WorldWideScience

Sample records for satellite antenna pattern

  1. Support scattering effects on low-gain satellite antenna pattern measurements

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1973-01-01

    The purpose of the present investigation is to determine the difference between the scattering effects from two types of supports on satellite antenna pattern measurements. The difference in scattering effects is estimated by comparing low-gain antenna patterns recorded when using a foam tower an...

  2. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  3. Reconfigurable antenna pattern verification

    Science.gov (United States)

    Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)

    2013-01-01

    A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.

  4. Galileo satellite antenna modeling

    Science.gov (United States)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  5. Satellite communication antenna technology

    Science.gov (United States)

    Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)

    1983-01-01

    A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.

  6. Antenna Pattern Range (APR)

    Data.gov (United States)

    Federal Laboratory Consortium — TheAntenna Pattern Range (APR)features a non-metallic arch with a trolley to move the transmit antenna from the horizon to zenith. At the center of the ground plane,...

  7. Integrated Solar Panel Antennas for Cube Satellites

    OpenAIRE

    Mahmoud, Mahmoud N.

    2010-01-01

    This thesis work presents an innovative solution for small satellite antennas by integrating slot antennas and solar cells on the same panel to save small satellite surface real estate and to replace deployed wire antennas for certain operational frequencies. The two main advantages of the proposed antenna are: 1) the antenna does not require an expensive deployment mechanism that is required by dipole antennas; 2) the antenna does not occupy as much valuable surface real estate as patch ante...

  8. Integrated Solar Panel Antennas for Cube Satellites

    OpenAIRE

    Mahmoud, Mahmoud N.

    2010-01-01

    This thesis work presents an innovative solution for small satellite antennas by integrating slot antennas and solar cells on the same panel to save small satellite surface real estate and to replace deployed wire antennas for certain operational frequencies. The two main advantages of the proposed antenna are: 1) the antenna does not require an expensive deployment mechanism that is required by dipole antennas; 2) the antenna does not occupy as much valuable surface real estate as patch ante...

  9. Hybrid Maritime Satellite Communication Antenna

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst

    Hybrid antennas for a maritime satellite communication terminal with simultaneous operation at L- and Ka-band have been investigated. The frequency bands of interest are 1; 525:0 1; 660:5 MHz (RX+TX, RHCP), 19:7 20:2 (RX, LHCP) and 29:5 30:0 GHz (TX, RHCP), which are all part of the Inmarsat BGAN...

  10. Vehicle antenna development for mobile satellite applications

    Science.gov (United States)

    Woo, K.

    1988-01-01

    The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.

  11. Mobile satellite communications - Vehicle antenna technology update

    Science.gov (United States)

    Bell, D.; Naderi, F. M.

    1986-01-01

    This paper discusses options for vehicle antennas to be used in mobile satellite communications systems. Two types of antennas are identified. A non-steerable, azimuthally omnidirectional antenna with a modest gain of 3 to 5 dBi is suggested when a low cost is desired. Alternatively, mechanically or electronically steerable antennas with a higher gain of 10 to 12 dBi are suggested to alleviate power and spectrum scarcity associated with mobile satellite communications. For steerable antennas, both open-loop and closed-loop pointing schemes are discussed. Monopulse and sequential lobing are proposed for the mechanically steered and electronically steered antennas, respectively. This paper suggests a hybrid open-loop/closed-loop pointing technique as the best performer in the mobile satellite environment.

  12. Land vehicle antennas for satellite mobile communications

    Science.gov (United States)

    Haddad, H. A.; Pieper, B. V.; Mckenna, D. B.

    1985-01-01

    The RF performance, size, pointing system, and cost were investigated concepts are: for a mechanically steered 1 x 4 tilted microstrip array, a mechanically steered fixed-beam conformal array, and an electronically steered conformal phased array. Emphasis is on the RF performance of the tilted 1 x 4 antenna array and methods for pointing the various antennas studied to a geosynchronous satellite. An updated version of satellite isolations in a two-satellite system is presented. Cost estimates for the antennas in quantities of 10,000 and 100,000 unites are summarized.

  13. A Reconfigurable Radiation Pattern Annular Slot Antenna

    OpenAIRE

    Aziz, NA; Radhi, A; Nilavalan, R

    2016-01-01

    This paper contemplate a theoretical analysis of a pattern reconfigurable antenna using annular slot antenna operating in low frequency. A shorting pin is inserted to allow the annular slot antenna to have an omnidirectional radiation pattern like a monopole antenna. The reconfigurable antenna consists of numerous metal cylinders arranged around the annular slot antenna. By controlling pin diodes associated with the metal cylinders, the antenna is capable of working up in different dire...

  14. Satellite antenna layout and optimization in electromagnetic compatibility design

    Science.gov (United States)

    Zhang, Jinshuo; Xie, Shuguo; Liu, Yan

    2009-12-01

    This paper firstly analyzes the main factors that impact the layout of satellite antenna. The uniform geometrical theory of diffraction (UTD) is used to establish mathematical model for calculating the coupling of satellite antenna, and set up the objective function of the placement optimization. The genetic algorithm incorporating high-frequency simulation to minimize antenna coupling by optimally positioning satellite antenna is described in detail. The results of antenna placement on a realistic satellite show that this method is effective in the optimal design of satellite antenna layout for the purpose of electromagnetic compatibility.

  15. Advanced Communication Technology Satellite (ACTS) multibeam antenna technology verification experiments

    Science.gov (United States)

    Acosta, Roberto J.; Larko, Jeffrey M.; Lagin, Alan R.

    1992-01-01

    The Advanced Communication Technology Satellite (ACTS) is a key to reaching NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams, and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna with rapidly reconfigurable hopping and fixed spot beam to serve users equipped with small-aperature terminals within the coverage areas. The proposed antenna technology experiments are designed to evaluate in-orbit ACTS multibeam antenna performance (radiation pattern, gain, cross pol levels, etc.).

  16. Phased Array Transmit Antenna for a Satellite

    Science.gov (United States)

    Huggins, R. W.; Heisen, P. T.; Miller, G. E.; McMeen, D. J.; Perko, K. L.

    1999-01-01

    Active phased array antennas with electronically scanned beams offer advantages over high gain parabolic dish antennas currently used on spacecraft. Benefits include the elimination of deployable structures, no moving parts, and no torque disturbances that moving antennas impart to the spacecraft. The latter results in the conservation of spacecraft power, and the ability to take precision optical data while transmitting data. Such an antenna has been built under a contract from NASA Goddard Space Flight Center for the New Millennium Program EO- 1 satellite where it will act as the primary highspeed scientific data communication link. The antenna operates at X-band, has an integral controller and power conditioner, communicates with the spacecraft over a 1773 optical data bus, and is space qualified for low earth orbit (705 Km altitude). The nominal mission length is one year, and the operational requirement is for one 10 minute transmission a day over Spitsbergen, Norway. Details of the antenna and its performance will be described in the following paper.

  17. Low Cost Antennas for Direct Broadcast Satellite Radio

    Science.gov (United States)

    Wu, T. K.; Huang, J.

    1994-01-01

    Two omni-directional and circularly polarized low gain antennas (the crossed drooping dipole and the TM(sub 21) mode circular patch antenna)are developed for direct broadcast satellite radio (DBSR) outdoor mobile terminal applications.

  18. Bit Error Rate Due to Misalignment of Earth Station Antenna Pointing to Satellite

    Directory of Open Access Journals (Sweden)

    Wahyu Pamungkas

    2010-04-01

    Full Text Available One problem causing reduction of energy in satellite communications system is the misalignment of earth station antenna pointing to satellite. Error in pointing would affect the quality of information signal to energy bit in earth station. In this research, error in pointing angle occurred only at receiver (Rx antenna, while the transmitter (Tx antennas precisely point to satellite. The research was conducted towards two satellites, namely TELKOM-1 and TELKOM-2. At first, measurement was made by directing Tx antenna precisely to satellite, resulting in an antenna pattern shown by spectrum analyzer. The output from spectrum analyzers is drawn with the right scale to describe swift of azimuth and elevation pointing angle towards satellite. Due to drifting from the precise pointing, it influenced the received link budget indicated by pattern antenna. This antenna pattern shows reduction of power level received as a result of pointing misalignment. As a conclusion, the increasing misalignment of pointing to satellite would affect in the reduction of received signal parameters link budget of down-link traffic.

  19. Reliable Control of Ship-mounted Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2010-01-01

    Motorized antenna is a key element in overseas satellite telecommunication. The control system directs the on-board antenna toward a chosen satellitewhile the high sea waves disturb the antenna. Certain faults (communication system malfunction or signal blocking) cause interruption in the communi......Motorized antenna is a key element in overseas satellite telecommunication. The control system directs the on-board antenna toward a chosen satellitewhile the high sea waves disturb the antenna. Certain faults (communication system malfunction or signal blocking) cause interruption...

  20. High Precision Control of Ship-Mounted Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Mohsen, Soltani; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2007-01-01

    The telecommunication on a modern merchandise ship is maintained by means of satellite communication. The task of the tracking system is to position the on-board antenna toward a chosen satellite. The control system is capable of rejecting the external disturbances which affect on the under......-actuated antenna and ensures that it remains locked on the satellite. In this paper, a nonlinear internal model controller (NIMC), which achieves asymptotic tracking for the nonlinear antenna system with nonlinear exogenous dynamics, is proposed. Computer simulations as well as practical tests verify...... the effectiveness of this method to cope with the external disturbances that are imposed to the satellite tracking antenna (STA)....

  1. High Precision Control of Ship-Mounted Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Mohsen, Soltani; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2007-01-01

    The telecommunication on a modern merchandise ship is maintained by means of satellite communication. The task of the tracking system is to position the on-board antenna toward a chosen satellite. The control system is capable of rejecting the external disturbances which affect on the under......-actuated antenna and ensures that it remains locked on the satellite. In this paper, a nonlinear internal model controller (NIMC), which achieves asymptotic tracking for the nonlinear antenna system with nonlinear exogenous dynamics, is proposed. Computer simulations as well as practical tests verify...... the effectiveness of this method to cope with the external disturbances that are imposed to the satellite tracking antenna (STA)....

  2. Architectures for ku-band broadband airborne satellite communication antennas

    NARCIS (Netherlands)

    Verpoorte, Jaco; Schippers, Harmen; Jorna, Pieter; Roeloffzen, Chris G.H.; Marpaung, David A.I.; Baggen, Rens; Sanadgol, Bahram

    2010-01-01

    This paper describes different architectures for a broadband antenna for satellite communication on aircraft. The antenna is a steerable (conformal) phased array antenna in Ku-band (receive-only). First the requirements for such a system are addressed. Subsequently a number of potential architecture

  3. Multibeam Antennas Array Pattern Synthesis Using a Variational Method

    Directory of Open Access Journals (Sweden)

    F. T. Bendimerad

    2007-06-01

    Full Text Available In this paper a new method is described for multibeam antennas synthesis where both the amplitude and phase of each radiating element is a design variable. The developed optimization method made possible to solve the synthesis problem and to answer all the constraints imposed by the radiation pattern. Two approaches for visualizing satellite antenna radiation patterns are presented. Gain-level contours drawn over a geographical map gives clearest qualitative information. A three-dimensional (3D surface plot displays the qualitative shape of the radiation pattern more naturally. The simulations results have shown power, precision and speed of the variational method with respect to the constraints imposed on radiation pattern of the of multibeam antennas network.

  4. A new approach to design of quasi-isotropic antenna systems for satellite applications

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans; Hansen, J.E.

    1976-01-01

    The new approach considered takes into account the maximum error of the quasi-isotropic radiation pattern relative to the ideal pattern. A design example involving a spherical satellite with quarter wave monopoles is used to demonstrate the effectiveness of the new approach. An investigation...... is conducted concerning the minimax optimization of power radiation patterns. It is shown that the minimax objective represents a useful alternative to the isotropy concept in the design of quasi-isotropic antenna systems for satellite applications....

  5. A new approach to design of quasi-isotropic antenna systems for satellite applications

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans; Hansen, J.E.

    1976-01-01

    The new approach considered takes into account the maximum error of the quasi-isotropic radiation pattern relative to the ideal pattern. A design example involving a spherical satellite with quarter wave monopoles is used to demonstrate the effectiveness of the new approach. An investigation...... is conducted concerning the minimax optimization of power radiation patterns. It is shown that the minimax objective represents a useful alternative to the isotropy concept in the design of quasi-isotropic antenna systems for satellite applications....

  6. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    Directory of Open Access Journals (Sweden)

    Alberto Reyna

    2014-01-01

    Full Text Available This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction.

  7. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    Science.gov (United States)

    Reyna, Alberto; Panduro, Marco A.; Del Rio Bocio, Carlos

    2014-01-01

    This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction. PMID:24701150

  8. Antenna Pattern Impact on MIMO OTA Testing

    DEFF Research Database (Denmark)

    Fan, Wei; Nielsen, Jesper Ødum; Franek, Ondrej

    2013-01-01

    This paper investigates the impact of the DUT antenna pattern on the test area performance for multi-probe based MIMO OTA setup in terms of received voltage and spatial correlation. The plane wave synthesis (PWS) technique has been proposed for vertical polarization in the literature, where...... the goal is to approximate plane waves with arbitrary directions. The received voltage at the antenna terminal depends on the antenna radiation pattern and the impinging plane waves. A novel closed form technique to reproduce the received voltage with arbitrary incoming plane waves based on trigonometric...... interpolation is presented. The proposed technique provides a closed form solution for the PWS when the probe ring radius is infinite. The proposed technique shows that the impact of the antenna pattern on the induced received voltage accuracy is ruled by Nyquist sampling theory. Furthermore, the impact...

  9. Thermal deformation analysis of the composite material satellite antenna

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Controlling the thermal deformation is a crucial index for the design of the satellite antenna. To calculate and measure the satellite antenna's thermal deformation is also an important step for the design of satellite antenna. Based on the foundation of equivalent assumption, the thermal deformation of the parabolic satellite antenna was analyzed by the finite element method for different design project. The best design project that had the minimum of the thermal deformation could be obtained through changing the lay-angle, lay-layers and lay-thickness of each layer. Results show the asymmetry structure has the minimum of thermal deformation. This paper may provide useful information for the further investigation on the coupling of thermal-stress structure.

  10. Development of 30/20 GHz satellite antenna structures

    Science.gov (United States)

    Minomo, M.; Yasaka, T.

    1986-08-01

    An antenna structural design for a large capacity communication satellite using 13 beams in the 30/20GHz frequency bands is discussed. This design is to be utilized in developing a more cost effective domestic satellite communication system for Japan. This system requires 2 high precision deployable antennas with projected aperture diameters of 3.5m at 20GHz and 2.5m at 30GHz. The in-orbit demonstration will use the ETS-6 satellite. Based on experience in the development of spaceborne antennas for 30/20GHz bands (e.g., for the CS-2 and CS-3 satellites) activities in structural design of high precision deployable antennas show the truss reflector structure is promising for achieving required structural properties.

  11. Integrated After-Market Solar Panel Antennas for Small Satellites

    OpenAIRE

    Turpin, Timothy; Mahmoud, Mahmoud; Baktur, Reyhan; Furse, Cynthia

    2009-01-01

    The majority of surface area on a small satellite is taken up by solar panels for power. Integrating antennas with solar panels, would save a valuable amount of satellite surface area, and thus directly contribute to the size reduction and multi-functionality of solar panel. Furthermore, such integration does not require deployed mechanism and therefore is cost-friendly design.Two types of integrations are presented in this paper. The first type is to place optically transparent antennas dire...

  12. Integrated After-Market Solar Panel Antennas for Small Satellites

    OpenAIRE

    Turpin, Timothy; Mahmoud, Mahmoud; Baktur, Reyhan; Furse, Cynthia

    2009-01-01

    The majority of surface area on a small satellite is taken up by solar panels for power. Integrating antennas with solar panels, would save a valuable amount of satellite surface area, and thus directly contribute to the size reduction and multi-functionality of solar panel. Furthermore, such integration does not require deployed mechanism and therefore is cost-friendly design.Two types of integrations are presented in this paper. The first type is to place optically transparent antennas dire...

  13. Antenna with Dielectric Having Geometric Patterns

    Science.gov (United States)

    Dudley, Kenneth L. (Inventor); Elliott, Holly A. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor)

    2013-01-01

    An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.

  14. Synthesis of multiple shaped beam antenna patterns

    Science.gov (United States)

    Stutzman, W. L.; Coffey, E. L.

    1973-01-01

    Results are presented of research into the problem of finding an excitation of a given antenna such that the desired radiation pattern is approximated to within acceptable limits. This is to be done in such a fashion that boundary conditions involving hardware limitations may be inserted into the problem. The intended application is synthesis of multiple shaped beam antennas. Since this is perhaps the most difficult synthesis problem an antenna engineer is likely to encounter, the approach taken was to include as a by-product capability for synthesizing simpler patterns. The synthesis technique has been almost totally computerized. The class of antennas which may be synthesized with the computer program are those which may be represented as planar (continuous or discrete) current distributions. The technique is not limited in this sense and could indeed by extended to include, for example, the synthesis of conformal arrays or current distributions on the surface of reflectors. The antenna types which the program is set up to synthesize are: line source, rectangular aperture, circular aperture, linear array, rectangular array, and arbitrary planar array.

