WorldWideScience

Sample records for satellite antennas microstrip

  1. Microstrip Yagi array antenna for mobile satellite vehicle application

    Science.gov (United States)

    Huang, John; Densmore, Arthur C.

    1991-01-01

    A novel antenna structure formed by combining the Yagi-Uda array concept and the microstrip radiator technique is discussed. This antenna, called the microstrip Yagi array, has been developed for the mobile satellite (MSAT) system as a low-profile, low-cost, and mechanically steered medium-gain land-vehicle antenna. With the antenna's active patches (driven elements) and parasitic patches (reflector and director elements) located on the same horizontal plane, the main beam of the array can be tilted, by the effect of mutual coupling, in the elevation direction providing optimal coverage for users in the continental United States. Because the parasitic patches are not connected to any of the lossy RF power distributing circuit the antenna is an efficient radiating system. With the complete monopulse beamforming and power distributing circuits etched on a single thin stripline board underneath the microstrip Yagi array, the overall L-band antenna system has achieved a very low profile for vehicle's rooftop mounting, as well as a low manufacturing cost. Experimental results demonstrate the performance of this antenna.

  2. Microstrip Antenna

    OpenAIRE

    Anuj Mehta

    2015-01-01

    Abstract This article presents an overview of the microstrip patch antenna and its design techniques. Basically a microstrip patch antenna comprises of a trace of copper or any other metal of any geometry on one side of a standard printed circuit board substrate with other side grounded. The antenna is fed using various feeding techniques like coaxial strip line aperture coupling or proximity coupling techniques. The working principle and the radiation mechanism have also been described. The ...

  3. Microstrip antennas in subsurface sensing

    Science.gov (United States)

    Volgyi, Ferenc

    2000-07-01

    This paper reviews the various applications of microstrip antennas with special emphasis on subsurface sensing, microwave moisture measurement and nondestructive testing of dielectric materials. With reference to the literature, we first describe the commonly used GPR-antennas, the printed Vivaldi-antennas, and microstrip antennas used in moisture content measurement. Furthermore, attention is given to the problems of new antenna technologies, showing examples for active integrated antennas, a photonic band gap patch antenna and a silicon micromachined patch antenna. The reminder of the paper summarizes relevant R&D activities in microstrip antennas at BUTE/DMT, focusing on near-field experiments, monitoring of particleboards and WLAN- applications of patch radiators.

  4. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase...

  5. Optimisation of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    H. El Hamchary

    1996-04-01

    Full Text Available When choosing the most appropriate microstrip antenna configuration for particular applications, the kind of excitation of the radiating element is an essential factor that requires careful considerations. For controlling the distribution of energy of the linear or planar array of elements and for coupling energy to the individual elements, a wide variety of feed mechanisms are available. In this paper, the coaxial antenna feeding is assumed and the best (optimised feeding is found. Then, antenna characteristics such as radiation pattern, return loss, input impedance, and VSWR are obtained.

  6. A Microstrip Second-Iteration Square Koch Dipole Antenna for TT&C Downlink Applications in Small Satellites

    Directory of Open Access Journals (Sweden)

    Jorge Simón

    2017-01-01

    Full Text Available A microstrip second-iteration square Koch dipole fractal antenna is presented. This meandered antenna has a total length of 56.56 cm including its feed gap and was printed on the diagonal of a 100 mm × 100 mm PCB card that acts as CubeSat face. The antenna that was designed to optimize space shows acceptable performance at its resonance frequency of 455 MHz within the 70-centimeter band, a band that is commonly used for TTC CubeSat subsystems. The designed fractal antenna shows a reflection coefficient below −20 dB, a VSWR below 1.2, a −10 dB bandwidth of 50 MHz, and impedance magnitude of 56 Ω, while the average maximum gain around its resonance frequency is 2.14 dBi. All these parameters make this designed antenna suitable for small satellite applications at a band where a linear λ/2 dipolar antenna working at 455 MHz would be about 32.97 cm long, which does not fit within the largest dimension of a CubeSat face corresponding to 14.14 cm.

  7. Spiral Microstrip Antenna with Resistance

    Science.gov (United States)

    Shively, David G. (Inventor)

    1998-01-01

    A spiral microstrip antenna having resistor elements embedded in each of the spiral arms is provided. The antenna is constructed using a conductive back plane as a base. The back plane supports a dielectric slab having a thickness between one-sixteenth and one-quarter of an inch. A square spiral, having either two or four arms, is attached to the dielectric slab. Each arm of the spiral has resistor elements thereby dissipating an excess energy not already emitted through radiation. The entire configuration provides a thin, flat, high gain, wide bandwidth antenna which requires no underlying cavity. The configuration allows the antenna to be mounted conformably on an aircraft surface.

  8. Microstrip and printed antenna design

    CERN Document Server

    Bancroft, Randy

    2009-01-01

    The approach in this book is historical and practical. It covers abasic designsa in more detail than other microstrip antenna books that tend to skip important electrical properties and implementation aspects of these types of antennas. Examples include: quarter-wave patch, quarter by quarter patch, detailed design method for rectangular circularly polarized patch, the use of the TM11 (linear and broadside CP), TM21 (monopole CP pattern) and TM02 (monopole linear) circular patch modes in designs, dual-band antenna designs which allow for independent dual-band frequencies. Limits on broadband m

  9. Microstrip antenna on tunable substrate

    Science.gov (United States)

    Jose, K. A.; Varadan, Vijay K.; Varadan, Vasundara V.; Mohanan, P.

    1995-05-01

    The tunable patch antenna configurations are becoming popular and attractive in many aspects. This was mainly due to the advent of ferrite thin film technology and tunable substrate materials. The integration of monolithic microwave circuits and antennas are becoming easy today. In the development of magnetic tuning of microstrip patch on ferrite substrate is presented by Rainville and Harackewiez. Radiation characteristics of such antennas are presented by Pozer. Band width and radiation characteristics of such tunable antennas are measured and compared. Usually the substrate losses are considered in the analysis and metallization losses are assumed to be ideal. The analysis of magnetic tunable radiator including metallization and ferrite substrate losses are presented. However, all such tuning and integration of circuits and antennas are mainly on ferrite substrate due to magnetic tuning. Recently, Varadan et al. established that the BaxSr1-xTiO3 series ferroelectric materials such as Barium Strontium Titanate (BST) are well suited for microwave phase shifter applications. It could be possible to change the dielectric constant of these materials more than 50% depending on the BST composition, by changing the applied bias voltage. Also, the porosity of BST can be controlled during processing to produce dielectric constants in the range of 15 to 1500, with some trade off in tunability. In this paper, we are presenting the possibility of designing a microstrip patch antenna on such tunable substrate. Such antennas are having the major advantage of electronic tunability and compact size.

  10. Some Recent Developments of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2012-01-01

    Full Text Available Although the microstrip antenna has been extensively studied in the past few decades as one of the standard planar antennas, it still has a huge potential for further developments. The paper suggests three areas for further research based on our previous works on microstrip antenna elements and arrays. One is exploring the variety of microstrip antenna topologies to meet the desired requirement such as ultrawide band (UWB, high gain, miniaturization, circular polarization, multipolarized, and so on. Another is to apply microstrip antenna to form composite antenna which is more potent than the individual antenna. The last is growing towards highly integration of antenna/array and feeding network or operating at relatively high frequencies, like sub-millimeter wave or terahertz (THz wave regime, by using the advanced machining techniques. To support our points of view, some examples of antennas developed in our group are presented and discussed.

  11. Microstrip fractal-shaped antennas: a review

    OpenAIRE

    Anguera Pros, Jaume; Borja, C.; Puente Baliarda, Carles

    2007-01-01

    A review of electromagnetic features of microstrip antennas using fractal geometries is presented divided in four main areas: multi-frequency antennas, combination of multi- frequency with broadband techniques, high-directivity patches, and arrays with microstrip elements operating in localized modes Peer Reviewed

  12. WIRELESS ENERGY TRANSFER USING MICROSTRIP ANTENNA

    Directory of Open Access Journals (Sweden)

    Leong Kah Meng

    2014-01-01

    Full Text Available This study presents a concept on wireless energy transmission using microstrip antenna pairs. Microstrip antenna is chosen in its implementation in wireless energy transfer application primarily due to its characteristics: Its ease of analysis, fabrication and their attractive radiation characteristics. The outcome of this research is the fabrication of two microstrip antennas with resonant frequency of 1.94 GHz and 2.5 GHz respectively. The performance and the power gain for each of microstrip antennas which act as the transmitter and receiver respectively were evaluated within certain distance. The limitations of the experiment as well as the possible solutions in increasing system efficiency are being discussed. Experiment shows that the microstrip antenna with a lower resonant frequency performs better in long distance wireless energy transmission.

  13. An analysis technique for microstrip antennas

    Science.gov (United States)

    Agrawal, P. K.; Bailey, M. C.

    1977-01-01

    The paper presents a combined numerical and empirical approach to the analysis of microstrip antennas over a wide range of frequencies. The method involves representing the antenna by a fine wire grid immersed in a dielectric medium and then using Richmond's reaction formulation (1974) to evaluate the piecewise sinusoidal currents on the grid segments. The calculated results are then modified to account for the finite dielectric discontinuity. The method is applied to round and square microstrip antennas.

  14. Coplanar waveguide feed for microstrip patch antennas

    Science.gov (United States)

    Smith, R. L.; Williams, J. T.

    1992-01-01

    A coplanar waveguide (CPW) loop is shown to be an effective low VSWR feed for microstrip antennas. The low VSWR transition between the CPW and the antenna is obtained without the use of a matching circuit, and it is relatively insensitive to the position of the antenna and the feed.

  15. A Microstripe Slotted Patch Antenna Using Amc

    Directory of Open Access Journals (Sweden)

    Manju Saini,

    2014-04-01

    Full Text Available Microstrip patch antenna offer an attractive solution to compact and ease-low-cost design of modern wireless communication system due to their many advantages as light weight and low volume, low profile, planer configuration which can be easily made conformal to low fabrication cost and capability of obtaining dual and triple frequency operations. A microstrip patch antenna with bandwidth enhancement by means of artificial magnetic conductor (AMC/electromagnetic band-gap structure (EBG is studied in this paper. The three different geometry shapes, the U, E and H are developed from rectangular patch. The antennas studied in this paper are simulated using sonnet software and results compared with the conventional rectangular patch antenna. The results obtained clearly shows that , bandwidth of conventional rectangular microstrip antenna can be enhanced has been studied

  16. A COMPACT CIRCULARLY POLARIZED SLOTTED MICROSTRIP ANTENNA

    Directory of Open Access Journals (Sweden)

    V. Jebaraj

    2014-12-01

    Full Text Available Slot antennas are often used at UHF and microwave frequencies. In slot antenna for RFID reader applications the frequency ranges from 902-923MHz to achieve circular polarization. The shapes and size of the slot, as well as the driving frequency, determine the radiation distribution pattern. The proposed compact size circularly polarized slotted microstrip antenna are summarized with design rules. The circularly polarized radiation in square patch antenna can be obtained by perturbation technique with different shapes of slot in the orthogonal direction. A single feed configuration based symmetric slotted microstrip antenna is adapted to realize the compact circularly polarized microstrip antennas. Based on the perimeter, the size of the slot on microstrip slot antenna are studied and compared. The Operating frequency of the antenna is 912MHz that can be tuned by varying the perimeter of the slot while the keeping the circularly polarized radiation unchanged. The schematic and layout are configured by using Advanced Design System (ADS. Return loss, Resonant Frequency, Axial Ratio (AR, and Gain were determined for the proposed system using ADS. A measured 3dB Axial Ratio (AR bandwidth around 6MHz with 16MHz impedance bandwidth has been achieved for the antenna on a RO3004C substrate with dielectric constant 3.38.

  17. Microstrip antenna gain enhancement with metamaterial radome

    Science.gov (United States)

    Attachi, S.; Saleh, C.; Bouzouad, M.

    2017-01-01

    In this work, a high gain patch antenna using multilayer FSS radome is proposed for millimeter-wave applications. The antenna operating frequency is 43.5 GHz. The antenna/radome system consists of one, two, three, or four layers of metasurfaces placed in the near-field region of a microstrip patch antenna. The antenna/radome system gain is improved by 9 dBi compared to the patch antenna alone, and the radiation pattern half-power beamwidth is reduces to 20° in both E- and H-planes.

  18. U-Slotted Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    Yogesh Bhomia

    2013-05-01

    Full Text Available A new U–slotted microstrip antenna is proposed. A patch antenna is a narrowband, wide-beam antenna These antennas are low profile, conformal to planar and non-planar surface, simple and inexpensive to manufacture using modern printed circuit technology, mechanically robust when mounted on rigid surface, compatible with MMIC designs and when the particular shape and mode are selected they are very versatile in terms of resonant frequency, polarization, field pattern and impedance. Microstrip antenna consist of a very thin metallic strip (patch placed a small fraction of a wavelength above a ground plane. The patch is generally made of conducting material such as copper or gold and can take any possible shape. This paper presents a design of U - slotted microstrip patch antenna and experimentally studied on IE3D software. This design is achieved by cutting U shape in a patch. With U - slotted shapes patch antenna is designed on a FR4 substrate of thickness 1.524 mm and relative permittivity of 4.4 and mounted above the ground plane at a height of 6 mm. Bandwidth as high as 39% are achieved with stable pattern characteristics, such as gain and cross polarization, within its bandwidth. Impedance bandwidth, antenna gain and return loss are observed for the proposed antenna. Details of the measured and simulated results are presented and discussed

  19. Design of A Pentagon Microstrip Antenna for Radar Altimeter Application

    Directory of Open Access Journals (Sweden)

    K. RamaDevi

    2012-11-01

    Full Text Available In the navigational applications, radar and satellite requires a device that is a radar altimeter. Theworking frequency of this system is 4.2 to 4.3GHz and also requires less weight, low profile, and high gainantennas. The above mentioned application is possible with microstrip antenna as also known as planarantenna. In this paper, the microstrip antennas are designed at 4.3GHz (C-band in rectangular andcircular shape patch antennas in single element and arrays with parasitic elements placed in H-planecoupling. The performance of all these shapes is analyzed in terms of radiation pattern, half power points,and gain and impedance bandwidth in MATLAB. This work extended here with designed in different shapeslike Rhombic, Pentagon, Octagon and Edges-12 etc. Further these parameters are simulated in ANSOFTHFSSTMV9.0 simulator.

  20. Impedance properties of circular microstrip antenna

    Science.gov (United States)

    Deshpande, M. D.; Bailey, M. C.

    1983-01-01

    A moment method solution to the input impedance of a circular microstrip antenna excited by either a microstrip feed or a coaxial probe is presented. Using the exact dyadic Green's function and the Fourier transform the problem is formulated in terms of Richmond's reaction integral equation from which the unknown patch current can be solved for. The patch current is expanded in terms of regular surface patch modes and an attachment mode (for probe excited case) which insures continuity of the current at probe/patch junction, proper polarization and p-dependance of patch current in the vicinity of the probe. The input impedance of a circular microstrip antenna is computed and compared with earlier results. Effect of attachment mode on the input impedance is also discussed.

  1. Passive and active reconfigurable microstrip reflectarray antennas

    NARCIS (Netherlands)

    Hajian, M.

    2008-01-01

    Novel solutions for conceiving microstrip reflectarray antennas (MRA) using various types of patches are presented in this PhD thesis. The approach is based on the integration of a varactor diode active device into elementary hollow patch radiators. In the first part of the thesis, a new concept for

  2. Metamaterial Embedded Wearable Rectangular Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    J. G. Joshi

    2012-01-01

    Full Text Available This paper presents an indigenous low-cost metamaterial embedded wearable rectangular microstrip patch antenna using polyester substrate for IEEE 802.11a WLAN applications. The proposed antenna resonates at 5.10 GHz with a bandwidth and gain of 97 MHz and 4.92 dBi, respectively. The electrical size of this antenna is 0.254λ×0.5λ. The slots are cut in rectangular patch to reduce the bending effect. This leads to mismatch the impedance at WLAN frequency band; hence, a metamaterial square SRR is embedded inside the slot. A prototype antenna has been fabricated and tested, and the measured results are presented in this paper. The simulated and measured results of the proposed antenna are found to be in good agreement. The bending effect on the performance of this antenna is experimentally verified.

  3. Dual-Frequency Operation of Bow-Tie Microstrip Antenna

    Institute of Scientific and Technical Information of China (English)

    钟顺时; 张需溥

    2005-01-01

    Characteristics of a single-feed dual-frequency bow-tie microstrip antenna are studied. By using the variation method, simple formulas for resonant frequencies of the bow-tie microstrip antenna are derived. It is shown that the dual-frequency ratio can be controlled easily by choosing the parameters of the antenna. This design gives compact antenna size and simple antenna structure. Experimental results are presented, verifying the validity of the design.

  4. Improved Gain Microstrip Patch Antenna

    Science.gov (United States)

    2015-08-06

    same as one half wavelength, λ, of a design frequency for reception or transmission by the antenna 10. Patch 16 can be joined to a coaxial feed 18. A...expressed in the appended claims. [0024] The foregoing description of the preferred embodiments of the invention has been presented for purposes of

  5. Novel method for planar microstrip antenna matching impedance

    CERN Document Server

    Ali, Mahdi; Samet, Mounir

    2010-01-01

    Because all microstrip antennas have to be matched to the standard generator impedance or load, the input impedance matching method for antenna is particularly important. In this paper a new methodology in achieving matching impedance of a planar microstrip antenna for wireless application is described. The method is based on embedding an Interdigital capacitor. The fine results obtained by using a microstrip Interdigital capacitor for matching antenna impedance led to an efficient method to improve array antenna performance. In fact, a substantial saving on the whole surfaces as well as enhancement of the gain, the directivity and the power radiated was achieved.

  6. A DOUBLE E SHAPED MICROSTRIP PATCH ANTENNA FOR MULTIBAND APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Pristin K Mathew

    2014-06-01

    Full Text Available This paper presents a dual band Compact double E shaped Microstrip Patch antenna with enhanced gain for Worldwide Interoperability for Microwave Access (WI-MAX, Universal Mobile Telecommunication Systems (UMTS and Satellite applications. The modified E shaped patch antenna is designed using CADFEKO and the results of return loss, Voltage Standing Wave Ratio (VSWR, gain of the proposed antenna are compared with a conventional E shaped patch antenna. The results show that the double E shaped wideband patch antenna has an impedance bandwidth of 10.7 % with a return loss of -13.6dB, -12.4 dB, -12.1dB and -14.2dB at resonant frequencies of 1.96 GHz, 3.62 GHz, 5.76 GHz and 6.82 GHz, whereas a conventional E shaped patch antenna operates at 2.5 GHz, 3.4 GHz and 5.5 GHz with a return loss of -16 dB each and impedance bandwidth of 10.6 %. Both the antennas uses Coaxial Probe feeding technique and Flame Retardant 4 (FR-4 as the substrate material with a thickness of 2.87 mm. A parametric study has been done so as to understand the effect of each parameter to obtain a better performance and optimised results.

  7. Circular Microstrip Antenna with Fractal Slots for Multiband Applications

    Science.gov (United States)

    Singh, Sivia Jagtar; Singh, Gurpreet; Bharti, Gurpreet

    2017-05-01

    In this paper, a multiband, fractal, slotted, Circular Microstrip Patch Antenna for GSM, WiMAX, C and X bands (satellite communication applications) is presented. A cantor set theory is used to make fractal slots for obtaining the desired multiband. The projected antenna is simulated using Ansys HFSS v13.0 software. Simulation test of this antenna has been carried out for a frequency range of 1 GHz-10 GHz and a peak gain of 9.19 dB at a resonance frequency of 1.9 GHz is obtained. The antenna also resonates at 3.7 GHz, 6.06 GHz and 7.9 GHz with gains of 3.04 dB, 5.19 dB and 5.39 dB respectively. Parameters like voltage standing wave ratio, return loss, and gain are used to compare the results of the projected antenna with conventional CMPA's of same dimensions with full and defective grounds. The projected antenna is fabricated on a glass epoxy material and is tested using Vector Network Analyzer. The performance parameters of the antenna are found to in good agreement with each both using simulated and measured data.

  8. Microstrip Yagi Antenna with Dual Aperture-Coupled Feed

    Science.gov (United States)

    Pogorzelski, Ronald; Venkatesan, Jaikrishna

    2008-01-01

    A proposed microstrip Yagi antenna would operate at a frequency of 8.4 GHz (which is in the X band) and would feature a mechanically simpler, more elegant design, relative to a prior L-band microstrip Yagi antenna. In general, the purpose of designing a microstrip Yagi antenna is to combine features of a Yagi antenna with those of a microstrip patch to obtain an antenna that can be manufactured at low cost, has a low profile, and radiates a directive beam that, as plotted on an elevation plane perpendicular to the antenna plane, appears tilted away from the broadside. Such antennas are suitable for flush mounting on surfaces of diverse objects, including spacecraft, aircraft, land vehicles, and computers. Stated somewhat more precisely, what has been proposed is a microstrip antenna comprising an array of three Yagi elements. Each element would include four microstrip-patch Yagi subelements: one reflector patch, one driven patch, and two director patches. To obtain circular polarization, each driven patch would be fed by use of a dual offset aperture-coupled feed featuring bow-tie-shaped apertures. The selection of the dual offset bow-tie aperture geometry is supported by results found in published literature that show that this geometry would enable matching of the impedances of the driven patches to the 50-Omega impedance of the microstrip feedline while maintaining a desirably large front-to-back lobe ratio.

  9. Bandwidth Improvement of UWB Microstrip Antenna Using Finite Ground Plane

    Directory of Open Access Journals (Sweden)

    Priyanka Mishra

    2015-06-01

    Full Text Available Microstrip antennas play a vital role in communication system. It is required in high performance wireless applications. But due to its resonant nature microstrip antennas have some considerable drawbacks like narrowband performance. Extensive study has been carried out on microstrip patch antennas in the recent past, but it still have large scope for improvement in the near future. To overcome narrow bandwidth problem, number of methods and techniques have been suggested and investigated, keeping in mind that the basic advantages of microstrip antenna should not be altered such as low profile, light weight, low cost and simple printed circuit structure. The area of investigation includes modification in geometrical shape of the antenna, use of resonators, use of dipole, and many other parameters. This paper presents a comparison between conventional microstrip antenna and microstip antenna with finite ground plane at ultra wideband. HFSS simulation tool is used here for antenna simulation. For feeding purpose microstrip feed line is used (50Ω. Optimized result provides impedance bandwidth of 7.2GHz with VSWR<2, operating frequency range is from 6.5GHz to 13.7GHz. Proposed antenna is useful for many ultra wideband applications.

  10. The analysis of reactively loaded microstrip antennas by finite difference time domain modelling

    Science.gov (United States)

    Hilton, G. S.; Beach, M. A.; Railton, C. J.

    1990-01-01

    In recent years, much interest has been shown in the use of printed circuit antennas in mobile satellite and communications terminals at microwave frequencies. Although such antennas have many advantages in weight and profile size over more conventional reflector/horn configurations, they do, however, suffer from an inherently narrow bandwidth. A way of optimizing the bandwidth of such antennas by an electronic tuning technique using a loaded probe mounted within the antenna structure is examined, and the resulting far-field radiation patterns are shown. Simulation results from a 2D finite difference time domain (FDTD) model for a rectangular microstrip antenna loaded with shorting pins are given and compared to results obtained with an actual antenna. It is hoped that this work will result in a design package for the analysis of microstrip patch antenna elements.

  11. Analysis of a microstrip reflectarray antenna for microspacecraft applications

    Science.gov (United States)

    Huang, J.

    1995-01-01

    A microstrip reflectarray is a flat reflector antenna that can be mounted conformally onto a spacecraft's outside structure without consuming a significant amount of spacecraft volume and mass. For large apertures (2 m or larger), the antenna's reflecting surface, being flat, can be more easily and reliably deployed than a curved parabolic reflector. This article presents the study results on a microstrip reflect-array with circular polarization. Its efficiency and bandwidth characteristics are analyzed. Numerous advantages of this antenna system are discussed. Three new concepts using this microstrip reflectarray are also proposed.

  12. Designing of Circular and Square Type Fractal Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    Dr. Yogesh Bhomia

    2014-09-01

    Full Text Available This paper presents a design of microstrip patch antenna combining circular and square slots by cutting different slots on rectangular microstrip antenna and experimentally studied on IE3D software. This design is achieved by cutting multi shapes in square pattern combining with circular and square slots & placing a microstrip line feed. This design has been studied in III iterations. The radiation pattern of the proposed microstrip antennas maintained because of the self similarity and centro-symmetry of the fractal shapes. With fractal shapes patch antenna is designed on a FR4 substrate of relative permittivity of 4.4 and thickness 1.524mm and mounted above the ground plane at a height of 6 mm. Details of the measured and simulated results of the case-by-case iterations are presented & discussed

  13. Land vehicle antennas for satellite mobile communications

    Science.gov (United States)

    Haddad, H. A.; Pieper, B. V.; Mckenna, D. B.

    1985-01-01

    The RF performance, size, pointing system, and cost were investigated concepts are: for a mechanically steered 1 x 4 tilted microstrip array, a mechanically steered fixed-beam conformal array, and an electronically steered conformal phased array. Emphasis is on the RF performance of the tilted 1 x 4 antenna array and methods for pointing the various antennas studied to a geosynchronous satellite. An updated version of satellite isolations in a two-satellite system is presented. Cost estimates for the antennas in quantities of 10,000 and 100,000 unites are summarized.

  14. RHOMBUS SHAPED RECONFIGURABLE MICROSTRIP ANTENNA FOR CDMA WIRELESS APPLICATIONS

    Directory of Open Access Journals (Sweden)

    K. Madhusudhana

    2015-12-01

    Full Text Available Rhombus Shaped Reconfigurable microstrip antenna is designed to operate at 1.74GHz. The proposed antenna is a Rhombus shaped microstrip antenna which gives a good size reduction with good impedance bandwidth in terms of with and without capacitor. The Designed antenna is expected to reduction in size and increase in Bandwidth. The Simulation is carried out by using IE3D software and practical results are measured by Vector Network analyzer. Comparative analysis has made between with and without capacitor as a lumped element. The size reduction of Rhombus shaped Reconfigurable microstrip antenna with capacitor gives best possible size reduction of 75.95% with overall bandwidth 86MHz. Acceptable agreement is obtained between the simulated and measured antenna performance parameter.

  15. Design on X-band Wideband and High-gain Multi-layer Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Soufian LAKRIT

    2014-07-01

    Full Text Available In this paper, a wide-band and high-gain microstrip antenna with mullti-layer microstrip patch and an aperture-coupled feeding is proposed. The antenna has a condensed structure where the dimension is about 8.5mm by 7.5mm by 4.662mm leading to good bandwidths covering 8.05 GHz to 12.01 GHz (39.48%, and the gain is up to 5.23dB. The low expenses of this profile and its simple configuration allows for an its easy fabrication, with appropriation with wireless and satellite communication.

  16. Design on X-band Wideband and High-gain Multi-layer Microstrip Antenna

    OpenAIRE

    Soufian LAKRIT; Hassan AMMOR

    2014-01-01

    In this paper, a wide-band and high-gain microstrip antenna with mullti-layer microstrip patch and an aperture-coupled feeding is proposed. The antenna has a condensed structure where the dimension is about 8.5mm by 7.5mm by 4.662mm leading to good bandwidths covering 8.05 GHz to 12.01 GHz (39.48%), and the gain is up to 5.23dB. The low expenses of this profile and its simple configuration allows for an its easy fabrication, with appropriation with wireless and satellite communica...

  17. Microstrip Array Antenna with 16 Patches for UHF Band Television Signal Reception

    Directory of Open Access Journals (Sweden)

    Yulindon Yulindon

    2013-01-01

    Full Text Available There are 2 commonly known equipment for the reception of television broadcasts i.e. using a parabolic antenna connected to satellite receiver and a wire or pipe antenna that directly connected to the television receiver. Receiving the signal by means of a parabolic antenna is more expensive because it requires additional tools , namely satellite receivers, so generally the people like to choose the easier way by direct receiving the signal using wire antenna. The antenna construction which made of aluminum pipes has a weakness easily bent or broken on the assembling phase as well as when there are high winds causing the antenna mast collapsed, confirmed that the antenna is bent, loose or broken elements. The paper relates to a microstrip antenna for reception of television signals using material printed circuit boards or printed circuit board (PCB which is a thin but strong in the form of a number of patches array separated in a certain distance.

  18. Computational Investigation of Microstrip Antennas in Plasma Environment

    CERN Document Server

    Vyas, Hardik; Gupta, Sanjeev

    2016-01-01

    Microstrip antennas are extensively used in spacecraft systems and other applications where they encounter a plasma environment. A detailed computational investigation of change in antenna radiation properties in the presence of plasma has been presented in this paper. The study shows antenna properties such as the resonant frequency, return loss, radiation properties and the different characteristics of the antenna changes when it is surrounded by plasma. Particular focus of the work is to understand the causes behind these changes by correlating the complex propagation constant in the plasma medium, field distribution on the patch and effective dielectric of the antenna substrate with antenna parameter variations. The study also provides important insights to explore the possibilities of designing tunable microstrip antenna where the substrate can be replaced with plasma and important antenna characteristics can be controlled by varying the plasma density.

  19. Microstrip Yagi array for MSAT vehicle antenna application

    Science.gov (United States)

    Huang, John; Densmore, Arthur; Pozar, David

    1990-01-01

    A microstrip Yagi array was developed for the MSAT system as a low-cost mechanically steered medium-gain vehicle antenna. Because its parasitic reflector and director patches are not connected to any of the RF power distributing circuit, while still contributing to achieve the MSAT required directional beam, the antenna becomes a very efficient radiating system. With the complete monopulse beamforming circuit etched on a thin stripline board, the planar microstrip Yagi array is capable of achieving a very low profile. A theoretical model using the Method of Moments was developed to facilitate the ease of design and understanding of this antenna.

  20. Performance of NBPE in Rectangular Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    Tushar

    2014-02-01

    Full Text Available In this paper we use a rectangular microstrip patch antenna with fed patch contains four notches of equal Length and width (L×W and having one parasitic patch, to achieve dual band operation of proposed microstrip patch antenna, is analyzed using circuit theory concept. The theoretical and simulated results of proposed antenna are compared. The return loss of NBPE using rectangular microstrip patch antenna decreased and bandwidth at dual operating frequency 1.44 GHz & 1.80 GHz are increased at a substrate height of 1.6 mm. This paper shows the decreased in return loss & improves in Gain as well as bandwidth using NBPE. These structures are simulated using IE3D version 12.29 Zeland software incorporation.

  1. SIERPIENSKI & CROWN SQUARE FRACTAL SHAPES SLOTTED MICROSTRIP PATCH ANTENNA

    Directory of Open Access Journals (Sweden)

    Dr. Yogesh Bhomia

    2014-01-01

    Full Text Available A new Sierpienski & Crown Square Fractal Shapes Slotted Microstrip Patch Antenna is proposed. A patch antenna is a narrowband, wide-beam antenna. These antennas are low profile, conformal to planar and non-planar surface, simple and inexpensive to manufacture using modern printed circuit technology, mechanically robust when mounted on rigid surface, compatible with MMIC designs and when the particular shape and mode are selected they are very versatile in terms of resonant frequency, polarization, field pattern and impedance. Microstrip patch antenna consist of a very thin metallic strip (patch placed a small fraction of a wavelength above a ground plane. The patch is generally made of conducting material such as copper or gold and can take any possible shape. This paper presents a design of Sierpienski & Crown Square Fractal Shapes Slotted Microstrip Patch Antenna and experimentally studied on IE3D software. This design is achieved by cutting Sierpienski & Crown Square Fractal Shapes Slottes in a patch. With Sierpienski & Crown Square Fractal Shapes patch antenna is designed on a FR4 substrate of thickness 1.524 mm and relative permittivity of 4.4 and mounted above the ground plane at a height of 6 mm. Bandwidth as high as 36.6% are achieved with stable pattern characteristics, such as gain and cross polarization, within its bandwidth. Impedance bandwidth, antenna gain and return loss are observed for the proposed antenna. Details of the measured and simulated results are presented and discussed.

  2. 基于通信卫星的非对称圆环毫米波微带天线%Asymmetric ring millimeter-wave microstrip antenna based on communications satellite

    Institute of Scientific and Technical Information of China (English)

    张宁; 张霞

    2013-01-01

    针对毫米波微带天线的特点,设计了一种可用于通信卫星的天线.该天线在辐射贴片的顶部开了个渐变的缝隙并在天线体上方放置矩形槽形成耦合,从而达到展宽天线带宽的效果,在天线单元的基础上分析了该天线的阵列形式.采用基于时域有限积分算法的CST三维电磁仿真软件对该设计进行仿真,分析结果表明在设计的工作频带范围内,该天线具有较好的带宽范围和较高的增益,且结构小巧简单,具有较高实用价值.%An antenna for communications satellites based on characteristics of millimeter wave microstrip antenna is researched.To broadening the bandwidth,the antenna opened a gradient in the gap at the top of the radiation patch and at the top of the antenna body placed rectangular groove where is formed coupling.Analysis on the basis of the antenna elements,the antenna array have achieved.Simulation of the design using 3D electromagnetic simulation software CST which is used on time domain finite integration algorithm,the analysis results show that in the design of the work within the frequency range the antenna having a better bandwidth range,high directional gain,simple structure and easy to be fabricated in the design band.

  3. MUTUAL COUPLING REDUCTION BETWEEN MICROSTRIP ANTENNAS USING ELECTROMAGNETIC BANDGAP STRUCTURE

    Directory of Open Access Journals (Sweden)

    G.N. Gaikwad

    2011-03-01

    Full Text Available When the number of antenna elements is placed in forming the arrays, mutual coupling between the antenna elements is a critical issue. This is particularly concern in phase array antennas. Mutual coupling is a potential source of performance degradation in the form of deviation of the radiation pattern from the desired one, gain reduction due to excitation of surface wave, increased side lobe levels etc. EBG (Electromagnetic Band Gap structure (also called as Photonic Bandgap Structure PBG not only enhances the performance of the patch antennas but also provides greater amount of isolation when placed between the microstrip arrays. This greatly reduces the mutual coupling between the antenna elements. The radiation efficiency, gain, antenna efficiency, VSWR, frequency, directivity etc greatly improves over the conventional patch antennas using EBG. The EBG structure and normal patch antenna is simulated using IE3D antenna simulation software.

  4. Effect of different substrates on Compact stacked square Microstrip Antenna

    CERN Document Server

    De, Asok; Malhotra, Sagar; Arora, Pushkar; Bazaz, Rishik

    2010-01-01

    Selection of the most suitable substrate for a Microstrip antenna is a matter of prime importance. This is because many limitations of the microstrip antenna such as high return loss, low gain and low efficiency can be overcome by selecting an appropriate substrate for fabrication of the antenna, without shifting the resonant frequency significantly. The substate properties such as its dielectric constant, loss tangent have a pronounced effect on the antenna characteristics. Some of the critical properties that are to be taken care of while selecting a dielectric are homogeneity, moisture absorption and adhesion of metal- foil cladding. In this paper a comprehensive study of the effect of variation of substrate material on the antenna properties has been presented.

  5. Microstrip antenna for polarimetric C-band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Woelders, Kim; Dich, Mikael

    1994-01-01

    The paper outlines the design and the measured performance of a 224-element dual-linearly polarized microstrip array antenna with low cross-polarization. The array is currently being flown on the Danish high-resolution polarimetric C-band synthetic aperture radar (SAR)......The paper outlines the design and the measured performance of a 224-element dual-linearly polarized microstrip array antenna with low cross-polarization. The array is currently being flown on the Danish high-resolution polarimetric C-band synthetic aperture radar (SAR)...

  6. Design of Multilevel Sequential Rotation Feeding Networks Used for Circularly Polarized Microstrip Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Aixin Chen

    2012-01-01

    Full Text Available Sequential rotation feeding networks can significantly improve performance of the circularly polarized microstrip antenna array. In this paper, single, double, and multiple series-parallel sequential rotation feeding networks are examined. Compared with conventional parallel feeding structures, these multilevel feeding techniques present reduction of loss, increase of bandwidth, and improvement of radiation pattern and polarization purity. By using corner-truncated square patch as the array element and adopting appropriate level of sequential rotation series-parallel feeding structures as feeding networks, microstrip arrays can generate excellent circular polarization (CP over a relatively wide frequency band. They can find wide applications in phased array radar and satellite communication systems.

  7. Improvement of a Circular Microstrip Antenna Excited by Four Feeds and Suspended with Artificial Magnetic Conductors

    Directory of Open Access Journals (Sweden)

    Sanchai Eardprab

    2013-01-01

    Full Text Available The proposed antenna is a circular microstrip structure excited by four feeds and suspended with artificial magnetic conductors (AMCs. The multifeed circular microstrip antennas can generate a high circularly polarized performance by using a different feed arrangement. AMC structures with a square, circular, or octagonal patch on a unit cell are designed and applied to circular microstrip patch antennas for the enhancement of antenna performance. It is found that simulated results of the proposed antenna are well suited. The properties of wide beamwidth with good axial ratio can be achieved when applying the proposed AMC structures to circular microstrip antennas. The antenna prototype was fabricated to validate simulated results.

  8. Galileo satellite antenna modeling

    Science.gov (United States)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  9. High Efficiency and Broadband Microstrip Leaky-Wave Antenna

    Directory of Open Access Journals (Sweden)

    Onofrio Losito

    2008-01-01

    Full Text Available A novel layout of leaky-wave antennas based on tapered design has been proposed and investigated. The new tapered leaky-wave antenna (LWA was designed running a simple procedure which uses an FDTD code, and using a suitable metal walls down the centerline along the length of the antenna connecting the conductor strip and the ground plane, which allows to use only half of the structure, the adoption of a simple feeding, and the reduction of sidelobes. The good performance of this new tapered microstrip LWA, with reference to conventional uniform microstrip LWAs, is mainly the wider band of 33% for VSWR <2, higher gain (12 dBi, and higher efficiency (up to 85%. Furthermore, from the theoretical analysis we can see that, decreasing the relative dielectric constant of the substrate, the bandwidth of the leaky-wave antenna becomes much wider, improving its performance.

  10. MULTILAYER MICROSTRIP ANTENNA QUALITY FACTOR OPTIMIZATION FOR BANDWIDTH ENHANCEMENT

    Directory of Open Access Journals (Sweden)

    M.C. SRIVASTAVA

    2012-12-01

    Full Text Available The impedance bandwidth, one of the important characteristics of microstrip patch antennas, can be significantly improved by using a multilayer dielectric configuration. In this paper the focus is on bandwidth enhancement technique of a multilayer patch antenna for X-band applications. In order to enhance the bandwidth, antenna losses are contained by controlling those quality factors which can have a significant impact on the bandwidth for a given permittivity and thickness of the substrate. This has been achieved by conformal transformation of the multidielectric microstrip antenna. For the ease of analysis Wheelers transformation is used to map the complex permittivity of a multilayer substrate to a single layer. Method of Moments and Finite Difference Time Domain approaches are used for the computation of results.

  11. Extended analysis of closed-ring microstrip antenna

    Science.gov (United States)

    Sultan, M. A.

    1989-02-01

    Gauss' hypergeometric function and Euler's transformation are employed to analyze the radiation characteristics of a closed-ring microstrip antenna. The method takes into account ohmic and dielectric losses, and it is used to determine relations between efficiency and bandwidth. It is found that at higher frequencies, narrower ring structures can have small Q-factors, high gain, and large bandwidth.

  12. Wideband E-Shaped Microstrip Antenna for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    G. Elangovan

    2012-01-01

    Full Text Available Problem statement: Wireless Sensor Networks (WSN is currently receiving significant attention due to their unlimited potential. However, it is still very early in the lifetime of such systems and many research challenges exist, out of which one of the challenges is sensor processing and fusion under limited capacities, the most important component in sensor is its TX/RX antenna. Approach: For high-speed wireless local area networks and other wireless communication systems covering the 5.33-5.71 GHz frequency band. In this frequency band microstrip antennas have attracted with its low-profile in nature. In this study, microstrip antenna is proposed to meet the challenges, which combines the advantages of compactness with the low cost and low profile of a patch antenna. Results: The key parameters governing the antenna optimization have been determined with the help of High Frequency Simulation Software (HFSS. As a consequence, 5.5GHz microstrip antenna with size 22×16×3.2 mm has been realized on duroid with 2.2. Conclusion: This combination of performance metrics is highly desirable for autonomous distributed sensor network applications where a small sensor node volume and excellent power efficiency are required.

  13. Dual-Band Microstrip Patch Antenna Miniaturization Using Metamaterial

    Directory of Open Access Journals (Sweden)

    Indrasen Singh

    2013-01-01

    Full Text Available A dual-band microstrip patch antenna is designed and analyzed using metamaterial artificial substrate. Metamaterial based substrate is designed using Square Split Ring Resonator (SSRR and Wire Strip. The antenna is tuned to work at two resonating frequencies in the frequency range from 1 GHz to 4 GHz depending on the geometric specifications of SSRR, strip line, radiating patch, and feed location point. Proposed antenna provides good return loss behavior at both resonating frequencies. The obtained VSWR at both resonating frequencies is very much near to 1. Proposed antenna covers applications in mobile communication and Wi-MAX. Proposed patch antenna is compared with the conventional patch antenna, which shows the significant miniaturization as compared to conventional patch antenna.

  14. Pentagonal shaped microstrip patch antenna in wireless capsule endoscopy system

    Directory of Open Access Journals (Sweden)

    Bondili Kohitha Bai

    2012-01-01

    Full Text Available Wireless capsule endoscopy is a best option for exploring inaccessible areas of small intestine for inspection of gastrointestinal tract. This technique brings less pain compare to conventional endoscopy technique. The wireless endoscopy system comprises of three main modules: an ingestible capsule that is swallowed by the patient, an external control unit and display device for image display. In this paper we proposed pentagonal shape microstrip patch antenna for wireless capsule endoscopy system. Inhibiting characteristics of a single microstrip patch like low gain, light weight, thin thickness and smaller bandwidth, make it more popular. This kind of antenna is aggressive miniaturized to meet the requirements of the wireless capsule endoscope. The simulation results show that the designed Circular Polarization (CP pentagonal shaped microstrip patch antenna gives axial ratio of 0.6023 at 2.38 GHz and CP axial ratio bandwidth of 36MHz with 1.5%. The antenna designed for wireless capsule endoscopy is a proposed one, which may work effectively when compared to other antennas in the capsule.

  15. Satellite communication antenna technology

    Science.gov (United States)

    Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)

    1983-01-01

    A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.

  16. Front-Side Microstrip Line Feeding a Raised Antenna Patch

    Science.gov (United States)

    Hodges, Richard; Hoppe, Daniel

    2005-01-01

    An improved design concept for a printed-circuit patch antenna and the transmission line that feeds the patch calls for (1) a microstrip transmission line on the front (radiative) side of a printed-circuit board based on a thin, high-permittivity dielectric substrate; (2) using the conductor covering the back side of the circuit board as a common ground plane for both the microstrip line and the antenna patch; (3) supporting the antenna patch in front of the circuit board on a much thicker, lower-permittivity dielectric spacer layer; and (4) connecting the microstrip transmission line to the patch by use of a thin wire or narrow ribbon that extends through the thickness of the spacer and is oriented perpendicularly to the circuit-board plane. The thickness of the substrate is typically chosen so that a microstrip transmission line of practical width has an impedance between 50 and 100 ohms. The advantages of this design concept are best understood in the context of the disadvantages of prior design concepts, as explained

  17. Frequency selective surfaces based high performance microstrip antenna

    CERN Document Server

    Narayan, Shiv; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on performance enhancement of printed antennas using frequency selective surfaces (FSS) technology. The growing demand of stealth technology in strategic areas requires high-performance low-RCS (radar cross section) antennas. Such requirements may be accomplished by incorporating FSS into the antenna structure either in its ground plane or as the superstrate, due to the filter characteristics of FSS structure. In view of this, a novel approach based on FSS technology is presented in this book to enhance the performance of printed antennas including out-of-band structural RCS reduction. In this endeavor, the EM design of microstrip patch antennas (MPA) loaded with FSS-based (i) high impedance surface (HIS) ground plane, and (ii) the superstrates are discussed in detail. The EM analysis of proposed FSS-based antenna structures have been carried out using transmission line analogy, in combination with the reciprocity theorem. Further, various types of novel FSS structures are considered in desi...

  18. Analysis of Circular Polarization of Cylindrically Bent Microstrip Antennas

    Directory of Open Access Journals (Sweden)

    Tiiti Kellomäki

    2012-01-01

    Full Text Available When circularly polarized (CP microstrip antennas are bent, the polarization becomes elliptical. We present a simple model that describes the phenomenon. The two linear modes present in a CP patch are modeled separately and added together to produce CP. Bending distorts the almost-spherical equiphase surface of a linearly polarized patch, which leads to phase imbalance in the far-field of a CP patch. The model predicts both the frequency shifting of the axial ratio band as well as the narrowing of the axial ratio beam. Uncontrolled bending is a problem associated especially with flexible textile antennas, and wearable antennas should therefore be designed somewhat conformal.

  19. Design Analysis of An Electromagnetic Band Gap Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    M. S. Alam

    2011-01-01

    Full Text Available Problem statement: Wideband compact antenna is highly demandable due to the dynamic development in the wireless technology. Approach: A simple, compact EBG microstrip antenna is proposed in this study that covers a wideband of 250 GHz and the design is conformal with the 2.45 GHz ISM band (WLAN, IEEE 802.11b and g/Bluetooth/RFID applications. Results: A 6×6 array of square unit cell formed the EBG structure which is incorporated with the radiating patch to enhance the antenna performances. This design achieved an impedance bandwidth of 10.14% (2.34-2.59 GHz at -10 dB return loss and VSWR ≤ 2. Simulated radiation pattern is almost omnideirectional. Conclusion/Recommendations: The simulated results prove the compatibility of the EBG antenna with the 2.45 GHz ISM band applications. Further enhancement of the antenna performance with improved design is under consideration.

  20. Input impedance and mutual coupling of rectangular microstrip antennas

    Science.gov (United States)

    Pozar, D. M.

    1982-01-01

    A moment method solution to the problem of input impedance and mutual coupling of rectangular microstrip antenna elements is presented. The formulation uses the grounded dielectric slab Green's function to account rigorously for the presence of the substrate and surface waves. Both entire basis (EB) and piecewise sinusoidal (PWS) expansion modes are used, and their relative advantages are noted. Calculations of input impedance and mutual coupling are compared with measured data and other calculations.

  1. SIMPLE MODEL FOR THE INPUT IMPEDANCE OF RECTANGULAR MICROSTRIP ANTENNA

    Directory of Open Access Journals (Sweden)

    Celal YILDIZ

    1998-03-01

    Full Text Available A very simple model for the input impedance of a coax-fed rectangular microstrip patch antenna is presented. It is based on the cavity model and the equivalent resonant circuits. The theoretical input impedance results obtained from this model are in good agreement with the experimental results available in the literature. This model is well suited for computer-aided design (CAD.

  2. Optimization of Circular Ring Microstrip Antenna Using Genetic Algorithm

    Science.gov (United States)

    Sathi, V.; Ghobadi, Ch.; Nourinia, J.

    2008-10-01

    Circular ring microstrip antennas have several interesting properties that make it attractive in wireless applications. Although several analysis techniques such as cavity model, generalized transmission line model, Fourier-Hankel transform domain and the method of matched asymptotic expansion have been studied by researchers, there is no efficient design tool that has been incorporated with a suitable optimization algorithm. In this paper, the cavity model analysis along with the genetic optimization algorithm is presented for the design of circular ring microstrip antennas. The method studied here is based on the well-known cavity model and the optimization of the dimensions and feed point location of the circular ring antenna is performed via the genetic optimization algorithm, to achieve an acceptable antenna operation around a desired resonance frequency. The antennas designed by this efficient design procedure were realized experimentally, and the results are compared. In addition, these results are also compared to the results obtained by the commercial electromagnetic simulation tool, the FEM based software, HFSS by ANSOFT.

  3. Metamaterial Inspired Microstrip Antenna Investigations Using Metascreens

    Directory of Open Access Journals (Sweden)

    Muhammad Tauseef Asim

    2015-01-01

    Full Text Available A dual layer periodically patterned metamaterial inspired antenna on a low cost FR4 substrate is designed, simulated, fabricated, and tested. The eigenmode dispersion simulations are performed indicating the left handed metamaterial characteristics and are tunable with substrate permittivity. The same metamaterial unit cell structure is utilized to fabricate a metascreen. This metascreen is applied below the proposed metamaterial antenna and next used as superstrate above a simple patch to study the effects on impedance bandwidth, gain, and radiation patterns. The experimental results of these antennas are very good and closely match with the simulations. More importantly, the resonance for the proposed metamaterial antenna with metascreen occurs at the left handed (LH eigenfrequency of the metamaterial unit cell structure. The measured −10 dB bandwidths are 14.56% and 22.86% for the metamaterial antenna with single and double metascreens, respectively. The metascreens over the simple patch show adjacent dual band response. The first and second bands have measured −10 dB bandwidths of 9.6% and 16.66%. The simulated peak gain and radiation efficiency are 1.83 dBi and 74%, respectively. The radiation patterns are also very good and could be useful in the UWB wireless applications.

  4. Design and construction of CPW fed circular microstrip patch antennas

    Science.gov (United States)

    Vyas, Kirti; Singhal, P. K.; Sharma, A. K.; Pal, Manisha

    2013-01-01

    In this paper, we present feeding approaches of coplanar waveguide fed (CPW) circular microstrip patch antennas, with and without defected ground structure (DGS)`. The antenna feeding impedance is proposed as 50 ohms, built over FR4, a high dielectric constant substrate to obtain broad impedance bandwidth along with stability of the radiation patterns. The antenna with defected ground structure is designed to have band-notched characteristics at 3.5 GHz (for Wi-MAX band-3.3 to 3.7 GHz), at 8.2 GHz (for ITU band-8.025 GHz to 8.4 GHz) so as to avoid interference from these. The FR4 is used as dielectric with value of dielectric loss tangent constant as 0.002 and relative permittivity with 4.4. After applying DGS in ground of the proposed antenna there were improvements concerning bandwidth, and also a small increase in gain was noticed. These antennas are of small sizes with dimensions; 30 mm X 43 mm X 1.6 mm, cheap, compact and easy to fabricate, and achieve good radiation characteristics with higher return loss. This first antenna can have wide application in a great variety of wireless communication and second can operate well as UWB antenna with band notched characteristics. The performance of two antennas is compared in respect to gain, VSWR, return loss and impedance matching.

  5. A compact annular ring microstrip antenna for WSN applications.

    Science.gov (United States)

    Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie

    2012-01-01

    A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and -2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

  6. Development of a microstrip UHF conformal antenna

    Science.gov (United States)

    Shields, M. W.; Cassell, R. B.

    1977-01-01

    Low profile, engineering model EMU antennas were constructed. Final data for these antennas meet most of the electrical requirements in a 6 in. x 18 in. x 1.4 in. package which weighs under 2.0 lbs. Coverage data calculated at the design frequencies very nearly meets the design goal of providing a gain greater than or equal to -10 dBi over 80% of a sphere. Recommendations are made for future work directed toward producing an efficient quality design capable of operating in a space environment.

  7. Electrically Small Microstrip Quarter-Wave Monopole Antennas

    Science.gov (United States)

    Young, W. Robert

    2004-01-01

    Microstrip-patch-style antennas that generate monopole radiation patterns similar to those of quarter-wave whip antennas can be designed to have dimensions smaller than those needed heretofore for this purpose, by taking advantage of a feed configuration different from the conventional one. The large sizes necessitated by the conventional feed configuration have, until now, made such antennas impractical for frequencies below about 800 MHz: for example, at 200 MHz, the conventional feed configuration necessitates a patch diameter of about 8 ft (.2.4 m) . too large, for example, for mounting on the roof of an automobile or on a small or medium-size aircraft. By making it possible to reduce diameters to between a tenth and a third of that necessitated by the conventional feed configuration, the modified configuration makes it possible to install such antennas in places where they could not previously be installed and thereby helps to realize the potential advantages (concealment and/or reduction of aerodynamic drag) of microstrip versus whip antennas. In both the conventional approach and the innovative approach, a microstrip-patch (or microstrip-patch-style) antenna for generating a monopole radiation pattern includes an electrically conductive patch or plate separated from an electrically conductive ground plane by a layer of electrically insulating material. In the conventional approach, the electrically insulating layer is typically a printed-circuit board about 1/16 in. (.1.6 mm) thick. Ordinarily, a coaxial cable from a transmitter, receiver, or transceiver is attached at the center on the ground-plane side, the shield of the cable being electrically connected to the ground plane. In the conventional approach, the coaxial cable is mated with a connector mounted on the ground plane. The center pin of this connector connects to the center of the coaxial cable and passes through a hole in the ground plane and a small hole in the insulating layer and then connects

  8. DESIGN AND CHARACTERIZATION OF E-SHAPE MICROSTRIP PATCH ANTENNA FOR WIRELESS COMMUNICATION

    Directory of Open Access Journals (Sweden)

    R. Divya

    2013-03-01

    Full Text Available The area of microstrip antennas has seen some inventive work in recent years and is one of the most dynamic fields of antenna theory. The ever increasing need for mobile communication and the emergence of newer technologies require an efficient design of antenna of smaller size for wider frequency range applications such as Wi-Max. The main aim of this paper is increase the impedance bandwidth of the microstrip patch antenna. A low profile wideband unequal E-shaped microstrip patch antenna for Wi-Max application is proposed in this paper .This proposed antenna is made by using the microstrip feeding method. Its bandwidth is further increased by introducing composite effect of stacking of patches with partial grounding. The antenna is designed and simulated by three-dimensional electromagnetic field software HFSS’12.The properties of the antenna such as bandwidth, S parameter, VSWR have been investigated.

  9. Broadband Slotted Rectangular Shaped Microstrip Antenna For WI-Max Applications

    Directory of Open Access Journals (Sweden)

    Chandan Kumar Dubey

    2016-04-01

    Full Text Available Many applications require very broadband antenna, but the narrow bandwidth of a microstrip antenna restricts its wide usage. The aim of this paper is to enhance the bandwidth of rectangular microstrip patch antenna. For this purpose, we cut four slots in the proposed antenna. The dielectric substrate material of the antenna is glass epoxy FR4 having εr=4. 4 and loss tangent 0.025. The performance of the final modified antenna is compared with that of a conventional rectangular microstrip antenna. The designed antenna has two resonant frequencies 5.42 GHz and 5.70 GHz. So this antenna is best suitable for the Wi-Max applications. The designed antenna offers much improved impedance bandwidth 10.45 %. This is approximately two times higher than that in a conventional rectangular patch antenna (Bandwidth= 5.34% having the same dimensions.

  10. Multiband Wireless Microstrip Antenna with Embedded Meta-materials for MIMO

    Directory of Open Access Journals (Sweden)

    Arun Balan

    2014-12-01

    Full Text Available In this paper, a novel meta-material embedded symmetric multi-slot antenna is presented. This paper investigates the profound variations of meta-material embedded microstrip antenna characteristics from the conventional microstrip antenna. Microstrip antennas used for MIMO application can be made up by embedding meta-material for good bandwidth requirements and good isolation characteristics. Slot loading method is used for getting multi band. Proposed antenna shows an electromagnetic resonant state at 7.7GHz, with a return loss of -39.99dB and good bandwidth.

  11. A Compact Annular Ring Microstrip Antenna for WSN Applications

    Directory of Open Access Journals (Sweden)

    Daihua Wang

    2012-06-01

    Full Text Available A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna’s performance of a steel installation base. By using a chip resistor of large resistance (120 Ω the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and –2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

  12. Modified Microstrip Aperture Coupled Patch Antenna with Sierpinski Fractal Geometry

    Directory of Open Access Journals (Sweden)

    Hao Jiang

    2014-01-01

    Full Text Available A two-layer modified microstrip aperture coupled patch antenna with Sierpinski fractal geometry is presented in this paper. The effects of the two coupling slots and the parasitic patch are discussed. The proposed antenna can work on 956 MHz to 968 MHz, 3.654 GHz to 3.78 GHz, and 8.81 GHz to 9.28 GHz three frequency bands, and the maximum gain in each band is 4.64 dBi, 8.46 dBi, and 7.85 dBi, respectively. The simulated result reveals that the Sierpinski patch antenna we proposed in this paper performs better on radiation properties.

  13. A MILLIMETER WAVE MICROSTRIP PATCH ANTENNA WITH CPW FEED

    Directory of Open Access Journals (Sweden)

    GARIMA SANYAL

    2013-01-01

    Full Text Available In this work a coplanar waveguide fed rectangular microstrip patch antenna with U slot at 40 Ghz is designed and simulated. Simulated results are presented by using Ansoft HFSS 13 software, a full wave electromagnetic field simulator for arbitrary 3D volumetric passive device modeling that takes advantage of the familiar Microsoft Windows graphical user interface.The patch element is been placed on FR4 Epoxy substrate with relative permittivity 4.4 at a height of 1.8 mm. The gain of the proposed antenna is 5dB.This antenna is smallsize,cheap,compact,easy to fabricate ,achieve return loss of -17.8dB at 40GHz which ranges to -25 dB at 10 0GHz and good VSWR.The approach presented in this paper offers major advantages in millimeter waveapplications as in radar communication.

  14. Microstrip Phased Array Antennas Printed on Inclined Planes

    Directory of Open Access Journals (Sweden)

    A. Papiernik

    1996-06-01

    Full Text Available This paper presents an analysis of the electromagnetic field radiated by micro-strip patch antennas printed on inclined surfaces. The theoretical approach allows to apply spatial rotations to each source. The computer simulation developed permits us to experiment different antenna structures and two original realisations are proposed: a 2-element array printed on two inclined planes and a 4-element array laid out on a pyramidal surface. In addition, it enables the choice of the phase applied to each radiator to produce a beam deflection function. A good accuracy is obtained between theoretical and experimental results. The aim of this study is to optimise the parameters of such antennas to achieve the desired radiation patterns, from printed phased arrays on conformal surfaces. We also present the theoretical behaviour of a octagonal pyramid.

