing and science control modes. In addition, initial calibration of the science instruments was also accomplished. During that process of KF and controller checkout, several interesting observations were noticed and investigated. The SDO fine attitude sensors consist of one Adcole Digital Sun Sensor (DSS), two Galileo Avionica (GA) quaternion-output Star Trackers (STs), and three Kearfott Two-Axis Rate Assemblies (hereafter called inertial reference units, or IRUs). Initial checkout of the fine attitude sensors indicated that all sensors appeared to be functioning properly. Initial calibration maneuvers were planned and executed to update scale factors, drift rate biases, and alignments of the IRUs. After updating the IRU parameters, the KF was initialized and quickly reached convergence. Over the next few hours, it became apparent that there was an oscillation in the sensor residuals and the KF estimation of the IRU bias. A concentrated investigation ensued to determine the cause of the oscillations, their effect on mission requirements, and how to mitigate them. The ensuing analysis determined that the oscillations seen were, in fact, due to an oscillation in the IRU biases. The low frequencies of the oscillations passed through the KF, were well within the controller bandwidth, and therefore the spacecraft was actually

  7. VLBI Observations of Geostationary Satellites

    Science.gov (United States)

    Artz, T.; Nothnagel, A.; La Porta, L.

    2013-08-01

    For a consistent realization of a Global Geodetic Observing System (GGOS), a proper tie between the individual global reference systems used in the analysis of space-geodetic observations is a prerequisite. For instance, the link between the terrestrial, the celestial and the dynamic reference system of artificial Earth orbiters may be realized by Very Long O Baseline Interferometry (VLBI) observations of one or several satellites. In the preparation phase for a dedicated satellite mission, one option to realize this is using a geostationary (GEO) satellite emitting a radio signal in X-Band and/or S-Band and, thus, imitating a quasar. In this way, the GEO satellite can be observed by VLBI together with nearby quasars and the GEO orbit can, thus, be determined in a celestial reference frame. If the GEO satellite is, e.g., also equipped with a GNSS-type transmitter, a further tie between GNSS and VLBI may be realized. In this paper, a concept for the generation of a radio signal is shown. Furthermore, simulation studies for estimating the GEO position are presented with a GEO satellite included in the VLBI schedule. VLBI group delay observations are then simulated for the quasars as well as for the GEO satellite. The analysis of the simulated observations shows that constant orbit changes are adequately absorbed by estimated orbit parameters. Furthermore, the post-fit residuals are comparable to those from real VLBI sessions.

  8. Determining Students' Attitude towards Physics through Problem-Solving Strategy

    Science.gov (United States)

    Erdemir, Naki

    2009-01-01

    In this study, the effects of teacher-directed and self-directed problem-solving strategies on students' attitudes toward physics were explored. Problem-solving strategies were used with the experimental group, while the control group was instructed using traditional teaching methods. The study was conducted with 270 students at various high…

  9. Attitude determination and calibration using a recursive maximum likelihood-based adaptive Kalman filter

    Science.gov (United States)

    Kelly, D. A.; Fermelia, A.; Lee, G. K. F.

    1990-01-01

    An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.

  10. Attitudes towards Immigrant Workers and Asylum Seekers in Eastern Croatia: Dimensions, Determinants and Differences

    Directory of Open Access Journals (Sweden)

    Margareta Gregurović

    2016-04-01

    Full Text Available Croatia’s accession to the EU has brought new challenges and issues in researching and analysing migration flows and trends as well as attitudes and perceptions of real and potential newcomers. The aim of this paper is to explore attitudes of the residents of the two most easterly Croatian counties towards two distinct categories of newcomers: immigrant workers and asylum seekers. The research was conducted shortly after Croatia’s entry into the EU, in September 2013, and the presented data are a part of a larger survey that included various migration and ethnicity issues. The survey was applied on a convenience sample of 1 110 adult respondents in two counties: Osijek-Baranja and Vukovar-Srijem. Data were analysed in a series of multivariate procedures. Results indicated significant perceptions of immigrant workers within the dimension of cultural threat, along with the expression of a considerable degree of social distance towards them. Asylum seekers were further perceived as a security and economic threat. Within two analysed regression models, the effects on attitudes towards immigrant workers and asylum seekers were similar. Among the spectrum of socio-demographic variables, a statistically significant effect on both dependent variables came from age and political orientation, indicating that older and politically right-oriented respondents expressed more negative attitudes towards both groups. Among other socio-demographic variables, education was significant in predicting attitudes towards immigrant workers, while ethnicity was significant in predicting the attitudes towards asylum seekers. The second model analysed the effect of selected political attitudes and value orientations resulting in significant prediction of negative attitudes towards both groups by pronounced conservativism, support of aggression and submission, social-dominance, dominant submissive authoritarianism and social alienation, rejecting socially oriented

  11. Attitudes Toward Parenthood Among Canadian Young People

    Science.gov (United States)

    Hobart, Charles W.

    1973-01-01

    A study of student attitudes toward family size, use of contraceptives, authoritarian, permissive approaches to childrearing, parental responsibilities of the husband and wife and divorce. Hypotheses concerning determinants of these attitudes are also tested. (JC)

  12. Choosing ESRO's first scientific satellites

    Science.gov (United States)

    Russo, Arturo

    1992-11-01

    The choice of the scientific payloads of the European Space Research Organization's (ESRO's) first generation of satellites is analyzed. Concentration is on those aspects of the decision process that involved more directly the scientific community and that emerged as major issues in the discussion of the Launching Program Advisory Committee (LPAC). The main theme was the growing competition between the various fields of space science within the progressive retrenching of the Organization's financial resources available for the satellite program. A general overview of the status of the program by the end of 1966 is presented. The choice of the first small satellites' payloads (ESRO 1 and 2, and HEOS-A) and the difficult definition of the TD satellite program are discussed. This part covers a time span going from early 1963 to the spring of 1966. In the second part, the narrative starts from the spring of 1967, when the decision to recommend a second HEOS-type satellite was taken, and then analyzes the complex situation determined by the crisis of the TD program in 1968, and the debates which eventually led to the abandonment of TD-2 and the start of the far less ambitious ESRO 5 project.

  13. Probing the earth's gravity field by means of satellite-to-satellite tracking

    Science.gov (United States)

    Vonbun, F. O.

    1977-01-01

    Two satellite-to-satellite tracking (sst) tests are described in detail: (1) the ATS-6/Geos-3 and (2) the ATS-6/Apollo-Soyuz experiment. The main purpose of these two experiments was to track via ATS-6 the Geos-3, as well as the Apollo-Soyuz and to use these tracking data to determine both of the orbits at the same time, each of the orbits alone, and to test the two sst links to study local gravity anomalies. A second purpose was to test communications, command and data transmission from the ground via ATS-6 to these spacecraft and back again to the ground.

  14. Impact of ITRS 2014 realizations on altimeter satellite precise orbit determination

    Science.gov (United States)

    Zelensky, Nikita P.; Lemoine, Frank G.; Beckley, Brian D.; Chinn, Douglas S.; Pavlis, Despina E.

    2018-01-01

    This paper evaluates orbit accuracy and systematic error for altimeter satellite precise orbit determination on TOPEX, Jason-1, Jason-2 and Jason-3 by comparing the use of four SLR/DORIS station complements from the International Terrestrial Reference System (ITRS) 2014 realizations with those based on ITRF2008. The new Terrestrial Reference Frame 2014 (TRF2014) station complements include ITRS realizations from the Institut National de l'Information Géographique et Forestière (IGN) ITRF2014, the Jet Propulsion Laboratory (JPL) JTRF2014, the Deutsche Geodätisches Forschungsinstitut (DGFI) DTRF2014, and the DORIS extension to ITRF2014 for Precise Orbit Determination, DPOD2014. The largest source of error stems from ITRF2008 station position extrapolation past the 2009 solution end time. The TRF2014 SLR/DORIS complement impact on the ITRF2008 orbit is only 1-2 mm RMS radial difference between 1992-2009, and increases after 2009, up to 5 mm RMS radial difference in 2016. Residual analysis shows that station position extrapolation error past the solution span becomes evident even after two years, and will contribute to about 3-4 mm radial orbit error after seven years. Crossover data show the DTRF2014 orbits are the most accurate for the TOPEX and Jason-2 test periods, and the JTRF2014 orbits for the Jason-1 period. However for the 2016 Jason-3 test period only the DPOD2014-based orbits show a strong and statistically significant margin of improvement. The positive results with DTRF2014 suggest the new approach to correct station positions or normal equations for non-tidal loading before combination is beneficial. We did not find any compelling POD advantage in using non-linear over linear station velocity models in our SLR & DORIS orbit tests on the Jason satellites. The JTRF2014 proof-of-concept ITRS realization demonstrates the need for improved SLR+DORIS orbit centering when compared to the Ries (2013) CM annual model. Orbit centering error is seen as an annual

  15. Development and Psychometric Properties Gender Roles Attitude Scale

    Science.gov (United States)

    Zeyneloglu, Simge; Terzioglu, Fusun

    2011-01-01

    This research was conducted for the purpose of developing a scaling tool to determine university students' attitudes towards gender roles. University students' attitudes should first be determined in order to change this traditional view to gender and to achieve a more egalitarian view. The research sample was comprised of one university's…

  16. The Attitudes of Primary School Pre-Service Teachers towards Cursive Handwriting

    Science.gov (United States)

    Karadag, Ruhan

    2014-01-01

    The aim of this study is to determine the primary school pre-service teachers' attitude toward cursive handwriting and to determine whether a significant difference exists among those pre-service teachers' attitude with respect to gender, class and their universities. In order to collect data "Scale for Attitude towards Cursive…

  17. Public attitudes towards nuclear power and alternative energy systems

    International Nuclear Information System (INIS)

    1984-10-01

    Phase I of this study analyzed attitudes and beliefs of respondents drawn from Metro-Manila. The second phase utilized a sample drawn from residents near a geothermal power plant site in Southern Philippines. Four dimensions of beliefs (psychological/environmental risks, technological benefits/development, economic benefits/implications and socio-political implications/benefits) were identified through factor analysis of belief items on nuclear energy and refined empirically to determine perceptions of respondents about all energy systems. Identification of the relationships between dimensions provided insight into the shared perceptions about each energy system held by the various groups of respondents. The overall attitude of the respondents towards energy systems (nuclear, solar, hydro, geothermal and oil) was determined using three attitude measures: Fishbein model, Osgood's semantic differential technique, and direct response to unfavorability/favorability scale. The belief dimensions were correlated with the attitude measures to determine the degree of contribution of each dimension to attitude. A comparative analysis was made to differentiate attitudes and beliefs held by the PRO and CON nuclear groups, and by the subsamples: university students, science teachers and barangay leaders of the Metro-Manila sample. Attitudes and beliefs relating to the demographic variables were also examined for the two samples. (author)

  18. Determinants of Differing Teacher Attitudes towards Inclusive Education Practice

    Science.gov (United States)

    Gyimah, Emmanuel K.; Ackah, Francis R., Jr.; Yarquah, John A.

    2010-01-01

    An examination of literature reveals that teacher attitude is fundamental to the practice of inclusive education. In order to verify the extent to which the assertion is applicable in Ghana, 132 teachers were selected from 16 regular schools in the Cape Coast Metropolis using purposive and simple random sampling techniques to respond to a four…

  19. Research on the new type of multi-functional satellite system for space debris detection

    Science.gov (United States)

    Guo, Linghua; Fu, Qiang; Jiang, Huilin; Xu, Xihe

    2017-05-01

    With the rapid development of space exploration and utilization, orbital debris increases dramatically, leading to great threat to human space activities and spacecraft security. In this paper, a new type of multi-functional space debris satellite system (MSDS) was put forward, which shared main optical system, and possessed functions of multidimensional information detection, polarized remote sensing and high rate transmission. The MSDS system can meet the requirements of detection and identification for the small orbital debris which is 1000km faraway, as well as the requirements of the data transmission by 50 Mbps to 2.5 Gbps@200-1000 km. At the same time, by the method of satellite orbital maneuver and attitude adjusting, the orbital debris information that is real-time, complex and refined, allweather can be acquired and transmitted by the new system. Such new type of multifunctional satellite system can provide important and effective technology for international orbital debris detection.