  15. Directional Pattern Analysis of a Linear Phased Antenna

    Directory of Open Access Journals (Sweden)

    Jan Haring

    2008-01-01

    Full Text Available An antenna array is a system compound from simply radiators (dipoles, microstrip antennas, that together form desired radiation pattern. Phased array antennas consist of multiple stationary antenna elements, that are fed coherently and use variable phase or time-delay control at each element to scan a beam to given angles in space. Variable amplitude control is sometimes also provided for antenna pattern shaping.

  16. Extremum-seeking control of the beam pattern of a reconfigurable holographic metamaterial antenna.

    Science.gov (United States)

    Johnson, Mikala C; Brunton, Steven L; Kundtz, Nathan B; Kutz, Nathan J

    2016-01-01

    Robust, continuous, and software-defined beam pattern control of holographic metamaterial antennas is necessary to realize the potential of these low-power-consumption, thin, lightweight, inexpensive antennas for consumer usage of satellite communication. We present a complete feedback control approach that enables adaptive control of the radiation pattern for the electronically scanned metamaterial antenna that is robust to measurement noise and is able to continuously optimize performance throughout changing environmental conditions and antenna characteristics. The physical size, weight, and cost advantages of the metamaterial antenna make it an attractive technology when paired with robust and adaptive on-board software strategies to optimize antenna performance and self-tune for various environmental conditions.

  17. A multifunctional solar panel antenna for cube satellites

    Science.gov (United States)

    Fawole, Olutosin C.

    The basic cube satellite (CubeSat) is a modern small satellite that has a standard size of about one liter (the 1U CubeSat). Three 1U CubeSats could be stacked to form a 3U CubeSat. Their low-cost, short development time, and ease of deployment make CubeSats popular for space research, geographical information gathering, and communication applications. An antenna is a key part of the CubeSat communication subsystem. Traditionally, antennas used on CubeSats are wrapped-up wire dipole antennas, which are deployed after satellite launch. Another antenna type used on CubeSats is the patch antenna. In addition to their low gain and efficiency, deployable dipole antennas may also fail to deploy on satellite launch. On the other hand, a solid patch antenna will compete for space with solar cells when placed on a CubeSat face, interfering with satellite power generation. Slot antennas are promising alternatives to dipole and patch antennas on CubeSats. When excited, a thin slot aperture etched on a conductive sheet (ground plane) is an efficient bidirectional radiator. This open slot antenna can be backed by a reflector or cavity for unidirectional radiation, and solar cells can be placed in spaces on the ground plane not occupied by the slot. The large surface areas of 3U CubeSats can be exploited for a multifunctional antenna by integrating multiple thin slot radiators, which are backed by a thin cavity on the CubeSat surfaces. Solar cells can then be integrated on the antenna surface. Polarization diversity and frequency diversity improve the overall performance of a communication system. Having a single radiating structure that could provide these diversities is desired. It has been demonstrated that when a probe excites a square cavity with two unequal length crossed-slots, the differential radiation from the two slots combines in the far-field to yield circular polarization. In addition, it has been shown that two equal-length proximal slots, when both fed with a

  18. Design and Analysis of HJ-1-C Satellite SAR Antenna

    Directory of Open Access Journals (Sweden)

    Zheng Shi-kun

    2014-06-01

    Full Text Available With truss deployable mesh parabolic reflector, the HJ-1-C SAR antenna has complex structure and multiple steps during the deployed processing. The design of the antenna is difficult in terms of deployed reliability and electrical performance. This paper makes intensive research on system, structure and electrical design, and the analysis of mechanical and thermal performance in the actual space conditions is also presented. The successful deploying in orbit and high image quality of the HJ-1-C satellite indicate that the mechanical, electronic, thermal and reliability design of the antenna satisfy the project requirement, and these research provides valuable experience for the design of the centralized mesh parabolic SAR antenna.

  19. Sunflower array antenna for multi-beam satellite applications

    NARCIS (Netherlands)

    Vigano, M.C.

    2011-01-01

    Saving space on board, reducing costs and improving the antenna performances are tasks of outmost importance in the field of satellite communication. In this work it is shown how a non-uniformly spaced, direct radiating array designed according to the so called ‘sunflower’ law is able to satisfy str

  20. Microstrip Yagi array antenna for mobile satellite vehicle application

    Science.gov (United States)

    Huang, John; Densmore, Arthur C.

    1991-01-01

    A novel antenna structure formed by combining the Yagi-Uda array concept and the microstrip radiator technique is discussed. This antenna, called the microstrip Yagi array, has been developed for the mobile satellite (MSAT) system as a low-profile, low-cost, and mechanically steered medium-gain land-vehicle antenna. With the antenna's active patches (driven elements) and parasitic patches (reflector and director elements) located on the same horizontal plane, the main beam of the array can be tilted, by the effect of mutual coupling, in the elevation direction providing optimal coverage for users in the continental United States. Because the parasitic patches are not connected to any of the lossy RF power distributing circuit the antenna is an efficient radiating system. With the complete monopulse beamforming and power distributing circuits etched on a single thin stripline board underneath the microstrip Yagi array, the overall L-band antenna system has achieved a very low profile for vehicle's rooftop mounting, as well as a low manufacturing cost. Experimental results demonstrate the performance of this antenna.

  1. Interpolating Spherical Harmonics for Computing Antenna Patterns

    Science.gov (United States)

    2011-07-01

    the specific radon-transform algorithms of ISAR. 28 References [1] Arfken , George [1970] Mathematical Methods for Physicists, second edi- tion...approximation methods . Section 2 sets out two antenna patterns to be tested in the spline algorithm. Section 3 reviews the spherical harmonic functions Y mn...number of samples on the sphere [12]. This compressed sensing result will not reduce the method of moment computations. All the current must be

  2. Application of adaptive antenna techniques to future commercial satellite communication

    Science.gov (United States)

    Ersoy, L.; Lee, E. A.; Matthews, E. W.

    1987-01-01

    The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further sub-divided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.

  3. On intermodulation beams of satellite DBF transmitting multibeam array antenna

    Science.gov (United States)

    Zhao, Hongmei; Wang, Huali; Mu, Shanxiang

    2007-11-01

    Digital beamforming (DBF) transmitting multibeam planar array antenna with nonlinear behaviors of solid-state power amplifiers (SSPA) is discussed. This paper investigates the intermodulation beams produced by the nonlinearity characteristics of the SSPA with multiple carrier components. The Shimbo model is simplified to describe the nonlinear behaviors of SSPA. The optimal SSPA input back-off (IBO) point which is given the desired the carrier and the intermodulatin ratio (C/IM) is simulated. And the tradeoffs between linearity and efficiency of the power amplifier which influence this IBO is also discussed, helping to selecting suitable SSPA device and reducing the dc power consumption in satellite array antenna system.

  4. A FLOSS Tool for Antenna Radiation Patterns

    CERN Document Server

    Yannopoulou, Nikolitsa

    2010-01-01

    This paper briefly highlights the features of the software tool [RadPat4W], named after Radiation Patterns for Windows but also compatible with the [Wine] environment of Linux. The tool is a stand-alone part of a freeware suite that is based on an alternative exposition of fundamental Antenna Theory and is under active development for many years now. Nevertheless, [RadPat4W] source code has been now released as FLOSS Free Libre Open Source Software and thus it may be freely used, copied, modified or redistributed, individually or cooperatively, by the interested user to suit her/his personal needs for reliable antenna applications from the simplest to the more complex.

  5. Design and characteristics of a multiband communication satellite antenna system

    Science.gov (United States)

    Ueno, Kenji; Itanami, Takao; Kumazawa, Hiroyuki; Ohtomo, Isao

    1995-04-01

    Feasibility studies on a multiband communication satellite antenna system and the key technologies involved in devising this system are described. The proposed multiband communication satellite utilizes four frequency bands: Ka (30/20 GHz), Ku (14/12 GHz), C (6/4 GHz), and S (2.6/2.5 GHz). It has six beam configurations, three multibeam and three shaped-beam. The following key technologies are presented: (1) a low-loss frequency selective subreflector (FSR) for compact feeds, (2) a low-loss and broadband frequency selective surface (FSS), and (3) a highly accurate and reliable mesh reflector.

  6. Nodding feed antenna for communications with satellites in synchronous orbit

    Science.gov (United States)

    Smetana, J.; Zavesky, R.

    1978-01-01

    The design, fabrication, and performance of a parabolic, ground receiving antenna system with a feed that nods in one axis producing a maximum beam deviation 1.1 deg from boresight is described. The antenna design was: (1)to lower the weight (and the subsequent cost) of the supporting structure and the actuator motors for a tracking antenna by moving just the feed; (2) to use a manual tracking system eliminating the need for expensive electronic controls or computers; (3) to provide for several hours of unattended operation; and (4)to permit operation of the antenna by unskilled personnel. Also described are some physical and orbital phenomenon that effect the operation or design of the antenna. One is the motion of a nearly geostationary satellite due to gravitational forces from the sun, the moon, and other stellar bodies. Others are the rotation of the nodding axis and the feed polarization as a function of the location of the station on the earth. A comparison of per unit cost was made for one unit and a quantity of 100.

  7. Estimation of satellite antenna phase center offsets for Galileo

    Science.gov (United States)

    Steigenberger, P.; Fritsche, M.; Dach, R.; Schmid, R.; Montenbruck, O.; Uhlemann, M.; Prange, L.

    2016-08-01

    Satellite antenna phase center offsets for the Galileo In-Orbit Validation (IOV) and Full Operational Capability (FOC) satellites are estimated by two different analysis centers based on tracking data of a global GNSS network. The mean x- and y-offsets could be determined with a precision of a few centimeters. However, daily estimates of the x-offsets of the IOV satellites show pronounced systematic effects with a peak-to-peak amplitude of up to 70 cm that depend on the orbit model and the elevation of the Sun above the orbital plane. For the IOV y-offsets, no dependence on the orbit model exists but the scatter strongly depends on the elevation of the Sun above the orbital plane. In general, these systematic effects are significantly smaller for the FOC satellites. The z-offsets of the two analysis centers agree within the 10-15 cm level, and the time series do not show systematic effects. The application of an averaged Galileo satellite antenna model obtained from the two solutions results in a reduction of orbit day boundary discontinuities by up to one third—even if an independent software package is used.

  8. Aeronautical satellite antenna steering using magnetic field sensors

    Science.gov (United States)

    Sydor, John; Dufour, Martial

    1993-01-01

    Designers of aeronautical satellite terminals are often faced with the problem of steering a directive antenna from an airplane or helicopter. This problem is usually solved by using aircraft orientation information derived from inertial sensors on-board the aircraft in combination with satellite ephemeris information calculated from geographic coordinates. This procedure works well but relies heavily on avionics that are external to the terminal. For the majority of small aircraft and helicopters which will form the bulk of future aeronautical satcom users, such avionics either do not exist or are difficult for the satellite terminal to interface with. At the Communications Research Center (CRC), work has been undertaken to develop techniques that use the geomagnetic field and satellite antenna pointing vectors (both of which are stationary in a local geographical area) to track the position of a satellite relative to a moving platform such as an aircraft. The performance of this technique is examined and a mathematical steering transformation is developed within this paper. Details are given regarding the experimental program that will be undertaken to test the concepts proposed herein.

  9. Flat Array Antennas for Ku-Band Mobile Satellite Terminals

    Directory of Open Access Journals (Sweden)

    Roberto Vincenti Gatti

    2009-01-01

    Full Text Available This work presents the advances in the development of two innovative flat array antennas for Ku-band mobile satellite terminals. The first antenna is specifically conceived for double-deck trains to allow a bi-directional high data rate satellite link. The available circular surface (diameter 80 cm integrates both a transmitting and a receiving section, operating in orthogonal linear polarizations. The TX frequency range is fully covered while the RX bandwidth is around 1 GHz arbitrarily allocated on the DVB range depending on requirements. The beam is steered in elevation through a phased array architecture not employing costly phase shifters, while the steering in azimuth is mechanical. Active BFNs allow excellent performance in terms of EIRP and G/T, maintaining extremely low profile. High antenna efficiency and low fabrication cost are ensured by the employment of innovative SIW (Substrate Integrated Waveguide structures. The second antenna, receiving-only, is designed for radio/video streaming services in mobile environment. Full DVB coverage is achieved thanks to cavity-backed patches operating in double linear polarization. Two independent broadband active BFNs allow simultaneous reception of both polarizations with full tracking capabilities and a squintless beam steering from 20∘ to 60∘ in elevation. A minimum gain of 20 dBi and G/T >−3 dB/∘K are achieved, while maintaining extremely compact size and flat profile. In the design of both antennas fabrication cost is considered as a driving factor, yet providing high performance with a flat profile and thus resulting in a great commercial potentiality.

  10. Surface accuracy and radiation pattern characteristics of mesh deployable refector antennas

    Science.gov (United States)

    Ueno, Miyoshi; Ebisui, Takashi; Okamato, Teruki; Orikasa, Teruaki; Sugimoto, Toshio; Iso, Akio

    To facilitate the growth of mobile satellite communications, both an increase in the Equivalent Isotropically Radiated Power (EIRP) of satellites and improved frequency reuse are required to achiveve compact size, low cost terminal usage, and high channel capacity. High gain and low sidelobe antenna technology are very important for high EIRP and frequency reuse, respectively. These requirements are expected to be met by using a large deployable mesh reflector antenna, which is the key technology for future multibeam moble communications systems. In this paper, surface accruracy and related electrical characteristics are studied using a TETRUS-(Tetra Trigonal Prism Truss) type deployable mesh reflector antenna. Surface accuracy and related electrical characteristics of reflector antennas becaue any distortion of the ideal paraboloidal configuration causes antenna patterns to deteriorate, thereby reducing reflector aperture efficiency and increasing sidelobe and grating lobe levels. The sidelobe and grating lobe characteristics are especially important in frequency reuse. First, we show the problem with the radiation pattern characteristics of TETUS antenna. We then propose a new antenna configuration called the 'HYBRID TETRUS' that improves these characteristics. The mechanical performances of two partial deployable models are also described. Mechanical testing results reveal agreement between the calculated and measured values and high rigidities.

  11. Optimizing Satellite Communications With Adaptive and Phased Array Antennas

    Science.gov (United States)

    Ingram, Mary Ann; Romanofsky, Robert; Lee, Richard Q.; Miranda, Felix; Popovic, Zoya; Langley, John; Barott, William C.; Ahmed, M. Usman; Mandl, Dan

    2004-01-01

    A new adaptive antenna array architecture for low-earth-orbiting satellite ground stations is being investigated. These ground stations are intended to have no moving parts and could potentially be operated in populated areas, where terrestrial interference is likely. The architecture includes multiple, moderately directive phased arrays. The phased arrays, each steered in the approximate direction of the satellite, are adaptively combined to enhance the Signal-to-Noise and Interference-Ratio (SNIR) of the desired satellite. The size of each phased array is to be traded-off with the number of phased arrays, to optimize cost, while meeting a bit-error-rate threshold. Also, two phased array architectures are being prototyped: a spacefed lens array and a reflect-array. If two co-channel satellites are in the field of view of the phased arrays, then multi-user detection techniques may enable simultaneous demodulation of the satellite signals, also known as Space Division Multiple Access (SDMA). We report on Phase I of the project, in which fixed directional elements are adaptively combined in a prototype to demodulate the S-band downlink of the EO-1 satellite, which is part of the New Millennium Program at NASA.

  12. NASA ACTS Multibeam Antenna (MBA) System. [Advanced Communications Technology Satellite

    Science.gov (United States)

    Choung, Youn H.; Stiles, W. Herschel; Wu, Joseph; Wong, William C.; Chen, C. Harry

    1986-01-01

    The design of the Advanced Communications Technology Satellite MBA system, which provides both spot beam and scanning beam coverage to both high and low burst rates data-users is examined. The MBA consists of receive and transmit antennas installed on a common precision mounting platform that is integrated to the bus through three flexures; a lightweight system with low thermal distortion is obtained by using composite materials for the MBA structures. The RF design, which is a Cassegrain reflector with a large equivalent focal length/aperture size, is described. Consideration is given to the position of the feed in order to minimize scan loss and sidelobe levels, the size of the subreflector in order to minimize feed spillover, and antenna performance degradation caused by reflector surface distortion. Breadbroad model test result reveal that the maximum sidelobe level outside the 2.5 HPBW region is -30 dB or lower relative to the power.

  13. On-glass automotive diversity antenna and LNA design for S-band satellite digital radio

    Science.gov (United States)

    Yeğin, Korkut

    2015-11-01

    Selection combining diversity system with antennas mounted on windshield and backlite of a vehicle is proposed for satellite digital audio radio applications. Standalone exterior mount antennas on metallic vehicles perform well for satellite digital audio radio applications, but for composite body vehicles or interior mount antennas, antenna performance becomes a real issue. Proposed on-glass two-antenna diversity is one solution for such applications. The antenna correlation is calculated using the S-parameters of the antennas and found to be very low due to many wavelengths separation between the antennas. Design of low noise amplifier, which has sub 1 dB noise figure and good P1dB due to strong cellular signals, is also detailed. A diversity receiver is described and ride tests are performed to assess the performance of the diversity system in real-time, under weak satellite signal environment which is regarded as the most challenging reception condition.