  15. Design of a Microstrip Bowtie Antenna for Indoor Radio-Communications

    OpenAIRE

    Fraga-Rosales Hector; Reyes-Ayala Mario; Hernandez-Valdez Genaro; Andrade-Gonzalez Edgar Alejandro; Miranda-Tello Jose Raul; Cruz-Perez Felipe Alejandro; Castellanos-Lopez Sandra Lirio

    2017-01-01

    In this paper, a microstrip bowtie patch antenna (MBPA) for wireless indoor communications is carried out. Here, a microstrip transmission-line feed network was designed in order to match the MBPA. The proposed antenna uses a ground plane with the aim of narrowing down the back lobes in comparison with bowtie sheet antennas, which radiation pattern is omni-directional. The far-field pattern of the antenna was simulated using a finite-element numerical algorithm and obtained by interpolation e...

  16. Transformation of design formulae for feed line of triangular microstrip antenna

    Science.gov (United States)

    Mathur, Monika; Singh, Ghanshyam; Bhatnagar, S. K.; Swami, Swati; Vats, Abhijat

    2016-03-01

    In wireless communication system microstrip antenna is the key component. Popular shapes of patch for microstrip are rectangular, triangular and circular. A new transformation design formulae for feed line of rectangular microstrip antenna by using equivalent design concept were presented by the authors. That says one designed antenna for a given frequency on any substrate can be transformed into another substrate material for the same design frequency by simply multiply a factor ψ to the all dimensions of patch, length of feed line and some power of ψ for feed line width (where ψ is the square root of the ratio of dielectric constants of those two designs). This paper presents that the same formulae of that rectangular transformation feed line can also be applicable for triangular shape microstrip antenna transformation. The process was repeated for the triangular shape patch microstrip antenna as applied for rectangular shape and the simulation results were surprisingly the same for it by applying the same transformation formulae.

  17. Ultra WideBand Matching of the Rectangular Microstrip Patch Antennas (RMPA Using Microstrip Non Uniform Transmission Lines (MNUTL

    Directory of Open Access Journals (Sweden)

    Ngendakumana Gaspard

    2012-11-01

    Full Text Available Simulating and modeling configurations of Rectangular Microstrip Patch Antennas (RMPA are dealt with in this paper. Microstrip Non Uniform Transmission Lines (MNUTL are used to feed the RMPA leading to ultrawideband impedance matching. Microstrip linear and sinus tapered characteristic impedance lines and Microstrip uniform lines are both taken to feed the same antenna patch and finally to compare their performances. The analysis is based upon the Finite Difference Time Domain method FDTD combined with the Absorbing Boundary Conditions Perfectly Matched Layers (ABC PML. An RMPA whose resonance frequency is 7.5 GHz is analyzed over a frequency band from 5GHz to 16GHz by calculating the return loss and the input impedance from the time-domain simulated data.

  18. Ultra-Wideband Fermi Antenna Using Microstrip-to-CPS Balun

    Science.gov (United States)

    Woo, Dong-Sik; Kim, Young-Gon; Cho, Young-Ki; Kim, Kang Wook

    A new design and experimental results of a microstrip-fed ultra-wideband Fermi antenna at millimeter-wave frequencies are presented. By utilizing a new microstrip-to-CPS balun (or transition), which provides wider bandwidth than conventional planar balun, the design of microstrip-fed Fermi antenna is greatly simplified. The proposed Fermi antenna demonstrates ultra-wideband performance for the frequency range of 23 to over 58GHz with the antenna gain of 12 to 14dBi and low sidelobe levels. This design yields highly effective solutions to various millimeter-wave phased-arrays and imaging systems.

  19. UHF Microstrip Antenna Array for Synthetic- Aperture Radar

    Science.gov (United States)

    Thomas, Robert F.; Huang, John

    2003-01-01

    An ultra-high-frequency microstrippatch antenna has been built for use in airborne synthetic-aperture radar (SAR). The antenna design satisfies requirements specific to the GeoSAR program, which is dedicated to the development of a terrain-mapping SAR system that can provide information on geology, seismicity, vegetation, and other terrain-related topics. One of the requirements is for ultra-wide-band performance: the antenna must be capable of operating with dual linear polarization in the frequency range of 350 plus or minus 80 MHz, with a peak gain of 10 dB at the middle frequency of 350 MHz and a gain of at least 8 dB at the upper and lower ends (270 and 430 MHz) of the band. Another requirement is compactness: the antenna must fit in the wingtip pod of a Gulfstream II airplane. The antenna includes a linear array of microstrip-patch radiating elements supported over square cavities. Each patch is square (except for small corner cuts) and has a small square hole at its center.

  20. The current distribution on the feeding probe in an air filled rectangular microstrip antenna

    DEFF Research Database (Denmark)

    Brown, K

    1989-01-01

    The current distribution on the probe and the input impedance of the rectangular air-filled microstrip antenna are calculated using the electrical-field integral equation (EFIE) formulation. A rigorous model for the coaxial line excitation is adopted which makes the formulation valid...... for electrically thick microstrip antennas. The EFIE is solved numerically using the moment method with a piecewise linear approximation of the patch current and a polynomial approximation of the probe current. It was found by numerous calculations that operating the microstrip antenna at the resonant frequency...... of the microstrip patch gives the best results with respect to the sidelobe level and cross-polar level. To validate the calculations, the impedance of the rectangular air-filled microstrip antenna was measured for the case h=6 mm and was found to agree with the calculated impedance...

  1. N Design of an H-shaped Slot Multi-frequency Microstrip Antenna

    Institute of Scientific and Technical Information of China (English)

    YANG Hong; MOU Hong-jiang

    2014-01-01

    Conventional slot microstrip antenna is analyzed, an h-shaped multi-frequency and miniaturization slot microstrip antenna is proposed. Numerical simulation is performed for the characteristics of the antenna with the software HFSS11.0, which is a kind of simulation software based on Finite Element Method, the simulation results shown that the antenna operated at 2.26~2.42GHz, 2.67~2.82GHz , 4.28~4.39GHz and 5.76~5.89GHz when the return loss S1 <-10dB, the size reduced compare to general microstrip antenna, demonstrated the effectiveness of the design scheme. The antenna structure is simple and easily to be implemented, met the wireless LAN 802.11a/b/g/n mobile terminal antenna miniaturization and multi-band requirements.

  2. Decentralized adaptive control designs and microstrip antennas for smart structures

    Science.gov (United States)

    Khorrami, Farshad; Jain, Sandeep; Das, Nirod K.

    1996-05-01

    Smart structures lend themselves naturally to a decentralized control design framework, especially with adaptation mechanisms. The main reason being that it is highly undesirable to connect all the sensors and actuators in a large structure to a central processor. It is rather desirable to have local decision-making at each smart patch. Furthermore, this local controllers should be easily `expandable' to `contractible.' This corresponds to the fact that addition/deletion of several smart patches should not require a total redesign of the control system. The decentralized control strategies advocated in this paper are of expandable/contractible type. On another front, we are considering utilization of micro-strip antennas for power transfer to and from smart structures. We have made preliminary contributions in this direction and further developments are underway. These approaches are being pursued for active vibration damping and noise cancellation via piezoelectric ceramics although the methodology is general enough to be applicable to other type of active structures.

  3. Beam-Steerable Microstrip-Fed Bow-Tie Antenna Array for Fifth Generation Cellular Communications

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert Frølund

    2016-01-01

    of bow-tie antennas have been used at the top-edge region of mobile phone PCB. The antenna elements fed by microstrip lines are designed to operate at 17 GHz. The simulated results give good performances in terms of different antenna parameters. In addition, an investigation on the distance between...

  4. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  5. Planar FET oscillators using periodic microstrip patch antennas

    Science.gov (United States)

    Birkeland, Joel; Itoh, Tatsuo

    1989-08-01

    An integrated oscillator/antenna is presented that uses a single microstrip leaky-wave structure as both the resonant and the radiating element. This resonant antenna is connected to a GaAs metal-semiconductor field-effect transistor which acts as the negative resistance element in the oscillator circuit. This type of oscillator is similar in its operating principle to one reported using Gunn diodes and a periodically notched dielectric image guide. This circuit exhibits the high DC-RF conversion efficiency that is typical of field-effect transistor oscillators. The planar circuit is simple and inexpensive to construct, occupies a small volume, and can conform to different surface profiles. Such circuits are suitable for use in millimeter-wave systems as well as at microwave frequencies. A design procedure is given, and the performance of X-band prototype circuits is reported. Prototype circuits showed a 9 dB isotropic conversion gain and 40 MHz tuning range at 9.5 GHz.

  6. Computer Aided Design and Simulation of a Multiobjective Microstrip Patch Antenna for Wireless Applications

    Directory of Open Access Journals (Sweden)

    Chitra Singh

    2011-03-01

    Full Text Available The utility and attractiveness of microstrip antennas has made it ever more important to find ways to precisely determine the radiation patterns of these antennas. Taking benefit of the added processing power of today’s computers, electromagnetic simulators are emerging to perform both planar and 3D analysis of high-frequency structures. One such tool studied was IE3D, which is a program that utilizes method of moment. This paper makes an investigation of the method used by the program, and then uses IE3D software to construct microstrip antennas and analyze the simulation results. The antenna offers good electrical performance and at the same time preserves the advantages of microstrip antennas such as small size, easy to manufacture as no lumped components are employed in the design and thus, is low cost; and most importantly, it serves multiple wireless applications.

  7. Design and simulation of equilateral triangular microstrip antenna using particle swarm optimization (PSO) and advanced particle swarm optimization (APSO)

    Indian Academy of Sciences (India)

    PRABAL PRATAP; RAVINDER SINGH BHATIA; BINOD KUMAR

    2016-07-01

    In this paper a new design is proposed in microstrip antenna family. In this paper, a review design of microstrip antenna design using particle swarm optimization (PSO) and advanced particle swarm optimization (APSO) has been presented which optimizes the parameters and both results are compared. This technique helps antenna engineers to design, analyze, and simulate antenna efficiently and effectively. An advanced PSO driven antenna has been developed to calculate resonant frequency of slit-cut stacked equilateral triangular microstrip antenna. The paper presents simplicity, accuracy and comparison of result between PSO and APSO.

  8. Design of Short-Circuited Microstrip Antenna Using Differential Evolution Algorithm

    Directory of Open Access Journals (Sweden)

    Arindam Deb

    2012-08-01

    Full Text Available Differential evolution (DE algorithm is used to design a microstrip antenna, loaded with a shorting pin. The position of probe and the position of shorting pin are optimized using DE. The fitness function for DE is obtained using multiport network modelling technique. Antenna is fabricated and measured results are compared with the theoretical results.

  9. Dual Polarization Stacked Microstrip Patch Antenna Array With Very Low Cross-Polarization

    DEFF Research Database (Denmark)

    Granholm, Johan; Woelders, Kim

    2001-01-01

    This paper describes the development and performance of a wideband dual linear polarization microstrip antenna array used in the Danish high-resolution airborne multifrequency polarimetric synthetic aperture radar, EMISAR. The antenna was designed for an operating frequency of 1.25 GHz±50 MHz and...

  10. Broadband matching of dual-linear polarisation stacked probe-fed microstrip patch antenna

    DEFF Research Database (Denmark)

    Jaworski, G.; Krozer, Viktor

    2004-01-01

    A novel approach for impedance matching of probe-fed, stacked microstrip patch antenna elements is demonstrated. The matching structure is compact and enables more than doubling of the operational bandwidth. A circuit model for the feeding probes is developed and its impact on antenna impedance...

  11. Bandwidth Enrichment for Micro-strip Patch Antenna Using Pendant Techniques

    Directory of Open Access Journals (Sweden)

    D. Bhattacharya, R. Prasanna

    2013-08-01

    Full Text Available In rapidly expanding market for wireless communication and applications, Micro strip antenna has become widely popular as it is low profile, comfortable to the hosting surfaces, light weight and can be easily integrated with the electronic circuits. Microstrip antenna is widely used in military, mobile communication, global positioning system (GPS, remote sensing etc.

  12. Integrated Solar Panel Antennas for Cube Satellites

    OpenAIRE

    Mahmoud, Mahmoud N.

    2010-01-01

    This thesis work presents an innovative solution for small satellite antennas by integrating slot antennas and solar cells on the same panel to save small satellite surface real estate and to replace deployed wire antennas for certain operational frequencies. The two main advantages of the proposed antenna are: 1) the antenna does not require an expensive deployment mechanism that is required by dipole antennas; 2) the antenna does not occupy as much valuable surface real estate as patch ante...

  13. Integrated Solar Panel Antennas for Cube Satellites

    OpenAIRE

    Mahmoud, Mahmoud N.

    2010-01-01

    This thesis work presents an innovative solution for small satellite antennas by integrating slot antennas and solar cells on the same panel to save small satellite surface real estate and to replace deployed wire antennas for certain operational frequencies. The two main advantages of the proposed antenna are: 1) the antenna does not require an expensive deployment mechanism that is required by dipole antennas; 2) the antenna does not occupy as much valuable surface real estate as patch ante...

  14. Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application

    Directory of Open Access Journals (Sweden)

    Jiachen Yang

    2016-06-01

    Full Text Available Wireless local area network (WLAN is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software—High Frequency Structure Simulator (HFSS. The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication.

  15. Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application.

    Science.gov (United States)

    Yang, Jiachen; Wang, Huanling; Lv, Zhihan; Wang, Huihui

    2016-06-27

    Wireless local area network (WLAN) is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software-High Frequency Structure Simulator (HFSS). The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication.

  16. Bird Face Microstrip Printed Monopole Antenna Design for Ultra Wide Band Applications

    Science.gov (United States)

    Hossain, Mohammad Jakir; Faruque, Mohammad Rashed Iqbal; Islam, Md. Moinul; Islam, Mohammad Tariqul; Rahman, Md. Atiqur

    2016-11-01

    In this paper, a novel bird face microstrip printed monopole ultra-wideband (UWB) antenna is investigated. The proposed compact antenna consists of a ring-shaped with additional slot and slotted ground plane on FR4 material. The overall electrical dimension of the proposed antenna is 0.25 λ×0.36 λ×0.016 λ and is energized by microstrip feed line. The Computer Simulation Technology (CST) and the High Frequency Structural Simulator (HFSS) is applied in this analysis. The impedance bandwidth of the monopole antenna cover 3.1-12.3 GHz (9.2 GHz, BW) frequency range. The messurement displayed that the designed antenna achieved excellent gain and stable omnidirectional radiation patterns within the UWB. The maximum gain of 6.8 dBi and omnidirectional radiation pattern makes the proposed antenna that is suitable for UWB systems.

  17. Isolation Improvement of a Microstrip Patch Array Antenna for WCDMA Indoor Repeater Applications

    Directory of Open Access Journals (Sweden)

    Hongmin Lee

    2012-01-01

    Full Text Available This paper presents the isolation improvement techniques of a microstrip patch array antenna for the indoor wideband code division multiple access (WCDMA repeater applications. One approach is to construct the single-feed switchable feed network structure with an MS/NRI coupled-line coupler in order to reduce the mutual coupling level between antennas. Another approach is to insert the soft surface unit cells near the edges of the microstrip patch elements in order to reduce backward radiation waves. In order to further improve the isolation level, the server antenna and donor antenna are installedinorthogonal direction. The fabricated antenna exhibits a gain over 7 dBi and higher isolation level between server and donor antennas below −70 dB at WCDMA band.

  18. Scanning and Defocusing Properties of Microstrip Reflectarray Antennas

    Science.gov (United States)

    Rengarajan, Sembiam

    2011-01-01

    A symmetric reflectarray, consisting of variable-size square patch elements with a commonly used mathematical model for the horn in the form of a cosine function, has been designed using the transmit mode technique for different f/D ratios with 10 dB edge taper. Subsequently, the antennas were analyzed for the radiation pattern and gain. The infinite array model was used to determine the reflection phase of each patch element in the design and analysis codes. By displacing the feed laterally, the scan characteristics were obtained, such as the beam deviation factor, gain loss, and pattern degradation. The properties of reflect arrays were compared to those of the conventional paraboloidal reflectors. The same procedure was used to study the scan properties of offset reflectarrays. There is no cross-polarized radiation in the principal planes for a symmetric system. Cross-polarized radiation exists in non-principal planes off broadside in symmetric systems, with greater levels for larger values of subtended angles. Such cross-polarized radiation level increases with subtended angle just as cross-polarization level increases with decreasing values of f/D ratios for symmetric paraboloids in non-principal planes. Pattern distortions and gain loss were found to be more severe in the case of a microstrip reflectarray compared to the conventional parabolic reflector. The scan performance of the reflect arrays was found to improve with f/D ratios as is true for paraboloids. In general, scanning by means of displaced feed is limited to a few beam - widths in reflectarrays. Feed displacement in the axial direction of a symmetric reflectarray was investigated and compared to that of paraboloids. The gain loss due to the defocused feed of a reflectarray was found to be nearly the same as that of a paraboloid of the same subtended angle for larger values of f/D, and for displacements away from the antenna. The gain loss of an axially defocused reflectarray was found to be

  19. Microstrip Back-Cavity Hilbert Fractal Antenna for Experimental Detection of Breast Tumors

    OpenAIRE

    2016-01-01

    International audience; This paper presents a miniaturized microstrip back-cavity Hilbert Fractal Antenna specifically designed for breast cancer detection. This antenna is used to investigate on the possibility of detecting the presence of breast tumors by directly measuring the shift of the antenna resonance frequency. First, simulations are performed on a multi-layer breast model; then the proposed approach was applied for in vivo measurements on two different patients diagnosed with breas...

  20. Bandwidth and Return Loss Improvement of H-shaped Patch Microstrip Antenna using EBG structure

    Directory of Open Access Journals (Sweden)

    Govind Bhai

    2015-09-01

    Full Text Available The future development of personal communication devices will aim to provide image, speech and data anywhere around the world at any time. This indicates that the future communication terminal antennas must meet the requirements of wideband to sufficiently cover the possible operating bands. The aim of this paper is to improve the bandwidth and return loss of H-shaped patch microstrip antenna using EBG structure on ground plane. EBG structure is a periodic arrangement of dielectric materials and metallic conductors on ground plane of antennas. Microstrip antennas mounted can radiate only a small amount of its power into free space as more power leakage through the dielectric substrate. To improve the efficiency of the antenna, the propagation through the substrate must be prohibited so the antenna can radiate more power towards the main beam direction and hence improve its efficiency. As the proposed antenna has resonant frequency at 2.496 GHz so suitable for ISMband applications. For designing this, we uses CST software tool. The designed antenna offers much improved bandwidth of 59.9 MHz and return loss is -30.02 dB as compared to conventional H-shaped patch microstrip antenna which having bandwidth of 33 MHz and return loss is -12.43 dB.

  1. Proximity fed gap-coupled half E-shaped microstrip antenna array

    Indian Academy of Sciences (India)

    Amit A Deshmukh; K P Ray

    2015-02-01

    Broadband gap-coupled array configuration of proximity fed rectangular microstrip antenna with half E-shaped microstrip antennas are proposed. The rectangular slot in half E-shaped patch reduces the orthogonal TM01 mode resonance frequency of equivalent rectangular patch and along with TM10 modes of fed and parasitic rectangular patches, yields broader bandwidth of more than 470 MHz (> 45%). An improvement in radiation pattern and gain characteristics over the bandwidth is obtained by gap-coupling half E-shaped patches along all the edges of proximity fed rectangular patch, which yields bandwidth of nearly 510 MHz (∼49%). Further to enhance the gain, a gap-coupled 3 × 3 array configuration of half E-shaped patches with proximity fed rectangular microstrip antenna is proposed. The gap-coupled array configuration yields bandwidth of more than 530 MHz (>50%) with broadside radiation pattern and peak gain of 11 dBi.

  2. Investigation of a Novel Compact Microstrip Antenna for Radiotelemetry Capsules Based on FDTD

    Institute of Scientific and Technical Information of China (English)

    HUANG Biao; YAN Guo-zheng; LI Qian-ru

    2007-01-01

    The objective of this paper is to design a microstrip patch antenna for the miniature electro-capsule communicating with external recorder at 915 MHz located in Industry, Science, and Medical (ISM) bands. Microstrip antenna design parameters, resonance characteristics and radiation patterns are evaluated using the finite-difference time-domain (FDTD) method. The effects of location of feed point and human body are analyzed, and the radiation performances of the proposed antenna are estimated in terms of radiation patterns. Finally, specific absorption rate (SAR) computations are also performed, and the peak 1-g and 10-g SAR values are calculated. According to peak SAR values, the maximum delivered, power for the designed antenna was found so that the SAR values of the antennas satisfy ANSI limitations.

  3. A four spiral slots microstrip patch antenna for radiotelemetry capsules based on FDTD

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Antenna is very crucial to radiotelemetry capsules which can measure the physiological parameters of the gastrointestinal (GI) tract. The objective of this paper is to design a novel spiral slots microstrip patch antenna for the radiotelemetry capsules communicating with external recorder at 915 MHz located in ISM (Industry, Science, and Medical) bands. The microstrip patch antenna is designed and evaluated using the finite-difference time-domain (FDTD) method. Return loss characteristics and the effect of the human body on resonant frequency are analyzed, and the performances of radiation patterns at different positions of the human alimentary tract are also estimated. Finally, specific absorption rate (SAR) computations are performed, and the peak 1-g and 10-g SAR values are calculated. According to the peak SAR values, the maximum delivered power for the designed antenna was found so that the SAR values of the antenna satisfy the ANSI (American National Standards Institute) limitations.

  4. Pattern Reconfigurable Wideband Stacked Microstrip Patch Antenna for 60 GHz Band

    Directory of Open Access Journals (Sweden)

    Alexander Bondarik

    2016-01-01

    Full Text Available A beam shift method is presented for an aperture coupled stacked microstrip antenna with a gridded parasitic patch. The gridded parasitic patch is formed by nine close coupled identical rectangular microstrip patches. Each of these patches is resonant at the antenna central frequency. Using four switches connecting adjacent parasitic patches in the grid, it is possible to realize a pattern reconfigurable antenna with nine different beam directions in broadside, H-plane, E-plane, and diagonal planes. The switches are modeled by metal strips and different locations for strips are studied. As a result an increase in the antenna coverage is achieved. Measurement results for fabricated prototypes correspond very well to simulation results. The antenna is designed for 60 GHz central frequency and can be used in high speed wireless communication systems.

  5. Characteristic-Based Time Domain Method for Cylindrically Conformal Microstrip Patch Antennas

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-wen; XIN Li

    2005-01-01

    The characteristics of a cylindrical conformal microstrip patch antenna are analyzed by using the characteristic-based time domain (CBTD) method. A governing equation in the cylindrical coordinate system is formulated directly to facilitate the analysis of cylindrically conformal microstrip patch antennas. The algorithm has second-order accuracy both in time and space domain and has the potential to eliminate the spurious wave reflection from the numerical boundaries of the computational domain. Numerical results demonstrate the important merits and accuracy of the proposed technique in computational electromagnetics.

  6. An L-strip fed stacked patch antenna for maritime satellite communications

    Institute of Scientific and Technical Information of China (English)

    FU Shi-qiang; FANG Shao-jun

    2008-01-01

    A practical antenna has been designed and developed for INMARSAT mobile satellite communications. The design uses low cost materials such as foam and copper foil to create a stacked microstrip antenna array. Several techniques were adopted to enhance the impedance bandwidth and axial ratio bandwidth. The final design parameters were optimized by EM simulation. Finally, the L-strip fed six-element stacked microstrip antenna array was constructed and tested. Simulated and measured results show that in the whole INMARSAT work band, the VSWR of the antenna is less than 1.6, its antenna gain is higher than 15riB and wide-angle axial ratio (AR) 3dB is more than 21°. The antenna has been successfully used with a HNS 9201 terminal.

  7. Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity

    Science.gov (United States)

    Ramhat-Samii, Yahya; Kona, Keerti; Manteghi, Majid; Dinardo, Steven; Hunter, Don; Njoku, Eni; Wilson, Wiliam; Yueh, Simon

    2009-01-01

    This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.

  8. Effect of Weaving Direction of Conductive Yarns on Electromagnetic Performance of 3D Integrated Microstrip Antenna

    Science.gov (United States)

    Xu, Fujun; Yao, Lan; Zhao, Da; Jiang, Muwen; Qiu, Yipping

    2013-10-01

    A three-dimensionally integrated microstrip antenna (3DIMA) is a microstrip antenna woven into the three-dimensional woven composite for load bearing while functioning as an antenna. In this study, the effect of weaving direction of conductive yarns on electromagnetic performance of 3DIMAs are investigated by designing, simulating and experimental testing of two microstrip antennas with different weaving directions of conductive yarns: one has the conductive yarns along the antenna feeding direction (3DIMA-Exp1) and the other has the conductive yarns perpendicular the antenna feeding direction (3DIMA-Exp2). The measured voltage standing wave ratio (VSWR) of 3DIMA-Exp1 was 1.4 at the resonant frequencies of 1.39 GHz; while that of 3DIMA-Exp2 was 1.2 at the resonant frequencies of 1.35 GHz. In addition, the measured radiation pattern of the 3DIMA-Exp1 has smaller back lobe and higher gain value than those of the 3DIMA-Exp2. This result indicates that the waving direction of conductive yarns may have a significant impact on electromagnetic performance of textile structural antennas.

  9. Lossy-Transmission-Line Analysis of Frequency Reconfigurable Rectangular-Ring Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Bambang Setia Nugroho

    2014-01-01

    Full Text Available An analytical model for a frequency reconfigurable rectangular-ring microstrip antenna is proposed. The resonant frequencies and input impedance of the reconfigurable antenna are analyzed using a lossy-transmission-line (LTL model. By making use of Y-admittance matrices, a formulation for the input impedance is analytically derived. The structure of the frequency reconfigurable antenna consists of a rectangular-ring shaped microstrip antenna which is loaded with a rectangular patch in the middle of the rectangular-ring antenna and fed by a microstrip line. RF switches are applied to connect the load to the antenna in order to reconfigure the operating frequencies. By modeling the antenna into a multiport equivalent circuit, the total input impedance is analytically derived to predict the resonant frequencies. To verify the analysis, the model input impedance and reflection coefficient calculation have been compared with the full-wave simulation and measurement results. The proposed model shows good agreement with full-wave simulated and measured results in the range of 1–3 GHz.

  10. Design of Vivaldi Microstrip Antenna for Ultra-Wideband Radar Applications

    Science.gov (United States)

    Perdana, M. Y.; Hariyadi, T.; Wahyu, Y.

    2017-03-01

    The development of radar technology has an important role in several fields such as aviation, civil engineering, geology, and medicine. One of the essential components of the radar system is the antenna. The bandwidth can specify the resolution of the radar. The wider the bandwidth, the higher the resolution of radar. For Ground penetrating radar (GPR) or medical applications need with a high-resolution radar so it needs an antenna with a wide bandwidth. In addition, for the radar application is required antenna with directional radiation pattern. So, we need an antenna with wide bandwidth and directional radiation pattern. One of antenna that has meet with these characteristics is vivaldi antenna. In previous research, has designed several vivaldi microstrip antenna for ultra-wideband radar applications which has a working frequency of 3.1 to 10.7 GHz. However, these studies there is still a shortage of one of them is the radiation pattern from lowest to highest frequency radiation pattern is not uniform in the sense that not all directional. Besides the antenna material used is also not easily available and the price is not cheap. This paper will discuss the design of a vivaldi microstrip antenna which has a wide bandwidth with directional radiation pattern works on 3.1 to 10.7 GHz and using cheaper substrate. Substrates used for vivaldi microstrip antenna vivaldi is FR4 with a dielectric constant of 4.3 and a thickness of 1.6 mm. Based on the simulation results we obtained that the antenna design has frequency range 3.1-10.7 GHz for return loss less than -10 dB with a directional radiation pattern. This antenna gain is 4.8 to 8 dBi with the largest dimension is 50 mm x 40 mm.

  11. Design of multi-layer circularly polarized microstrip antenna in satellite navigation receiver system%卫星导航接收机系统中的多层圆极化微带天线设计

    Institute of Scientific and Technical Information of China (English)

    王喜龙; 魏昆

    2015-01-01

    Several circularly polarized receiving antennas with different frequency in small space are placed on satellite naviga⁃tion receiver system. The double⁃deck circularly polarized antenna,which receives signals from the GPS with L1 frequency point and L2 frequency point is studied and designed to save space. The double⁃deck antenna consists of two separate single feed point antenna,which is working at L1 frequency range and L2 frequency range independently,right⁃hand circular polarization and left⁃hand circular polarization of the antenna is working as receiving antenna and sending antenna. It′s easy to debug and in⁃stall since the antenna is processed with 4 mm thickness composite material. The simulation analysis and optimization proved that the designed antenna with high gain,excellent polarization and qualifies bandwidth requirement,and it is suitable for satel⁃lite navigation receiver system application.%卫星导航接收机系统有时需要在较小的区域中放置多个不同频率的圆极化接收天线。通过研究并设计出一种GPS的L1和L2双频点双层叠放圆极化天线,可以在很大程度上节约空间。该天线上下层是两个独立的单馈点天线,可以分别在L1和L2频段独立工作,分别为右旋圆极化和左旋圆极化,可作接收天线和发射天线。天线由厚度为4 mm的复合材料加工而成,调试和组装均比较方便。经过仿真分析优化,设计的天线增益较高,极化特性优良,带宽满足要求,完全适合于卫星导航接收机系统的应用。

  12. Dual-polarization, wideband microstrip antenna array for airborne C-band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, Niels

    2000-01-01

    The paper describes the development of a C-band, dual linear polarization wideband antenna array, for use in the next-generation of the Danish airborne polarimetric synthetic aperture radar (SAR) system. The array is made of probe-fed, stacked microstrip patches. The design and performance...

  13. Probe-Fed Stacked Microstrip Patch Antenna for High-Resolution Polarimetric C-Band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, Niels

    2000-01-01

    The paper describes a C-band, dual-linear polarization wideband antenna for use in the next-generation of the Danish high-resolution, airborne polarimetric synthetic aperture radar (SAR) system, EMISAR. The design and performance of a probe-fed, stacked microstrip patch element, operating from 4...

  14. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    Science.gov (United States)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-03-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S11) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  15. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Dheeraj, E-mail: dbhardwaj.bit@gmail.com [Department of Physics, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Saraswat, Shriti, E-mail: saraswat.srishti@gmail.com; Gulati, Gitansh, E-mail: gitanshgulati@gmail.com; Shekhar, Snehanshu, E-mail: snehanshushekhar.bit@gmail.com; Joshi, Kanika, E-mail: kanika.karesh@gmail.com [Department of Electronics & Communication, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Sharma, Komal, E-mail: kbhardwaj18@gmail.com [Department of Physics, Swami Keshvanand Institute of Technology, Jaipur 302017 (India)

    2016-03-09

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S{sub 11}) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  16. Design of a Microstrip Bowtie Antenna for Indoor Radio-Communications

    Directory of Open Access Journals (Sweden)

    Fraga-Rosales Hector

    2017-01-01

    Full Text Available In this paper, a microstrip bowtie patch antenna (MBPA for wireless indoor communications is carried out. Here, a microstrip transmission-line feed network was designed in order to match the MBPA. The proposed antenna uses a ground plane with the aim of narrowing down the back lobes in comparison with bowtie sheet antennas, which radiation pattern is omni-directional. The far-field pattern of the antenna was simulated using a finite-element numerical algorithm and obtained by interpolation employing near-field equipment. The experimental results are described in detail intending to agree well with the simulated predictions. The antenna was designed, measured and built and its far field performance was evaluated with a 2.11 GHz resonant frequency. The azimuth and elevation antenna patterns, antenna gain and, the matching frequency were the main parameters obtained to analyze the antenna behaviour. The antenna has a gain approximately equal to 8.77 dBi and its beam-widths are higher than 100° in E plane.

  17. MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS APPLIED TO MICROSTRIP ANTENNAS DESIGN ALGORITMOS EVOLUTIVOS MULTIOBJETIVO APLICADOS A LOS PROYECTOS DE ANTENAS MICROSTRIP

    Directory of Open Access Journals (Sweden)

    Juliano Rodrigues Brianeze

    2009-12-01

    Full Text Available This work presents three of the main evolutionary algorithms: Genetic Algorithm, Evolution Strategy and Evolutionary Programming, applied to microstrip antennas design. Efficiency tests were performed, considering the analysis of key physical and geometrical parameters, evolution type, numerical random generators effects, evolution operators and selection criteria. These algorithms were validated through design of microstrip antennas based on the Resonant Cavity Method, and allow multiobjective optimizations, considering bandwidth, standing wave ratio and relative material permittivity. The optimal results obtained with these optimization processes, were confirmed by CST Microwave Studio commercial package.Este trabajo presenta tres de los principales algoritmos evolutivos: Algoritmo Genético, Estrategia Evolutiva y Programación Evolutiva, aplicados al diseño de antenas de microlíneas (microstrip. Se realizaron pruebas de eficiencia de los algoritmos, considerando el análisis de los parámetros físicos y geométricos, tipo de evolución, efecto de generación de números aleatorios, operadores evolutivos y los criterios de selección. Estos algoritmos fueron validados a través del diseño de antenas de microlíneas basado en el Método de Cavidades Resonantes y permiten optimizaciones multiobjetivo, considerando ancho de banda, razón de onda estacionaria y permitividad relativa del dieléctrico. Los resultados óptimos obtenidos fueron confirmados a través del software comercial CST Microwave Studio.

  18. Gain Enhancement of a Microstrip Patch Antenna Using a Reflecting Layer

    Directory of Open Access Journals (Sweden)

    Anwer Sabah Mekki

    2015-01-01

    Full Text Available A low profile, unidirectional, dual layer, and narrow bandwidth microstrip patch antenna is designed to resonate at 2.45 GHz. The proposed antenna is suitable for specific applications, such as security and military systems, which require a narrow bandwidth and a small antenna size. This work is mainly focused on increasing the gain as well as reducing the size of the unidirectional patch antenna. The proposed antenna is simulated and measured. According to the simulated and measured results, it is shown that the unidirectional antenna has a higher gain and a higher front to back ratio (F/B than the bidirectional one. This is achieved by using a second flame retardant layer (FR-4, coated with an annealed copper of 0.035 mm at both sides, with an air gap of 0.04λ0 as a reflector. A gain of 5.2 dB with directivity of 7.6 dBi, F/B of 9.5 dB, and −18 dB return losses (S11 are achieved through the use of a dual substrate layer of FR-4 with a relative permittivity of 4.3 and a thickness of 1.6 mm. The proposed dual layer microstrip patch antenna has an impedance bandwidth of 2% and the designed antenna shows very low complexity during fabrication.

  19. C-Slot Coaxial fed Microstrip Patch antenna for DTV reception

    Directory of Open Access Journals (Sweden)

    Prof. Jagan Mohan Rao. S

    2014-03-01

    Full Text Available In this paper a novel design of small sized, low profile coaxial fed microstrip patch antenna is proposed for terrestrial DTV signal reception applications in the UHF band frequency range of 540-890MHz. Designed model was C-slot Microstrip antenna. Different parameters like return loss which is 21.44dB at 640MHz, VSWR as 1.1851, gain along θ, Ø directions, radiation pattern in 2D & 3D where the 2-D gain is 7.57dB, axial ratio, E & H field distributions, current distributions are simulated using HFSS 13.0. The measured parameters satisfy required limits hence making the proposed antenna suitable for DTV reception applications in the UHF band.

  20. Hybrid Maritime Satellite Communication Antenna

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst

    Hybrid antennas for a maritime satellite communication terminal with simultaneous operation at L- and Ka-band have been investigated. The frequency bands of interest are 1; 525:0 1; 660:5 MHz (RX+TX, RHCP), 19:7 20:2 (RX, LHCP) and 29:5 30:0 GHz (TX, RHCP), which are all part of the Inmarsat BGAN...

  1. A Review and study of the design technique of Microstrip Patch Antenna Technology

    Directory of Open Access Journals (Sweden)

    Dileep Kumar shukla

    2015-03-01

    Full Text Available In this paper,study and survey of microstrip antenna elements is presented, with emphasis on theoretical and practical design techniques and material used, as previous study have been proved that material used play significant role in the performance such as gain ,directivity ,frequency of radiation Available substrate materials are reviewed along with the relation between dielectric constant tolerance and resonant frequency of microstrip patches. Several theoretical analysis techniques are summarized. Practical procedures are given for both standard rectangular and circular patches. The quality, bandwidth, and efficiency factors of typical patch designs are discussed.

  2. A COMBINED FULL-WAVE BCG-FFT METHOD FOR RADIATION OF MICROSTRIP ANTENNA ARRAYS

    Institute of Scientific and Technical Information of China (English)

    Zhang Hou; Peng Hongli; Liu Qizhong; Yin Yingzeng; Gong Shuxi

    2001-01-01

    A method of combining BiConjugate Gradient(BCG) with Fast Fourier Transform(FFT) to analyze the radiation of microstrip antenna arrays is presented, where the spatially discrete BCG-FFT for analyzing microstrip structure is used and the del operators on Green's functions are transferred from the singular kernel to the expansion and testing functions. The resultant equations are solved by using BCG method in which the matrix-vector product is evaluated efficiently with FFT. The calculated patterns are in good agreement with the measured data.

  3. Dual-band microstrip patch antenna based on metamaterial refractive surface

    Science.gov (United States)

    Salhi, Ridha; Labidi, Mondher; Boujemaa, Mohamed Ali; Choubani, Fethi

    2017-06-01

    In this paper, we present a new design of microstrip patch antenna based on metamaterial refractive surface (MRS). By optimizing the air gap between the MRS layer and the patch antenna to be 7 mm, the band width and the gain of the proposed antenna are significantly enhanced. The proposed prototype presents a dual band antenna. The center frequency for the first band is 2.44 GHz and the generated bandwidth is 25 MHz. The second band has a center frequency of 2.8 GHz and with a bandwidth of 50 MHz. The simulation results are analyzed and discussed in terms of return loss, gain and radiation pattern using electromagnetic simulator software. Finally, the designed dual band antenna is fabricated and different measurement results are performed and compared with simulation results in order to validate its performances. The proposed antenna supports WiBro (wireless broadband), ISM, WiFi, Bluetooth, WiMAX and radars services.

  4. Spiral Slotted Microstrip Antenna Design for 700 MHz Band Application

    Directory of Open Access Journals (Sweden)

    Ricardo Meneses González

    2016-01-01

    Full Text Available This work describes the design and implementation of spiral slotted microstrip antenna. Recently, just like other countries, in Mexico, terrestrial digital television has been implemented (analogic shutdown; as a consequence, the 700 MHz UFH Band (698–806 MHz has been opened to new telecommunications services, particularly wireless mobile communication. This technological advance represents a radio mobile antenna design challenge because it is necessary to design an antenna whose dimensions must be small enough, which satisfies gain, resonance frequency, and bandwidth requirements and is of low cost.

  5. Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

    Directory of Open Access Journals (Sweden)

    Li-Ming Si

    2014-01-01

    Full Text Available A slot-microstrip-covered and waveguide-cavity-backed monopulse antenna array is proposed for high-resolution tracking applications at Ka-band. The monopulse antenna array is designed with a microstrip with 2×32 slots, a waveguide cavity, and a waveguide monopulse comparator, to make the structure simple, reduce the feeding network loss, and increase the frequency bandwidth. The 2×32 slot-microstrip elements are formed by a metal clad dielectric substrate and slots etched in the metal using the standard printed circuit board (PCB process with dimensions of 230 mm  ×  10 mm. The proposed monopulse antenna array not only maintains the advantages of the traditional waveguide slot antenna array, but also has the characteristics of wide bandwidth, high consistence, easy of fabrication, and low cost. From the measured results, it exhibits good monopulse characteristics, including the following: the maximum gains of sum pattern are greater than 24 dB, the 3 dB beamwidth of sum pattern is about 2.2 degrees, the sidelobe levels of the sum pattern are less than −18 dB, and the null depths of the difference pattern are less than −25 dB within the operating bandwidth between 33.65 GHz and 34.35 GHz for VSWR ≤ 2.

  6. Vehicle antenna development for mobile satellite applications

    Science.gov (United States)

    Woo, K.

    1988-01-01

    The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.

  7. Novel Compact Mushroom-Type EBG Structure for Electromagnetic Coupling Reduction of Microstrip Antenna array

    Science.gov (United States)

    Hu, Lizhong; Wang, Guangming; Liang, Jiangang; Zhang, Chenxin

    2015-03-01

    A novel compact electromagnetic bandgap (EBG) structure consisting of two turns complementary spiral resonator (CSR) and conventional mushroom EBG (CM-EBG) structure is introduced to suppress the mutual coupling in antenna arrays for multiple-input and multiple-output (MIMO) applications. Eigenmode calculation is used to investigate the proposed CSR-loaded mushroom-type EBG (MT-EBG), which proved to exhibit bandgap property and a miniaturization of 48.9% is realized compared with the CM-EBG. By inserting the proposed EBG structure between two E-plane coupled microstrip antennas, a mutual coupling reduction of 8.13 dB has been achieved numerically and experimentally. Moreover, the EBG-loaded antenna has better far-field radiation patterns compared with the reference antenna. Thus, this novel EBG structure with advantages of compactness and high decoupling efficiency opens an avenue to new types of antennas with super performances.

  8. A Butterfly-Shaped Wideband Microstrip Patch Antenna for Wireless Communication

    Directory of Open Access Journals (Sweden)

    Liling Sun

    2015-01-01

    Full Text Available A novel butterfly-shaped patch antenna for wireless communication is introduced in this paper. The antenna is designed for wideband wireless communications and radio-frequency identification (RFID systems. Two symmetrical quasi-circular arms and two symmetrical round holes are incorporated into the patch of a microstrip antenna to expand its bandwidth. The diameter and position of the circular slots are optimized to achieve a wide bandwidth. The validity of the design concept is demonstrated by means of a prototype having a bandwidth of about 40.1%. The return loss of the butterfly-shaped antenna is greater than 10 dB between 4.15 and 6.36 GHz. The antenna can serve simultaneously most of the modern wireless communication standards.

  9. Bandwidth optimization of compact microstrip antenna for PCS/DCS/bluetooth application

    Science.gov (United States)

    Singh, Vinod; Ali, Zakir; Ayub, Shahanaz; Singh, Ashutosh

    2014-09-01

    A novel compact broadband microstrip patch antenna is presented for various wireless applications. The proposed antenna has been fabricated and the impedance bandwidth and radiation pattern are measured. The simulated and measured antenna characteristics along with radiation pattern and gain are presented. It is stated that the proposed designed antenna can completely cover the required band widths of Digital communication system (DCS 1.71-1.88 GHz), Personal communication system (PCS 1.85-1.88 GHz) and IEEE 802.11b/g (2.4-2.485 GHz) with satisfactory radiation characteristics. The Experimental result shows that the proposed antenna presents a bandwidth 60.25% covering the range of 1.431-2.665 GHz with the maximum radiation efficiency 90%.

  10. EFFECT OF TEMPERATURE ON THE PERFORMANCE OF A CYLINDRICAL MICROSTRIP PRINTED ANTENNA FOR TM01MODE USING DIFFERENT SUBSTRATES

    Directory of Open Access Journals (Sweden)

    A. Elrashidi

    2011-10-01

    Full Text Available A temperature is one of the parameters that have a great effect on the performance of microstrip antennasfor TM01 mode. The effect of temperature on a resonance frequency, input impedance, voltage standingwave ratio, and return loss on the performance of a cylindrical microstrip printed antenna is studied inthis paper. The effect of temperature on electric and magnetic fields are also studied. Three differentsubstrate materials RT/duroid-5880 PTFE, K-6098 Teflon/Glass, and Epsilam-10 ceramic-filled Teflonare used for verifying the new model for a microstrip antenna for its flexibility on cylindrical bodies.

  11. Bandwidth enhancement of a dual band planar monopole antenna using meandered microstrip feeding.

    Science.gov (United States)

    Ahsan, M R; Islam, M T; Habib Ullah, M; Misran, N

    2014-01-01

    A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the -10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz-1 GHz) and at upper band is 28% (2.25 GHz-2.95 GHz). The measured maximum gains of -1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications.

  12. A Novel Performance Analysis of the Microstrip Antenna Printed on a Cylindrical Body

    Directory of Open Access Journals (Sweden)

    Amr M. Mahros

    2014-01-01

    Full Text Available Performance of a circular patch microstrip antenna is highly affected by the effective dielectric constant of a used substrate material. When the circular patch is conformed on a cylindrical body, the effective dielectric constant is changing with curvature due to the changing in the fringing field. Consequently, some of antenna parameters such as resonance frequency, input impedance, voltage standing wave ratio, return loss, quality factor, and antenna bandwidth are functions of curvature. In this work, we study the effect of curvature on the performance of circular patch microstrip antenna. A mathematical model for the antenna parameters as functions of curvature is also introduced. The model is applied in case of using two substrates of different refractive index values. By extension, the antenna performance was studied through simulation by using method of moments (MoM which is reliable in solving Maxwell’s integral equations in the frequency domain. The results from simulation compare very favorably with the described analytical results.

  13. Quality Factor Effect on the Wireless Range of Microstrip Patch Antenna Strain Sensors

    Directory of Open Access Journals (Sweden)

    Ali Daliri

    2014-01-01

    Full Text Available Recently introduced passive wireless strain sensors based on microstrip patch antennas have shown great potential for reliable health and usage monitoring in aerospace and civil industries. However, the wireless interrogation range of these sensors is limited to few centimeters, which restricts their practical application. This paper presents an investigation on the effect of circular microstrip patch antenna (CMPA design on the quality factor and the maximum practical wireless reading range of the sensor. The results reveal that by using appropriate substrate materials the interrogation distance of the CMPA sensor can be increased four-fold, from the previously reported 5 to 20 cm, thus improving considerably the viability of this type of wireless sensors for strain measurement and damage detection.

  14. Hardware Neural Networks Modeling for Computing Different Performance Parameters of Rectangular, Circular, and Triangular Microstrip Antennas

    Directory of Open Access Journals (Sweden)

    Taimoor Khan

    2014-01-01

    Full Text Available In the last one decade, neural networks-based modeling has been used for computing different performance parameters of microstrip antennas because of learning and generalization features. Most of the created neural models are based on software simulation. As the neural networks show massive parallelism inherently, a parallel hardware needs to be created for creating faster computing machine by taking the advantages of the parallelism of the neural networks. This paper demonstrates a generalized neural networks model created on field programmable gate array- (FPGA- based reconfigurable hardware platform for computing different performance parameters of microstrip antennas. Thus, the proposed approach provides a platform for developing low-cost neural network-based FPGA simulators for microwave applications. Also, the results obtained by this approach are in very good agreement with the measured results available in the literature.

  15. An Efficient Analysis Method for Cylindrical Conformal Microstrip Antenna Fed by Microstripline

    Directory of Open Access Journals (Sweden)

    Chengyou Yin

    2012-01-01

    Full Text Available Firstly, a domain-division solution is provided in this paper, which can solve Hankel function’s singular problem of Sommerfeld integral in calculating the spatial domain Green function for cylindrically stratified media and realize the computation for all elements of -matrix in the method of moment. Then, the arbitrary shape cylindrical conformal microstrip antenna (CCMA fed by microstripline is theoretically analysed using the RWG basis function. Numerical results are presented in the form of mutual coupling between two current modes and electromagnetic characteristics of a CCMA fed by microstripline. The results show that, comparing with the planar counterpart microstrip antenna, the reflection coefficient of the CCMA increases, the current on the microstripline varies sharply, and the backward radiation field appears. However, the frontward radiation field of the CCMA is similar to the planar case.

  16. Tri-band microstrip antenna design for wireless communication applications

    Science.gov (United States)

    Sami, Gehan; Mohanna, Mahmoud; Rabeh, Mohamed L.

    2013-06-01

    This paper introduces a novel rectangular tri-band patch antenna that is fabricated and measured for wireless communication systems. The introduced antenna is designed for WLAN and WiMAX applications. The desired tri-band operation was obtained by proper loading for a rectangular patch antenna using slots and shorting pins. The optimal location and dimension for the loaded elements were obtained with the aid of interfacing a Genetic Algorithm (GA) model with an Ansoft High Frequency Structural Simulator (HFSS). The results obtained from our simulated antenna show 5.8% impedance matching band width at 2.4 GHz, 3.7% at 3.5 GHz and 1.57% at 5.7 GHz. In addition, an equivalent circuit of the proposed antenna is introduced using the least square curve fitting optimization technique.

  17. Circularly Polarized Transparent Microstrip Patch Reflectarray Integrated with Solar Cell for Satellite Applications

    Directory of Open Access Journals (Sweden)

    S. H. Zainud-Deen

    2016-01-01

    Full Text Available Circularly polarized (CP transparent microstrip reflectarray antenna is integrated with solar cell for small satellite applications at 10 GHz. The reflectarray unit cell consists of a perfect electric conductor (PEC square patch printed on an optically transparent substrate with the PEC ground plane. A comparison between using transparent conducting polymers and using the PEC in unit-cell construction has been introduced. The waveguide simulator is used to calculate the required compensation phase of each unit cell in the reflectarray. The radiation characteristics of 13 × 13 CP transparent reflectarray antenna are investigated. A circularly polarized horn antenna is used to feed the reflectarray. The solar cell is incorporated with the transparent reflectarray on the same area. The solar-cell integration with the reflectarray reduces the maximum gain by about 0.5 dB due to the increase in the magnitude of the reflection coefficient. The results are calculated using the finite integral technique (FIT.

  18. A Study of Microstrip Antennas for Multiple Band and High Frequency Operations.

    Science.gov (United States)

    1986-03-01

    becomes dual algebraic equations eme~ eunp inc +x A + ax(Km KraI - E (P)Gxx(kmn)J~ ’Y( y Dn) Y( mn A x mn mn (2.3-1) ezJ;Z+ eyy(mn) m ;) _ Einc) mn yx mn...Press, 1966. [251 J. S. Herd and D. M. Pozar, "Design of a microstrip antenna array fed by a Rotman lens," IEEE/AP-S Symposium Proceedings, Boston MA

  19. Hardware Neural Networks Modeling for Computing Different Performance Parameters of Rectangular, Circular, and Triangular Microstrip Antennas

    OpenAIRE

    2014-01-01

    In the last one decade, neural networks-based modeling has been used for computing different performance parameters of microstrip antennas because of learning and generalization features. Most of the created neural models are based on software simulation. As the neural networks show massive parallelism inherently, a parallel hardware needs to be created for creating faster computing machine by taking the advantages of the parallelism of the neural networks. This paper demonstrates a generaliz...

  20. Novel Closed-Form Solution for Analyzing Mutual Coupling Between Cylindrical Comformal Rectangular Microstrip Patch Antennas

    Institute of Scientific and Technical Information of China (English)

    何芒; 徐晓文

    2003-01-01

    Based on the integral equation formulations and the moment method, a novel closed-form solution for analyzing the mutual coupling effect between the cylindrical comformal rectangular microstrip patch antennas is presented. By using this algorithm, the elements of the impedance matrix and exciting vector are cast into closed-forms, thus the computational efficiency is improved dramatically. Numerical results are presented to verify the validity and reliability of the algorithm.

  1. RECONFIGURABLE DUAL-BAND CIRCULARLY POLARIZED MICROSTRIP PATCH ANTENNA FOR WIRELESS APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    Belhachat Messaouda; Bakir Mohammed; Zhu Shouzheng; Liu Jingao

    2004-01-01

    A new design of reconfigurable single-feed circular patch microstrip antenna for dual-band circular polarization application is proposed. The dual-band functionality is realized through incorporating cross-slots of equal slot length in the circular patch and utilizing two PIN diodes to switch the slots on or off. A pairs of tuning stubs are used to tune the circular polarization performance. The design process is presented and good results were obtained.

  2. An Experimental Study of Curved Rectangular Microstrip Antenna in Simulated Plasma Medium

    Directory of Open Access Journals (Sweden)

    Prem Bhushan Mital

    1996-01-01

    Full Text Available The effect of plasma on the radiation characteristics of curved rectangular microstrip antenna is studied by means of a new plasma simulation technique. Unlike previous techniques [1,2], a relative index of refraction less than unity is obtained by representing free space with a high dielectric constant sodium chloride powder and plasma by a medium of lower dielectric constant (air. A wide range of dielectric constants of simulated plasma could be possible with this technique using solid dielectrics instead of liquids. It is observed that the resonance frequency is not affected by the curvature of the antenna. However radiation patterns are significantly affected.

  3. Understanding and optimizing microstrip patch antenna cross polarization radiation on element level for demanding phased array antennas in weather radar applications

    Science.gov (United States)

    Vollbracht, D.

    2015-11-01

    The antenna cross polarization suppression (CPS) is of significant importance for the accurate calculation of polarimetric weather radar moments. State-of-the-art reflector antennas fulfill these requirements, but phased array antennas are changing their CPS during the main beam shift, off-broadside direction. Since the cross polarization (x-pol) of the array pattern is affected by the x-pol element factor, the single antenna element should be designed for maximum CPS, not only at broadside, but also for the complete angular electronic scan (e-scan) range of the phased array antenna main beam positions. Different methods for reducing the x-pol radiation from microstrip patch antenna elements, available from literature sources, are discussed and summarized. The potential x-pol sources from probe fed microstrip patch antennas are investigated. Due to the lack of literature references, circular and square shaped X-Band radiators are compared in their x-pol performance and the microstrip patch antenna size variation was analyzed for improved x-pol pattern. Furthermore, the most promising technique for the reduction of x-pol radiation, namely "differential feeding with two RF signals 180° out of phase", is compared to single fed patch antennas and thoroughly investigated for phased array applications with simulation results from CST MICROWAVE STUDIO (CST MWS). A new explanation for the excellent port isolation of dual linear polarized and differential fed patch antennas is given graphically. The antenna radiation pattern from single fed and differential fed microstrip patch antennas are analyzed and the shapes of the x-pol patterns are discussed with the well-known cavity model. Moreover, two new visual based electromagnetic approaches for the explanation of the x-pol generation will be given: the field line approach and the surface current distribution approach provide new insight in understanding the generation of x-pol component in microstrip patch antenna radiation

  4. Dual-Frequency Operation of Bow-Tie Microstrip Antenna%蝶形微带天线的双频工作

    Institute of Scientific and Technical Information of China (English)

    钟顺时; 张需溥

    2005-01-01

    Characteristics of a single-feed dual-frequency bow-tie microstrip antenna are studied. By using the variation method, simple formulas for resonant frequencies of the bow-tie microstrip antenna are derived. It is shown that the dual-frequency ratio can be controlled easily by choosing the parameters of the antenna. This design gives compact antenna size and simple antenna structure. Experimental results are presented, verifying the validity of the design.

  5. Reduction of the In-Band RCS of Microstrip Patch Antenna by Using Offset Feeding Technique

    Directory of Open Access Journals (Sweden)

    Weiwei Xu

    2014-01-01

    Full Text Available This paper presents a method for implementing a low in-band scattering design for microstrip patch antennas based on the analysis of structural mode scattering and radiation characteristics. The antenna structure is first designed to have the lowest structural mode scattering in a desired frequency band. The operating frequency band of the antenna is then changed to coincide with that of the lowest structural mode scattering by adjusting the feed position on the antenna (offset feeding to achieve an antenna with low in-band radar cross section (RCS. In order to reduce the level of cross polarization of the antenna caused by offset feeding, symmetry feeding structures for both single patch antennas and two-patch arrays are proposed. Examples that show the efficiency of the method are given, and the results illustrate that the in-band RCS of the proposed antennas can be reduced by as much as 17 dBsm for plane waves impinging from the normal direction compared to patch antennas fed by conventional methods.

  6. A Multiband Proximity-Coupled-Fed Flexible Microstrip Antenna for Wireless Systems

    Directory of Open Access Journals (Sweden)

    Giovanni Andrea Casula

    2016-01-01

    Full Text Available A multiband printed microstrip antenna for wireless communications is presented. The antenna is fed by a proximity-coupled microstrip line, and it is printed on a flexible substrate. The antenna has been designed using a general-purpose 3D computer-aided design software (CAD, CST Microwave Studio, and then realized. The comparison between simulated and measured results shows that the proposed antenna can be used for wireless communications for WLAN systems, covering both the WLAN S-band (2.45 GHz and C-band (5.2 GHz, and the Wi-Max 3.5 GHz band, with satisfactory input matching and broadside radiation pattern. Moreover, it has a compact size, is very easy to realize, and presents a discrete out-of-band rejection, without requiring the use of stop-band filters. The proposed structure can be used also as a conformal antenna, and its frequency response and radiated field are satisfactory for curvatures up to 65°.

  7. A Compact Microstrip Slot Antenna for C-Band Application Mohit Barthwal*, Anurag Singh

    Directory of Open Access Journals (Sweden)

    Mohit Barthwal

    2014-05-01

    Full Text Available In this paper author presents a compact microstrip slot antenna for C band application .The antenna is designed on Roger RT Duroid 5880 (1.5mm substrate with permittivity 2.2 and dimension of ground plane 20x24 mm2 . The patch has a dimension of 12x14 mm2 on which slots are been made .The proposed antenna is able to achieve impedance bandwidth of 200MHz from 6.11GHz to 6.31 GHz and has a maximum gain of 4.9dBi at resonant frequency. Return loss, Electric field distribution, Polar plot, Radiation pattern and directivity of the proposed antenna is obtained and studied in this paper. All simulations are done on HFSS software.

  8. Review of Microstrip Patch Antenna for WLAN and WiMAX Application

    Directory of Open Access Journals (Sweden)

    Neha Parmar ,

    2014-01-01

    Full Text Available In this rapid changing world in wireless communication, dual or multiband antenna has been playing a key role for wireless service requirements. Wireless local area network (WLAN and Worldwide Interoperability for Microwave Access (WiMAX have been widely applied in mobile devices such as handheld computers and smart phones. These two techniques have been widely considered as a cost-effective, flexible, reliable and high-speed data connectivity solution, enabling user mobility. This paper presents a literature survey of dual band rectangular patch antenna for WLAN and WiMAX application with variety of substrate, feed techniques and slots. In this paper we also discuss the basics of microstrip antenna, various feeding techniques, design model and antenna paramerters with their advantage and disadvantages.