  20. Solution Method and Precision Analysis of Double-difference Dynamic Precise Orbit Determination of BeiDou Navigation Satellite System

    Directory of Open Access Journals (Sweden)

    LIU Weiping

    2016-02-01

    Full Text Available To resolve the high relativity between the transverse element of GEO orbit and double-difference ambiguity, the classical double-difference dynamic method is improved and the method, which is to determine precise BeiDou satellite orbit using carrier phase and pseudo-range smoothed by phase, is proposed. The feasibility of the method is discussed and the influence of the method about ambiguity fixing is analyzed. Considering the characteristic of BeiDou, the method, which is to fix double-difference ambiguity of BeiDou satellites by QIF, is derived. The real data analysis shows that the new method, which can reduce the relativity and assure the precision, is better than the classical double-difference dynamic method. The result of ambiguity fixing is well by QIF, but the ambiguity fixing success rate is not high on the whole. So the precision of BeiDou orbit can't be improved clearly after ambiguity fixing.

  1. Real-Time Attitude Control Algorithm for Fast Tumbling Objects under Torque Constraint

    Science.gov (United States)

    Tsuda, Yuichi; Nakasuka, Shinichi

    This paper describes a new control algorithm for achieving any arbitrary attitude and angular velocity states of a rigid body, even fast and complicated tumbling rotations, under some practical constraints. This technique is expected to be applied for the attitude motion synchronization to capture a non-cooperative, tumbling object in such missions as removal of debris from orbit, servicing broken-down satellites for repairing or inspection, rescue of manned vehicles, etc. For this objective, we have introduced a novel control algorithm called Free Motion Path Method (FMPM) in the previous paper, which was formulated as an open-loop controller. The next step of this consecutive work is to derive a closed-loop FMPM controller, and as the preliminary step toward the objective, this paper attempts to derive a conservative state variables representation of a rigid body dynamics. 6-Dimensional conservative state variables are introduced in place of general angular velocity-attitude angle representation, and how to convert between both representations are shown in this paper.

  2. A quantitative research of consumer’s attitude towards food products advertising

    Directory of Open Access Journals (Sweden)

    Voicu Mirela-Cristina

    2014-04-01

    Full Text Available Identifying the consumers' attitude towards television/radio/press advertising is especially important, a fact which is highlighted by national and international speciality literature. The attitude of the consumer towards a television commercial influences the attitude towards the promoted product or brand. Thus, a positive attitude towards the commercial for a brand determines a positive attitude towards the respective brand and, eventually, may result in the formulation of the purchase intent. It is hard to say which aspects of advertising have the greatest influence on the formation of consumer attitudes and purchase intent formulation, but not impossible to find out. In this context, through this study, we aim at contributing to the determination of the consumers' attitude towards televised advertising aimed at promoting food products.

  3. A small satellite design for deep space network testing and training

    Science.gov (United States)

    Mcwilliams, Dennis; Slatton, Clint; Norman, Cassidy; Araiza, Joe; Jones, Jason; Tedesco, Mark; Wortman, Michael; Opiela, John; Lett, Pat; Clavenna, Michael

    1993-01-01

    With the continuing exploration of the Solar System and the reemphasis on Earth focused missions, the need for faster data transmission rates has grown. Ka-band could allow a higher data delivery rate over the current X-band, however the adverse effects of the Earth's atmosphere on Ka are as yet unknown. The Deep Space Network and Jet Propulsion Lab have proposed to launch a small satellite that would simultaneously transmit X and Ka signals to test the viability of switching to Ka-band. The Mockingbird Design Team at the University of Texas at Austin applied small satellite design principles to achieve this objective. The Mockingbird design, named BATSAT, incorporates simple, low-cost systems designed for university production and testing. The BATSAT satellite is a 0.64 m diameter, spherical panel led satellite, mounted with solar cells and omni-directional antennae. The antennae configuration negates the need for active attitude control or spin stabilization. The space-frame truss structure was designed for 11 g launch loads while allowing for easy construction and solar-panel mounting. The communication system transmits at 1 mW by carrying the required Ka and X-band transmitters, as well as an S band transmitter used for DSN training. The power system provides the 8.6 W maximum power requirements via silicon solar arrays and nickel-cadmium batteries. The BATSAT satellite will be lofted into an 1163 km, 70 deg orbit by the Pegasus launch system. This orbit fulfills DSN dish slew rate requirements while keeping the satellite out of the heaviest regions of the Van Allen radiation belts. Each of the three DSN stations capable of receiving Ka-band (Goldstone, Canberra, and Madrid) will have an average of 85 minutes of view-time per day over the satellites ten year design life. Mockingbird Designs hopes that its small satellite design will not only be applicable to this specific mission scenario, but that it could easily be modified for instrument capability for

  4. A small satellite design for deep space network testing and training

    Science.gov (United States)

    McWilliams, Dennis; Slatton, Clint; Norman, Cassidy; Araiza, Joe; Jones, Jason; Tedesco, Mark; Wortman, Michael; Opiela, John; Lett, Pat; Clavenna, Michael

    1993-05-01

    With the continuing exploration of the Solar System and the reemphasis on Earth focused missions, the need for faster data transmission rates has grown. Ka-band could allow a higher data delivery rate over the current X-band, however the adverse effects of the Earth's atmosphere on Ka are as yet unknown. The Deep Space Network and Jet Propulsion Lab have proposed to launch a small satellite that would simultaneously transmit X and Ka signals to test the viability of switching to Ka-band. The Mockingbird Design Team at the University of Texas at Austin applied small satellite design principles to achieve this objective. The Mockingbird design, named BATSAT, incorporates simple, low-cost systems designed for university production and testing. The BATSAT satellite is a 0.64 m diameter, spherical panel led satellite, mounted with solar cells and omni-directional antennae. The antennae configuration negates the need for active attitude control or spin stabilization. The space-frame truss structure was designed for 11 g launch loads while allowing for easy construction and solar-panel mounting. The communication system transmits at 1 mW by carrying the required Ka and X-band transmitters, as well as an S band transmitter used for DSN training. The power system provides the 8.6 W maximum power requirements via silicon solar arrays and nickel-cadmium batteries. The BATSAT satellite will be lofted into an 1163 km, 70 deg orbit by the Pegasus launch system. This orbit fulfills DSN dish slew rate requirements while keeping the satellite out of the heaviest regions of the Van Allen radiation belts. Each of the three DSN stations capable of receiving Ka-band (Goldstone, Canberra, and Madrid) will have an average of 85 minutes of view-time per day over the satellites ten year design life. Mockingbird Designs hopes that its small satellite design will not only be applicable to this specific mission scenario, but that it could easily be modified for instrument capability for

  5. Swiss doctors' attitudes towards end-of-life decisions and their determinants: a comparison of three language regions.

    Science.gov (United States)

    Fischer, Susanne; Bosshard, Georg; Faisst, Karin; Tschopp, Alois; Fischer, Johannes; Bär, Walter; Gutzwiller, Felix

    2006-06-10

    To investigate attitudes to end-of-life decisions, and the influence of cultural factors and of doctors' personal characteristics on these attitudes. As part of a European research project (EURELD), a study on attitudes towards medical end-of-life decisions was conducted among doctors in the German-, French- and Italian-speaking areas of Switzerland. A written questionnaire was sent to a random sample of nine different types of specialist; it presented 14 statements on end-of-life decisions and doctors were asked whether they agreed or disagreed with them. The response rate was 64%. 1360 questionnaires were studied. The results show general agreement with statements on the alleviation of pain and other symptoms with possible life-shortening effect, as well as on non-treatment decisions. The language region was a strong determinant of agreement on some attitudes towards end-of-life decisions. Agreement on the use of lethal drugs and alleviation of pain and other symptoms with possible life-shortening effect was higher among French-speaking than among German- and Italian-speaking doctors. For nontreatment decisions, agreement was higher in the German-speaking region than in the French- and Italian-speaking regions of the country. Italian-speaking doctors were strongly opposed to any kind of end-of-life decision. Religious believers and those who attended a larger number of terminal patients tended to disagree more often with end-of-life decisions than the other doctors. In end-of-life decision-making, Switzerland represents "Europe in miniature". The impact on end-of-life decisions of cultural factors and the number of terminal patients attended needs further consideration.

  6. Saturn satellites

    International Nuclear Information System (INIS)

    Ruskol, E.L.

    1981-01-01

    The characteristics of the Saturn satellites are discussed. The satellites close to Saturn - Janus, Mimas, Enceladus, Tethys, Dione and Rhea - rotate along the circular orbits. High reflectivity is attributed to them, and the density of the satellites is 1 g/cm 3 . Titan is one of the biggest Saturn satellites. Titan has atmosphere many times more powerful than that of Mars. The Titan atmosphere is a peculiar medium with a unique methane and hydrogen distribution in the whole Solar system. The external satellites - Hyperion, Japetus and Phoebe - are poorly investigated. Neither satellite substance density, nor their composition are known. The experimental data on the Saturn rings obtained on the ''Pioneer-11'' and ''Voyager-1'' satellites are presented [ru

  7. Attitudes of Preservice Social Studies Teachers towards Solid Wastes and Recycle

    Science.gov (United States)

    Karatekin, Kadir; Merey, Zihni

    2015-01-01

    The objective of this study is to determine the attitudes of preservice social studies-teachers towards solid wastes and recycle. This study used the screening model, In order to determine the attitudes of preservice teachers towards solid wastes and recycle, we used the "Scale for the Attitudes of Preservice Teachers towards Solid Wastes and…

  8. Fine-tuning satellite-based rainfall estimates

    Science.gov (United States)

    Harsa, Hastuadi; Buono, Agus; Hidayat, Rahmat; Achyar, Jaumil; Noviati, Sri; Kurniawan, Roni; Praja, Alfan S.

    2018-05-01

    Rainfall datasets are available from various sources, including satellite estimates and ground observation. The locations of ground observation scatter sparsely. Therefore, the use of satellite estimates is advantageous, because satellite estimates can provide data on places where the ground observations do not present. However, in general, the satellite estimates data contain bias, since they are product of algorithms that transform the sensors response into rainfall values. Another cause may come from the number of ground observations used by the algorithms as the reference in determining the rainfall values. This paper describe the application of bias correction method to modify the satellite-based dataset by adding a number of ground observation locations that have not been used before by the algorithm. The bias correction was performed by utilizing Quantile Mapping procedure between ground observation data and satellite estimates data. Since Quantile Mapping required mean and standard deviation of both the reference and the being-corrected data, thus the Inverse Distance Weighting scheme was applied beforehand to the mean and standard deviation of the observation data in order to provide a spatial composition of them, which were originally scattered. Therefore, it was possible to provide a reference data point at the same location with that of the satellite estimates. The results show that the new dataset have statistically better representation of the rainfall values recorded by the ground observation than the previous dataset.

  9. VALUES AND ATTITUDES TO INNOVATIONS : INTERCULTURAL DIFFERENCES

    NARCIS (Netherlands)

    Lebedeva, N. M.

    2009-01-01

    The results of study of interrelations between values and attitudes to innovations of Canadian and Russian students (Russians and representatives of Northern Caucasia), n = 426 per. are presented. Correlation between individuals' values and their attitudes to innovations are determined. Significant

  10. Relationship between Acculturation Attitude and Effectiveness of Pragmatic Instruction

    Science.gov (United States)

    Rafieyan, Vahid

    2016-01-01

    Attitude toward accepting target language culture or maintaining heritage culture referred to as acculturation attitude can determine language learners' pragmatic gains during an educational sojourn. To this end, the current study investigated the relationship between language learners' acculturation attitudes during an educational sojourn and the…

  11. 75 FR 39891 - Rate Adjustment for the Satellite Carrier Compulsory License

    Science.gov (United States)

    2010-07-13

    ... the purpose of determining the royalty fees to be paid under the satellite carrier statutory license... royalty fees in that agreement be applied to all satellite carriers, distributors, and copyright owners...: PART 386--ADJUSTMENT OF ROYALTY FEES FOR SECONDARY TRANSMISSIONS BY SATELLITE CARRIERS Sec. 386.1...

  12. Rural Principal Attitudes toward Poverty and the Poor

    Science.gov (United States)

    Gholson, Melissa L.

    2015-01-01

    This study used Yun and Weaver's (2010) Attitudes toward Poverty Short Form (ATP-SF) of twenty-one items on a Likert-type scale to determine the poverty attitudes of 309 principals in a rural Appalachian state in the United States. The study compared the poverty attitudes from the ATP-SF scaled score as a dependent variable to the following…

  13. A Study of the Validity and Reliability of a Mathematics Lesson Attitude Scale and Student Attitudes

    Science.gov (United States)

    Tezer, Murat; Ozcan, Deniz

    2015-01-01

    Attitudes of the students towards mathematics lessons are very important in terms of their success and motivation. The purpose of this study is to develop a scale for the assessment of primary school students' attitudes towards mathematics courses in the 2nd and 3rd grades, to analyse its validity-reliability structure and to determine the…

  14. Integrated GNSS attitude determination and positioning for direct geo-referencing

    NARCIS (Netherlands)

    Nadarajah, N.; Paffenholz, J.A.; Teunissen, P.J.G.