  14. Choice of antenna geometry for microwave power transmission from solar power satellites

    Science.gov (United States)

    Potter, Seth D.

    1992-01-01

    A comparison is made between square and circular transmitting antennas for solar power satellite microwave power transmission. It is seen that the exclusion zone around the rectenna needed to protect populations from microwaves is smaller for a circular antenna operating at 2.45 GHz than it is for a square antenna at that frequency. If the frequency is increased, the exclusion zone size remains the same for a square antenna, but becomes even smaller for a circular antenna. Peak beam intensity is the same for both antennas if the frequency and antenna area are equal. The circular antenna puts a somewhat greater amount of power in the main lobe and somewhat less in the side lobes. Since rain attenuation and atmospheric heating remain problems above 10 GHz, it is recommended that future solar power satellite work concentrate on circular transmitting antennas at frequencies of roughly 10 GHz.

  15. Low gain and steerable vehicle antennas for communications with land mobile satellite

    Science.gov (United States)

    Woo, K.

    1982-01-01

    Current development activities at JPL for ground mobile vehicle antennas to be used with the Land Mobile Satellite Service (LMSS) system are described. Both low gain and electronically steerable high gain type antennas are discussed in terms of their design concept and RF performance. For the low gain type, three classes of antennas are under various stages of development. These are the crossed-drooping dipole, quadrifilar helix, and microstrip patch designs. The antennas are intended to provide circularly-polarized radiation with a minimum of 3-dB gain in the angular region from 19 degrees to 60 deg from the horizon in elevation plane and with an omnidirectional pattern in azimuthal plane. For the electronically steerable high gain type, circularly-polarized microstrip patch phased arrays formed on a planar surface and on the surface of a truncated cone are under study. The arrays are intended to provide a minimum of 12 dB gain in the same angular region in elevation plane at all azimuthal angles. This coverage is accomplished by scanning the high gain pencil beam in both elevation and azimuthal directions. Both types of antennas are to transmit at 821-831 MHz band and to receive at 866-876 MHz band. They must be of low cost design and reasonably conformal to the vehicle.

  16. A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking

    Science.gov (United States)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    1995-01-01

    A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  17. Satellite-Tracking Millimeter-Wave Reflector Antenna System For Mobile Satellite-Tracking

    Science.gov (United States)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    2001-01-01

    A miniature dual-band two-way mobile satellite-tracking antenna system mounted on a movable vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  18. Zenith Pass Problem of Inter-satellite Linkage Antenna Based on Program Guidance Method

    Institute of Scientific and Technical Information of China (English)

    Zhai Kun; Yang Di

    2008-01-01

    While adopting an elevation-over-azimuth architecture by an inter-satellite linkage antenna of a user satellite, a zenith pass problem always occurs when the antenna is tracing the tracking and data relay satellite (TDRS). This paper deals with this problem by way of,firstly, introducing movement laws of the inter-satellite linkage to predict the movement of the user satellite antenna followed by analyzing the potential pass moment and the actual one of the zenith pass in detail. A number of specific orbit altitudes for the user satellite that can remove the blindness zone are obtained. Finally, on the base of the predicted results from the movement laws of the inter-satellite linkage, the zenith pass tracing strategies for the user satellite antenna are designed under the program guidance using a trajectory preprocessor. Simulations have confirmed the reasonability and feasibility of the strategies in dealing with the zenith pass problem.

  19. Novel Ku Band Reflectarray Antenna for Satellite Communication

    Directory of Open Access Journals (Sweden)

    Sridhar Bilvam

    2014-04-01

    Full Text Available This study focuses on the design and analysis of Ku band reflectarray antenna using a novel crossed dumbbell (clover patch unit cell. The reflectarray is proposed for application in satellite communication more specifically for Satellite newsgathering (12.5-13.75 GHz. The clover shaped unit cell is designed for 13.07 GHz and the suitability of the unit cell is validated using the phase characteristics analysis. The effect of the elements on the performance represented by the range of the reflection phase is of prime importance. From the observation, Clover unit cell has large phase variation compared to minkowski and koch unit cells. Therefore, the main purpose of this study is to investigate and validate the novel unit cell with a wide phase characteristics and the reflectarray constructed.

  20. The extraordinary radiation pattern of an optical rod antenna

    CERN Document Server

    Zhao, Chenglong

    2010-01-01

    We investigated the radiation pattern of an optical rod antenna and found that it had many features compared with its conventional radio-wave equivalents. After defining a parameter {\\Lambda} = {\\lambda}eff /{\\lambda}, which was the ratio of the effective wavelength of the rod antenna to the incident wavelength, we found that {\\Lambda} had a great influence on the radiation pattern. Even the radiation pattern with a higher resonant order is without side lobes and results in a sharper directivity, which provides new design flexibilities in improving the directivities of the optical antennas.

  1. Dual-band pattern reconfigurable antenna for wireless MIMO applications

    Directory of Open Access Journals (Sweden)

    Jeong Keun Ji

    2016-12-01

    Full Text Available In this study, a dual-band pattern reconfigurable antenna is proposed for 2.4 and 5.8 GHz wireless multiple-input multiple-output (MIMO applications. The proposed antenna comprises four pairs of active elements and parasitic elements loaded on PIN diodes. By switching PIN diodes, the parasitic element acts as a director or reflector, and the radiation patterns of the antenna are optimized. The antenna offers three modes with nine radiation beam patterns in a 5.8 GHz band. The measured peak gain of all the beam patterns ranges from 5.6 to 10.4 dBi. At a 2.4 GHz band, omnidirectional beam patterns with a measured peak gain of approximately 4.5 dBi are generated.

  2. Robust FDI for A Ship-mounted Satellite Tracking Antenna: A Nonlinear Approach

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2008-01-01

    Overseas telecommunication is preserved by means of satellite communication. Tracking system postures the on-board antenna toward a chosen satellite while the external disturbances affect the antenna. Certain faults (beam sensor malfunction or signal blocking) cause interruption in the communicat......Overseas telecommunication is preserved by means of satellite communication. Tracking system postures the on-board antenna toward a chosen satellite while the external disturbances affect the antenna. Certain faults (beam sensor malfunction or signal blocking) cause interruption...... in the communication connection resulting in the loss of the tracking functionality. In this paper, an optimization based fault diagnosis system is proposed for the nonlinear model of the satellite tracking antenna (STA). The suggested method is able to estimate the fault for a class of nonlinear systems acting under...

  3. Base Station Antenna Pattern Distortion in Practical Urban Deployment Scenarios

    DEFF Research Database (Denmark)

    Rodriguez Larrad, Ignacio; Nguyen, Huan Cong; Sørensen, Troels Bundgaard

    2014-01-01

    In real urban deployments, base station antennas are typically not placed in free space conditions. Therefore, the radiation pattern can be affected by mounting structures and nearby obstacles located in the proximity of the antenna (near-field), which are often not taken into consideration. Also...... the intrinsic propagation mechanisms of the urban environment (far-field) can contribute to the distortion of the radiation pattern observed in a practical deployment scenario, especially when comparing it to the antenna pattern provided by the manufacturer and typically measured in free space. This paper...... presents a combination of near-field and far-field simulations aimed to provide an overview of the distortion experienced by the base station antenna pattern in two different urban deployment scenarios: rooftop and telecommunications tower. The study illustrates how, in comparison with the near...

  4. Design and Optimization of a Compact Wideband Hat-Fed Reflector Antenna for Satellite Communications

    Science.gov (United States)

    Geterud, Erik G.; Yang, Jian; Ostling, Tomas; Bergmark, Pontus

    2013-01-01

    We present a new design of the hat-fed reflector antenna for satellite communications, where a low reflection coefficient, high gain, low sidelobes and low cross-polar level are required over a wide frequency band. The hat feed has been optimized by using the Genetic Algorithm through a commercial FDTD solver, QuickWave-V2D, together with an own developed optimization code. The Gaussian vertex plate has been applied at the center of the reflector in order to improve the reflection coefficient and reduce the far-out sidelobes. A parabolic reflector with a ring-shaped focus has been designed for obtaining nearly 100% phase efficiency. The antenna's reflection coefficient is below -17 dB and the radiation patterns satisfy the M-x standard co- and cross-polar sidelobe envelopes for satellite ground stations over a bandwidth of 30%. A low-cost monolayer radome has been designed for the antenna with satisfactory performance. The simulations have been verified by measurements; both of them are presented in the paper.

  5. A simple ship-borne antenna stabilizer for limited area maritime satellite communication systems

    Science.gov (United States)

    Satoh, K.; Nakamae, M.; Mishima, H.

    1984-10-01

    This paper deals with a simple ship-borne antenna stabilizer for use in limited area multi-beam maritime satellite communication systems. A limited area system with high satellite e.i.r.p. is expected to be a more economical satellite system than a global system, because a low-gain ship-borne antenna and a simplified antenna stabilizer can be used. An optimum configuration is proposed for small size and low cost pendulum-type antenna stabilizers which are suitable for low gain ship-borne antennas. Also, a performance evaluation of the stabilizers is discussed using a statistical analysis of ship motion characteristics. Furthermore, fading characteristics of received signal strength due to antenna off-beam fluctuation and sea surface random reflection are experimentally evaluated.

  6. On the existence of nonsuperdirective aperture antennas with directivity patterns within desired bounds

    Science.gov (United States)

    Hay, S. G.; Poulton, G. T.

    1996-11-01

    The problem of creating a directivity pattern within desired upper and lower bounds using a nonsuperdirective microwave antenna of prescribed aperture is studied, and a strong necessary condition for the existence of solutions is derived. The condition is tested in cases of interest in designing satellite antennas that provide regional coverages on the Earth. For these cases, aperture fields are found which closely approach directivity limits implied by the necessary condition. Realistic designs are also obtained for shaped reflectors with simple feeds, and the results confirm the strength of the necessary condition for practical problems.

  7. Maximum super angle optimization method for array antenna pattern synthesis

    DEFF Research Database (Denmark)

    Wu, Ji; Roederer, A. G

    1991-01-01

    Different optimization criteria related to antenna pattern synthesis are discussed. Based on the maximum criteria and vector space representation, a simple and efficient optimization method is presented for array and array fed reflector power pattern synthesis. A sector pattern synthesized by a 20...

  8. Pattern reconfigurable antenna using electromagnetic band gap structure

    Science.gov (United States)

    Ismail, M. F.; Rahim, M. K. A.; Majid, H. A.; Hamid, M. R.; Yusoff, M. F. M.; Dewan, R.

    2017-01-01

    In this paper, a single rectangular patch antenna incorporated with an array of electromagnetic band gap (EBG) structures is proposed. The proposed antenna features radiation pattern agility by means of connecting the shorting pin vias to the EBG unit cells. The proposed design consists of 32 mm × 35.5 mm rectangular patch antenna and 10.4-mm-square mushroom-like EBG unit cells. The EBGs are placed at both sides of the antenna radiating patch and located on the thicker substrate of thickness, h. The copper tape which represents the PIN diode is used to control the connection between the EBG's via and the ground plane as reconfigurable mechanism of the antenna. The simulated result shows by switching the ON and OFF EBG structures in either sides or both, the directional radiation pattern can be tilted from 0 to +14°. The proposed antenna exhibits 7.2 dB realized gain at 2.42 GHz. The parametric study on EBG and antenna is also discussed.

  9. Phased Antenna Array for Global Navigation Satellite System Signals

    Science.gov (United States)

    Turbiner, Dmitry (Inventor)

    2015-01-01

    Systems and methods for phased array antennas are described. Supports for phased array antennas can be constructed by 3D printing. The array elements and combiner network can be constructed by conducting wire. Different parameters of the antenna, like the gain and directivity, can be controlled by selection of the appropriate design, and by electrical steering. Phased array antennas may be used for radio occultation measurements.

  10. Downsizing Antenna Technologies for Mobile and Satellite Communications

    Science.gov (United States)

    Huang, J.; Densmore, A.; Tulintseff, A.; Jamnejad, V.

    1993-01-01

    Due to the increasing and stringent functional requirements (larger capacity, longer distances, etc.) of modern day communication systems, higher antenna gains are generally needed. This higher gain implies larger antenna size and mass which are undesirable to many systems. Consequently, downsizing antenna technology becomes one of the most critical areas for research and development efforts. Techniques to reduce antenna size can be categorized and are briefly discussed.

  11. Steerable K/Ka-Band Antenna For Land-Mobile Satellite Applications

    Science.gov (United States)

    Densmore, Arthur; Jamnejad, Vahraz; Woo, Kenneth

    1994-01-01

    Prototype steerable microwave antenna tracks and communicates with geostationary satellite. Designed to mount on roof of vehicle and only 10 cm tall. K/Ka-band antenna rugged and compact to suit rooftop mobile operating environment. More-delicate signal-processing and control equipment located inside vehicle.

  12. Fano resonances in antennas: General control over radiation patterns

    CERN Document Server

    Rybin, Mikhail V; Filonov, Dmitry S; Slobozhanyuk, Alexey P; Belov, Pavel A; Kivshar, Yuri S; Limonov, Mikhail F

    2013-01-01

    The concepts of many optical devices are based on the fundamental physical phenomena such as resonances. One of the commonly used devices is an electromagnetic antenna that converts localized energy into freely propagating radiation and vise versa, offering unique capabilities for controlling electromagnetic radiation. Here we propose a concept for controlling the intensity and directionality of electromagnetic wave scattering in radio-frequency and optical antennas based on the physics of Fano resonances. We develop an analytical theory of spatial Fano resonances in antennas that describes switching of the radiation pattern between the forward and backward directions, and confirm our theory with both numerical calculations and microwave experiments. Our approach bridges the concepts of conventional radio antennas and photonic nanoantennas, and it provides a paradigm for the design of wireless optical devices with various functionalities and architectures.

  13. Directional pattern measurement of the BRAMS beacon antenna system

    Science.gov (United States)

    Martínez Picar, A.; Marqué, C.; Anciaux, M.; Lamy, H.

    2015-01-01

    The typical methods for measuring antenna characteristics are mostly based on the use of remote transmitters or receivers. For antennas used in radio communications, calibrations are usually done on an antenna test stand using transmitters with known power output. In order to minimize the ground effects while performing measurements, it is necessary to place the transmitter or receiver high above ground with the aid of aircrafts. It is, however, necessary to determine precisely the coordinates of the airborne devices as well as to maintain high stability. This used to be excessively difficult to carry out, but recent advances in Unmanned Aerial Vehicle (UAV) technologies have brought a feasible option. In this paper, the results of using a low-cost system for measuring the directional pattern of BRAMS beacon antenna system based on an UAV are presented.

  14. 30/20 GHz communications satellite multibeam antenna

    Science.gov (United States)

    Scott, W. G.; Luh, H. S.; Smoll, A. E.; Matthews, E. W.

    1982-01-01

    A 20 GHz downlink satellite antenna design is described. The aperture simultaneously radiates 18 fixed, 0.3 deg width pencil beams directed at 18 cities distributed over CONUS for Trunking Service. All beams use the same trunk frequency allocation for 18 reuses of the band. The same aperture also radiates six additional 0.3 deg spot beams for Customer Premises Service (CPS) for TDMA beam hopping operation to small terminals anywhere in CONUS. Each CPS beam scans one sector of CONUS and all six beams are frequency reused in a CPS band. Offset dual reflector optics are used with a feed array and multiport beam forming network (BFN). For so many frequency reuses, sidelobes per beam must be 30 to 40 dB down over CONUS. Novel dual reflector optics were devised with shaped surfaces providing low aberrations for all beam positions over CONUS (+ or - 12 BW by + or - 5 BW). Scan loss under 1 dB is calculated with nearly constant sidelobes. For each beam position, a 7-element cluster of feeds is activated in the feed array with coefficients adjusted by the BFN to maintain low sidelobes and thus high beam isolation for frequency reuse.

  15. Capacitively Loaded Loop-Based Antennas with Reconfigurable Radiation Patterns

    Directory of Open Access Journals (Sweden)

    Saber Dakhli

    2015-01-01

    Full Text Available A class of metamaterial-inspired antennas having reconfigurable radiation patterns is proposed. They consist of a driven monopole antenna with one- and two-capacitively loaded loop (CLL, near field resonant parasitic elements. Two configurations are studied by considering the state of these CLL elements as being either open or closed configurations. Simulation results explain the design features and demonstrate that the structure can change its beam direction simply by controlling the switched states. Two prototypes with one- and two-CLL elements were fabricated and tested. The measured impedance mismatch and radiation pattern results are presented and compared to the corresponding simulated values.

  16. A truncation method for modelling effective antenna patterns in urban areas

    NARCIS (Netherlands)

    Mantel, O.C.; Rijken, M.; Matic, D.; Mawira, A.