  9. Multiband Microstrip Antenna for Wi-MAX Application-A study

    Directory of Open Access Journals (Sweden)

    Sandip Khakhriya

    2015-01-01

    Full Text Available The wireless revolution is transforming the existing global telecommunications networks into an integrated system providing a broad class of communication services to customers anywhere, anytime in motion or fixed. An antenna is an important device in wireless communication system as its performance will have direct effect on the total system. The continuous shrinking of size of the electronic systems demands small size of antenna elements which can cater the need of multiband operation in order to fit properly in wireless devices without compromising the radiation properties of the antenna. This paper presents a review of the research work done by various authors on the topic multiband microstrip antenna for Wi-MAX application in the recent past

  10. A novel broadband and high-gain microstrip reflectarray antenna with variable polarization

    Institute of Scientific and Technical Information of China (English)

    Zhihang WU; Wenxun ZHANG; Zhenguo LIU; Wei SHEN

    2008-01-01

    This article proposes a new kind of microstrip reflectarray antenna, of which the polarization could be reconfigured among all the polarization states instead of some fixed states in a dual- or multi-polarized antenna. The mechanism for polarized variability is so simple that only mechanical rotation is needed. Theoretical analysis shows that the refected polarization covers all states and that the dual- or multi-layered unit structure sandwiched with air-gaps can broaden the bandwidth efficiently. Moreover, it is demonstrated that adopting more elements can enhance antenna gain. With these advanta-geous features, this kind of antenna has the potential significance for engineering applications in radar, com-munication, etc. In this article, a complete theoretical analysis as well as a specific design sample is given to verify this method.

  11. Millimeter-Wave Microstrip Antenna Array Design and an Adaptive Algorithm for Future 5G Wireless Communication Systems

    Directory of Open Access Journals (Sweden)

    Cheng-Nan Hu

    2016-01-01

    Full Text Available This paper presents a high gain millimeter-wave (mmW low-temperature cofired ceramic (LTCC microstrip antenna array with a compact, simple, and low-profile structure. Incorporating minimum mean square error (MMSE adaptive algorithms with the proposed 64-element microstrip antenna array, the numerical investigation reveals substantial improvements in interference reduction. A prototype is presented with a simple design for mass production. As an experiment, HFSS was used to simulate an antenna with a width of 1 mm and a length of 1.23 mm, resonating at 38 GHz. Two identical mmW LTCC microstrip antenna arrays were built for measurement, and the center element was excited. The results demonstrated a return loss better than 15 dB and a peak gain higher than 6.5 dBi at frequencies of interest, which verified the feasibility of the design concept.

  12. A Broadband and High Gain Metamaterial Microstrip Antenna

    Science.gov (United States)

    2010-05-08

    Electromagn. Waves Appl. 19, 2033 (2005). [27] N. Matsunaga, A. Sanada, and H. Kubo, IEICE Trans. Electron . E89-C, 1276 (2006). [28] Macro A. Antoniades, and...Periodic Arrays Using CBFM/AIM,” IEEE Transactions on Antennas and Propagation, vol. 58, to appear, 2010 • Wei-Jiang Zhao, Le-Wei Li, and Li Hu...Efficient Current-Based Hybrid Analysis of Wire Antennas Mounted on a Large Realistic Aircraft,” IEEE Transactions on Anten- nas and Propagation, vol. 58, no

  13. Design of 8 Elements Wideband Circularly Polarized Microstrip Array Antenna%8元宽频带圆极化微带天线阵的设计

    Institute of Scientific and Technical Information of China (English)

    胡永金; 丁卫平; 柴仁文

    2011-01-01

    采用空气夹层的双层圆形微带贴片结构,通过Wilkinson功分移相器进行馈电,设计了宽带圆极化天线单元以及8元圆极化微带阵列天线,并加工制作了天线阵实物。实测结果表明:该阵列天线在2.0GHz2.5GHz频率范围内,圆极化轴比小于3dB,回波损耗小于一10dB,增益大于12dB,满足S频段卫星测控系统天线的指标要求。%Double-layer circular microstrip patch with air interlayer structure and Wilkinson power divider series phase shifter were applied to the design of wideband circularly polarized microstrip antenna element and 8 elements array antenna. The array antenna was fabricated and measured, with the axial ratio of the array antenna below 3 dB from 2.0 to 2. 5 GHz, its return loss below --10 dB, and its gain more than 12 dB in the bandwidth. Measured results show that the array antenna satisfies the requirements of S band satellite telemetry and control system application.

  14. Wide band Slotted Microstrip Antenna for Wireless communications

    Directory of Open Access Journals (Sweden)

    Pawan Kumar

    2013-01-01

    Full Text Available The proposed antenna design approach is based on a single-layer, rectangular patch (Length=80mm and Width=60mm with inverted U-slot, horizontal and vertical edge slots on the patch with coaxial probe feed. The proposed antenna is modeled using IE3D electromagnetic (EM simulation packages namely IE3D from Zeland. The proposed antenna shows the return loss below -10dB in the frequency range from 3.5GHz to 8.3GHz.The maximum directive gain is 4.8 dBi at 6.0GHz and minimum VSWR isfound1.6 at 4.0 GHz. The antenna design is suitable for wireless local area network (WLAN operation in the 5.2/5.5/5.8 GHz band. However, to further support the worldwide interoperability for microwave access (WiMAX applications and sufficiently large bandwidth to cover the 5.8 GHz WiMAX bands.

  15. Design & Analysis of Microstrip Patch Antenna Using Different Dielectric Materials for WiMAX Communication System

    Directory of Open Access Journals (Sweden)

    Md. Moidul Islam

    2016-03-01

    Full Text Available This Paper presents Microstrip patch antenna for WiMAX communication system which operate at 5.8 GHz frequency band. The main objective of this paper is to design and observe the performance of the designed microstrip patch antenna for different dielectric materials. The size of the designed antenna has been also miniaturized. Better performance is observed for FR4 and dupont-951 dielectric material. For FR4 radiation efficiency is-2.776 dB and total efficiency is -3.026 dB at 5.8 GHz, this indicates better performance. And for dupont-951 the return loss is much lower comparing to the other dielectric materials used in this research, which is -16.609 dB. Also for dupont-951 and FR4, VSWR is found 1.35 and 1.7 respectively which is desirable. Also the size of the antenna has been reduced. In this paper we also observed and analyzed the radiation pattern of far field region, gain, radiation efficiency and total efficiency for different dielectric materials.

  16. Mobile satellite communications - Vehicle antenna technology update

    Science.gov (United States)

    Bell, D.; Naderi, F. M.

    1986-01-01

    This paper discusses options for vehicle antennas to be used in mobile satellite communications systems. Two types of antennas are identified. A non-steerable, azimuthally omnidirectional antenna with a modest gain of 3 to 5 dBi is suggested when a low cost is desired. Alternatively, mechanically or electronically steerable antennas with a higher gain of 10 to 12 dBi are suggested to alleviate power and spectrum scarcity associated with mobile satellite communications. For steerable antennas, both open-loop and closed-loop pointing schemes are discussed. Monopulse and sequential lobing are proposed for the mechanically steered and electronically steered antennas, respectively. This paper suggests a hybrid open-loop/closed-loop pointing technique as the best performer in the mobile satellite environment.

  17. Design and Analysis of Miniaturized Microstrip Patch Antenna with Metamaterials Based on Modified Split-Ring Resonator for UWB Applications

    Science.gov (United States)

    Khedrouche, D.; Bougoutaia, T.; Hocini, A.

    2016-11-01

    In this paper, a miniaturized microstrip patch antenna using a negative index metamaterial with modified split-ring resonator (SRR) unit cells is proposed for ultra-wideband (UWB) applications. The new design of metamaterial based microstrip patch antenna has been optimized to provide an improved bandwidth and multiple frequency operations. All the antenna performance parameters are presented in response-graphs. Also it is mentioned that the physical dimensions of the metamaterial based patch antenna are very small, which is convenient to modern communication. A 130 % bandwidth, covering the frequency band of 2.9-13.5 GHz, (for return loss less than or equal -10 dB) is achieved, which allow the antenna to operate in the Federal Communication Commission (FCC) band. In addition, the antenna has a good radiation pattern in the ultra-wide band spectrum, and it is nearly omnidirectional.

  18. Radiation and Resonant Frequency of Superconducting Annular Ring Microstrip Antenna on Uniaxial Anisotropic Media

    Science.gov (United States)

    Barkat, Ouarda; Benghalia, Abdelmadjid

    2009-10-01

    In this work, the full-wave method is used for computing the resonant frequency, the bandwidth, and radiation pattern of High temperature superconductor, or an imperfectly conducting annular ring microstrip, which is printed on uniaxial anisotropic substrate. Galerkin’s method is used in the resolution of the electric field integral equation. The TM set of modes issued from the cavity model theory are used to expand the unknown currents on the patch. Numerical results concerning the effect of the anisotropic substrates on the antenna performance are presented and discussed. It is found that microstrip superconducting could give high efficiency with high gain in millimeter wavelengths. Results are compared with previously published data and are found to be in good agreement.

  19. Dual frequency, dual polarized, multi-layered microstrip slot and dipole array antenna

    Science.gov (United States)

    Tulintseff, Ann N. (Inventor)

    1995-01-01

    An antenna array system is disclosed which uses subarrays of slots and subarrays of dipoles on separate planes. The slots and dipoles respectively are interleaved, which is to say there is minimal overlap between them. Each subarray includes a microstrip transmission line and a plurality of elements extending perpendicular thereto. The dipoles form the transmission elements and the slots form the receive elements. The plane in which the slots are formed also forms a ground plane for the dipoles--hence the feed to the dipole is on the opposite side of this ground plane as the feed to the slots. HPAs are located adjacent the dipoles on one side of the substrate and LNAs are located adjacent the slots on the other side of the substrate. The dipoles and slots are tuned by setting different offsets between each element and the microstrip transmission line.

  20. Design of Compact Penta-Band and Hexa-Band Microstrip Antennas

    Science.gov (United States)

    Srivastava, Kunal; Kumar, Ashwani; Kanaujia, Binod K.

    2016-03-01

    This paper presents the design of two multi-band microstrip antennas. The antenna-1 gives Penta-Band and antenna-2 gives Hexa-band in the WLAN band. The frequency bands of the antenna-1 are Bluetooth 2.47 GHz (2.43 GHz-2.54 GHz), WiMax band 3.73 GHz (3.71 GHz-3.77 GHz), WLAN 5.1 GHz (4.99 GHz-5.13 GHz), upper WLAN 6.36 GHz (6.29 GHz-6.43 GHz), C band band 7.42 GHz (7.32 GHz-7.50 GHz) and the antenna-2 are WLAN band 2.6 GHz (2.56 GHz-2.63 GHz), 3.0 GHz (2.94 GHz-3.05 GHz), WiMax band 3.4 GHz (3.34 GHz-3.55 GHz), 4.85 GHz (4.81 GHz-4.92 GHz), WLAN 5.3 GHz (5.27 GHz-5.34 GHz) and upper WLAN 6.88 GHz. Both the antennas are fabricated and their measured results are presented to validate the simulated results. Proposed antennas have compact sizes and good radiation performances.

  1. Broadband RCS Reduction of Microstrip Patch Antenna Using Bandstop Frequency Selective Surface

    Directory of Open Access Journals (Sweden)

    H. H. Yang

    2013-12-01

    Full Text Available In this article, a simple and effective approach is presented to reduce the Radar Cross Section (RCS of microstrip patch antenna in ultra broad frequency band. This approach substitutes a metallic ground plane of a conventional patch antenna with a hybrid ground consisting of bandstop Frequency Selective Surface (FSS cells with partial metallic plane. To demonstrate the validity of the proposed approach, the influence of different ground planes on antenna’s performance is investigated. Thus, a patch antenna with miniaturized FSS cells is proposed. The results suggest that this antenna shows 3dB RCS reduction almost in the whole out-of operating band within 1-20GHz for wide incident angles when compared to conventional antenna, while its radiation characteristics are sustained simultaneously. The reasonable agreement between the measured and the simulated results verifies the efficiency of the proposed approach. Moreover, this approach doesn’t alter the lightweight, low-profile, easy conformal and easy manufacturing nature of the original antenna and can be extended to obtain low-RCS antennas with metallic planes in broadband that are quite suitable for the applications which are sensitive to the variation of frequencies.

  2. Tracking antenna architectures based on an integrated mixer microstrip patch array

    CERN Document Server

    Gupta, S

    1997-01-01

    The object of this work is to design, develop and characterize both theoretically and experimentally a compact integrated mixer microstrip patch antenna which exhibits a low level of cross-polarization. Modelling of this antenna using various CAD techniques and supporting measurements has led to a clearer understanding of its operation and the optimization of its design. The attractiveness of such a frequency scaleable design lies in the inherent simplicity and ease with which it can be used to produce an intermediate frequency (IF) signal with minimum circuit complexity and low cross-polar levels. The operation of the integrated mixer antenna circuit is exploited under the phenomenon of injection locking for its potential for direct phase modulation and detection. It leads to new vistas of study such as IF phase-shifterless beam steering. Here the desired phased shift is derived through injection locking and achieved solely by the DC bias control, thus eliminating the need for phase shifters and feed network...

  3. Design and performance of a broadband circularly polarized modified semi-elliptical microstrip patch antenna

    Science.gov (United States)

    Sharma, Brajraj; Sharma, Vijay; Tiwari, Ajay; Sharma, K. B.; Bhatnagar, Deepak

    2013-01-01

    In this communication design and performance of a modified semi elliptical microstrip patch antenna is proposed to achieve circularly polarized broadband performance. The proposed structure consists of a semi-elliptical patch having a D-shaped slot designed on three layered substrate material. The structure has two FR-4 substrates separated by a foam material having 1 mm thickness. The simulation analysis is carried out by using IE3D simulation software. The proposed antenna covers entire median band (3.4 to 3.69 GHz) allocated for Wi-Max communication systems. Two modes having resonance frequencies very close to each other (3.36 GHz and 3.66 GHz) are excited to achieve broadband performance. The impedance bandwidth of proposed antenna is close to 21%. The minimum axial ratio is close to 1.8dB while axial ratio bandwidth is close to 4.63%. The radiation patterns within bandwidth are almost identical in shape.

  4. Novel Microstrip Patch Antennas with Frequency Agility, Polarization Reconfigurability, Dual Null Steering Capability and Phased Array Antenna with Beam Steering Performance

    Science.gov (United States)

    Babakhani, Behrouz

    Nowadays the wireless communication technology is playing an important role in our daily life. People use wireless devices not only as a conventional communication device but also as tracking and navigation tool, web browsing tool, data storage and transfer tool and so for many other reasons. Based on the user demand, wireless communication engineers try to accommodate as many as possible wireless systems and applications in a single device and therefore, creates a multifunctional device. Antenna, as an integral part of any wireless communication systems, should also be evolved and adjusted with development of wireless transceiver systems. Therefore multifunctional antennas have been introduced to support and enhance the functionality on modern wireless systems. The main focus and contribution of this thesis is design of novel multifunctional microstrip antennas with frequency agility, polarization reconfigurablity, dual null steering capability and phased array antenna with beam steering performance. In this thesis, first, a wide bandwidth(1.10 GHz to 1.60 GHz) right-handed circularly polarized (RHCP) directional antenna for global positioning system (GPS) satellite receive application has been introduced which covers all the GPS bands starting from L1 to L5. This design consists of two crossed bow-tie dipole antennas fed with sequentially phase rotated feed network backed with an artificial high impedance surface (HIS) structure to generate high gain directional radiation patterns. This design shows good CP gain and axial ratio (AR) and wide beamwidth performance. Although this design has good radiation quality, the size and the weight can be reduced as future study. In the second design, a frequency agile antenna was developed which also covers the L-band (L1 to L5) satellite communication frequencies. This frequency agile antenna was designed and realized by new implementation of varactor diodes in the geometry of a circular patch antenna. Beside wide frequency

  5. Fine-Tuning on the Effective Patch Radius Expression of the Circular Microstrip Patch Antennas

    Directory of Open Access Journals (Sweden)

    A. E. Yilmaz

    2010-09-01

    Full Text Available In this study, the effective patch radius expression for the circular microstrip antennas is improved by means of several manipulations. Departing from previously proposed equations in the literature, one of the most accurate equations is picked up, and this equation is fine-tuned by means of Particle Swarm Optimization technique. Throughout the study, impacts of other parameters (such as the definition of the fitness/objective function, the degree-of-freedom in the proposed effective patch radius expression, the number of measured resonant frequency values are observed in a controlled manner. Finally, about 3% additional improvement is achieved over a very accurate formula, which was proposed earlier.

  6. Study of LDPE/Al2O3 composite material as substrate for microstrip antenna

    Science.gov (United States)

    Sarmah, Debashis; Bhattacharyya, N. S.; Bhattacharyya, S.; Gogoi, J. P.

    2013-01-01

    Low density polyethylene (LDPE)/Alumina (Al2O3) composite systems have been studied as an alternate substrate for microstrip patch antennas (MPA). Morphological, thermal and microwave characterizations of the composites are carried out for different volume fractions of Al2O3 in the LDPE matrix. The size and the distribution of alumina particles are quite uniform in the composite. Enhancement of thermal and microwave properties of the composite over the parent polymer is observed. Simple rectangular MPA in X-band is fabricated on the composite material to verify its applicability as substrates for MPA. A return loss of ~ -26dB is observed at the design frequency.

  7. Effect of Wire Space and Weaving Pattern on Performance of Microstrip Antennas Integrated in the Three Dimensional Orthogonal Woven Composites

    Science.gov (United States)

    Yao, Lan; Wang, Xin; Xu, Fujun; Jiang, Muwen; Zhou, Dongchun; Qiu, Yiping

    2012-02-01

    A conformal load-bearing antenna structure (CLAS) combines the antenna into a composite structure such that it can carry the designed load while functioning as an antenna. Novel microstrip antennas woven into the three dimensional orthogonal woven composite were proposed in our previous study. In order to determine the effect of the space between the conductive wires on the antenna performance, different space ratios of 1.7, 2.3 and 4.6 were considered in the design. Simulation results showed that when the space ratio increased, the frequency shift and return loss of the corresponding antenna became larger. And the antenna had relatively good performance when the space ratio reached 1.7. Two types of antennas were designed and fabricated with the ratio of 1.7 and 1 respectively and both of them obtained agreeable results. It was also demonstrated by the experimental that the orthogonal structure patch antenna had similar radiation pattern with the traditional copper foil microstrip antenna. However, the interlaced patch antenna had large back and side lobes in the radiation pattern because the existence of the curvature of copper wires in interlaced coupons lowered the reflective efficiency of the ground.

  8. Low-cost dielectric substrate for designing low profile multiband monopole microstrip antenna.

    Science.gov (United States)

    Ahsan, M R; Islam, M T; Habib Ullah, M; Arshad, H; Mansor, M F

    2014-01-01

    This paper proposes a small sized, low-cost multiband monopole antenna which can cover the WiMAX bands and C-band. The proposed antenna of 20 × 20 mm(2) radiating patch is printed on cost effective 1.6 mm thick fiberglass polymer resin dielectric material substrate and fed by 4 mm long microstrip line. The finite element method based, full wave electromagnetic simulator HFSS is efficiently utilized for designing and analyzing the proposed antenna and the antenna parameters are measured in a standard far-field anechoic chamber. The experimental results show that the prototype of the antenna has achieved operating bandwidths (voltage stand wave ratio (VSWR) less than 2) 360 MHz (2.53-2.89 GHz) and 440 MHz (3.47-3.91 GHz) for WiMAX and 1550 MHz (6.28-7.83 GHz) for C-band. The simulated and measured results for VSWR, radiation patterns, and gain are well matched. Nearly omnidirectional radiation patterns are achieved and the peak gains are of 3.62 dBi, 3.67 dBi, and 5.7 dBi at 2.66 GHz, 3.65 GHz, and 6.58 GHz, respectively.

  9. Low-Cost Dielectric Substrate for Designing Low Profile Multiband Monopole Microstrip Antenna

    Science.gov (United States)

    Ahsan, M. R.; Islam, M. T.; Habib Ullah, M.; Arshad, H.; Mansor, M. F.

    2014-01-01

    This paper proposes a small sized, low-cost multiband monopole antenna which can cover the WiMAX bands and C-band. The proposed antenna of 20 × 20 mm2 radiating patch is printed on cost effective 1.6 mm thick fiberglass polymer resin dielectric material substrate and fed by 4 mm long microstrip line. The finite element method based, full wave electromagnetic simulator HFSS is efficiently utilized for designing and analyzing the proposed antenna and the antenna parameters are measured in a standard far-field anechoic chamber. The experimental results show that the prototype of the antenna has achieved operating bandwidths (voltage stand wave ratio (VSWR) less than 2) 360 MHz (2.53–2.89 GHz) and 440 MHz (3.47–3.91 GHz) for WiMAX and 1550 MHz (6.28–7.83 GHz) for C-band. The simulated and measured results for VSWR, radiation patterns, and gain are well matched. Nearly omnidirectional radiation patterns are achieved and the peak gains are of 3.62 dBi, 3.67 dBi, and 5.7 dBi at 2.66 GHz, 3.65 GHz, and 6.58 GHz, respectively. PMID:25136648

  10. Analysis of a class of multi-frequency microstrip antenna for mobile handset

    Directory of Open Access Journals (Sweden)

    Antara Ghosal

    2014-03-01

    Full Text Available This paper described the analysis and design of a square spiral Microstrip. The spiral is formed by introducing slot in a square patch. This spiral design is introduced to use a single structure for dual band/frequency operations by adding tuning elements. The design parameters for a rectangular patch antenna have been calculated from the transmission line model and using MATLAB. The simulation and modeling of this configuration has been done using Ansoft’s HFSS (High Frequency Structure Simulator software. The resonant frequency and dimensions are computed from the cavity model for TM010 mode. The parameters of antenna such as return loss, VSWR, radiation patterns and gain have been found and design is optimized for best results. Experimental results are obtained using Network Analyzer and found good agreement with simulated results

  11. Design and analysis of an electronically steerable microstrip patch and a novel Coplanar Waveguide (CPW) fed slot antenna array

    Science.gov (United States)

    Aldossary, Hamad

    Conformal Phased Array Antennas (CPAAs) are very attractive for their high gain, low profile, and beam scanning ability while being conformal to their mounting surface. Among them are microstrip patch phased arrays and wideband slot phased arrays which are of particular significance. In this work, first the study, design, and implementation of a conformal microstrip patch phased array is presented which consists of a high gain beam scanning array implemented using microstrip delay lines controlled using GaAs SPDT switches. Then the study and design of a wideband Coplanar Waveguide (CPW)-fed slot phased array antenna is presented. In both cases the array beam scanning properties are elucidated by incorporating the measured delay line scattering parameters inside Ansys Designer simulation models and then computing and presenting their full-wave radiation characteristics.

  12. Development of a Relation between Slot Lengths of Microstrip Antenna and Its Resonant Frequencies Using Soft Computing Tool

    Directory of Open Access Journals (Sweden)

    P.Pradhan

    2012-04-01

    Full Text Available A new method of calculation of resonant frequencyof a rectangular patch antenna using Artificial NeuralNetwork (ANN has been adopted in this paper.ANN model has been developed and tested infrequency range of 1GHz to 3GHz to analyzeresonant frequency and slot length in rectangularMicrostrip Patch Antenna. The results obtained usingANN, are compared to the results obtained usingsoftware FEKO and experiment.

  13. Body conformal antennas for superficial hyperthermia: the impact of bending contact flexible microstrip applicators on their electromagnetic behavior

    NARCIS (Netherlands)

    D. Correia; H.P. Kok; M. de Greef; A. Bel; N. van Wieringen; J. Crezee

    2009-01-01

    Hyperthermia is a powerful radiosensitizer for treatment of superficial tumors. This requires body conformal antennas with a power distribution as homogeneous as possible over the skin area. The contact flexible microstrip applicators (CFMA) operating at 434 MHz exist in several sizes, including the

  14. Balance Analysis of Microstrip-to-CPS Baluns and Its Effects on Broadband Antenna Performance

    Directory of Open Access Journals (Sweden)

    Dong Sik Woo

    2013-01-01

    Full Text Available Amplitude and phase balances of two types of microstrip-(MS- to-coplanar stripline (CPS baluns have been analyzed through simulations and measurements, and their effects on broadband antenna performance are investigated. The impedance bandwidth of the balun determined by a back-to-back configuration can sometimes overestimate the balun operating bandwidth. With the conventional balun with a 180° phase delay line, it is observed that the balun balance over the operating frequencies becomes much more improved as the CPS length increases to over 0.1 λg. As compared with the conventional balun, the proposed MS-to-CPS balun demonstrated very wideband performance from 5 to over 20 GHz. With the proposed balun, amplitude and phase imbalances are within 1 dB and ±5°, respectively. Effects of the balun imbalance on overall broadband antenna performance are also discussed with a quasi-Yagi antenna and a narrow beamwidth tapered slot antenna (TSA.

  15. Design and Simulation of a Novel Broadband Circularly Polarized Microstrip Slot Antenna

    Directory of Open Access Journals (Sweden)

    Elaheh Shirazi

    2016-06-01

    Full Text Available In this paper, a novel broadband printed circularly polarized microstrip slot antenna fed by a co planar wave guide (CPW is designed, analyzed and simulated. The structure of the proposed antenna is made of a modified stair-shaped patch in conjunction with a square ground plane with a stair-shaped slot inside it. By using a modified stair-shaped patch and square ground plane, additional resonances are excited and, hence, much wider impedance bandwidth can be produced, especially at the higher band. Moreover, by using this structure, especially by adding two rectangular strip to the ground plane, very broadband axial-ratio bandwidth is obtained. the proposed antenna has dimensions of 45×45×0.8 mm3, which is compatible with the requirements imposed by portable wireless systems. Simulation results exhibits a 81.7% (2.78-6.62 GHz -10 dB impedance bandwidth and a 57.6% (3.5-6.33 GHz 3 dB axial-ratio bandwidth. the antenna performance confirms its viability for commercial portable wireless systems.

  16. Adaptive Forming of the Beam Pattern of Microstrip Antenna with the Use of an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Janusz Dudczyk

    2012-01-01

    Full Text Available Microstrip antenna has been recently one of the most innovative fields of antenna techniques. The main advantage of such an antenna is the simplicity of its production, little weight, a narrow profile, and easiness of integration of the radiating elements with the net of generators power systems. As a result of using arrays consisting of microstrip antennas; it is possible to decrease the size and weight and also to reduce the costs of components production as well as whole application systems. This paper presents possibilities of using artificial neural networks (ANNs in the process of forming a beam from radiating complex microstrip antenna. Algorithms which base on artificial neural networks use high parallelism of actions which results in considerable acceleration of the process of forming the antenna pattern. The appropriate selection of learning constants makes it possible to get theoretically a solution which will be close to the real time. This paper presents the training neural network algorithm with the selection of optimal network structure. The analysis above was made in case of following the emission source, setting to zero the pattern of direction of expecting interference, and following emission source compared with two constant interferences. Computer simulation was made in MATLAB environment on the basis of Flex Tool, a programme which creates artificial neural networks.

  17. Metasurface Reflector (MSR Loading for High Performance Small Microstrip Antenna Design.

    Directory of Open Access Journals (Sweden)

    Md Rezwanul Ahsan

    Full Text Available A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15 is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%, 467 to 606 MHz (29% and 758 MHz to 1062 MHz (40% for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz RFID, WiMAX (3.5/5.5 GHz and WLAN (5.2/5.8 GHz applications.

  18. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design

    Science.gov (United States)

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications. PMID:26018795

  19. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design.

    Science.gov (United States)

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications.

  20. Design and Development of Broadband Inverted E-shaped Patch Microstrip Array Antenna For 3G Wireless Network

    Directory of Open Access Journals (Sweden)

    Norbahiah Misran

    2008-01-01

    Full Text Available Microstrip patch antenna has been received tremendous attention since the last two decades and now it becomes a major component in the development of Smart Antenna System for Third-Generation Wireless Network proposed by the ITU-R under the banner of IMT-2000. Smart antenna consists of an array of antennas associated with it a base-band hardware and control unit (inclusive of the software algorithm that have the capability to change its radiation pattern according to the direction of the user. This paper describes the design and development of broadband Inverted E-shaped patch microstrip array antennas for 3G wireless network. The antenna was designed for the IMT-2000 operating frequency range of 1.885–2.200GHz and was built as an array of 4x4 inverted E-shaped patches. The beamforming feed network comprises of commercial variable attenuators (KAT1D04SA002, variable phase shifters (KPH35OSC000, and the corporate 16-ways Wilkinson power divider which was developed in-house. The antenna successfully achieves the bandwidth of 16.14% (at VSWR: 1.5 with respect to the center frequency of 2.045 GHz. The antenna is capable of scanning with the maximum scanning angle of ±30º and ±25º in azimuth and elevation respectively.

  1. Enhanced bandwidth of a microstrip antenna using a parasitic mushroom-like metamaterial structure for multi-robot cooperative navigation

    Science.gov (United States)

    Lee, Cherl-Hee; Lee, Jonghun; Kim, Yoon-Gu; An, Jinung

    2015-01-01

    The broadband design of a microstrip patch antenna is presented and experimentally studied for multi-robot cooperation. A parasitic mushroom-like metamaterial (MTM) patch close to a microstrip top patch is excited through gap-coupling, thereby producing a resonance frequency. Because of the design, the resonance frequency of the parasitic MTM patch is adjacent to that of the main patch, and the presented antenna can achieve an enhanced bandwidth of 450 MHz, which is about two times the bandwidth of a conventional patch antenna without the MTM parasitic patch. The error rate of packet transmissions for measuring the distance between a leader robot and a follower robot was also improved by almost two-fold.

  2. Circular Microstrip Patch Array Antenna for C-Band Altimeter System

    Directory of Open Access Journals (Sweden)

    Asghar Keshtkar

    2008-01-01

    Full Text Available The purpose of this paper is to discuss the practical and experimental results obtained from the design, construction, and test of an array of circular microstrip elements. The aim of this antenna construction was to obtain a gain of 12 dB, an acceptable pattern, and a reasonable value of SWR for altimeter system application. In this paper, the cavity model was applied to analyze the patch and a proper combination of ordinary formulas; HPHFSS software and Microwave Office software were used. The array includes four circular elements with equal sizes and equal spacing and was planed on a substrate. The method of analysis, design, and development of this antenna array is explained completely here. The antenna is simulated and is completely analyzed by commercial HPHFSS software. Microwave Office 2006 software has been used to initially simulate and find the optimum design and results. Comparison between practical results and the results obtained from the simulation shows that we reached our goals by a great degree of validity.

  3. Theoretical study of two-element array of equilateral triangular patch microstrip antenna on ferrite substrate

    Indian Academy of Sciences (India)

    K K Verma; K R Soni

    2005-09-01

    The radiation characteristics of a two-element array of equilateral triangular patch microstrip antenna on a ferrite substrate are studied theoretically by considering the presence of bias magnetic field in the direction of propagation of electromagnetic waves. It is found that the natural modes of propagation in the direction of magnetic field are left- and right-circularly polarized waves and these modes have different propagation constants. In loss-less isotropic warm plasma, this array antenna geometry excites both electromagnetic (EM) and electroacoustic plasma (P) waves in addition to a nonradiating surface wave. In the absence of an external magnetic field, the EM- and P-waves can be decoupled into two independent modes, the electroacoustic mode is longitudinal while the electromagnetic mode is transverse. The far-zone EM-mode and P-mode radiation fields are derived using vector wave function techniques and pattern multiplication approaches. The results are obtained in both plasma medium and free space. Some important antenna parameters such as radiation conductance, directivity and quality factor are plotted for different values of plasma-to-source frequency.

  4. Satellite antenna layout and optimization in electromagnetic compatibility design

    Science.gov (United States)

    Zhang, Jinshuo; Xie, Shuguo; Liu, Yan

    2009-12-01

    This paper firstly analyzes the main factors that impact the layout of satellite antenna. The uniform geometrical theory of diffraction (UTD) is used to establish mathematical model for calculating the coupling of satellite antenna, and set up the objective function of the placement optimization. The genetic algorithm incorporating high-frequency simulation to minimize antenna coupling by optimally positioning satellite antenna is described in detail. The results of antenna placement on a realistic satellite show that this method is effective in the optimal design of satellite antenna layout for the purpose of electromagnetic compatibility.

  5. Nonuniform Overlapping Method in Designing Microstrip Patch Antennas Using Genetic Algorithm Optimization

    Directory of Open Access Journals (Sweden)

    J. M. Jeevani W. Jayasinghe

    2015-01-01

    Full Text Available Genetic algorithm (GA has been a popular optimization technique used for performance improvement of microstrip patch antennas (MPAs. When using GA, the patch geometry is optimized by dividing the patch area into small rectangular cells. This has an inherent problem of adjacent cells being connected to each other with infinitesimal connections, which may not be achievable in practice due to fabrication tolerances in chemical etching. As a solution, this paper presents a novel method of dividing the patch area into cells with nonuniform overlaps. The optimized design, which is obtained by using fixed overlap sizes, shows a quad-band performance covering GSM1800, GSM1900, LTE2300, and Bluetooth bands. In contrast, use of nonuniform overlap sizes leads to obtaining a pentaband design covering GSM1800, GSM1900, UMTS, LTE2300, and Bluetooth bandswith fractional bands with of 38% due to the extra design flexibility.

  6. Low gain and steerable vehicle antennas for communications with land mobile satellite

    Science.gov (United States)

    Woo, K.

    1982-01-01

    Current development activities at JPL for ground mobile vehicle antennas to be used with the Land Mobile Satellite Service (LMSS) system are described. Both low gain and electronically steerable high gain type antennas are discussed in terms of their design concept and RF performance. For the low gain type, three classes of antennas are under various stages of development. These are the crossed-drooping dipole, quadrifilar helix, and microstrip patch designs. The antennas are intended to provide circularly-polarized radiation with a minimum of 3-dB gain in the angular region from 19 degrees to 60 deg from the horizon in elevation plane and with an omnidirectional pattern in azimuthal plane. For the electronically steerable high gain type, circularly-polarized microstrip patch phased arrays formed on a planar surface and on the surface of a truncated cone are under study. The arrays are intended to provide a minimum of 12 dB gain in the same angular region in elevation plane at all azimuthal angles. This coverage is accomplished by scanning the high gain pencil beam in both elevation and azimuthal directions. Both types of antennas are to transmit at 821-831 MHz band and to receive at 866-876 MHz band. They must be of low cost design and reasonably conformal to the vehicle.

  7. 毫米波微带天线阵列设计%Design of a millimeter wave microstrip antenna array

    Institute of Scientific and Technical Information of China (English)

    于慧娟

    2016-01-01

    A circular aperture millimeter wave series and parallel fed microstrip antenna array was proposed. The antenna was designed with rectangular microstrip patch which was fed by slot-coupled to increase the bandwidth. A series-fed microstrip antenna array was selected in order to use the antenna aperture area effectively and decrease the net complexity. At the same time, according to design of the circular aperture millimeter wave micro-strip antenna array, the part array was series and parallel fed to increase the bandwidth of the microstrip antenna. Results show that the bandwidth of the antenna is about 5%. The simulation result of the antenna’s gain is better than 30.6 dBi in working band. The beam width is about 4.0°×3.5° and the side lobe level is lower than –13 dB. Multi beam and phased array functions can be realized with the antenna array and the net.%设计了一个圆口径串并联混合馈电的毫米波微带天线阵列。该天线采用矩形微带工字型缝隙贴片耦合馈电的方法展宽带宽。为了有效利用天线口径面积,减小网络复杂度,选取串联微带天线阵列形式。同时为了展宽带宽,根据设计的圆形口径阵列,将部分子阵采用串并联混合馈电的形式,得到带宽为5%的毫米波微带天线阵列。仿真表明,该天线在工作频带内增益大于30.6 dBi,波束宽度为4.0°×3.5°,副瓣电平低于–13 dB。该天线阵面与网络配合,可以实现多波束或相控阵的功能。

  8. A Compact and Broadband Differential Microstrip Line to Rectangular Waveguide Transition Using Dipole Antenna

    Science.gov (United States)

    Yang, Ziqiang; Yang, Tao; Liu, Yu; Peng, Hao

    2016-06-01

    In this paper, a compact full Ka-band differential microstrip line (DML) to rectangular waveguide transition is proposed. The dipole antenna with semi-elliptic arms is introduced to transform the differential mode of DML to the TE10 mode of the rectangular waveguide directly. The two arms of the dipole antenna are connected together by a shorting strip to reduce the size of the dipole. Compared with the DML-to-waveguide transition using the fin-line topology, the size of the proposed transition has been reduced by 86 %. To verify this transition, a back-to-back structure is fabricated and tested. It provides a return loss of better than 15.2 dB and an insertion loss of 0.73 to 1.07 dB within a wide frequency range from 26.5 to 40 GHz. The measurement results show good agreement with the simulation results. Furthermore, a tolerance analysis is also performed via the simulation to prove that this transition is robust in the fabrication and mechanical assembly.

  9. Poly Fractal Boundary Circularly Polarised Microstrip Antenna for WLAN/Wi-MAX Wireless Applications

    Directory of Open Access Journals (Sweden)

    V.V. Reddy

    2015-09-01

    Full Text Available The design of circularly polarised multiband poly fractal boundary microstrip antenna is proposed and experimentally studied. Initially the two orthogonal sides of the square patch are replaced with different fractal curves for circular polarisation (CP radiation. Along the x and y axes, Minkowski and Koch fractal curves are employed. A 45° rotated poly fractal slot is embedded at the center of the fractal patch for triband CP operation. The indentation depths and indentation angles of the Minkowski and Koch fractal curves are optimised for better CP emission. The inserted fractal slot redistributes the current elements on the patch for tri band CP radiation. The measured 3-dB axial ratio bandwidths of the proposed antenna at 2.4 GHz, 3.4 GHz, and 5.8 GHz are 1.53 per cent, 0.81 per cent, and 1.62 per cent respectively, making it an able candidate for WLAN and Wi-MAX wireless applications.

  10. Theoretical study of 2 × 2 element planar array of equilateral triangular patch microstrip antenna in plasma medium

    Indian Academy of Sciences (India)

    K K Verma; K R Soni

    2005-01-01

    The radiation properties of 2 × 2 element planar array of equilateral triangular patch microstrip antenna in plasma medium are studied. The array factor and far-zone EM-mode and P-mode radiation fields of the array geometry are derived using vector wave function techniques and pattern multiplication approaches. The total field patterns and various characteristics of pattern such as half power beam width (HPBW), first null beam width (FNBW) and direction of maximum radiation are computed for two different values of progressive phase excitation difference between the elements. The results of this array geometry are obtained both in plasma medium and in free space and compared with those of single element equilateral triangular patch microstrip antenna.

  11. Phased Array Transmit Antenna for a Satellite

    Science.gov (United States)

    Huggins, R. W.; Heisen, P. T.; Miller, G. E.; McMeen, D. J.; Perko, K. L.

    1999-01-01

    Active phased array antennas with electronically scanned beams offer advantages over high gain parabolic dish antennas currently used on spacecraft. Benefits include the elimination of deployable structures, no moving parts, and no torque disturbances that moving antennas impart to the spacecraft. The latter results in the conservation of spacecraft power, and the ability to take precision optical data while transmitting data. Such an antenna has been built under a contract from NASA Goddard Space Flight Center for the New Millennium Program EO- 1 satellite where it will act as the primary highspeed scientific data communication link. The antenna operates at X-band, has an integral controller and power conditioner, communicates with the spacecraft over a 1773 optical data bus, and is space qualified for low earth orbit (705 Km altitude). The nominal mission length is one year, and the operational requirement is for one 10 minute transmission a day over Spitsbergen, Norway. Details of the antenna and its performance will be described in the following paper.

  12. A Multibeam Dual-Band Orthogonal Linearly Polarized Antenna Array for Satellite Communication on the Move

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2015-01-01

    Full Text Available The design and simulation of a 10 × 8 multibeam dual-band orthogonal linearly polarized antenna array operating at Ku-band are presented for transmit-receive applications. By using patches with different coupling methods as elements, both perpendicular polarization in 12.25–12.75 GHz band and horizontal polarization in 14.0–14.5 GHz band are realized in a shared antenna aperture. A microstrip Rotman lens is employed as the beamforming network with 7 input ports, which can generate a corresponding number of beams to cover −30°–30° with 5 dB beamwidth along one dimension. This type of multibeam orthogonal linearly polarized planar antenna is a good candidate for satellite communication (SatCom.

  13. A Low-Profile Dual-Band Micro-strip Antenna Having Open-Circuited Strip-line-Stub

    OpenAIRE

    長谷川, 孝明; 羽石, 操

    1986-01-01

    Copyright notice. c1986 IEICE All rights reserved. "A Low-Profile Dual-Band Micro-strip Antenna Having Open-Circuited Strip-line-Stub"Misao HANEISHI, Hidekazu SUGA, Takaaki HASEGAWA.The Transactions of the Institute of Electronics and Communication Engineers of Japan. Section E, English, 1986. Vol. E69 No.11 pp. 1165-1166 許諾No.07RB0055.

  14. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    Science.gov (United States)

    Kelly, Kenneth C.; Huang, John

    2000-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  15. The Performance of a Cylindrical Microstrip Printed Antenna for TM10 Mode as a Function of Temperature for Different Substrates

    Directory of Open Access Journals (Sweden)

    A. Elrashidi

    2011-10-01

    Full Text Available A temperature is one of the parameters that have a great effect on the performance of microstrip antennas for TM10 mode at 2.4 GHz frequency range. The effect of temperature on a resonance frequency, input impedance, voltage standing wave ratio, and return loss on the performance of a cylindrical microstripprinted antenna is studied in this paper. The effect of temperature on electric and magnetic fields are also studied. Three different substrate materials RT/duroid-5880 PTFE, K-6098 Teflon/Glass, and Epsilam-10 ceramic-filled Teflon are used for verifying the new model.

  16. Compact, low profile antennas for MSAT and mini-M and Std-M land mobile satellite communications

    Science.gov (United States)

    Strickland, P. C.

    1995-01-01

    CAL Corporation has developed a new class of low profile radiating elements for use in planar phased array antennas. These new elements have been used in the design of a low cost, compact, low profile antenna unit for MSAT and INMARSAT Mini-M land mobile satellite communications. The antenna unit which measures roughly 32 cm in diameter by 5 cm deep incorporates a compact LNA and diplexer unit as well as a complete, low cost, beam steering system. CAL has also developed a low profile antenna unit for INMARSAT-M land mobile satellite communications. A number of these units, which utilize a microstrip patch array design, were put into service in 1994.

  17. Analysis and Simulation of Microstrip Antenna Mounted Curved Surface%柱面微带天线的分析与仿真∗

    Institute of Scientific and Technical Information of China (English)

    崔丽丽; 王伟; 马铁华; 丁永红

    2015-01-01

    为研究微带天线与安装柱形壳体共形弯曲后工作性能变化,以平面微带天线为基础建模仿真了不同曲半径的柱面微带天线结构,将平面、不同曲半径柱面的微带天线仿真数据进行了详细分析比较。结果表明:当平面微带天线弯曲成柱面时,中心工作频率和10 dB带宽均不会受到影响,但xz和yz截面上的增益会受到影响。由此得到矩形微带天线在不同曲半径柱面下工作性能的优劣,为曲面微带天线的研究和实用化设计提供了准确的理论与仿真依据。%In order to research the working performance changes of the microstrip antenna after bending with the conformal cylindrical structure, based on the planar microstrip antenna, modeling and simulation of the different curved radius cylindrical microstrip antenna, making a detailed analysis and comparison of the simulation data of the planar and different curved radius cylindrical microstrip antenna. Simulation results indicate when the planar microstrip antenna is curved, the working center frequency and 10 dB bandwidth is not affected, but the gain of ax and is section is affectedh. hereby obtaining the performance of rectangular microstrip antenna under different radius of the cylindrical. It prevides accurate theoretical and simulation foundation for the study and practical design of a curved surface microstrip antenna.

  18. 多频段圆极化微带天线的设计%Design of multi-band circular polarized microstrip antenna

    Institute of Scientific and Technical Information of China (English)

    王丽黎; 刘丽珍

    2014-01-01

    A multi-band circular polarized microstrip antenna for navigation satellite system is designed. To enhance the impedance bandwidth and realize right-handed circular polarization radiation,the CRLH transmission line phase shifter is used as a feed network,which also improves performance of circular polarization at the same time. The antenna has been designed to operate at the satellite navigation frequency bands including GPS, BDS-2 and GLONASS. Ansoft HFSS 13.0 software is used, and the results of the simulation show that the antenna can meet the requirements of the signals of navigation satellite system. The antenna has the characteristics of the compact, frequency bandwidth, small size, easy processing.%设计了一款应用于导航卫星系统的多频段圆极化微带天线。天线采用复合左右手传输线移相器作为馈电网络,展宽阻抗带宽并且实现了良好的右旋圆极化辐射。该天线工作在导航卫星系统GPS、BDS-2和 GLONASS 工作波段。采用 Ansoft HFSS 13.0软件仿真,仿真结果表明该天线能够满足导航卫星信号的要求。该天线具有结构紧凑、频带宽、体积小、易于加工等特点。

  19. Performance Analysis of Corporate Feed Rectangular Patch Element and Circular Patch Element 4x2 Microstrip Array Antennas

    Directory of Open Access Journals (Sweden)

    Md. Tanvir Ishtaique-ul Huque

    2011-08-01

    Full Text Available This paper present simple, slim, low cost and high gain circular patch and rectangular patch microstrip array antenna, with the details steps of design process, operate in X-band(8 GHz to 12 GHz and it provides a mean to choose the effective one based on the performance analysis of both of these array antennas. The method of analysis, design and development of these array antennas are explained completely here and analyses are carried out for 4x2 arrays. The simulation has been performed by using commercially available antenna simulator, SONNET version V12.56, to compute the current distribution, return loss response and radiation pattern. The proposed antennas are designed by using Taconic TLY-5 dielectric substrate with permittivity, er = 2.2 and height, h =1.588 mm. In all cases we get return losses in the range -4.96 dB to -25.21 dB at frequencies around 10 GHz. The gain of these antennas as simulated are found above 6 dB and side lobe label is maintained lower than main lobe. Operating frequency of these antennas is 10 GHz so these antennas are suitable for X-band application.

  20. Low Cost Antennas for Direct Broadcast Satellite Radio

    Science.gov (United States)

    Wu, T. K.; Huang, J.

    1994-01-01

    Two omni-directional and circularly polarized low gain antennas (the crossed drooping dipole and the TM(sub 21) mode circular patch antenna)are developed for direct broadcast satellite radio (DBSR) outdoor mobile terminal applications.

  1. Dual frequency microstrip antenna sensor for water content measurements independent of temperature variation

    Science.gov (United States)

    Ghretli, Mohamed; Khalid, Kaida; Valeriu Grozescu, Ionel; Sahri, Hamami; Abbas, Zulkifly

    2007-04-01

    Temperature variation causes errors in all indirect moisture measurement methods. To increase the accuracy of moisture content determination and to reduce the influence of temperature, a two-parameter measurement is used. The method uses the magnitude of reflected waves at two microwave frequencies in the X-band region. A dual frequency sensor system is developed to measure moisture content of dielectric-lossy liquids. The experiment is based on measurements of far-field reflection magnitudes at two different frequencies 8.48 GHz and 10.69 GHz using circular microstrip antennas. A calibration equation is sought that instantly gives temperature-independent moisture content of the samples under consideration. The sensor is integrated with a data acquisition card to record the detected reflection signals. The data analysis and error-correction technique are implemented using custom designed software. The system is tested using diluted rubber latex with moisture content ranging from 39.8% to 91.2% wet basis. The moisture content was predicted with a standard error less than 1.3% for the temperature range of 25 °C to 63 °C compared to the standard oven-drying technique.

  2. Reliable Control of Ship-mounted Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2010-01-01

    Motorized antenna is a key element in overseas satellite telecommunication. The control system directs the on-board antenna toward a chosen satellitewhile the high sea waves disturb the antenna. Certain faults (communication system malfunction or signal blocking) cause interruption in the communi......Motorized antenna is a key element in overseas satellite telecommunication. The control system directs the on-board antenna toward a chosen satellitewhile the high sea waves disturb the antenna. Certain faults (communication system malfunction or signal blocking) cause interruption...

  3. High Precision Control of Ship-Mounted Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Mohsen, Soltani; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2007-01-01

    The telecommunication on a modern merchandise ship is maintained by means of satellite communication. The task of the tracking system is to position the on-board antenna toward a chosen satellite. The control system is capable of rejecting the external disturbances which affect on the under......-actuated antenna and ensures that it remains locked on the satellite. In this paper, a nonlinear internal model controller (NIMC), which achieves asymptotic tracking for the nonlinear antenna system with nonlinear exogenous dynamics, is proposed. Computer simulations as well as practical tests verify...... the effectiveness of this method to cope with the external disturbances that are imposed to the satellite tracking antenna (STA)....

  4. High Precision Control of Ship-Mounted Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Mohsen, Soltani; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2007-01-01

    The telecommunication on a modern merchandise ship is maintained by means of satellite communication. The task of the tracking system is to position the on-board antenna toward a chosen satellite. The control system is capable of rejecting the external disturbances which affect on the under......-actuated antenna and ensures that it remains locked on the satellite. In this paper, a nonlinear internal model controller (NIMC), which achieves asymptotic tracking for the nonlinear antenna system with nonlinear exogenous dynamics, is proposed. Computer simulations as well as practical tests verify...... the effectiveness of this method to cope with the external disturbances that are imposed to the satellite tracking antenna (STA)....

  5. A Commemoration of Deschamps’ and Sichak’s "Microstrip Microwave Antennas": 50 Years of Development, Divergence, and New Directions

    Science.gov (United States)

    2006-11-01

    patch elements was solved by Schaubert and Pozar in two papers given in 1985 [27] and 1986 [28] that employed aperture coupling between the patch...Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook. Artech House: Boston. 2001. [3] D. Pozar and D. H. Schaubert, Eds...of the 1999 Antenna Applications Symposium, September 15-17, 1999. [27] D. H. Schaubert, R. W. Jackson, and D. M. Pozar , “Antenna Elements for

  6. Design guidelines, scan behavior and characteristic mode analysis for a class of ultra-wideband microstrip patch antennas

    Science.gov (United States)

    Elsewe, Mohamed Mahmoud

    Ultra-wideband (UWB), low-profile microstrip patch antennas and phased arrays have their niche in many wireless communication and medical applications. In recent years, the U-slot patch antenna established itself as a versatile antenna that can be fine-tuned for ultra-wideband operations. The L-shaped probe feeding method has additionally led to improved impedance bandwidth for the U-slot patch antenna. The L-probe's simple structure together with its low production cost makes it an attractive feeding method for the U-slot microstrip patch antenna. In phased arrays, scan blindness due to surface wave excitations can reduce the scan bandwidth range. By reducing the mutual coupling between array elements, the scan blindness effects will be reduced. Also, by reducing the sidelobe levels and minimizing the effect of grating lobes in phased arrays, the array's scan performance and power efficiency can be improved. In this dissertation, (1) a parametric study is performed on epsilon r = 2.2 and 4.5 substrates for the design of ideal L-probe feed dimensions with optimum impedance bandwidth. Results show that first-pass optimum impedance bandwidth of over 50% is achieved using the ideal L-probe feed dimensions. (2) The mutual coupling between a 2-element UWB microstrip array using different patch orientations and U-slot topologies is examined for epsilonr = 2.2 and 4.5 substrates to reduce the effect of scan blindness. Results, for epsilonr = 2.2 substrate, indicate that a diamond patch orientation with opposite U-slot topology presents the least coupling between the array elements. For epsilonr = 4.5 substrate, the E-plane patch orientation with parallel U-slot topology has the least coupling. (3) The scan behavior of 5x5 planar phased arrays using different patch orientations and U-slot topologies is examined for epsilonr = 2.2 substrate. Results indicate that blind spots are less prevalent in the diamond patch orientation and more prevalent in the E-plane patch

  7. Architectures for ku-band broadband airborne satellite communication antennas

    NARCIS (Netherlands)

    Verpoorte, Jaco; Schippers, Harmen; Jorna, Pieter; Roeloffzen, Chris G.H.; Marpaung, David A.I.; Baggen, Rens; Sanadgol, Bahram

    2010-01-01

    This paper describes different architectures for a broadband antenna for satellite communication on aircraft. The antenna is a steerable (conformal) phased array antenna in Ku-band (receive-only). First the requirements for such a system are addressed. Subsequently a number of potential architecture

  8. Compact MIMO Microstrip Antennas for USB Dongle Operating in 2.5–2.7 GHz Frequency Band

    Directory of Open Access Journals (Sweden)

    Vladimir Ssorin

    2012-01-01

    Full Text Available This paper considers design of microstrip MIMO antennas for an LTE/WiMAX USB dongle operating in the 2.5–2.7 GHz frequency band. The MIMO system includes two antenna elements with an additional requirement of high isolation between them that is especially difficult to realize due to size limitations of a USB dongle. Three approaches to achieve the needed system characteristics using microstrip PCB antennas are proposed. For the first design, high port-to-port isolation is achieved by using a decoupling techniques based on a direct connection of the antenna elements. For the second approach, high port-to-port isolation of the MIMO antenna system is realized by a lumped decorrelation capacitance between antenna elements feeding points. The third proposed antenna system does not use any special techniques, and high port-to-port isolation is achieved by using only the properties of a developed printed inverted-F antenna element. The designed MIMO antenna systems have the return loss S11 and the insertion loss S21 bandwidths of more than 200 MHz at the −8 dB level with the correlation coefficient lower than 0.1 and exhibit pattern diversity when different antenna elements are excited. Experimental measurements of the fabricated antenna systems proved the characteristics obtained from electromagnetic simulation.

  9. Design of a Novel Ka-band Circular Polarization Microstrip Antenna%一种新型Ka频段圆极化微带天线设计

    Institute of Scientific and Technical Information of China (English)

    刘洋; 王昕; 董涛

    2012-01-01

    A novel Ka band circular-polarization microstrip antenna is proposed.The antenna is coupled-fed by L-shaped apertures in the ground plane to realize circular-polarization.The antenna array is analyzed and optimized,then the array is made and measured.Simulated and measured results show the feasibility of the proposed design.Simulated results of the relative impedance bandwidth and axial-ratio bandwidth are 3.9% and 2% respectively,and measured results are 4.2% and 3.5%.With good circular polarization performance,the antenna can be used in satellite communication.%提出了一种Ka频段圆极化微带天线的新设计,采用缝隙耦合馈电方式,通过在接地板开L型缝隙实现天线的圆极化工作。对天线阵列进行了仿真优化和加工实测,仿真和测试结果表明了设计的可行性。天线仿真和实测的相对阻抗带宽分别为3.9%和4.2%,仿真和实测的轴比相对带宽分别为2%和3.5%。天线具有良好的圆极化特性,可应用在卫星通信中。

  10. Evaluation of the Reflection Coefficient of Microstrip Elements for Reflectarray Antennas

    Science.gov (United States)

    Rengarajan, Sembiam

    2011-01-01

    Basis functions were studied and identified that provide efficient and accurate solutions for the induced patch currents and the reflection phase in microstrip reflect arrays. The integral equation of an infinite array of microstrip elements in the form of patches or crossed dipoles excited by a uniform plane wave is solved by the method-of-moments. Efficient choices of entire domain basis functions that yield accurate results have been described.

  11. Design of a Microstrip Slot Antenna%一种圆形开槽微带天线的设计

    Institute of Scientific and Technical Information of China (English)

    赖慧芳; 曾东红

    2013-01-01

    根据紧凑型宽带微带天线的设计要求,本文采用开槽技术设计出符合小型化和宽频带要求的天线,并给出了仿真分析结果。仿真结果表明,综合采用上述技术可以同时达到扩展频带和紧凑型的预期设计要求。%According to the requirement of compact broadband microstrip antennas, by using notching tech-nology,we design an antenna, and detail some characteristic parameters of the simulation results. The simulation results from HFSS show that it conforms to the original design.

  12. Design of single-frequency circular microstrip patch antenna%单频圆形微带贴片天线设计

    Institute of Scientific and Technical Information of China (English)

    陈健; 张辉; 陈磊; 周丽洁; 李静

    2015-01-01

    A coaxial feed circular microstrip antenna with central frequency of 7.2 GHz was designed based on the applica⁃tion of microstrip patch antenna in the wireless fuze. The antenna dielectric substrate′s relative dielectric constant is εr=4.4, its return loss is less than 20 dB and the antenna gain is greater than 5 dB. According to the principle of microstrip antenna, the antenna designed with HFSS software was tested. The results show that the antenna resonant frequency,return loss and other performance parameters can meet the design requirements.%基于微带贴片天线在无线引信中的应用,设计了一种中心频率为7.2 GHz的同轴馈电圆形微带天线,该天线介质基片相对介电常数为εr=4.4,回波损耗小于-20 dB,天线增益大于5 dB。根据微带天线原理,通过HFSS软件设计的天线,实验结果表明:天线谐振频率、回波损耗等性能参数符合设计要求。

  13. Performance Enhancement of Space-Time Adaptive Processing for GPS and Microstrip Antenna Design Using Ferrite Rings

    Science.gov (United States)

    Rivera-Albino, Alix

    Global Positioning System (GPS) is a navigation system widely used in civilian and military application, but its accuracy is highly impacted with consequential fading, and possible loss of communication due to multipath propagation and high power interferences. This dissertation proposes alternatives to improve the performance of the GPS receivers to obtain a system that can be reliable in critical situations. The basic performance of the GPS receiver consists of receiving the signal with an antenna array, delaying the signal at each antenna element, weighting the delayed replicas, and finally, combining the weighted replicas to estimate the desired signal. Based on these, three modifications are proposed to improve the performance of the system. The first proposed modification is the use of the Least Mean Squares (LMS) algorithm with two variations to decrease the convergence time of the classic LMS while achieving good system stability. The results obtained by the proposed LMS demonstrate that the algorithm can achieve the same stability as the classic LMS using a small step size, and its convergence rate is better than the classic LMS using a large step size. The second proposed modification is to replace the uniform distribution of the time delays (or taps) by an exponential distribution that decreases the bit-error rate (BER) of the system without impacting the computational efficiency of the uniform taps. The results show that, for a BER of 0.001, the system can operate with a 1 to 2 dB lower signal-to-noise ratio (SNR) when an exponential distribution is used rather than a uniform distribution. Finally, the third modification is implemented in the design of the antenna array. In this case, the gain of each microstrip element is enhanced by embedding ferrite rings in the substrate, creating a hybrid substrate. The ferrite rings generates constructive interference between the incident and reflected fields; consequently, the gain of a single microstrip element

  14. Comparison of CAD Formulas, Method of Moments and Experiments for Rectangular Microstrip Antennas

    Directory of Open Access Journals (Sweden)

    Z. Novacek

    2003-04-01

    Full Text Available Calculations of several cases for rectangular microstrip patchantennas using more accurate cavity model have been compared with theconventional cavity calculations, expressions generated by curvefitting to full wave solutions and method of moments. Calculated aswell as experimental values have been studied for different thickness,patch sizes and substrate materials with different permittivities andlosses.