    2014-01-01

    Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS

  15. Father-Son Inter-Generational Transmission of Authoritarian Paternal Attitudes.

    Science.gov (United States)

    Peretti, Peter O.; Statum, Jo Ann

    1984-01-01

    Attempted to determine authoritarian paternal attitude inter-generational transmission in fathers and sons (N=75). Results suggested that authoritarian paternal attitudes could be indicated in terms of five factors: Dominant, Rigidity, Conformity, Intolerant, and Uncreative; and that the sons expressed strongly the authoritarian attitudes of their…

  16. Design and Fabrication of DebriSat - A Representative LEO Satellite for Improvements to Standard Satellite Breakup Models

    Science.gov (United States)

    Clark, S.; Dietrich, A.; Fitz-Coy, N.; Weremeyer, M.; Liou, J.-C.

    2012-01-01

    This paper discusses the design and fabrication of DebriSat, a 50 kg satellite developed to be representative of a modern low Earth orbit satellite in terms of its components, materials used, and fabrication procedures. DebriSat will be the target of a future hypervelocity impact experiment to determine the physical characteristics of debris generated after an on-orbit collision of a modern LEO satellite. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was SOCIT, conducted in 1992. The target used for that experiment was a Navy transit satellite (40 cm, 35 kg) fabricated in the 1960's. Modern satellites are very different in materials and construction techniques than those built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. To ensure that DebriSat is truly representative of typical LEO missions, a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 1 kg to 5000 kg was conducted. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions. Although DebriSat is an engineering model, specific attention is placed on the quality, type, and quantity of the materials used in its fabrication to ensure the integrity of the outcome. With the exception of software, all other aspects of the satellite s design, fabrication, and assembly integration and testing will be as rigorous as that of an actual flight vehicle. For example, to simulate survivability of launch loads, DebriSat will be subjected to a vibration test. As well, the satellite will undergo thermal vacuum tests to verify that the components and overall systems meet typical environmental standards. Proper assembly and integration techniques will involve comprehensive joint analysis, including the precise

  17. 75 FR 32228 - Rate Adjustment for the Satellite Carrier Compulsory License

    Science.gov (United States)

    2010-06-07

    ... voluntary negotiation period for the purpose of determining the royalty fees to be paid by satellite... President on May 27, 2010. Satellite carriers pay royalties based on a flat, per-subscriber, per-month fee... initiation of the voluntary negotiation proceedings for the purpose of determining the royalty fee to be paid...

  18. Floating Characteristics of Rudders and Elevators in Spinning Attitudes as Determined From Hinge-Moment-Coefficient Data With Application to Personal-Owner-Type Airplanes

    National Research Council Canada - National Science Library

    Bihrle, William

    1950-01-01

    A study was made of available rudder and elevator hinge-moment-coefficient-coefficient data in order to determine the floating characteristics of various types of rudders and elevators in spinning attitudes...

  19. Precision Attitude Control for the BETTII Balloon-Borne Interferometer

    Science.gov (United States)

    Benford, Dominic J.; Fixsen, Dale J.; Rinehart. Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. Operating at wavelengths of 30-90 microns, BETTII will obtain spatial and spectral information on science targets at angular resolutions down to less than half an arcsecond, a capability unmatched by other far-infrared facilities. This requires attitude control at a level ofless than a tenth of an arcsecond, a great challenge for a lightweight balloon-borne system. We have designed a precision attitude determination system to provide gondola attitude knowledge at a level of 2 milliarcseconds at rates up to 100Hz, with accurate absolute attitude determination at the half arcsecond level at rates of up to 10Hz. A mUlti-stage control system involving rigid body motion and tip-tilt-piston correction provides precision pointing stability to the level required for the far-infrared instrument to perform its spatial/spectral interferometry in an open-loop control. We present key aspects of the design of the attitude determination and control and its development status.

  20. MONEY ATTITUDES VS ECONOMIC SOCIALIZATION IN POLAND

    Directory of Open Access Journals (Sweden)

    Aneta KOWALCZYK

    2015-03-01

    Full Text Available This article concerns the attitudes people have towards money, analysed from an economic and psychological point of view. The article presents an overview of current knowledge on the issues of money attitudes, as well as derived own research derived. This research was designed in order to identify different types of money attitudes as well as their determinants. The study identified five dominant profiles and showed that the most popular is a rational approach, and second – it’s opposite - improvidence. The results have been faced with the most important economic socialization determinants identified during the literature review. The comparison proved to be important, e.g. in the form of receiving pocket money.

  1. Regulation of satellite cell function in sarcopenia

    Directory of Open Access Journals (Sweden)

    Stephen E Alway

    2014-09-01

    Full Text Available The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell function that is impacted by the environment (niche of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia, and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration. While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function.

  2. Regulation of Satellite Cell Function in Sarcopenia

    Science.gov (United States)

    Alway, Stephen E.; Myers, Matthew J.; Mohamed, Junaith S.

    2014-01-01

    The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell) function that is impacted by the environment (niche) of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse, or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins, and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration). While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function. PMID:25295003

  3. Data Collection Satellite Application in Precision Agriculture

    Science.gov (United States)

    Durào, O.

    2002-01-01

    Agricultural Instrumentation Research Center, Brazilian Agricultural Research Corporation; Space Programs Brazil launched in 1993 its first satellite partially built and entirely designed, integrated, tested and operated in the country. It was the SCD-1 satellite, a small (115 kg. and an octagonal prism with 80 cm. height and an external diameter of 100 cm.) with a payload transponder that receives data from ground platforms spread all over the country (including its sea shore). These data are then retransmitted to a receiving station at every satellite pass. Data collected and received are processed at Data Collection Mission Center for distribution via internet at most 30 min after the satellite pass. The ground platforms are called PCD's and differ in the parameters measured according to its purpose and location. Thus, they are able to measure temperature, rain level, wind direction, solar radiation, carbon monoxide as well as many others, beyond its own location. SCD- 1 had a nominal designed life of one year, but is still functioning. It is a LEO satellite with inclination of 25°. In 1998, the country launched SCD-2, with the same purpose, but in phase with SCD-1 . Other differences were a higher index of Brazilian made components and an active attitude control subsystem for the spin rate provided by the magnetic torque coils (these in accordance with a development strategy previously planned). In 1999 the country launched in cooperation with China a remote sensing satellite (mass of 1.4 ton.) called CBERS-1. This satellite is sun synchronous (98° inclination) and also carries a transponder for data collection/transmission as a secondary payload. Thus, the country has now three satellites with data collection/transmission capabilities, two in low inclination phased orbits and one in polar orbit, providing a nice coverage both geographical and temporal not only to its territory but also to other regions of the world.. At first there were not too many PCD

  4. Psychological predictors of reproductive attitudes among medical students

    Directory of Open Access Journals (Sweden)

    Popkov V.M.

    2017-09-01

    Full Text Available The goal was to determine psychological predictors of reproductive attitudes among medical students. Material and Methods. The survey of 84 students (of the 3rd and the 5th year of medical faculty of Saratov State Medical University n.a. V. I. Razumovsky was carried out using a combination of methods (questionnaire, testing aimed to achieve the research goal. Results. Features of reproductive attitudes and reproductive intentions of students, as well as psychological characteristics of youth, such as personal maturity, belief in people and value orientations were studied. Psy- chological predictors of reproductive attitudes among medical students were determined. Conclusion. It was revealed that reproductive attitudes among students of the 5th year were higher than those of the 3rd year. There were gender differences in psychological predictors of reproductive attitudes among students. It was experimentally established that existence of faith in people, high level of personal maturity, high importance of personal values, altruistic values and values of acceptance of others had a positive impact on reproductive attitudes among young people. Based on the results of the study, recommendations were developed with the aim to improve reproductive attitudes and psychological readiness for parenting of medical students.

  5. Dynamical history of coplanar two-satellite systems

    International Nuclear Information System (INIS)

    Ruskol, E.L.; Nikolajeva, E.V.; Syzdykov, A.S.

    1975-01-01

    One of the possible early states of the Earth-Moon system was a system of several large satellites around the Earth. The dynamical evolution of coplanar three-body systems is studied; a planet (Earth) and two massive satellites (proto-moons) with geocentric orbits of slightly different radii. Such configurations may arise in multiple satellite systems receding from a planet due to tidal friction. The numerical integration of the equations of motion shows that initially circular Keplerian orbits are soon transformed into disturbed elliptic orbits which are intersecting. The life-time of such a coplanar system between two probable physical collisions of satellites is roughly from one day to one year for satellite systems with radii less than 20 R(Earth), and may reach 100 yr for three-dimensional systems. This time-scale is short in comparison with the duration of the removal of satellites due to tides raised on the planet, which is estimated as 10 6 -10 8 yr for the same orbital dimensions. Therefore, the life-time of a system of several proto-moons is mainly determined by their tidal interactions with the Earth. For conditions which we have considered, the most probable result of the evolution was coalescence of satellites as the consequence of the collisions. (Auth.)

  6. Knowledge, attitudes and practices of women regarding the ...

    African Journals Online (AJOL)

    2007-08-28

    Aug 28, 2007 ... Objective. The aim of the study was to determine the knowledge, attitudes and practices of women regarding ... Exclusive breastfeeding (giving a child no other food or drink ... feeding practices and nutritional advice), attitudes.

  7. High resolution satellite imagery : from spies to pipeline management

    Energy Technology Data Exchange (ETDEWEB)

    Adam, S. [Canadian Geomatic Solutions Ltd., Calgary, AB (Canada); Farrell, M. [TransCanada Transmission, Calgary, AB (Canada)

    2000-07-01

    The launch of Space Imaging's IKONOS satellite in September 1999 has opened the door for corridor applications. The technology has been successfully implemented by TransCanada PipeLines in mapping over 1500 km of their mainline. IKONOS is the world's first commercial high resolution satellite which collects data at 1-meter black/white and 4-meter multi-spectral. Its use is regulated by the U.S. government. It is the best source of high resolution satellite image data. Other sources include the Indian Space Agency's IRS-1 C/D satellite and the Russian SPIN-2 which provides less reliable coverage. In addition, two more high resolution satellites may be launched this year to provide imagery every day of the year. IKONOS scenes as narrow as 5 km can be purchased. TransCanada conducted a pilot study to determine if high resolution satellite imagery is as effective as ortho-photos for identifying population structures within a buffer of TransCanada's east line right-of-way. The study examined three unique segments where residential, commercial, industrial and public features were compared. It was determined that IKONOS imagery is as good as digital ortho-photos for updating structures from low to very high density areas. The satellite imagery was also logistically easier than ortho-photos to acquire. This will be even more evident when the IKONOS image archives begins to grow. 4 tabs., 3 figs.

  8. Hyper-XACT, A Long-Life, High-Performance Attitude Determination & Control System

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hyper-XACT is intended to extend the capabilities of CubeSat attitude control systems for longer duration missions with tighter performance requirements by...

  9. Visibility Analysis of Domestic Satellites on Proposed Ground Sites for Optical Surveillance

    Directory of Open Access Journals (Sweden)

    Jung Hyun Jo1

    2011-12-01

    Full Text Available The objectives of this study are to analyze the satellite visibility at the randomly established ground sites, to determine the five optimal ground sites to perform the optical surveillance and tracking of domestic satellites, and to verify the acquisition of the optical observation time sufficient to maintain the precise ephemeris at optimal ground sites that have been already determined. In order to accomplish these objectives, we analyzed the visibility for sun-synchronous orbit satellites, low earth orbit satellites, middle earth orbit satellites and domestic satellites as well as the continuous visibility along with the fictitious satellite ground track, and calculate the effective visibility. For the analysis, we carried out a series of repetitive process using the satellite tool kit simulation software developed by Analytical Graphics Incorporated. The lighting states of the penumbra and direct sun were set as the key constraints of the optical observation. The minimum of the observation satellite elevation angle was set to be 20 degree, whereas the maximum of the sun elevation angle was set to be -10 degree which is within the range of the nautical twilight. To select the candidates for the optimal optical observation, the entire globe was divided into 84 sectors in a constant interval, the visibility characteristics of the individual sectors were analyzed, and 17 ground sites were arbitrarily selected and analyzed further. Finally, five optimal ground sites (Khurel Togoot Observatory, Assy-Turgen Observatory, Tubitak National Observatory, Bisdee Tier Optical Astronomy Observatory, and South Africa Astronomical Observatory were determined. The total observation period was decided as one year. To examine the seasonal variation, the simulation was performed for the period of three days or less with respect to spring, summer, fall and winter. In conclusion, we decided the optimal ground sites to perform the optical surveillance and tracking

  10. A statistical model for determining impact of wildland fires on Particulate Matter (PM₂.₅) in Central California aided by satellite imagery of smoke.