    2004-01-01

    Signal level predictions for sector antennas in mobile networks strongly depend on the antenna pattern used in the prediction tool. For built-up areas, reflections and scattering often lead to a significant energy component at the back of the antenna, and the theoretical antenna pattern does not

  17. A truncation method for modelling effective antenna patterns in urban areas

    NARCIS (Netherlands)

    Mantel, O.C.; Rijken, M.; Matic, D.; Mawira, A.

    2004-01-01

    Signal level predictions for sector antennas in mobile networks strongly depend on the antenna pattern used in the prediction tool. For built-up areas, reflections and scattering often lead to a significant energy component at the back of the antenna, and the theoretical antenna pattern does not acc

  18. Concepts and cost trade-offs for land vehicle antennas in satellite mobile communications

    Science.gov (United States)

    Haddad, H. A.

    1948-01-01

    Several antenna design concepts, operating at UHF (821 to 825 MHz transmit and 866 to 870 MHz receive bands), with gain ranging between 6 and 12 dBic, that are suitable for land mobile vehicles are presented. The antennas may be used within CONUS and ALASKA to communicate to and from a geosynchronous satellite. Depending on the type of steering mechanism, the antennas are broken down into three categories; (1) electronically scanned arrays with phase shifters, (2) electronically switched arrays with switchable power dividers/combiners, and (3) mechanically steered arrays. The operating characteristics of two of these design concepts, one a conformal antenna with electronic beam steering and the other a nonconformal design with mechanical steering, were evaluated with regard to two and three satellite system. Cost estimates of various antenna concepts were made and plotted against their overall gain performance.

  19. UHF coplanar-slot antenna for aircraft-to-satellite data communications

    Science.gov (United States)

    Myhre, R. W.

    1979-01-01

    The initiative for starting the Aircraft-to-Satellite Data Relay (ASDAR) Program came from a recognition that much of the world's weather originates in the data sparse area of the tropics which are primarily ocean. The ASDAR system consists of (1) a data acquisition and control unit to acquire, store and format these data; (2) a clock to time the data sampling and transmission periods; and (3) a transmitter and low-profile upper hemisphere coverage antenna to relay the formatted data via satellite to the National Weather Service ground stations, as shown schematically. The low-profile antenna is a conformal antenna based on the coplanar-slot approach. The antenna is circular polarized and has an on-axis gain of nearly 2.5 dB and a HPBW greater than 90 deg. The discussion covers antenna design, radiation characteristics, flight testing, and system performance.

  20. Effects on dynamic characters of antenna structures in satellite induced by disordered parameters

    Institute of Scientific and Technical Information of China (English)

    Liu Xiangqiu; Wang Cong; Wang Weiyuan; Zou Zhenzhu

    2009-01-01

    A simplified dynamic model of a dish antenna in satellite is established in this article. The model can be easily used to analyze the dynamic behaviour of the antenna structure. In terms of the simplified model, effects on dynamic characters due to the disorder of parameters are investigated in details. The frequencies calculated by the simplified model accord with those computed by ANSYS. Based on the mode shapes of disordered and perfect structure, the influence law and varying trend of dynamic characters of antenna structures in satellites produced by stiffness and mass of antenna ribs, stiffness of antenna membranes and angles between adjacent ribs, are obtained. The analyses in the paper indicate that the effects by disordered parameters can not be ignored in the dynamic analysis of such structures.

  1. Experimental tests for characterization of GPR antenna patterns

    Directory of Open Access Journals (Sweden)

    L. Versino

    1994-06-01

    Full Text Available Detection and location of buried structures using the electromagnetic impulsive methodologies (GPR require the study of the spatial distribution of energy irradiated by an antenna into the ground and the mechanisms of wave propagation and scattering from relevant targets. Evaluation of the difference in wave field distribution in the ground with respect to free space can provide some useful indications on the propagation of the Geo-radar signal in the ground and the spatial resolution capability of the GPR method. For this reason, a research group, involving “La Sapienza” University, Rome and the National Research Council began, during 1992, to perform studies on antenna radiation pattern, the propagation and scattering phenomena of GPR. This paper presents the experimental set up and the obtained results on the antenna radiation pattern.

  2. Visibility conflict resolution for multiple antennae and multi-satellites via genetic algorithm

    Science.gov (United States)

    Lee, Junghyun; Hyun, Chung; Ahn, Hyosung; Wang, Semyung; Choi, Sujin; Jung, Okchul; Chung, Daewon; Ko, Kwanghee

    Satellite mission control systems typically are operated by scheduling missions to the visibility between ground stations and satellites. The communication for the mission is achieved by interacting with satellite visibility and ground station support. Specifically, the satellite forms a cone-type visibility passing over a ground station, and the antennas of ground stations support the satellite. When two or more satellites pass by at the same time or consecutively, the satellites may generate a visibility conflict. As the number of satellites increases, solving visibility conflict becomes important issue. In this study, we propose a visibility conflict resolution algorithm of multi-satellites by using a genetic algorithm (GA). The problem is converted to scheduling optimization modeling. The visibility of satellites and the supports of antennas are considered as tasks and resources individually. The visibility of satellites is allocated to the total support time of antennas as much as possible for users to obtain the maximum benefit. We focus on a genetic algorithm approach because the problem is complex and not defined explicitly. The genetic algorithm can be applied to such a complex model since it only needs an objective function and can approach a global optimum. However, the mathematical proof of global optimality for the genetic algorithm is very challenging. Therefore, we apply a greedy algorithm and show that our genetic approach is reasonable by comparing with the performance of greedy algorithm application.

  3. Cube/Small Satellite Antenna Design and Performance Optimization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This IRAD proposal investigates and proposes different small, efficient, low cost, reliable, and robust antenna design concepts with stable electrical and radiation...

  4. An L-strip fed stacked patch antenna for maritime satellite communications

    Institute of Scientific and Technical Information of China (English)

    FU Shi-qiang; FANG Shao-jun

    2008-01-01

    A practical antenna has been designed and developed for INMARSAT mobile satellite communications. The design uses low cost materials such as foam and copper foil to create a stacked microstrip antenna array. Several techniques were adopted to enhance the impedance bandwidth and axial ratio bandwidth. The final design parameters were optimized by EM simulation. Finally, the L-strip fed six-element stacked microstrip antenna array was constructed and tested. Simulated and measured results show that in the whole INMARSAT work band, the VSWR of the antenna is less than 1.6, its antenna gain is higher than 15riB and wide-angle axial ratio (AR) 3dB is more than 21°. The antenna has been successfully used with a HNS 9201 terminal.

  5. Dynamic Modeling and Simulation of Marine Satellite Tracking Antenna Using Lagrange Method

    DEFF Research Database (Denmark)

    Wang, Yunlong; Nourbakhsh, S. M; Hussain, Dil muhammed Akbar

    2016-01-01

    Marine Satellite Tracking Antenna (MSTA) is a necessary device in ships for receiving satellite signals when they are sailing on the sea. This paper presents a simple methodology to obtain the dynamic equations of MSTA through Lagrange method, which is fundamental in design of modelbased...

  6. Hilbert-Curve Fractal Antenna With Radiation- Pattern Diversity

    Science.gov (United States)

    Nessel, James A.; Miranda, Felix A.; Zaman, Afroz

    2007-01-01

    A printed, folded, Hilbert-curve fractal microwave antenna has been designed and built to offer advantages of compactness and low mass, relative to other antennas designed for the same operating frequencies. The primary feature of the antenna is that it offers the advantage of radiation-pattern diversity without need for electrical or mechanical switching: it can radiate simultaneously in an end-fire pattern at a frequency of 2.3 GHz (which is in the S-band) and in a broadside pattern at a frequency of 16.8 GHz (which is in the Ku-band). This radiation-pattern diversity could be utilized, for example, in applications in which there were requirements for both S-band ground-to-ground communications and Ku-band ground-to-aircraft or ground-to-spacecraft communications. The lack of switching mechanisms or circuitry makes this antenna more reliable, easier, and less expensive to fabricate than it otherwise would be.

  7. Airborne evaluation/verification of antenna patterns of broadcasting stations

    NARCIS (Netherlands)

    Witvliet, B.A.

    2006-01-01

    and verification of the antenna patterns of broadcasting stations. Although it is intended for governmental institutions and broadcasters it may be also of interest to anyone who wants to evaluate large radiating structures. An airborne measurement to investigate the properties of the structure in a

  8. Design of smoothed multi-flared antenna for multi-frequency reception of direct transmission from meteorological satellites

    Science.gov (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Kesarkar, Amit P.; Thawait, Prateek

    2016-07-01

    The direct radiance data assimilation is found to be advantageous for the numerical weather prediction over short and medium range. Therefore reception of satellite radiance in real time is important. Satellite earth station is the preferred choice for direct reception of this data, which is voluminous. High Rate Information being transmitted from these satellites operating in L, S, C and X bands needs to be received. A commercial wide band antenna is not preferred for such application, as it operates uniformly over the entire frequency range in these bands and may create interference over the unwanted frequencies. As the frequencies of interest occupy only a small portion of these bands, it is essential to design a horn antenna, which receives only specified frequencies and filter other frequencies. In this work, we have designed a multi-flare multi-frequency cylindrical horn antenna for reception of direct transmission from meteorological satellites. This earth station antenna tracks selected satellites working over specified frequency ranges, which are 1.694-1.703 GHz, 2.0-2.06 GHz, 4.5-4.6 GHz and 7.8-7.9 GHz in L, S, C and X bands respectively. Cylindrical waveguides for the frequencies, 1.6, 2, 4.5 and 8 GHz are designed and they are joined in the increasing order of radius with suitable conical shapes. The slope of the cones is adjusted experimentally. With this design, the return loss is simulated and found to be better than 20 dB upto 4.5 GHz and later it became poor. To overcome this difficulty, the abrupt transitions at the joints of the conical and cylindrical waveguides are made smoothen by increasing the diameter of one mouth of the cylinder and reducing the other mouth to match with the cylinders corresponding to next higher and lower frequency respectively. As a result, a smooth flared antenna is obtained and the simulated results are satisfactory. A parabolic reflector of 4 m diameter is designed and the smooth multi-flared antenna is kept at the

  9. Change of radiation pattern in a plasma monopole antenna

    Science.gov (United States)

    Siahpoush, V.; Shokri, B.

    2016-07-01

    In the present work, we have numerically solved the dispersion equation of the surface wave propagating on a uniform collisional plasma column. The electric field and surface current distributions have been computed in different situations. We have investigated the effect of plasma frequency variation on the spatial distribution of the surface current. Results show that varying the electron density of the plasma column enables the plasma column to work as a plasma monopole antenna with a fixed geometrical structure and excited frequency which is able to create different radiation patterns. Our numerical analysis also shows that a little change in the radius of the plasma column has a strong influence on the current distribution at the excited frequency in RF region. This effect can be ignored in the usual (metallic) antenna while it is very important in designing of the plasma monopole antenna.

  10. ACTS on-orbit multibeam antenna pattern measurements

    Science.gov (United States)

    Acosta, R.; Wright, D.; Regier, F.

    1995-01-01

    The Advanced Communication Technology (ACTS) is a key to NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna (MBA) with rapidly reconfigurable hopping and fixed spot beams to serve users equipped with small-aperture terminals within the coverage areas. The MBA test program is designed to evaluate the on-orbit ACTS antenna performance. The main parameters measured are beam shape, beam center location and gain.

  11. Autonomous Pointing Control of a Large Satellite Antenna Subject to Parametric Uncertainty.

    Science.gov (United States)

    Wu, Shunan; Liu, Yufei; Radice, Gianmarco; Tan, Shujun

    2017-03-10

    With the development of satellite mobile communications, large antennas are now widely used. The precise pointing of the antenna's optical axis is essential for many space missions. This paper addresses the challenging problem of high-precision autonomous pointing control of a large satellite antenna. The pointing dynamics are firstly proposed. The proportional-derivative feedback and structural filter to perform pointing maneuvers and suppress antenna vibrations are then presented. An adaptive controller to estimate actual system frequencies in the presence of modal parameters uncertainty is proposed. In order to reduce periodic errors, the modified controllers, which include the proposed adaptive controller and an active disturbance rejection filter, are then developed. The system stability and robustness are analyzed and discussed in the frequency domain. Numerical results are finally provided, and the results have demonstrated that the proposed controllers have good autonomy and robustness.

  12. Spaceborne GPS receiver antenna phase center offset and variation estimation for the Shiyan 3 satellite

    Directory of Open Access Journals (Sweden)

    Gu Defeng

    2016-10-01

    Full Text Available In determining the orbits of low Earth orbit (LEO satellites using spaceborne GPS, the errors caused by receiver antenna phase center offset (PCO and phase center variations (PCVs are gradually becoming a major limiting factor for continued improvements to accuracy. Shiyan 3, a small satellite mission for space technology experimentation and climate exploration, was developed by China and launched on November 5, 2008. The dual-frequency GPS receiver payload delivers 1 Hz data and provides the basis for precise orbit determination within the range of a few centimeters. The antenna PCO and PCV error characteristics and the principles influencing orbit determination are analyzed. The feasibility of PCO and PCV estimation and compensation in different directions is demonstrated through simulation and in-flight tests. The values of receiver antenna PCO and PCVs for Gravity Recovery and Climate Experiment (GRACE and Shiyan 3 satellites are estimated from one month of data. A large and stable antenna PCO error, reaching up to 10.34 cm in the z-direction, is found with the Shiyan 3 satellite. The PCVs on the Shiyan 3 satellite are estimated and reach up to 3.0 cm, which is slightly larger than that of GRACE satellites. Orbit validation clearly improved with independent k-band ranging (KBR and satellite laser ranging (SLR measurements. For GRACE satellites, the average root mean square (RMS of KBR residuals improved from 1.01 cm to 0.88 cm. For the Shiyan 3 satellite, the average RMS of SLR residuals improved from 4.95 cm to 4.06 cm.

  13. Spaceborne GPS receiver antenna phase center offset and variation estimation for the Shiyan 3 satellite

    Institute of Scientific and Technical Information of China (English)

    Gu Defeng; Lai Yuwang; Liu Junhong; Ju Bing; Tu Jia

    2016-01-01

    In determining the orbits of low Earth orbit (LEO) satellites using spaceborne GPS, the errors caused by receiver antenna phase center offset (PCO) and phase center variations (PCVs) are gradually becoming a major limiting factor for continued improvements to accuracy. Shiyan 3, a small satellite mission for space technology experimentation and climate exploration, was developed by China and launched on November 5, 2008. The dual-frequency GPS receiver payload delivers 1 Hz data and provides the basis for precise orbit determination within the range of a few centime-ters. The antenna PCO and PCV error characteristics and the principles influencing orbit determi-nation are analyzed. The feasibility of PCO and PCV estimation and compensation in different directions is demonstrated through simulation and in-flight tests. The values of receiver antenna PCO and PCVs for Gravity Recovery and Climate Experiment (GRACE) and Shiyan 3 satellites are estimated from one month of data. A large and stable antenna PCO error, reaching up to 10.34 cm in the z-direction, is found with the Shiyan 3 satellite. The PCVs on the Shiyan 3 satellite are estimated and reach up to 3.0 cm, which is slightly larger than that of GRACE satellites. Orbit validation clearly improved with independent k-band ranging (KBR) and satellite laser ranging (SLR) measurements. For GRACE satellites, the average root mean square (RMS) of KBR resid-uals improved from 1.01 cm to 0.88 cm. For the Shiyan 3 satellite, the average RMS of SLR resid-uals improved from 4.95 cm to 4.06 cm.

  14. 47 CFR 22.371 - Disturbance of AM broadcast station antenna patterns.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Disturbance of AM broadcast station antenna....371 Disturbance of AM broadcast station antenna patterns. Public Mobile Service licensees that... necessary to correct disturbance of the AM station antenna pattern which causes operation outside of...

  15. 47 CFR 27.63 - Disturbance of AM broadcast station antenna patterns.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Disturbance of AM broadcast station antenna... AM broadcast station antenna patterns. AWS and WCS licensees that construct or modify towers in the... the AM station antenna pattern which causes operation outside of the radiation parameters specified...

  16. Multi-antenna synchronized global navigation satellite system receiver and its advantages in high-precision positioning applications

    Science.gov (United States)

    Dong, Danan; Chen, Wen; Cai, Miaomiao; Zhou, Feng; Wang, Minghua; Yu, Chao; Zheng, Zhengqi; Wang, Yuanfei

    2016-12-01

    The multi-antenna synchronized global navigation satellite system receiver is a high precision, low cost, and widely used emerging receiver. Using this type of receiver, the satellite and receiver clock errors can be eliminated simultaneously by forming between antenna single-differences, which is equivalent to the conventional double-difference model. However, current multi-antenna synchronized global navigation satellite system receiver products have not fully realized their potential to achieve better accuracy, efficiency, and broader applications. This paper introduces the conceptual design and derivable products of multi-antenna synchronized global navigation satellite system receivers involving the aspects of attitude determination, multipath effect mitigation, phase center variation correction, and ground-based carrier phase windup calibration. Through case studies, the advantages of multi-antenna synchronized global navigation satellite system receivers in high-precision positioning applications are demonstrated.