  15. Dual-Frequency, Dual-Polarization Microstrip Antenna Development for High-Resolution, Airborne SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, N.

    2000-01-01

    synthetic aperture radar (SAR) system. The dual-frequency array concept adopted relies on the use of probe-fed perforated, stacked patches for L-band (1.2-1.3 GHz). Inside these perforations probe-fed, wideband stacked microstrip patches for C-band (4.9-5.7 GHz) are placed. Measured impedance and radiation...

  16. Thermal deformation analysis of the composite material satellite antenna

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Controlling the thermal deformation is a crucial index for the design of the satellite antenna. To calculate and measure the satellite antenna's thermal deformation is also an important step for the design of satellite antenna. Based on the foundation of equivalent assumption, the thermal deformation of the parabolic satellite antenna was analyzed by the finite element method for different design project. The best design project that had the minimum of the thermal deformation could be obtained through changing the lay-angle, lay-layers and lay-thickness of each layer. Results show the asymmetry structure has the minimum of thermal deformation. This paper may provide useful information for the further investigation on the coupling of thermal-stress structure.

  17. Development of 30/20 GHz satellite antenna structures

    Science.gov (United States)

    Minomo, M.; Yasaka, T.

    1986-08-01

    An antenna structural design for a large capacity communication satellite using 13 beams in the 30/20GHz frequency bands is discussed. This design is to be utilized in developing a more cost effective domestic satellite communication system for Japan. This system requires 2 high precision deployable antennas with projected aperture diameters of 3.5m at 20GHz and 2.5m at 30GHz. The in-orbit demonstration will use the ETS-6 satellite. Based on experience in the development of spaceborne antennas for 30/20GHz bands (e.g., for the CS-2 and CS-3 satellites) activities in structural design of high precision deployable antennas show the truss reflector structure is promising for achieving required structural properties.

  18. Integrated After-Market Solar Panel Antennas for Small Satellites

    OpenAIRE

    Turpin, Timothy; Mahmoud, Mahmoud; Baktur, Reyhan; Furse, Cynthia

    2009-01-01

    The majority of surface area on a small satellite is taken up by solar panels for power. Integrating antennas with solar panels, would save a valuable amount of satellite surface area, and thus directly contribute to the size reduction and multi-functionality of solar panel. Furthermore, such integration does not require deployed mechanism and therefore is cost-friendly design.Two types of integrations are presented in this paper. The first type is to place optically transparent antennas dire...

  19. Integrated After-Market Solar Panel Antennas for Small Satellites

    OpenAIRE

    Turpin, Timothy; Mahmoud, Mahmoud; Baktur, Reyhan; Furse, Cynthia

    2009-01-01

    The majority of surface area on a small satellite is taken up by solar panels for power. Integrating antennas with solar panels, would save a valuable amount of satellite surface area, and thus directly contribute to the size reduction and multi-functionality of solar panel. Furthermore, such integration does not require deployed mechanism and therefore is cost-friendly design.Two types of integrations are presented in this paper. The first type is to place optically transparent antennas dire...

  20. X波段宽带微带偶极子天线%An X-band Wideband Microstrip Dipole Antenna

    Institute of Scientific and Technical Information of China (English)

    官伟; 孙绍国

    2012-01-01

    A wideband microstrip dipole antenna operating at X-band is proposed. Its bandwidth is extended effec- tively by using a short-circuited probe compensation feed distribution capacitor and adding a parasitic patch. Over- all size of the designed antenna is 16mm- 24mm ; it features compact structure and easy to be fabricated and inte- grated, and can be applied by wideband and wide-angle-scanning arrays. Design parameters and impact of the dif- ferent parameters to antenna performance are studied.%文中提出一种X波段宽带微带偶极子天线。该天线在偶极子单元的基础上,采用了一个短路探针补偿馈电分布电容,同时增加了一个加载寄生贴片,有效的展宽了带宽。天线的总体尺寸为16mm×24mm,结构紧凑,易于加工和集成,适用于宽带宽角扫描的阵列天线。文中给出了天线的设计参数及不同参数对天线性能的影响。

  1. Bandwidth enhancement of electromagnetic coupled nonuniform H-shaped microstrip patch antenna for higher band of Wi-MAX applications

    Science.gov (United States)

    Bhardwaj, Dheeraj; Gulati, Gitansh; Saraswat, Srishti; Sharma, Komal

    2016-03-01

    The bandwidth enhancement of a stacked non-uniform electromagnetically coupled H-shaped Microstrip Antenna (SNHMA) with tapered edges is analyzed and simulated using the IE3D simulator. The proposed antenna prototype is drafted on FR-4 material and stacked further with an air discontinuity of 0.3 mm to the next layer. The various parameters optimized to achieve the best performance from the modified SNHMA primarily include a)length b)width of the patch c)air gap thickness. The redesigned antenna serves at two distinct frequencies with an elevated bandwidth of 30.85 % at the central frequency 5.762 GHz, approximately four times the bandwidth of the standard patch having the same dimensions. The simulated radiation patterns (E-plane and H-plane) are exhibited within the range of frequencies where the broadband response is observed. The specifications of the proposed structure make it promising for the higher band of Wi-MAX applications.

  2. Bandwidth enhancement of electromagnetic coupled nonuniform H-shaped microstrip patch antenna for higher band of Wi-MAX applications

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Dheeraj, E-mail: dbhardwaj.bit@gmail.com [Assistant Professor, Department of Physics, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Gulati, Gitansh, E-mail: gitanshgulati@gmail.com [Bachelor of Engineering-ECE, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Saraswat, Srishti, E-mail: saraswat.srishti@yahoo.in [Bachelor of Engineering-VII Sem, ECE, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Sharma, Komal, E-mail: kbhardwaj18@gmail.com [Reader, Department of Physics, Swami Keshvanand Institute of Technology, Jaipur 302017 (India)

    2016-03-09

    The bandwidth enhancement of a stacked non-uniform electromagnetically coupled H-shaped Microstrip Antenna (SNHMA) with tapered edges is analyzed and simulated using the IE3D simulator. The proposed antenna prototype is drafted on FR-4 material and stacked further with an air discontinuity of 0.3 mm to the next layer. The various parameters optimized to achieve the best performance from the modified SNHMA primarily include a)length b)width of the patch c)air gap thickness. The redesigned antenna serves at two distinct frequencies with an elevated bandwidth of 30.85 % at the central frequency 5.762 GHz, approximately four times the bandwidth of the standard patch having the same dimensions. The simulated radiation patterns (E-plane and H-plane) are exhibited within the range of frequencies where the broadband response is observed. The specifications of the proposed structure make it promising for the higher band of Wi-MAX applications.

  3. 近炸引信中的开槽共形定向微带天线%Slotted Conformal Directional Microstrip Antenna for Proximity Fuze

    Institute of Scientific and Technical Information of China (English)

    狄萃; 赵惠昌; 杨云星

    2014-01-01

    Aiming at the problems of narrow bandwith of microstrip patch antenna and the poor performance of directional radiation,a missile conformal with lateral radiation and broadband microstrip antenna were proposed in this paper.The microstrip antenna used inverted square patch,rectangular slot was cut in the patch,and a circular parasitic patch was put in the slot to optimize the antenna performance.Simulation and test results showed that this slotted,conformal and directional microstrip antenna had broadband characteristics,in the vic-inity of the center frequency of 7.7 GHz,direction map had good lateral radiation performance,small size and excellent indicators,which met the requirement of proximity fuze and had a certain value in engineering.%针对近炸引信中贴片微带天线带宽窄及定向辐射性能差等问题,提出了与弹体共形的具有侧向辐射、宽频带的微带天线。该微带天线采用倒方形贴片,在贴片上进行开方形槽,并在槽中加入圆形寄生贴片对天线性能进行优化。仿真与实物测试的结果表明:开槽的共形定向微带天线具有良好的宽带特性,在中心频率7.7 GHz附近方向图具有良好的侧向辐射性能,指标优良且尺寸小,满足近炸引信所需。

  4. 一种X频段微带天线设计%Design of an X-band Microstrip Antenna

    Institute of Scientific and Technical Information of China (English)

    孙宏利

    2012-01-01

    With the development of large scale integrated circuit,electronic devices become increasingly miniaturized in structure,and the requirement for antenna structure is higher and higher.Considering the actual requirement,the paper introduces the theoretical basis of a rectangular microstrip antenna design,and presents the design scheme.An X-band 4*4 antenna array is designed by transmission line model method.Some design relevant issues and their solutions are discussed in particular.Finally,the radiation pattern of the antenna is given by the CST software.The analysis result meets the practical engineering requirement.%随着大规模集成电路的发展,电子设备的结构越来越微型化,对天线的结构要求也越来越高。针对某工程对微带天线的实际需求,介绍了矩形微带天线的设计理论依据,提出了设计方案。采用传输线模型设计方法,对X频段的4×4天线阵列进行了具体设计,重点阐述了微带天线设计的相关问题,并提出了解决办法。采用CST软件给出了该种天线的辐射方向图,分析结果满足工程实际需求。

  5. A Compact Single-Feed Circularly Polarized Microstrip Antenna with Symmetric and Wide-Beamwidth Radiation Pattern

    Directory of Open Access Journals (Sweden)

    Xihong Ye

    2013-01-01

    Full Text Available A compact single-feed circularly polarized microstrip antenna is proposed to achieve symmetric radiation pattern over a wide range of observation angles. In order to reduce the radiation aperture and consequently broaden the circular polarization (CP and the half power beamwidth (HPBW of the antenna, a partially etched superstrate and a conducting cavity are employed in the design. Further, reasonable axial ratio (AR and impedance bandwidths are realized within the compact structure by using a simple series crossed-slot aperture coupled feeding. As a consequence, the overall dimension of the fabricated prototype is 0.32λ0 × 0.32λ0 × 0.12λ0 at the center operating frequency of 1.56 GHz, and a 3.0% overlapped bandwidth of 10 dB return loss (RL and 3 dB AR is obtained. Within the bandwidth, symmetric CP radiation pattern over almost the entire upper hemisphere is observed and the HPBW is also increased from 60° to 106°.

  6. 一种毫米波微带并馈天线阵的设计%The Design of a Millimeter Wave and Parallel Fed Microstrip Antenna Array

    Institute of Scientific and Technical Information of China (English)

    吕芳; 张漠杰; 刘丹

    2011-01-01

    介绍了矩形微带天线的原理和设计方法,并设计制作了2×1的毫米波微带并馈天线阵,运用Ansoft HFSS软件进行仿真调试。辐射方向图表明该天线阵主要向上半空辐射,增益可以达到9.87 dB,阻抗带宽(VSWR≤2)从31.2 GHZ到32.5 GHZ。%Describes the theory and designed methods of rectangular microstrip antenna.Besides,a 2×1 millimeter wave microstrip parallel fed antenna array is presented in this paper,using Ansoft HFSS software to simiulate.The simulated radiation pattern shows that t

  7. CPW fed Inverted U-Shape Microstrip Patch Antenna for WLAN/WiMAX Applications

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar

    2014-01-01

    Full Text Available A coplanar waveguide (CPW-fed planar monopole antenna for WiMAX and WLAN applications is presented. The antenna, which occupies a small size, is simply composed of an inverted U-shaped radiating patch with E-shape slot. By carefully selecting the positions of this slot, reasonable bandwidth of the antenna can be obtained so that operating bands covering 2.4/5.2/5.8 GHz WLAN bands and the 2.5/3.5/5.5 GHz WiMAX bands. The measured results also demonstrate that the proposed antenna has appreciable bandwidth and is thus suitable to be integrated within the portable devices for WiMAX/WLAN applications. The various characteristics parameters like S-parameter, VSWR and radiation pattern are studied. The proposed antenna is simulated by using ANSOFT HFSS software

  8. Design and Performance Analysis of a C Band Micro-strip Patch Feed Reflector Antenna and Link Budget Optimization

    Directory of Open Access Journals (Sweden)

    Sanjida Sharmin Mohona

    2015-02-01

    Full Text Available This paper deals with the design and performance analysis of a very small size, low-cost, lowprofile, high gain and high directivity C Band Micro strip Patch Feed Reflector Antenna considering the link budget optimization. The proposed antenna system has a gain of -4.45dB, directivity of 7.062dBi, return loss of - 16.817327dB at 5.532 GHz and -15.998dB at 6.532GHz, Voltage Standing Wave Ratio (VSWR of 1.338 at 5.5302GHz and 1.3766 at 6.5309 GHz, at C band it operates in two regions with bandwidth of 184MHz (5.4431 to 5.6275GHz and 422MHz (6.3356 to 6.7576 GHz. The resonant frequencies of the antenna are 5.532GHzand 6.532GHz. The proposed antenna system can be used for C-band like satellite communications transmissions, VSAT, Wi-Fi, weather radar systems, medical applications and other wireless systems. The antenna system is designed and simulated in the CST Microwave Studio. Link budget optimization is performed in order to analyze the critical factors in the transmission chain and to optimize the performance characteristics. The link budget determines what size antenna is to use, power requirements and in general, the overall customer satisfaction.

  9. A Dual-polarized Microstrip Subarray Antenna for an Inflatable L-band Synthetic Aperture Radar

    Science.gov (United States)

    Zawadzki, Mark; Huang, John

    1999-01-01

    Inflatable technology has been identified as a potential solution to the problem of achieving small mass, high packaging efficiency, and reliable deployment for future NASA spaceborne synthetic aperture radar (SAR) antennas. Presently, there exists a requirement for a dual-polarized L-band SAR antenna with an aperture size of 10m x 3m, a center frequency of 1.25GHz, a bandwidth of 80MHz, electronic beam scanning, and a mass of less than 100kg. The work presented below is part of the ongoing effort to develop such an inflatable antenna array.

  10. Planar Compact Tri-band Microstrip Antenna%平面小型化三频微带天线

    Institute of Scientific and Technical Information of China (English)

    王公晗; 冯全源

    2014-01-01

    针对多频天线结构复杂,天线尺寸较大,设计了一款紧凑型结构的三频单极性微带贴片天线。该天线的辐射单元由双C型结构和加载倒L型结构构成,利用低频段的高次模,从而产生天线的高频段。该方法可以有效实现多频特性,并能够有效地减小天线尺寸。天线尺寸仅为20×31×1.6 mm3。实测频段为2.40~2.50 GHz,3.17~3.90 GHz,4.67~5.83 GHz。该天线具有体积小,结构简单,辐射特性良好的优点,实现了对3.5/5.5 GHz WIMAX频段和2.4/5.2/5.8 GHz WLAN频段的全覆盖,能够很好的适用于无线通信系统的应用。%This paper proposed a compact structure of tri-band microstrip antenna in order to solve the problems complex structure and the larger size of multi-frequency antenna.The antenna was composed by the two C-ring structures with a pair of inverted L-shaped stubs.Besides,this design utilized high-order mode to generate high frequency.This method could effectively achieve multi-frequency characteristics and reduced the antenna size. The experimental results showed that the antenna had the impedance bandwidths of 100MHz (2.40-2.50 GHz), 730MHz (3.17-3.90 GHz)and 1160 MHz (4.67-5.83 GHz),which could cover both WLAN in the 2.4/5.2/5.8 GHz bands and WIMAX in the 3.5/5.5 GHz bands.

  11. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design

    National Research Council Canada - National Science Library

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    .... The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element...

  12. Miniaturized Wideband Aperture Coupled Microstrip Patch Antenna by Using Inverted U-Slot

    OpenAIRE

    2014-01-01

    This paper presents a linear polarized aperture coupled inverted U-slot patch antenna with small steps at the edges. The proposed design exhibits wideband behavior, acceptable return loss, VSWR, gain, small size, and less complexity. The theoretical analysis is based on the finite element method (FEM). This design has wide bandwidth, good return loss, VSWR, and radiation characteristics by implanting the inverted U-shaped stepped slots on a single aperture coupled patch. The proposed antenna ...

  13. A Reconfigurable Triple-Notch-Band Antenna Integrated with Defected Microstrip Structure Band-Stop Filter for Ultra-Wideband Cognitive Radio Applications

    Directory of Open Access Journals (Sweden)

    Yingsong Li

    2013-01-01

    Full Text Available A printed reconfigurable ultra-wideband (UWB monopole antenna with triple narrow band-notched characteristics is proposed for cognitive radio applications in this paper. The triple narrow band-notched frequencies are obtained using a defected microstrip structure (DMS band stop filter (BSF embedded in the microstrip feed line and an inverted π-shaped slot etched in the rectangular radiation patch, respectively. Reconfigurable characteristics of the proposed cognitive radio antenna (CRA are achieved by means of four ideal switches integrated on the DMS-BSF and the inverted π-shaped slot. The proposed UWB CRA can work at eight modes by controlling switches ON and OFF. Moreover, impedance bandwidth, design procedures, and radiation patterns are presented for analysis and explanation of this antenna. The designed antenna operates over the frequency band between 3.1 GHz and 14 GHz (bandwidth of 127.5%, with three notched bands from 4.2 GHz to 6.2 GHz (38.5%, 6.6 GHz to 7.0 GHz (6%, and 12.2 GHz to 14 GHz (13.7%. The antenna is successfully simulated, fabricated, and measured. The results show that it has wide impedance bandwidth, multimodes characteristics, stable gain, and omnidirectional radiation patterns.

  14. Ultra-Small Dualband Dualmode Microstrip Antenna Based on Novel Hybrid Resonator

    Science.gov (United States)

    Zhu, Ji-Xu; Bai, Peng; Zheng, Hao-Zhong

    2016-11-01

    A novel hybrid resonator consists of right handed patch+composite right and left handed transmission line (RH+CRLH) is proposed for the first time aiming at both compactness and frequency manipulation. A demonstration with theoretical dispersion relations and EM simulation is provided for the correctness and efficiency. According to the new method, an ultra-small and dualband antenna operating around 2.4 GHz (n=0, Bluetooth band) and 3.5 GHz (n=+1, Wimax band) is designed, fabricated and measured, whose occupied area is only of 0.158 λ_0. Numerical and experimental results indicate that the antenna exhibits a good impendence match, low cross-polarization and comparable radiation gains in both bands. Excellent performances of the antennas based on hybrid resonators predict promising applications in multifunction wireless communication systems.

  15. Body conformal antennas for superficial hyperthermia: the impact of bending contact flexible microstrip applicators on their electromagnetic behavior.

    Science.gov (United States)

    Correia, Davi; Kok, H Petra; de Greef, Martijn; Bel, Arjan; van Wieringen, Niek; Crezee, Johannes

    2009-12-01

    Hyperthermia is a powerful radiosensitizer for treatment of superficial tumors. This requires body conformal antennas with a power distribution as homogeneous as possible over the skin area. The contact flexible microstrip applicators (CFMA) operating at 434 MHz exist in several sizes, including the large size 3H and 5H. This paper investigates the behavior of the electromagnetic fields for the 3H and 5H CFMA in both flat and curved configurations, and the impact on performance parameters like the penetration depth (PD) and the effective heating depth (EHD). The underlying theory behind the electromagnetic behavior in curved situations is presented as well as numerical simulations of both flat and curved configurations. The results are compared to measurements of the electromagnetic field distributions in a cylindrical patient model. Due to their large size multimode solutions may exist, and our results confirm their existence. These multimode solutions affect both the power distribution and PD/EHD, with a dependence on applicator curvature. Therefore, the performance parameters like PD and EHD need to be carefully assessed when bending large size CFMA applicators to conform to the patient body. This conclusion also holds for other types of large size surface current applicators.

  16. A multifunctional solar panel antenna for cube satellites

    Science.gov (United States)

    Fawole, Olutosin C.

    The basic cube satellite (CubeSat) is a modern small satellite that has a standard size of about one liter (the 1U CubeSat). Three 1U CubeSats could be stacked to form a 3U CubeSat. Their low-cost, short development time, and ease of deployment make CubeSats popular for space research, geographical information gathering, and communication applications. An antenna is a key part of the CubeSat communication subsystem. Traditionally, antennas used on CubeSats are wrapped-up wire dipole antennas, which are deployed after satellite launch. Another antenna type used on CubeSats is the patch antenna. In addition to their low gain and efficiency, deployable dipole antennas may also fail to deploy on satellite launch. On the other hand, a solid patch antenna will compete for space with solar cells when placed on a CubeSat face, interfering with satellite power generation. Slot antennas are promising alternatives to dipole and patch antennas on CubeSats. When excited, a thin slot aperture etched on a conductive sheet (ground plane) is an efficient bidirectional radiator. This open slot antenna can be backed by a reflector or cavity for unidirectional radiation, and solar cells can be placed in spaces on the ground plane not occupied by the slot. The large surface areas of 3U CubeSats can be exploited for a multifunctional antenna by integrating multiple thin slot radiators, which are backed by a thin cavity on the CubeSat surfaces. Solar cells can then be integrated on the antenna surface. Polarization diversity and frequency diversity improve the overall performance of a communication system. Having a single radiating structure that could provide these diversities is desired. It has been demonstrated that when a probe excites a square cavity with two unequal length crossed-slots, the differential radiation from the two slots combines in the far-field to yield circular polarization. In addition, it has been shown that two equal-length proximal slots, when both fed with a

  17. Advanced Communication Technology Satellite (ACTS) multibeam antenna technology verification experiments

    Science.gov (United States)

    Acosta, Roberto J.; Larko, Jeffrey M.; Lagin, Alan R.

    1992-01-01

    The Advanced Communication Technology Satellite (ACTS) is a key to reaching NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams, and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna with rapidly reconfigurable hopping and fixed spot beam to serve users equipped with small-aperature terminals within the coverage areas. The proposed antenna technology experiments are designed to evaluate in-orbit ACTS multibeam antenna performance (radiation pattern, gain, cross pol levels, etc.).

  18. Design and Analysis of HJ-1-C Satellite SAR Antenna

    Directory of Open Access Journals (Sweden)

    Zheng Shi-kun

    2014-06-01

    Full Text Available With truss deployable mesh parabolic reflector, the HJ-1-C SAR antenna has complex structure and multiple steps during the deployed processing. The design of the antenna is difficult in terms of deployed reliability and electrical performance. This paper makes intensive research on system, structure and electrical design, and the analysis of mechanical and thermal performance in the actual space conditions is also presented. The successful deploying in orbit and high image quality of the HJ-1-C satellite indicate that the mechanical, electronic, thermal and reliability design of the antenna satisfy the project requirement, and these research provides valuable experience for the design of the centralized mesh parabolic SAR antenna.

  19. Sunflower array antenna for multi-beam satellite applications

    NARCIS (Netherlands)

    Vigano, M.C.

    2011-01-01

    Saving space on board, reducing costs and improving the antenna performances are tasks of outmost importance in the field of satellite communication. In this work it is shown how a non-uniformly spaced, direct radiating array designed according to the so called ‘sunflower’ law is able to satisfy str

  20. 一种h形缝隙多频微带天线设计%Design of a Multi-Band h-shaped Slot Microstrip Antenna

    Institute of Scientific and Technical Information of China (English)

    杨虹; 陈川江

    2012-01-01

    A multi-band h-shaped slot microstrip antenna has been proposed based on analyzing the conventional slot microstrip antenna. The proposed antenna has the features of multi-band and miniaturization. The resonance frequency can be reduced and the bandwidth can be increased by being loaded a single shorted-post and being slotted in the ground plate. The characteristics of the antenna have been simulated by using HFSS11. 0 software based on the finite element method (FEM). The simulation results showed that the antenna operated at 2. 38 - 2. 79 GHz, 4. 59~4. 75 GHz and 5. 12~ 5. 90 GHz when the return loss S11 was less than -10 dB, the size reduced 62. 43% compared to the general microstrip antenna, demonstrated the effectiveness of the design scheme. The antenna structure is simple and easily to be implemented, met the wireless LAN 802. lla/b/g/n mobile terminal antenna miniaturization and multi-band requirements.%通过对传统缝隙微带天线的分析,提出了一种h形缝隙微带天线.该天线具有多频带、小型化等特点,通过加载短路探针和在接地板挖槽的方法降低了天线的谐振频率,提高了带宽.利用基于有限元法的电磁仿真软件HFSS11.0对天线的特性进行了仿真,仿真结果表明,该天线在回波损耗S11<-10 dB时,其工作频段为2.38~2.79 GHz,4.59~4.75 GHz和5.12~5.90 GHz,尺寸比普通微带天线降低了62.43%,从而验证了这种设计方案的有效性.该天线结构简单易于实现,能够满足无线局域网802.11a/b/g/n移动终端内置天线的多频带和小型化的要求.

  1. Miniaturized Wideband Aperture Coupled Microstrip Patch Antenna by Using Inverted U-Slot

    Directory of Open Access Journals (Sweden)

    Amandeep Singh

    2014-01-01

    Full Text Available This paper presents a linear polarized aperture coupled inverted U-slot patch antenna with small steps at the edges. The proposed design exhibits wideband behavior, acceptable return loss, VSWR, gain, small size, and less complexity. The theoretical analysis is based on the finite element method (FEM. This design has wide bandwidth, good return loss, VSWR, and radiation characteristics by implanting the inverted U-shaped stepped slots on a single aperture coupled patch. The proposed antenna design shows the measured return loss within acceptable range throughout the band (11.08 GHz–13.25 GHz and maximum return loss is achieved with proper impedance matching. In this paper, the design considerations are presented and results are validated by the calculated and measured parameters.

  2. Electromagnetic scattering and radiation from microstrip patch antennas and spirals residing in a cavity

    Science.gov (United States)

    Volakis, J. L.; Gong, J.; Alexanian, A.; Woo, A.

    1992-01-01

    A new hybrid method is presented for the analysis of the scattering and radiation by conformal antennas and arrays comprised of circular or rectangular elements. In addition, calculations for cavity-backed spiral antennas are given. The method employs a finite element formulation within the cavity and the boundary integral (exact boundary condition) for terminating the mesh. By virtue of the finite element discretization, the method has no restrictions on the geometry and composition of the cavity or its termination. Furthermore, because of the convolutional nature of the boundary integral and the inherent sparseness of the finite element matrix, the storage requirement is kept very low at O(n). These unique features of the method have already been exploited in other scattering applications and have permitted the analysis of large-size structures with remarkable efficiency. In this report, we describe the method's formulation and implementation for circular and rectangular patch antennas in different superstrate and substrate configurations which may also include the presence of lumped loads and resistive sheets/cards. Also, various modelling approaches are investigated and implemented for characterizing a variety of feed structures to permit the computation of the input impedance and radiation pattern. Many computational examples for rectangular and circular patch configurations are presented which demonstrate the method's versatility, modeling capability and accuracy.

  3. Application of adaptive antenna techniques to future commercial satellite communication

    Science.gov (United States)

    Ersoy, L.; Lee, E. A.; Matthews, E. W.

    1987-01-01

    The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further sub-divided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.

  4. 利用FDTD方法全波分析与设计管道中用于整流天线的微带天线%Full-wave analysis and design of microstrip antenna in-pipe for rectenna using FDTD method

    Institute of Scientific and Technical Information of China (English)

    徐君书; 徐得名; 杨雪霞; 徐长龙

    2006-01-01

    The circular polarized microstrip antenna in the stainless pipe is analyzed by the finite-difference time-domain (FDTD) method with PML absorbing boundary condition. The microstrip antenna is used as a microwave energy supply element for the in-pipe micromachine inspecting. The numerical results agree well with the measured ones.

  5. On intermodulation beams of satellite DBF transmitting multibeam array antenna

    Science.gov (United States)

    Zhao, Hongmei; Wang, Huali; Mu, Shanxiang

    2007-11-01

    Digital beamforming (DBF) transmitting multibeam planar array antenna with nonlinear behaviors of solid-state power amplifiers (SSPA) is discussed. This paper investigates the intermodulation beams produced by the nonlinearity characteristics of the SSPA with multiple carrier components. The Shimbo model is simplified to describe the nonlinear behaviors of SSPA. The optimal SSPA input back-off (IBO) point which is given the desired the carrier and the intermodulatin ratio (C/IM) is simulated. And the tradeoffs between linearity and efficiency of the power amplifier which influence this IBO is also discussed, helping to selecting suitable SSPA device and reducing the dc power consumption in satellite array antenna system.

  6. A Design for a Fractal Antenna Named “Chalipa” Microstrip Patch Antenna Based on LTCC Technology%一种LTCC新型“chalipa”微带贴片天线的设计

    Institute of Scientific and Technical Information of China (English)

    沈国策; 赵云; 苏桦; 张怀武

    2013-01-01

    设计提出了一种低温共烧陶瓷(LTCC)新型分形单元“chalipa”微带天线.该天线采用“chalipa”新型分形结构,分形单元由2个具有一定宽度的垂直交叉的“S”微带线组成,其垂直交叉的特性形成圆形旋转的贴片表面电流,从而使电磁场旋转产生圆极化辐射;微带线的宽度与探针的50 Ω阻值相匹配,进一步提升天线带宽.仿真结果表明,该天线工作于1.268 GHz时,阻抗带宽大于80 MHz,天线的轴比小于0.5 dB,且增益达到1.45 dBi.%A fractal microstrip patch antenna named "chalipa" was designed based on LTCC technology. The novel antenna was composed of "chalipa" structure, which consists of two vertical cross with certain width of microstrip lines of the "S". The characteristics of the vertical cross formed the patch surface current of circular rotation. So that the electromagnetic field rotation would produce the circularly polarized radiation. Through matching the width of the microstrip line and probe of 50 Ω resistance, the antenna bandwidth was enhanced. The simulated results showed that the impedance bandwidth of the antenna exceeded 80 MHz, the axial ratio was less than 0. 5 dB and the gain approached to 1.45 dBi when the antenna operated at the center frequency of 1. 268 GHz.

  7. ANN Synthesis Model of Single-Feed Corner-Truncated Circularly Polarized Microstrip Antenna with an Air Gap for Wideband Applications

    Directory of Open Access Journals (Sweden)

    Zhongbao Wang

    2014-01-01

    Full Text Available A computer-aided design model based on the artificial neural network (ANN is proposed to directly obtain patch physical dimensions of the single-feed corner-truncated circularly polarized microstrip antenna (CPMA with an air gap for wideband applications. To take account of the effect of the air gap, an equivalent relative permittivity is introduced and adopted to calculate the resonant frequency and Q-factor of square microstrip antennas for obtaining the training data sets. ANN architectures using multilayered perceptrons (MLPs and radial basis function networks (RBFNs are compared. Also, six learning algorithms are used to train the MLPs for comparison. It is found that MLPs trained with the Levenberg-Marquardt (LM algorithm are better than RBFNs for the synthesis of the CPMA. An accurate model is achieved by using an MLP with three hidden layers. The model is validated by the electromagnetic simulation and measurements. It is enormously useful to antenna engineers for facilitating the design of the single-feed CPMA with an air gap.

  8. A comprehensive comparative study of Bandwidth enhancement of an antenna by non contacting feed lines with Rectangular Microstrip Patch (RMP using superstrate at ku band

    Directory of Open Access Journals (Sweden)

    POORNANAND DUBEY

    2012-04-01

    Full Text Available So far as this paper is concerned, this paper presents a comparative study of a rectangular Microstrip patch antenna at Gigahertz (GHz frequency using non contacting microstrip feed lines of length 14 to 14.9 mm (we didn’t extend the feed line up to 15mm length as in this case it would start contacting with the patch with superstrate. This means we created capacitive coupling between patch and feed line by varying the length of feed line up to which it doesn’t come into contact with the patch. The results presented here are obtained usingAnsoft High Frequency Structure Simulator (HFSS 11.0 software which is based on full wave finite element method. As a matter of fact, here five different feed line lengths antennas outcomes are shown and their comparative results are also shown in the tabular form. In this study a superstrate of thickness 5mm is also introduced to get the more precise results. Here it is very important to mention that the best performance of antenna i.e., below -10dB that we achieved at the feed line length of 14.9 mm i.e. spacing between the feed line and patch is 0.1 mm and we got bandwidth of 41.5% and resonance frequency of 17.8 GHz at solution frequency of 17.8 GHz.

  9. Design of Circularly Polarized Microstrip Antenna with Peano Structure%一种Peano结构的圆极化微带天线设计

    Institute of Scientific and Technical Information of China (English)

    王帅涛; 朱素英

    2013-01-01

    To improve the problem of antenna array circular polarization and gain degradation because of large distance between antennae with EBG structure,a design of circularly polarized microstrip antenna with Peano curve structure was proposed.After study of finite periods first order Peano curve to suppress surface wave by direct transmission method,the EBG structure was put around the antenna,the distance waaas reduced between antenna and Peano structure,and the design parameters of antenna and Peano structure were optimized.The simulated results show that the distance between circularly polarized microstrip antenna and EBG structure can be reduced as compared with the traditional antenna.Mutual coupling among antennas can be suppressed,and the performance of antenna array can be improved.%在天线结构优化设计中,为了改善电磁带隙结构下阵元间距过大造成天线阵极化特性和增益性能下降的问题,提出设计了一种Peano结构下的圆极化微带天线.使用直接传输方法分析有限周期的一阶Peano结构的表面波带隙,将电磁带隙结构放在微带天线周围,通过减小电磁带隙结构和天线的间距,优化天线结构和天线的参数,缩小阵元之间的间距.仿真结果表明,与传统的电磁带隙结构微带天线相比,改进设计能有效减小圆极化天线阵中阵元间距,抑制阵元之间的互耦,提高阵元的方向性和天线阵性能.

  10. 缝隙加载的宽频带圆极化微带天线%Slot-loaded Circularly Polarized Broadband Microstrip Antenna

    Institute of Scientific and Technical Information of China (English)

    杨帅; 冯全源

    2009-01-01

    为了扩展单馈圆极化微带天线的带宽,提出了一种新型的圆极化微带天线.通过在双层微带天线的圆环贴片上加载面积适当的矩形缝隙对的方式,使天线可以在较宽的频段范围内辐射圆极化波.仿真结果表明,该天线具有良好的宽带特性,其阻抗带宽(VSWR<2)达到了29.6%,圆极化带宽(AR<3 dB)为12%.该天线具有结构简单、体积小等优点,在无线通信领域具有广阔的应用前景.%To expand the bandwidth of singly-fed circularly polarized microstrip antenna, a circularly polarized stacked microstrip antenna is proposed. With rectangular slots inserted into the upper and lower patches,the an-tenna is able to radiate circularly polarized electromagnetic wave.Simulation results show that the antenna has good wideband characteristics,with its impedance bandwidth achieving 29. 6% (VSWR< 2) and the 3 dB axis ratio(AR) bandwidth covering about 12% of the bandwidth. The antenna has a simple structure and small size, so it can be widely used for various wireless communication applications.

  11. Non-Uniform Microstrip Antenna Array for DSRC in Single-Lane Structures

    Directory of Open Access Journals (Sweden)

    Tiago Varum

    2016-12-01

    Full Text Available Vehicular communications have been subject to a great development in recent years, with multiple applications, such as electronic payments, improving the convenience and comfort of drivers. Its communication network is supported by dedicated short range communications (DSRC, a system composed of onboard units (OBU and roadside units (RSU. A recently conceived different set-up for the tolling infrastructures consists of placing them in highway access roads, allowing a number of benefits over common gateway infrastructures, divided into several lanes and using complex systems. This paper presents an antenna array whose characteristics are according to the DSRC standards. Additionally, the array holds an innovative radiation pattern adjusted to the new approach requirements, with an almost uniform wide beamwidth along the road width, negligible side lobes, and operating in a significant bandwidth.

  12. Circularly Polarized Microstrip Antenna with Quadratic Koch Fractal Boundary%具有二次Koch分形边界的圆极化微带天线

    Institute of Scientific and Technical Information of China (English)

    林澍; 张雪莹; 王宇碟; 刘圣英; 邱景辉; 王进祥

    2011-01-01

    设计了一种单馈点圆极化微带天线.微带贴片采用二次Koch分形边界的贴片结构,通过底馈方法激励起两个相互正交的简并模实现圆极化;采用CST Microwave Studio(R)软件进行了仿真.其结果表明.在微带贴片的对角线上适当位置用探针馈电,可以实现圆极化辐射.对具有介质损耗的天线进行了仿真,结果与理想介质的差异较大.设计了一个右旋圆极化微带天线,并进行了测试.该天线工作于1.575 GHz;VSWR小于2的阻抗带宽为51 MHz;轴比为4 dB;增益为3.8 dB;贴片尺寸为42.4 mm×42.4 mm,可以用作GPS天线.%A Koch fractal boundary circularly polarized microstrip antenna with single feeding point is presented.The microstrip patch has a quadratic Koch fractal boundary structure which stimulates two orthogonal degenerate modes to realize circular polanzation by feeding at the bottom.The antenna simulation is performed with CST Microwave Studio(R) software.The simulation results show that the antenna can realize the characteristic of circular-polarization with the feeding position on the diagonal line of the patch.The antenna with dielectric loss of board is simulated, and the results differ from those in perfect dielectric, which is embodied in the decrease of the gain and the increase of axial ratio.A dextrorotatory circularly polanzed microstrip antenna is proposed and tested, which works at 1.575 GHz with impedance bandwidth of 3.2% at VSWR less then 2, and whose axial ratio is 4 dB and gain is 5 dB.The size of the antenna is 42.4 mm×42.4 mm, and it can be used as GPS anterma.

  13. Design and characteristics of a multiband communication satellite antenna system

    Science.gov (United States)

    Ueno, Kenji; Itanami, Takao; Kumazawa, Hiroyuki; Ohtomo, Isao

    1995-04-01

    Feasibility studies on a multiband communication satellite antenna system and the key technologies involved in devising this system are described. The proposed multiband communication satellite utilizes four frequency bands: Ka (30/20 GHz), Ku (14/12 GHz), C (6/4 GHz), and S (2.6/2.5 GHz). It has six beam configurations, three multibeam and three shaped-beam. The following key technologies are presented: (1) a low-loss frequency selective subreflector (FSR) for compact feeds, (2) a low-loss and broadband frequency selective surface (FSS), and (3) a highly accurate and reliable mesh reflector.

  14. Nodding feed antenna for communications with satellites in synchronous orbit

    Science.gov (United States)

    Smetana, J.; Zavesky, R.

    1978-01-01

    The design, fabrication, and performance of a parabolic, ground receiving antenna system with a feed that nods in one axis producing a maximum beam deviation 1.1 deg from boresight is described. The antenna design was: (1)to lower the weight (and the subsequent cost) of the supporting structure and the actuator motors for a tracking antenna by moving just the feed; (2) to use a manual tracking system eliminating the need for expensive electronic controls or computers; (3) to provide for several hours of unattended operation; and (4)to permit operation of the antenna by unskilled personnel. Also described are some physical and orbital phenomenon that effect the operation or design of the antenna. One is the motion of a nearly geostationary satellite due to gravitational forces from the sun, the moon, and other stellar bodies. Others are the rotation of the nodding axis and the feed polarization as a function of the location of the station on the earth. A comparison of per unit cost was made for one unit and a quantity of 100.

  15. Estimation of satellite antenna phase center offsets for Galileo

    Science.gov (United States)

    Steigenberger, P.; Fritsche, M.; Dach, R.; Schmid, R.; Montenbruck, O.; Uhlemann, M.; Prange, L.

    2016-08-01

    Satellite antenna phase center offsets for the Galileo In-Orbit Validation (IOV) and Full Operational Capability (FOC) satellites are estimated by two different analysis centers based on tracking data of a global GNSS network. The mean x- and y-offsets could be determined with a precision of a few centimeters. However, daily estimates of the x-offsets of the IOV satellites show pronounced systematic effects with a peak-to-peak amplitude of up to 70 cm that depend on the orbit model and the elevation of the Sun above the orbital plane. For the IOV y-offsets, no dependence on the orbit model exists but the scatter strongly depends on the elevation of the Sun above the orbital plane. In general, these systematic effects are significantly smaller for the FOC satellites. The z-offsets of the two analysis centers agree within the 10-15 cm level, and the time series do not show systematic effects. The application of an averaged Galileo satellite antenna model obtained from the two solutions results in a reduction of orbit day boundary discontinuities by up to one third—even if an independent software package is used.

  16. Aeronautical satellite antenna steering using magnetic field sensors

    Science.gov (United States)

    Sydor, John; Dufour, Martial

    1993-01-01

    Designers of aeronautical satellite terminals are often faced with the problem of steering a directive antenna from an airplane or helicopter. This problem is usually solved by using aircraft orientation information derived from inertial sensors on-board the aircraft in combination with satellite ephemeris information calculated from geographic coordinates. This procedure works well but relies heavily on avionics that are external to the terminal. For the majority of small aircraft and helicopters which will form the bulk of future aeronautical satcom users, such avionics either do not exist or are difficult for the satellite terminal to interface with. At the Communications Research Center (CRC), work has been undertaken to develop techniques that use the geomagnetic field and satellite antenna pointing vectors (both of which are stationary in a local geographical area) to track the position of a satellite relative to a moving platform such as an aircraft. The performance of this technique is examined and a mathematical steering transformation is developed within this paper. Details are given regarding the experimental program that will be undertaken to test the concepts proposed herein.

  17. 微带环形平面双频超宽带天线设计%Design of dual-band microstrip circular planar antenna for UWB communications

    Institute of Scientific and Technical Information of China (English)

    王江曼; 陈德智

    2011-01-01

    提出了一种微带双频UWB天线的设计,结合ADS,HFSS仿真工具;对天线结构进行理论优化并通过大量仿真对天线尺寸进行调整;优化出适合UWB FCC提出的3.1-10.6GHz频带范围的双频微带天线,此天线的优点不需要任何加载,结构简单;仿真结果表明天线性能良好,满足一定的带宽需求.%In this paper,a dual-band microstrip UWB antenna design is proposed. Combined with ADS, HFSS simulation tools, simulated and optimized the antenna by a large number of adjustments on the theory of antenna,optimized to meet the UWB FCC s 3.1-10.6GHz frequency range. Advangtage of this antenna does not require any loading and simple. The simulation results show good performance of the antenna to meet the needs of bandwidth; has good radiation and gain characteristics.

  18. Design of Left-handed Metamaterial Microstrip Antenna Applied in WLAN%一种应用于WLAN的左手材料微带天线设计

    Institute of Scientific and Technical Information of China (English)

    汪仲清; 李宝; 彭丽丹; 欧芝香

    2013-01-01

    通过在贴片上刻蚀不对称的U型缝隙和引入两组短路针接地,设计了一种多频小型化微带天线.加载平面型左手材料覆层到微带天线贴片上方,进一步构建一种各项性能均能满足WLAN技术要求的左手材料微带天线.本设计的左手材料微带天线不仅覆盖了WLAN的所有高低频段,而且具有良好的方向性,可为无线通信系统实际应用提供参考.%A miniaturized and multi-frequency microstrip antenna is designed by etching unsymmetrical U slot on the metal patch and connecting radiation patch to ground plane with two groups of shorting pins. When the proposed left-handed metamaterial ( LH MTM) cover is located in front of the a-bove antenna, the various performance of LH MTM antenna can gain further, which meet the requirements of wireless local area network (WLAN) bands completely. The designed LH MTM antenna covers three frequency bands of WLAN and shows good radiation performance. Therefore, the designed antenna can provide reference for the requirements of wireless communication system in practical application.

  19. Flat Array Antennas for Ku-Band Mobile Satellite Terminals

    Directory of Open Access Journals (Sweden)

    Roberto Vincenti Gatti

    2009-01-01

    Full Text Available This work presents the advances in the development of two innovative flat array antennas for Ku-band mobile satellite terminals. The first antenna is specifically conceived for double-deck trains to allow a bi-directional high data rate satellite link. The available circular surface (diameter 80 cm integrates both a transmitting and a receiving section, operating in orthogonal linear polarizations. The TX frequency range is fully covered while the RX bandwidth is around 1 GHz arbitrarily allocated on the DVB range depending on requirements. The beam is steered in elevation through a phased array architecture not employing costly phase shifters, while the steering in azimuth is mechanical. Active BFNs allow excellent performance in terms of EIRP and G/T, maintaining extremely low profile. High antenna efficiency and low fabrication cost are ensured by the employment of innovative SIW (Substrate Integrated Waveguide structures. The second antenna, receiving-only, is designed for radio/video streaming services in mobile environment. Full DVB coverage is achieved thanks to cavity-backed patches operating in double linear polarization. Two independent broadband active BFNs allow simultaneous reception of both polarizations with full tracking capabilities and a squintless beam steering from 20∘ to 60∘ in elevation. A minimum gain of 20 dBi and G/T >−3 dB/∘K are achieved, while maintaining extremely compact size and flat profile. In the design of both antennas fabrication cost is considered as a driving factor, yet providing high performance with a flat profile and thus resulting in a great commercial potentiality.

  20. Design of a New Wideband Circularly Polarized Microstrip Antenna%一种新型宽带圆极化微带天线的设计

    Institute of Scientific and Technical Information of China (English)

    田印炯; 陈建; 程忍

    2013-01-01

    该文设计了一种新型宽带圆极化微带天线。该天线采用微带线进行馈电,在地板圆形开槽内加载一对矩形和椭圆组成的径向微扰枝节来获得圆极化,并切去一对圆弧形槽以降低圆极化的中心频率。借助仿真软件HFSS对天线结构参数进行优化设计,并制作实物。仿真与测试结果表明:回波损耗小于-10dB的阻抗带宽为12.5%,且在此频段内轴比均小于2dB。%A new wideband circularly polarized microstrip antenna fed by microstrip line is designed in this paper.The proposed antenna realizes circularly polarized by loading a pair of radial perturbation structures at the circular-slot boundary on the ground , and the perturbation structures were composed of rectangle and el-lipse .It also cuts off a pair of circular grooves to reduce the center frequency of the circular polarization .The parameters of the antenna are optimized by the simulated software HFSS , and an antenna is fabricated based on the simulation .The simulation and measured results show that the impedance bandwidth with S 11<-10 dB is 12.5%, and the axial ratio is less than 2dB in the band .

  1. 频率与方向图可重构微带天线设计%Design of frequency and radiation pattern reconfigurable microstrip antenna

    Institute of Scientific and Technical Information of China (English)

    赵轶卓; 陈春红; 马伟男; 邾志民

    2015-01-01

    This paper presents a microstrip patch antenna with reconfigurable frequency and pattern to meet the needs of wireless communication system miniaturization and antenna multifunction. The configuration consists of a radiation patch with an U-shaped slot and two symmetrical parasitic patches. The reconfigurations of frequency and pattern can be achieved by changing the operating states of the PIN diode on the U-shaped slot and parasitic patches. Simulation and test results show that the antenna resonates at 5. 2 GHz or 5. 8 GHz, at the same time, the beam deflection and broadening can be achieved at both of the resonant frequencies. The reconfigurable frequencies and radiation patterns can be achieved by adopting the structure of a microstrip antenna, and the characteristic of multifunction is realized.%为了满足无线通信系统小型化和天线多功能的需求,设计了一种频率和方向图可重构的微带贴片天线. 该天线由一个带U型槽的辐射贴片和左右对称的寄生贴片构成,通过改变辐射贴片上U型槽和寄生贴片上PIN(正-本-负)二极管的工作状态来实现天线的工作频率和方向图的改变. 仿真和测试结果表明:天线的谐振频率可以在5 . 2 GHz和5 . 8 GHz之间切换,同时在两个频点都可以实现波束的左右偏转和展宽. 采用这种结构的微带天线可以同时实现频率和方向图的重构,从而实现天线的多功能.

  2. 用于无线能量传输系统的微带天线设计%Design of Microstrip Antenna Applied to Wireless Power Transmission System

    Institute of Scientific and Technical Information of China (English)

    郭爽; 陶珺

    2016-01-01

    本文提出一种用于组成无线能量传输(Wireless Power Transmission,WPT)系统的微带天线结构,并采用基于有限元法的电磁仿真软件(HFSS)对微带天线进行3D建模.在二端口网络分析法的基础上,建立磁耦合共振无线能量传输等效电路模型,求解出系统发生频率分叉现象产生的条件以及最大效率时的频率表达式.基于以上方法,研究本文设计的微带天线传输特性,包括:系统的最优传输效率与耦合距离的关系,工作频率与耦合距离的关系,得出在能量传输距离在50cm左右时,天线的谐振频率为12.5MHz,效率可达63%.微带天线具有很大的结构优势,如与集成电路兼容,成本低,体积相对较小,且工艺相当成熟,易大规模批量生产等优势.因此该设计的平面微带天线可用于无线能量传输系统.%A configuration of microstrip antenna is proposed for design of wireless power transmission(WPT) system.Via electromagnetic simulation software HFSS which is based on Finite Element Method(FEM),we establish 3D modeling microstrip antenna.The equivalent circuit model of wireless power transmission system via magnetic resonance coupling is analyzed contactless based on the two-port network analysis method. The condition of the resonant frequency splitting phenomenon is produced,a wireless power transmission system is deduced,and the frequency expression of maximum efficiency is derived.Based on the method above,by researching characteristics of transmission of this system including:the relationship between optimal efficiency of transmission system and the coupling distance and the relationship between the working frequency and the coupling distance. we concluded that when the energy transmission distance is in 50cm, microstrip antenna the resonant frequency of which is 12.5MHz still has a high efficiency (63%).The microstrip antenna has advantages on its great structure,such as compatible with integrated circuit,lower cost

  3. Design and simulate on cylindrical conformal microstrip patch antenna with PBG structure%PBG 结构圆柱形微带贴片天线的设计与仿真

    Institute of Scientific and Technical Information of China (English)

    陈志贤

    2016-01-01

    本文利用光子晶体带隙(PBG)结构的特点,将特殊设计的 PBG 结构应用于圆柱形微带贴片天线中。在同轴线馈电的圆柱形微带贴片天线的介质上蚀刻出按一定规律排列的 PBG 结构,并基于 HFSS 对特殊设计的 PGB 结构圆柱形微带贴片天线和普通的圆柱形微带贴片天线进行仿真和优化,仿真结果表明,按照一定规律排列的 PBG 结构可以有效抑制天线表面波的传播,明显提高圆柱形微带贴片天线的带宽和增益,有效改善圆柱形微带贴片天线的辐射方向图,实现天线性能的优化设计。%This paper proposes a new structure named Photonic Band Gap(PBG)for microstrip patch antenna.The new PBG structure is etched on the dielectric plane of a probe-fed microstrip patch antenna and arranged by a certain rule. The cylindrical conformal microstrip patch antenna with PBG structure was simulated by HFSS.The simulation results indicate that using the PBG structure which is arranged by a certain rule on the antenna could suppresse the propagation of the surface wave,significantly improve the cylindrical microstrip patch antenna bandwidth and gain,effectively improve the cylindrical microstrip patch antenna radiation pattern.

  4. Research on a New Triple-Band Circularly Polarized Microstrip Antenna%一种新型三频圆极化微带天线的研究

    Institute of Scientific and Technical Information of China (English)

    齐健; 范中国

    2011-01-01

    本文设计了一种三频圆极化微带贴片天线,天线能够同时工作在GPS L1、L2波段和GLONASS波段。天线将两层层叠辐射贴片和馈电网络集成在一起,层叠结构保证了天线的紧凑。双馈电结构与圆极化馈电网络保证了天线具有良好的阻抗带宽和圆极化特性。用HFSS软件对天线进行仿真、优化。文中给出了天线的详细设计及实测结果,实测结果表明该天线性能良好。%A new triple-band circularly polarized microstrip antenna is presented in this paper.The proposed antenna can operate at GPS L1,L2 band and GLONASS band simultaneously.The antenna integrates two-layer stacked radiate patches with feeding network.The stacked structure carries out compactness of the antenna.The dual-feed structure and circularly polarized feeding network guarantee good impendance bandwidth and good circular polarization performance.This antenna is analyzed and optimized by the software HFSS.Details of the antenna design and experimental results are presented and discussed in the paper.The measured results show good performance of the antenna.

  5. Design and simulation of circularly polarized microstrip antenna by HFSS%基于HFSS的圆极化微带天线的设计和仿真

    Institute of Scientific and Technical Information of China (English)

    李登丰

    2011-01-01

    This design of a circularly polarized microstrip antenna,using slotted surface of the ways to further reduce the antenna size and improve the overall performance of the antenna,high dielectric constant of dielectric substrate materials,by selecting the appropriate feed location and notching work to achieve circular polarization,the antenna using HFSS software for electromagnetic simulation and physical modeling,optimizing the parameters of the antenna,obtained VSWR,gain,axial ratio and other simulation curve.Simulation results show that the antenna gain and pattern characteristics of a good,significantly reduced the size of the antenna to meet the project needs.%设计了一种圆极化微带天线,采用表面开槽的方法来减小天线的尺寸和提高天线的整体性能,介质基板采用高介电常数的材料,通过选择适当的馈电位置和切角实现圆极化工作方式,利用HFSS软件对天线进行了电磁仿真和物理建模,优化了天线的各项参数,得出了驻波比、增益、轴比等仿真曲线。仿真结果表明,天线的增益和方向图特性良好,天线的尺寸明显减小,满足工程需要。

  6. 机载共形的双环微带缝隙全向天线%Research on Airborne Conformal Microstrip Dual-slot Omni-directional Antenna

    Institute of Scientific and Technical Information of China (English)

    许国清; 武伟

    2011-01-01

    机载全向天线不但要满足水平面全向的指标要求,而且要与机体表面共形设计,常规的单极子天线和微带天线均无法满足要求。提出一种双环微带缝隙天线,可以实现机载共形的全向天线。分析了系统对机载天线的要求、双环微带缝隙天线的展宽带宽的方法,并给出了该天线的设计参数和实测结果,实测结果与仿真结果一致,验证了设计方法的正确性。%The airborne omni-directional antenna must have the omni-directional performance in horizontal plane, and also have conformal shape with the surface of airplane. The common monopole antenna and microstrip antenna can not meet the above requirements. The paper presents the mierostrip dual-slot antenna in order to realize the airborne conformal omni-directional antenna. The requirements for the airborne antenna of system and the methods for microslrip dual - slot antenna to broaden the band are analyzed, and then the design parameters and the measurement results are given. The measurement results and the simulation results are consistent, which can validate the design methods.

  7. 基于HFSS的无线传感器网络节点微带天线设计与仿真%Design and Simulation of Wireless Sensor Network Node Microstrip Antenna by HFSS

    Institute of Scientific and Technical Information of China (English)

    吴超; 吴明赞; 李竹

    2012-01-01

    According to the radiation principle of microstrip antenna, a rectangular microstrip antenna is designed. The resonant frequency of microstrip antenna is 2.47 GHz. The method of broadening the bandwidth of antenna is also discussed. Through adding an additional patch, the equivalent resonant circuit to be varied gets more resonance paints to extend the bandwidth of microstrip antenna. Simulation results show that the antenna has a bandwidth of 12% (300 MHz). The antenna designed in this way has advantage of small size,broadband and low-cast side. It can be used as terminal antenna for wireless sensor networks with high value of application in engineering.%根据微带天线的辐射原理,设计一种谐振频率为2.47 GHz的矩形微带天线,并对微带天线频带的展宽方法进行了研究.通过附加贴片来修改等效谐振电路,使其具有多个谐振点,从而扩展阻抗带宽,仿真结果表明该天线的阻抗带宽达到了12%(300 MHz).该天线具有体积小、宽频带和低抛面等特点,可作为无线传感网络节点的终端天线,具有一定的工程应用价值.

  8. Optimizing Satellite Communications With Adaptive and Phased Array Antennas

    Science.gov (United States)

    Ingram, Mary Ann; Romanofsky, Robert; Lee, Richard Q.; Miranda, Felix; Popovic, Zoya; Langley, John; Barott, William C.; Ahmed, M. Usman; Mandl, Dan

    2004-01-01

    A new adaptive antenna array architecture for low-earth-orbiting satellite ground stations is being investigated. These ground stations are intended to have no moving parts and could potentially be operated in populated areas, where terrestrial interference is likely. The architecture includes multiple, moderately directive phased arrays. The phased arrays, each steered in the approximate direction of the satellite, are adaptively combined to enhance the Signal-to-Noise and Interference-Ratio (SNIR) of the desired satellite. The size of each phased array is to be traded-off with the number of phased arrays, to optimize cost, while meeting a bit-error-rate threshold. Also, two phased array architectures are being prototyped: a spacefed lens array and a reflect-array. If two co-channel satellites are in the field of view of the phased arrays, then multi-user detection techniques may enable simultaneous demodulation of the satellite signals, also known as Space Division Multiple Access (SDMA). We report on Phase I of the project, in which fixed directional elements are adaptively combined in a prototype to demodulate the S-band downlink of the EO-1 satellite, which is part of the New Millennium Program at NASA.