    Science.gov (United States)

    Preisler, Haiganoush K; Schweizer, Donald; Cisneros, Ricardo; Procter, Trent; Ruminski, Mark; Tarnay, Leland

    2015-10-01

    As the climate in California warms and wildfires become larger and more severe, satellite-based observational tools are frequently used for studying impact of those fires on air quality. However little objective work has been done to quantify the skill these satellite observations of smoke plumes have in predicting impacts to PM2.5 concentrations at ground level monitors, especially those monitors used to determine attainment values for air quality under the Clean Air Act. Using PM2.5 monitoring data from a suite of monitors throughout the Central California area, we found a significant, but weak relationship between satellite-observed smoke plumes and PM2.5 concentrations measured at the surface. However, when combined with an autoregressive statistical model that uses weather and seasonal factors to identify thresholds for flagging unusual events at these sites, we found that the presence of smoke plumes could reliably identify periods of wildfire influence with 95% accuracy. Published by Elsevier Ltd.

  11. Risk of Abnormal Eating Attitudes among Turkish Dietetic Students

    Science.gov (United States)

    Kiziltan, Gul; Karabudak, Efsun

    2008-01-01

    The purpose of this study was to determine the prevalence of abnormal eating attitudes among Turkish dietetic students and the relations between nutrition education and eating attitudes. The study population was 568 female university students (248 dietetic students, 320 non-dietetic students). Two scales were used: Eating Attitudes Test (EAT-26)…

  12. Korean University Students' Attitudes and Motivation towards Studying English

    Science.gov (United States)

    Geddes, Aaron J.

    2016-01-01

    The main objective of this study was to identify the attitudes of Korean university students towards studying English and to determine if attending after-school English academies has had a negative impact on their attitudes towards studying English. The study also sought to determine if studying English leads to anxiety, and more importantly if…

  13. Beliefs in genetic determinism and attitudes towards psychiatric genetic research: psychometric scale properties, construct associations, demographic correlates, and cross-cultural comparisons.

    Science.gov (United States)

    Voracek, Martin; Swami, Viren; Loibl, Lisa Mariella; Furnham, Adrian

    2007-12-01

    Using two new scales, this study examined beliefs in genetic determinism and attitudes towards psychiatric genetic research in student samples from Austria, Malaysia, Romania, and the United Kingdom. For both constructs, effects of culture were detectable, whereas those related to key demographics were either small and inconsistent across samples (political orientation and religiosity) or zero (sex and age). Judged from factorial dimensionality and internal consistency, the psychometric properties of both scales were satisfactory. Belief in genetic determinism had lower prevalence and corresponded only modestly to positive attitudes towards psychiatric genetic research which had higher prevalence. The correlations of both constructs with a preference of inequality among social groups (social dominance orientation) were modest and inconsistent across samples. Both scales appear appropriate for cross-cultural applications, in particular for research into lay theories and public perceptions regarding genetic vs environmental effects on human behavior, mental disorders, and behavioral and psychiatric genetic research related to these.

  14. Concept definition study for recovery of tumbling satellites. Volume 2: Supporting research and technology report

    Science.gov (United States)

    Cable, D. A.; Derocher, W. L., Jr.; Cathcart, J. A.; Keeley, M. G.; Madayev, L.; Nguyen, T. K.; Preese, J. R.

    1986-01-01

    A number of areas of research and laboratory experiments were identified which could lead to development of a cost efficient remote, disable satellite recovery system. Estimates were planned of disabled satellite motion. A concept is defined as a Tumbling Satellite Recovery kit which includes a modular system, composed of a number of subsystem mechanisms that can be readily integrated into varying combinations. This would enable the user to quickly configure a tailored remote, disabled satellite recovery kit to meet a broad spectrum of potential scenarios. The capability was determined of U.S. Earth based satellite tracking facilities to adequately determine the orientation and motion rates of disabled satellites.

  15. Self Esteem and Adolescent Sexual Attitudes and Behavior

    OpenAIRE

    Christensen, Roger B.

    1985-01-01

    This study was designed to determine; (1) if adolescent self esteem is related to premarital sexual attitudes and intercourse behavior; (2) if religious affiliation and church attendance affect the relationship between adolescent self esteem and premarital sexual attitudes and behavior. Approximately 2400 adolescents residing in California, New Mexico, and Utah comprised the sample. Adolescents who attended church services more often reported less sexually permissive attitudes and behavior...

  16. Satellite-Based Precipitation Datasets

    Science.gov (United States)

    Munchak, S. J.; Huffman, G. J.

    2017-12-01

    Of the possible sources of precipitation data, those based on satellites provide the greatest spatial coverage. There is a wide selection of datasets, algorithms, and versions from which to choose, which can be confusing to non-specialists wishing to use the data. The International Precipitation Working Group (IPWG) maintains tables of the major publicly available, long-term, quasi-global precipitation data sets (http://www.isac.cnr.it/ ipwg/data/datasets.html), and this talk briefly reviews the various categories. As examples, NASA provides two sets of quasi-global precipitation data sets: the older Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and current Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG). Both provide near-real-time and post-real-time products that are uniformly gridded in space and time. The TMPA products are 3-hourly 0.25°x0.25° on the latitude band 50°N-S for about 16 years, while the IMERG products are half-hourly 0.1°x0.1° on 60°N-S for over 3 years (with plans to go to 16+ years in Spring 2018). In addition to the precipitation estimates, each data set provides fields of other variables, such as the satellite sensor providing estimates and estimated random error. The discussion concludes with advice about determining suitability for use, the necessity of being clear about product names and versions, and the need for continued support for satellite- and surface-based observation.

  17. Pattern recognition of star constellations for spacecraft applications

    DEFF Research Database (Denmark)

    Liebe, Carl Christian

    1993-01-01

    A software system for a star imager for on-line satellite attitude determination is described. The system works with a single standard commercial CCD-camera with a high aperture lens and an onboard star catalogue. It is capable of both an initial course attitude determination without any prior kn...

  18. Pattern recognition of star constellations for spacecraft applications

    DEFF Research Database (Denmark)

    Liebe, Carl Christian

    1992-01-01

    A software system for a star imager for online satellite attitude determination is described. The system works with a single standard commercial CCD camera with a high aperture lens and an onboard star catalog. It is capable of both an initial coarse attitude determination without any prior knowl...

  19. Guidance, Navigation, and Control Techniques and Technologies for Active Satellite Removal

    Science.gov (United States)

    Ortega Hernando, Guillermo; Erb, Sven; Cropp, Alexander; Voirin, Thomas; Dubois-Matra, Olivier; Rinalducci, Antonio; Visentin, Gianfranco; Innocenti, Luisa; Raposo, Ana

    2013-09-01

    This paper shows an internal feasibility analysis to de- orbit a non-functional satellite of big dimensions by the Technical Directorate of the European Space Agency ESA. The paper focuses specifically on the design of the techniques and technologies for the Guidance, Navigation, and Control (GNC) system of the spacecraft mission that will capture the satellite and ultimately will de-orbit it on a controlled re-entry.The paper explains the guidance strategies to launch, rendezvous, close-approach, and capture the target satellite. The guidance strategy uses chaser manoeuvres, hold points, and collision avoidance trajectories to ensure a safe capture. It also details the guidance profile to de-orbit it in a controlled re-entry.The paper continues with an analysis of the required sensing suite and the navigation algorithms to allow the homing, fly-around, and capture of the target satellite. The emphasis is placed around the design of a system to allow the rendezvous with an un-cooperative target, including the autonomous acquisition of both the orbital elements and the attitude of the target satellite.Analysing the capture phase, the paper provides a trade- off between two selected capture systems: the net and the tentacles. Both are studied from the point of view of the GNC system.The paper analyses as well the advanced algorithms proposed to control the final compound after the capture that will allow the controlled de-orbiting of the assembly in a safe place in the Earth.The paper ends proposing the continuation of this work with the extension to the analysis of the destruction process of the compound in consecutive segments starting from the entry gate to the rupture and break up.

  20. Research on Modeling of the Agile Satellite Using a Single Gimbal Magnetically Suspended CMG and the Disturbance Feedforward Compensation for Rotors

    Science.gov (United States)

    Cui, Peiling; Yan, Ning

    2012-01-01

    The magnetically suspended Control Moment Gyroscope (CMG) has the advantages of long-life, micro-vibration and being non-lubricating, and is the ideal actuator for agile maneuver satellite attitude control. However, the stability of the rotor in magnetic bearing and the precision of the output torque of a magnetically suspended CMG are affected by the rapid maneuvers of satellites. In this paper, a dynamic model of the agile satellite including a magnetically suspended single gimbal control moment gyroscope is built and the equivalent disturbance torque effected on the rotor is obtained. The feedforward compensation control method is used to depress the disturbance on the rotor. Simulation results are given to show that the rotor displacement is obviously reduced. PMID:23235442

  1. Research on Modeling of the Agile Satellite Using a Single Gimbal Magnetically Suspended CMG and the Disturbance Feedforward Compensation for Rotors

    Directory of Open Access Journals (Sweden)

    Ning Yan

    2012-12-01

    Full Text Available The magnetically suspended Control Moment Gyroscope (CMG has the advantages of long-life, micro-vibration and being non-lubricating, and is the ideal actuator for agile maneuver satellite attitude control. However, the stability of the rotor in magnetic bearing and the precision of the output torque of a magnetically suspended CMG are affected by the rapid maneuvers of satellites. In this paper, a dynamic model of the agile satellite including a magnetically suspended single gimbal control moment gyroscope is built and the equivalent disturbance torque effected on the rotor is obtained. The feedforward compensation control method is used to depress the disturbance on the rotor. Simulation results are given to show that the rotor displacement is obviously reduced.

  2. Determinant Factors of Attitude towards Quantitative Subjects: Differences between Sexes

    Science.gov (United States)

    Mondejar-Jimenez, Jose; Vargas-Vargas, Manuel

    2010-01-01

    Nowadays, almost all curricula in the social sciences contain at least one course in statistics, given the importance of this discipline as an analytical tool. This work identifies the latent factors relating to students' motivation and attitude towards statistics, tests their covariance structure for samples of both sexes, and identifies the…

  3. The Social Determinants of Attitudes towards Nuclear Energy:Examination for the Value Mediated Mechanism(Special Issue Dedicated to Professor SUZUKI Tomihisa)

    OpenAIRE

    阪口, 祐介

    2016-01-01

    Since the 2011 Fukushima Daiichi nuclear power plant accident, the negative opinion to nuclear power plant has increased and the political debates over the pros and cons of nuclear energy has been activated. This paper attempts to reveal empirically the social determinants of attitudes towards nuclear energy. We focus on generation, gender, and social stratification as the determinants, and examine for the value mediated mechanism. Previous researches have indicated that women tend to have ne...

  4. Gaussian entanglement distribution via satellite

    Science.gov (United States)

    Hosseinidehaj, Nedasadat; Malaney, Robert

    2015-02-01

    In this work we analyze three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme, the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the tradeoff between space-based engineering complexity and the rate of ground-station entanglement generation.

  5. MARAD maritime experiments using the NASA ATS-6 satellite

    Science.gov (United States)

    Brandel, D. L.; Kaminsky, Y.

    1975-01-01

    The objectives of the MARAD maritime experiments (conducted in the L-band fan beam mode) using the ATS-6 satellite are detailed. They include the following: (1) to evaluate the economic benefits of fleet operators through the use of satellite communications, (2) to evaluate performance criteria for shipboard terminal equipment needed to establish various grades of fleet operations services using commercial satellite systems, (3) to determine the effects of signal propagation, ship radio frequency noise, and ship antenna pointing on the maritime communications and navigation channel, and (4) to evaluate various modems for the transmission and reception of voice, data and position location signals via satellite systems.

  6. Smallholder farmers’ attitudes and determinants of adaptation to climate risks in East Africa

    Directory of Open Access Journals (Sweden)

    Kelvin M. Shikuku

    2017-01-01

    Full Text Available Adapting to climate risks is central to the goal of increasing food security and enhancing resilience of farming systems in East Africa. We examined farmers’ attitudes and assessed determinants of adaptation using data from a random sample of 500 households in Borana, Ethiopia; Nyando, Kenya; Hoima, Uganda; and Lushoto, Tanzania. Adaptation was measured using a livelihood-based index that assigned weights to different individual strategies based on their marginal contributions to a household’s livelihood. Results showed that farmers’ attitudes across the four sites strongly favored introduction of new crops, changes in crop varieties, and changes in planting times. Farmers disfavored soil, land, and water management practices. At lower levels of adaptation (25% quantile, adaptation index correlated positively with membership to farmers’ groups, household size, sex of the household head, and number of months of food shortage. Farmer group membership enhanced adaptation at intermediate (50% quantile level whereas access to credit increased adaptation at high (75% quantile level. Food insecurity, however, correlated negatively with the likelihood to choose individual adaptation strategies suggesting that although households adapted to improve food security status of their households, hunger was a barrier to adaptation. Our findings suggest that providing climate information to inform timely planting, promoting crop diversification, and encouraging adoption of adapted varieties of crops might be successful to enhancing resilience of farming systems in the short-term. In the long-term, increased investment in reducing hunger, encouraging groups formation, and easing liquidity constraints will be required to promote adaptation through implementation of soil, water, and land management strategies.