  17. The use of antenna radiation pattern in node localisation algorithms for wireless sensor networks

    CSIR Research Space (South Africa)

    Mwila, MK

    2014-08-01

    Full Text Available systems are now deploying directional antennas due to their advantages like energy conservation and better bandwidth utilisation. The study presented by this paper reviews some related works that include the antenna radiation pattern of the sensor node...

  18. Development of the sandra antenna for airborne satellite communication

    NARCIS (Netherlands)

    Verpoorte, J.; Schippers, H.; Jorna, P.; Hulzinga, A.; Roeloffzen, C.G.H.; Marpaung, D.A.I.; Sanadgol, B.; Baggen, R.; Wang, Qin; Noharet, B.; Beeker, W.; Leinse, A.; Heideman, R.G.

    2011-01-01

    Novel avionics communication systems are required for increasing flight safety and operational integrity, for optimizing economy of operations and for enhancing passenger services. One of the key technologies to be developed is an antenna system that will provide broadband connectivity within aircra

  19. Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns

    OpenAIRE

    Wu, Yongle; Qu, Meijun; Jiao, Lingxiao; Liu, Yuanan; Ghassemlooy, Zabih

    2016-01-01

    This paper presents a radiation pattern reconfigurable Yagi-Uda antenna based on graphene operating at terahertz frequencies. The antenna can be reconfigured to change the main beam pattern into two or four different radiation directions. The proposed antenna consists of a driven dipole radiation conductor, parasitic strips and embedded graphene. The hybrid graphene-metal implementation enables the antenna to have dynamic surface conductivity, which can be tuned by changing the chemical poten...

  20. 星载多波束天线设计%Design of Multi-beam Satellite Antennas

    Institute of Scientific and Technical Information of China (English)

    段玉虎

    2011-01-01

    给出了星栽多波束天线的设计方法、步骤和参数选择原则,给出了2个区域多点波束天线和赋形波束的设计实例,并用物理光学法计算了覆盖区域的天线方向图、覆盖区增益和频率复用时的同极化波束隔离.%The design method, procedure and principle of parameter choice for design of multi-beam satellite antennas are presented. Furthermore, the paper offers specific design examples of two-region multi-beam antennas and shaped beam. Finally, the radiation pattern and co-polarization isolation against gain and with frequency reuse of coverage area are calculated with physical-optics method.

  1. Autonomous Pointing Control of a Large Satellite Antenna Subject to Parametric Uncertainty

    Science.gov (United States)

    Wu, Shunan; Liu, Yufei; Radice, Gianmarco; Tan, Shujun

    2017-01-01

    With the development of satellite mobile communications, large antennas are now widely used. The precise pointing of the antenna’s optical axis is essential for many space missions. This paper addresses the challenging problem of high-precision autonomous pointing control of a large satellite antenna. The pointing dynamics are firstly proposed. The proportional–derivative feedback and structural filter to perform pointing maneuvers and suppress antenna vibrations are then presented. An adaptive controller to estimate actual system frequencies in the presence of modal parameters uncertainty is proposed. In order to reduce periodic errors, the modified controllers, which include the proposed adaptive controller and an active disturbance rejection filter, are then developed. The system stability and robustness are analyzed and discussed in the frequency domain. Numerical results are finally provided, and the results have demonstrated that the proposed controllers have good autonomy and robustness. PMID:28287450

  2. Autonomous Pointing Control of a Large Satellite Antenna Subject to Parametric Uncertainty

    Directory of Open Access Journals (Sweden)

    Shunan Wu

    2017-03-01

    Full Text Available With the development of satellite mobile communications, large antennas are now widely used. The precise pointing of the antenna’s optical axis is essential for many space missions. This paper addresses the challenging problem of high-precision autonomous pointing control of a large satellite antenna. The pointing dynamics are firstly proposed. The proportional–derivative feedback and structural filter to perform pointing maneuvers and suppress antenna vibrations are then presented. An adaptive controller to estimate actual system frequencies in the presence of modal parameters uncertainty is proposed. In order to reduce periodic errors, the modified controllers, which include the proposed adaptive controller and an active disturbance rejection filter, are then developed. The system stability and robustness are analyzed and discussed in the frequency domain. Numerical results are finally provided, and the results have demonstrated that the proposed controllers have good autonomy and robustness.

  3. An adaptive Multiplicative Extened Kalman Filter for Attitude Estimation of Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    , an adaptive Multiplicative Extended Kalman Filter (MEKF) for attitude estimation of Marine Satellite Tracking Antenna (MSTA) is presented with the measurement noise covariance matrix adjusted according to the norm of accelerometer measurements, which can significantly reduce the slamming influence from waves...

  4. The method of the antenna system positioning for satellite communication network radiomonitoring complex

    OpenAIRE

    Гребенюк, Олег Петрович

    2014-01-01

    The method of orientation of the antenna system of complex of radiomonitoring of satellite communication networks is offered. A method takes into account the features of construction and functional setting of a transport stream of standard of DVB ‑ S.

  5. Planetary gearbox condition monitoring of ship-based satellite communication antennas using ensemble multiwavelet analysis method

    Science.gov (United States)

    Chen, Jinglong; Zhang, Chunlin; Zhang, Xiaoyan; Zi, Yanyang; He, Shuilong; Yang, Zhe

    2015-03-01

    Satellite communication antennas are key devices of a measurement ship to support voice, data, fax and video integration services. Condition monitoring of mechanical equipment from the vibration measurement data is significant for guaranteeing safe operation and avoiding the unscheduled breakdown. So, condition monitoring system for ship-based satellite communication antennas is designed and developed. Planetary gearboxes play an important role in the transmission train of satellite communication antenna. However, condition monitoring of planetary gearbox still faces challenges due to complexity and weak condition feature. This paper provides a possibility for planetary gearbox condition monitoring by proposing ensemble a multiwavelet analysis method. Benefit from the property on multi-resolution analysis and the multiple wavelet basis functions, multiwavelet has the advantage over characterizing the non-stationary signal. In order to realize the accurate detection of the condition feature and multi-resolution analysis in the whole frequency band, adaptive multiwavelet basis function is constructed via increasing multiplicity and then vibration signal is processed by the ensemble multiwavelet transform. Finally, normalized ensemble multiwavelet transform information entropy is computed to describe the condition of planetary gearbox. The effectiveness of proposed method is first validated through condition monitoring of experimental planetary gearbox. Then this method is used for planetary gearbox condition monitoring of ship-based satellite communication antennas and the results support its feasibility.

  6. Antenna Pattern Measurements for Oceanographic Radars Using Small Aerial Drones

    Science.gov (United States)

    Washburn, L.; Romero, E.; Johnson, C.; Emery, B.; Gotschalk, C.

    2016-12-01

    We describe a method employing small, quadrotor drone aircraft for antenna pattern measurements (APMs) of high-frequency (HF) oceanographic radars used for observing ocean surface currents. During APMs, the drones carry small radio signal sources in circular arcs centered on receive antenna arrays at HF radar sites, similarly to conventional boat-based APMs. Previous studies have shown that accurate surface current measurements using HF radar require APMs. In the absence of APMs so-called "ideal" antenna patterns are assumed and these can differ substantially from measured patterns. Typically APMs are obtained using small research vessels, an expensive procedure requiring sea-going technicians, a vessel, and other equipment necessary to support small boat operations. Adverse sea conditions and obstacles in the water can limit the ability of small vessels to conduct APMs. In contrast, drones can successfully conduct APMs at much lower cost and in a broader range of sea states with comparable accuracy. Drone-based patterns can extend farther shoreward since they are not affected by the surf zone and thereby expand the range of bearings over which APMs are conducted. We describe recent progress in the use of drones for APMs including: (1) evaluation of the accuracy APM flight trajectories; (2) estimates of radial velocity components due to deviation of flight paths from circular arcs; and (3) the effects of altitude with respect to ground wave versus direct signal propagation. Use of drones simplifies APMs and it is hoped that this will lead to more frequent APMs and improved surface current measurements from HF radar networks.

  7. An adaptive Multiplicative Extened Kalman Filter for Attitude Estimation of Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    Satellite tracking is a challenging task for marine applications due to the disturbance from ocean waves. An Attitude Heading and Reference System (AHRS) for measuring ship attitude, based on Microelectromechanical Systems (MEMS) sensors, is a key part for satellite tracking. In this paper......, an adaptive Multiplicative Extended Kalman Filter (MEKF) for attitude estimation of Marine Satellite Tracking Antenna (MSTA) is presented with the measurement noise covariance matrix adjusted according to the norm of accelerometer measurements, which can significantly reduce the slamming influence from waves...

  8. Advanced Communication Technology Satellite (ACTS) Multibeam Antenna On-Orbit Performance

    Science.gov (United States)

    1995-01-01

    The NASA Lewis Research Center's Advanced Communication Technology Satellite (ACTS) was launched in September 1993. ACTS introduced several new technologies, including a multibeam antenna (MBA) operating at extremely short wavelengths never before used in communications. This antenna, which has both fixed and rapidly reconfigurable high-energy spot beams (150 miles in diameter), serves users equipped with small antenna terminals. Extensive structural and thermal analyses have been performed for simulating the ACTS MBA on-orbit performance. The results show that the reflector surfaces (mainly the front subreflector), antenna support assembly, and metallic surfaces on the spacecraft body will be distorted because of the thermal effects of varying solar heating, which degrade the ACTS MBA performance. Since ACTS was launched, a number of evaluations have been performed to assess MBA performance in the space environment. For example, the on-orbit performance measurements found systematic environmental disturbances to the MBA beam pointing. These disturbances were found to be imposed by the attitude control system, antenna and spacecraft mechanical alignments, and on-orbit thermal effects. As a result, the MBA may not always exactly cover the intended service area. In addition, the on-orbit measurements showed that antenna pointing accuracy is the performance parameter most sensitive to thermal distortions on the front subreflector surface and antenna support assemblies. Several compensation approaches were tested and evaluated to restore on-orbit pointing stability. A combination of autotrack (75 percent of the time) and Earth sensor control (25 percent of the time) was found to be the best way to compensate for antenna pointing error during orbit. This approach greatly minimizes the effects of thermal distortions on antenna beam pointing.

  9. Frequency-Tunable and Pattern Diversity Antennas for Cognitive Radio Applications

    Directory of Open Access Journals (Sweden)

    A. H. Ramadan

    2014-01-01

    Full Text Available Frequency-tunable microstrip antennas, for cognitive radio applications, are proposed herein. The approach is based on tuning the operating frequency of a bandpass filter that is incorporated into a wideband antenna. The integration of an open loop resonator- (OLR- based adjustable bandpass filter into a wideband antenna to transform it into a tunable filter-antenna is presented. The same technique is employed to design a cognitive radio pattern diversity tunable filter-antenna. A good agreement between the simulated and measured results for the fabricated prototypes is obtained. The radiation characteristics of each designed tunable filter-antenna are included herein.

  10. Application of adaptive antenna techniques to future commercial satellite communications. Executive summary

    Science.gov (United States)

    Ersoy, L.; Lee, E. A.; Matthews, E. W.

    1987-01-01

    The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further subdivided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.

  11. Compact Reconfigurable Antenna with an Omnidirectional Pattern and Four Directional Patterns for Wireless Sensor Systems.

    Science.gov (United States)

    Wang, Ren; Wang, Bing-Zhong; Huang, Wei-Ying; Ding, Xiao

    2016-04-16

    A compact reconfigurable antenna with an omnidirectional mode and four directional modes is proposed. The antenna has a main radiator and four parasitic elements printed on a dielectric substrate. By changing the status of diodes soldered on the parasitic elements, the proposed antenna can generate four directional radiation patterns and one omnidirectional radiation pattern. The main beam directions of the four directional modes are almost orthogonal and the four directional beams can jointly cover a 360° range in the horizontal plane, i.e., the main radiation plane of omnidirectional mode. The whole volume of the antenna and the control network is approximately 0.70 λ × 0.53 λ × 0.02 λ, where λ is the wavelength corresponding to the center frequency. The proposed antenna has a simple structure and small dimensions under the requirement that the directional radiation patterns can jointly cover the main radiation plane of the omnidirectional mode, therefore, it can be used in smart wireless sensor systems for different application scenarios.

  12. Compact Reconfigurable Antenna with an Omnidirectional Pattern and Four Directional Patterns for Wireless Sensor Systems

    Directory of Open Access Journals (Sweden)

    Ren Wang

    2016-04-01

    Full Text Available A compact reconfigurable antenna with an omnidirectional mode and four directional modes is proposed. The antenna has a main radiator and four parasitic elements printed on a dielectric substrate. By changing the status of diodes soldered on the parasitic elements, the proposed antenna can generate four directional radiation patterns and one omnidirectional radiation pattern. The main beam directions of the four directional modes are almost orthogonal and the four directional beams can jointly cover a 360° range in the horizontal plane, i.e., the main radiation plane of omnidirectional mode. The whole volume of the antenna and the control network is approximately 0.70 λ × 0.53 λ × 0.02 λ, where λ is the wavelength corresponding to the center frequency. The proposed antenna has a simple structure and small dimensions under the requirement that the directional radiation patterns can jointly cover the main radiation plane of the omnidirectional mode, therefore, it can be used in smart wireless sensor systems for different application scenarios.

  13. Adaptive array antenna for satellite cellular and direct broadcast communications

    Science.gov (United States)

    Horton, Charles R.; Abend, Kenneth

    1993-01-01

    Adaptive phased-array antennas provide cost-effective implementation of large, light weight apertures with high directivity and precise beamshape control. Adaptive self-calibration allows for relaxation of all mechanical tolerances across the aperture and electrical component tolerances, providing high performance with a low-cost, lightweight array, even in the presence of large physical distortions. Beam-shape is programmable and adaptable to changes in technical and operational requirements. Adaptive digital beam-forming eliminates uplink contention by allowing a single electronically steerable antenna to service a large number of receivers with beams which adaptively focus on one source while eliminating interference from others. A large, adaptively calibrated and fully programmable aperture can also provide precise beam shape control for power-efficient direct broadcast from space. Advanced adaptive digital beamforming technologies are described for: (1) electronic compensation of aperture distortion, (2) multiple receiver adaptive space-time processing, and (3) downlink beam-shape control. Cost considerations for space-based array applications are also discussed.

  14. A 2.4 GHz Cross Rhombic Antenna for a Cube Satellite Application

    Directory of Open Access Journals (Sweden)

    Jorge Sosa-Pedroza

    2014-01-01

    Full Text Available We present design and construction results of a 2.4 Ghz cross rhombic antenna to be used in a cubesat. Computational design agrees with experimental results after its construction. cross rhombic antenna is a novel planar structure of our own design, presenting circular polarization and medium gain; it is built over a RF60A substrate with εr=6.15, decreasing its size to fit the required dimensions of satellite. A special characteristic of this design is the enhancing of operational bandwidth using a technique we have been studying, related to softening the structures with sharp edges. Results show applicability and success of our technique.

  15. Antenna pointing system for satellite tracking based on Kalman filtering and model predictive control techniques

    Science.gov (United States)

    Souza, André L. G.; Ishihara, João Y.; Ferreira, Henrique C.; Borges, Renato A.; Borges, Geovany A.

    2016-12-01

    The present work proposes a new approach for an antenna pointing system for satellite tracking. Such a system uses the received signal to estimate the beam pointing deviation and then adjusts the antenna pointing. The present work has two contributions. First, the estimation is performed by a Kalman filter based conical scan technique. This technique uses the Kalman filter avoiding the batch estimator and applies a mathematical manipulation avoiding the linearization approximations. Secondly, a control technique based on the model predictive control together with an explicit state feedback solution are obtained in order to reduce the computational burden. Numerical examples illustrate the results.

  16. Design optimization studies for large-scale contoured beam deployable satellite antennas

    Science.gov (United States)

    Tanaka, Hiroaki

    2006-05-01

    Satellite communications systems over the past two decades have become more sophisticated and evolved new applications that require much higher flux densities. These new requirements to provide high data rate services to very small user terminals have in turn led to the need for large aperture space antenna systems with higher gain. Conventional parabolic reflectors constructed of metal have become, over time, too massive to support these new missions in a cost effective manner and also have posed problems of fitting within the constrained volume of launch vehicles. Designers of new space antenna systems have thus begun to explore new design options. These design options for advanced space communications networks include such alternatives as inflatable antennas using polyimide materials, antennas constructed of piezo-electric materials, phased array antenna systems (especially in the EHF bands) and deployable antenna systems constructed of wire mesh or cabling systems. This article updates studies being conducted in Japan of such deployable space antenna systems [H. Tanaka, M.C. Natori, Shape control of space antennas consisting of cable networks, Acta Astronautica 55 (2004) 519-527]. In particular, this study shows how the design of such large-scale deployable antenna systems can be optimized based on various factors including the frequency bands to be employed with such innovative reflector design. In particular, this study investigates how contoured beam space antennas can be effective by constructed out of so-called cable networks or mesh-like reflectors. This design can be accomplished via "plane wave synthesis" and by the "force density method" and then to iterate the design to achieve the optimum solution. We have concluded that the best design is achieved by plane wave synthesis. Further, we demonstrate that the nodes on the reflector are best determined by a pseudo-inverse calculation of the matrix that can be interpolated so as to achieve the minimum

  17. Low Profile and Low Cost Antenna Technology for Satellite TV Reception on Sports Utility Vehicles (SUV) for the US Market

    Science.gov (United States)

    Vazquez, F. Javier; Pearson, Robert A.; Driscoll, Barry G.