  9. NASA ACTS Multibeam Antenna (MBA) System. [Advanced Communications Technology Satellite

    Science.gov (United States)

    Choung, Youn H.; Stiles, W. Herschel; Wu, Joseph; Wong, William C.; Chen, C. Harry

    1986-01-01

    The design of the Advanced Communications Technology Satellite MBA system, which provides both spot beam and scanning beam coverage to both high and low burst rates data-users is examined. The MBA consists of receive and transmit antennas installed on a common precision mounting platform that is integrated to the bus through three flexures; a lightweight system with low thermal distortion is obtained by using composite materials for the MBA structures. The RF design, which is a Cassegrain reflector with a large equivalent focal length/aperture size, is described. Consideration is given to the position of the feed in order to minimize scan loss and sidelobe levels, the size of the subreflector in order to minimize feed spillover, and antenna performance degradation caused by reflector surface distortion. Breadbroad model test result reveal that the maximum sidelobe level outside the 2.5 HPBW region is -30 dB or lower relative to the power.

  10. On-glass automotive diversity antenna and LNA design for S-band satellite digital radio

    Science.gov (United States)

    Yeğin, Korkut

    2015-11-01

    Selection combining diversity system with antennas mounted on windshield and backlite of a vehicle is proposed for satellite digital audio radio applications. Standalone exterior mount antennas on metallic vehicles perform well for satellite digital audio radio applications, but for composite body vehicles or interior mount antennas, antenna performance becomes a real issue. Proposed on-glass two-antenna diversity is one solution for such applications. The antenna correlation is calculated using the S-parameters of the antennas and found to be very low due to many wavelengths separation between the antennas. Design of low noise amplifier, which has sub 1 dB noise figure and good P1dB due to strong cellular signals, is also detailed. A diversity receiver is described and ride tests are performed to assess the performance of the diversity system in real-time, under weak satellite signal environment which is regarded as the most challenging reception condition.

  11. Choice of antenna geometry for microwave power transmission from solar power satellites

    Science.gov (United States)

    Potter, Seth D.

    1992-01-01

    A comparison is made between square and circular transmitting antennas for solar power satellite microwave power transmission. It is seen that the exclusion zone around the rectenna needed to protect populations from microwaves is smaller for a circular antenna operating at 2.45 GHz than it is for a square antenna at that frequency. If the frequency is increased, the exclusion zone size remains the same for a square antenna, but becomes even smaller for a circular antenna. Peak beam intensity is the same for both antennas if the frequency and antenna area are equal. The circular antenna puts a somewhat greater amount of power in the main lobe and somewhat less in the side lobes. Since rain attenuation and atmospheric heating remain problems above 10 GHz, it is recommended that future solar power satellite work concentrate on circular transmitting antennas at frequencies of roughly 10 GHz.

  12. Analysis and design of a multi-frequency microstrip antenna based on HFSS%基于HFSS的多频微带天线分析与设计

    Institute of Scientific and Technical Information of China (English)

    曹合适; 张斌珍; 赵龙

    2015-01-01

    设计了一种缝隙多频微带天线。通过在微带天线贴片上加载缝隙改变电流分布,从而实现微带天线的多频谐振。用HFSS软件对其进行仿真分析实现参数的优化设计,在1~6 GHz内得到了3个谐振频率:2.43,4.40和5.27 GHz,其回波损耗分别为:–31.84,–32.82,–29.62 dB。当回波损耗小于–10 dB时,相对带宽分别为:3.29%,1.41%,2.05%。该多频微带天线具有体积小、回波损耗低等优点,可用于无线通讯系统。%A multi-frequency slot microstrip antenna was designed. The current distribution on the antenna patch was changed by loading slot on the patch of the antenna, the multiple frequency resonance of the antenna was realized. HFSS software was used to simulate for optimizing the design parameters. Results show the proposed antenna has three resonant frequencies of 2.43, 4.40 and 5.27 GHz, whose return losses are –31.84, –32.82, –29.62 dB, respectively. When the return loss is less than –10 dB, their relative bandwidths are 3.29%, 1.41%, 2.05%, respectively. The proposed antenna has the advantages of small volume, low return loss, it can be used for wireless communication system.

  13. A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking

    Science.gov (United States)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    1995-01-01

    A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  14. Satellite-Tracking Millimeter-Wave Reflector Antenna System For Mobile Satellite-Tracking

    Science.gov (United States)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    2001-01-01

    A miniature dual-band two-way mobile satellite-tracking antenna system mounted on a movable vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  15. Zenith Pass Problem of Inter-satellite Linkage Antenna Based on Program Guidance Method

    Institute of Scientific and Technical Information of China (English)

    Zhai Kun; Yang Di

    2008-01-01

    While adopting an elevation-over-azimuth architecture by an inter-satellite linkage antenna of a user satellite, a zenith pass problem always occurs when the antenna is tracing the tracking and data relay satellite (TDRS). This paper deals with this problem by way of,firstly, introducing movement laws of the inter-satellite linkage to predict the movement of the user satellite antenna followed by analyzing the potential pass moment and the actual one of the zenith pass in detail. A number of specific orbit altitudes for the user satellite that can remove the blindness zone are obtained. Finally, on the base of the predicted results from the movement laws of the inter-satellite linkage, the zenith pass tracing strategies for the user satellite antenna are designed under the program guidance using a trajectory preprocessor. Simulations have confirmed the reasonability and feasibility of the strategies in dealing with the zenith pass problem.

  16. Novel Ku Band Reflectarray Antenna for Satellite Communication

    Directory of Open Access Journals (Sweden)

    Sridhar Bilvam

    2014-04-01

    Full Text Available This study focuses on the design and analysis of Ku band reflectarray antenna using a novel crossed dumbbell (clover patch unit cell. The reflectarray is proposed for application in satellite communication more specifically for Satellite newsgathering (12.5-13.75 GHz. The clover shaped unit cell is designed for 13.07 GHz and the suitability of the unit cell is validated using the phase characteristics analysis. The effect of the elements on the performance represented by the range of the reflection phase is of prime importance. From the observation, Clover unit cell has large phase variation compared to minkowski and koch unit cells. Therefore, the main purpose of this study is to investigate and validate the novel unit cell with a wide phase characteristics and the reflectarray constructed.

  17. 单馈圆极化微带天线的工程调试方法研究%Engineering debug method of single-feeding circularly polarized micro-strip antenna

    Institute of Scientific and Technical Information of China (English)

    于家傲; 陈文君; 袁靖; 鞠志忠

    2014-01-01

    为解决单馈圆极化微带天线的工程实现与设计方案存在着谐振频点不一致、轴比变差等问题,基于单馈圆极化天线理论基础,提出了两类单馈圆极化天线的工程调试方案,并采用HFSS软件进行了仿真。仿真结果表明,在天线的不同位置进行调试可分别对单馈圆极化微带天线的谐振频率、反射系数和轴比等天线性能进行优化调整,这对该类天线的工程调试具有指导意义。%To solve the problems that resonant frequency points are inconsistent and the axial ratio is getting worse between the engineering implementation of the single-feeding circularly polarized micro-strip antenna and its design scheme, this paper puts forward two kinds of engineering debug schemes for this micro-strip antenna and simulates them using HFSS software, based on the theoretic basis of single-feeding circularly polarized micro-strip antenna. Simulation results illustrate that the resonant frequency, reflection coefficient and axial ratio as well as other performances of the micro-strip antenna can be optimized respectively by debugging at various positions of this antenna, which plays a certain guiding role in engineering debug of these kinds of antenna.

  18. Robust FDI for A Ship-mounted Satellite Tracking Antenna: A Nonlinear Approach

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2008-01-01

    Overseas telecommunication is preserved by means of satellite communication. Tracking system postures the on-board antenna toward a chosen satellite while the external disturbances affect the antenna. Certain faults (beam sensor malfunction or signal blocking) cause interruption in the communicat......Overseas telecommunication is preserved by means of satellite communication. Tracking system postures the on-board antenna toward a chosen satellite while the external disturbances affect the antenna. Certain faults (beam sensor malfunction or signal blocking) cause interruption...... in the communication connection resulting in the loss of the tracking functionality. In this paper, an optimization based fault diagnosis system is proposed for the nonlinear model of the satellite tracking antenna (STA). The suggested method is able to estimate the fault for a class of nonlinear systems acting under...

  19. 基于CSRR结构的低RCS微带天线设计%Design of Low RCS Microstrip Antenna Based on CSRR Structure

    Institute of Scientific and Technical Information of China (English)

    赵一; 曹祥玉; 高军; 姚旭; 杨欢欢

    2013-01-01

    基于互补开口谐振环奇异的折射率特性,研制了一种可用于雷达低可见平台的新型微带天线.采用等效分析方法对CSRR结构的等效媒质参数加以研究,并将其应用于普通微带天线非辐射边一侧的接地板上,在保证天线辐射特性基本不变的同时使散射波远离镜像方向,从而实现在空域中的带外雷达散射截面积减缩.仿真和测试结果表明,加载CSRR结构的微带天线仍为线极化,前向增益仅损失0.32dB,对于不同角度入射波镜像方向RCS均有减缩,其中法线方向RCS最大减缩量达到7.8dB.该设计具有低成本、设计简单、便于加工、利于共形等优点,为天线RCS减缩提供了新思路.%Based on the peculiar refractive index feature of complementary split-ring resonator (CSRR),a novel lowvisible platform microstrip antenna is proposed.Equivalent analysis method has been adopted to study the refractive index of a CSRR structure.By loading the structure on the nonradiative side of the antenna ground plane and distract the scattered waves from mirror direction,a spatial reduction of out-bands radar cross section (RCS) is achieved,while the radiation performance is kept.Simulation and measured results demonstrate that the novel microstrip antenna maintains linear-polarization and get 7.8dB nose aspect RCS reduction with only 0.32dB positive gain loss.The design owns the merits of low cost,simple design,easy for fabrication and conformation,providing a new idea for antenna RCS reduction.

  20. Design and Simulation of An Improved Double-layer Microstrip Antenna Working at 60GHz%一种改进型60GHz双层微带天线的设计与仿真

    Institute of Scientific and Technical Information of China (English)

    王子浩; 石丹; 邹新龙; 高攸纲; 陈亚洲

    2014-01-01

    Compared to usual microwave antenna, microstrip antenna has many advantages, such as small size, light weight, low profile and good conformal shape. But its narrow-band characteristic has limited it from widespread application. So broadening the bandwidth of microstrip antenna is very important. In this paper, a double-layer microstrip antenna working at 60GHz is designed . By the way of reducing the dielectric constant and increasing media thickness, and its bandwidth to 6GHz.%微带天线和常用的微波天线相比,有体积小、重量轻、低剖面、易共形等特点。但是他的窄频带特性成了限制其广泛应用的主要障碍,因此,展宽微带天线的带宽具有十分重要的意义。本文通过减小介质介电常数,增大介质厚度,并最终采用双层微带天线的方法,设计了一个60GHz的双层微带天线,拓展带宽到6GHz。

  1. 圆极化五边形微带天线阵的设计与仿真%Design and simulation of circular polarization micro-strip antenna array

    Institute of Scientific and Technical Information of China (English)

    韩庆文; 陈旭; 陶学敏

    2011-01-01

    Pentagon circular polarization micro-strip antenna is good in broadband and circular polariza tion characteristics but hard in design process. The design principle of the pentagon circular polarization micro-strip antenna is researched and single ended side feeding method is presented. The way to analyze polygon micro-strip antennal is given, which is named finite cell. By means of adjust the 5. 6 GHz penta gon circular polarization micro-strip antenna, HFSS simulation results are shown. Based on the penta gon antenna unit be simulated, a four element antenna array is presented. Design method for feed net of the array is given. Design is optimized by HFSS software, and simulation results for the array are dis played. Simulation results show that the array obtain a 4% 3 dB bandwidth, and 12 dB gain.%五边形贴片天线具有较好的宽带特性和圆极化特性,但是设计过程复杂,本文通过研究五边形贴片单元的设计入手,给出单端侧馈五边形贴片天线的设计方法,并给出了5.6 GHz的五边形圆极化微带天线的HFSS仿真结果,以之为天线单元,构成4元天线阵列,给出馈电网络设计的合理方法,采用HFSS软件进行优化设计,进行仿真,仿真结果证明,该阵列获得了4%的3 dB带宽,并获得12 dB的增益.

  2. 一种微带馈电铲形终端椭圆缝隙超宽带天线%Microstrip-fed spade terminal elliptical slot UWB antenna

    Institute of Scientific and Technical Information of China (English)

    陈良

    2015-01-01

    设计了一种具有铲形终端微带馈电椭圆缝隙及枝节调节和接地板阶梯凹槽的超宽带(UWB)天线。利用仿真软件HFSS分析了铲形半椭圆、椭圆缝隙及枝节、半圆切槽、接地板与辐射体间隙、接地板三角形切角和阶梯凹槽等结构对天线性能的影响,对天线结构参数进行了优化。实测天线的阻抗带宽为2.8~12.0 GHz,在3.1~10.6 GHz范围内基本呈全向性,并且具有较稳定的增益,约为2.5~4.6 dBi。该天线可广泛用于无线通信领域。%A novel microstrip-fed spade terminal elliptical slot UWB patch antenna with minor dendritic adjustment and the ground stepped groove was designed. Simulating software HFSS was used to analyze and optimize the structure parameters. Results show that the impedance bandwidth of the antenna is in 2.8-12.0 GHz and the proposed antenna has nearly omni-direction characteristic over the entire operating bandwidth of 3.1-10.6 GHz and stable gain of 2.5-4.6 dBi.The proposed antenna can be widely used in wireless communication filed.

  3. Optimization of circular focused microstrip antenna array%环形微带聚焦天线阵列的性能优化

    Institute of Scientific and Technical Information of China (English)

    钟永卫; 郑立荣; 杨国敏

    2015-01-01

    基于无线能量传输效率优化理论,研究了环形聚焦天线阵列的6种拓扑结构,分析了它们的性能和影响性能的因素,发现中央单元会提高传输效率而减小聚焦距离,第2环单元对传输效率和焦距大小有很重要的贡献,但增加第2环的天线数目对性能无影响,增大口径会提高聚焦距离和旁瓣电平。最终设计了一种工作在2.45 GHz 的16个微带天线单元的环形聚焦天线阵列。设计结果显示,该天线阵列具有高传输效率、低旁瓣,以及聚焦距离更加精确的优点。%Six topology structure of circular focused antenna array designed based on the wireless power transmission efficiency op-timization theory is analyzed and presented.The central element raises transmission efficiency and reduces focal distance,and the second ring raises both transmission efficiency and focal distance.Increasing the element number of the second ring does not im-prove the antenna performance while increasing the ring diameter could raise both focal distance and side lobe level.A 4 × 4 fo-cused microstrip antenna array working at 2.45 GHz is designed to verify the proposed design method.The result shows this an-tenna array has high transmission efficiency,low side lobe level and exact focal distance.

  4. A simple ship-borne antenna stabilizer for limited area maritime satellite communication systems

    Science.gov (United States)

    Satoh, K.; Nakamae, M.; Mishima, H.

    1984-10-01

    This paper deals with a simple ship-borne antenna stabilizer for use in limited area multi-beam maritime satellite communication systems. A limited area system with high satellite e.i.r.p. is expected to be a more economical satellite system than a global system, because a low-gain ship-borne antenna and a simplified antenna stabilizer can be used. An optimum configuration is proposed for small size and low cost pendulum-type antenna stabilizers which are suitable for low gain ship-borne antennas. Also, a performance evaluation of the stabilizers is discussed using a statistical analysis of ship motion characteristics. Furthermore, fading characteristics of received signal strength due to antenna off-beam fluctuation and sea surface random reflection are experimentally evaluated.

  5. 双频圆极化缝隙加载微带天线%Dual-Frequency Circular Polarization Slot-loaded Microstrip Antenna

    Institute of Scientific and Technical Information of China (English)

    蔡廷海; 孙绪保; 郭瑞

    2011-01-01

    A dual-frequency triangular slot microstrip antenna is proposed in this paper.Theoretical analysis and simulation show that slot-loaded and triangle patch with truncated corner can realize dual-frequency and circular polarization,which enhances the axial ratio bandwidth and overall size of the antenna.%文章提出了一种三角形缝隙微带天线,在贴片表面开槽实现了双频,且天线能够工作在Ls波段和S波段上,并保证了相应的带宽;通过截去三角形的一角和选择合适的馈电点,实现了天线的圆极化,同时也展宽了轴比带宽;通过理论分析和计算机优化,给出了天线的具体参数。

  6. Bit Error Rate Due to Misalignment of Earth Station Antenna Pointing to Satellite

    Directory of Open Access Journals (Sweden)

    Wahyu Pamungkas

    2010-04-01

    Full Text Available One problem causing reduction of energy in satellite communications system is the misalignment of earth station antenna pointing to satellite. Error in pointing would affect the quality of information signal to energy bit in earth station. In this research, error in pointing angle occurred only at receiver (Rx antenna, while the transmitter (Tx antennas precisely point to satellite. The research was conducted towards two satellites, namely TELKOM-1 and TELKOM-2. At first, measurement was made by directing Tx antenna precisely to satellite, resulting in an antenna pattern shown by spectrum analyzer. The output from spectrum analyzers is drawn with the right scale to describe swift of azimuth and elevation pointing angle towards satellite. Due to drifting from the precise pointing, it influenced the received link budget indicated by pattern antenna. This antenna pattern shows reduction of power level received as a result of pointing misalignment. As a conclusion, the increasing misalignment of pointing to satellite would affect in the reduction of received signal parameters link budget of down-link traffic.

  7. Plasma Microdischarge as Power-Induced Limiter Element in Microstrip Devices

    OpenAIRE

    Pascaud, Romain; Pizarro, Francisco; Callegari, Thierry; Liard, Laurent; Pascal, Olivier

    2015-01-01

    The use of micro-hollow cathode sustained discharges (MCSD) as power-induced limiter elements in microstrip devices is proposed to protect receivers against high-power microwave (HPM) threats. The basic principle of the MCSD and its integration into a microstrip circuit are exposed. The power-limiting capability of such a solution has been experimentally assessed for three microstrip circuits, namely a microstrip transmission line, a microstrip ring filter, and a microstrip antenna.

  8. 孔径耦合微带天线阵互耦的抑制%Mutual coupling suppression of aperture coupled microstrip antenna array

    Institute of Scientific and Technical Information of China (English)

    程秀洋; 滕飞

    2014-01-01

    annular apertures on the metal plate .The structure of antenna array is composed of 2 × 2 four elements .The antenna con-sists of double layer dielectric ,and it realizes circular polarization characteristics by cutting rectangular slot on circular patch in the direction of 45° ,by using aperture coupling feeding and reverse feeding principle .There is 90° phase difference between adjacent antenna elements .Thus ,it cuts off the coupling current field between the elements ,suppresses the surface wave and reduces the mutual coupling by cutting four semi-circle annular apertures symmetrically on the metal plate .The simulation results show that after cutting four semi-circle annular apertures ,the antenna array coupling coefficients decrease significantly ,and the side and back lobe levels are suppressed effectively with the gain of antenna improved .So the proposed method is effective to suppress microstrip antenna array mutual coupling .%本文提出了一种在金属板开4个半圆缝隙来抑制微带天线阵阵元之间耦合的方法。微带天线阵为4单元结构,天线为双层介质层。通过在圆形贴片45°方向开矩形缝隙来实现圆极化特性,利用孔径耦合馈电及反向馈电原理,保证相邻的2个单元均有90°相位差。在金属板上对称地开4个半圆形缝隙切断了单元间的耦合电流场,抑制了表面波,降低了单元间的耦合效应。仿真结果显示,当在接地板上对称地开4个半圆形缝隙后,微带天线阵的耦合系数明显降低,旁瓣与后瓣电平被有效地抑制,天线的增益增加。因此,这是一个十分有效的抑制微带天线阵阵元间耦合的方法。

  9. The Resonant Characteristics of Eccentric Circular and Concentric Circular-elliptical Ring Microstrip Antennas%偏心圆环及同心圆-椭圆环微带天线的谐振特性

    Institute of Scientific and Technical Information of China (English)

    饶亲江; 龚中麟; 徐承和

    1999-01-01

    为研究偏心圆环及同心圆-椭圆环微带天线的谐振特性,运用了一种以对同心圆环微扰为基础的计算方法,计算的谐振波数值与参考文献作了比较,在小偏心率的情况下,一致性很好.%To study the resonant characteristics of eccentric circular and concentric circular-elliptical ring microstrip antennas ,the method,which is connected with the concentric ring microstrip antenna and based on the perturbation ,is employed to calculate resonant wave numbers. Comparisons of calculations with reference for the fundamental mode are also presented ,agreement is very good for small eccentricity.

  10. Analysis of PBG Structures and Its Application in Cylindrical Conformal Microstrip Antenna%PBG结构分析及其在柱面共形微带天线中的应用

    Institute of Scientific and Technical Information of China (English)

    王淑娟

    2011-01-01

    利用光学Bragg反射条件,设计了两种曲面光子带隙结构,并将其应用于柱面共形微带贴片天线中,分析了光子带隙结构的结构参数对微带贴片天线性能的影响.计算仿真表明,利用合适的PBG结构可以增强微带贴片天线的前向增益,抑制高次谐波,减小旁瓣,减小表面波损耗.%According to the reflection condition of optics Bragg, the two-dimensional curved PBG structures are designed and applied to the cylindrical conformal microstrip antenna, and the parameter of PBG structures influenced on the performance of microstrip patch antenna is analyzed. The simulation results indicate that using the appropriate PBG structures can get higher gain, suppress higher harmonics, reduce broadside radiation and surface wave dissipation of the microstrip patch antenna.

  11. 基于GS算法的圆柱共形微带阵列自适应零点形成%Adaptive Null Forming of Cylindrical Conformal Microstrip Antennas Array Based on GS Algorithm

    Institute of Scientific and Technical Information of China (English)

    王俊鸣; 齐会来; 张子华; 陆磊; 韩云

    2011-01-01

    GS algorithm is applied to form a adaptive null of a cylindrical conformal microstrip antennas array in this paper. Firstly, the radiation pattern of each microstrip antenna element is analyzed by using cavity mode theory and adding the field one by one to form the array pattern. Then, GS algorithm is adopted to form the adaptive null of the cylindrical conformal microstrip antennas array. The simulation results have shown that, GS algorithm can form null exactly in the direction of the jammer.%运用GS算法研究了圆柱共形微带阵列天线的自适应零点形成.根据腔模理论和逐元法得到圆柱共形微带阵列天线的方向性函数,将GS算法运用于共形阵列进行自适应零点形成.仿真结果表明,采用GS算法的圆柱共形微带天线阵列能准确地在干扰方向形成零陷.

  12. A Conformal Microstrip Antenna Embedded in Steel Shell%嵌入钢壳的共形微带天线设计

    Institute of Scientific and Technical Information of China (English)

    王代华; 宋林丽; 苏尚恩; 张志杰

    2012-01-01

    针对安装空间受限且需要与安装壳体共形的需求,设计了一种工作于2.4 GHz频段的圆环形微带贴片天线.利用Ansoft HFSS软件建立了天线及其安装壳体的模型,通过仿真分析确定了天线的外形尺寸以及加载电阻的阻值.仿真结果表明:辐射贴片的外形尺寸与天线的谐振频率密切相关,尺寸增大会使谐振频率明显下降;增大加载电阻的阻值可有效降低天线的谐振频率;嵌入钢壳后天线的谐振频率提高了4.2%.利用矢量网络分析仪对天线嵌入钢壳后的特性进行了实测,测试结果与仿真结果吻合良好.%Considering the requirements of limited mounting space and conformal structure, an annular ring microstrip patch antenna working in 2.4 GHz band was proposed.The antenna and its mounting shell were modeled by using the software of Ansoft HFSS, and the key parameters, such as the patch sizes and the resistance of loading resistor, were optimized by simulation.The simulated results indicate that the patch sizes have a great influence on the resonant frequency of the antenna, as the sizes increased, the resonant frequency decreased obviously.It is also found that the resonant frequency can be decreased when increasing the resistance of the loading resistor, and the resonant frequency increased by about 4.2% as the antenna embedded in the steel shell.The antenna with the steel shell was measured by using a vector network analyzer, and the measured results show good agreements with the simulated ones.

  13. High Gain Rectangular Microstrip Patch Antenna Employing FR4 Substrate for Wi-MAX, LMDS and MMDS Applications

    Directory of Open Access Journals (Sweden)

    Jaspreet Singh

    2016-06-01

    Full Text Available This paper presents an antenna for WiMAX, LMDS and MMDS system applications. FR4 material has been used as substrate having dielectric constant of 4.4. The Patch, Ground and feedline are made of copper. The proposed antenna is rectangular in shape which resonate at 3.42 GHz with a bandwidth of 45MHz (3.40GHz- 3.44GHz and corresponding return loss of -32.39 dB. The performance of the antenna has been analyzed in terms of return loss (dB, gain (dB, directivity (dBi, VSWR and impedance (ohms. The proposed antenna has directivity and gain of 7.2 dBi and 7.28 dB respectively

  14. A NEW DESIGN IMPROVEMENT OF MICROSTRIP U-SHAPE ANTENNA FOR BANDWIDTH ENHANCEMENT USING EBG STRUCTURE DEFORMATION

    Directory of Open Access Journals (Sweden)

    SUDHAKAR SRIVASTAVA

    2012-06-01

    Full Text Available The purpose of this paper is to design a low profile, conformal, small size antenna with high bandwidth along with good compromise in other factors like gain, directivity, efficiency etc. A U-shape patch antenna with suitable geometry is taken to provide good response of bandwidth about 30 % at centre frequency 2.025 GHz.using FR-4 glass epoxy material, on insertion of EBG structure, creating deformities at ground plane side, the band width of the antenna is improved tremendously about 49.36 % at centre frequency 2.35 GHz. The new design of antenna is found suitable for various wireless communications for S-band. The design approach & Simulation results are shown with the help of MOM based full wave simulator IE3D.

  15. Compact Single Feed Double Layer Circularly Polarised Microstrip Antenna%一种单馈小型化宽波束双层圆极化微带天线

    Institute of Scientific and Technical Information of China (English)

    禹化龙; 杨志刚; 陈光

    2011-01-01

    A compact single feed double layer circularly polarised microstrip antenna with low permittivity substrate is designed,centre cross-slot and peripheral cuts on each patch is proposed.The size of the antenna is reduced by four cutting slots.Centre cross-slot can improve the bandwidth,while peripheral cuts and proper feed location can realise circularly polarise of the antenna.As contrast to conventional microstrip antenna,the area of which is decreased approximately 37%.The antenna has a 800 beam width and a good gain performance,which is higher than 5.3 dB.%设计出一种单馈小型化宽波束双层圆极化微带天线,通过选取低介电常数的介质基片,在双层圆形贴片上分别刻四个槽减小天线的尺寸,中心开十字缝增加天线的阻抗带宽,在贴片边切角和贴片的对角线上选择合适的馈电位置实现圆极化,天线尺寸减少37%,天线方向图对称性好,波束宽度大于80°,增益大于5.3 dB。

  16. Miniaturization and Bandwidth Enhancement of a Microstrip Patch Antenna Using Magneto-Dielectric Materials for Proximity Fuze Application

    Science.gov (United States)

    Saini, Ashish; Thakur, Atul; Thakur, Preeti

    2017-03-01

    The exact calculation of height of burst has always been a challenge in the design of proximity fuzes. Radio frequency-based sensors can be designed for this purpose but the size and bandwidth of the antenna increases the design complexity; hence, miniaturization of the patch antenna using barium hexaferrite (BaFe12O19) as substrate material is proposed in this paper. The nanohexaferrite substrate material was prepared using a wet chemical method and characterized for structural and electromagnetic properties. An average crystallite size of 60 nm was obtained from x-ray diffraction. Scanning electron microscopy and transmission electron microscopy also confirms the formation of homogenous nanoferrites. Complex permittivity ( ɛ * = 6.2 - 0.04 j) and complex permeability ( μ * = 1.9 - 0.18 j) were obtained from electromagnetic characterization. The antenna structure fabricated and simulated confirms that, with the obtained electromagnetic parameters of synthesized magneto-dielectric material, the size of antenna can be reduced up to 42.5%. It also increases the bandwidth from 68 MHz to 166 MHz with respect to antenna on FR4 substrate. Therefore, BaFe12O19 is proposed as a suitable candidate for a high-bandwidth, miniaturized antenna for proximity fuzes.

  17. Phased Antenna Array for Global Navigation Satellite System Signals

    Science.gov (United States)

    Turbiner, Dmitry (Inventor)

    2015-01-01

    Systems and methods for phased array antennas are described. Supports for phased array antennas can be constructed by 3D printing. The array elements and combiner network can be constructed by conducting wire. Different parameters of the antenna, like the gain and directivity, can be controlled by selection of the appropriate design, and by electrical steering. Phased array antennas may be used for radio occultation measurements.

  18. Downsizing Antenna Technologies for Mobile and Satellite Communications

    Science.gov (United States)

    Huang, J.; Densmore, A.; Tulintseff, A.; Jamnejad, V.

    1993-01-01

    Due to the increasing and stringent functional requirements (larger capacity, longer distances, etc.) of modern day communication systems, higher antenna gains are generally needed. This higher gain implies larger antenna size and mass which are undesirable to many systems. Consequently, downsizing antenna technology becomes one of the most critical areas for research and development efforts. Techniques to reduce antenna size can be categorized and are briefly discussed.

  19. Steerable K/Ka-Band Antenna For Land-Mobile Satellite Applications

    Science.gov (United States)

    Densmore, Arthur; Jamnejad, Vahraz; Woo, Kenneth

    1994-01-01

    Prototype steerable microwave antenna tracks and communicates with geostationary satellite. Designed to mount on roof of vehicle and only 10 cm tall. K/Ka-band antenna rugged and compact to suit rooftop mobile operating environment. More-delicate signal-processing and control equipment located inside vehicle.

  20. Support scattering effects on low-gain satellite antenna pattern measurements

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1973-01-01

    The purpose of the present investigation is to determine the difference between the scattering effects from two types of supports on satellite antenna pattern measurements. The difference in scattering effects is estimated by comparing low-gain antenna patterns recorded when using a foam tower an...

  1. Intercomparison of Methods for Determination of Resonant Frequency Shift of a Microstrip Patch Antenna Loaded with Hevea Rubber Latex

    Directory of Open Access Journals (Sweden)

    Nor Zakiah Yahaya

    2014-01-01

    Full Text Available This paper presents an intercomparison between the finite element method, method of moment, and the variational method to determine the effect of moisture content on the resonant frequency shift of a microstrip patch loaded with wet material. The samples selected for this study were Hevea rubber latex with different percentages of moisture content from 35% to 85%. The results were compared with the measurement data in the frequency range between 1 GHz and 4 GHz. It was found that the finite element method is the most accurate among all the three computational techniques with 0.1 mean error when compared to the measured resonant frequency shift. A calibration equation was obtained to predict moisture content from the measured frequency shift with an accuracy of 2%.

  2. 30/20 GHz communications satellite multibeam antenna

    Science.gov (United States)

    Scott, W. G.; Luh, H. S.; Smoll, A. E.; Matthews, E. W.

    1982-01-01

    A 20 GHz downlink satellite antenna design is described. The aperture simultaneously radiates 18 fixed, 0.3 deg width pencil beams directed at 18 cities distributed over CONUS for Trunking Service. All beams use the same trunk frequency allocation for 18 reuses of the band. The same aperture also radiates six additional 0.3 deg spot beams for Customer Premises Service (CPS) for TDMA beam hopping operation to small terminals anywhere in CONUS. Each CPS beam scans one sector of CONUS and all six beams are frequency reused in a CPS band. Offset dual reflector optics are used with a feed array and multiport beam forming network (BFN). For so many frequency reuses, sidelobes per beam must be 30 to 40 dB down over CONUS. Novel dual reflector optics were devised with shaped surfaces providing low aberrations for all beam positions over CONUS (+ or - 12 BW by + or - 5 BW). Scan loss under 1 dB is calculated with nearly constant sidelobes. For each beam position, a 7-element cluster of feeds is activated in the feed array with coefficients adjusted by the BFN to maintain low sidelobes and thus high beam isolation for frequency reuse.

  3. Novel miniature wideband microstrip monopole antenna%一种宽带和小型化的新型微带单极子天线

    Institute of Scientific and Technical Information of China (English)

    马志锋; 陈星

    2013-01-01

    A conventional monopole antenna has limitations in the aspects of narrow bandwidth and long physical length un⁃der the condition of low frequency,which limits its engineering application. Here,a microstrip monopole antenna which has properties of wideband and miniaturization is proposed. By employing the conformal technology,this antenna is printed on a thin and soft PCB(printed circuit board) and glued on the surface of a dielectric cylinder to reduce its cross⁃sectional area. The edge of the radiation element is shaped by using a Koch fractal configuration with the second iteration,and thus the size of the antenna is considerably reduced in comparison with that of the antenna utilizing the commonly⁃used rectangular radiation element. To enhance the antenna′s bandwidth under the condition of miniaturization,the antenna loads a metal plate at its top and a metal sleeve around it. The effects of the fractal shape,as well as the dimension of the metal plate,metal sleeve and dielectric cylinder on the performances of the antenna are analyzed,and then a prototype working at UHF(ultra⁃high frequency)is designed and fabricated. Simulation and measured results show that the ||S11 <-10 dB impedance bandwidth is 74%(0.82~1.8 GHz),while the electrical height for the antenna is only 0.13λ,where λ is the wavelength of the low bound of the antenna′s working frequency band.%  传统单极子天线存在着带宽窄和较低频率下物理长度大等局限,限制了单极子天线的工程应用.设计了一种兼具有宽带和小型化特性的微带单极子天线.该天线采用共形技术,印刷在轻薄柔性基板上并粘贴在介质圆柱表面,以此减小天线截面积;采用二阶 Koch 分形图案设计辐射单元边界,相比常规矩形单元能够缩小天线尺寸;为了小型化同时扩展天线工作带宽,该天线采取了顶部加载金属圆盘和四周加载金属套筒等措施.分析了分形结构、加载圆盘和

  4. Characteristics of microstrip muscle-loaded single-arm Archimedean spiral antennas as investigated by FDTD numerical computations.

    Science.gov (United States)

    Jacobsen, Svein; Rolfsnes, Hans Olav; Stauffer, Paul R

    2005-02-01

    The radiation characteristics and mode of operation of single-arm, groundplane backed, Archimedean spiral antennas are investigated by means of conformal finite difference time domain numerical analysis. It is shown that this antenna type may be categorized as a well-matched, broadband, circularly polarized traveling wave structure that can be fed directly by nonbalanced coaxial networks. The study further concentrates on relevant design and description features parameterized in terms of measures like radiation efficiency, sensing depth, directivity, and axial ratio of complementary polarizations. We document that an antenna of only 30-mm transverse size produces circularly polarized waves in a two-octave frequency span (2-8 GHz) with acceptable radiation efficiency (76%-94%) when loaded by muscle-like tissue.

  5. 具有滤波功能的蓝牙微带天线设计%Design of blue-tooth microstrip antenna with filtering function

    Institute of Scientific and Technical Information of China (English)

    何云红; 李九生

    2011-01-01

    In order to suppress double-frequency interference on the wireless communication of 2. 4 GHz, a filtering antenna based on multi-layer structure was proposed, fabricated and measured. In frequency band from 2.4~2. 5 GHz, the signal could transit almost without attenuation. But, in frequency band from 4.8~ 6 GHz, the signal was restrained effectively. The interfering signals were attenuated greatly, and the quality of communication was improved. Both simulated and measured results showed that during the frequency band of 2.4~ 2. 5 GHz, the return loss and VSWR of proposed filtering antenna are less than - 16 dB and 1. 4 respectively. During the frequency band of 4. 8 ~ 6 GHz, the return loss and VSWR of proposed filtering antenna are larger than - 6.6 dB and 2. 7 respectively. The proposed blue-tooth microstrip antenna has good transmission characteristics and filtering capabilities, which meets the requirements of blue-tooth communications.%为了有效抑制双倍频对2.4 GHz无线通信干扰,采用滤波馈电网络与天线振子一体设计技术,设计一种具有滤波功能的多层结构天线,使天线在2.4~2.5 GHz时,信号可以几乎无衰减地通过;而在4.8~6 GHz频段,信号被抑制,对邻频干扰也有一定的抑制作用,使干扰信号在天线等前端设备受到较大衰减,从而改善了通信质量.仿真与测试结果表明,在2.4~2.5 GHz频段滤波天线回波损耗小于-16 dB,驻波比小于1.4;在4.8~6 GHz频段滤波天线回波损耗大于-6.6 dB,驻波比大于2.7.该蓝牙微带天线具有较好的传输特性和滤波功能,满足蓝牙通信传输特性需要.

  6. Concepts and cost trade-offs for land vehicle antennas in satellite mobile communications

    Science.gov (United States)

    Haddad, H. A.

    1948-01-01

    Several antenna design concepts, operating at UHF (821 to 825 MHz transmit and 866 to 870 MHz receive bands), with gain ranging between 6 and 12 dBic, that are suitable for land mobile vehicles are presented. The antennas may be used within CONUS and ALASKA to communicate to and from a geosynchronous satellite. Depending on the type of steering mechanism, the antennas are broken down into three categories; (1) electronically scanned arrays with phase shifters, (2) electronically switched arrays with switchable power dividers/combiners, and (3) mechanically steered arrays. The operating characteristics of two of these design concepts, one a conformal antenna with electronic beam steering and the other a nonconformal design with mechanical steering, were evaluated with regard to two and three satellite system. Cost estimates of various antenna concepts were made and plotted against their overall gain performance.

  7. UHF coplanar-slot antenna for aircraft-to-satellite data communications

    Science.gov (United States)

    Myhre, R. W.

    1979-01-01

    The initiative for starting the Aircraft-to-Satellite Data Relay (ASDAR) Program came from a recognition that much of the world's weather originates in the data sparse area of the tropics which are primarily ocean. The ASDAR system consists of (1) a data acquisition and control unit to acquire, store and format these data; (2) a clock to time the data sampling and transmission periods; and (3) a transmitter and low-profile upper hemisphere coverage antenna to relay the formatted data via satellite to the National Weather Service ground stations, as shown schematically. The low-profile antenna is a conformal antenna based on the coplanar-slot approach. The antenna is circular polarized and has an on-axis gain of nearly 2.5 dB and a HPBW greater than 90 deg. The discussion covers antenna design, radiation characteristics, flight testing, and system performance.

  8. Effects on dynamic characters of antenna structures in satellite induced by disordered parameters

    Institute of Scientific and Technical Information of China (English)

    Liu Xiangqiu; Wang Cong; Wang Weiyuan; Zou Zhenzhu

    2009-01-01

    A simplified dynamic model of a dish antenna in satellite is established in this article. The model can be easily used to analyze the dynamic behaviour of the antenna structure. In terms of the simplified model, effects on dynamic characters due to the disorder of parameters are investigated in details. The frequencies calculated by the simplified model accord with those computed by ANSYS. Based on the mode shapes of disordered and perfect structure, the influence law and varying trend of dynamic characters of antenna structures in satellites produced by stiffness and mass of antenna ribs, stiffness of antenna membranes and angles between adjacent ribs, are obtained. The analyses in the paper indicate that the effects by disordered parameters can not be ignored in the dynamic analysis of such structures.

  9. A Design Of Feeding Network For A Dual-Linear Polarization, Stacked, Probe-Fed Microstrip Patch Antenna Array

    DEFF Research Database (Denmark)

    Jaworski, G.; Krozer, Viktor

    2004-01-01

    Components of multilayer feed network are presented for application in broad-band dual-linear polarized stacked C-band antenna. Measurement results of wide band matching circuits and different types of power divider networks constituting parts of BFN demonstrate wideband operation. Suitable...

  10. Design of A Miniaturized V-band Millimeter Wave Microstrip Antenna Based on LTCC Metamaterials Substrate%基于LTCC超材料基板的小型化V波段毫米波微带天线设计

    Institute of Scientific and Technical Information of China (English)

    刘振哲; 汪澎

    2012-01-01

    A miniaturized V-band millimeter wave microstrip antenna is designed based on low temperature co-fired ceramic(LTCC) metamaterials substrate.S parameters of the LTCC metamaterials substrate is obtained through simulation by using of HFSS software;equivalent permittivity and permeability of the materials are obtained by way of improved S parameter extraction method.A millimeter wave microstrip antenna is developed by replacing common dielectric substrate with LTCC metamaterials substrate,and comparison result between performance of this antenna and that of antenna based on common dielectric substrate are given.%本文介绍了一种基于LTCC超材料(metamaterials)基板的小型化V波段毫米波微带天线设计。通过HFSS仿真软件获得LTCC超材料基板的S参数,使用改进的S参数提取方法获得材料的等效介电常数和磁导率。利用LTCC超材料替代普通介质基板,实现了毫米波微带天线的小型化,并与常规介质基板天线的性能进行了对比。

  11. 一种以空气为基板的圆极化微带天线的设计%Research of Circularly Polarized Microstrip Antenna on Air Substrate

    Institute of Scientific and Technical Information of China (English)

    张昕; 杨霭宁; 崔闻; 曹磊

    2011-01-01

    An ultra-high frequency circularly polarized(CP)rectangular microstrip antenna on air substrate was designed.The antenna inserted four same slots on the microstrip patch and a small slot on the center of the patch, which could reduce the size of the patch and achieve the circular polarization operation. The impact of antenna parameters on its circularly polarized performance is introduced. Through optimizing the antenna parameters, experimental results show that a good CP radiation performance can be gained.%设计了一种以空气为基板的超高频(UHF)圆极化矩形微带天线.该天线通过在微带贴片四周与中心开槽,减小了天线尺寸,实现天线圆极化的性能.进一步研究了天线的参数对圆极化性能的影响,通过天线参数的优化,使天线达到了良好的圆极化性能.

  12. 弹丸头锥上对称配置的S波段微带天线阵%S-band Microstrip Antenna Array Symmetrically Configured on Projectile Nose Cone

    Institute of Scientific and Technical Information of China (English)

    付强; 曹少琚; 余孝安; 乔飞

    2011-01-01

    针对以前传统的微带共形阵在弹道修正弹和遥测等应用平台上安装困难及抗高过载的问题,提出了一种弹丸头锥上对称配置的S波段微带天线阵.该微带天线阵采用天线单元与微带功分器分离的形式,两个天线单元介质基片焊接在23 mm×30 nm的钢片上,用螺钉固定在头锥上铣削出的小平面上,在头锥两侧对称布置.微带功分器放置在锥体内部,天线单元通过背馈方式与微带功分器连接,进行等幅同相馈电.仿真、测试与试验表明:S波段弹丸头锥上对称配置的抗高过载微带天线阵性能指标优良、安装工艺简单且具有抗高过载能力,该研究成果可应用于各种尺寸的遥测和弹道修正弹的弹载共形微带天线阵设计.%In view of the traditional microstrip conformal antenna array applied on trajectory correction projectile and telemetry platform has difficulties on installation and anti-high overload,a S-band mocrostrip antenna array which was symmetrically configured on projectile nose cone was put forward in this paper. The antenna unit was separate from the microstrip merit minute, two antenna units' medium substrate were welded on 23 mmX30 mm steel disk, with screw retention on the symmetrical facet of the nose cone. Simulation and experiment results indicated that the S-band microstrip antenna array which symmetrically arranged on projectile nose cone had good performance indexes,high overload resistance, and was easy embeded. The research could provide reference to conformal microstrip antenna array design of different sizes telemetry projectile and the trajectory correction projectile.

  13. Visibility conflict resolution for multiple antennae and multi-satellites via genetic algorithm

    Science.gov (United States)

    Lee, Junghyun; Hyun, Chung; Ahn, Hyosung; Wang, Semyung; Choi, Sujin; Jung, Okchul; Chung, Daewon; Ko, Kwanghee

    Satellite mission control systems typically are operated by scheduling missions to the visibility between ground stations and satellites. The communication for the mission is achieved by interacting with satellite visibility and ground station support. Specifically, the satellite forms a cone-type visibility passing over a ground station, and the antennas of ground stations support the satellite. When two or more satellites pass by at the same time or consecutively, the satellites may generate a visibility conflict. As the number of satellites increases, solving visibility conflict becomes important issue. In this study, we propose a visibility conflict resolution algorithm of multi-satellites by using a genetic algorithm (GA). The problem is converted to scheduling optimization modeling. The visibility of satellites and the supports of antennas are considered as tasks and resources individually. The visibility of satellites is allocated to the total support time of antennas as much as possible for users to obtain the maximum benefit. We focus on a genetic algorithm approach because the problem is complex and not defined explicitly. The genetic algorithm can be applied to such a complex model since it only needs an objective function and can approach a global optimum. However, the mathematical proof of global optimality for the genetic algorithm is very challenging. Therefore, we apply a greedy algorithm and show that our genetic approach is reasonable by comparing with the performance of greedy algorithm application.

  14. Cube/Small Satellite Antenna Design and Performance Optimization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This IRAD proposal investigates and proposes different small, efficient, low cost, reliable, and robust antenna design concepts with stable electrical and radiation...

  15. Stripline/Microstrip Transition in Multilayer Circuit Board

    Science.gov (United States)

    Epp, Larry; Khan, Abdur

    2005-01-01

    A stripline-to-microstrip transition has been incorporated into a multilayer circuit board that supports a distributed solid-state microwave power amplifier, for the purpose of coupling the microwave signal from a buried-layer stripline to a top-layer microstrip. The design of the transition could be adapted to multilayer circuit boards in such products as cellular telephones (for connecting between circuit-board signal lines and antennas), transmitters for Earth/satellite communication systems, and computer mother boards (if processor speeds increase into the range of tens of gigahertz). The transition is designed to satisfy the following requirements in addition to the basic coupling requirement described above: (1) The transition must traverse multiple layers, including intermediate layers that contain DC circuitry. (2) The transition must work at a frequency of 32 GHz with low loss and low reflection. (3) The power delivered by the transition to top-layer microstrip must be split equally in opposite directions along the microstrip. Referring to the figure, this amounts to a requirement that when power is supplied to input port 1, equal amounts of power flow through output ports 2 and 3. (4) The signal-line via that is necessarily a part of such a transition must not be what is known in the art as a blind via; that is, it must span the entire thickness of the circuit board.

  16. A design concept for an MMIC microstrip phased array

    Science.gov (United States)

    Lee, R. Q.; Smetana, J.; Acosta, R.

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka band advanced satellite communication antenna systems. The proposed design concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required. The proposed design concept takes into consideration the RF characteristics and actual phyical dimensions of the MMIC devices. Also, solutions to spatial constraints and interconnections associated with currently available packaging designs are discussed. Finally, the design of the microstrip radiating elements and their radiation characteristics are examined.

  17. Dynamic Modeling and Simulation of Marine Satellite Tracking Antenna Using Lagrange Method

    DEFF Research Database (Denmark)

    Wang, Yunlong; Nourbakhsh, S. M; Hussain, Dil muhammed Akbar

    2016-01-01

    Marine Satellite Tracking Antenna (MSTA) is a necessary device in ships for receiving satellite signals when they are sailing on the sea. This paper presents a simple methodology to obtain the dynamic equations of MSTA through Lagrange method, which is fundamental in design of modelbased...

  18. Design and Fabrication of a Novel Microstrip Antenna for UWB Wireless Communication System%一种用于超带宽无线通信系统的天线设计实现

    Institute of Scientific and Technical Information of China (English)

    宋志强; 孙瑜

    2012-01-01

    文章提出了一种用于超带宽无线通信系统的天线结构,即在介质基片的接地板上开圆环缝隙,采用微带线耦合馈电方法设计,并通过仿真分析和加工实测,证实该天线性能满足超带宽无线通信系统对天线的要求。%A novel microstrip antenna for UWB wireless communication system is presented and demonstrated. By embedding a cirque slot on the ground plane and microstrip line coupling, satisfied parameters for the requirements of UWB wireless communication systems are obtained.

  19. 一种小型化宽带圆极化微带天线的设计%Design of Miniaturized Circularly-Polarized Microstrip Antenna

    Institute of Scientific and Technical Information of China (English)

    秦文奕

    2013-01-01

    A compact broadband circularly-polarized microstrip antenna excited by a probe feed is pro-posed and implemented. The feed network is used to realize dual-fed and attain broad width of circular po-larization. The feed network is designed with the theory of stripline and the miniaturized structure is a-chieved by a U-shaped ground plate. The antenna is of good circular polarization axial ratio, and 26% of 3 dB axial ratio bandwidth, 30% of VSWR≤2 impedance bandwidth are obtained. Simulation confirms the measurement results of resonant frequency, return loss, axial ratio, bandwidth and radiation pattern. The measured gain of antenna is about 4 dB in work bandwidth.%设计并加工了一种采用同轴背馈方式馈电的小型化宽带圆极化微带天线。针对单点馈电微带天线轴比带宽窄的问题,通过增加馈电网络对天线辐射贴片进行双点馈电以展宽轴比带宽,得到了良好的效果。馈电网络根据带状线理论设计,利用U形接地板巧妙地实现了宽带天线的结构小型化。通过对辐射贴片的双点馈电获得了令人满意的电压驻波比带宽和良好的圆极化性能。通过仿真和实际测试表明,该天线VSWR≤2的带宽达到了30%,3 dB圆极化带宽约为26%,同时频带内天线的增益达到4 dB。

  20. Autonomous Pointing Control of a Large Satellite Antenna Subject to Parametric Uncertainty.

    Science.gov (United States)

    Wu, Shunan; Liu, Yufei; Radice, Gianmarco; Tan, Shujun

    2017-03-10

    With the development of satellite mobile communications, large antennas are now widely used. The precise pointing of the antenna's optical axis is essential for many space missions. This paper addresses the challenging problem of high-precision autonomous pointing control of a large satellite antenna. The pointing dynamics are firstly proposed. The proportional-derivative feedback and structural filter to perform pointing maneuvers and suppress antenna vibrations are then presented. An adaptive controller to estimate actual system frequencies in the presence of modal parameters uncertainty is proposed. In order to reduce periodic errors, the modified controllers, which include the proposed adaptive controller and an active disturbance rejection filter, are then developed. The system stability and robustness are analyzed and discussed in the frequency domain. Numerical results are finally provided, and the results have demonstrated that the proposed controllers have good autonomy and robustness.

  1. 一种高介GPS微带天线的设计与研究%Design and research on a high permittivity circularly polarized GPS micro-strip antenna

    Institute of Scientific and Technical Information of China (English)

    张耀东; 张介秋; 屈绍波

    2012-01-01

    An improved circularly polarized micro-strip antenna is proposed. A kind of high permittivity sintered microwave material was used as the antenna s dielectric substrate, the proposed antenna was fed by a single spot with SMA coaxial connector. The antenna is much smaller, and the structure is simple. Simulation analysis shows that the antenna has nice s(1, 1) bandwidth and axial-ratio bandwidth. At last, the impact of thickness and loss tangent of dielectric substrate on the antenna are investigated.%针对传统GPS天线体积较大的问题,提出了一种改进的圆极化微带贴片天线,该天线用高介电常数的陶瓷作为天线基板,采用单端口背馈方式馈电,缩小了天线尺寸,结构简单.通过仿真优化,获得了比较好的阻抗带宽和轴比带宽,并以此为基础研究了介质基板厚度及损耗对天线性能的影响,为GPS微带天线设计提供一种思路.

  2. IMMUNE ALGORITHM APPLIED TO RECONFIGURABLE MICROSTRIP ANTENNA SIMULATION DESIGN%适用于可重构微带天线仿真设计的免疫算法

    Institute of Scientific and Technical Information of China (English)

    李媛; 刘萍; 郭嘉

    2012-01-01

    By combining the commonly used MOM in antenna design with immune algorithm, the paper optimizes the design for reconfigurable antenna and analyzes the advantages of immune algorithm in reconfigurable antenna design. By absorbing research fruits on GA- based antenna, the paper applies immune algorithm to add MEMS switch to antenna structure for simulation, hence designs two microstrip dual-reconfigurable antennas that can not only carry out pattern scanning changes on a fixed frequency, but also realize frequency flexible changes on a fixed pattern.%将天线设计中常用的矩量法(MOM)与免疫算法相结合对可重构天线进行优化设计,分析免疫算法在可重构天线设计的优势.在归纳总结近几年基于遗传算法的天线的研究成果的基础上,通过免疫算法在天线结构中加入MEMS开关进行仿真计出两种既可以在固定频率点上进行方向图的扫描变化,又可以在特定的方向上实现频率灵活变化的微带双重可重构天线.

  3. A Fast MoM Solver (GIFFT) for Large Arrays of Microstrip and Cavity-Backed Antennas

    Energy Technology Data Exchange (ETDEWEB)

    Fasenfest, B J; Capolino, F; Wilton, D

    2005-02-02

    A straightforward numerical analysis of large arrays of arbitrary contour (and possibly missing elements) requires large memory storage and long computation times. Several techniques are currently under development to reduce this cost. One such technique is the GIFFT (Green's function interpolation and FFT) method discussed here that belongs to the class of fast solvers for large structures. This method uses a modification of the standard AIM approach [1] that takes into account the reusability properties of matrices that arise from identical array elements. If the array consists of planar conducting bodies, the array elements are meshed using standard subdomain basis functions, such as the RWG basis. The Green's function is then projected onto a sparse regular grid of separable interpolating polynomials. This grid can then be used in a 2D or 3D FFT to accelerate the matrix-vector product used in an iterative solver [2]. The method has been proven to greatly reduce solve time by speeding up the matrix-vector product computation. The GIFFT approach also reduces fill time and memory requirements, since only the near element interactions need to be calculated exactly. The present work extends GIFFT to layered material Green's functions and multiregion interactions via slots in ground planes. In addition, a preconditioner is implemented to greatly reduce the number of iterations required for a solution. The general scheme of the GIFFT method is reported in [2]; this contribution is limited to presenting new results for array antennas made of slot-excited patches and cavity-backed patch antennas.

  4. 基于蘑菇状谐振器的谐波抑制的微带贴片天线%Harmonic-Suppressed Microstrip Patch Antenna Based on Mushroom-Like Resonators

    Institute of Scientific and Technical Information of China (English)

    谢欢欢; 焦永昌; 杨彬; 张福顺

    2011-01-01

    提出了一种基于耦合谐振器的微带贴片天线谐波抑制的方法。通过在微带天线馈线与地板之间增加蘑菇状电磁带隙(EBG)单元的谐振器,有效地抑制了天线的2次和3次谐波,减少了谐波辐射对周围微波器件的干扰。对天线的等效电路模型进行了详细分析和研究,通过改变参数令谐振器工作在天线的谐波频率上,从而抑制天线的谐波辐射。为了对理论分析进行验证,我们加工了实物模型并进行测试,测试的数据显示微带天线的2次谐波减少了11.6dB,3次谐波减少了8.4dB。%A harmonic-suppressed method of microstrip patch antennas based on coupled resonators is proposed.By adding mushroom-like Electromagnetic band-gap(EBG) unit resonators between the feed and the ground plane of the microstrip patch antenna,the second and third harmonics of the antenna are effectively suppressed,which can reduce the interference of the harmonic radiation on the microwave devices around.The equivalent circuit model of the antenna is analyzed and studied.The resonators are designed to work at the harmonic frequencies by changing the parameters of the resonators,which can suppress the harmonic radiation of the antenna.In order to validate the theory analysis,an experimental model is fabricated and measured.Measured data show that the second and third harmonics of the microstrip antenna are reduced by 11.6 dB and 8.4 dB,respectively.

  5. Design and experiments of the conical sinuous antenna fed by microstrip Balun%微带巴伦馈电圆锥正弦天线设计与实验

    Institute of Scientific and Technical Information of China (English)

    宋立众; 乔晓林; 叶准

    2012-01-01

    以双极化被动雷达为应用背景,开展了圆锥正弦天线的结构设计与实验方面的研究。圆锥正弦天线是将平面型四臂正弦天线设计成与圆锥表面共形的形式,采用微带粘结法加工而成。引入两个微带指数渐变平衡一不平衡转换器(巴伦)实现对四臂圆锥正弦天线的平衡馈电。针对频率2~5GHZ的范围,设计了具体的天线结构和微带巴伦,对实际加工的天线进行了实际测量工作。在工作频率范围内,测得的两个极化端口的输入平均电压驻波比(VSWR)约为2,增益均大于4dBi,极化端口隔离度约低于-20dB,辐射方向图具有较好的极化纯度。本文的研究成果对实际工程具有重要的参考价值。%The structure design and experiments of the conical sinuous antenna for the dual polarized passive radar application are researched. The planar sinuous antenna with four arms was designed to be conformal with the surface of the cone and the conical sinuous antenna was fabricated through microstrip adhering technique. The conical sinuous antenna with four arms was fed in balanced mode by two microstrip exponentially tapered balanced-to-unbalanced transformers (Balun). The specific antenna structure and microstrip Balun were designed within the frequency range from 2 GHz to 5 GHz. The fabricated antenna was measured. Over the operating frequency range, the measured average input voltage standing wave ratio (VSWR) is about 2; the measured gain of each port is higher than 4 dBi, the meas- ured isolation degree between two ports is about less than -20 dB and the radiation pattern has good polarization purity. The research results provide references for practical engineering application.