  7. Communication Attitudes of Japanese School-Age Children Who Stutter

    Science.gov (United States)

    Kawai, Norimune; Healey, E. Charles; Nagasawa, Taiko; Vanryckeghem, Martine

    2012-01-01

    Past research with the Communication Attitude Test (CAT) has shown it to be a valid and reliable instrument for assessing speech-associated attitude of children who stutter (CWS). However, in Japan, the CAT has not been used extensively to examine the communication attitude of CWS. The purpose of this study was to determine if a Japanese version…

  8. SSS-A attitude control prelaunch analysis and operations plan

    Science.gov (United States)

    Werking, R. D.; Beck, J.; Gardner, D.; Moyer, P.; Plett, M.

    1971-01-01

    A description of the attitude control support being supplied by the Mission and Data Operations Directorate is presented. Descriptions of the computer programs being used to support the mission for attitude determination, prediction, control, and definitive attitude processing are included. In addition, descriptions of the operating procedures which will be used to accomplish mission objectives are provided.

  9. Implications of Attitude and Behavior Research for Environmental Conservation.

    Science.gov (United States)

    Newhouse, Nancy

    1990-01-01

    Discussed are the determinants of environmentally responsible behavior, the attitude-behavior discrepancy problem, how environmental attitudes are formed and changed, and the effects of individual differences on appropriateness of educational techniques. (CW)

  10. Migration and wintering sites of Pelagic Cormorants determined by satellite telemetry

    Science.gov (United States)

    Hatch, Shyla A.; Gill, V.A.; Mulcahy, D.M.

    2011-01-01

    Factors affecting winter survival may be key determinants of status and population trends of seabirds, but connections between breeding sites and wintering areas of most populations are poorly known. Pelagic Cormorants (Phalacrocorax pelagicus; N= 6) surgically implanted with satellite transmitters migrated from a breeding colony on Middleton Island, northern Gulf of Alaska, to wintering sites in southeast Alaska and northern British Columbia. Winter locations averaged 920 km (range = 600-1190 km) from the breeding site. Migration flights in fall and spring lasted ???5 d in four instances. After reaching wintering areas, cormorants settled in narrowly circumscribed inshore locations (~10-km radius) and remained there throughout the nonbreeding period (September- March). Two juveniles tagged at the breeding colony as fledglings remained at their wintering sites for the duration of the tracking interval (14 and 22 mo, respectively). Most cormorants used multiple sites within their winter ranges for roosting and foraging. Band recoveries show that Pelagic Cormorants in southern British Columbia and Washington disperse locally in winter, rather than migrating like the cormorants in our study. Radio-tagging and monitoring cormorants and other seabirds from known breeding sites are vital for understanding migratory connectivity and improving conservation strategies for local populations. ?? 2011 The Authors. Journal of Field Ornithology ?? 2011 Association of Field Ornithologists.

  11. Public attitudes to GM foods. The balancing of risks and gains.

    Science.gov (United States)

    Hudson, John; Caplanova, Anetta; Novak, Marcel

    2015-09-01

    In the paper we study the variables influencing attitudes to the use of two biotechnologies related to gene transfer within apples. Using Eurobarometer 73.1 survey data on biotechnology, science and technology, with 15,650 respondents, we study the extent these attitudes are determined by socio-economic and other variables. We found that attitudes to the risks and gains are determined by socio-economic variables and also by the individual's knowledge, scientific background, their parent's education in science and their religion. Perceptions of naturalness and of environmental impact combined with perceived risks and gains in determining overall approval, proxied by views on whether the technologies should be encouraged, for GMTs. However there are substantial differences in attitudes to transgenesis and cisgenesis. Published by Elsevier Ltd.

  12. Parents’ Attitudes towards Adolescent Boy's Reproductive Health Needs and Practice in Tehran

    Directory of Open Access Journals (Sweden)

    Farideh K Abadi Farahani

    2007-05-01

    Full Text Available Objective: Parents are believed to be among the most influential adults who have a deterministic role in the success of interventional programs on adolescents' reproductive health. The aim of this study is to describe parents' perceptions and attitudes towards adolescent reproductive needs, experiences and associated factors. Method: A population-based study of 539 parents of adolescent boys, aged 15-18 in Tehran was conducted using a self-administered questionnaire. bivariate and multivariate analyses were performed to identify the factors associated with parents' attitudes and their reports of adolescent heterosexual relationships. Results: Higher education, higher income, access to satellite programs and internet were associated with a liberal attitude among parents. Some demographic factors including adolescents' age, lack of adolescents' endorsement to religion, access to satellite programs, parents' drinking, and various family factors such as poor parent-adolescent relationship, conflict, parental low valuation on education, parents' low endorsement to morals, difficult parent-adolescent communication on important issues and finally easy communication about sex, were all among the factors associated with more frequent reports of having a girlfriend over the last year for the adolescent males. Parents' reports on their adolescents' sexual relationships with the opposite sex highlighted a significant gap with the figure reported for the adolescents aged 15-18 in a preceding study in 2002(3% vs. 28%. Conclusion: Parents should be advised to build a good relationship with teens, to maintain a close parent-teen communication, and to discuss morals and values with teens .

  13. Children's attitudes toward violence on television.

    Science.gov (United States)

    Hough, K J; Erwin, P G

    1997-07-01

    Children's attitudes toward television violence were studied. A 47-item questionnaire collecting attitudinal and personal information was administered to 316 children aged 11 to 16 years. Cluster analysis was used to split the participants into two groups based on their attitudes toward television violence. A stepwise discriminant function analysis was performed to determine which personal characteristics would predict group membership. The only significant predictor of attitudes toward violence on television was the amount of television watched on school days (p < .05), but we also found that the impact of other predictor variables may have been mediated by this factor.

  14. Nurse Educator Attitudes Toward People With Disabilities.

    Science.gov (United States)

    Lyon, Lori; Houser, Rick

    As educators strongly influence the attitudes of their students, the purpose of this study was to determine nurse educator attitudes toward people with disabilities. Inadequate education of health professionals is a known barrier to care for people with disability. Continuing calls for improved education of health professionals compel an assessment of nurse educator attitudes. This was a cross-sectional, correlational web-based survey of nurse educators (n = 126). Nurse educator attitudes were analyzed using descriptive statistics, analysis of variance, and multiple regression analysis. Nurse educators held discriminatory attitudes toward people with disabilities, though most preferred a biopsychosocial model of disability. Forty-four percent lacked knowledge of disability-related aims, objectives, or outcomes within the curriculum. To advance equity in health care, nurse educators must confront personal bias and teach competent care of people with disabilities.

  15. British women's attitudes to surrogacy.

    Science.gov (United States)

    Poote, A E; van den Akker, O B A

    2009-01-01

    There has been little interest in the research literature on public opinions regarding assisted conception and surrogacy, particularly in European countries, despite the growing evidence showing that problems in adaptation and coping may be related to perceived normative values. This study investigated British women's attitudes to surrogacy using components of the theory of planned behaviour (TPB). Questionnaires on attitudes to surrogacy and reasons for parenthood were completed by 187 women from the general public. Significant socio-demographic differences were found between women who were possibly willing (n = 76) and those who were unwilling (n = 111) to become surrogate mothers. General attitudes to surrogacy also differed between groups (P = 0.000). This study supported the predictive utility of components of the TPB, and differentiated adequately between groups on attitudes to recruitment for surrogacy (P = 0.000), the consequences of surrogacy (P = 0.000), factors that induce people to become surrogates (P = 0.000), social support (P = 0.000), having personal control (P = 0.002) and reasons for parenthood (P = 0.000). Age (P = 0.000), attitudes to advertising (P = 0.02) and the consequences of surrogacy (P = 0.05) predicted (un)willingness to become a potential surrogate mother. Further research is needed with larger sample sizes of potential surrogates to determine whether the predictive attitudes reported here translate to actual behaviours. The larger group which was not interested in considering becoming a surrogate scored significantly more negatively on all attitudes towards surrogacy. The negative attitudes reported by the 'unwilling to consider being a surrogate' group may reflect attitudes held by the majority of the population and are likely to be influenced by reports of stigma associated with surrogacy.

  16. Probing the earth's gravity field using Satellite-to-Satellite Tracking (SST)

    Science.gov (United States)

    Vonbun, F. O.

    1976-01-01

    Satellite-to-Satellite (SST) tests, namely: (a) the ATS-6/GEOS-3 and (b) the ATS-6/Apollo-Soyuz experiment and some of the results obtained are described. The main purpose of these two experiments was first to track via ATS-6 the GEOS-3 as well as the Apollo-Soyuz and to use these tracking data to determine (a) both orbits, that is, ATS-6, GEOS-3 and/or the Apollo-Soyuz orbits at the same time; (b) each of these orbits alone; and (c) test the ATS-6/GEOS-3 and/or Apollo-Soyuz SST link to study local gravity anomalies; and, second, to test communications, command, and data transmission from the ground via ATS-6 to these spacecraft and back again to the ground. The Apollo-Soyuz Geodynamics Experiment is discussed in some detail.

  17. Attitude of final year medical students of a Nigerian university ...

    African Journals Online (AJOL)

    Doctors' attitude towards homosexuality may determine their responses and care for patients whose sexual orientation is homosexuality. Despite this, there is near absence of data on the attitude of medical students to homosexuals in Nigeria. Thus, this study investigated the attitude of final year medical students to ...

  18. Organic Foods: Do Eco-Friendly Attitudes Predict Eco-Friendly Behaviors?

    Science.gov (United States)

    Dahm, Molly J.; Samonte, Aurelia V.; Shows, Amy R.

    2009-01-01

    Objective: The purpose of this study was to determine whether student awareness and attitudes about organic foods would predict their behaviors with regard to organic food consumption and other healthy lifestyle practices. A secondary purpose was to determine whether attitudes about similar eco-friendly practices would result in socially conscious…

  19. Attitude towards, and likelihood of, complaining in the banking ...

    African Journals Online (AJOL)

    aims to determine customers' attitudes towards complaining as well as their likelihood of voicing a .... is particularly powerful and impacts greatly on customer satisfaction and retention. ...... 'Cross-national analysis of hotel customers' attitudes ...

  20. Small Aperture Telescope Observations of Co-located Geostationary Satellites

    Science.gov (United States)

    Scott, R.; Wallace, B.

    As geostationary orbit (GEO) continues to be populated, satellite operators are increasing usage of co-location techniques to maximize usage of fewer GEO longitude slots. Co-location is an orbital formation strategy where two or more geostationary satellites reside within one GEO stationkeeping box. The separation strategy used to prevent collision between the co-located satellites generally uses eccentricity (radial separation) and inclination (latitude separation) vector offsets. This causes the satellites to move in relative motion ellipses about each other as the relative longitude drift between the satellites is near zero. Typical separations between the satellites varies from 1 to 100 kilometers. When co-located satellites are observed by optical ground based space surveillance sensors the participants appear to be separated by a few minutes of arc or less in angular extent. Under certain viewing geometries, these satellites appear to visually conjunct even though the satellites are, in fact, well separated spatially. In situations where one of the co-located satellites is more optically reflective than the other, the reflected sunglint from the more reflective satellite can overwhelm the other. This less frequently encountered issue causes the less reflective satellite to be glint masked in the glare of the other. This paper focuses on space surveillance observations on co-located Canadian satellites using a small optical telescope operated by Defence R&D Canada - Ottawa. The two above mentioned problems (cross tagging and glint masking) are investigated and we quantify the results for Canadian operated geostationary satellites. The performance of two line element sets when making in-frame CCD image correlation between the co-located satellites is also examined. Relative visual magnitudes between the co-located members are also inspected and quantified to determine the susceptibility of automated telescopes to glint masking of co-located satellite members.