    2003-07-01

    A low profile scanning antenna for reception of satellite TV has been developed for the US market compatible with existing DBS Ku band satellite infrastructure. This antenna technology does not require active RF components and it is inherently low cost (in the order of a few hundred dollars even in moderate production volumes). The antenna is able to scan a circularly polarised beam in the range 20 to 69 degrees, covering three DBS satellites in the US including some margin for vehicle tilt. An antenna demonstrator of 115 mm height, including the radome and tracking electronics has been built and measured. Live tests were performed in the US during 2002 to determine realistic link margins and antenna specifications. A product development is currently being undertaken to turn the demonstrator unit into a product for the US market by the end of 2003.

  18. A Multibeam Dual-Band Orthogonal Linearly Polarized Antenna Array for Satellite Communication on the Move

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2015-01-01

    Full Text Available The design and simulation of a 10 × 8 multibeam dual-band orthogonal linearly polarized antenna array operating at Ku-band are presented for transmit-receive applications. By using patches with different coupling methods as elements, both perpendicular polarization in 12.25–12.75 GHz band and horizontal polarization in 14.0–14.5 GHz band are realized in a shared antenna aperture. A microstrip Rotman lens is employed as the beamforming network with 7 input ports, which can generate a corresponding number of beams to cover −30°–30° with 5 dB beamwidth along one dimension. This type of multibeam orthogonal linearly polarized planar antenna is a good candidate for satellite communication (SatCom.

  19. Flexible Hilbert-Curve Loop Antenna Having a Triple-Band and Omnidirectional Pattern for WLAN/WiMAX Applications

    Directory of Open Access Journals (Sweden)

    Dang-Oh Kim

    2012-01-01

    Full Text Available A triple-band flexible loop antenna is proposed for WLAN/WiMAX applications in this paper. The proposed antenna is formed by the third-order Hilbert-curve and bending type structure which provides flexible characteristics. Even though the radius of the curvature for bending antennas is changed, a triple-band feature still remains in the proposed antenna. Moreover, the antenna exhibits the characteristics of omnidirectional radiation pattern and circular polarization. To verify the receiving performance of antenna, a simulation on the antenna factor was conducted by an EM simulator. Based on these results, the suggested antenna makes a noteworthy performance over typical loop antennas.

  20. Analysis of friction effects on satellite antenna driving mechanism with clearance joints

    Science.gov (United States)

    Bai, Z. F.; Chen, J.; Bian, S.; Shi, X.

    2017-01-01

    The existence of clearance in joints of mechanism is inevitable. In this paper, the friction effects in clearance joints on dynamic responses of driving mechanism of satellite antenna are studied. Considering clearances in joints, the contact force model in clearance joints is established using a nonlinear continuous contact force model and the friction effect is considered by using a modified Coulomb friction model. Then the dual-axis driving mechanism of satellite antenna with clearance joints is used as the application example. The numerical simulation of dual-axis driving mechanism with clearance joints is presented. The friction effects of clearance joint on dynamic responses of the dual-axis driving mechanism are discussed and analyzed quantitatively for four cases with different friction coefficients. The investigation results show that the increase of friction coefficient will decrease the vibration amplitude of the driving mechanism system.

  1. Deploying process modeling and attitude control of a satellite with a large deployable antenna

    OpenAIRE

    Zhigang Xing; Gangtie Zheng

    2014-01-01

    Modeling and attitude control methods for a satellite with a large deployable antenna are studied in the present paper. Firstly, for reducing the model dimension, three dynamic models for the deploying process are developed, which are built with the methods of multi-rigid-body dynamics, hybrid coordinate and substructure. Then an attitude control method suitable for the deploying process is proposed, which can keep stability under any dynamical parameter variation. Subsequently, this attitude...

  2. A MEMS-based Adaptive AHRS for Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Hussain, Dil Muhammed Akbar; Soltani, Mohsen

    2015-01-01

    Satellite tracking is a challenging task for marine applications. An attitude determination system should estimate the wave disturbances on the ship body accurately. To achieve this, an Attitude Heading Reference System (AHRS) based on Micro-Electro-Mechanical Systems (MEMS) sensors, composed...... of three-axis gyroscope, accelerometer and magnetometer, is developed for Marine Satellite Tracking Antenna (MSTA). In this paper, the attitude determination algorithm is improved using an adaptive mechanism that tunes the attitude estimator parameters based on an estimation of ship motion frequency...

  3. Consistent Long-Time Series of GPS Satellite Antenna Phase Center Corrections

    Science.gov (United States)

    Steigenberger, P.; Schmid, R.; Rothacher, M.

    2004-12-01

    The current IGS processing strategy disregards satellite antenna phase center variations (pcvs) depending on the nadir angle and applies block-specific phase center offsets only. However, the transition from relative to absolute receiver antenna corrections presently under discussion necessitates the consideration of satellite antenna pcvs. Moreover, studies of several groups have shown that the offsets are not homogeneous within a satellite block. Manufacturer specifications seem to confirm this assumption. In order to get best possible antenna corrections, consistent ten-year time series (1994-2004) of satellite-specific pcvs and offsets were generated. This challenging effort became possible as part of the reprocessing of a global GPS network currently performed by the Technical Universities of Munich and Dresden. The data of about 160 stations since the official start of the IGS in 1994 have been reprocessed, as today's GPS time series are mostly inhomogeneous and inconsistent due to continuous improvements in the processing strategies and modeling of global GPS solutions. An analysis of the signals contained in the time series of the phase center offsets demonstrates amplitudes on the decimeter level, at least one order of magnitude worse than the desired accuracy. The periods partly arise from the GPS orbit configuration, as the orientation of the orbit planes with regard to the inertial system repeats after about 350 days due to the rotation of the ascending nodes. In addition, the rms values of the X- and Y-offsets show a high correlation with the angle between the orbit plane and the direction to the sun. The time series of the pcvs mainly point at the correlation with the global terrestrial scale. Solutions with relative and absolute phase center corrections, with block- and satellite-specific satellite antenna corrections demonstrate the effect of this parameter group on other global GPS parameters such as the terrestrial scale, station velocities, the

  4. Evolution from a hinge actuator mechanism to an antenna deployment mechanism for use on the European large communications satellite (L-SAT/OLYMPUS)

    Science.gov (United States)

    Death, M. D.

    1984-01-01

    The evolution of an Antenna Deployment Mechanism (ADM) from a Hinge Actuator Mechanism (HAM) is described as it pertains to the deployment of large satellite antennas. Design analysis and mechanical tests are examined in detail.

  5. A technique for measurement of earth station antenna G/T by radio stars and Applications Technology Satellites.

    Science.gov (United States)

    Kochevar, H. J.

    1972-01-01

    A new technique has been developed to accurately measure the G/T of a small aperture antenna using geostationary satellites and the well established radio star method. A large aperture antenna having the capability of accurately measuring its G/T by using a radio star of known power density is used to obtain an accurate G/T to use as a reference. The CNR of both the large and small aperture antennas are then measured using an Applications Technology Satellite (ATS). After normalizing the two C/N ratios to the large antenna system noise temperature the G/T or the gain G of the small aperture antenna can then be determined.

  6. Conversion of a 30-m former satellite communications antenna to a radio telescope

    Science.gov (United States)

    Deboer, David R.; Steffes, Paul G.; Glowacki, John M.

    1998-05-01

    A class of large satellite communication antennas built in the mid-1970's comprise a potential set of large antennas available for use by radio astronomers upon upgrade. With the advent of low noise technology these facilities have been superseded in the communications industry by smaller, more manageable facilities. Although many have sat idle and decaying over the intervening years, these facilities remain a potential resource for research and education. A pair of such dishes has been acquired by Georgia Tech and one of the 30 meter antennas has been completely mechanically and electrically stripped and new mechanical, control, RF, and electrical systems installed. The antenna is now driven by four continuous-speed vector-controlled three-phase AC induction motors with variable frequency vector motor drives. Sixteen bit resolution optical absolute position encoders on each axis provide telescope pointing data. Sixteen bit resolution optical absolute position encoders on each axis provide telescope pointing data. A programmable logic controller provides interlock monitoring and control. The antenna is controllable both manually via a portable remote control unit and via a Pentium PC running control software on a real-time UNIX-based platform. The manual unit allows limited control at two user-selectable speeds while computer control allows full tracking capability with accuracies of better than 0.3 arcminutes. The facility can be remotely controlled via the internet, although currently only a dedicated line is used. The antenna has been refitted with an ultra-broadband feed system capable of operating from 1-7 GHz.

  7. Radiation pattern of plasmonic nano-antennas in a homogeneous medium.

    Science.gov (United States)

    Sugita, Takafumi; Yanazawa, Kaori; Maeda, Satoshi; Hofmann, Holger F; Kadoya, Yutaka

    2014-06-02

    Radiation patterns from plasmonic nano-antennas formed on a glass substrate were investigated using index-matching oils. It was confirmed that the pattern from single nano-antennas for various cases of index-mismatching between the substrate and the oil is explained well by the patterns of infinitesimal electric dipoles. We found that for an angular resolution of 2°, the index mismatch must be smaller than 0.001 to realize isotropic radiation. By using the appropriate condition, the radiation patterns of nano Yagi-Uda antennas in a quasi-homogeneous medium were obtained experimentally.

  8. An Algorithm to Calculate Phase-Center Offset of Aperture Antennas when Measuring 2-Dimensional Radiation Patterns

    Science.gov (United States)

    2015-01-01

    An Algorithm to Calculate Phase-Center Offset of Aperture Antennas when Measuring 2-Dimensional Radiation Patterns by Patrick Debroux...Offset of Aperture Antennas when Measuring 2-Dimensional Radiation Patterns Patrick Debroux and Berenice Verdin Survivability/Lethality Analysis... Antennas when Measuring 2-Dimensional Radiation Patterns 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  9. A bionic approach to mathematical modeling the fold geometry of deployable reflector antennas on satellites

    Science.gov (United States)

    Feng, C. M.; Liu, T. S.

    2014-10-01

    Inspired from biology, this study presents a method for designing the fold geometry of deployable reflectors. Since the space available inside rockets for transporting satellites with reflector antennas is typically cylindrical in shape, and its cross-sectional area is considerably smaller than the reflector antenna after deployment, the cross-sectional area of the folded reflector must be smaller than the available rocket interior space. Membrane reflectors in aerospace are a type of lightweight structure that can be packaged compactly. To design membrane reflectors from the perspective of deployment processes, bionic applications from morphological changes of plants are investigated. Creating biologically inspired reflectors, this paper deals with fold geometry of reflectors, which imitate flower buds. This study uses mathematical formulation to describe geometric profiles of flower buds. Based on the formulation, new designs for deployable membrane reflectors derived from bionics are proposed. Adjusting parameters in the formulation of these designs leads to decreases in reflector area before deployment.

  10. Novel On-wafer Radiation Pattern Measurement Technique for MEMS Actuator Based Reconfigurable Patch Antennas

    Science.gov (United States)

    Simons, Rainee N.

    2002-01-01

    The paper presents a novel on-wafer, antenna far field pattern measurement technique for microelectromechanical systems (MEMS) based reconfigurable patch antennas. The measurement technique significantly reduces the time and the cost associated with the characterization of printed antennas, fabricated on a semiconductor wafer or dielectric substrate. To measure the radiation patterns, the RF probe station is modified to accommodate an open-ended rectangular waveguide as the rotating linearly polarized sampling antenna. The open-ended waveguide is attached through a coaxial rotary joint to a Plexiglas(Trademark) arm and is driven along an arc by a stepper motor. Thus, the spinning open-ended waveguide can sample the relative field intensity of the patch as a function of the angle from bore sight. The experimental results include the measured linearly polarized and circularly polarized radiation patterns for MEMS-based frequency reconfigurable rectangular and polarization reconfigurable nearly square patch antennas, respectively.

  11. Disturbance of flexible antenna surface on a satellite antenna%柔性天线面对星载天线的扰动研究

    Institute of Scientific and Technical Information of China (English)

    游斌弟; 赵志刚; 魏承; 赵阳

    2011-01-01

    To study disturbance of flexible antenna surface on a free-floating satellite antenna, the fixed-interface component-mode synthesis method and Lagrange's equations were used to achieve a lower order dynamic model by modal truncation. Under large scale motions, the rigid-flexible coupled dynamic model of the free-floating flexible satellite antenna was deduced through using compatibility relations at the interface between axis end and antenna surface, and neglecting the elastic deformation of the flexible antenna surface. So the model increased the computing efficiency without losing much accuracy. Finally, the free-floating satellite antenna dynamic behavior was analyzed considering the flexible antenna surface as a rigid body and a flexible one, separately. The result showed that the flexible antenna surface has little effect on the satellite base attitude and the antenna pointing at initial stage, but its own elastic vibration grows with the continuous action of joint torques; further, it makes the system vibrate and the deviations of the satellite base attitude and the antenna pointing become larger; the satellite antenna pointing accuracy is seriously affected. The results were valuable for analysis and control of satellite antenna pointing accuracy.%针对柔性天线面对星载天线的扰动问题,应用固定界面模态综合法和Lagrange方程,截取柔性天线面低阶模态,缩减星载天线系统的自由度,并通过轴末端与天线面交界面的协调关系,推导了大范围运动的星载天线刚柔耦合动力学模型,克服了忽略天线面弹性变形对刚体大范围运动的影响,所建立的耦合动力学模型计算效率高并具有足够的精度.考虑天线面为刚体和柔体情况,分别对星载天线系统进行仿真并进行对比分析,结果表明,初始时刻柔性天线面对卫星本体姿态和天线指向影响很小,随着关节力矩持续作用,激起柔性天线面震荡,加剧自身的弹性振动,进而

  12. Including Arbitrary Antenna Patterns in Microwave Imaging of Buried Objects

    DEFF Research Database (Denmark)

    Meincke, Peter; Kim, Oleksiy S.; Lenler-Eriksen, Hans-Rudolph

    2004-01-01

    A linear inversion scheme for microwave imaging of buried objects is presented in which arbitrary antennas are accounted for through their plane-wave transmitting and receiving spectra......A linear inversion scheme for microwave imaging of buried objects is presented in which arbitrary antennas are accounted for through their plane-wave transmitting and receiving spectra...

  13. Including Arbitrary Antenna Patterns in Microwave Imaging of Buried Objects

    DEFF Research Database (Denmark)

    Meincke, Peter; Kim, Oleksiy S.; Lenler-Eriksen, Hans-Rudolph

    2004-01-01

    A linear inversion scheme for microwave imaging of buried objects is presented in which arbitrary antennas are accounted for through their plane-wave transmitting and receiving spectra......A linear inversion scheme for microwave imaging of buried objects is presented in which arbitrary antennas are accounted for through their plane-wave transmitting and receiving spectra...

  14. Polarization and Radiation Pattern Reconfigurability of a Planar Monopole-Fed Loop Antenna for GPS Application

    Directory of Open Access Journals (Sweden)

    M. M. Fakharian

    2016-12-01

    Full Text Available This paper presents a reconfigurable loop antenna with monopole-fed using embedded RF PIN switches based shorted parasitic elements for GPS applications. The antenna can independently reconfiguring multiple polarizations with switchable radiation pattern. Four switched metallic patches are used as parasitic elements to provide a reconfiguration capability to antenna acting as a driven monopole-fed loop. The edge of the parasitic elements is shorted by posts. The parasitic patches are connected/disconnected by using switching, therewith changing the configuration of monopole, to turn changes the current distribution over the loop surface. The antenna is designed to work on the GPS L1 frequency band. The antenna simultaneously changes the radiation beam in E- and H-planes, and switches among three polarizations (LP, LHCP, and RHCP in the various modes. The antenna maximum gain among the different modes is tuned between 1.5 and 4.2 dBi.

  15. Compact, low profile antennas for MSAT and mini-M and Std-M land mobile satellite communications

    Science.gov (United States)

    Strickland, P. C.

    1995-01-01

    CAL Corporation has developed a new class of low profile radiating elements for use in planar phased array antennas. These new elements have been used in the design of a low cost, compact, low profile antenna unit for MSAT and INMARSAT Mini-M land mobile satellite communications. The antenna unit which measures roughly 32 cm in diameter by 5 cm deep incorporates a compact LNA and diplexer unit as well as a complete, low cost, beam steering system. CAL has also developed a low profile antenna unit for INMARSAT-M land mobile satellite communications. A number of these units, which utilize a microstrip patch array design, were put into service in 1994.