  6. 一种新型宽频带多频微带天线设计%Design of a Novel Broadband Multi-frequency Microstrip Antenna

    Institute of Scientific and Technical Information of China (English)

    潘勇; 熊江; 李潘

    2015-01-01

    For the fact that there are few designs of multi-frequency antenna suitable for Bluetooth,radio frequency identification(RFID),WiMAX and wireless local area network(WLAN) application simultane-ously,a new miniaturized broadband multi-frequency monopole microstrip antenna is proposed. The pro-posed antenna mainly consists of a rectangular ring,a hexagonal ring with a gap,three rectangular strips and a defected ground plane ( DGP ) . The proposed antenna can excite three separate impedance band-widths to cover all the 2 . 4/5 . 2/5 . 8 GHz Bluetooth/WLAN/RFID operating bands and the 2 . 5/3 . 5/5 . 5 GHz WiMAX bands. It provides three impedance bandwidths of 0. 11 GHz,0. 86 GHz and 1. 11 GHz for the working bands of 2. 38 ~2. 49 GHz centered at 2. 47 GHz,3. 19 ~4. 05 GHz centered at 3. 48 GHz and 4. 95~6. 06 GHz centered at 5. 55 GHz,respectively. Furthermore,the 5. 75 dBi of relative high gain is achieved. A prototype is experimentally tested,and the measured results show its good radiation patterns and enough gains across the operation bands. It can be applied in present wireless communication system.%目前,同时适用于蓝牙、射频识别、全球微波无线互联网和无线局域网这几大主流物联网通信技术标准的多频天线设计较少,为此,提出了一种新的小型化宽频带多频微带天线。该微带天线主要由一个矩形环、一个开口六边形环、三条矩形带以及缺陷地组成,可同时工作在蓝牙、射频识别、全球微波无线互联网和无线局域网的通信频段上。天线谐振频率分别为2.47 GHz、3.48 GHz和5.55 GHz,相应带宽为0.11 GHz(2.38~2.49 GHz)、0.86 GHz(3.19~4.05 GHz)和1.11 GHz(4.95~6.06 GHz),增益最高达到5.75 dBi。实测结果显示,该天线在工作频段具有很好的辐射特性和增益,适用于当前应用的无线通信系统。

  7. Analysis and design of an φ-shaped compact multi-frequency microstrip antenna%Φ形多频带小型微带天线的研究与设计

    Institute of Scientific and Technical Information of China (English)

    杨虹; 陈轶芬; 邵建兴

    2011-01-01

    设计了一种新型Φ形结构的多频带小型微带贴片天线,通过改变贴片表面电流路径的方法来实现天线的多频带和小型化.采用基于有限元方法的电磁仿真软件HFSS10.0对所设计的天线进行了仿真.仿真结果表明,当回波损耗小于-10.0 dB时,天线的工作频段分别为2040~2 210 MHz,2 310~2 530 MHz,3 090~3 360 MHz,4 400~4 700MHz.与普通的微带天线相比,所设计的天线不仅实现了多频段工作的性能,且其整体尺寸减少了79.17%,从而验证了这种设计方案的有效性.该天线的整体辐射性能良好,且结构简单易于实现,能够满足移动终端内置天线的多频带和小型化的要求.%A novel φ-shaped microstrip antenna is investigated in this paper. The antenna can realize the function of miniaturization and multi-frequency by changing the patch surface current path. Numerical simulation is performed for the antenna with the software HFSS 10. 0, which is a kind of simulation software based on finite element method (FEM). The simulation results show that the operation frequencies of this antenna are 2 040 ~2 210 MHz,2 310 ~2 530 MHz,3 090 ~3 360 MHz and 4 400 ~4 700 MHz with return loss less than - 10. 0 dB. Compared with the conventional microstrip patch antenna, the character of multi-frequency is achieved and its total size is reduced by 79.17%, which demonstrates that the proposed antenna structure is efficient. Moreover, the antenna has a very good unitary radiation character and simple configuration. This antenna structure can meet the requirements of miniaturization and multi-frequency in internal antenna of the mobile terminals.

  8. Spaceborne GPS receiver antenna phase center offset and variation estimation for the Shiyan 3 satellite

    Directory of Open Access Journals (Sweden)

    Gu Defeng

    2016-10-01

    Full Text Available In determining the orbits of low Earth orbit (LEO satellites using spaceborne GPS, the errors caused by receiver antenna phase center offset (PCO and phase center variations (PCVs are gradually becoming a major limiting factor for continued improvements to accuracy. Shiyan 3, a small satellite mission for space technology experimentation and climate exploration, was developed by China and launched on November 5, 2008. The dual-frequency GPS receiver payload delivers 1 Hz data and provides the basis for precise orbit determination within the range of a few centimeters. The antenna PCO and PCV error characteristics and the principles influencing orbit determination are analyzed. The feasibility of PCO and PCV estimation and compensation in different directions is demonstrated through simulation and in-flight tests. The values of receiver antenna PCO and PCVs for Gravity Recovery and Climate Experiment (GRACE and Shiyan 3 satellites are estimated from one month of data. A large and stable antenna PCO error, reaching up to 10.34 cm in the z-direction, is found with the Shiyan 3 satellite. The PCVs on the Shiyan 3 satellite are estimated and reach up to 3.0 cm, which is slightly larger than that of GRACE satellites. Orbit validation clearly improved with independent k-band ranging (KBR and satellite laser ranging (SLR measurements. For GRACE satellites, the average root mean square (RMS of KBR residuals improved from 1.01 cm to 0.88 cm. For the Shiyan 3 satellite, the average RMS of SLR residuals improved from 4.95 cm to 4.06 cm.

  9. Spaceborne GPS receiver antenna phase center offset and variation estimation for the Shiyan 3 satellite

    Institute of Scientific and Technical Information of China (English)

    Gu Defeng; Lai Yuwang; Liu Junhong; Ju Bing; Tu Jia

    2016-01-01

    In determining the orbits of low Earth orbit (LEO) satellites using spaceborne GPS, the errors caused by receiver antenna phase center offset (PCO) and phase center variations (PCVs) are gradually becoming a major limiting factor for continued improvements to accuracy. Shiyan 3, a small satellite mission for space technology experimentation and climate exploration, was developed by China and launched on November 5, 2008. The dual-frequency GPS receiver payload delivers 1 Hz data and provides the basis for precise orbit determination within the range of a few centime-ters. The antenna PCO and PCV error characteristics and the principles influencing orbit determi-nation are analyzed. The feasibility of PCO and PCV estimation and compensation in different directions is demonstrated through simulation and in-flight tests. The values of receiver antenna PCO and PCVs for Gravity Recovery and Climate Experiment (GRACE) and Shiyan 3 satellites are estimated from one month of data. A large and stable antenna PCO error, reaching up to 10.34 cm in the z-direction, is found with the Shiyan 3 satellite. The PCVs on the Shiyan 3 satellite are estimated and reach up to 3.0 cm, which is slightly larger than that of GRACE satellites. Orbit validation clearly improved with independent k-band ranging (KBR) and satellite laser ranging (SLR) measurements. For GRACE satellites, the average root mean square (RMS) of KBR resid-uals improved from 1.01 cm to 0.88 cm. For the Shiyan 3 satellite, the average RMS of SLR resid-uals improved from 4.95 cm to 4.06 cm.

  10. Multi-antenna synchronized global navigation satellite system receiver and its advantages in high-precision positioning applications

    Science.gov (United States)

    Dong, Danan; Chen, Wen; Cai, Miaomiao; Zhou, Feng; Wang, Minghua; Yu, Chao; Zheng, Zhengqi; Wang, Yuanfei

    2016-12-01

    The multi-antenna synchronized global navigation satellite system receiver is a high precision, low cost, and widely used emerging receiver. Using this type of receiver, the satellite and receiver clock errors can be eliminated simultaneously by forming between antenna single-differences, which is equivalent to the conventional double-difference model. However, current multi-antenna synchronized global navigation satellite system receiver products have not fully realized their potential to achieve better accuracy, efficiency, and broader applications. This paper introduces the conceptual design and derivable products of multi-antenna synchronized global navigation satellite system receivers involving the aspects of attitude determination, multipath effect mitigation, phase center variation correction, and ground-based carrier phase windup calibration. Through case studies, the advantages of multi-antenna synchronized global navigation satellite system receivers in high-precision positioning applications are demonstrated.

  11. Development of the sandra antenna for airborne satellite communication

    NARCIS (Netherlands)

    Verpoorte, J.; Schippers, H.; Jorna, P.; Hulzinga, A.; Roeloffzen, C.G.H.; Marpaung, D.A.I.; Sanadgol, B.; Baggen, R.; Wang, Qin; Noharet, B.; Beeker, W.; Leinse, A.; Heideman, R.G.

    2011-01-01

    Novel avionics communication systems are required for increasing flight safety and operational integrity, for optimizing economy of operations and for enhancing passenger services. One of the key technologies to be developed is an antenna system that will provide broadband connectivity within aircra

  12. 基于高阻抗表面PBG结构微带天线的设计与分析%Design and Analysis of Microstrip Antenna Based on Photonic Band-gap Structure with High Impedance Surface

    Institute of Scientific and Technical Information of China (English)

    汪仲清; 彭丽丹; 李宝; 徐荣森

    2013-01-01

    以高介电常数介质为基底,利用辐射贴片开槽和微带馈电技术,设计了一款尺寸仅为16 mm×12.45 mm的小型微带天线.通过在此天线微带贴片周围加载高阻抗表面型光子晶体,有效抑制了表面波,改善了以高介电常数介质为基底的贴片天线的性能,实现了一款多频小型化PBG天线.HFSS仿真结果表明,加载高阻抗表面结构后的微带天线出现了三个谐振频点,分别为2.74、2.86和3.80 GHz,其对应的增益分别达到6.02、8.38和5.69 dB.所设计的光子晶体天线物理尺寸较小,方向性良好且具有多频特性,因此可为实际通信天线的应用提供参考.%Based on dielectric substrate with high dielectric constant,a miniaturized microstrip antenna with the size of only 16 mm× 12.45 mm was designed with the techniques of grooving the patch and microstrip feed.By loading the high impedance surface around the patch,the surface wave was suppressed effectively and the antenna performance was improved,then a multi-frequency and miniaturized antenna based on photonic band-gap (PBG) was realized.Simulation results obtained by HFSS show that,the microstrip antenna based on high impedance surface structure has three resonant frequencies:2.74 GHz,2.86 GHz and 3.80 GHz,and the corresponding gains are 6.02 dB,8.83 dB and 5.69 dB,respectively.The antenna based on PBG owns the characteristics of smaller size,good radiation performance and multi-frequency,which can provide reference for practical communication applications.

  13. Fractal Absorbing Body Design and Its Application in Microstrip Antenna%分形吸波体设计及其在微带天线中的应用

    Institute of Scientific and Technical Information of China (English)

    商楷; 曹祥玉; 高军; 杨欢欢; 郑秋容

    2013-01-01

    基于Hilbert分形结构,设计了一种小型化、超薄、高吸波率以及无表面损耗层的超材料吸波体,该吸波体单元尺寸仅为0.071λ,厚度约0.02λ,吸波率达99.3%.将该吸波体与普通微带天线共形设计,制备了一种新型超材料天线.与初始天线相比,新天线的单站和双站带内雷达散射截面都有明显减缩,最大减缩达到7.2 dB,且天线辐射性能保持不变,证实了该吸波体具有良好的吸波效果.仿真和实测结果吻合得很好,表明该吸波体可以应用于微带天线的带内隐身.%A metamaterial absorber based on hilbert fractal structure is designed with miniaturization,slim,high absorptivity and no surface ullage layer.Its unit size is only 0.071λ,the thickness is about 0.02λ and the absorber can exhibit absorption of 99.3 %.It is conformed on microstrip antenna to preparation of a novel metamaterial antenna.Compared with the conventional microstrip antenna,the proposed antenna has a obvious monstatic and bistatic radar cross section reduction at the working frequency band.the greatest decrement can amounted to 7.2 dB,while the radiation performance is kept,which proves that the absorber had an excellent absorptivity.The simulation and measured resultes are in good agreement,indicating that the absorbing body can be applied to microstrip antennas to achieve in-band stealth.

  14. A new approach to design of quasi-isotropic antenna systems for satellite applications

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans; Hansen, J.E.

    1976-01-01

    The new approach considered takes into account the maximum error of the quasi-isotropic radiation pattern relative to the ideal pattern. A design example involving a spherical satellite with quarter wave monopoles is used to demonstrate the effectiveness of the new approach. An investigation...... is conducted concerning the minimax optimization of power radiation patterns. It is shown that the minimax objective represents a useful alternative to the isotropy concept in the design of quasi-isotropic antenna systems for satellite applications....

  15. A new approach to design of quasi-isotropic antenna systems for satellite applications

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans; Hansen, J.E.

    1976-01-01

    The new approach considered takes into account the maximum error of the quasi-isotropic radiation pattern relative to the ideal pattern. A design example involving a spherical satellite with quarter wave monopoles is used to demonstrate the effectiveness of the new approach. An investigation...... is conducted concerning the minimax optimization of power radiation patterns. It is shown that the minimax objective represents a useful alternative to the isotropy concept in the design of quasi-isotropic antenna systems for satellite applications....

  16. Transparent antennas for solar cell integration

    Science.gov (United States)

    Yasin, Tursunjan

    Transparent patch antennas are microstrip patch antennas that have a certain level of optical transparency. Highly transparent patch antennas are potentially suitable for integration with solar panels of small satellites, which are becoming increasingly important in space exploration. Traditional patch antennas employed on small satellites compete with solar cells for surface area. However, a transparent patch antenna can be placed directly on top of solar cells and resolve the issue of competing for limited surface real estate. For such an integration, a high optical transparency of the patch antenna is required from the solar cells' point of view. On the other hand, the antenna should possess at least acceptable radiation properties at the same time. This dissertation focuses on some of the most important concerns from the perspective of small satellite applications. For example, an optimization method to simultaneously improve both optical transparency and radiation efficiency of the antenna is studied. Active integrated antenna design method is extended to meshed patch applications in an attempt to improve the overall power efficiency of the front end communication subsystem. As is well known, circular polarization is immune from Faraday rotation effect in the ionosphere and thus can avoid a 3-dB loss in geo-satellite communication. Therefore, this research also aims to present design methods for circularly polarized meshed patch antennas. Moreover, a meshed patch antenna capable of supporting a high communication data rate is investigated. Lastly, other types of transparent patch antennas are also analyzed and compared to meshed patches. In summary, many properties of transparent patch antennas are examined in order to meet different design requirements.

  17. Autonomous Pointing Control of a Large Satellite Antenna Subject to Parametric Uncertainty

    Science.gov (United States)

    Wu, Shunan; Liu, Yufei; Radice, Gianmarco; Tan, Shujun

    2017-01-01

    With the development of satellite mobile communications, large antennas are now widely used. The precise pointing of the antenna’s optical axis is essential for many space missions. This paper addresses the challenging problem of high-precision autonomous pointing control of a large satellite antenna. The pointing dynamics are firstly proposed. The proportional–derivative feedback and structural filter to perform pointing maneuvers and suppress antenna vibrations are then presented. An adaptive controller to estimate actual system frequencies in the presence of modal parameters uncertainty is proposed. In order to reduce periodic errors, the modified controllers, which include the proposed adaptive controller and an active disturbance rejection filter, are then developed. The system stability and robustness are analyzed and discussed in the frequency domain. Numerical results are finally provided, and the results have demonstrated that the proposed controllers have good autonomy and robustness. PMID:28287450

  18. Autonomous Pointing Control of a Large Satellite Antenna Subject to Parametric Uncertainty

    Directory of Open Access Journals (Sweden)

    Shunan Wu

    2017-03-01

    Full Text Available With the development of satellite mobile communications, large antennas are now widely used. The precise pointing of the antenna’s optical axis is essential for many space missions. This paper addresses the challenging problem of high-precision autonomous pointing control of a large satellite antenna. The pointing dynamics are firstly proposed. The proportional–derivative feedback and structural filter to perform pointing maneuvers and suppress antenna vibrations are then presented. An adaptive controller to estimate actual system frequencies in the presence of modal parameters uncertainty is proposed. In order to reduce periodic errors, the modified controllers, which include the proposed adaptive controller and an active disturbance rejection filter, are then developed. The system stability and robustness are analyzed and discussed in the frequency domain. Numerical results are finally provided, and the results have demonstrated that the proposed controllers have good autonomy and robustness.

  19. An adaptive Multiplicative Extened Kalman Filter for Attitude Estimation of Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    , an adaptive Multiplicative Extended Kalman Filter (MEKF) for attitude estimation of Marine Satellite Tracking Antenna (MSTA) is presented with the measurement noise covariance matrix adjusted according to the norm of accelerometer measurements, which can significantly reduce the slamming influence from waves...

  20. The method of the antenna system positioning for satellite communication network radiomonitoring complex

    OpenAIRE

    Гребенюк, Олег Петрович

    2014-01-01

    The method of orientation of the antenna system of complex of radiomonitoring of satellite communication networks is offered. A method takes into account the features of construction and functional setting of a transport stream of standard of DVB ‑ S.

  1. Planetary gearbox condition monitoring of ship-based satellite communication antennas using ensemble multiwavelet analysis method

    Science.gov (United States)

    Chen, Jinglong; Zhang, Chunlin; Zhang, Xiaoyan; Zi, Yanyang; He, Shuilong; Yang, Zhe

    2015-03-01

    Satellite communication antennas are key devices of a measurement ship to support voice, data, fax and video integration services. Condition monitoring of mechanical equipment from the vibration measurement data is significant for guaranteeing safe operation and avoiding the unscheduled breakdown. So, condition monitoring system for ship-based satellite communication antennas is designed and developed. Planetary gearboxes play an important role in the transmission train of satellite communication antenna. However, condition monitoring of planetary gearbox still faces challenges due to complexity and weak condition feature. This paper provides a possibility for planetary gearbox condition monitoring by proposing ensemble a multiwavelet analysis method. Benefit from the property on multi-resolution analysis and the multiple wavelet basis functions, multiwavelet has the advantage over characterizing the non-stationary signal. In order to realize the accurate detection of the condition feature and multi-resolution analysis in the whole frequency band, adaptive multiwavelet basis function is constructed via increasing multiplicity and then vibration signal is processed by the ensemble multiwavelet transform. Finally, normalized ensemble multiwavelet transform information entropy is computed to describe the condition of planetary gearbox. The effectiveness of proposed method is first validated through condition monitoring of experimental planetary gearbox. Then this method is used for planetary gearbox condition monitoring of ship-based satellite communication antennas and the results support its feasibility.

  2. 新型L频段双圆极化微带阵列天线的设计%Design of Novel L-Band Double Circularly-Polarized Microstrip Array Antenna

    Institute of Scientific and Technical Information of China (English)

    李文; 姚宜东; 徐毅; 袁伟涛; 杨新华; 王启申

    2016-01-01

    Circularly-polarized array antennas attract more and more attentions in the modern wireless applications because of its specific performance characteristics. A L-band circularly-polarized microstrip patch antenna working in wide axial ratio bandwidth is proposed. The antenna adopts the special double feed network, thus to provide 0 degree feed and 90 degree feed to the two adjacent sides of radiation patch respectively. Two layers of feed network are same in structural size, and connected through the bridge to ensure that the two adjacent sides of radiation patch have 90 degrees phase difference, thus improving circular polarization performance of the antenna. The simulation results show that the microstrip array antenna could work at 1.525~1.559 GHz; with double circular polarized antenna; antenna gain> 13 dBi; VSWR 25°.%圆极化阵列天线由于其自身的性能特点,在现代无线应用中越来越受到广泛的关注。因此,提出一种宽轴比的L频段圆极化贴片天线。该天线采用特殊的双层馈电网络,分别为辐射贴片相邻的两个侧边提供0°和90°馈电。两层馈电网络结构尺寸完全相同,通过电桥连接两层馈电网络,以严格保证辐射贴片相邻两边的馈电幅度以及90°相位差,提高天线圆极化性能。设计结果显示,该天线工作在1.525~1.559 GHz,天线极化方式为左右旋双圆极化,天线增益>13 dBi,驻波<1.5,方向图E面波瓣宽度和H面波瓣宽度>25°。

  3. An adaptive Multiplicative Extened Kalman Filter for Attitude Estimation of Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    Satellite tracking is a challenging task for marine applications due to the disturbance from ocean waves. An Attitude Heading and Reference System (AHRS) for measuring ship attitude, based on Microelectromechanical Systems (MEMS) sensors, is a key part for satellite tracking. In this paper......, an adaptive Multiplicative Extended Kalman Filter (MEKF) for attitude estimation of Marine Satellite Tracking Antenna (MSTA) is presented with the measurement noise covariance matrix adjusted according to the norm of accelerometer measurements, which can significantly reduce the slamming influence from waves...

  4. Advanced Communication Technology Satellite (ACTS) Multibeam Antenna On-Orbit Performance

    Science.gov (United States)

    1995-01-01

    The NASA Lewis Research Center's Advanced Communication Technology Satellite (ACTS) was launched in September 1993. ACTS introduced several new technologies, including a multibeam antenna (MBA) operating at extremely short wavelengths never before used in communications. This antenna, which has both fixed and rapidly reconfigurable high-energy spot beams (150 miles in diameter), serves users equipped with small antenna terminals. Extensive structural and thermal analyses have been performed for simulating the ACTS MBA on-orbit performance. The results show that the reflector surfaces (mainly the front subreflector), antenna support assembly, and metallic surfaces on the spacecraft body will be distorted because of the thermal effects of varying solar heating, which degrade the ACTS MBA performance. Since ACTS was launched, a number of evaluations have been performed to assess MBA performance in the space environment. For example, the on-orbit performance measurements found systematic environmental disturbances to the MBA beam pointing. These disturbances were found to be imposed by the attitude control system, antenna and spacecraft mechanical alignments, and on-orbit thermal effects. As a result, the MBA may not always exactly cover the intended service area. In addition, the on-orbit measurements showed that antenna pointing accuracy is the performance parameter most sensitive to thermal distortions on the front subreflector surface and antenna support assemblies. Several compensation approaches were tested and evaluated to restore on-orbit pointing stability. A combination of autotrack (75 percent of the time) and Earth sensor control (25 percent of the time) was found to be the best way to compensate for antenna pointing error during orbit. This approach greatly minimizes the effects of thermal distortions on antenna beam pointing.

  5. Application of adaptive antenna techniques to future commercial satellite communications. Executive summary

    Science.gov (United States)

    Ersoy, L.; Lee, E. A.; Matthews, E. W.

    1987-01-01

    The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further subdivided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.

  6. 一种电磁耦合馈电双极化毫米波微带天线设计%Design of a dual polarized millimeter wave microstrip antenna fed by electromagnetic coupling

    Institute of Scientific and Technical Information of China (English)

    宋立众; 聂玉明; 段舒雅

    2015-01-01

    为拓展双极化毫米波天线的带宽,提出一种基于电磁耦合馈电的微带贴片实现方案.采用共面寄生贴片和空间平行寄生贴片将天线单元的阻抗带宽展宽,采用成对反相馈电技术设计2×2的子阵天线,在中心频点37.5 GHz,驻波30 dB,交叉极化达到-23.6 dB,增益为11.5 dBi.提出的双极化微带天线,具有频带宽、端口隔离度大、交叉极化低、增益高的特点,天线性能符合毫米波双极化天线的一般工程要求.%An implementation scheme of dual polarized millimeter wave microstrip patch antenna with broad bandwidth is proposed.The impedance bandwidth is broadened by employing coplanar parasitic patches and spatial parallel parasitic patches.The pair-wise anti-phase technology is used to design the 2 × 2 array antenna.The impedance bandwidth of the proposed antenna is 6.13%at the center frequency of 37.5 GHz with the isolation larger than 30 dB.The cross-polarization is-23.6 dB and the gain of the antenna is 11.5 dBi under the criterion of VSWR less than 2.The proposed dual polarized microstrip antenna has promising features in terms of broad impedance bandwidth,high isolation between the input ports,reduced cross-polarization and high gains.The performances can meet the general requirements of the engineering dual polarized millimeter wave antenna.

  7. Adaptive array antenna for satellite cellular and direct broadcast communications

    Science.gov (United States)

    Horton, Charles R.; Abend, Kenneth

    1993-01-01

    Adaptive phased-array antennas provide cost-effective implementation of large, light weight apertures with high directivity and precise beamshape control. Adaptive self-calibration allows for relaxation of all mechanical tolerances across the aperture and electrical component tolerances, providing high performance with a low-cost, lightweight array, even in the presence of large physical distortions. Beam-shape is programmable and adaptable to changes in technical and operational requirements. Adaptive digital beam-forming eliminates uplink contention by allowing a single electronically steerable antenna to service a large number of receivers with beams which adaptively focus on one source while eliminating interference from others. A large, adaptively calibrated and fully programmable aperture can also provide precise beam shape control for power-efficient direct broadcast from space. Advanced adaptive digital beamforming technologies are described for: (1) electronic compensation of aperture distortion, (2) multiple receiver adaptive space-time processing, and (3) downlink beam-shape control. Cost considerations for space-based array applications are also discussed.

  8. A 2.4 GHz Cross Rhombic Antenna for a Cube Satellite Application

    Directory of Open Access Journals (Sweden)

    Jorge Sosa-Pedroza

    2014-01-01

    Full Text Available We present design and construction results of a 2.4 Ghz cross rhombic antenna to be used in a cubesat. Computational design agrees with experimental results after its construction. cross rhombic antenna is a novel planar structure of our own design, presenting circular polarization and medium gain; it is built over a RF60A substrate with εr=6.15, decreasing its size to fit the required dimensions of satellite. A special characteristic of this design is the enhancing of operational bandwidth using a technique we have been studying, related to softening the structures with sharp edges. Results show applicability and success of our technique.

  9. Antenna pointing system for satellite tracking based on Kalman filtering and model predictive control techniques

    Science.gov (United States)

    Souza, André L. G.; Ishihara, João Y.; Ferreira, Henrique C.; Borges, Renato A.; Borges, Geovany A.

    2016-12-01

    The present work proposes a new approach for an antenna pointing system for satellite tracking. Such a system uses the received signal to estimate the beam pointing deviation and then adjusts the antenna pointing. The present work has two contributions. First, the estimation is performed by a Kalman filter based conical scan technique. This technique uses the Kalman filter avoiding the batch estimator and applies a mathematical manipulation avoiding the linearization approximations. Secondly, a control technique based on the model predictive control together with an explicit state feedback solution are obtained in order to reduce the computational burden. Numerical examples illustrate the results.

  10. Design optimization studies for large-scale contoured beam deployable satellite antennas

    Science.gov (United States)

    Tanaka, Hiroaki

    2006-05-01

    Satellite communications systems over the past two decades have become more sophisticated and evolved new applications that require much higher flux densities. These new requirements to provide high data rate services to very small user terminals have in turn led to the need for large aperture space antenna systems with higher gain. Conventional parabolic reflectors constructed of metal have become, over time, too massive to support these new missions in a cost effective manner and also have posed problems of fitting within the constrained volume of launch vehicles. Designers of new space antenna systems have thus begun to explore new design options. These design options for advanced space communications networks include such alternatives as inflatable antennas using polyimide materials, antennas constructed of piezo-electric materials, phased array antenna systems (especially in the EHF bands) and deployable antenna systems constructed of wire mesh or cabling systems. This article updates studies being conducted in Japan of such deployable space antenna systems [H. Tanaka, M.C. Natori, Shape control of space antennas consisting of cable networks, Acta Astronautica 55 (2004) 519-527]. In particular, this study shows how the design of such large-scale deployable antenna systems can be optimized based on various factors including the frequency bands to be employed with such innovative reflector design. In particular, this study investigates how contoured beam space antennas can be effective by constructed out of so-called cable networks or mesh-like reflectors. This design can be accomplished via "plane wave synthesis" and by the "force density method" and then to iterate the design to achieve the optimum solution. We have concluded that the best design is achieved by plane wave synthesis. Further, we demonstrate that the nodes on the reflector are best determined by a pseudo-inverse calculation of the matrix that can be interpolated so as to achieve the minimum

  11. Low Profile and Low Cost Antenna Technology for Satellite TV Reception on Sports Utility Vehicles (SUV) for the US Market

    Science.gov (United States)

    Vazquez, F. Javier; Pearson, Robert A.; Driscoll, Barry G.

    2003-07-01

    A low profile scanning antenna for reception of satellite TV has been developed for the US market compatible with existing DBS Ku band satellite infrastructure. This antenna technology does not require active RF components and it is inherently low cost (in the order of a few hundred dollars even in moderate production volumes). The antenna is able to scan a circularly polarised beam in the range 20 to 69 degrees, covering three DBS satellites in the US including some margin for vehicle tilt. An antenna demonstrator of 115 mm height, including the radome and tracking electronics has been built and measured. Live tests were performed in the US during 2002 to determine realistic link margins and antenna specifications. A product development is currently being undertaken to turn the demonstrator unit into a product for the US market by the end of 2003.

  12. 一种月牙形缝隙多频微带天线分析与设计%Analysis and design of a multi-frequency microstrip antenna with crescent-shaped slot

    Institute of Scientific and Technical Information of China (English)

    缪洁; 徐文龙; 徐冰俏; 尤佳迪

    2015-01-01

    提出了一种微带馈电式圆形微带天线设计方案,通过在辐射贴片表面加载月牙型缝隙,改变电流有效路径,实现多频特性。通过HFSS仿真分析缝隙形状对天线性能的影响。结果表明,天线工作的三个频段相对带宽分别为4.1%(2.39~2.49 GHz),3.98%(3.92~4.08 GHz)和3.75%(5.51~5.72 GHz)。其中低频和中频段的最高增益达到6.58 dB和5.01 dB。天线尺寸为35 mm×52 mm,具有小体积、高增益、全向性良好的特点,能够应用于无线通信系统中,并且这种结构简单、参数少、多频段的设计方法为天线设计提供了新的途径。%A design of circular microstrip antenna with microstrip feed was presented. By loading crescent-shaped slot, the current effective length was changed and the antenna obtained the multi-frequency characteristics. The slot’s impact on performance of antenna was analyzed by HFSS software simulation. Three relative bandwidths are 4.1% (2.39-2.49 GHz), 3.98% (3.92-4.08 GHz) and 3.75% (5.51-5.72 GHz), respectively. And the maximum gain of low frequency and mid-frequency are up to 6.58 dB and 5.01 dB. The antenna has a dimension of 35 mm×52 mm and the characteristics of small volume, high gain and omni direction. It can be applied in wireless communication system. Moreover, this multi-frequency design with simple structure and less parameters provides a new way for antenna designs.

  13. Analysis of friction effects on satellite antenna driving mechanism with clearance joints

    Science.gov (United States)

    Bai, Z. F.; Chen, J.; Bian, S.; Shi, X.

    2017-01-01

    The existence of clearance in joints of mechanism is inevitable. In this paper, the friction effects in clearance joints on dynamic responses of driving mechanism of satellite antenna are studied. Considering clearances in joints, the contact force model in clearance joints is established using a nonlinear continuous contact force model and the friction effect is considered by using a modified Coulomb friction model. Then the dual-axis driving mechanism of satellite antenna with clearance joints is used as the application example. The numerical simulation of dual-axis driving mechanism with clearance joints is presented. The friction effects of clearance joint on dynamic responses of the dual-axis driving mechanism are discussed and analyzed quantitatively for four cases with different friction coefficients. The investigation results show that the increase of friction coefficient will decrease the vibration amplitude of the driving mechanism system.

  14. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    Science.gov (United States)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  15. 一种圆极化正三角形微带贴片天线的设计与仿真%The Design and Simulation of the Circular Polarization Microstrip Antenna with the Equilateral Triangle Patch

    Institute of Scientific and Technical Information of China (English)

    周帆

    2012-01-01

    Based on the theoretical analysis of related electrical parameters calculation of microstrip patch antenna with equilateral triangle patch, a circular polarization antenna working in the model of TM, whose center frequency is 12GHz, is designed. The model built is simulated and tested by HFSS software, and results show that the designed antenna has the characteristic of high gain and broadband, and meet the engineering requirements.%在对正三角形微带贴片天线相关电参数计算及理论分析的基础上,设计了一种工作在TM模式下,中心频率为12GHz的圆极化天线.通过HFSS软件对所建立的模型进行了仿真测试,测试结果表明所设计的天线具有高增益、宽频带的特性,可以满足工程设计需求.

  16. Deploying process modeling and attitude control of a satellite with a large deployable antenna

    OpenAIRE

    Zhigang Xing; Gangtie Zheng

    2014-01-01

    Modeling and attitude control methods for a satellite with a large deployable antenna are studied in the present paper. Firstly, for reducing the model dimension, three dynamic models for the deploying process are developed, which are built with the methods of multi-rigid-body dynamics, hybrid coordinate and substructure. Then an attitude control method suitable for the deploying process is proposed, which can keep stability under any dynamical parameter variation. Subsequently, this attitude...

  17. A MEMS-based Adaptive AHRS for Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Hussain, Dil Muhammed Akbar; Soltani, Mohsen

    2015-01-01

    Satellite tracking is a challenging task for marine applications. An attitude determination system should estimate the wave disturbances on the ship body accurately. To achieve this, an Attitude Heading Reference System (AHRS) based on Micro-Electro-Mechanical Systems (MEMS) sensors, composed...... of three-axis gyroscope, accelerometer and magnetometer, is developed for Marine Satellite Tracking Antenna (MSTA). In this paper, the attitude determination algorithm is improved using an adaptive mechanism that tunes the attitude estimator parameters based on an estimation of ship motion frequency...

  18. Consistent Long-Time Series of GPS Satellite Antenna Phase Center Corrections

    Science.gov (United States)

    Steigenberger, P.; Schmid, R.; Rothacher, M.

    2004-12-01

    The current IGS processing strategy disregards satellite antenna phase center variations (pcvs) depending on the nadir angle and applies block-specific phase center offsets only. However, the transition from relative to absolute receiver antenna corrections presently under discussion necessitates the consideration of satellite antenna pcvs. Moreover, studies of several groups have shown that the offsets are not homogeneous within a satellite block. Manufacturer specifications seem to confirm this assumption. In order to get best possible antenna corrections, consistent ten-year time series (1994-2004) of satellite-specific pcvs and offsets were generated. This challenging effort became possible as part of the reprocessing of a global GPS network currently performed by the Technical Universities of Munich and Dresden. The data of about 160 stations since the official start of the IGS in 1994 have been reprocessed, as today's GPS time series are mostly inhomogeneous and inconsistent due to continuous improvements in the processing strategies and modeling of global GPS solutions. An analysis of the signals contained in the time series of the phase center offsets demonstrates amplitudes on the decimeter level, at least one order of magnitude worse than the desired accuracy. The periods partly arise from the GPS orbit configuration, as the orientation of the orbit planes with regard to the inertial system repeats after about 350 days due to the rotation of the ascending nodes. In addition, the rms values of the X- and Y-offsets show a high correlation with the angle between the orbit plane and the direction to the sun. The time series of the pcvs mainly point at the correlation with the global terrestrial scale. Solutions with relative and absolute phase center corrections, with block- and satellite-specific satellite antenna corrections demonstrate the effect of this parameter group on other global GPS parameters such as the terrestrial scale, station velocities, the

  19. RF MEMS Based Reconfigurable Antennas

    Science.gov (United States)

    Simons, Rainee N.

    2004-01-01

    The presentation will first of all address the advantages of RF MEMS circuit in antenna applications and also the need for electronically reconfigurable antennas. Next, discuss some of the recent examples of RF MEMS based reconfigurable microstrip antennas. Finally, conclude the talk with a summary of MEMS antenna performance.

  20. A Microstrip Reflect Array Using Crossed Dipoles

    Science.gov (United States)

    Pozar, David M.; Targonski, Stephen D.

    1998-01-01

    Microstrip reflect arrays offer a flat profile and light weight, combined with many of the electrical characteristics of reflector antennas. Previous work [1]-[7] has demonstrated a variety of microstrip reflect arrays, using different elements at a range of frequencies. In this paper we describe the use of crossed dipoles as reflecting elements in a microstrip reflectarray. Theory of the solution will be described, with experimental results for a 6" square reflectarray operating at 28 GHz. The performance of crossed dipoles will be directly compared with microstrip patches, in terms of bandwidth and loss. We also comment on the principle of operation of reflectarray elements, including crossed dipoles, patches of variable length, and patch elements with tuning stubs. This research was prompted by the proposed concept of overlaying a flat printed reflectarray on the surface of a spacecraft solar panel. Combining solar panel and antenna apertures in this way would lead to a reduction in weight and simpler deployment, with some loss of flexibility in independently pointing the solar panel and the antenna. Using crossed dipoles as reflectarray elements will minimize the aperture blockage of the solar cells, in contrast to the use of elements such as microstrip patches.

  1. Variation in Feed Point within Differed L-Slot Multi-frequency Microstrip Patch

    Directory of Open Access Journals (Sweden)

    Sandeep Arya

    2015-12-01

    Full Text Available A rectangular microstrip patch antenna with differed pair of L-slots is presented. The proposed antenna is designed to evaluate the effect of alteration in probe-feed point. The proposed microstrip antenna is suitable for bluetooth, mobile and wireless communication applications simultaneously. It is designed successfully for mobile communication systems and Wireless Local Area Networks (WLAN applications. The results obtained had showed better improvement in the return loss and radiation pattern in comparison to the other existing antennas.

  2. Evolution from a hinge actuator mechanism to an antenna deployment mechanism for use on the European large communications satellite (L-SAT/OLYMPUS)

    Science.gov (United States)

    Death, M. D.

    1984-01-01

    The evolution of an Antenna Deployment Mechanism (ADM) from a Hinge Actuator Mechanism (HAM) is described as it pertains to the deployment of large satellite antennas. Design analysis and mechanical tests are examined in detail.

  3. A technique for measurement of earth station antenna G/T by radio stars and Applications Technology Satellites.

    Science.gov (United States)

    Kochevar, H. J.

    1972-01-01

    A new technique has been developed to accurately measure the G/T of a small aperture antenna using geostationary satellites and the well established radio star method. A large aperture antenna having the capability of accurately measuring its G/T by using a radio star of known power density is used to obtain an accurate G/T to use as a reference. The CNR of both the large and small aperture antennas are then measured using an Applications Technology Satellite (ATS). After normalizing the two C/N ratios to the large antenna system noise temperature the G/T or the gain G of the small aperture antenna can then be determined.

  4. Conversion of a 30-m former satellite communications antenna to a radio telescope

    Science.gov (United States)

    Deboer, David R.; Steffes, Paul G.; Glowacki, John M.

    1998-05-01

    A class of large satellite communication antennas built in the mid-1970's comprise a potential set of large antennas available for use by radio astronomers upon upgrade. With the advent of low noise technology these facilities have been superseded in the communications industry by smaller, more manageable facilities. Although many have sat idle and decaying over the intervening years, these facilities remain a potential resource for research and education. A pair of such dishes has been acquired by Georgia Tech and one of the 30 meter antennas has been completely mechanically and electrically stripped and new mechanical, control, RF, and electrical systems installed. The antenna is now driven by four continuous-speed vector-controlled three-phase AC induction motors with variable frequency vector motor drives. Sixteen bit resolution optical absolute position encoders on each axis provide telescope pointing data. Sixteen bit resolution optical absolute position encoders on each axis provide telescope pointing data. A programmable logic controller provides interlock monitoring and control. The antenna is controllable both manually via a portable remote control unit and via a Pentium PC running control software on a real-time UNIX-based platform. The manual unit allows limited control at two user-selectable speeds while computer control allows full tracking capability with accuracies of better than 0.3 arcminutes. The facility can be remotely controlled via the internet, although currently only a dedicated line is used. The antenna has been refitted with an ultra-broadband feed system capable of operating from 1-7 GHz.

  5. 一种双频左/右旋圆极化可重构环形缝隙微带天线%A dual-frequency left/right hand circular polarized reconfigurable annular slot microstrip antenna

    Institute of Scientific and Technical Information of China (English)

    杜哲; 杨雪霞; 龚波; 王业清

    2013-01-01

    A dual-frequency left/right hand circular polarized reconfigurable annular slot microstrip antenna with a frequency ratio of 1.9 was designed. The antenna is in the linear and circular polarization state respectively at high and low frequency. In this antenna, the ground was divided into five parts by an annular slot combined with four orthogonal linear slot arms which were crossed by two pairs of PIN diode switches and capacitors. Through controlling the PIN diode switches, the left and right hand circular polarization of the antenna can switch to each other at low frequency, with no change in the linear polarization property of the antenna at high frequency. The results show that, at low frequency of 1.6 GHz, the antenna shows a 3 dB axial ratio bandwidth of 12.5% (from 1.5 GHz to 1.7 GHz); while at high frequency of 3.06 GHz, the antenna show a 10 dB return loss impedance bandwidth of 100 MHz with few change in the radiation pattern and linear polarization.%设计了一种频率比为1.9的双频左/右旋圆极化可重构环形缝隙微带天线,其在高频段和低频段分别工作于线极化和圆极化状态.在该天线中,环形缝隙和相互正交的四个缝隙臂将接地面分为五部分,缝隙臂上跨接两对PIN二极管开关和隔直电容.通过二极管开关的控制,天线在低频频率上可实现左/右旋圆极化的切换,在高频频率上则可保持其线极化性能不变.实验结果表明,天线在1.6 GHz的低频段上具有12.5%的3dB轴比带宽,在3.06 GHz的高频段上其-10 dB阻抗绝对带宽为100 MHz,成线极化状态,辐射方向图近似不变.

  6. Double-1-shaped dual-band microstrip antenna design for WLAN/WiMAX applications%应用于WLAN/WiMAX的双1型双频微带天线设计

    Institute of Scientific and Technical Information of China (English)

    贾宇; 刘建霞; 蔡冬梅; 阎世俊

    2014-01-01

    设计了一种同轴馈电的双1型缝隙结构的双频微带贴片天线。采用加载缝隙的方法改变圆形贴片表面电流路径来实现天线的双频带工作,利用电磁仿真软件HFSS 14.0对天线特性进行仿真,通过分析缝隙宽度和长度对天线辐射特性的影响,获得了最佳结构参数。结果表明,当回波损耗小于–10 dB,天线工作于2.57~2.63 GHz和5.78~5.84 GHz,且相对带宽分别达到2.3%和1.0%,天线的整体辐射特性良好,且结构简单,易于实现,可应用在微波存取全球互通(WiMAX 2.6 GHz)和无线局域网络(WLAN 5.8 GHz)。%A double-1-shaped dual-band microstrip antenna which was fed by coaxial line was proposed. The antenna could realize the function of compact and multi-frequency band by changing the circular patch surface current path. Numerical simulation was performed for the antenna with the software HFSS14.0. Meanwhile, the best structural parameters of the antenna were obtained by analyzing the influence of slot width and length on antenna radiation characteristics. The simulation results show that the frequency channels of the antenna are 2.57–2.63 GHz and 5.78–5.84 GHz when return loss less than –10 dB, and the relative bandwidths of the antenna are 2.3% and 1.0%, respectively. Moreover,it has good unitary radiation and simple configuration, and can be applied in the world interoperability for microwave access for 2.6 GHz (WiMAX 2.6 GHz) and wireless local area network for 5.8 GHz (WLAN 5.8 GHz).

  7. Design of Novel Broadband Circular Microstrip Antenna Working at S-band%一种新型S波段宽带圆形贴片天线的设计

    Institute of Scientific and Technical Information of China (English)

    孙晋; 韦高

    2011-01-01

    A novel broadband circular microstrip antenna working at S-band is designed and simulated with HFSS software.The antenna adopts two layers of substrates: teflon and air.In order to implement the compensation of the inductive reactance caused by the long coaxial probe, a lumped capactor is added at the top of the probe and then the coupled feed of radiation patch is conducted.An arc slot is made on the circular patch to generate another resonance frequency for the further enhancement of bandwidth.The simulation results show that the impedence BW of the antenna reaches 38% (VSWR<2) and within the range of band the radiation pattern of antenna almost keeps the same.%采用HFSS11电磁场仿真软件设计和仿真了一种工作于S波段的新型宽带圆形微带贴片天线.天线采用聚四氟乙烯和空气两层介质,通过同轴探针顶部加栽圆形金属电客片来对辐射贴片进行耦合馈电,由此补偿探针引起的电感;同时,在圆形贴片上开圆弧形缝隙,以生成第二个谐振点,从而进一步增大带宽.结果表明,天线的阻抗带宽达到了38%(VSWR<2),并且在带宽内天线的辐射方向图基本保持稳定.

  8. Design and Optimization of a Compact Wideband Hat-Fed Reflector Antenna for Satellite Communications

    Science.gov (United States)

    Geterud, Erik G.; Yang, Jian; Ostling, Tomas; Bergmark, Pontus

    2013-01-01

    We present a new design of the hat-fed reflector antenna for satellite communications, where a low reflection coefficient, high gain, low sidelobes and low cross-polar level are required over a wide frequency band. The hat feed has been optimized by using the Genetic Algorithm through a commercial FDTD solver, QuickWave-V2D, together with an own developed optimization code. The Gaussian vertex plate has been applied at the center of the reflector in order to improve the reflection coefficient and reduce the far-out sidelobes. A parabolic reflector with a ring-shaped focus has been designed for obtaining nearly 100% phase efficiency. The antenna's reflection coefficient is below -17 dB and the radiation patterns satisfy the M-x standard co- and cross-polar sidelobe envelopes for satellite ground stations over a bandwidth of 30%. A low-cost monolayer radome has been designed for the antenna with satisfactory performance. The simulations have been verified by measurements; both of them are presented in the paper.

  9. Cavity mode enhancement of terahertz emission from equilateral triangular microstrip antennas of the high-T c superconductor Bi2Sr2CaCu2O8 + δ

    Science.gov (United States)

    Cerkoney, Daniel P.; Reid, Candy; Doty, Constance M.; Gramajo, Ashley; Campbell, Tyler D.; Morales, Manuel A.; Delfanazari, Kaveh; Tsujimoto, Manabu; Kashiwagi, Takanari; Yamamoto, Takashi; Watanabe, Chiharu; Minami, Hidetoshi; Kadowaki, Kazuo; Klemm, Richard A.

    2017-01-01

    We study the transverse magnetic (TM) electromagnetic cavity mode wave functions for an ideal equilateral triangular microstrip antenna (MSA) exhibiting C 3v point group symmetry. When the C 3v operations are imposed upon the antenna, the TM(m,n) modes with wave vectors \\propto \\sqrt{{{m}2}+nm+{{n}2}} are much less dense than commonly thought. The R 3 operations restrict the integral n and m to satisfy |m-n| =3p , where p≥slant 0 and p≥slant 1 for the modes even and odd under reflections about the three mirror planes, respectively. We calculate the forms of representative wave functions and the angular dependence of the output power when these modes are excited by the uniform and non-uniform ac Josephson current sources in thin, ideally equilateral triangular MSAs employing the intrinsic Josephson junctions in the high transition temperature T c superconductor Bi2Sr2CaCu2 {{\\text{O}}8+δ} , and fit the emissions data from an earlier sample for which the C 3v symmetry was apparently broken.

  10. 埋微带天线蜂窝夹层结构的力电性能分析%Analysis of mechanical and electric performance of honeycomb sandwich structures embedded with the microstrip antenna

    Institute of Scientific and Technical Information of China (English)

    戴福洪; 王广宁

    2011-01-01

    设计并制备了一种共形承载一体化的埋微带天线蜂窝夹层结构.利用有限元方法分析了该结构的力学性能,与三点弯曲实验比较,获得较好的一致性.研究了蜂窝层厚度等参数对电性能和力学性能的影响.结果表明,蜂窝层厚度为8~14 mm时,共形承载天线不仅具有高增益和低损耗,还具有较好的力学性能.%A honeycomb sandwich structure embedded with the microstrip antenna of conformal load- bearing antenna structure (CLAS) was designed and fabricated. The mechanical property was analyzed by finite element method (FEM). Compared with the 3-point bending test, the calculated results from FEM are agree well with those from experiments. The influences of honeycomb thickness on the mechanical and electric properties were investigated. The results show that the CLAS with 8~14 mm thick honeycomb has not only have high gain and low return loss, but also have good mechanical properties.

  11. A bionic approach to mathematical modeling the fold geometry of deployable reflector antennas on satellites

    Science.gov (United States)

    Feng, C. M.; Liu, T. S.

    2014-10-01

    Inspired from biology, this study presents a method for designing the fold geometry of deployable reflectors. Since the space available inside rockets for transporting satellites with reflector antennas is typically cylindrical in shape, and its cross-sectional area is considerably smaller than the reflector antenna after deployment, the cross-sectional area of the folded reflector must be smaller than the available rocket interior space. Membrane reflectors in aerospace are a type of lightweight structure that can be packaged compactly. To design membrane reflectors from the perspective of deployment processes, bionic applications from morphological changes of plants are investigated. Creating biologically inspired reflectors, this paper deals with fold geometry of reflectors, which imitate flower buds. This study uses mathematical formulation to describe geometric profiles of flower buds. Based on the formulation, new designs for deployable membrane reflectors derived from bionics are proposed. Adjusting parameters in the formulation of these designs leads to decreases in reflector area before deployment.

  12. 频率与方向图可重构锯齿偶极子微带天线的设计%Design of reconfigurable frequency and radiation pattern saw-tooth-dipole micro-strip antenna

    Institute of Scientific and Technical Information of China (English)

    曹卫平; 蔡彬

    2014-01-01

    In order to meet high date rate wireless services and the miniaturization of the micro-strip antenna,a printed planar micro-strip fed saw-tooth dipole antenna with reconfigurable frequency and pattern properties is designed for wireless com-munication.The structure consists of two saw-tooth dipoles,each one is printed on one substrate layer.The saw-tooth di-pole can achieve its frequency and pattern reconfigurable function by changing the operating state of the PIN diode to trans-form the local structure and the distribution of surface current.Experimental results show that the antenna can achieve the function reconfigurable in the range of 1.88-2.85 GHz,which covers the main wireless communication band.During the op-erating band,an omni-directional radiation pattern in H-plane is well reached and the beam scanning in E-plane pattern is a-chieved.%为了满足无线通信高速数据需求和微带天线的小型化,设计了一种频率和方向图可重构锯齿偶极子微带天线,该天线包括2个锯齿状振子,分别印制在介质板的两面。通过改变锯齿振子上PIN二极管的工作状态,使天线的局部结构和表面电流分布发生变化,实现天线频率和方向图的可重构。实验结果表明,该天线在1.88~2.85 GHz 频段内实现可重构的功能,覆盖了主要的无线通信频带。在工作频段内,天线的 H 面方向图具有全向特性,E面方向图实现了波束扫描。

  13. Novel UWB microstrip antenna with band-notched characteristics%一种新型的具有带阻特性的超宽带微带天线

    Institute of Scientific and Technical Information of China (English)

    吴家国; 周晓明

    2012-01-01

    设计制作了一种新型的具有带阻特性的超宽带微带天线.天线采用50 Ω共面波导馈电结构,辐射单元采用圆形金属贴片,在圆形贴片上开一个倒U形槽,实现了天线的带阻特性.测试结果表明:在频率段2.8~12.0 GHz 内(除5.00~5.95 GHz外)天线驻波比小于2,且天线具有近似全向辐射的特性;而天线在频率段5.00~5.95 GHz内形成了阻带,从而有效阻隔了WLAN( 5.150~5.825 GHz)频率段.该天线具有尺寸小,易于与微波电路集成等优点,可以用于超宽带系统.%A novel UWB microstrip antenna with band-notched characteristics was designed and manufactured. This antenna was fed by a 50 Ω CPW and used a circular patch as the radiation element. By cutting an inverted U shaped slot in the circular patch, the band-notched characteristics of the antenna was realized. The measured results show that the antenna VSWR is below 2 between the frequency from 2.8 GHz to 12.0 GHz except the frequency from 5.00 GHz to 5.95 GHz, and has about omnidirectional radiation patterns; while the antenna has the notch band between the frequency from 5.00 GHz to 5.95 GHz, so it effectively eliminates the 5.150-5.825 GHz WLAN range. The antenna is suitable for applications in UWB systems.

  14. Research on micro-strip reconfigurable antenna based on immune algorithm%基于免疫算法的多频可重构微带天线设计

    Institute of Scientific and Technical Information of China (English)

    许朝阳; 李媛; 李建兰

    2011-01-01

    频率可重构天线可以在宽频带或者超宽频带范围内改变频率而以近似相同的方向图进行工作,这对当前许多移动通信系统天线的小型化具有重要意义.介绍了免疫算法的机理,通过将1个简单的矩形微带贴片天线划分成若干小的贴片元,并应用免疫算法优化求解响应于需求的最合适的二进制序列(对应就是小贴片的存在与否的情况)来控制天线的可重构特性,设计出了1种可以在8~17 GHz范围内实现频率捷变的天线可重构方案,使天线在很宽频率范围内能够实现了多频或双频可重构.%Frequency reconfigurable antenna can change the frequency in a wide or ultra wide band but worked with nearly the same pattern,and this has important meaning to the antenna miniaturization of current mobile communication systems. Firstly, we described the mechanism of immune algorithm. And then, by dividing a simple rectangular micro-strip patch antenna into several small patches and using immune algorithm to solve the most appropriate binary sequence (the existence of small patch or not) which is response to demand, we controlled the reconfigurable features of antenna, designed a antenna which can achieve frequency agility within the range of 8-17 GHz, and made the antenna realized multi-band or dual-band reconfigurable in a very wide frequency range.

  15. Disturbance of flexible antenna surface on a satellite antenna%柔性天线面对星载天线的扰动研究

    Institute of Scientific and Technical Information of China (English)

    游斌弟; 赵志刚; 魏承; 赵阳

    2011-01-01

    To study disturbance of flexible antenna surface on a free-floating satellite antenna, the fixed-interface component-mode synthesis method and Lagrange's equations were used to achieve a lower order dynamic model by modal truncation. Under large scale motions, the rigid-flexible coupled dynamic model of the free-floating flexible satellite antenna was deduced through using compatibility relations at the interface between axis end and antenna surface, and neglecting the elastic deformation of the flexible antenna surface. So the model increased the computing efficiency without losing much accuracy. Finally, the free-floating satellite antenna dynamic behavior was analyzed considering the flexible antenna surface as a rigid body and a flexible one, separately. The result showed that the flexible antenna surface has little effect on the satellite base attitude and the antenna pointing at initial stage, but its own elastic vibration grows with the continuous action of joint torques; further, it makes the system vibrate and the deviations of the satellite base attitude and the antenna pointing become larger; the satellite antenna pointing accuracy is seriously affected. The results were valuable for analysis and control of satellite antenna pointing accuracy.%针对柔性天线面对星载天线的扰动问题,应用固定界面模态综合法和Lagrange方程,截取柔性天线面低阶模态,缩减星载天线系统的自由度,并通过轴末端与天线面交界面的协调关系,推导了大范围运动的星载天线刚柔耦合动力学模型,克服了忽略天线面弹性变形对刚体大范围运动的影响,所建立的耦合动力学模型计算效率高并具有足够的精度.考虑天线面为刚体和柔体情况,分别对星载天线系统进行仿真并进行对比分析,结果表明,初始时刻柔性天线面对卫星本体姿态和天线指向影响很小,随着关节力矩持续作用,激起柔性天线面震荡,加剧自身的弹性振动,进而

  16. 基于有限元法串馈微带天线阵的设计与优化%Design and Optimization of Series-feed Microstrip Antenna Array by Using Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    赵伟; 亓东; 李晓

    2012-01-01

    研究毫米波段串馈微带天线阵的优化问题,阵列采用1/4阻抗变换器的幅度加权方法实现低副瓣.针对阻抗变换段与传输线之间存在不连续导致各单元相位的差异而影响副瓣电平进一步的降低,应用有限元法优化传输线的长度进行相位补偿,使各单元辐射同相谐振.仿真结果表明,优化后的方向图副瓣≤- 22dB,较优化前降低了7dB,增益15.8dB,波束宽度9.6°,实现了微带阵列天线的低副瓣、高增益、窄波束的指标要求.%This paper researchs a kind of millimeter-wave series-feed microstrip antenna array. In order to suppress side-lobe, quarter-wavelength transformers are used to achieve chebyshev amplitude. Because of discontinuity between quarter-wavelength transformers and transmission line, the antenna can not get lower side-lobe level. For compersating the phase and making patchs resonating, the finite element method is employed to optimize the length of transmission line. Simulation results show that; the side-lobe level is about -22dB and the gain up to 15. 8dB,H-plane half-power beam width is 9. 6°. The antenna meets the requirements for high gain,low side-lobe and narrows beams.

  17. Large deployable antenna to be loaded on Engineering Test Satellite-8; Gijutsu shiken eisei VIII gata tosaiyo ogata tenkai antena

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A large deployable antenna to be loaded on the Engineering Test Satellite-8, which is scheduled to be launched in 2002, is about 19m x 17m, the world largest on-satellite deployable antenna/reflection mirror, with two sets to be loaded for transmission and reception. This antenna is featured by a metallic mesh structure for the reflection surface and by a module structure in which fourteen hexagonal modules are combined comprising the entirety. While a test is conducted using the development model, verification is scheduled on the method of antenna deployment analysis examined so far and on the validity of the method for estimating the shape of the mesh reflection face under zero gravity. The results thus obtained will be reflected on the design of flight articles for which high quality is required. (translated by NEDO)

  18. Measuring Phased-Array Antenna Beampatterns with High Dynamic Range for the Murchison Widefield Array using 137 MHz ORBCOMM Satellites

    CERN Document Server

    Neben, A R; Hewitt, J N; Bernardi, G; Bowman, J D; Briggs, F; Cappallo, R J; Deshpande, A A; Goeke, R; Greenhill, L J; Hazelton, B J; Johnston-Hollitt, M; Kaplan, D L; Lonsdale, C J; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Oberoi, D; Ord, S M; Prabu, T; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Tingay, S J; Wayth, R B; Webster, R L; Williams, A; Williams, C L

    2015-01-01

    Detection of the fluctuations in 21 cm line emission from neutral hydrogen during the Epoch of Reionization in thousand hour integrations poses stringent requirements on calibration and image quality, both of which necessitate accurate primary beam models. The Murchison Widefield Array (MWA) uses phased array antenna elements which maximize collecting area at the cost of complexity. To quantify their performance, we have developed a novel beam measurement system using the 137 MHz ORBCOMM satellite constellation and a reference dipole antenna. Using power ratio measurements, we measure the {\\it in situ} beampattern of the MWA antenna tile relative to that of the reference antenna, canceling the variation of satellite flux or polarization with time. We employ angular averaging to mitigate multipath effects (ground scattering), and assess environmental systematics with a null experiment in which the MWA tile is replaced with a second reference dipole. We achieve beam measurements over 30 dB dynamic range in beam...

  19. A Millimeter-Wave Cavity-Backed Suspended Substrate Stripline Antenna

    Science.gov (United States)

    Simons, Rainee N.