  1. Design of an Image Motion Compenstaion (IMC Algorithm for Image Registration of the Communication, Ocean, Meteorolotical Satellite (COMS-1

    Directory of Open Access Journals (Sweden)

    Taek Seo Jung

    2006-03-01

    Full Text Available This paper presents an Image Motion Compensation (IMC algorithm for the Korea's Communication, Ocean, and Meteorological Satellite (COMS-1. An IMC algorithm is a priority component of image registration in Image Navigation and Registration (INR system to locate and register radiometric image data. Due to various perturbations, a satellite has orbit and attitude errors with respect to a reference motion. These errors cause depointing of the imager aiming direction, and in consequence cause image distortions. To correct the depointing of the imager aiming direction, a compensation algorithm is designed by adapting different equations from those used for the GOES satellites. The capability of the algorithm is compared with that of existing algorithm applied to the GOES's INR system. The algorithm developed in this paper improves pointing accuracy by 40%, and efficiently compensates the depointings of the imager aiming direction.

  2. Future development of IR thermovision weather satellite equipment

    Science.gov (United States)

    Listratov, A. V.

    1974-01-01

    The self radiation of the surface being viewed is used for image synthesis in IR thermovision equipment. The installation of such equipment aboard weather satellites makes it possible to obtain cloud cover pictures of the earth's surface in a complete orbit, regardless of the illumination conditions, and also provides quantitative information on the underlying surface temperature and cloud top height. Such equipment is used successfully aboard the Soviet satellites of the Meteor system, and experimentally on the American satellites of the Nimbus series. With regard to surface resolution, the present-day IR weather satellite equipment is inferior to the television equipment. This is due primarily to the comparatively low detectivity of the IR detectors used. While IR equipment has several fundamental advantages in comparison with the conventional television equipment, the problem arises of determining the possibility for future development of weather satellite IR thermovision equipment. Criteria are examined for evaluating the quality of IR.

  3. Effects of perceived smoking-cancer relationship and cardiovascular health attitudes on childrens' views of smoking.

    Science.gov (United States)

    Bektas, Ilknur; Bektas, Murat; Selekoğlu, Yasemin; Kudubes, Aslı Akdeniz; Altan, Sema Sal; Ayar, Dijle

    2015-01-01

    This study was conducted with the aim of determining how students' perceived smoking-cancer relationship and cardiovascular health attitudes affect childrens' views of smoking. The sample of this descriptive-cross sectional study comprised 574 subjects between the ages of 11-15. The data were collected using the Children's Cardiovascular Health Promotion Attitude Scale and the Children's Decisional Balance Measure for Assessing and Predicting Smoking Status. Correlation and logistic regression were used for analysis. It was determined that a statistically significant relationship exists between the attitudes of children towards smoking and their ideas about the relationship of smoking with cancer, which is negative and low (r=-0.223). There was also a statistically significant relationship between their attitudes towards cardiovascular health and their attitudes towards smoking, again at a low level (r=0.257). It was determined that children with ideas about smoking and cancer were 9.4 times less likely to have positive/negative attitudes towards smoking, while positive attitudes towards cardiovascular health made negative attitudes towards smoking 3.9 times less likely. It was determined that the attitudes of students towards cardiovascular health and their perceptions of smoking and cancer reduced the positive perceptions towards smoking.

  4. Knowledge and Attitude of Public Secondary School Teachers ...

    African Journals Online (AJOL)

    The study investigated knowledge and attitude of public secondary school teachers towards continuous assessment (CA) practices in Edo Central Senatorial District, Nigeria. The study was undertaken to determine the influence of gender, age, years of experience and area of educational specialization on teachers' attitude ...

  5. Cross-cultural differences in psychiatric nurses' attitudes to inpatient aggression.

    Science.gov (United States)

    Jansen, Gerard J; Middel, Berry; Dassen, Theo W N; Reijneveld, Menno S A

    2006-04-01

    Little is currently known about the attitudes of psychiatric nurses toward patient aggression, particularly from an international perspective. Attitudes toward patient aggression of psychiatric nurses from five European countries were investigated using a recently developed and tested attitude scale. Data were collected from a convenience sample of 1,769 student nurses and psychiatric nurses. Regression analysis was performed to identify personal and occupational characteristics of the respondents able to predict their attitude toward aggression. Analysis of variance was used to identify significant differences in attitudes between and among countries. Attitude was predicted by sex, contractual status (full vs. part time), and the type of ward on which subjects worked. With one exception (communicative attitude), attitudes differed across countries. More research on attitude formation is needed to determine which factors account for these differences.

  6. Motivational Dynamics in the Development of Career Attitudes among Adolescents

    Science.gov (United States)

    Janeiro, Isabel Nunes

    2010-01-01

    Super (1990) proposed that the psychological determinants of career development attitudes are time perspective, self-esteem, and causal attributions. The present study analyzed the effects of these determinants on the career development attitudes of 320 students from grade 9 and 300 students from grade 12. The analysis of the data using structural…

  7. Attitude Strength.

    Science.gov (United States)

    Howe, Lauren C; Krosnick, Jon A

    2017-01-03

    Attitude strength has been the focus of a huge volume of research in psychology and related sciences for decades. The insights offered by this literature have tremendous value for understanding attitude functioning and structure and for the effective application of the attitude concept in applied settings. This is the first Annual Review of Psychology article on the topic, and it offers a review of theory and evidence regarding one of the most researched strength-related attitude features: attitude importance. Personal importance is attached to an attitude when the attitude is perceived to be relevant to self-interest, social identification with reference groups or reference individuals, and values. Attaching personal importance to an attitude causes crystallizing of attitudes (via enhanced resistance to change), effortful gathering and processing of relevant information, accumulation of a large store of well-organized relevant information in long-term memory, enhanced attitude extremity and accessibility, enhanced attitude impact on the regulation of interpersonal attraction, energizing of emotional reactions, and enhanced impact of attitudes on behavioral intentions and action. Thus, important attitudes are real and consequential psychological forces, and their study offers opportunities for addressing behavioral change.

  8. Satellite-Based Stratospheric and Tropospheric Measurements: Determination of Global Ozone and Other Trace Species

    Science.gov (United States)

    Chance, Kelly

    2003-02-01

    This grant is an extension to our previous NASA Grant NAG5-3461, providing incremental funding to continue GOME (Global Ozone Monitoring Experiment) and SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) studies. This report summarizes research done under these grants through December 31, 2002. The research performed during this reporting period includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, consultation and development for SCIAMACHY near-real-time (NRT) and off-line (OL) data products, and participation in initial SCIAMACHY validation studies. The Global Ozone Monitoring Experiment was successfully launched on the ERS-2 satellite on April 20, 1995, and remains working in normal fashion. SCIAMACHY was launched March 1, 2002 on the ESA Envisat satellite. Three GOME-2 instruments are now scheduled to fly on the Metop series of operational meteorological satellites (Eumetsat). K. Chance is a member of the reconstituted GOME Scientific Advisory Group, which will guide the GOME-2 program as well as the continuing ERS-2 GOME program.

  9. A statistical model for determining impact of wildland fires on Particulate Matter (PM2.5) in Central California aided by satellite imagery of smoke

    International Nuclear Information System (INIS)

    Preisler, Haiganoush K.; Schweizer, Donald; Cisneros, Ricardo; Procter, Trent; Ruminski, Mark; Tarnay, Leland

    2015-01-01

    As the climate in California warms and wildfires become larger and more severe, satellite-based observational tools are frequently used for studying impact of those fires on air quality. However little objective work has been done to quantify the skill these satellite observations of smoke plumes have in predicting impacts to PM 2.5 concentrations at ground level monitors, especially those monitors used to determine attainment values for air quality under the Clean Air Act. Using PM 2.5 monitoring data from a suite of monitors throughout the Central California area, we found a significant, but weak relationship between satellite-observed smoke plumes and PM 2.5 concentrations measured at the surface. However, when combined with an autoregressive statistical model that uses weather and seasonal factors to identify thresholds for flagging unusual events at these sites, we found that the presence of smoke plumes could reliably identify periods of wildfire influence with 95% accuracy. - Highlights: • Satellite observed smoke is useful for predicting wildfire impacts on Particulate Matter. • A metric was developed to flag ‘exceptional events’ days as defined by EPA. • We found significant impact of wildfires on PM 2.5 at various sites in Central California. • Fires in most years had no significant impact on compliance with EPA standards. - This work quantifies the skill of satellite observations of smoke plumes in predicting wildfire impacts on PM 2.5 concentrations at ground level monitors

  10. Forecasting the Impact of an 1859-calibre Superstorm on Satellite Resources

    Science.gov (United States)

    Odenwald, Sten; Green, James; Taylor, William

    2005-01-01

    We have assembled a database of operational satellites in orbit as of 2004, and have developed a series of simple models to assess the economic impacts to this resource caused by various scenarios of superstorm events possible during the next sunspot cycle between 2010 and 2014. Despite the apparent robustness of our satellite assets against the kinds of storms we have encountered during the satellite era, our models suggest a potential economic loss exceeding $10(exp 11) for satellite replacement and lost profitability caused by a once a century single storm similar to the 1859 superstorm. From a combination of power system and attitude control system (the most vulnerable) failures, we estimate that 80 satellites (LEO, MEO, GEO) may be disabled as a consequence of a superstorm event. Additional consequences may include the failure of many of the GPS, GLONASS and Galileo satellite systems in MEO. Approximately 98 LEO satellites that normally would not have re-entered for many decades, may prematurely de-orbit in ca 2021 as a result of the temporarily increased atmospheric drag caused by the superstorm event occurring in 2012. The $10(exp 11) International Space Station may lose at least 15 kilometers of altitude, placing it in critical need for re-boosting by an amount that is potentially outside the range of typical Space Shuttle operations during the previous solar maximum in ca 2000, and at a time when NASA plans to decommission the Space Shuttle. Several LEO satellites will unexpectedly be placed on orbits that enter the ISS zone of avoidance, requiring some action by ground personnel and ISS astronauts to avoid close encounters. Radiation effects on astronauts have also been considered and could include a range of possibilities from acute radiation sickness for astronauts inside spacecraft, to near-lethal doses during EVAs. The specifics depends very sensitively on the spectral hardness of the accompanying SPE event. Currently, the ability to forecast extreme

  11. Uniform Distance Scaling Behavior of Planet-Satellite Nanostructures Made by Star Polymers.

    Science.gov (United States)

    Rossner, Christian; Tang, Qiyun; Glatter, Otto; Müller, Marcus; Vana, Philipp

    2017-02-28

    Planet-satellite nanostructures from RAFT star polymers and larger (planet) as well as smaller (satellite) gold nanoparticles are analyzed in experiments and computer simulations regarding the influence of arm number of star polymers. A uniform scaling behavior of planet-satellite distances as a function of arm length was found both in the dried state (via transmission electron microscopy) after casting the nanostructures on surfaces and in the colloidally dispersed state (via simulations and small-angle X-ray scattering) when 2-, 3-, and 6-arm star polymers were employed. This indicates that the planet-satellite distances are mainly determined by the arm length of star polymers. The observed discrepancy between TEM and simulated distances can be attributed to the difference of polymer configurations in dried and dispersed state. Our results also show that these distances are controlled by the density of star polymers end groups, and the number of grabbed satellite particles is determined by the magnitude of the corresponding density. These findings demonstrate the feasibility to precisely control the planet-satellite structures at the nanoscale.

  12. Determining the Pixel-to-Pixel Uncertainty in Satellite-Derived SST Fields

    Directory of Open Access Journals (Sweden)

    Fan Wu

    2017-08-01

    Full Text Available The primary measure of the quality of sea surface temperature (SST fields obtained from satellite-borne infrared sensors has been the bias and variance of matchups with co-located in-situ values. Because such matchups tend to be widely separated, these bias and variance estimates are not necessarily a good measure of small scale (several pixels gradients in these fields because one of the primary contributors to the uncertainty in satellite retrievals is atmospheric contamination, which tends to have large spatial scales compared with the pixel separation of infrared sensors. Hence, there is not a good measure to use in selecting SST fields appropriate for the study of submesoscale processes and, in particular, of processes associated with near-surface fronts, both of which have recently seen a rapid increase in interest. In this study, two methods are examined to address this problem, one based on spectra of the SST data and the other on their variograms. To evaluate the methods, instrument noise was estimated in Level-2 Visible-Infrared Imager-Radiometer Suite (VIIRS and Advanced Very High Resolution Radiometer (AVHRR SST fields of the Sargasso Sea. The two methods provided very nearly identical results for AVHRR: along-scan values of approximately 0.18 K for both day and night and along-track values of 0.21 K for day and night. By contrast, the instrument noise estimated for VIIRS varied by method, scan geometry and day-night. Specifically, daytime, along-scan (along-track, spectral estimates were found to be approximately 0.05 K (0.08 K and the corresponding nighttime values of 0.02 K (0.03 K. Daytime estimates based on the variogram were found to be 0.08 K (0.10 K with the corresponding nighttime values of 0.04 K (0.06 K. Taken together, AVHRR instrument noise is significantly larger than VIIRS instrument noise, along-track noise is larger than along-scan noise and daytime levels are higher than nighttime levels. Given the similarity of

  13. Application of the artificial satellite of the earth to determine the velocity of the gravitational interaction within newtonian gravitational fields

    International Nuclear Information System (INIS)

    Cristea, Gh.