  16. Large deployable antenna to be loaded on Engineering Test Satellite-8; Gijutsu shiken eisei VIII gata tosaiyo ogata tenkai antena

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A large deployable antenna to be loaded on the Engineering Test Satellite-8, which is scheduled to be launched in 2002, is about 19m x 17m, the world largest on-satellite deployable antenna/reflection mirror, with two sets to be loaded for transmission and reception. This antenna is featured by a metallic mesh structure for the reflection surface and by a module structure in which fourteen hexagonal modules are combined comprising the entirety. While a test is conducted using the development model, verification is scheduled on the method of antenna deployment analysis examined so far and on the validity of the method for estimating the shape of the mesh reflection face under zero gravity. The results thus obtained will be reflected on the design of flight articles for which high quality is required. (translated by NEDO)

  17. Measuring Phased-Array Antenna Beampatterns with High Dynamic Range for the Murchison Widefield Array using 137 MHz ORBCOMM Satellites

    CERN Document Server

    Neben, A R; Hewitt, J N; Bernardi, G; Bowman, J D; Briggs, F; Cappallo, R J; Deshpande, A A; Goeke, R; Greenhill, L J; Hazelton, B J; Johnston-Hollitt, M; Kaplan, D L; Lonsdale, C J; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Oberoi, D; Ord, S M; Prabu, T; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Tingay, S J; Wayth, R B; Webster, R L; Williams, A; Williams, C L

    2015-01-01

    Detection of the fluctuations in 21 cm line emission from neutral hydrogen during the Epoch of Reionization in thousand hour integrations poses stringent requirements on calibration and image quality, both of which necessitate accurate primary beam models. The Murchison Widefield Array (MWA) uses phased array antenna elements which maximize collecting area at the cost of complexity. To quantify their performance, we have developed a novel beam measurement system using the 137 MHz ORBCOMM satellite constellation and a reference dipole antenna. Using power ratio measurements, we measure the {\\it in situ} beampattern of the MWA antenna tile relative to that of the reference antenna, canceling the variation of satellite flux or polarization with time. We employ angular averaging to mitigate multipath effects (ground scattering), and assess environmental systematics with a null experiment in which the MWA tile is replaced with a second reference dipole. We achieve beam measurements over 30 dB dynamic range in beam...

  18. Performance Improvement of Spaceborne SAR Using Antenna Pattern Synthesis Based on Quantum-Behaved Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Young-Jin Won

    2017-01-01

    Full Text Available This study improves the performance of a spaceborne synthetic aperture radar (SAR system using an antenna mask design method and antenna pattern synthesis algorithms for an active phased array SAR system. The SAR antenna is an important component that affects the SAR system performance because it is closely related to the antenna pattern. This study proposes a method for antenna mask design that is based on several previous studies as well as the antenna pattern synthesis algorithm, which is based on quantum-behaved particle swarm optimization (QPSO for an active phased array SAR system. The performance of the designed antenna masks and synthesized patterns demonstrate that the proposed mask design method and antenna pattern synthesis algorithm based on QPSO can be used to improve the SAR system performance for spaceborne applications.

  19. Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yongle, E-mail: wuyongle138@gmail.com; Qu, Meijun; Jiao, Lingxiao; Liu, Yuanan [School of Electronic Engineering, Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications, P. O. Box. 282, Beijing, 100876 (China); Ghassemlooy, Zabih [Optical Communications Research Group, NCRLab, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST (United Kingdom)

    2016-06-15

    This paper presents a radiation pattern reconfigurable Yagi-Uda antenna based on graphene operating at terahertz frequencies. The antenna can be reconfigured to change the main beam pattern into two or four different radiation directions. The proposed antenna consists of a driven dipole radiation conductor, parasitic strips and embedded graphene. The hybrid graphene-metal implementation enables the antenna to have dynamic surface conductivity, which can be tuned by changing the chemical potentials. Therefore, the main beam direction, the resonance frequency, and the front-to-back ratio of the proposed antenna can be controlled by tuning the chemical potentials of the graphene embedded in different positions. The proposed two-beam reconfigurable Yagi-Uda antenna can achieve excellent unidirectional symmetrical radiation pattern with the front-to-back ratio of 11.9 dB and the10-dB impedance bandwidth of 15%. The different radiation directivity of the two-beam reconfigurable antenna can be achieved by controlling the chemical potentials of the graphene embedded in the parasitic stubs. The achievable peak gain of the proposed two-beam reconfigurable antenna is about 7.8 dB. Furthermore, we propose a four-beam reconfigurable Yagi-Uda antenna, which has stable reflection-coefficient performance although four main beams in reconfigurable cases point to four totally different directions. The corresponding peak gain, front-to-back ratio, and 10-dB impedance bandwidth of the four-beam reconfigurable antenna are about 6.4 dB, 12 dB, and 10%, respectively. Therefore, this novel design method of reconfigurable antennas is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems.

  20. Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns

    Directory of Open Access Journals (Sweden)

    Yongle Wu

    2016-06-01

    Full Text Available This paper presents a radiation pattern reconfigurable Yagi-Uda antenna based on graphene operating at terahertz frequencies. The antenna can be reconfigured to change the main beam pattern into two or four different radiation directions. The proposed antenna consists of a driven dipole radiation conductor, parasitic strips and embedded graphene. The hybrid graphene-metal implementation enables the antenna to have dynamic surface conductivity, which can be tuned by changing the chemical potentials. Therefore, the main beam direction, the resonance frequency, and the front-to-back ratio of the proposed antenna can be controlled by tuning the chemical potentials of the graphene embedded in different positions. The proposed two-beam reconfigurable Yagi-Uda antenna can achieve excellent unidirectional symmetrical radiation pattern with the front-to-back ratio of 11.9 dB and the10-dB impedance bandwidth of 15%. The different radiation directivity of the two-beam reconfigurable antenna can be achieved by controlling the chemical potentials of the graphene embedded in the parasitic stubs. The achievable peak gain of the proposed two-beam reconfigurable antenna is about 7.8 dB. Furthermore, we propose a four-beam reconfigurable Yagi-Uda antenna, which has stable reflection-coefficient performance although four main beams in reconfigurable cases point to four totally different directions. The corresponding peak gain, front-to-back ratio, and 10-dB impedance bandwidth of the four-beam reconfigurable antenna are about 6.4 dB, 12 dB, and 10%, respectively. Therefore, this novel design method of reconfigurable antennas is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems.

  1. Missile antenna pattern coordinate system and data formats

    Science.gov (United States)

    1993-08-01

    Antenna performance data pertains to missile, space, and aerodynamic vehicles' transmitting or receiving antennas used with range data collection, missile trajectory measurements, impact predictions, communications, or flight termination systems. As used in this document, the terms missile space vehicle, airborne, and aerodynamic vehicle are synonymous. This standard is intended to cover antennas for telemetry, pulsed radar beacons, continuous wave (CW) transponders, communication transmitters and receivers, command control/flight termination, receivers/decoders, pseudo random noise (PRN) ranging systems, and the Global Positioning System.

  2. Dual Strip-Excited Dielectric Resonator Antenna with Parasitic Strips for Radiation Pattern Reconfigurability

    Directory of Open Access Journals (Sweden)

    M. Kamran Saleem

    2014-01-01

    Full Text Available A novel pattern reconfigurable antenna concept utilizing rectangular dielectric resonator antenna (DRA placed over dielectric substrate backed by a ground plane is presented. A dual strip excitation scheme is utilized and both excitation strips are connected together by means of a 50 Ω microstrip feed network placed over the substrate. The four vertical metallic parasitic strips are placed at corner of DRA each having a corresponding ground pad to provide a short/open circuit between the parasitic strip and antenna ground plane, through which a shift of 90° in antenna radiation pattern in elevation plane is achieved. A fractional bandwidth of approximately 40% at center frequency of 1.6 GHz is achieved. The DRA peak realized gain in whole frequency band of operation is found to be above 4 dB. The antenna configuration along with simulation and measured results are presented.

  3. Application of MMIC modules in future multiple beam satellite antenna systems

    Science.gov (United States)

    Smetana, J.

    1982-01-01

    Multiple beam antenna systems for advanced communication satellites operating in the 30/20 GHz frequency bands (30 GHz uplink, 20 GHz downlink) were developed. Up to twenty 0.3 deg HPBW fixed spot beams and six 0.3 deg HPBW scanning spot beams will be required. Array-fed dual reflector antenna systems in which monolithic microwave integrated circuit (MMIC) phase shift and amplifier modules are used with each radiating element of the feed array for beam pointing and power gain were developed. The feasibility of distributed power amplification and beam pointing with MMIC modules in the elements of an array and to develop a data base for future development were demonstrated. The technical discussion centers around the potential advantages of ""monolithic'' antennas for specific applications as compared to systems using high powered TWT's. These include: reduced losses in the beam forming network; advantage of space combining and graceful degradation; dynamic control of beam pointing and illumination contour; and possibilities for cost and weight reduction.

  4. Automatic reference level control for an antenna pattern recording system

    Science.gov (United States)

    Lipin, R., Jr.

    1971-01-01

    Automatic gain control system keeps recorder reference levels within 0.2 decibels during operation. System reduces recorder drift during antenna radiation distribution determinations over an eight hour period.

  5. PS2007 Satellite Meeting on Photosynthetic Antennas, 19-22 July 2007, Drymen, Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Robert E. Blankenship

    2009-06-04

    A Satellite Workshop of the 14th International Congress on Photosynthesis on the topic of photosynthetic light-harvesting systems was held on 18-21 July 2007, at the Buchanan Arms Hotel in Drymen, Scotland, near Glasgow. This meeting continued the tradition of satellite light-harvesting conferences occurring prior to the last five international photosynthesis congresses in Japan, France, Hungary, Australia and Canada, dating from 1992. With an attendance of 124 participants, this Workshop represents an intimate gathering of scientists interested in a thorough coverage of the light-harvesting aspects of photosynthesis. A significant amount of time was set aside for discussion and poster sessions. The organizers were: Richard J. Cogdell, UK (Chairperson), Alastair T. Gardiner, UK, Conrad W. Mullineaux, UK, Robert A. Niederman, USA, Robert E. Blankenship, USA, Harry Frank, USA, Bruno Robert, France. Sessions were focused on new concepts relating to the function, regulation, assembly, photoprotection and evolution of a wide variety of antenna systems. Cutting-edge scientific methods used to study these systems that were covered included time-resolved and single-molecule spectroscopy, structure determination by X-ray diffraction, NMR and electron and atomic force microscopy, molecular genetics, protein chemistry, model systems and theory. A central theme was how emerging high-resolution structural information on antenna proteins continues to provide an enhanced understanding of areas ranging from the kinetics of energy transfer processes to the assembly of the photosynthetic apparatus.

  6. Subcutaneous implantation of satellite transmitters with percutaneous antennae into male polar bears (Ursus maritimus)

    Science.gov (United States)

    Mulcahy, D.M.; Garner, G.

    1999-01-01

    Male polar bears (Ursus maritimus) have not been successfully instrumented with satellite transmitters because they readily shed collar-mounted transmitters. Seven male polar bears were captured on the pack ice off the northern coast of Alaska and surgically implanted with satellite transmitters with percutaneous antennae into the subcutaneous space of the dorsal cervical region. Transmitters failed prematurely with lifetimes of 30-161 days (x?? = 97 days). Efforts to relocate implanted bears after transmitters failed were not successful. The mean number of location solutions per transmitter was 204 (range 118-369). An average of 10% and 19% of the locations were accurate to < 150 m and to 150-350 m, respectively. Our successful tracking of male polar bears, the high quality of locations obtained from transmitters with percutaneous antennae implanted in the subcutaneous space, and the low visibility of such units make further technical development worthwhile if the reason for premature failure of the transmitters can be determined. Copyright 1999 by American Association of Zoo Veterinarians.

  7. Modeling and Simulation of Phased Array Antennas to Support Next-Generation Satellite Design

    Science.gov (United States)

    Tchorowski, Nicole; Murawski, Robert; Manning, Robert; Fuentes, Michael

    2016-01-01

    Developing enhanced simulation capabilities has become a significant priority for the Space Communications and Navigation (SCaN) project at NASA as new space communications technologies are proposed to replace aging NASA communications assets, such as the Tracking and Data Relay Satellite System (TDRSS). When developing the architecture for these new space communications assets, it is important to develop updated modeling and simulation methodologies, such that competing architectures can be weighed against one another and the optimal path forward can be determined. There have been many simulation tools developed here at NASA for the simulation of single RF link budgets, or for the modeling and simulation of an entire network of spacecraft and their supporting SCaN network elements. However, the modeling capabilities are never fully complete and as new technologies are proposed, gaps are identified. One such gap is the ability to rapidly develop high fidelity simulation models of electronically steerable phased array systems. As future relay satellite architectures are proposed that include optical communications links, electronically steerable antennas will become more desirable due to the reduction in platform vibration introduced by mechanically steerable devices. In this research, we investigate how modeling of these antennas can be introduced into out overall simulation and modeling structure. The ultimate goal of this research is two-fold. First, to enable NASA engineers to model various proposed simulation architectures and determine which proposed architecture meets the given architectural requirements. Second, given a set of communications link requirements for a proposed satellite architecture, determine the optimal configuration for a phased array antenna. There is a variety of tools available that can be used to model phased array antennas. To meet our stated goals, the first objective of this research is to compare the subset of tools available to us

  8. Design and Analysis of a Silicon-Based Pattern Reconfigurable Antenna Employing an Active Element Pattern Method

    Directory of Open Access Journals (Sweden)

    Ke Han

    2017-01-01

    Full Text Available In this paper, a silicon-based radio frequency micro-electromechanical systems (RF MEMS pattern reconfigurable antenna for a Ka-band application was designed, analyzed, fabricated, and measured. The proposed antenna can steer the beam among three radiating patterns (with main lobe directions of −20°, 0°, and +20° approximately at 35 GHz by switching RF MEMS operating modes. The antenna has a low profile with a small size of 3.7 mm × 4.4 mm × 0.4 mm, and consists of one driven patch, four parasitic patches, two assistant patches, and two RF MEMS switches. The active element pattern method integrated with signal flow diagram was employed to analyze the performances of the proposed antenna. Comparing the measured results with analytical and simulated ones, good agreements are obtained.

  9. Single Band Helical Antenna in Axial Mode

    Directory of Open Access Journals (Sweden)

    Parminder Singh

    2012-11-01

    Full Text Available Helical antennas have been widely used in a various useful applications, due to their low weight and low profile conformability, easy and cheap realization.Radiation properties of this antenna are examined both theoretically and experimentally. In this paper, an attempt has been made to investigate new helical antenna structure for Applications. CST MWS Software is used for the simulation and design calculations of the helical antennas. The axial ratio, return loss, VSWR, Directivity, gain, radiation pattern is evaluated. Using CST MWS simulation software proposed antenna is designed/simulated and optimized. The antenna exhibits a single band from 0 GHz to 3 GHz for GPS and several satellite applications

  10. Pattern Reconfigurable Wideband Stacked Microstrip Patch Antenna for 60 GHz Band

    Directory of Open Access Journals (Sweden)

    Alexander Bondarik

    2016-01-01

    Full Text Available A beam shift method is presented for an aperture coupled stacked microstrip antenna with a gridded parasitic patch. The gridded parasitic patch is formed by nine close coupled identical rectangular microstrip patches. Each of these patches is resonant at the antenna central frequency. Using four switches connecting adjacent parasitic patches in the grid, it is possible to realize a pattern reconfigurable antenna with nine different beam directions in broadside, H-plane, E-plane, and diagonal planes. The switches are modeled by metal strips and different locations for strips are studied. As a result an increase in the antenna coverage is achieved. Measurement results for fabricated prototypes correspond very well to simulation results. The antenna is designed for 60 GHz central frequency and can be used in high speed wireless communication systems.

  11. An experimental 20/30 GHz communications satellite conceptual design employing multiple-beam paraboloid reflector antennas

    Science.gov (United States)

    Goldman, A. M., Jr.

    1980-01-01

    An experimental 20/30 GHz communications satellite conceptual design is described which employs multiple-beam paraboloid reflector antennas coupled to a TDMA transponder. It is shown that the satellite employs solid state GaAs FET power amplifiers and low noise amplifiers while signal processing and switching takes place on-board the spacecraft. The proposed areas to be served by this satellite would be the continental U.S. plus Alaska, Hawaii, Puerto Rico, and the Virgin Islands, as well as southern Canada and Mexico City. Finally, attention is given to the earth stations which are designed to be low cost.

  12. EM modeling of far-field radiation patterns for antennas on the GMA-TT UAV

    Science.gov (United States)

    Mackenzie, Anne I.

    2015-05-01

    To optimize communication with the Generic Modular Aircraft T-Tail (GMA-TT) unmanned aerial vehicle (UAV), electromagnetic (EM) simulations have been performed to predict the performance of two antenna types on the aircraft. Simulated far-field radiation patterns tell the amount of power radiated by the antennas and the aircraft together, taking into account blockage by the aircraft as well as radiation by conducting and dielectric portions of the aircraft. With a knowledge of the polarization and distance of the two communicating antennas, e.g. one on the UAV and one on the ground, and the transmitted signal strength, a calculation may be performed to find the strength of the signal travelling from one antenna to the other and to check that the transmitted signal meets the receiver system requirements for the designated range. In order to do this, the antenna frequency and polarization must be known for each antenna, in addition to its design and location. The permittivity, permeability, and geometry of the UAV components must also be known. The full-wave method of moments solution produces the appropriate dBi radiation pattern in which the received signal strength is calculated relative to that of an isotropic radiator.