    1999-01-01

    Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency bands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency, and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz), cavity backed, circular aperture antenna with suspended substrate stripline (SSS) feed is presented.

  20. Analysis on spherical conformal microstrip antenna array by characteristic basis function metho d%基于特征基函数的球面共形微带天线阵列分析∗

    Institute of Scientific and Technical Information of China (English)

    于涛; 尹成友; 刘汉

    2014-01-01

    Spherical conformal microstrip antenna array which is used widely in the field of aeronautics is analyzed by the full wave analysis in this paper. Using the surface integral equation with spherical dyadic Green’s function can decrease the number of unknowns remarkably, and also reduce the demand of memory as compared with the method using volume-surface integral equation. The curvilinear triangle is proposed to mesh the surface of the microstrip antenna array, which can simulate the characteristic of spherical surface accurately. Firstly, the problem about probe feed model is solved successfully by introducing the half Rao-Wilton-Glisson function and boundary charge, and the image method is used to treat the line integral singularity problem. Then, the characteristic basis function method is employed to further save memory and computation time further by reducing the rank of impedance matrix. Finally, the input impedance and far-field spherical conformal microstrip antenna array of different sizes are analyzed. Results are in good agreement with those in the literature and simulation software, and thus the validity and effectiveness of the analysis method are demonstrated.%采用全波分析法对球面共形微带天线阵列进行了分析。 相比体-面积分方程, 采用球并矢格林函数的面积分方程法可以大幅减少未知量的数目, 进而缓解计算机内存压力。 微带天线阵列表面采用曲面三角形剖分,可较精确地模拟球面特性。 首先, 引入边界电荷以及半Rao-Wilton-Glisson 基函数, 成功实现了探针馈电, 并采用镜像法解决了馈电边处线积分奇异问题。 然后, 采用特征基函数法降低了阻抗矩阵的阶数, 并采取有效措施进一步节省内存和计算时间。 最后, 分析计算了不同尺寸的球面共形微带天线阵列的输入阻抗及远区场特性。 与文献和仿真软件结果进行比较, 证明了所提出的处理方法的正确性和有效性。

  1. Design of a polarized microstrip antenna with reconfigurable axial ratio and rotation%一种旋向与轴比均可重构极化微带天线的设计

    Institute of Scientific and Technical Information of China (English)

    高顺; 王安国; 裴静; 赵国煌

    2011-01-01

    A polarized microstrip antenna with reconfigurable axial ratio and rotation is proposed in this paper. The circular and elliptical polarization can be realized, and the rotations of both polarizations can also be switched. The antenna is fed by a Wilkinson power divider. By controlling the switches' states, two feeding modes, I. E. Orthogonal double-feed and single-feed with perturbation, are provided respectively, and the circularly polarized wave, elliptically polarized wave and rotation switching of both polarizations are obtained correspondingly. The effects of the key structure parameters on the antenna performances were analyzed. The prototype of the antenna was fabricated and measured. The measured results of axial ratio and return loss coincide with the simulated results basically. These kinds of the polarized antenna, which can achieve reconfigurable axial ratio and rotation,can reduce the polarization mismatch to some extent in the depolarized environment and improve the performance of the communication system.%提出了1种轴比与旋向均可重构的极化微带天线,可在同一副天线上实现圆极化和椭圆极化,且进行旋向切换.该天线采用Wilkinson功分器馈电,通过控制开关状态,天线馈电可实现正交双馈与带微扰单馈2种工作方式,分别产生圆极化与椭圆极化波,并对每一种极化波,可进行左、右旋向的切换.给出了天线的结构及参数,分析了主要参数对天线性能的影响.根据计算、仿真优化的尺寸,对天线原型进行了制作与测试.轴比与回波损耗参数的仿真与测试结果基本吻合.此类轴比与旋向均可重构的极化天线的有效使用,可在一定程度上减小去极化环境造成的极化失配,有效提高通信系统性能.

  2. Study of stacked microstrip phased arrays

    Science.gov (United States)

    Arts, M. J.; Smolders, A. B.

    1993-06-01

    Two theoretical methods for studying stacked-patch microstrip phased arrays are compared: (1) the element-by-element approach (finite array approach) of Pozar (1986) and Smolders (1992); and (2) the infinite approach of Pozar and Shaubert (1984) and Liu et al. (1988). Both theories were found to give almost the same results for a 7 x 7 stacked microstrip antenna, except for edge array elements and for large scan angles. Edge array elements could only be analyzed properly by using a finite array approach. Coupling measurements were made on a 7 x 7 array with a single patch layer, and the results agreed well with calculations.

  3. Application of MMIC modules in future multiple beam satellite antenna systems

    Science.gov (United States)

    Smetana, J.

    1982-01-01

    Multiple beam antenna systems for advanced communication satellites operating in the 30/20 GHz frequency bands (30 GHz uplink, 20 GHz downlink) were developed. Up to twenty 0.3 deg HPBW fixed spot beams and six 0.3 deg HPBW scanning spot beams will be required. Array-fed dual reflector antenna systems in which monolithic microwave integrated circuit (MMIC) phase shift and amplifier modules are used with each radiating element of the feed array for beam pointing and power gain were developed. The feasibility of distributed power amplification and beam pointing with MMIC modules in the elements of an array and to develop a data base for future development were demonstrated. The technical discussion centers around the potential advantages of ""monolithic'' antennas for specific applications as compared to systems using high powered TWT's. These include: reduced losses in the beam forming network; advantage of space combining and graceful degradation; dynamic control of beam pointing and illumination contour; and possibilities for cost and weight reduction.

  4. Design of Bluetooth Micros-trip Antenna Based on ADS%基于ADS智能穿戴设备蓝牙微带天线设计与优化

    Institute of Scientific and Technical Information of China (English)

    孔淑苗

    2016-01-01

    Wearable device is a kind of technology and equipment, to blend in electronics or computer can easily wear in physical clothing and accessories, including health and fitness of tracking information, etc. In general, intelligence can be worn equipment there will be some form of communication ability and will allow users to real-time access to information, usually this kind of communication using Bluetooth technology, locally stored data via Bluetooth transmission to the mobile phone and upload the cloud. Other intelligent wearable technology equipment including the motion sensor photo and synchronization of mobile devices, such as watches, glasses, smart textiles, hair band, thin sections and hats, jewelry, such as bracelets, rings, earrings, etc. A patch antenna is a narrowband antenna fabricated by etching the antenna element pattern in metal trace bonded to an insulating dielectric substrate, such as a printed circuit board, with a continuous metal layer bonded to the opposite side of the substrate which forms a ground plane. Advantages of micros-trip antennas include: low cost to fabricate, light weight, simple structure, easy to process. In this paper, by using ADS software on Bluetooth 2.4 GHz frequency micros-trip antenna design and simulation optimization.%智能可穿戴设备是一种技术设备,指将电子技术或电脑融入可以轻松地穿在身体上的服装和配件,提供包括健康和健身的跟踪信息等。一般来说,智能可穿戴设备会有某种形式的通信能力和将允许使用者实时获取信息,通常这种通信利用蓝牙技术进行通信,将本地存储的数据通过蓝牙传输到手机并上传云端。其他智能可穿戴技术设备包括小运动传感器拍照和同步的移动设备,例如手表、眼镜,智能纺织品,发带,薄片和帽子,珠宝,如手镯、戒指、耳环等。微带天线一种窄带天线,制作在金属蚀刻天线元素模式连着一个绝缘介质衬底,

  5. PS2007 Satellite Meeting on Photosynthetic Antennas, 19-22 July 2007, Drymen, Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Robert E. Blankenship

    2009-06-04

    A Satellite Workshop of the 14th International Congress on Photosynthesis on the topic of photosynthetic light-harvesting systems was held on 18-21 July 2007, at the Buchanan Arms Hotel in Drymen, Scotland, near Glasgow. This meeting continued the tradition of satellite light-harvesting conferences occurring prior to the last five international photosynthesis congresses in Japan, France, Hungary, Australia and Canada, dating from 1992. With an attendance of 124 participants, this Workshop represents an intimate gathering of scientists interested in a thorough coverage of the light-harvesting aspects of photosynthesis. A significant amount of time was set aside for discussion and poster sessions. The organizers were: Richard J. Cogdell, UK (Chairperson), Alastair T. Gardiner, UK, Conrad W. Mullineaux, UK, Robert A. Niederman, USA, Robert E. Blankenship, USA, Harry Frank, USA, Bruno Robert, France. Sessions were focused on new concepts relating to the function, regulation, assembly, photoprotection and evolution of a wide variety of antenna systems. Cutting-edge scientific methods used to study these systems that were covered included time-resolved and single-molecule spectroscopy, structure determination by X-ray diffraction, NMR and electron and atomic force microscopy, molecular genetics, protein chemistry, model systems and theory. A central theme was how emerging high-resolution structural information on antenna proteins continues to provide an enhanced understanding of areas ranging from the kinetics of energy transfer processes to the assembly of the photosynthetic apparatus.

  6. Subcutaneous implantation of satellite transmitters with percutaneous antennae into male polar bears (Ursus maritimus)

    Science.gov (United States)

    Mulcahy, D.M.; Garner, G.

    1999-01-01

    Male polar bears (Ursus maritimus) have not been successfully instrumented with satellite transmitters because they readily shed collar-mounted transmitters. Seven male polar bears were captured on the pack ice off the northern coast of Alaska and surgically implanted with satellite transmitters with percutaneous antennae into the subcutaneous space of the dorsal cervical region. Transmitters failed prematurely with lifetimes of 30-161 days (x?? = 97 days). Efforts to relocate implanted bears after transmitters failed were not successful. The mean number of location solutions per transmitter was 204 (range 118-369). An average of 10% and 19% of the locations were accurate to < 150 m and to 150-350 m, respectively. Our successful tracking of male polar bears, the high quality of locations obtained from transmitters with percutaneous antennae implanted in the subcutaneous space, and the low visibility of such units make further technical development worthwhile if the reason for premature failure of the transmitters can be determined. Copyright 1999 by American Association of Zoo Veterinarians.

  7. Modeling and Simulation of Phased Array Antennas to Support Next-Generation Satellite Design

    Science.gov (United States)

    Tchorowski, Nicole; Murawski, Robert; Manning, Robert; Fuentes, Michael

    2016-01-01

    Developing enhanced simulation capabilities has become a significant priority for the Space Communications and Navigation (SCaN) project at NASA as new space communications technologies are proposed to replace aging NASA communications assets, such as the Tracking and Data Relay Satellite System (TDRSS). When developing the architecture for these new space communications assets, it is important to develop updated modeling and simulation methodologies, such that competing architectures can be weighed against one another and the optimal path forward can be determined. There have been many simulation tools developed here at NASA for the simulation of single RF link budgets, or for the modeling and simulation of an entire network of spacecraft and their supporting SCaN network elements. However, the modeling capabilities are never fully complete and as new technologies are proposed, gaps are identified. One such gap is the ability to rapidly develop high fidelity simulation models of electronically steerable phased array systems. As future relay satellite architectures are proposed that include optical communications links, electronically steerable antennas will become more desirable due to the reduction in platform vibration introduced by mechanically steerable devices. In this research, we investigate how modeling of these antennas can be introduced into out overall simulation and modeling structure. The ultimate goal of this research is two-fold. First, to enable NASA engineers to model various proposed simulation architectures and determine which proposed architecture meets the given architectural requirements. Second, given a set of communications link requirements for a proposed satellite architecture, determine the optimal configuration for a phased array antenna. There is a variety of tools available that can be used to model phased array antennas. To meet our stated goals, the first objective of this research is to compare the subset of tools available to us

  8. Design and Experiment of a Conical Equiangular Spiral Antenna Fed by Microstrip Balun%微带巴伦馈电圆锥等角螺旋天线设计与实验

    Institute of Scientific and Technical Information of China (English)

    宋立众; 乔晓林; 曹丙霞

    2012-01-01

    无源雷达导引头一般采用宽带天线以满足对空间辐射源的探测和跟踪。圆锥等角螺旋天线具有宽频带和圆极化的辐射性能,因此它是一种合适的无源雷达导引头天线实现方案。为了满足实际项目的需要,本文开展了圆锥等角螺旋天线的设计和实验研究。设计了具体的天线结构和参数,采用微带粘结技术实现圆锥表面共形的等角螺旋天线臂的加工和焊接。设计了一种超宽带微带平衡一不平衡转换器(巴伦)以实现对设计天线的馈电。在微波暗室内对加工的天线进行了测量,给出了辐射方向图、增益、轴比等测试结果。实验结果表明,对于频带1GHz到5GHz工作频率范围,本文设计和加工的天线性能可以满足技术要求,其实验结果为本天线的实际应用奠定了基础。%The wide band antennas are usually used to detect and track the spatial radiation sources for passive radar seekers. The conical equiangular spiral antenna (CSA) is an appropriate antenna implementation scheme for the passive ra- dar seeker because it has the performances of broad bandwidth and circular polarization. This paper designed and measured a kind of CSA to meet a practical project requirement. The specific antenna structure and parameters are designed. Then the fabrication and soldering of the conical conformal spiral arms were realized by microstrip adhering technique. An ultra wide band microstrip balanced-to-unbalanced transformer (Balun) was also designed to feed the designed CSA. The fabricated an- tenna was measured in the anechoic chamber and the experiment results including radiation patterns, gain and axial ratio (AR) are provided. The experimental results demonstrate that the designed and fabricated CSA in this paper can meet the technical requirements. The experimental results constitute a basis for the practical applications of the designed CSA in this paper.

  9. SPS solid state antenna power combiner

    Science.gov (United States)

    Fitzsimmons, G. W.

    1980-01-01

    A concept for a solar power satellite antenna power combiner which utilizes solid state dc-rf converters is described. To avoid the power combining losses associated with circuit hybrids it is proposed that the power from multiple solid state amplifiers be combined by direct coupling of each amplifier's output to the radiating antenna structure. The selected power-combining antenna consists of a printed (metalized) microstrip circuit on a ceramic type dielectric substrate which is backed by a shallow lightweight aluminum cavity which sums the power of four microwave sources. The antenna behaves like two one-half wavelength slot-line antennas coupled together via their common cavity structure. A significant feature of the antenna configuration selected is that the radiated energy is summed to yield a single radiated output phase which represents the average insertion phase of the four power amplifiers. This energy may be sampled and, by comparison with the input signal, one can phase error correct to maintain the insertion phase of all solid state power combining modules at exactly the same value. This insures that the insertion phase of each SPS power combining antenna module is identical. An experiment verification program is described.

  10. Characteristic-based time domain method Analysis of the Characteristics of a Cylindrically Conformal Microstrip Antenna%时域特征线算法在圆柱共形微带天线中的应用

    Institute of Scientific and Technical Information of China (English)

    辛莉

    2013-01-01

      本文利用时域特征线算法(characteristic-based time domain method)计算了探针馈电圆柱共形微带天线的输入阻抗和辐射方向图。为减小数值计算误差,直接导出了圆柱坐标系下的相应控制方程,从而将三维方程转换为三个一维方程。计算结果与FDTD算法结果吻合良好,证明了本文理论与数值模型的可行性和精确性。%Characteristic-based time domain method is employed to calculate the input impedance and the radiation pattern of a probe-fed cylindrically conformal microstrip antenna. To reduce the computational error, the governing equation in the cylindrical coordinate system is directly derived so as to reduce the three-dimensional equation to three one-dimensional ones. The numerical results agree well with those obtained by using FDTD, which verifies the feasibility and veracity of this method.

  11. A linearly and circularly polarized active integrated antenna

    Science.gov (United States)

    Khoshniat, Ali

    This thesis work presents a new harmonic suppression technique for microstrip patch antennas. Harmonic suppression in active integrated antennas is known as an effective method to improve the efficiency of amplifiers in transmitter side. In the proposed design, the antenna works as the radiating element and, at the same time, as the tuning load for the amplifier circuit that is directly matched to the antenna. The proposed active antenna architecture is easy to fabricate and is symmetric, so it can be conveniently mass-produced and designed to have circular polarization, which is preferred in many applications such as satellite communications. The antenna simulations were performed using Ansoft High Frequency System Simulator (HFSS) and all amplifier design steps were simulated by Advanced Design System (ADS). The final prototypes of the linearly polarized active integrated antenna and the circularly polarized active integrated antenna were fabricated using a circuit board milling machine. The antenna radiation pattern was measured inside Utah State University's anechoic chamber and the results were satisfactory. Power measurements for the amplifiers' performance were carried out inside the chamber and calculated by using the Friis transmission equation. It is seen that a significant improvement in the efficiency is achieved compared to the reference antenna without harmonic suppression. Based on the success in the single element active antenna design, the thesis also presents a feasibility of applying the active integrated antenna in array configuration, in particular, in scanning array design to yield a low-profile, low-cost alternative to the parabolic antenna transmitter of satellite communication systems.

  12. Textile microstrip four-element array antenna integrated in three dimensional orthogonal woven fabrics%基于三维织物的四元阵纺织天线

    Institute of Scientific and Technical Information of China (English)

    杨福慧; 杜成珠

    2014-01-01

    研制了一种新型的基于三维正交织物的纺织天线。该天线采用串馈四元阵形式,具有柔软性、易共形的性能,除了具有天线的功能,还具有纺织结构的功能。通过实验测定了天线的带宽、增益等指标。实验证明,该天线带宽为1.43~1.54 GHz,最大增益为7 dB,其尺寸为428 mm×155 mm。实验验证了新型天线的实用性。%A novel four-element serial feed textile array antenna integrated in three dimensional orthogonal woven fabrics was proposed. The unique advantages of the antenna are its fabric structure and conformity to the platform and flexible performance. The bandwidth and gain etc were investigated based on experimental methods. The experimental results show that the bandwidth of the antenna is 1.43–1.54 GHz, the maximum gain reaches 7 dB, and its size is 428 mm×155 mm, showing the usability of the novel textile antennas.

  13. Design and Implementation of Radiation Pattern Reconfigurable Planar Microstrip Antenna%方向图可重构的平面准八木天线的设计与实现

    Institute of Scientific and Technical Information of China (English)

    汪圣杰; 顾涓涓; 胡国华

    2016-01-01

    The development of wireless communication system has raise higher demand on the perform-ance of antenna,the radiation pattern reconfigurable antenna is widely needed in wireless communica-tion system.In this paper the radiation pattern reconfigurable microstrip antenna has been designed and realized.This structure is based on traditional dipole antenna and Yagi antenna.According to dif-ferential feeding theory,the two arms which consist of the driven dipole are loaded on each side of sub-strate.A PIN diode switch is loaded between the ground and each driven dipole arm a PIN diode switch is loaded between the feed and the other driven dipole arm.The antenna radiation pattern can be reconfigurable by combination controlling the diode switch state.The result shows that the return loss is -25dB at center frequency.-10dB bandwidth is about 320MHz,relative bandwidth is about 13%.The maximum gain at main radiation direction reaches 3dB.This reconfigurable antenna has good directivity with the scanning function of eight direction and can be applied in wireless communi-cation system.%通信系统的快速发展对天线的性能提出了更高的要求,方向图可重构天线是天线家族中重要组成部分之一,应用十分广泛。文中利用 HFSS 软件对方向图可重构的平面准八木天线进行了设计与实现,天线结构基于传统的偶极子天线以及八木天线并采用差分馈电,主天线振子置于介质板的两侧,在地板一侧的振子臂通过PIN 二极管开关与地板相连,馈电一侧的阵子臂通过 PIN 二极管开关与馈电相连。通过组合控制二极管的开关状态即可控制天线单元的工作状态从而实现天线方向图可重构的目的。结果表明天线的回波损耗在中心频点出达到-25dB,-10dB 带宽为约为400MHz,相对带宽为13%,天线在主辐射方向的增益达到约4.5dB,该天线能够实现4个方向的扫描,具有良好的方向性。

  14. Combined Calibration Method and its Realization for Direction Finding Antenna Systems with Patch Antennas

    Directory of Open Access Journals (Sweden)

    R. Seller

    2007-09-01

    Full Text Available A novel radio channel compensation method aiming to give optimal calibration for microstrip antenna array systems is presented in this paper, realized for an actual DOA measurement antenna system using microstrip antennas to sample the electromagnetic field, operating at 4.5GHz. This new approach considers mismatch between antennas and channel RF ports, channel transmission inequalities, and also decreases the effects of multipath propagation components of calibration reference signals by placing the calibration reference signal feeding network on the microstrip antenna array bearer, directly beside the antenna patches. It is combined with orthogonal spread spectrum calibration signal utility for continuous uninterrupted measurements. The spread spectrum calibration signal is orthogonal to the continuous wave (CW signal to be measured, therefore, the 2 signals can be separated in the receiver, enabling them to be present simultaneously. DOA measurement results are shown, measured with the realized integrated microstrip patch antenna array with calibration network hardware.

  15. Broadband Multilayered Array Antenna with EBG Reflector

    Directory of Open Access Journals (Sweden)

    P. Chen

    2013-01-01

    Full Text Available Most broadband microstrip antennae are implemented in the form of slot structure or laminate structure. The impedance bandwidth is broadened, but meanwhile, the sidelobe of the directivity pattern and backlobe level are enlarged. A broadband stacked slot coupling microstrip antenna array with EBG structure reflector is proposed. Test results indicate that the proposed reflector structure can effectively improve the directivity pattern of stacked antenna and aperture coupled antenna, promote the front-to-back ratio, and reduce the thickness of the antenna. Therefore, it is more suitable to be applied as an airborne antenna.

  16. Optimization of Planar Monopole Wideband Antenna for Wireless Communication System.

    Science.gov (United States)

    Shakib, Mohammed Nazmus; Moghavvemi, Mahmoud; Mahadi, Wan Nor Liza

    2016-01-01

    In this paper, a new compact wideband monopole antenna is presented for wireless communication applications. This antenna comprises of a new radiating patch, a new arc-shaped strip, microstrip feed line, and a notched ground plane. The proposed radiating patch is combined with a rectangular and semi-circular patch and is integrated with a partial ground plane to provide a wide impedance bandwidth. The new arc-shaped strip between the radiating patch and microstrip feed line creates an extra surface on the patch, which helps further widen the bandwidth. Inserting one step notch on the ground plane further enhances the bandwidth. The antenna has a compact size of 16×20×1.6mm3. The measured result indicated that the antenna achieves a 127% bandwidth at VSWR≤2, ranging from 4.9GHz to 22.1GHz. Stable radiation patterns with acceptable gain are achieved. Also, a measured bandwidth of 107.7% at VSWR≤1.5 (5.1-17GHz) is obtained, which is suitable for UWB outdoor propagation. This antenna is compatible with a good number of wireless standards, including UWB band, Wimax 5.4 GHz band, MVDDS (12.2-12.7GHz), and close range radar and satellite communication in the X-band (8-12GHz), and Ku band (12-18GHz).

  17. An experimental 20/30 GHz communications satellite conceptual design employing multiple-beam paraboloid reflector antennas

    Science.gov (United States)

    Goldman, A. M., Jr.

    1980-01-01

    An experimental 20/30 GHz communications satellite conceptual design is described which employs multiple-beam paraboloid reflector antennas coupled to a TDMA transponder. It is shown that the satellite employs solid state GaAs FET power amplifiers and low noise amplifiers while signal processing and switching takes place on-board the spacecraft. The proposed areas to be served by this satellite would be the continental U.S. plus Alaska, Hawaii, Puerto Rico, and the Virgin Islands, as well as southern Canada and Mexico City. Finally, attention is given to the earth stations which are designed to be low cost.

  18. Resonance of a rectangular microstrip patch on a uniaxial substrate

    Science.gov (United States)

    Wong, Kin-Lu; Row, Jeen-Sheen; Kuo, Chih-Wen; Huang, Kuang-Chih

    1993-04-01

    Effects of uniaxial anisotropy in the substrate on the complex resonant frequency of the microstrip patch antenna are investigated in terms of an integral equation formulation. The complex resonant frequency of the microstrip patch antenna is calculated by using Galerkin's method in solving the integral equation. The sinusoidal functions are selected as the basis functions, which show fast numerical convergence. Numerical results also indicate that both the resonant frequency and the half-power bandwidth are increased due to the positive uniaxial anisotropy and, on the other hand, decreased due to the negative uniaxial anisotropy.

  19. Low-Cost Planar MM-Wave Phased Array Antenna for Use in Mobile Satellite (MSAT) Platforms

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2015-01-01

    In this paper, a compact 8×8 phased array antenna for mobile satellite (MSAT) devices is designed and investigated. 64-elements of 22 GHz patch antennas with coaxial-probe feeds have been used for the proposed planar design. The antenna is designed on a low-cost FR4 substrate with thickness......, dielectric constant, and loss tangent of 0.8 mm, 4.3, and 0.025, respectively. The antenna exhibits good performance in terms of impedance- matching, gain and efficiency characteristics, even though it is designed using high loss substrate with compact dimension (Wsub×Lsub=55×55 mm2). The antenna has more...... than 23 dB realized gain and -0.8 dB radiation efficiency when its beam is tilted to 0o elevation. The center frequency of the designed array can be controlled by adjusting the values of the antenna parameters. Compared with the previous designs, the proposed planar phased array has the advantages...

  20. Design of smoothed multi-flared antenna for multi-frequency reception of direct transmission from meteorological satellites

    Science.gov (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Kesarkar, Amit P.; Thawait, Prateek

    2016-07-01

    The direct radiance data assimilation is found to be advantageous for the numerical weather prediction over short and medium range. Therefore reception of satellite radiance in real time is important. Satellite earth station is the preferred choice for direct reception of this data, which is voluminous. High Rate Information being transmitted from these satellites operating in L, S, C and X bands needs to be received. A commercial wide band antenna is not preferred for such application, as it operates uniformly over the entire frequency range in these bands and may create interference over the unwanted frequencies. As the frequencies of interest occupy only a small portion of these bands, it is essential to design a horn antenna, which receives only specified frequencies and filter other frequencies. In this work, we have designed a multi-flare multi-frequency cylindrical horn antenna for reception of direct transmission from meteorological satellites. This earth station antenna tracks selected satellites working over specified frequency ranges, which are 1.694-1.703 GHz, 2.0-2.06 GHz, 4.5-4.6 GHz and 7.8-7.9 GHz in L, S, C and X bands respectively. Cylindrical waveguides for the frequencies, 1.6, 2, 4.5 and 8 GHz are designed and they are joined in the increasing order of radius with suitable conical shapes. The slope of the cones is adjusted experimentally. With this design, the return loss is simulated and found to be better than 20 dB upto 4.5 GHz and later it became poor. To overcome this difficulty, the abrupt transitions at the joints of the conical and cylindrical waveguides are made smoothen by increasing the diameter of one mouth of the cylinder and reducing the other mouth to match with the cylinders corresponding to next higher and lower frequency respectively. As a result, a smooth flared antenna is obtained and the simulated results are satisfactory. A parabolic reflector of 4 m diameter is designed and the smooth multi-flared antenna is kept at the

  1. 具有不同宽槽数的矩形微带贴片天线多带特性研究%Study of multi-band property of rectangular microstrip patch antenna having different numbers of wide slots

    Institute of Scientific and Technical Information of China (English)

    A. S. Abdallah; Y. E. Mohammed; 刘元安

    2004-01-01

    The property of multi-band operation has been studied and investigated analytically through the design of a rectangular patch microstrip antenna having different numbers of wide slots arranged at both the radiating edges. The analyses were carried out using the method of moments simulation software. It is shown that a patch with three slots has a multi-band feature with four resonant frequencies at 1. 6, 1. 8, 2. 65, and 4. 83 GHz and adequate values of return loss and gain. It is also shown that a patch with two pairs of wide slots arranged at both the radiating edges has the dual band feature with resonant frequencies at 1. 64 and 1. 8 GHz and good values of return loss and gain.%主要研究了多带工作的特性,并通过设计矩形贴片微带天线--包含不同数目的并放置在两辐射端的槽, 进行分析. 分析基于MOM仿真软件包, 结论表明一个贴片上有3个槽的天线具有多带特性: 4个振荡频率分别在1. 6, 1. 8, 2. 65, 和4. 83 GHz, 并且具有足够的反射损耗和增益值. 同时证明了带有2对槽的贴片天线(槽分别位于两辐射端)有双带特性, 其振荡频率分别在1. 64和1. 8 GHz, 而且返回损耗和增益值很好.

  2. Narrow multibeam satellite ground station antenna employing a linear array with a geosynchronous arc coverage of 60 deg. I - Theory

    Science.gov (United States)

    Amitay, N.; Gans, M. J.

    1982-11-01

    The feasibility of using an appropriately squinted linear scan in narrow multibeam satellite ground station antennas employing phased arrays is demonstrated. This linear scan has the potential of reducing the complexity of a narrow-beam planar array to that of a linear array. Calculations for such antennas placed at cities throughout the U.S. show that the peak beam pointing error in covering the 70 deg W to 130 deg W geosynchronous equatorial arc (GEA) is under 5/1000th of a degree. Communication at a 300 MBd rate in the 12/14 GHz band can be made feasible, for a grating lobe-free scan and 0.5 deg beamwidth antenna, by using a relatively simple time equalization.

  3. Multi-frequency WLAN/WiMax CPW Microstrip Antenna Based on Composite Radiator%基于复合辐射器的WLAN/WiMax多频CPW微带天线

    Institute of Scientific and Technical Information of China (English)

    陆晓铮; 叶明

    2011-01-01

    A new microstrip antenna with quite wide bandwidths and simple structure is proposed, which can operate in the both bands at 802.11 a/b/g of Wireless Local Area Network ( WI AN) and Worldwide Interoperability for Microwave Access (WiMax). The antenna consists of a triangle, a rectangle and a circle radiate units, and it is fed by coplanar wavegnide (CPW) and tuned by loading perturbation. It was measured that bandwidths are 34% in the band of 802. llb/g (2.4 ~ 2.4835GHz), and the band covered from 2.03 GHz to 2.87GHz. In the band of Wi Max, the measure result showed that that bandwidths, which covered 3.4 ~ 3.7GHz, are 37%. The bandwidth, whose return loss is lower than -10dB, covers from 4.91GHz to 6.83GHz in the band of 802. lla (5.15 ~5. 825GHz). The antenna size is 65mm ×50mm ×2mm,and it is easy to be integrated in microwave system. In the paper, the structure of the antenna, the simulation and measured results were presented, analyzed and discussed in detail.%提出了一种图形结构简单,可同时工作于WLAN和WiMax频段,且具有甚好的带宽性能的新型结构微带天线.该天线辐射器由三角形、矩形和圆形辐射单元组合而成,采用共面波导(CPW)进行馈电,并利用微扰量加载调谐天线的工作频率.由此设计制作的天线实测结果表明:在802.11b/g(2.4~2.4835GHz)频段,相对阻抗带宽为34%,回波损耗优于-10dB的频段覆盖为2.03~2.87GHz;在WiMax(3.4~3.7GHz)频段,相对阻抗带宽为37%,回波损耗优于-10dB的频段覆盖为3.17~4.37GHz;在802.11a(5.15~5.825GHz)频段回波损耗优于-10dB的频率范围覆盖为4.91~6.83GHz.该天线尺寸为65mm×50mm×2mm,可以集成应用于相关微波电路系统中.文中还给出了天线的设计尺寸,并对仿真和实测结果进行了对比与讨论.

  4. Compact and broadband circularly polarized ring antenna with wide beam-width for multiple global navigation satellite systems

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong-Lin; Hu Bin-Jie; Zhang Xiu-Yin

    2012-01-01

    A compact and broadband circularly polarized (CP) annular ring antenna with wide beam-width is proposed for multiple global navigation satellite systems (GNSS) in the L1 band.The annular ring is excited by two modified L-probes with quadrature phase difference.It has a 36.3% 10-dB return loss bandwidth and a 13% 3-dB axial ratio bandwidth,because of the orthogonal L-probes with 90° phase difference.The measured peak gain of the antenna is 3.9 dBic.It can detect the satellites at lower elevation as its half power beam-width (HPBW) is 113° in both the x-z and y-z planes,achieving a cross-polarization level of larger than 25 dB.Noticeably,the antenna achieves 89% size reduction compared with the conventional half wavelength patch antennas.It can be used in hand-held navigation devices of multiple GNSS such as COMPASS,Galileo,GPS and GLONASS.

  5. Small X-Band Oscillator Antennas

    Science.gov (United States)

    Lee, Richard Q.; Miranda, Felix A.; Clark, Eric B.; Wilt, David M.; Mueller, Carl H.; Kory, Carol L.; Lambert, Kevin M.

    2009-01-01

    A small, segmented microstrip patch antenna integrated with an X-band feedback oscillator on a high-permittivity substrate has been built and tested. This oscillator antenna is a prototype for demonstrating the feasibility of such devices as compact, low-power-consumption building blocks of advanced, lightweight, phased antenna arrays that would generate steerable beams for communication and remotesensing applications.

  6. Phase Residual Estimations for PCVs of Spaceborne GPS Receiver Antenna and Their Impacts on Precise Orbit Determination of GRACE Satellites

    Institute of Scientific and Technical Information of China (English)

    TU Jia; GU Defeng; WU Yi; YI Dongyun

    2012-01-01

    In-flight phase center systematic errors of global positioning system (GPS) receiver antenna are the main restriction for improving the precision of precise orbit determination using dual-frequency GPS.Residual approach is one of the valid methods for in-flight calibration of GPS receiver antenna phase center variations (PCVs) from ground calibration.In this paper,followed by the correction model of spaceborne GPS receiver antenna phase center,ionosphere-free PCVs can be directly estimated by ionosphere-free carrier phase post-fit residuals of reduced dynamic orbit determination.By the data processing of gravity recovery and climate experiment (GRACE) satellites,the following conclusions are drawn.Firstly,the distributions of ionosphere-free carrier phase post-fit residuals from different periods have the similar systematic characteristics.Secondly,simulations show that the influence of phase residual estimations for ionosphere-free PCVs on orbit determination can reach the centimeter level.Finally,it is shown by in-flight data processing that phase residual estimations of current period could not only be used for the calibration for GPS receiver antenna phase center of foretime and current period,but also be used for the forecast of ionosphere-free PCVs in future period,and the accuracy of orbit determination can be well improved.

  7. Geolocation of Source Interference from a Single Satellite with Multiple Antennas

    Science.gov (United States)

    2014-03-01

    Systems ............................................................................ 124 a. INMARSAT Global Xpress ...7 Figure 4. Ku Band Single Antenna Footprint (from [12]). ............................................. 8 Figure 5. INMARSAT Global Xpress ...this sort of antenna system. This image is from INMARSAT’s planned Global Xpress system. Shown is the expected coverage provided by three Global

  8. Performance Analysis of Anti-Interference Wireless Packet Networks for LEO Micro-Satellite with Adaptive Nulling Antenna Array

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-tao; HAN Fang-jing; WAN Jian-wei

    2006-01-01

    Information integrity is key to successful operations in intricacy environments in the future, especially when strong interferences exist. This paper presents the design of a novel wireless packet network receiver system for Low Earth Orbit (LEO) micro-satellites with adaptive nulling antenna arrays. It uses three types of interference suppression in cascade: namely spread spectrum, adaptive array nulling, and transform domain filtering. This paper proposes a pilot channel-aided method in order to make full advantage of this arrangement, and analyzes its throughput and delay performance using the Markov chain model. Our results show that this method can achieve excellent delay and throughput performance: When the number of array antenna is 8, its throughput increase relative to the standard Slot-ALOHA protocol is 125 %.

  9. 星载多波束天线设计%Design of Multi-beam Satellite Antennas

    Institute of Scientific and Technical Information of China (English)

    段玉虎

    2011-01-01

    给出了星栽多波束天线的设计方法、步骤和参数选择原则,给出了2个区域多点波束天线和赋形波束的设计实例,并用物理光学法计算了覆盖区域的天线方向图、覆盖区增益和频率复用时的同极化波束隔离.%The design method, procedure and principle of parameter choice for design of multi-beam satellite antennas are presented. Furthermore, the paper offers specific design examples of two-region multi-beam antennas and shaped beam. Finally, the radiation pattern and co-polarization isolation against gain and with frequency reuse of coverage area are calculated with physical-optics method.

  10. Reconfigurable Antennas for High Data Rate Multi-beam Communication Systems

    Science.gov (United States)

    Bernhard, Jennifer T.; Michielssen, Eric

    2005-01-01

    High-speed (2-100 Mb/sec) wireless data communication - whether land- or satellite-based - faces a major challenge: high error rates caused by interference and unpredictable environments. A planar antenna system that can be reconfigured to respond to changing conditions has the potential to dramatically improve data throughput and system reliability. Moreover, new planar antenna designs that reduce array size, weight, and cost can have a significant impact on terrestrial and satellite communication system performance. This research developed new individually-reconfigurable planar antenna array elements that can be adjusted to provide multiple beams while providing increased scan angles and higher aperture efficiency than traditional diffraction-limited arrays. These new elements are microstrip spiral antennas with specialized tuning mechanisms that provide adjustable radiation patterns. We anticipate that these new elements can be used in both large and small arrays for inter-satellite communication as well as tracking of multiple mobile surface-based units. Our work has developed both theoretical descriptions as well as experimental prototypes of the antennas in both single element and array embodiments. The technical summary of the results of this work is divided into six sections: A. Cavity model for analysis and design of pattern reconfigurable antennas; B. Performance of antenna in array configurations for broadside and endfire operation; C. Performance of antenna in array configurations for beam scanning operation; D. Simulation of antennas in infinite phased arrays; E. Demonstration of antenna with commercially-available RF MEMS switches; F. Design of antenna MEMS switch combinations for direct simultaneous fabrication.

  11. Nonlinear analysis and vibration suppression control for a rigid-flexible coupling satellite antenna system composed of laminated shell reflector

    Science.gov (United States)

    You, Bin Di; Wen, Jian Min; Zhao, Yang

    2014-03-01

    In this paper, a nonlinear dynamic modeling method for a rigid-flexible coupling satellite antenna system composed of laminated shell reflector is proposed undergoing a large overall motion. For the study of the characteristics of the reflector using laminated shell structure, the displacement field description of a point in a 3-noded shell element is acquired in conjunction with the length stretch, lateral bending and torsional deformation. Hence, a nonlinear dynamic model of the satellite antenna system is deduced based on Lagrange's equations. The complete expressions of nonlinear terms of elastic deformation and coupling terms between rigid motion and large deflection are considered in the dynamic equations, and the dynamic behavior of the rigid-flexible coupling system is analyzed using linear model and nonlinear model, respectively. In order to eliminate the system vibration, the PD with vibration force feedback control strategy is used to achieve its desired angles and velocity in a much shorter duration, and can further accomplish reduction of residual vibration. Then, the asymptotic stability of the system is proved based on the Lyapunov method. Through numerical computation, the results show that the linear model cannot capture the motion-induced coupling terms and geometric nonlinearity variations. However, the nonlinear model is suitable for dealing with large deformation rigid-flexible problem undergoing large overall motions. Hence, the satellite antenna pointing accuracy would be predicted based on the nonlinear model. Furthermore, the results also show that the proposed control strategy can suppress system vibration quickly. The above conclusions would have important academic significance and engineering value.

  12. Symbol-Level Precoding with Per-antenna Power Constraints for the Multi-beam Satellite Downlink

    OpenAIRE

    Spano, Danilo; Chatzinotas, Symeon; Krause, Jens; Ottersten, Björn

    2016-01-01

    This paper tackles the problem of multi-user interference in the forward downlink channel of a multi-beam satellite system. A symbol-level precoding scheme is considered, where the data information is used, along with the channel state information, in order to exploit the multi-user interference and transform it into useful power at the receiver side. In this framework, the max-min fair problem for constructive interference is formulated and solved, under per-antenna power constraints. The co...

  13. The microstrip proportional counter

    Science.gov (United States)

    Ramsey, B. D.

    1992-01-01

    Microstrip detectors in which the usual discrete anode and cathode wires are replaced by conducting strips on an insulating or partially insulating substrate are fabricated using integrated circuit-type photolithographic techniques and hence offer very high spatial accuracy and uniformity, together with the capability of producing extremely fine electrode structures. Microstrip proportional counters have now been variously reported having an energy resolution of better than 11 percent FWHM at 5.9 keV. They have been fabricated with anode bars down to 2 microns and on a variety of substrate materials including thin films which can be molded to different shapes. This review will examine the development of the microstrip detector with emphasis on the qualities which make this detector particularly interesting for use in astronomy.

  14. Design and development of conformal antenna composite structure

    Science.gov (United States)

    Xie, Zonghong; Zhao, Wei; Zhang, Peng; Li, Xiang

    2017-09-01

    In the manufacturing process of the common smart skin antenna, the adhesive covered on the radiating elements of the antenna led to severe deviation of the resonant frequency, which degraded the electromagnetic performance of the antenna. In this paper, a new component called package cover was adopted to prevent the adhesive from covering on the radiating elements of the microstrip antenna array. The package cover and the microstrip antenna array were bonded together as packaged antenna which was then embedded into the composite sandwich structure to develop a new structure called conformal antenna composite structure (CACS). The geometric parameters of the microstrip antenna array and the CACS were optimized by the commercial software CST microwave studio. According to the optimal results, the microstrip antenna array and the CACS were manufactured and tested. The experimental and numerical results of electromagnetic performance showed that the resonant frequency of the CACS was close to that of the microstrip antenna array (with error less than 1%) and the CACS had a higher gain (about 2 dB) than the microstrip antenna array. The package system would increase the electromagnetic radiating energy at the design frequency nearly 66%. The numerical model generated by CST microwave studio in this study could successfully predict the electromagnetic performance of the microstrip antenna array and the CACS with relatively good accuracy. The mechanical analysis results showed that the CACS had better flexural property than the composite sandwich structure without the embedment of packaged antenna. The comparison of the electromagnetic performance for the CACS and the MECSSA showed that the package system was useful and effective.

  15. The Hitachi and Takahagi 32 m radio telescopes: Upgrade of the antennas from satellite communication to radio astronomy

    Science.gov (United States)

    Yonekura, Yoshinori; Saito, Yu; Sugiyama, Koichiro; Soon, Kang Lou; Momose, Munetake; Yokosawa, Masayoshi; Ogawa, Hideo; Kimura, Kimihiro; Abe, Yasuhiro; Nishimura, Atsushi; Hasegawa, Yutaka; Fujisawa, Kenta; Ohyama, Tomoaki; Kono, Yusuke; Miyamoto, Yusuke; Sawada-Satoh, Satoko; Kobayashi, Hideyuki; Kawaguchi, Noriyuki; Honma, Mareki; Shibata, Katsunori M.; Sato, Katsuhisa; Ueno, Yuji; Jike, Takaaki; Tamura, Yoshiaki; Hirota, Tomoya; Miyazaki, Atsushi; Niinuma, Kotaro; Sorai, Kazuo; Takaba, Hiroshi; Hachisuka, Kazuya; Kondo, Tetsuro; Sekido, Mamoru; Murata, Yasuhiro; Nakai, Naomasa; Omodaka, Toshihiro

    2016-10-01

    The Hitachi and Takahagi 32 m radio telescopes (former satellite communication antennas) were so upgraded as to work at 6, 8, and 22 GHz. We developed the receiver systems, IF systems, back-end systems (including samplers and recorders), and reference systems. We measured the performance of the antennas. The system temperature including the atmosphere toward the zenith, T_sys^{ast }, is measured to be ˜30-40 K for 6 GHz and ˜25-35 K for 8 GHz. T_sys^{ast } for 22 GHz is measured to be ˜40-100 K in winter and ˜150-500 K in summer seasons, respectively. The aperture efficiency is 55%-75% for Hitachi at 6 GHz and 8 GHz, and 55%-65% for Takahagi at 8 GHz. The beam sizes at 6 GHz and 8 GHz are ˜4.6° and ˜3.8°, respectively. The side-lobe level is less than 3%-4% at 6 and 8 GHz. Pointing accuracy was measured to be better than ˜0.3° for Hitachi and ˜0.6° for Takahagi. We succeeded in VLBI observations in 2010 August, indicating good performance of the antenna. We started single-dish monitoring observations of 6.7 GHz methanol maser sources in 2012 December, and found several new sources showing short-term periodic variation of the flux density.

  16. Thin conformal antenna array for microwave power conversions

    Science.gov (United States)

    Dickinson, R. M. (Inventor)

    1978-01-01

    A structure of a circularly polarized, thin conformal, antenna array which may be mounted integrally with the skin of an aircraft employs microstrip elliptical elements and interconnecting feed lines spaced from a circuit ground plane by a thin dielectric layer. The feed lines are impedance matched to the elliptical antenna elements by selecting a proper feedpoint inside the periphery of the elliptical antenna elements. Diodes connected between the feed lines and the ground plane rectify the microwave power, and microstrip filters (low pass) connected in series with the feed lines provide dc current to a microstrip bus. Low impedance matching strips are included between the elliptical elements and the rectifying and filtering elements.

  17. Auxetic shape memory alloy cellular structures for deployable satellite antennas: design, manufacture and testing

    Directory of Open Access Journals (Sweden)

    Di Maio D.

    2010-06-01

    Full Text Available We describe the production development and experimental tests related to an hybrid honeycomb-truss made of shape memory alloy (Ni48Ti46Cu6, and used as a demonstrator for a deployable antenna in deep-space missions. Specific emphasis is placed on the modal analysis techniques used to test the lightweight SMA structure.

  18. A high gain patch fed horn antenna for millimeter wave imaging receiver

    Science.gov (United States)

    Shireen, Rownak; Hwang, Timothy; Shi, Shouyuan; Prather, D. W.

    2005-11-01

    In this paper, antennas that combine transitions from microstrip line / coplanar waveguide (CPW) to horn antenna in a single unit are presented. Conventional single layer microstrip patch antennas inherently suffer narrow operation bandwidth; to widen the frequency bandwidth, stacked patch antennas are used and high gain is achieved from the horn antenna. Here, microstrip line / CPW directly feeds the bottom patch while the top patch couples parasitically to the bottom patch. For -10 dB return loss, 25% bandwidth is achieved for both microstrip line to horn antenna (MSLTHA) at center frequency f0=17.5 GHz and for CPW to horn antenna (CPWTHA) at f0=97 GHz. The designs were optimized using 3D Finite Element Method (FEM) software HFSS by Ansoft Corporation. The optimal design of MSLTHA has been fabricated and characterized. The return loss and far field radiation pattern are measured and has been found in very good agreement with the simulation results.

  19. Directional Pattern Analysis of a Linear Phased Antenna

    Directory of Open Access Journals (Sweden)

    Jan Haring

    2008-01-01

    Full Text Available An antenna array is a system compound from simply radiators (dipoles, microstrip antennas, that together form desired radiation pattern. Phased array antennas consist of multiple stationary antenna elements, that are fed coherently and use variable phase or time-delay control at each element to scan a beam to given angles in space. Variable amplitude control is sometimes also provided for antenna pattern shaping.

  20. 基于Simulink仿真的用户星天线控制系统分析%Analysis of Simulink-based antenna control system on user satellite

    Institute of Scientific and Technical Information of China (English)

    龙甲禄; 闫剑虹

    2012-01-01

    To meet the need of the antenna pointing accuracy of data relay satellite system, the antenna pointing control concept is described, and the establishment process of the link between the user satellite and data relay satellite is analyzed. A scheme for satelite-borne autonomous control is designed, A mathematic simulation of the antenna pointing control system is conducted under the Simulink circumstance. The tracking performance of the antenna control system on the user satellite is verified by the analysis of the simulation results.%为满足中继卫星系统对天线指向精度的要求,首先描述了天线指向控制概念,对用户星与中继卫星星间链路的建立过程进行了分析,并且设计了星上自主控制方案,在Simulink环境下对所设计的天线指向控制系统进行了数学仿真,最后通过对仿真结果的分析验证了用户星天线控制系统的跟踪性能.

  1. A Minimized MIMO-UWB Antenna with High Isolation and Triple Band-Notched Functions

    Science.gov (United States)

    Kong, Yuanyuan; Li, Yingsong; Yu, Kai

    2016-11-01

    A compact high isolation MIMO-UWB antenna with triple frequency rejection bands is proposed for UWB communication applications. The proposed MIMO-UWB antenna consists of two identical UWB antennas and each antenna element has a semicircle ring shaped radiation patch fed by a bend microstrip feeding line for covering the UWB band, which operates from 2.85 GHz to 11.79 GHz with an impedance bandwidth of 122.1 %. By etching a L-shaped slot on the ground plane, and embedding an "anchor" shaped stub into the patch and integrating an open ring under the semicircle shaped radiation patch, three notch bands are realized to suppress WiMAX (3.3-3.6 GHz), WLAN(5.725-5.825 GHz) and uplink of X-band satellite (7.9-8.4 GHz) signals. The high isolation with S21<-20 dB in most UWB band is obtained by adding a protruded decoupling structure. The design procedure of the MIMO-UWB antenna is given in detail. The proposed MIMO-UWB antenna is simulated, fabricated and measured. Experimental results demonstrate that the proposed MIMO-UWB antenna has a stable gain, good impedance match, high isolation, low envelope correlation coefficient and good radiation pattern at the UWB operating band and it can provide three designated notch bands.

  2. 新型海事卫星通信微带贴片天线单元%A new microstrip antenna for maritime satellite communication

    Institute of Scientific and Technical Information of China (English)

    刘占友; 房少军; 张磊; 王均松

    2007-01-01

    结合经验公式和仿真软件,设计了一种双层贴片,两层介质的微带贴片天线单元.该单元天线采用单馈点正方形切角的方式实现圆极化,在频率为1520~1680 MHz、驻波比<1.5时,相对阻抗带宽达到10%,满足了第四代海事卫星通信中BGAN业务的需要.此外,该天线单元舍弃了传统的探针耦合馈电方式,采用特性阻抗为100Ω的微带线馈电,便于实现天线阵微带馈电网路的设计,从而达到改善其方向性及轴比带宽的目的.

  3. Scanning beam antenna conceptual design for 20/30 GHz satellite systems

    Science.gov (United States)

    Smetana, J.; Sorbello, R.; Crosswell, W. F.

    1983-01-01

    The configuration described is one of four antenna system configurations developed using a variety of monolithic microwave integrated circuit module arrangements and optical systems. A parametric analysis is expected to produce a data base for the selection of design points for a variety of applications. Soon to be accomplished is the design concept of the active (lens) array, which will take into consideration such factors as, coupling effects, the space-fed power divider network design, input bias and control layout, investigation of thermal distribution, and analysis of module failure (graceful degradation).

  4. Digital-beamforming array antenna technologies for future ocean-observing satellite missions

    DEFF Research Database (Denmark)

    Iupikov, Oleg A.; Ivashina, Marianna V.; Cappellin, Cecilia

    2016-01-01

    Existing passive microwave radiometers that are used for ocean observations are limited in spatial resolution and geographic coverage, due to the limitations of traditional antenna technologies using mechanically-scanning reflectors and horn-type feeds. Future ocean observation missions call...... for new solutions, such as digitally-beamforming array feeds (DBAFs) as well as stationary and more complex reflectors. Our studies demonstrate that DBAFs can overcome the physically fundamental limitations of traditional horn feeds, and are capable of meeting all the challenging requirements for the next...

  5. Beampattern for Multiple Antennas in Hybrid Terrestrial Satellite Communications System (HTSCS

    Directory of Open Access Journals (Sweden)

    Farman Ullah

    2013-10-01

    Full Text Available The hybrid architecture of Terrestrial and Satellite networks discussed in this paper utilizes frequency reuse. However, at the same time the frequency reuse results in Co-Channel Interference (CCI. The CCI is caused by the mobile users to the satellite end because of the strong receiver on the satellite end. Mainly, this paper will focus on to tone down the CCI and would also show that how the OFDM based adaptive beamforming can be employed to mitigate this interference. The technique which is being used to mitigate this interference is Pre-FFT adaptive beamforming also called as time domain beamforming. In this paper, main task is to mitigate the CCI which is induced by the mobile users to the satellite end and will be considered that there are J users. Out of these J users there is one desired user and rest are interferers. When the interfered data is received at the satellite end, the Pre-FFT adaptive beamforming extracts the desired user data from the interferers by applying the complex weights to the received symbol. The weight for the next symbol is then updated by Least Mean Square (LMS algorithm and then is applied to it. This process is carried out till all the desired user data is extracted from the interference signal.

  6. Quasi-optical slot antenna SIS mixers

    OpenAIRE

    Zmuidzinas, Jonas; LeDuc, H. G.

    1992-01-01

    A quasi-optical SIS mixer designed for efficient radiation coupling is described. The mixer uses a twin-slot antenna which has the advantages of a good beam pattern and a low impedance. The radiation and impedance characteristics of the antenna were obtained from a moment-matched calculation. Tapered superconducting microstrip transmission lines are used to carry the radiation from the slot antennas to the tunnel junction. The effective impedance seen by the tunnel junction is quite low, abou...

  7. RF MEMS reconfigurable triangular patch antenna.

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Christos George (The University of New Mexico, Albuquerque, NM); Nordquist, Christopher Daniel; Feldner, Lucas Matthew

    2005-07-01

    A Ka-band RF MEMS enabled frequency reconfigurable triangular microstrip patch antenna has been designed for monolithic integration with RF MEMS phase shifters to demonstrate a low-cost monolithic passive electronically scanned array (PESA). This paper introduces our first prototype reconfigurable triangular patch antenna currently in fabrication. The aperture coupled patch antenna is fabricated on a dual-layer quartz/alumina substrate using surface micromachining techniques.

  8. RF MEMS reconfigurable triangular patch antenna.

    Energy Technology Data Exchange (ETDEWEB)

    Nordquist, Christopher Daniel; Christodoulou, Christos George (University of New Mexico, Albuquerque, NM); Feldner, Lucas Matthew

    2005-01-01

    A Ka-band RF MEMS enabled frequency reconfigurable triangular microstrip patch antenna has been designed for monolithic integration with RF MEMS phase shifters to demonstrate a low-cost monolithic passive electronically scanned array (PESA). This paper introduces our first prototype reconfigurable triangular patch antenna currently in fabrication. The aperture coupled patch antenna is fabricated on a dual-layer quartz/alumina substrate using surface micromachining techniques.

  9. Complementary electric-LC resonator antenna for WLAN applications

    Science.gov (United States)

    Bala, Bashir D.; Rahim, Mohamad Kamal A.; Murad, Noor Asniza

    2014-08-01

    In this paper, a metamaterial antenna based on complementary electric-LC (CELC) resonator is proposed. The antenna consists of slot-loaded ELC on the ground plane as the main antennas radiating element and excited by a microstrip line. The CELC resonator is characterized by single-negative magnetic moment excited by coupling between the microstrip transmission line and slot-loaded CELC. The peak realized gain and efficiency of 2.63 dB and 86 % are obtained, respectively, at resonance frequency. Simulation and measurement results are presented to validate the design. The antenna is suitable for WLAN applications (2.39-2.48 GHz).

  10. gLISA: geosynchronous Laser Interferometer Space Antenna concepts with off-the-shelf satellites

    CERN Document Server

    Tinto, Massimo; Buchman, Sasha; Tilley, Scott

    2014-01-01

    We discuss two geosynchronous gravitational wave mission concepts, which we generically name gLISA. One relies on the science instrument hosting program onboard geostationary commercial satellites, while the other takes advantage of recent developments in the aerospace industry that result in dramatic satellite and launching vehicle cost reductions for a dedicated geosynchronous mission. To achieve the required level of disturbance free-fall onboard these large and heavy platforms we propose a "two-stage" drag-free system, which incorporates the Modular Gravitational Reference Sensor (MGRS) (developed at Stanford University) and does not rely on the use of micro-Newton thrusters. Although both mission concepts are characterized by different technical and programmatic challenges, individually they could be flown and operated at a cost significantly lower than those of previously envisioned gravitational wave missions. We estimate both mission concepts to cost less than 500M US$ each, and in the year 2015 we wi...

  11. Design and optimization of LTE 1800 MIMO antenna.

    Science.gov (United States)

    Wong, Huey Shin; Islam, Mohammad Tariqul; Kibria, Salehin

    2014-01-01

    A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than -15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz-1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi.

  12. 低轮廓动中通天线研究现状%Research Status of Low Profile Antennas in Satellite Communication on-the-move

    Institute of Scientific and Technical Information of China (English)

    李琳; 万继响

    2015-01-01

    针对目前卫星通信系统对天线性能、形式的需求,回顾了卫星移动通信中天线的应用背景和发展历程,对国内外低剖面动中通天线的类型进行了综述;详细介绍了平板阵列、一维和二维有源相控阵天线的工作原理和代表产品,分析了各自产品在具体使用环境中的技术指标及优缺点;进一步研究了低轮廓动中通天线的关键技术;最后对卫星移动通信天线的发展趋势进行了展望。%According to the requirements of antenna performance and profile in satellite communication, the background and development of antenna for satellite communications on-the-move is firstly reviewed and the type of the low profile anten-na for SOTM abroad is then described. Moreover, the plate antenna and the 1-D and 2-D electronic scanned active phased arrays are introduced in detail. The advantages as well as the shortcomings and the characteristics of these products under practical condition are analyzed. Furthermore, other key technologies about low profile antenna are presented. Finally, the development trend of the low profile antenna of SOTM is predicted.

  13. A Compact UWB Diversity Antenna

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2014-01-01

    Full Text Available A compact printed ultrawideband (UWB diversity antenna with a size of 30 mm × 36 mm operating at a frequency range of 3.1–10.6 GHz is proposed. The antenna is composed of two semielliptical monopoles fed by two microstrip lines. Two semicircular slots, two rectangular slots, and one stub are introduced in the ground plane to adjust the impedance bandwidth of the antenna and improve the isolation between two feeding ports. The simulated and measured results show that impedance bandwidth of the proposed antenna can cover the whole UWB band with a good isolation of < −15 dB. The radiation patterns, peak antenna gain, and envelope correlation coefficient are also measured and discussed. The measured results show that the proposed antenna can be a good candidate for some portable MIMO/diversity UWB applications.