    1975-01-01

    In the first part of this paper, additional data are given concerning a gravimeter consisting in a pendulum-laser set proposed in a previous paper of the author (1). This gravimeter could have a sensitivity of 0.1 microgal or even 0.01 microgal in the case of statistical measurements. If processing by an on-line computer is used, the pendulum-laser can constitute a gravimeter which, used in statistical measurements on a long time interval, could reach a sensitivity of 10 -12 g. The second part of the paper points out the advantages resulting from determining the velocity of the gravitational reaction in an artificial satellite of the earth. The main advantage is the very fact that this measurement can be achieved by means of the existant gravimeters. The massive reduction of the time error is due to the increase of the ''sinusoid'' frequency resulting from the recording being made on the gravimeter set on an artificial satellite turning around the earth in about 90 minutes

  14. Attitude Fusion Techniques for Spacecraft

    DEFF Research Database (Denmark)

    Bjarnø, Jonas Bækby

    Spacecraft platform instability constitutes one of the most significant limiting factors in hyperacuity pointing and tracking applications, yet the demand for accurate, timely and reliable attitude information is ever increasing. The PhD research project described within this dissertation has...... served to investigate the solution space for augmenting the DTU μASC stellar reference sensor with a miniature Inertial Reference Unit (IRU), thereby obtaining improved bandwidth, accuracy and overall operational robustness of the fused instrument. Present day attitude determination requirements are met...... of the instrument, and affecting operations during agile and complex spacecraft attitude maneuvers. As such, there exists a theoretical foundation for augmenting the high frequency performance of the μASC instrument, by harnessing the complementary nature of optical stellar reference and inertial sensor technology...

  15. CONSUMERS’ ATTITUDES RELATED TO BIOFUEL USE IN TRANSPORTATION

    Directory of Open Access Journals (Sweden)

    Florin Mariasiu

    2013-01-01

    Full Text Available This paper presents the results of a field survey to determine the attitudes of consumers (citizens related to the use of biofuels in transport. Attitudes of citizens towards biotechnologies and renewable energy use to reduce pollutant effects on the environment are an important factor (and even decisive in political decision-making necessary to develop new investments and the practical implementation of the proposed projects in the field of renewable sources. The aim of the study was to identify the attitudes of citizens (consumers regarding follow specific issues: the identification of environmental attitudes and use of biofuels, exploring the connections between attitudes and actions declared effective environmentally taken and exploring attitudes towards authorities environmental policies. It was found that there is a favorable attitude for a massive use of biofuels in transport, even in the absence of relevant sources of information about the complexity of the effects of using biofuels in transport.

  16. Generation Y students’ attitudes towards facebook advertising: pilot study results

    OpenAIRE

    Hilda Bongazana Mahlangu; Ayesha Lian Bevan-Dye

    2013-01-01

    The purpose of this paper is to report on the results of a pilot study conducted on the determinants and inhibitors of Generation Y students’ attitudes towards Facebook advertising. The findings suggest that Generation Y students have a positive attitude towards the information value, entertainment value, credibility, self-brand congruity of advertising on Facebook and attitude towards the social interaction value of Facebook. Their attitudes towards trust in the site and trust in the members...

  17. Attitudes of Academic Staff towards Their Own Work and towards External Evaluation, from the Perspective of Self-Determination Theory: Estonian Case

    Science.gov (United States)

    Seema, Riin; Udam, Maiki; Mattisen, Heli

    2016-01-01

    The purpose of this study was to ascertain the attitudes of academic staff towards their own work as well as towards external evaluations. The study was based on (1) an analysis of assessment reports of institutional accreditations conducted by the Estonian Quality Agency for Higher and Vocational Education and (2) self-determination theory on…

  18. Perioperative nurses' attitudes toward the electronic health record.

    Science.gov (United States)

    Yontz, Laura S; Zinn, Jennifer L; Schumacher, Edward J

    2015-02-01

    The adoption of an electronic health record (EHR) is mandated under current health care legislation reform. The EHR provides data that are patient centered and improves patient safety. There are limited data; however, regarding the attitudes of perioperative nurses toward the use of the EHR. The purpose of this project was to identify perioperative nurses' attitudes toward the use of the EHR. Quantitative descriptive survey was used to determine attitudes toward the electronic health record. Perioperative nurses in a southeastern health system completed an online survey to determine their attitudes toward the EHR in providing patient care. Overall, respondents felt the EHR was beneficial, did not add to the workload, improved documentation, and would not eliminate any nursing jobs. Nursing acceptance and the utilization of the EHR are necessary for the successful integration of an EHR and to support the goal of patient-centered care. Identification of attitudes and potential barriers of perioperative nurses in using the EHR will improve patient safety, communication, reduce costs, and empower those who implement an EHR. Copyright © 2015 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  19. Leveraging the NPS Femto Satellite for Alternative Satellite Communication Networks

    Science.gov (United States)

    2017-09-01

    programmed for eventual integration with the Iridium Network , which is then tested. C. THESIS ORGANIZATION The thesis addresses these questions...NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS by Faisal S. Alshaya September 2017 Co-Advisors: Steven J. Iatrou...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE LEVERAGING THE NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS 5

  20. Determining the effectiveness of a video-based contact intervention in improving attitudes of Penang primary care nurses towards people with mental illness.

    Directory of Open Access Journals (Sweden)

    Yin Ping Ng

    Full Text Available Mental illness-related stigma is common, and is associated with poorer outcomes in people with mental illness. This study evaluated the attitudes of primary care nurses towards people with mental illness and its associated factors; and the effectiveness of a short video-based contact intervention (VBCI in improving these attitudes using a Malay version of the 15-item Opening Minds Stigma Scale for Healthcare Providers (OMS-HC-15-M.A 5-minute VBCI was developed comprising elements of psychoeducation and interviews of people with mental illness and the people they interact with, relating to experience of mental illness and recovery. A pre-post cross-sectional study was conducted on 206 randomly selected primary care nurses in Penang, Malaysia. The OMS-HC-15-M questionnaire was administered before and immediately after participants viewed the VBCI. The difference in mean pre-post VBCI scores using paired t-tests, effect size and standardised response mean (SRM were obtained. Factors correlating to attitudes were obtained using univariate and multivariate regression analyses.Differences in pre-post VBCI score were statistically significant (p<0.001 with a 14% score reduction, a moderate effect size and SRM at 0.97 (0.85-0.11 and 1.1 (0.97-1.2 respectively. By factoring in the Minimal Detectable Change statistic of 7.76, the VBCI produced a significant improvement of attitudes in 30% of the participants. Factors associated with less stigmatising attitudes at baseline were previous psychiatry-related training, desiring psychiatric training, and positive contact with people with mental illness.This is the first study in Malaysia to show that a brief VBCI is effective in improving attitudes of primary care nurses towards people with mental illness in the immediate term. Further studies are needed to determine if these results can be sustained in the longer term and generalizable to other health care professionals. Qualitative studies are warranted to

  1. Requirements and design structure for Surya Satellite-1

    Science.gov (United States)

    Steven, H.; Huzain, M. F.

    2018-05-01

    Currently, there are various references on the manufacture of nanosatellite specifications weighing 1KG - 10KG.The Surya Satellite-1 is the first nanosatellite made by universities in Indonesia. The Surya Satellite-1 team gets a launch offer from Japan Aerospace Exploration Agency (JAXA) and, all the nanosatellites manufacturer racers at ICD (Interface Control Document) obtained from JAXA. The formation of the Satellite-1 Surya framework is also based on the provisions of JAXA. The various specifications and requirements specified by the JAXA space agency consisting of specific specifications such as the mass of nanosatellite 1U (10cm x 10cm x 11.65cm) size of at least 0.13KG and a maximum of 1.33KG, with the determination of a gravity point not exceeding 2 cm from the nanosatellite geometry center point. In the case of preventing solar radiation in space, there is a requirement that the structure of satellite structures on hard black anodization should be more than 10 meters in the surface of the satellite structure. In terms of detail, the satellite structure is a black hard anodized aluminum after its manufacturing process derived from the MIL-A-8625 document, type 3.

  2. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  3. Satellite-based laser windsounder

    International Nuclear Information System (INIS)

    Schultz, J.F.; Czuchlewski, S.J.; Quick, C.R.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project''s primary objective is to determine the technical feasibility of using satellite-based laser wind sensing systems for detailed study of winds, aerosols, and particulates around and downstream of suspected proliferation facilities. Extensive interactions with the relevant operational organization resulted in enthusiastic support and useful guidance with respect to measurement requirements and priorities. Four candidate wind sensing techniques were evaluated, and the incoherent Doppler technique was selected. A small satellite concept design study was completed to identify the technical issues inherent in a proof-of-concept small satellite mission. Use of a Mach-Zehnder interferometer instead of a Fabry-Perot would significantly simplify the optical train and could reduce weight, and possibly power, requirements with no loss of performance. A breadboard Mach-Zehnder interferometer-based system has been built to verify these predictions. Detailed plans were made for resolving other issues through construction and testing of a ground-based lidar system in collaboration with the University of Wisconsin, and through numerical lidar wind data assimilation studies

  4. Demise of faint satellites around isolated early-type galaxies

    Science.gov (United States)

    Park, Changbom; Hwang, Ho Seong; Park, Hyunbae; Lee, Jong Chul

    2018-02-01

    The hierarchical galaxy formation scenario in the Cold Dark Matter cosmology with a non-vanishing cosmological constant Λ and geometrically flat space (ΛCDM) has been very successful in explaining the large-scale distribution of galaxies. However, there have been claims that ΛCDM over-predicts the number of satellite galaxies associated with massive galaxies compared with observations—the missing satellite galaxy problem1-3. Isolated groups of galaxies hosted by passively evolving massive early-type galaxies are ideal laboratories for identifying the missing physics in the current theory4-11. Here, we report—based on a deep spectroscopic survey—that isolated massive and passive early-type galaxies without any signs of recent wet mergers or accretion episodes have almost no satellite galaxies fainter than the r-band absolute magnitude of about Mr = -14. If only early-type satellites are used, the cutoff is at the somewhat brighter magnitude of about Mr = -15. Such a cutoff has not been found in other nearby satellite galaxy systems hosted by late-type galaxies or those with merger features. Various physical properties of satellites depend strongly on the host-centric distance. Our observations indicate that the satellite galaxy luminosity function is largely determined by the interaction of satellites with the environment provided by their host.

  5. Consumer attitudes toward and intentions to accept mobile advertising

    Directory of Open Access Journals (Sweden)

    Abednego Feehi Okoe

    2015-09-01

    Full Text Available The objective of this study was to examine the drivers of consumers’ attitudes towards mobile advertisement. It also sought the relationship between consumers’ attitudes towards mobile advertisement and their willingness to accept mobile advertising. Confirmatory factor analysis was used to assess the measurement model while structural equation was conducted to assess the goodness-fit of the overall model. The findings indicate that entertainment, credibility and personalization had positive effects on consumers’ attitudes toward mobile advertising. Furthermore, the results show that, consumers’ attitude determines their willingness to accept mobile advertising.

  6. Body elimination attitude family resemblance in Kuwait.

    Science.gov (United States)

    Al-Fayez, Ghenaim; Awadalla, Abdelwahid; Arikawa, Hiroko; Templer, Donald I; Hutton, Shane

    2009-12-01

    The purpose of the present study was to determine the family resemblance of attitude toward body elimination in Kuwaiti participants. This study was conceptualized in the context of the theories of moral development, importance of cleanliness in the Muslim religion, cross-cultural differences in personal hygiene practices, previous research reporting an association between family attitudes and body elimination attitude, and health implications. The 24-item Likert-type format Body Elimination Attitude Scale-Revised was administered to 277 Kuwaiti high school students and 437 of their parents. Females scored higher, indicating greater disgust, than the males. Moreover, sons' body elimination attitude correlated more strongly with fathers' attitude (r = .85) than with that of the mothers (r = .64). Daughters' attitude was similarly associated with the fathers' (r = .89) and the mothers' attitude (r = .86). The high correlations were discussed within the context of Kuwait having a collectivistic culture with authoritarian parenting style. The higher adolescent correlations, and in particular the boys' correlation with fathers than with mothers, was explained in terms of the more dominant role of the Muslim father in the family. Public health and future research implications were suggested. A theoretical formulation was advanced in which "ideal" body elimination attitude is relative rather than absolute, and is a function of one's life circumstances, one's occupation, one's culture and subculture, and the society that one lives in.

  7. Evaluation of attitudes of university students for handicapped individuals

    Directory of Open Access Journals (Sweden)

    Özkan Zekiye

    2017-01-01

    Full Text Available Education has an important role in humans’ behaviours. Undergraduate education has headed among factors that influence maturation period before vocational lifes of individuals. The purpose of this study is to determine whether attitudes of university students for handicapped individuals differ according to some variables. This study which was carried out in screening model was done with 1167 people including 646 females 521 males who maintain their education at faculties taking initial teacher training in 2016 spring term at Yuzuncu Yil University. As data collection tool, Attitude Scale for Being Educated of Handicapped Individuals and Personal Information Form, which was developed by Kosterilioglu [12], was used. As statistical method, Duncan’s multiple range test was used in determining different groups following one-wat analysis of variance. Among these variables, pearson coefficients of correlation were calculated separately in groups in determining relation. In determining relationship between groups and categorical variables , chi square test was used. In calculations, value of p was taken as 0,05 and SPSS statistic program was used for calculations. While point average of attitudes of male students , who maintain their educations at Yuzuncu Yil University, for handicapped people was ascertained as 54.27±23.54, point average of attitudes of female students was determined as 55.86±26.34. A significant difference between male and female students according to gender variable was not seen in attitudes for being educated of handicapped individuals (P>0,05. It was observed that attitudes for being educated of handicapped individuals in starting and end of undergraduate term were higher than intermediate classes (P<0,01. Although a significant difference in kind of high schools from which students graduated was not seen, attitudes of graduates from science and sport high schools were found higher than graduates from other high schools

  8. In-orbit attitude actuation using solar panels

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2008-06-01

    Full Text Available A specific technique is developed to wield the internal disturbance torque caused by the solar panel actuation for spacecraft attitude control tasks. This work is the maiden work towards integrating the attitude control and the solar tracking tasks, forming a combined attitude and solar tracking system. The feasibility of this concept for spacecraft is proven and eventually the combined concept is validated. A technical proof is presented corresponding to the end-to-end system demonstration. The investigation starts with the determination of the solar tracking constraints. Then, the mathematical models describing the attitude and solar tracking are established, and eventually the onboard architecture is implemented. The numerical treatments using MatlabTM were performed to evaluate the developed onboard architecture. The simulation results are discussed especially from the attitude control standpoint. The integrated system complies very well with the reference mission requirements.

  9. A Study on the Tracking and Position Predictions of Artificial Satellite (II

    Directory of Open Access Journals (Sweden)

    Pil-Ho Park

    1991-06-01

    Full Text Available We developed a software system called IODS (ISSA Orbit Determination System, which can predict the orbit of arbitrary artificial satellite using the numerical method. For evaluating the orbit prediction accuracy of IODS, the orbital data predicted for the meteorological satellite NOAA-11 and the stationary satellite INTELSAT-V are intercompared with those tracked at the Central Bureau of Meteorology and the Kum-San Satellites Communication Station. And the Perturbation affecting the orbit of these artificial satellites are quantitatively analyzed. The orbital variation and the eclipse phenomina due to the earth shadow are analyzed for a hypothetical geostationary satellite called KORSAT-1 which is assumed to be located in longitude 110°E.

  10. Factors affecting attitudes towards medical abortion in Lithuania

    DEFF Research Database (Denmark)

    Lazarus, Jeff; Nielsen, Stine; Jakubcionyte, Rita

    2006-01-01

    Surgical abortion in Lithuania is governed by a 1994 ministerial decree that made it legal for any woman 16 or older. This article seeks to determine the key demographic factors in Lithuanian attitudes towards medical abortion, which is currently not legal.......Surgical abortion in Lithuania is governed by a 1994 ministerial decree that made it legal for any woman 16 or older. This article seeks to determine the key demographic factors in Lithuanian attitudes towards medical abortion, which is currently not legal....

  11. Positive Reading Attitudes of Low-Income Bilingual Latinos

    Science.gov (United States)

    Bussert-webb, Kathy M.; Zhang, Zhidong

    2018-01-01

    Many assume low-income, emergent bilingual Latinos have poor reading attitudes. To investigate this issue, we surveyed 1,503 Texas public high school students through stratified cluster sampling to determine their reading attitudes. Most represented Latinos and mixed-race Latinos/Whites who heard Spanish at home and whose mother tongue was…

  12. Pre-Service Secondary Teachers' Attitudes towards Inclusive Education

    Science.gov (United States)

    Costello, Shane; Boyle, Christopher

    2013-01-01

    The attitudes held by pre-service teachers have been shown to affect their willingness and ability to implement an inclusive approach to education. A sample consisting of 193 pre-service secondary teachers enrolled in secondary education courses at an Australian university were surveyed to determine their attitudes towards inclusive education,…

  13. Autonomous, agile micro-satellites and supporting technologies

    International Nuclear Information System (INIS)

    Breitfeller, E; Dittman, M D; Gaughan, R J; Jones, M S; Kordas, J F; Ledebuhr, A G; Ng, L C; Whitehead, J C; Wilson, B

    1999-01-01

    This paper updates the on-going effort at Lawrence Livermore National Laboratory to develop autonomous, agile micro-satellites (MicroSats). The objective of this development effort is to develop MicroSats weighing only a few tens of kilograms, that are able to autonomously perform precision maneuvers and can be used telerobotically in a variety of mission modes. The required capabilities include satellite rendezvous, inspection, proximity-operations, docking, and servicing. The MicroSat carries an integrated proximity-operations sensor-suite incorporating advanced avionics. A new self-pressurizing propulsion system utilizing a miniaturized pump and non-toxic mono-propellant hydrogen peroxide was successfully tested. This system can provide a nominal 25 kg MicroSat with 200-300 m/s delta-v including a warm-gas attitude control system. The avionics is based on the latest PowerPC processor using a CompactPCI bus architecture, which is modular, high-performance and processor-independent. This leverages commercial-off-the-shelf (COTS) technologies and minimizes the effects of future changes in processors. The MicroSat software development environment uses the Vx-Works real-time operating system (RTOS) that provides a rapid development environment for integration of new software modules, allowing early integration and test. We will summarize results of recent integrated ground flight testing of our latest non-toxic pumped propulsion MicroSat testbed vehicle operated on our unique dynamic air-rail

  14. Tobacco use, knowledge and attitude among Malaysians age 18 and above.

    Science.gov (United States)

    Lim, K H; Sumarni, M G; Amal, N M; Hanjeet, K; Wan Rozita, W M; Norhamimah, A

    2009-04-01

    This study aims to determine the level of knowledge and to understand their attitude towards smoking and secondly to determine how sociodemographic background, smoking status and knowledge on the health risks of smoking contribute toward the development of such attitude. A total of 10,545 respondents age 18 years and above across Malaysia were interviewed. Results indicated that level of knowledge and attitude varied by gender, education level, smoking status, age, ethnicity and smoker category. Smokers' low education, poor knowledge on the dangers of smoking and being males had more positive or greater impact on their attitudes towards smoking. Formulation and implementation of a holistic programme aimed at increasing knowledge and attitude change that accounts for sociodemographic background of the population is recommended in order to bring down smoking rates and thus reduce smoking related health problems in this country.

  15. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    Science.gov (United States)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  16. Observer Based Sliding Mode Attitude Control: Theoretical and Experimental Results

    Directory of Open Access Journals (Sweden)

    U. Jørgensen

    2011-07-01

    Full Text Available In this paper we present the design of a sliding mode controller for attitude control of spacecraft actuated by three orthogonal reaction wheels. The equilibrium of the closed loop system is proved to be asymptotically stable in the sense of Lyapunov. Due to cases where spacecraft do not have angular velocity measurements, an estimator for the generalized velocity is derived and asymptotic stability is proven for the observer. The approach is tested on an experimental platform with a sphere shaped Autonomous Underwater Vehicle SATellite: AUVSAT, developed at the Norwegian University of Science and Technology.

  17. Determinants of undergraduate nursing students' care willingness towards the elderly in China: Attitudes, gratitude and knowledge.

    Science.gov (United States)

    Zhang, Shuai; Liu, Yan-Hui; Zhang, Hong-Fu; Meng, Li-Na; Liu, Peng-Xi

    2016-08-01

    An aging population has become a serious problem in China. Improving the nursing students' care willingness is a critical way to solve this dilemma. Few studies reveal the relationship between the knowledge, care willingness, attitude towards the elderly and gratitude. This research has found that the attitude towards the elderly, the knowledge about aging, and gratitude showed correlation with care willingness. The purpose of this study is to explore the relationships among knowledge about aging, care willingness, attitude towards the elderly and gratitude. A cross-sectional descriptive design has been used. From November to December 2015, a total of 382 undergraduate nursing students in China completed the questionnaires. The response rate was 95.5%. Four questionnaires including Care Willingness to the Elderly Scale (CW), Kogan's Attitudes towards Old People scale (KAOP), the Facts on Aging Quiz (FAQ), and the Gratitude Scale. Structural equation modeling (SEM) was used to explore the relationship among those variables in this study. For Chinese nursing students, the care willingness of elderly was in medium-high level. Their attitude towards the elderly and gratitude were at the medium degree, while the knowledge about aging was at a lower level. The attitude towards older people, knowledge about aging, and gratitude were significantly correlated with care willingness. The knowledge about aging has no relationship with the attitude. Gratitude plays a mediation role between the knowledge about aging and care willingness. The experience of caring the elderly could lead to a positive impact in care willingness. The nursing students' knowledge about aging had a direct influence on their care willingness. Gratitude plays a mediating role between the knowledge about aging and care willingness to the elderly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. GALAXIES IN FILAMENTS HAVE MORE SATELLITES: THE INFLUENCE OF THE COSMIC WEB ON THE SATELLITE LUMINOSITY FUNCTION IN THE SDSS

    International Nuclear Information System (INIS)

    Guo, Quan; Libeskind, N. I.; Tempel, E.

    2015-01-01

    We investigate whether the satellite luminosity function (LF) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spectroscopic sample, and potential satellites (that are up to four magnitudes fainter than their hosts) are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the Bisous process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean satellite LF of both the filament and nonfilament samples and find that, on average, the satellite LF of galaxies in filaments is significantly higher than those of galaxies not in filaments. The filamentary environment can increase the abundance of the brightest satellites (M sat. < M prim. + 2.0) by a factor of ∼2 compared with nonfilament isolated galaxies. This result is independent of the primary galaxy magnitude, although the satellite LF of galaxies in the faintest magnitude bin is too noisy to determine if such a dependence exists. Because our filaments are extracted from a spectroscopic flux-limited sample, we consider the possibility that the difference in satellite LF is due to a redshift, color, or environmental bias, finding these to be insufficient to explain our result. The dependence of the satellite LF on the cosmic web suggests that the filamentary environment may have a strong effect on the efficiency of galaxy formation

  19. GALAXIES IN FILAMENTS HAVE MORE SATELLITES: THE INFLUENCE OF THE COSMIC WEB ON THE SATELLITE LUMINOSITY FUNCTION IN THE SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Quan; Libeskind, N. I. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Tempel, E., E-mail: qguo@aip.de [Tartu Observatory, Observatooriumi 1, 61602 Tõravere (Estonia)

    2015-02-20

    We investigate whether the satellite luminosity function (LF) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spectroscopic sample, and potential satellites (that are up to four magnitudes fainter than their hosts) are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the Bisous process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean satellite LF of both the filament and nonfilament samples and find that, on average, the satellite LF of galaxies in filaments is significantly higher than those of galaxies not in filaments. The filamentary environment can increase the abundance of the brightest satellites (M {sub sat.} < M {sub prim.} + 2.0) by a factor of ∼2 compared with nonfilament isolated galaxies. This result is independent of the primary galaxy magnitude, although the satellite LF of galaxies in the faintest magnitude bin is too noisy to determine if such a dependence exists. Because our filaments are extracted from a spectroscopic flux-limited sample, we consider the possibility that the difference in satellite LF is due to a redshift, color, or environmental bias, finding these to be insufficient to explain our result. The dependence of the satellite LF on the cosmic web suggests that the filamentary environment may have a strong effect on the efficiency of galaxy formation.

  20. On two-generator satellite knots

    OpenAIRE

    Bleiler, Steven A.; Jones, Amelia C.

    1997-01-01

    Techniques are introduced which determine the geometric structure of non-simple two-generator $3$-manifolds from purely algebraic data. As an application, the satellite knots in the $3$-sphere with a two-generator presentation in which at least one generator is represented by a meridian for the knot are classified.