  14. Gain Enhancement and comparison of rectangular slot patch antenna circular slot patch antenna using dual FSS superstrate Layer

    Directory of Open Access Journals (Sweden)

    Preeti Chaudhary,

    2013-10-01

    Full Text Available In this paper, Circular Microstrip Patch Antenna and Rectangular Slot Patch Antenna comparison of present and an effort is made to optimize the gain to show better performance analysis on the basis of design and simulation results by implementing FSS structured superstrate layer at operating frequency of 5.8 GHz for ISM Band. The proposed design will be fed by coaxial probe feed, in order to get proper impedance matching. Design technique for enhancing Bandwidth that improves the performance of a conventional microstrip patch antenna is proposed. In order to show our results better, we have made a comparative analysis with conventional microstrip patch antenna, at the same frequency band to increase the gain, directivity and minimize the return loss of the desired antenna. This simulation results are carried out by using Ansoft based HFSS software.

  15. UHF Antenna Design for AFIT Random Noise Radar

    Science.gov (United States)

    2012-03-01

    printed circuit board antenna construction methods. The antipodal chopped Vivaldi dipole antenna, built with a milling machine, v achieved a wider... circuit board antenna (right) ............................................................. 2 Figure 2 – CST Simulated S11 parameter of the LPA...79 xii Figure 60 – Surface current (10.6 GHz) of antipodal CVD antenna from Yang et al [1] (4.5cm x 4.6cm, 50Ω microstrip feed

  16. Non-foster matching of an RFID antenna

    KAUST Repository

    Mohamed Hassan Salem, Nedime Pelin

    2011-07-01

    Novel designs of radio-frequency identification (RFID) tag antennas with better matching characteristics to achieve extended range for passive tags are investigated in ultra-high frequency (UHF) band. A microstrip dipole antenna with or without an integrated negative impedance converter designed to cancel out the antenna\\'s input capacitance at resonance frequency was designed, simulated, constructed and measured for implementation in RFID applications. © 2011 IEEE.

  17. 应用于 C波段的宽带圆极化微带天线设计%Design of a circularly polarized microstrip antenna used in the C-band broadband

    Institute of Scientific and Technical Information of China (English)

    胡文龙; 姜弢

    2014-01-01

    Circularly polarized antenna, which has advantages in receiving arbitrary polarization electromagnetic wave, is used widely.And the creation of broadband circularly polarized antenna meets the current communication demands.This paper introduces a novel broadband circularly polarized antenna by restructuring the rectangular patch antenna, and then applies CST, the electromagnetic simulation software, to do a full-wave and time-domain simulation analysis to this novel antenna.The simulation results show that the novel broadband circularly polarized antenna operates from 3.8 GHz to 8.1 GHz, and its band range within the passband axis ratio ( AR) parameter AR<3 is from 4 GHz to 8GHz.That is to say the band range is broaded effciently.%圆极化天线具有可接收任意极化电磁波的优点而被广泛使用,为满足通信需求,宽带圆极化天线应运而生。通过对矩形贴片天线进行结构调整得到一种新型宽带圆极化天线,使用电磁仿真软件CST对此天线进行全波时域仿真分析。仿真结果表明,该天线工作频段为3.8~8.1 GHz,在通带内轴比参数AR<3的带宽为4~8 GHz,有效地拓宽了带宽。

  18. High-T{sub c} superconducting rectangular microstrip patch covered with a dielectric layer

    Energy Technology Data Exchange (ETDEWEB)

    Bedra, Sami, E-mail: s_bedra@yahoo.fr [Department of Industrial Engineering, University of Khenchela, 40004 Khenchela (Algeria); Fortaki, Tarek [Electronics Department, University of Batna, 05000 Batna (Algeria)

    2016-05-15

    Highlights: • We model a microstrip antenna with a dielectric cover and superconductor patch. • The extended full-wave analysis is used to solve for the antenna characteristics • The accuracy of the method is checked by comparing our results with published data • The superconducting patch affects the resonant characteristics of the antenna • Patch on substrate–superstrate configuration is more advantageous than the one on single layer. - Abstract: This paper presents a full-wave method to calculate the resonant characteristics of rectangular microstrip antenna with and without dielectric cover, to explain the difference of performance with temperature between superconducting and normal conducting antenna. Especially the characteristics of high temperature superconducting (HTS) antenna were almost ideal around the critical temperature (T{sub c}). The dyadic Green's functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The computed results are found to be in good agreement with results obtained using other methods. Also, the effects of the superstrate on the resonant frequency and bandwidth of rectangular microstrip patch in a substrate–superstrate configuration are investigated. This type of configuration can be used for wider bandwidth by proper selection of superstrate thickness and its dielectric constants.

  19. Foundations for microstrip circuit design

    CERN Document Server

    Edwards, Terry

    2016-01-01

    Building on the success of the previous three editions, Foundations for Microstrip Circuit Design offers extensive new, updated and revised material based upon the latest research. Strongly design-oriented, this fourth edition provides the reader with a fundamental understanding of this fast expanding field making it a definitive source for professional engineers and researchers and an indispensable reference for senior students in electronic engineering. Topics new to this edition: microwave substrates, multilayer transmission line structures, modern EM tools and techniques, microstrip and planar transmision line design, transmission line theory, substrates for planar transmission lines, Vias, wirebonds, 3D integrated interposer structures, computer-aided design, microstrip and power-dependent effects, circuit models, microwave network analysis, microstrip passive elements, and slotline design fundamentals.

  20. Multiband Fractal Antenna : Application to Wi-Max

    Directory of Open Access Journals (Sweden)

    Miss. Awalekar Madhavi J.

    2016-01-01

    Full Text Available In this paper configuration of multiband fractal antenna for Wi-Max application is presented and analyzed. Three circle triangle iterations are configured and observed. The feeding method used for antenna is CPW (co-planar waveguidefeed. To provide the Wireless technologies like Wi-MAX and other advanced applications through the antennas by using Fractal technology to the microstrip antennas. By using the fractal technology on the microstrip antennas we can get several advantages like wide band operation, less power consumption, less return loss and many more. The antenna characteristics were simulated using full-wave electromagnetic simulator (IE3D. According to simulations, the proposed antenna can provide proper response at 2.4 GHz for third iteration. Return loss values according to simulated results obtained at 2.4GHz Simulated and practically are -15.8db,-11.5db respectively and VSWR values are practical 1.5 and 1.95 respectively.

  1. High-temperature superconductor antenna investigations

    Science.gov (United States)

    Karasack, Vincent G.

    1990-10-01

    The use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas.

  2. 35 GHz integrated circuit rectifying antenna with 33 percent efficiency

    Science.gov (United States)

    Yoo, T.-W.; Chang, K.

    1991-01-01

    A 35 GHz integrated circuit rectifying antenna (rectenna) has been developed using a microstrip dipole antenna and beam-lead mixer diode. Greater than 33 percent conversion efficiency has been achieved. The circuit should have applications in microwave/millimeter-wave power transmission and detection.

  3. The Miniaturized Microstrip Reconfigurable Antenna for Wireless Communication%应用于无线通信的小型化微带缝隙可重构天线

    Institute of Scientific and Technical Information of China (English)

    温玉娟; 张文梅

    2011-01-01

    提出了一种新型的小型化频率可重构天线,通过两个开关二极管控制天线的频率,实现频率的重构.天线结构新颖简单,采用宽缝隙天线上加载开关,且开关易于操作控制.当开关闭合时,天线的实测结果谐振频率在5.34 GHz,反射系数为-23.4 dB,相对带宽为70%,实现了超宽带.当开关断开时,天线的实测结果谐振频率为2.4 GHz,反射系数为-12 dB,相对带宽为2.01%.该天线保持了大缝隙天线能够实现宽频带的优势,并且天线的尺寸2.4 GHz能够缩小至50%,实现了小型化.%This paper presents a frequency-reconfigurable antenna which is controlled by two PIN diode switches. The structure of antenna is simple and compact. A wide slot antenna is loaded with switches, and the switches are easy to be controlled. When the switches turn on, the measured center frequency is 5.34 GHz, the antenna has a relative bandwidth of over 70 % and the reflection is less than - 20 dB. When the switches turn off, the measured center frequency is 2.4 GHz, it has a relative bandwidth of 2.01% and the reflection is less than - 12 dB. The antenna maintains the advantages of a large slot antenna achieving broadband performance, reduces the dimension by 50% and realizes miniaturization.

  4. Design on configurations of multi-beam antenna of LEO communication satellite%LEO通信卫星多波束天线构型方案设计

    Institute of Scientific and Technical Information of China (English)

    赵星惟; 吕源; 刘会杰; 梁旭文

    2011-01-01

    We present systematic analysis and planning of multi-beam antenna based on the features of LEO communication satellite. First, the reasons for adopting multi-beam antenna system are analyzed. Calculations of system parameters within the satellite coverage range are performed based on 7-beam equal-coverage-area scheme. System parameters, like beam width and beam angle, are given. Then, the scheme of array antenna is elaborated and analyzed. Some beamforming and multiplexing schemes are designed and analyzed.%针对低轨道(LEO)通信卫星的特点,进行星载多波束天线的系统级分析和规划.首先,对天线体制选择多波束天线的原因进行了论述.基于卫星覆盖范围的指标,进行了7波束等覆盖面积方案下波束指标的计算,给出了波束宽度、夹角等系统指标.然后对阵列天线方案进行了详细论述.最后对波束形成方案以及复用方案进行了设计和分析.

  5. Considerations for millimeter wave printed antennas

    Science.gov (United States)

    Pozar, D. M.

    1983-01-01

    Calculated data are presented on the performance of printed antenna elements on substrates which may be electrically thick, as would be the case for printed antennas at millimeter wave frequencies. Printed dipoles and microstrip patch antennas on polytetrafluoroethylene (PTFE), quartz, and gallium arsenide substrates are considered. Data are given for resonant length, resonant resistance, bandwidth, loss due to surface waves, loss due to dielectric heating, and mutual coupling. Also presented is an optimization procedure for maximizing or minimizing power launched into surface waves from a multielement printed antenna array. The data are calculated by a moment method solution.

  6. MMIC antenna technology development in the 30/20 gigahertz band

    Science.gov (United States)

    Smetana, J.; Kascak, T. J.; Alexovich, R. E.

    1986-01-01

    This paper presents a progress summary of NASA's efforts in developing 20 and 30 GHz GaAs MMIC devices and an advanced satellite communications antenna system using these devices. In the interest of preserving resources such as frequency spectrum and orbital space the antenna system is being developed with multiple fixed spot beams and multiple scanning spot beams. NASA set high goals for the MMIC development to pushc GaAs technology. These goals and the main features of the MMIC devices are discussed. Some packaging and characterization considerations are also discussed. The 20 GHz transmit antenna and 30 GHz receive antenna are being developed separately. The approach selected is to perform contractual configuration studies, purchase a 20-GHz experimental antenna system (EAS) and perform in-house evaluation. The features and key specifications of the EAS are discussed. Additional supporting technologies such as effects of coupling on modest sized arrays, MMIC matching techniques, in-house analytical capability, wideband and dual frequency microstrip patch array development, and MMIC packaging techniques are described. Some plans for future are also discussed.

  7. A new double L-shaped multiband patch antenna on a polymer resin material substrate

    Science.gov (United States)

    Ullah, M. Habib; Islam, M. T.; Mandeep, J. S.; Misran, N.

    2013-01-01

    The design and prototyping of a new double L-shaped patch antenna on substrate of available low cost polymer resin composite material is presented. The designed microstrip line fed compact antenna consists of a planar double L-shaped slotted radiating patch, 1.6 mm thick substrate and ground plane. The proposed small antenna was designed and analyzed using a finite-element method-based, commercially available, high frequency structure simulator, and fabricated on a printed circuit board. The measured -10 dB return loss bandwidths were 220 MHz and 650 MHz at 4.85 GHz and 8.10 GHz center frequencies. The corresponding symmetric and almost steady radiation patterns have peak gains of 7.6 dBi and 4.1 dBi, making the proposed antenna suitable for C and × band wireless applications, especially for WLANs, mobiles and satellites. The radiation efficiency, input impedance and current distribution of the proposed antenna were also analyzed.

  8. A phased array antenna with a broadly steerable beam based on a low-loss metasurface lens

    Science.gov (United States)

    Liu, Yahong; Jin, Xueyu; Zhou, Xin; Luo, Yang; Song, Kun; Huang, Lvhongzi; Zhao, Xiaopeng

    2016-10-01

    A new concept for a gradient phase discontinuity metasurface lens integrated with a phased array antenna possessing a broadly steerable beam is presented in this paper. The metasurface lens is composed of a metallic H-shaped pattern and the metallic square split ring can achieve complete 360° transmission phase coverage at 30° phase intervals. The metasurface can refract an incident plane wave to an angle at will by varying the lattice constant. We demonstrate that the beam steering range of the phased array antenna is between 12° and 85° when the metasurface lens with a refracting electromagnetic wave is employed at 45°. Interestingly, the proposed array antenna has a much higher gain than a conventional phased array antenna at low elevation angles. It is expected that the proposed array antenna will have potential applications in wireless and satellite communications. Furthermore, the proposed array antenna is fabricated easily and is also low in cost due to its microstrip technology.

  9. Tunable Patch Antennas Using Microelectromechanical Systems

    Science.gov (United States)

    2011-05-11

    wavelength of the desired resonant frequency [1]. (25) To aid in the design process a MATLAB script was written to solve for patch antenna...10–12, the widths of 50 Ω and 112 Ω microstrip lines were calculated using a MATLAB script included as an appendix to this report. The calculated...2009, pp. 50–55. [11] W.L. Stutzman, G.A. Thiele , Antenna Theory and Design, Second Edition, John Wiley & Sons, Inc. (Hoboken, New Jersey), 1998, pp

  10. Snaps to Connect Coaxial and Microstrip Lines in Wearable Systems

    Directory of Open Access Journals (Sweden)

    Tiiti Kellomäki

    2012-01-01

    Full Text Available Commercial snaps (clothing fasteners can be used to connect a coaxial cable to a microstrip line. This is useful in the context of wearable antennas, especially in consumer applications and disposable connections. The measured S-parameters of the transition are presented, and an equivalent circuit and approximate equations are derived for system design purposes. The proposed connection is usable up to 1.5 GHz (10 dB return loss condition, and the frequency range can be extended to 2 GHz if a thinner, more flexible coaxial cable is used.

  11. Control system of satellite TV antenna of strapdown shipborne%捷联式船载卫星电视天线控制系统

    Institute of Scientific and Technical Information of China (English)

    秦爱民; 闫英敏; 闫建生; 靳英卫

    2011-01-01

    With the progress of the society and the improvements of information technology, people need more TV programmes through satellite networks while moving. A strapdown shipborne satellite TV antenna control system based on DSP is introduced. The architectures of the software and hardware of the control system are given, and the functions of different components are described in detail. The stabilization and the automatic tracking are realized in this antenna control system for satellite television.%随着社会的进步和信息化技术的提高,人们对移动中通过卫星网路接收卫星电视节目的需求越来越大.介绍了基于DSP的捷联式船载卫星电视天线控制系统,阐述了系统软硬件的结构及各部分的功能,实现了船载卫星电视天线的稳定与自动跟踪卫星.

  12. Analysis of microstrip dipoles and slots transversely coupled to a microstrip line using the FDTD method

    Science.gov (United States)

    Tulintseff, A. N.

    1993-01-01

    Printed dipole elements and their complement, linear slots, are elementary radiators that have found use in low-profile antenna arrays. Low-profile antenna arrays, in addition to their small size and low weight characteristics, offer the potential advantage of low-cost, high-volume production with easy integration with active integrated circuit components. The design of such arrays requires that the radiation and impedance characteristics of the radiating elements be known. The FDTD (Finite-Difference Time-Domain) method is a general, straight-forward implementation of Maxwell's equations and offers a relatively simple way of analyzing both printed dipole and slot elements. Investigated in this work is the application of the FDTD method to the analysis of printed dipole and slot elements transversely coupled to an infinite transmission line in a multilayered configuration. Such dipole and slot elements may be used in dipole and slot series-fed-type linear arrays, where element offsets and interelement line lengths are used to obtain the desired amplitude distribution and beam direction, respectively. The design of such arrays is achieved using transmission line theory with equivalent circuit models for the radiating elements. In an equivalent circuit model, the dipole represents a shunt impedance to the transmission line, where the impedance is a function of dipole offset, length, and width. Similarly, the slot represents a series impedance to the transmission line. The FDTD method is applied to single dipole and slot elements transversely coupled to an infinite microstrip line using a fixed rectangular grid with Mur's second order absorbing boundary conditions. Frequency-dependent circuit and scattering parameters are obtained by saving desired time-domain quantities and using the Fourier transform. A Gaussian pulse excitation is applied to the microstrip transmission line, where the resulting reflected signal due to the presence of the radiating element is used

  13. 一种基于分形结构的树生长微带天线设计%Design of a tree-growth microstrip antenna based on fractal structure

    Institute of Scientific and Technical Information of China (English)

    樊磊; 骆延; 黄卡玛; 杨阳

    2014-01-01

    基于分形理论和自然树竞争(TGCA)思想,提出了采用树枝结构在不同生长因子下进行迭代生长的方法,对分形天线多谐振频率点进行优化控制,克服常见分形天线难于调整多个谐振频率点位置关系的缺点。树生长分形天线通过生长因子和天线尺寸的线性调整,可以方便地实现高低谐振频率的优化设计,方法简单易行。基于该方法,采用时域有限差分(FDTD)算法优化设计了一种具有 GSM900/DCS1800双频谐振点的树生长微带分形天线。从实验和仿真结果可以看出,该微带分形天线在0.91 GHz,1.81 GHz谐振频率处带宽均大于100 MHz,水平方向为全向辐射,测量所得结果和仿真数据吻合较好,验证了采用生长因子调整分形天线谐振频率的方法。%Based on the fractal theory and the idea of the Tree Growth Competition Algorithm(TGCA), a method of optimizing the resonant frequencies by iterating the branch structure at different growth factors is proposed, which overcomes the inconvenience in adjusting the position relationships of multi-band frequencies for common fractal antennas. The lower and upper resonant frequencies of the tree-growth fractal antenna can be optimized conveniently by linearly changing its size and growth factors. Based on this method, a tree-growth fractal antenna is optimized in the GSM900/DCS1800 frequency band by using Finite-Difference Time-Domain(FDTD) algorithm. The measured and simulated results indicate that the bandwidths of microwave fractal antenna are both above 100 MHz at the resonant frequencies of 0.91 GHz and 1.81 GHz with good omni-directional radiation patterns in the horizontal direction. These good agreements of the measured and simulated results validate the feasibility of the proposed method.

  14. X波段微带余割平方扩展波束天线阵赋形优化遗传算法研究∗%Research on X band extended cosecant squared b eam synthesis of micro-strip antenna arrays using genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    张金玲; 万文钢; 郑占奇; 甘曦; 朱兴宇

    2015-01-01

    micro-strip antenna arrays based on the improved AGA. Specifications of the antenna are as follows: a−3 dB beam width in height is from 0◦ to 12◦, a−10 dB beam width in height is from 12◦to 65◦, and a total height coverage is 65◦;a frequency band ranges from 8.5 to 9.8 GHz and its center frequency is 9.05 GHz. Simulation results show that the fitness increases from 0.07 to 0.09, and the quality of the synthesized radiation pattern has a great improvement, which verifies the superiority of the improved AGA proposed in this paper. In addition, the prospect of the designed antenna which has an extended cosecant squared beam is promising in air-surveillance radar systems, where the radiation pattern of the antenna will compensate for the free-space loss.

  15. Lightweight, Durable Army Antennas Using Carbon Nanotube Technology

    Science.gov (United States)

    2013-01-01

    shown in figure 17, was selected due to its indirect feeding mechanism by which a microstrip feedline on the bottom surface of a lower substrate...the design), as shown in figure 18, and cut to the precise patch antenna dimensions using an in-house circuit board router at ARL. A version of this...Duroid 5870 substrate. The microstrip feedline and ground plane layers were fabricated from standard copper for all prototypes. By keeping all

  16. High performance millimeter-wave microstrip circulators and isolators

    Science.gov (United States)

    Shih, Ming; Pan, J. J.

    1990-01-01

    Millimeter wave systems, phased array antennas, and high performance components all require wideband circulators (and isolators) to perform diplexing and switching, to improve isolation and Voltage Standing Wave Ratio (VSWR), and to construct IMPATT diode reflection amplifiers. Presently, most of the millimeter-wave circulators and isolators are available in the configurations of waveguide or stripline, both of which suffer from the shortcomings of bulky size/weight, narrow bandwidth, and poor compatibility with monolithic millimeter-wave integrated circuits (MMIC). MMW microstrip circulators/isolators can eliminate or improve these shortcomings. Stub-tuned microstrip circulator configuration were developed utilizing the electromagnetic fields perturbation technique, the adhesion problems of microstrip metallization on new ferrite substrate were overcome, the fabrication, assembly, packaging techniques were improved, and then successfully designed, fabricated a Ka band circulator which has isolation and return loss of greater than 16dB, insertion loss less than 0.7dB. To assess the steady and reliable performance of the circulator, a temperature cycling test was done over the range of -20 to +50 C for 3 continuous cycles and found no significant impact or variation of circulator performance.

  17. Aperture coupled stacked patch antenna for dual band

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar Vishwakarma

    2012-06-01

    Full Text Available -Microstrip antennas (MAS are very useful antenna where low profile antennas are required. They are most popular due to their small size, low cost, light weight. The first aperture coupled microstrip antenna was introduced in 1985 by D M Pozar. Aperture coupled antenna is a particular antenna with high gain and wide bandwidth. This paper presents aperture coupled stacked patch antenna using air gap variation. The variation of air gap [2mm to 6mm] has been done between single patch antenna and an aperture coupled antenna. The main advantage of this antenna to increase the band width of the antenna as compared with single layered patch antenna. The resonant frequencies changes with air gap variations. The feed can be done either a conventional coaxial probe or through a coupling aperture in the ground plane as we done. This antenna works well in the frequency range (2.9 GHz to 6.0 GHz. The measured return loss exhibit an impedance bandwidth of 35%.The input impedance and VSWR return loss have been measured with the help of Network analyzer. [Agilent E8363B A.04.06] From the measured result it is found that the value of VSWR corresponding lower resonance frequencies increases from 14 to 2.2 with increasing air gap variation where as at the upper resonance frequencies is also increased from 1.8 to 2.3.

  18. 卫星便携站天线自动对星系统的设计与实现%Design and implement of satellite auto-aiming system on antenna of satellite portable station

    Institute of Scientific and Technical Information of China (English)

    胡明; 王星全; 郑振华; 杨华

    2012-01-01

    In the porcess of narrow-beam portable station antenna aiming the satellite, there are three problems: finding the satellite difficulty, aiming the satellite long-time and low-precision. In this article, an auto-aim instrument on equipment is designed and implemented. This instrument based on PIC singlechip can implement rapid, automatic and precise aiming the satellite by collecting and porcessing the data from GPS and sensors and signal strength module, controling stepping motors to adjust the azimuth and elevation of portable station antenna. Using this system, we can reduce the time, improve the precision in aiming the satellite and prove the efficiency of communication markedly.%针对卫星便携站窄波束天线找星难度大、对星耗时多、对星精度差的问题,设计并实现了一个附加在实装设备上的自动对星工具,以PIC单片机为核心,通过采集和处理GPS数据、方位俯仰传感器数据和卫星信号强度数据,控制高精度步进电机自动调整便携站天线方位角和俯仰角,从而实现快速、自动、精确对星.通过使用高精度步进电机代替传统手工操作,能够明显缩短对星时间、提高对星精度,且体积较小、安装拆卸容易、携带方便,显著提高了通信效能.

  19. A Novel Ancient Coin-Like Fractal Multiband Antenna for Wireless Applications

    Directory of Open Access Journals (Sweden)

    Zhen Yu

    2017-01-01

    Full Text Available This study proposes a novel square-circle structure fractal multibroadband planar antenna, similar to an ancient Chinese coin-like structure, for second generation (2G, third generation (3G, fourth generation (4G, WLAN, and navigation wireless applications. The device is based on the principles and structural features of conventional monopole antenna elements, combined with the advantages of microstrip antennas and fractal geometry. A fractal method was presented for circular nested square slotted structures, similar to an ancient Chinese copper coin. The proposed antenna adapted five iterations on a fractal structure radiator, which covers more than ten mobile applications in three broad frequency bands with a bandwidth of 70% (1.43–2.97 GHz for DCS1800, TD-SCDMA, WCDMA, CDMA2000, LTE33-41, Bluetooth, GPS (Global Positioning System, BDS (BeiDou Navigation Satellite System, GLONSS (Global Navigation Satellite System, GALILEO (Galileo Satellite Navigation System, and WLAN frequency bands, 16.32% (3.32–3.91 GHz for LTE42, LTE43, and WiMAX frequency bands, and 10.92% (4.85–5.41 GHz for WLAN frequency band. The proposed antenna was fabricated on a 1.6 mm thick G10/FR4 substrate with a dielectric constant of 4.4 and a size of 88.5 × 60 mm2. The measurement results reveal that the omnidirectional radiation patterns achieve a gain of 1.16–3.75 dBi and an efficiency of 40–72%. The good agreement between the measurement results and simulation validates the proposed design approach and satisfies the requirements for various wireless applications.

  20. Genetic Algorithm Optimization and Performance Comparative Analysis of Rectangular, Triangular and Circular Patch Antennas for X Band Applications

    OpenAIRE

    Hayat Errifi; Abdennaceur Baghdad; Abdelmajid Badri; Aicha Sahel

    2015-01-01

    The growth of portable wireless communication devices has pushed designers to design miniature size antennas. The most prized among miniature antenna choices is the micro-strip patch antenna. These antennas have significant advantages such as low profile, light weight, relatively low manufacturing cost, and polarization diversity. In this paper Genetic Algorithm optimization technique has been utilized for dimensions optimization of three types of patch antennas in addition to the comparat...

  1. 置信区间渐进空间映射算法优化设计共形微带天线%Design and optimization of conformal microstrip antenna with trust region aggressive space mapping

    Institute of Scientific and Technical Information of China (English)

    朱永忠; 岳亮

    2011-01-01

    介绍了一种快速收敛的置信区间渐进空间映射算法.将置信区间的概念和渐进空间映射算法结合在一起,进一步加快精细模型与设计目标的逼近速度,提高了优化效率,通过此算法设计了一个谐振频率在2.5GHz的柱面共形微带天线.与先前的渐进空间映射算法相比,该方法进一步减少了计算时间,提高了设计效率.%A trust region aggressive space mapping algorithm is presented, the algorithm (TRASM) integrates a trust region methodology with the aggressive space mapping (ASM), it avoids false con-vergence in the optimization of surrogate model and speeds up the approximation between fine model and design object. And then the algorithm (TRASM) is used in the optimized conformal antenna with resonant frequency 2.5 GHz is designed. The results are better than the design specifications. The new algorithm is verified faster and more efficient.

  2. Analysis of equivalent antenna based on FDTD method

    Institute of Scientific and Technical Information of China (English)

    Yun-xing YANG; Hui-chang ZHAO; Cui DI

    2014-01-01

    An equivalent microstrip antenna used in radio proximity fuse is presented. The design of this antenna is based on multilayer multi-permittivity dielectric substrate which is analyzed by finite difference time domain (FDTD) method. Equivalent iterative formula is modified in the condition of cylindrical coordinate system. The mixed substrate which contains two kinds of media (one of them is air)takes the place of original single substrate. The results of equivalent antenna simulation show that the resonant frequency of equivalent antenna is similar to that of the original antenna. The validity of analysis can be validated by means of antenna resonant frequency formula. Two antennas have same radiation pattern and similar gain. This method can be used to reduce the weight of antenna, which is significant to the design of missile-borne antenna.

  3. Innovation in wearable and flexible antennas

    CERN Document Server

    Khaleel, Haider

    2014-01-01

    This book deals with the design, numerical simulation, state of the art fabrication processes and methods, qualitative and quantitative tests, and measurement techniques of wearable and flexible antennas of different topologies, such as: Planar Inverted F, Printed Monopoles, Micropoles and Microstrips. Novel trends, materials, and fabrication and measurement techniques used in this vital field of antenna systems are also discussed.To the best of the editor's knowledge, at the time of publication, there are no published books targeting the vital topic of flexible antennas specifically and/or se

  4. YAGI UDA SHAPED DUAL RECONFIGURABLE ANTENNA

    Directory of Open Access Journals (Sweden)

    Y Srinivas

    2016-06-01

    Full Text Available In this paper, YagiUda shaped rectangular microstrip patch antenna fed by inset feed is designed to operate for frequency and polarization reconfigurability is presented. It consists of a square patch with four corners truncated and three parasitic patches placed on top. It operates as a frequency and polarization, reconfigurable antenna. Switches are placed in the gaps of truncated corners to obtain switching between Linear, Circular polarizations. The proposed antenna also switches between two frequencies by controlling current path between main and parasitic patches through switches. Its performance evaluation is carried out with the help of simulation and physical verification and the results are presented.

  5. Transparent graphene microstrip filters for wireless communications

    Science.gov (United States)

    Wang, Jinchen; Guan, Yifei; Yu, Hua; Li, Na; Wang, Shuopei; Shen, Cheng; Dai, Zhijiang; Gan, Decheng; Yang, Rong; He, Songbai; Zhang, Guangyu

    2017-08-01

    A microstrip is an indispensable component for wireless communication circuits. With the development of 5G technology, optically transparent microstrip filters urgently need to be developed. In this work, we have theoretically and experimentally demonstrated the immense potential of graphene microstrips for transparent wireless communication circuits in the 5G era. Both wideband and dual-band transparent graphene microstrip filters have shown more than 80% optical transmissivity in the region from 250 nm to 2000 nm with good frequency responses. S and C band microwave signals can transmit along the graphene microstrip lines effectively while coupling excitations produce relatively large insertion losses. Our results show that transparent microstrips designed with high-quality graphene will largely scale down the size of the wireless devices and thus play an irreplaceable role in the 5G era.

  6. Gap Excitations and Series Loads in Microstrip Lines: Equivalent Network Characterization with Application to THz Circuits

    Science.gov (United States)

    Neto, Andrea; Siegel, Peter H.

    2001-01-01

    At submillimeter wavelengths typical gap discontinuities in microstrip, CPW lines or at antenna terminals, which might contain diodes or active elements, cannot be viewed as simple quasi statically evaluated lumped elements. Planar Schottky diodes at 2.5 THz, for example, have a footprint that is comparable to a wavelength. Thus, apart from modelling the diodes themselves, the connection with their exciting elements (antennas or microstrip) gives rise to parasitics. Full wave or strictly numeric approaches can be used to account for these parasitics but at the expense of generality of the solution and the CPU time of the calculation. In this paper an equivalent network is derived that accurately accounts for large gap discontinuities (with respect to a wavelength) without suffering from the limitations of available numeric techniques.

  7. Development of a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; Beeker, W.P.; Beeker, Willem; Noharet, Bertrand; Verpoorte, Jaco; Baggen, Rens

    Novel avionic communication systems are required for various purposes, for example to increase the flight safety and operational integrity as well as to enhance the quality of service to passengers on board. To serve these purposes, a key technology that is essential to be developed is an antenna

  8. Capture Scheme of the Antenna in Ka-band for Launch Vehicle Based on Tracking and Data Relay Satellite%运载火箭Ka频段天基测控的天线捕获方法

    Institute of Scientific and Technical Information of China (English)

    宫长辉; 曾贵明; 张恒

    2011-01-01

    In order to transmit the space-based signal, the capture and track between the tracking and data relay satellite(TDRS) antenna and the user's aerocraft antenna should be completed firstly. In this paper, the uncertain area of the antenna scan is analyzed, adopting antenna-scan capture scheme for capturing the antenna on TORS by the phased-array antenna on launch vehicle. The values of the antenna array and EIRP are conformed and the capture time is given by computer simulation.%为实现天基信息的传输,首先要完成中继卫星天线与用户飞行器天线之间的捕获与跟踪.针对箭载相控阵天线对中继卫星的捕获,采用Ka频段相控阵天线扫描捕获策略,分析了天线扫描的不确定区域,确定了天线阵元数及EIRP值,给出了捕获时间的仿真结果,为工程应用提供参考.

  9. Simulating Global AeroMACS Airport Ground Station Antenna Power Transmission Limits to Avoid Interference With Mobile Satellite Service Feeder Uplinks

    Science.gov (United States)

    Wilson, Jeffrey D.

    2013-01-01

    The Aeronautical Mobile Airport Communications System (AeroMACS), which is based upon the IEEE 802.16e mobile wireless standard, is expected to be implemented in the 5091 to 5150 MHz frequency band. As this band is also occupied by Mobile Satellite Service feeder uplinks, AeroMACS must be designed to avoid interference with this incumbent service. The aspects of AeroMACS operation that present potential interference are under analysis in order to enable the definition of standards that assure that such interference will be avoided. In this study, the cumulative interference power distribution at low Earth orbit from transmitters at global airports was simulated with the Visualyse Professional software. The dependence of the interference power on antenna distribution, gain patterns, duty cycle, and antenna tilt was simulated. As a function of these parameters, the simulation results are presented in terms of the limitations on transmitter power from global airports required to maintain the cumulative interference power under the established threshold.

  10. Space communication link propagation data for selected cities within the multiple beam and steerable antenna coverage areas of the advanced communications technology satellite

    Science.gov (United States)

    Manning, Robert M.

    1988-01-01

    Rain attenuation propagation data for 68 cities within the coverage area of the multiple beam and steerable antennas of the Advanced Communications Technology Satellite (ACTS) are presented. These data provide the necessary data base for purposes of communication link power budgeting and rain attenuation mitigation controller design. These propagation parameters are derived by applying the ACTS Rain Attenuation Prediction Model to these 68 locations. The propagation parameters enumerated in tabular form for each location are as follows: (1) physical description of the link and location (e.g., latitude, longitude, antenna elevation angle, etc.), link availability versus attenuation margin (also in graphical form), fading time across fade depths of 3, 5, 8, and 15 dB versus fade duration, and required fade control response time for controller availabilities of 99.999, 99.99, 99.9, and 99 percent versus sub-threshold attenuation levels. The data for these specific locations can be taken to be representative of regions near these locations.

  11. Design and study of a compact planar ultra-wideband antenna

    Institute of Scientific and Technical Information of China (English)

    CHENG Yong; LU Wenjun; CHENG Chonghu; CAO Wei

    2007-01-01

    In this paper,a novel,small,and compact planar antenna for ultra-wideband(UWB)applications is proposed.The antenna is an extension of microstrip slot antenna technology.To achieve ultra-wideband characteristics,a tapered microstrip fork-shaped stub has been employed.A symmetric polygon wide slot has been placed on the antenna ground.The design was investigated numerically to obtain proper dimensions for the antenna and a prototype was constructed.The return loss,pattern and gain of the prototype antenna have been measured.The transient pulse signal fidelity has also been investigated by finite-difference time-domain (FDTD)method.Experimental results show that the proposed antenna design has promising characteristics for UWB applications.

  12. Stretchable and reversibly deformable radio frequency antennas based on silver nanowires.

    Science.gov (United States)

    Song, Lingnan; Myers, Amanda C; Adams, Jacob J; Zhu, Yong

    2014-03-26

    We demonstrate a class of microstrip patch antennas that are stretchable, mechanically tunable, and reversibly deformable. The radiating element of the antenna consists of highly conductive and stretchable material with screen-printed silver nanowires embedded in the surface layer of an elastomeric substrate. A 3-GHz microstrip patch antenna and a 6-GHz 2-element patch array are fabricated. Radiating properties of the antennas are characterized under tensile strain and agree well with the simulation results. The antenna is reconfigurable because the resonant frequency is a function of the applied tensile strain. The antenna is thus well suited for applications like wireless strain sensing. The material and fabrication technique reported here could be extended to achieve other types of stretchable antennas with more complex patterns and multilayer structures.

  13. Planar Ultrawideband Antenna with Photonically Controlled Notched Bands

    Directory of Open Access Journals (Sweden)

    Drasko Draskovic

    2013-01-01

    Full Text Available A design of a planar microstrip-fed ultrawideband (UWB printed circular monopole antenna with optically controlled notched bands is presented. The proposed antenna is composed of a circular ultrawideband patch, with an etched T-shaped slot controlled by an integrated silicon switch. The slot modifies the frequency response of the antenna suppressing 3.5–5 GHz band when the switch is in open state. The optical switch is controlled by a low-power near-infrared (808 nm laser diode, which causes the change in the frequency response of the antenna generating a frequency notch. This solution could be expanded to include several notches in the antenna frequency response achieving a fully reconfigurable UWB antenna. The antenna could be remotely controlled at large distances using optical fiber. The prototype antenna has been fully characterized to verify these design concepts.

  14. Hybrid Tunable Wideband Single Feed Antenna Element for Smartphones supporting Carrier Aggregation

    DEFF Research Database (Denmark)

    Stanev, Simon Peter; Tatomirescu, Alexandru

    2016-01-01

    This paper presents a single feed antenna with a dual branch matching circuit combined with a 3dB microstrip power divider to support the carrier aggregation in LTE advanced mobile handsets. By the use of the matching circuits, an independent and versatile broadband antenna is achieved. Hence, th...

  15. A Design of RFID Antenna based on Left-hand Material

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu

    2016-01-01

    Square-shaped Split-ring resonator (SRR) left-hand Material(LHM) is proposed in Radio frequency band and S parameter extraction method was used to extract the effective permittivity and permittivity are all negative, hence verifying the nature of its left-hand properties. LHM is put on to dielectric layer of the center frequency of 920 MHZ microstrip patch antenna with 50Ω coaxial feed. Then the left-hand microstrip patch antenna and conventional antenna are compared, finding that return loss S11 down from - 30 dB to -60 dB.

  16. Comparative Study of Antenna Designs for RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Sika Shrestha

    2013-01-01

    Full Text Available In the last few years, several antenna designs of rectenna that meet various objectives have been proposed for use in RF energy harvesting. Among various antennas, microstrip patch antennas are widely used because of their low profile, light weight, and planar structure. Conventional patch antennas are rectangular or circular in shape, but variations in their basic design are made for different purposes. This paper begins with an explanation and discussion of different designs, put forward with an aim of miniaturization, harmonic rejection, and reconfigurability. Finally, microstrip patch structured rectennas are evaluated and compared with an emphasis on the various methods adopted to obtain a compact rectenna, harmonic rejection functionality, and frequency and polarization selectivity.

  17. Frequency-Tunable and Pattern Diversity Antennas for Cognitive Radio Applications

    Directory of Open Access Journals (Sweden)

    A. H. Ramadan

    2014-01-01

    Full Text Available Frequency-tunable microstrip antennas, for cognitive radio applications, are proposed herein. The approach is based on tuning the operating frequency of a bandpass filter that is incorporated into a wideband antenna. The integration of an open loop resonator- (OLR- based adjustable bandpass filter into a wideband antenna to transform it into a tunable filter-antenna is presented. The same technique is employed to design a cognitive radio pattern diversity tunable filter-antenna. A good agreement between the simulated and measured results for the fabricated prototypes is obtained. The radiation characteristics of each designed tunable filter-antenna are included herein.

  18. Infrared-transparent microstrip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, M. [Instituto de Fisica de Cantabria (IFCA), Ed. Juan Jorda, E-39005 Santander (Spain)], E-mail: Marcos.Fernandez@cern.ch; Duarte, J.; Gonzalez, J.; Heinemeyer, S.; Jaramillo, R.; Lopez, A.; Martinez, C.; Ruiz, A.; Vila, I. [Instituto de Fisica de Cantabria (IFCA), Ed. Juan Jorda, E-39005 Santander (Spain); Cabruja, E.; Lozano, M.; Pellegrini, G. [Centro Nacional de Microelectronica CNM-IMB, Campus Universidad Autonoma Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2009-01-01

    The two main limiting factors in the accuracy of an optomechanical position monitoring system based on laser sources and photosensors are mechanical transfer between the monitored imaging sensors to the active particle tracking elements and non-straight propagation of the reference laser lines. Laser based alignment systems of Si trackers that use their own tracking detectors as photosensors are not affected by the first factor. Improving the transmittance of Si to infrared beams certainly minimizes the second one. Simulation of the passage of a light beam through a real microstrip detector and analysis of first measurements of samples are presented in this paper.

  19. Microstrip microwave band gap structures

    Indian Academy of Sciences (India)

    V Subramanian

    2008-04-01

    Microwave band gap structures exhibit certain stop band characteristics based on the periodicity, impedance contrast and effective refractive index contrast. These structures though formed in one-, two- and three-dimensional periodicity, are huge in size. In this paper, microstrip-based microwave band gap structures are formed by removing the substrate material in a periodic manner. This paper also demonstrates that these structures can serve as a non-destructive characterization tool for materials, a duplexor and frequency selective coupler. The paper presents both experimental results and theoretical simulation based on a commercially available finite element methodology for comparison.

  20. 超宽带平面天线研究进展%Progress in ultra-wideband planar antennas

    Institute of Scientific and Technical Information of China (English)

    钟顺时; 梁仙灵

    2007-01-01

    This paper introduces the advances of ultra-wideband (UWB) and super-wideband (SWB) planar antennas based on the printed monopole, microstrip slot and other planar antenna designs in the last decade. A brief history of the ultrawideband antennas is first provided. Several types of planar antennas for UWB systems with band-notched designs are reviewed. Special SWB planar antenna designs with the bandwidth ratio greater than 10:1 including metal-plate and printed monopole antennas and tapered slot antennas are presented and compared.

  1. Antenna-coupled bolometer arrays using transition-edgesensors

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael J.; Ade, Peter; Engargiola, Greg; Holzapfel,William; Lee,Adrian T.; O' Brient, Roger; Richards, Paul L.; Smith, Andy; Spieler, Helmuth; Tran, Huan

    2004-06-08

    We describe the development of an antenna-coupled bolometer array for use in a Cosmic Microwave Background polarization experiment. Prototype single pixels using double-slot dipole antennas and integrated microstrip band defining filters have been built and tested. Preliminary results of optical testing and simulations are presented. A bolometer array design based on this pixel will also be shown and future plans for application of the technology will be discussed.

  2. Linearly tapered slot antenna circular array for mobile communications

    Science.gov (United States)

    Simons, Rainee N.; Kelly, Eron; Lee, Richard Q.; Taub, Susan R.

    1993-01-01

    The design, fabrication and testing of a conformal K-band circular array is presented. The array consists of sixteen linearly tapered slot antennas (LTSA). It is fed by a 1:16 microstrip line power splitter via electromagnetic coupling. The array has an omni-directional pattern in the azimuth plane. In the elevation plane the beam is displaced above the horizon.

  3. Effects of atmospheric turbulence on microwave and millimeter wave satellite communications systems. [attenuation statistics and antenna design

    Science.gov (United States)

    Devasirvatham, D. M. J.; Hodge, D. B.

    1981-01-01

    A model of the microwave and millimeter wave link in the presence of atmospheric turbulence is presented with emphasis on satellite communications systems. The analysis is based on standard methods of statistical theory. The results are directly usable by the design engineer.

  4. Ka-band MMIC microstrip array for high rate communications

    Science.gov (United States)

    Lee, R. Q.; Raquet, C. A.; Tolleson, J. B.; Sanzgiri, S. M.

    1991-01-01

    In a recent technology assessment of alternative communication systems for the space exploration initiative (SEI), Ka-band (18 to 40 GHz) communication technology was identified to meet the mission requirements of telecommunication, navigation, and information management. Compared to the lower frequency bands, Ka-band antennas offer higher gain and broader bandwidths; thus, they are more suitable for high data rate communications. Over the years, NASA has played an important role in monolithic microwave integrated circuit (MMIC) phased array technology development, and currently, has an ongoing contract with Texas Instrument (TI) to develop a modular Ka-band MMIC microstrip subarray (NAS3-25718). The TI contract emphasizes MMIC integration technology development and stipulates using existing MMIC devices to minimize the array development cost. The objective of this paper is to present array component technologies and integration techniques used to construct the subarray modules.

  5. A wideband textile antenna with a ring-slotted AMC plane

    Science.gov (United States)

    Hussin, Ezzaty Faridah Nor Mohd; Soh, Ping Jack; Jamlos, Mohd Faizal; Lago, Herwansyah; Al-Hadi, Azremi Abdullah; Rahiman, Mohd Hafiz Fazalul

    2017-01-01

    A wideband microstrip-based textile planar antenna with artificial magnetic conductor (AMC) plane is presented. The antenna is initially designed using the combination of two rectangular microstrip antennas operating at 1.5 and 2.5 GHz before being further optimized for wideband operation using various broadbanding techniques. This optimized radiator is then placed over an array of unit elements forming an AMC plane. Each unit element is formed using a square patch slotted using a circular ring and is designed to resonate at 2 GHz. To validate the contribution of the AMC plane in reducing backward radiation toward the human user, the performance of the proposed antenna is compared to a similar antenna without the AMC plane. This investigation indicated that the proposed antenna is capable of reducing backlobe while simultaneously increasing gain to 3.38 dB and improving bandwidth up to 52%.

  6. DESIGN OF HYBRID COUPLER CONNECTED SQUARE ARRAY PATCH ANTENNA FOR Wi-Fi APPLICATIONS

    Directory of Open Access Journals (Sweden)

    A. Sahaya Anselin Nisha

    2012-01-01

    Full Text Available Microstrip patch antennas being popular because of light weight, low volume, thin profile configuration which can be made conformal. Wireless communication systems applications circular polarization antenna is placing vital role. In this study we introduce a new technique to produce circular polarization. Hybrid coupler is directly connected to microstrip antenna to get circular polarization. Also gain is further increased by introducing antenna array technique. Each square in array having length of 4.6mm patch is having thickness of 0.381mm and the dielectric material used FR4. The designed antenna having high gain of 6.26dB and directivity of 5.11dB at the resonant frequency of 3.7GHz. Simulation results shows that the designed antenna characteristic is suitable for Wi-Fi applications.

  7. Higher order mode of a microstripline fed cylindrical dielectric resonator antenna

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. V. Praveen, E-mail: praveen.kumar@pilani.bits-pilani.ac.in [Department of Electrical and Electronics Engineering, BITS Pilani, Pilani, Rajasthan-333 031 (India)

    2016-03-09

    A microstrip transmission line can be used to excite the broadside radiating mode of a cylindrical dielectric resonator antenna (CDRA). The same is found to excite considerably well a higher order mode (HOM) as well. However unlike the broadside mode, the higher order mode gives distorted radiation pattern which makes this mode less useful for practical applications. The cause of distortion in the HOM radiation and the dependence of HOM coupling on the microstrip feed line are explored using HFSS simulations.

  8. Integrated Millimeter-Wave Antennas for On-Chip Communication

    Directory of Open Access Journals (Sweden)

    S. Zainud-Deen

    2016-03-01

    Full Text Available This paper introduces the design and analysis of circularly polarized (CP and dual-polarized on-chip microstrip antennas for wireless communication at 60 GHz. The CP on-chip antenna consists of a circular aluminum patch with two overlapped circular slots fed by the transmission line. The radiation characteristics of the CP have been analyzed using the finite integration technique and finite element method based electromagnetic solvers. The CP antenna introduces left-hand circular polarization and employs as on-chip transmitter. A design of dual-polarized on-chip microstrip antenna at 60 GHz is investigated and is employed as on-chip receiver. The dual ports of the dual polarized antenna are designed with high isolation between them in order to be used as a two on-chip receivers. The radiation characteristics of the dual-port antenna have been calculated. The effect of the separation distance between the CP-antenna and the dual-polarized antenna on the same chip has been investigated. The performance parameters like the reflection coefficient, transmission coefficient, and the transmission gain of the two antennas at different separation distances have been introduced.

  9. Electric-field distribution near rectangular microstrip radiators for hyperthermia heating: theory versus experiment in water.

    Science.gov (United States)

    Underwood, H R; Peterson, A F; Magin, R L

    1992-02-01

    A rectangular microstrip antenna radiator is investigated for its near-zone radiation characteristics in water. Calculations of a cavity model theory are compared with the electric-field measurements of a miniature nonperturbing diode-dipole E-field probe whose 3 mm tip was positioned by an automatic three-axis scanning system. These comparisons have implications for the use of microstrip antennas in a multielement microwave hyperthermia applicator. Half-wavelength rectangular microstrip patches were designed to radiate in water at 915 MHz. Both low (epsilon r = 10) and high (epsilon r = 85) dielectric constant substrates were tested. Normal and tangential components of the near-zone radiated electric field were discriminated by appropriate orientation of the E-field probe. Low normal to transverse electric-field ratios at 3.0 cm depth indicate that the radiators may be useful for hyperthermia heating with an intervening water bolus. Electric-field pattern addition from a three-element linear array of these elements in water indicates that phase and amplitude adjustment can achieve some limited control over the distribution of radiated power.

  10. Stripline feed for a microstrip array of patch elements with teardrop shaped probes

    Science.gov (United States)

    Huang, John (Inventor)

    1990-01-01

    A circularly polarized microstrip array antenna utilizing a honeycomb substrate made of dielectric material to support on one side the microstrip patch elements in an array, and on the other side a stripline circuit for feeding the patch elements in subarray groups of four with angular orientation and phase for producing circularly polarized radiation, preferably at a 0.degree., 90.degree., 180.degree. and 270.degree. relationship. The probe used for coupling each feed point in the stripline circuit to a microstrip patch element is teardrop shaped in order to introduce capacitance between the coupling probe and the metal sheet of the stripline circuit that serves as an antenna ground plane. The capacitance thus introduced tunes out inductance of the probe. The shape of the teardrop probe is not critical. The probe capacitance required is controlled by the maximum diameter for the teardrop shaped probe, which can be empirically determined for the operating frequency. An aluminum baffle around each subarray blocks out surface waves between subarrays.

  11. An inkjet-printed UWB antenna on paper substrate utilizing a novel fractal matching network

    KAUST Repository

    Cook, Benjamin Stassen

    2012-07-01

    In this work, the smallest reported inkjet-printed UWB antenna is proposed that utilizes a fractal matching network to increase the performance of a UWB microstrip monopole. The antenna is inkjet-printed on a paper substrate to demonstrate the ability to produce small and low-cost UWB antennas with inkjet-printing technology which can enable compact, low-cost, and environmentally friendly wireless sensor network. © 2012 IEEE.

  12. Antennas for light and plasmons

    NARCIS (Netherlands)

    Dikken, Dirk Jan Willem

    2015-01-01

    Antennas have been used for over a century as emitters, scatterers and receivers of electromagnetic waves. All wireless communication devices, such as radio, mobile phones and satellite communication are strongly dependent on the capability of an antenna to localize propagating electromagnetic waves

  13. Microstrip proportional counter development at MSFC

    Science.gov (United States)

    Fulton, M. A.; Kolodziejczak, J. J.; Ramsey, B. D.

    1992-01-01

    Microstrip detectors are an exciting new development in proportional counter design fabricated using integrated circuit-type photolithography techniques; they therefore offer very high spatial accuracy and uniformity. A development program is underway at NASA-Marshall to produce large-area microstrips for use in an X-ray detector balloon flight program and to investigate the general performance limits of these new devices. Microstrips tested so far have been fabricated both in-house using standard photolithographic techniques and by an outside contractor using electron beam technology. Various substrate materials have been tested along with different electrode configurations. The distributions of pickup on subdivided cathodes on both top and bottom surfaces of the microstrips are also being investigated for use as two-dimensional imaging detectors. Data from these tests in the development of a large-area device will be presented.

  14. Microstrips Ladder Assembly using Flexible Microcables.

    CERN Document Server

    Borshchov, V N; CERN. Geneva; Kiprich, S; Maslov, N I; Prokhorets, I; Reznik, A; Runólfsson, O; Ruzhitskaya, L; Starkov, V

    1995-01-01

    The flexible microcables are studied to evaluate the possibility of their application as an interconnection for both microstrips module and ladder of the ALICE detector. We managed to produce the microcables and to bond them directly to detector connection pads without any wire bonding. It permits for read-out chips to be displaced to one of sides of the double-sided microstrip detector.

  15. Study on In-Orbit Test Methods for Antenna Coverage of Geostationary Communication Satellites%同步轨道通信卫星天线覆盖图在轨测试方法

    Institute of Scientific and Technical Information of China (English)

    许国庆; 毛新宏; 贺中人; 杨丽

    2013-01-01

    The purpose of in-orbit tests on the antenna pattern of geostationary communication satellites is to verify consistency of the stationed satellite footprint with the designed coverage area,and to analyze the influence of antenna thermal deformation caused by solar radiation on the coverage characteristics.This paper describes relevant in-orbit test methods,e.g.maneuvering satellite attitude method,moving antenna platform method and using movable earth station method,for three types of antennas used on satellites,fixed shaped antenna,zone beam antenna and movable spot beam antenna.A solution by using transponder telemetry parameters and multiple stations in maneuvering satellite attitude is studied and a challenge of saving precious fuel and measuring as much pattern cuts as possible is effectively resolved.In-orbit tests are performed on a fixed shaped antenna and a movable spot beam antenna of a real satellite.The test results show good agreement with theoretical characteristics,proving feasibility of the methods.Finally,the measurement uncertainty of the solution is analyzed.%同步轨道通信卫星天线覆盖图在轨测试的目的是检验卫星入轨后上下行覆盖图与设计覆盖区域的一致性,以及太阳照射产生的天线热变形等因素对覆盖特性的影响.针对卫星上常用的固定赋形波束天线、区域波束天线和可移动点波束天线等类型的星载天线在轨测试问题,分析了几种在轨测试方法的原理,包括偏置卫星姿态法、转动天线平台法以及使用移动测量站的方法,提出了偏置卫星姿态法中融合转发器遥测参数判决和多站联合在轨测试的解决方案,有效解决了既要节省宝贵的燃料又要尽可能测量多条切线方向图的工程难题.对真星的固定赋形波束天线和可移动点波束天线进行了在轨测试,测试结果与实际特性吻合很好,验证了方法的可行性.最后,针对融合遥测参数判决的多站联合偏置

  16. Analysis of High Tc Superconducting Rectangular Microstrip Patches over Ground Planes with Rectangular Apertures in Substrates Containing Anisotropic Materials

    Directory of Open Access Journals (Sweden)

    Abderraouf Messai

    2013-01-01

    Full Text Available A rigorous full-wave analysis of high Tc superconducting rectangular microstrip patch over ground plane with rectangular aperture in the case where the patch is printed on a uniaxially anisotropic substrate material is presented. The dyadic Green’s functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The accuracy of the analysis is tested by comparing the computed results with measurements and previously published data for several anisotropic substrate materials. Numerical results showing variation of the resonant frequency and the quality factor of the superconducting antenna with regard to operating temperature are given. Finally, the effects of uniaxial anisotropy in the substrate on the resonant frequencies of different TM modes of the superconducting microstrip antenna with rectangular aperture in the ground plane are presented.

  17. 大型网状可展开天线的动力学与控制研究进展%Advance of Dynamics and Control of the Satellite with Large Mesh Deployable Antenna

    Institute of Scientific and Technical Information of China (English)

    刘丽坤; 周志成; 郑钢铁; 田强

    2014-01-01

    随着卫星移动通信技术的迅猛发展,为了提高卫星天线增益,普遍采用大型网状可展开抛物面天线。由于该类天线具有质量惯量大、展开过程耗时长、低刚度等特点,其展开过程和在轨正常工作期间,对卫星的动力学和姿态控制有较大影响。文章首先对大型网状可展开天线的特点及其对卫星动力学与控制的影响进行介绍,然后对大型网状可展开天线带来的动力学与控制相关问题进展进行了综述,包括:大型网状可展开天线展开状态动力学建模、展开状态试验验证、展开过程动力学建模、展开过程姿态控制及在轨天线指向控制等。最后对采用大型网状可展开天线的动力学与控制研究方向进一步需深入开展的工作提出了建议。%With the development of mobile communication technology ,the large deployable parabolic mesh reflectors are wildly used to improve the antenna gain . Considering the large inertia , long-period deployment , and low stiffness properties , these antennae have a great influence on the dynamics and control of the satellites . Firstly , the structural characteristics and its influences on the dynamic and control of the whole-satellite were introduced for the large mesh deployable antenna . Secondly , the dynamic and control problems were discussed , such as dynamic modeling of the deployed antenna , verification method of the deployed dynamic model , multi-body dynamics of the deploying antenna , deploying-process attitude control , and pointing control of the antenna , and so on . Finally , the prospects of the dynamics and control of the satellite with large deployable antenna were presented .

  18. A Broadband and High Gain Tapered Slot Antenna for W-Band Imaging Array Applications

    Directory of Open Access Journals (Sweden)

    Dong Sik Woo

    2014-01-01

    Full Text Available A broadband and high gain tapered slot antenna (TSA by utilizing a broadband microstrip- (MS- to-coplanar stripline (CPS balun has been developed for millimeter-wave imaging systems and sensors. This antenna exhibits ultrawideband performance for frequency ranges from 70 to over 110 GHz with the high antenna gain, low sidelobe levels, and narrow beamwidth. The validity of this antenna as imaging arrays is also demonstrated by analyzing mutual couplings and 4-element linear array. This antenna can be applied to mm-wave phased array, imaging array for plasma diagnostics applications.

  19. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, D., E-mail: dkuwahar@cc.tuat.ac.jp [Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Ito, N. [Department of Intelligent System Engineering, Ube National College of Technology, Ube, Yamaguchi 755-8555 (Japan); Nagayama, Y. [Department of Helical Plasma Research, National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yoshinaga, T. [Department of Applied Physics, National Defense Academy, Yokosuka, Kanagawa 239-0811 (Japan); Yamaguchi, S. [Department of Pure and Applied Physics, Kansai University, Suita, Osaka 564-8680 (Japan); Yoshikawa, M.; Kohagura, J. [Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Sugito, S. [Equipment Development Center, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan); Kogi, Y. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyusyu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-11-15

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  20. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics.

    Science.gov (United States)

    Kuwahara, D; Ito, N; Nagayama, Y; Yoshinaga, T; Yamaguchi, S; Yoshikawa, M; Kohagura, J; Sugito, S; Kogi, Y; Mase, A

    2014-11-01

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.