  13. EM Modeling of Far-Field Radiation Patterns for Antennas on the GMA-TT UAV

    Science.gov (United States)

    Mackenzie, Anne I.

    2015-01-01

    To optimize communication with the Generic Modular Aircraft T-Tail (GMA-TT) unmanned aerial vehicle (UAV), electromagnetic (EM) simulations have been performed to predict the performance of two antenna types on the aircraft. Simulated far-field radiation patterns tell the amount of power radiated by the antennas and the aircraft together, taking into account blockage by the aircraft as well as radiation by conducting and dielectric portions of the aircraft. With a knowledge of the polarization and distance of the two communicating antennas, e.g. one on the UAV and one on the ground, and the transmitted signal strength, a calculation may be performed to find the strength of the signal travelling from one antenna to the other and to check that the transmitted signal meets the receiver system requirements for the designated range. In order to do this, the antenna frequency and polarization must be known for each antenna, in addition to its design and location. The permittivity, permeability, and geometry of the UAV components must also be known. The full-wave method of moments solution produces the appropriate dBi radiation pattern in which the received signal strength is calculated relative to that of an isotropic radiator.

  14. Design and investigation of planar technology based ultra-wideband antenna with directional radiation patterns

    Science.gov (United States)

    Meena, M. L.; Parmar, Girish; Kumar, Mithilesh

    2016-03-01

    A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done on CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.

  15. Design and investigation of planar technology based ultra-wideband antenna with directional radiation patterns

    Energy Technology Data Exchange (ETDEWEB)

    Meena, M. L., E-mail: madan.meena.ece@gamil.com; Parmar, Girish, E-mail: girish-parmar2002@yahoo.com; Kumar, Mithilesh, E-mail: mith-kr@yahoo.com [Department of Electronics Engineering, Rajasthan Technical University, Kota (India)

    2016-03-09

    A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done on CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.

  16. Design of Wideband Printed Antenna Array in Corner Reflector with Cosecant Square-Shaped Beam Pattern

    Directory of Open Access Journals (Sweden)

    M. Milijić

    2016-11-01

    Full Text Available The paper presents a wideband printed antenna array with a cosecant square-shaped beam pattern. The array is with four symmetrical pentagonal dipoles as radiating elements operating at the second resonance. The apex of the corner reflector is at a distance λ0/2 from antenna array. Orchard Elliott’s methods and genetic algorithm are used for synthesizing the proposed antenna. A symmetrical tapered feed network of impedance transformers enables a required distribution. Simulated and measured results show that proposed antenna model has a 15 dBi gain and side lobe suppression around 20 dB in E-plane at the frequency of 10 GHz.

  17. Pattern Synthesis of Dual-band Shared Aperture Interleaved Linear Antenna Arrays

    Directory of Open Access Journals (Sweden)

    H. Guo

    2014-09-01

    Full Text Available This paper presents an approach to improve the efficiency of an array aperture by interleaving two different arrays in the same aperture area. Two sub-arrays working at different frequencies are interleaved in the same linear aperture area. The available aperture area is efficiently used. The element positions of antenna array are optimized by using Invasive Weed Optimization (IWO to reduce the peak side lobe level (PSLL of the radiation pattern. To overcome the shortness of traditional methods which can only fulfill the design of shared aperture antenna array working at the same frequency, this method can achieve the design of dual-band antenna array with wide working frequency range. Simulation results show that the proposed method is feasible and efficient in the synthesis of dual-band shared aperture antenna array.

  18. Design, Analysis, and Verification of Ka-Band Pattern Reconfigurable Patch Antenna Using RF MEMS Switches

    Directory of Open Access Journals (Sweden)

    Zhongliang Deng

    2016-08-01

    Full Text Available This paper proposes a radiating pattern reconfigurable antenna by employing RF Micro-electromechanical Systems (RF MEMS switches. The antenna has a low profile and small size of 4 mm × 5 mm × 0.4 mm, and mainly consists of one main patch, two assistant patches, and two RF MEMS switches. By changing the RF MEMS switches operating modes, the proposed antenna can switch among three radiating patterns (with main lobe directions of approximately −17.0°, 0° and +17.0° at 35 GHz. The far-field vector addition model is applied to analyse the pattern. Comparing the measured results with analytical and simulated results, good agreements are obtained.

  19. Low-Cost Planar MM-Wave Phased Array Antenna for Use in Mobile Satellite (MSAT) Platforms

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2015-01-01

    In this paper, a compact 8×8 phased array antenna for mobile satellite (MSAT) devices is designed and investigated. 64-elements of 22 GHz patch antennas with coaxial-probe feeds have been used for the proposed planar design. The antenna is designed on a low-cost FR4 substrate with thickness......, dielectric constant, and loss tangent of 0.8 mm, 4.3, and 0.025, respectively. The antenna exhibits good performance in terms of impedance- matching, gain and efficiency characteristics, even though it is designed using high loss substrate with compact dimension (Wsub×Lsub=55×55 mm2). The antenna has more...... than 23 dB realized gain and -0.8 dB radiation efficiency when its beam is tilted to 0o elevation. The center frequency of the designed array can be controlled by adjusting the values of the antenna parameters. Compared with the previous designs, the proposed planar phased array has the advantages...

  20. A Microstrip Second-Iteration Square Koch Dipole Antenna for TT&C Downlink Applications in Small Satellites

    Directory of Open Access Journals (Sweden)

    Jorge Simón

    2017-01-01

    Full Text Available A microstrip second-iteration square Koch dipole fractal antenna is presented. This meandered antenna has a total length of 56.56 cm including its feed gap and was printed on the diagonal of a 100 mm × 100 mm PCB card that acts as CubeSat face. The antenna that was designed to optimize space shows acceptable performance at its resonance frequency of 455 MHz within the 70-centimeter band, a band that is commonly used for TTC CubeSat subsystems. The designed fractal antenna shows a reflection coefficient below −20 dB, a VSWR below 1.2, a −10 dB bandwidth of 50 MHz, and impedance magnitude of 56 Ω, while the average maximum gain around its resonance frequency is 2.14 dBi. All these parameters make this designed antenna suitable for small satellite applications at a band where a linear λ/2 dipolar antenna working at 455 MHz would be about 32.97 cm long, which does not fit within the largest dimension of a CubeSat face corresponding to 14.14 cm.

  1. A Planar Reconfigurable Radiation Pattern Dipole Antenna with Reflectors and Directors for Wireless Communication Applications

    Directory of Open Access Journals (Sweden)

    Imen Ben Trad

    2014-01-01

    Full Text Available A planar printed dipole antenna with reflectors and directors, able to steer its radiation pattern in different directions, is proposed for telecommunication applications. Starting from a dual-beam printed dipole antenna achieved by combining two elementary dipoles back to back, and by loading four PIN diodes, three modes of reconfigurable radiation patterns are achieved at the frequency 2.56 GHz thanks to switches states. A prototype of the structure was realized and characterized; an efficiency of 75% is obtained. Simulation and measured results of the results are presented and discussed.

  2. An ultra-wideband pattern reconfigurable antenna based on graphene coating

    Science.gov (United States)

    Jiang, YanNan; Yuan, Rui; Gao, Xi; Wang, Jiao; Li, SiMin; Lin, Yi-Yu

    2016-11-01

    An ultra-wideband pattern reconfigurable antenna is proposed. The antenna is a dielectric coaxial hollow monopole with a cylindrical graphene-based impedance surface coating. It consists of a graphene sheet coated onto the inner surface of a cylindrical substrate and a set of independent polysilicon DC gating pads mounted on the outside of the cylindrical substrate. By changing the DC bias voltages to the different gating pads, the surface impedance of the graphene coating can be freely controlled. Due to the tunability of graphene's surface impedance, the radiation pattern of the proposed antenna can be reconfigured. A transmission line method is used to illustrate the physical mechanism of the proposed antenna. The results show that the proposed antenna can reconfigure its radiation pattern in the omnidirectional mode with the relative bandwidth of 58.5% and the directional mode over the entire azimuth plane with the relative bandwidth of 67%. Project supported by the National Natural Science Foundation of China (Grant Nos. 61661012, 61461016, and 61361005), the Natural Science Foundation of Guangxi, China (Grant Nos. 2015GXNSFBB139003 and 2014GXNSFAA118283), Program for Innovation Research Team of Guilin University of Electromagnetic Technology, China, and the Dean Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, China.

  3. Smart antennas

    CERN Document Server

    Godara, Lal Chand

    2004-01-01

    INTRODUCTION Antenna GainPhased Array AntennaPower Pattern Beam Steering Degree of Freedom Optimal AntennaAdaptive AntennaSmart AntennaSummary NARROWBAND PROCESSINGSignal Model Conventional BeamformerNull Steering BeamformerOptimal BeamformerOptimization Using Reference SignalBeam Space Processing Effect of ErrorsNotation and AbbreviationsReferencesADAPTIVE PROCESSINGSample Matrix Inversion AlgorithmUnconstrained Least Mean Squares AlgorithmNormalized Least Mean Squares AlgorithmConstrained

  4. Narrow multibeam satellite ground station antenna employing a linear array with a geosynchronous arc coverage of 60 deg. I - Theory

    Science.gov (United States)

    Amitay, N.; Gans, M. J.

    1982-11-01

    The feasibility of using an appropriately squinted linear scan in narrow multibeam satellite ground station antennas employing phased arrays is demonstrated. This linear scan has the potential of reducing the complexity of a narrow-beam planar array to that of a linear array. Calculations for such antennas placed at cities throughout the U.S. show that the peak beam pointing error in covering the 70 deg W to 130 deg W geosynchronous equatorial arc (GEA) is under 5/1000th of a degree. Communication at a 300 MBd rate in the 12/14 GHz band can be made feasible, for a grating lobe-free scan and 0.5 deg beamwidth antenna, by using a relatively simple time equalization.

  5. Pattern Switchable Antenna System Using Inkjet-Printed Directional Bow-Tie for Bi-Direction Sensing Applications

    Directory of Open Access Journals (Sweden)

    Seung-Hyun Eom

    2015-12-01

    Full Text Available In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT switch and a balun element. A double-sided parallel-strip line (DSPSL is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch.

  6. Far-field pattern analysis of extended-hemispherical-lens/objective-lens antenna system at millimeter wavelengths

    Science.gov (United States)

    Dou, Wenbin; Sun, Zhong Liang; Zeng, G.

    1998-11-01

    integrated antennas have the advantages of low cost and can be readily mass produced using standard IC fabrication processes. However, integrated antennas suffer from the surface wave effect at millimeter waves. One of the ways to avoid this problem is to integrate the antennas on a dielectric lens. This structure does not support surface-waves and tend to radiate most of their power into the dielectric side making the pattern unidirectional on high dielectric constant lenses. The dielectric lens also provides mechanical rigidity and thermal stability. There are various dielectric lenses which can be used for receiver application. Among them the extended hemispherical lens is very practical, since it can synthesize other lenses such as hemispherical, hyperhemispherical, or ellipsoidal simply by varying the extension length behind the hemispherical position. In reference five, investigation on such antenna/lens system is presented. In reference 6, slot- ring antennas on dielectric lens is investigated. In many applications the extended hemispherical lens/objective lens antenna system is more attractive, because it can provide higher gain and may be used in imaging system. On the other hand, monopulse direction-finding techniques are currently the most accurate and rapid method for locating a target electronically. This antenna system can also be used as monopulse antenna. However, the treatments on such antenna system are not presented yet. In this paper, the radiation pattern of the antenna system fed by double-slot antenna are computed using ray-tracing and diffraction integration methods. Although the double-slot antenna is used as feed antenna, other antenna such as slot-ring, bow-tie antenna can be used too.

  7. Effect of Wire Space and Weaving Pattern on Performance of Microstrip Antennas Integrated in the Three Dimensional Orthogonal Woven Composites

    Science.gov (United States)

    Yao, Lan; Wang, Xin; Xu, Fujun; Jiang, Muwen; Zhou, Dongchun; Qiu, Yiping

    2012-02-01

    A conformal load-bearing antenna structure (CLAS) combines the antenna into a composite structure such that it can carry the designed load while functioning as an antenna. Novel microstrip antennas woven into the three dimensional orthogonal woven composite were proposed in our previous study. In order to determine the effect of the space between the conductive wires on the antenna performance, different space ratios of 1.7, 2.3 and 4.6 were considered in the design. Simulation results showed that when the space ratio increased, the frequency shift and return loss of the corresponding antenna became larger. And the antenna had relatively good performance when the space ratio reached 1.7. Two types of antennas were designed and fabricated with the ratio of 1.7 and 1 respectively and both of them obtained agreeable results. It was also demonstrated by the experimental that the orthogonal structure patch antenna had similar radiation pattern with the traditional copper foil microstrip antenna. However, the interlaced patch antenna had large back and side lobes in the radiation pattern because the existence of the curvature of copper wires in interlaced coupons lowered the reflective efficiency of the ground.

  8. Compact and broadband circularly polarized ring antenna with wide beam-width for multiple global navigation satellite systems

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong-Lin; Hu Bin-Jie; Zhang Xiu-Yin

    2012-01-01

    A compact and broadband circularly polarized (CP) annular ring antenna with wide beam-width is proposed for multiple global navigation satellite systems (GNSS) in the L1 band.The annular ring is excited by two modified L-probes with quadrature phase difference.It has a 36.3% 10-dB return loss bandwidth and a 13% 3-dB axial ratio bandwidth,because of the orthogonal L-probes with 90° phase difference.The measured peak gain of the antenna is 3.9 dBic.It can detect the satellites at lower elevation as its half power beam-width (HPBW) is 113° in both the x-z and y-z planes,achieving a cross-polarization level of larger than 25 dB.Noticeably,the antenna achieves 89% size reduction compared with the conventional half wavelength patch antennas.It can be used in hand-held navigation devices of multiple GNSS such as COMPASS,Galileo,GPS and GLONASS.

  9. Multiobjective Synthesis of Steerable UWB Circular Antenna Array considering Energy Patterns

    Directory of Open Access Journals (Sweden)

    Leopoldo A. Garza

    2015-01-01

    Full Text Available True-time delay antenna arrays have gained a prominent attention in ultrawideband (UWB applications such as directional communications and radar. This paper presents the design of steerable UWB circular array by using a multiobjective time-domain synthesis of energy pattern for circular antenna arrays. By this way we avoid individual beamforming for each frequency in UWB spectrum if the problem was addressed from the frequency domain. In order to obtain an energy pattern with low side lobe level and a desired main beam, the synthesis presented is performed by optimizing the true-time delays and amplitude coefficients for the antenna elements in a circular geometry. The method of Differential Evolution for Multiobjective Optimization (DEMO is used as the optimization algorithm in this work. This design of steerable UWB circular arrays considers the optimization of the true-time exciting delays and the amplitude coefficients across the antenna elements to operate with optimal performance in the whole azimuth plane (360°. A comparative analysis of the performance of the optimized design with the case of conventional progressive delay excitations is achieved. The provided results show a good performance for energy patterns and for their respective power patterns in the UWB spectrum.

  10. Definition of accurate reference pattern for the DTU-ESA VAST12 antenna

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Breinbjerg, Olav; Burgos, Sara

    2009-01-01

    In this paper, the DTU-ESA 12 GHz validation standard (VAST12) antenna and a dedicated measurement campaign carried out in 2007-2008 for the definition of its accurate reference pattern are first described. Next, a comparison between the results from the three involved measurement facilities...

  11. Comparative Analysis of Linear and Nonlinear Pattern Synthesis of Hemispherical Antenna Array Using Adaptive Evolutionary Techniques

    Directory of Open Access Journals (Sweden)

    K. R. Subhashini

    2014-01-01

    synthesis is termed as the variation in the element excitation amplitude and nonlinear synthesis is process of variation in element angular position. Both ADE and AFA are a high-performance stochastic evolutionary algorithm used to solve N-dimensional problems. These methods are used to determine a set of parameters of antenna elements that provide the desired radiation pattern. The effectiveness of the algorithms for the design of conformal antenna array is shown by means of numerical results. Comparison with other methods is made whenever possible. The results reveal that nonlinear synthesis, aided by the discussed techniques, provides considerable enhancements compared to linear synthesis.

  12. Evaluation of Diversity Antenna Designs Using Ray Tracing, Measured Radiation Patterns, and MIMO Channel Measurements

    Directory of Open Access Journals (Sweden)

    Arindam Pal

    2007-01-01

    Full Text Available This paper presents an evaluation of the MIMO performance of three candidate antenna array designs, each embedded within a PDA footprint, using indoor wideband channel measurements at 5.2 GHz alongside channel simulations. A channel model which employs the plane-wave approximation was used to combine the embedded antenna radiation patterns of the candidate devices obtained from far-field pattern measurements and multipath component parameters from an indoor ray-tracer. The 4-element candidate arrays were each constructed using a different type of antenna element, and despite the diverse element directivities, pattern characteristics, and polarization purities, all three devices were constructed to fully exploit diversity in polarization, space, and angle. Thus, low correlation and high information theoretic capacity was observed in each case. A good match between the model and the measurements is also demonstrated, especially for 2×2 MIMO subsets of identically or orthogonally polarized linear slot antennas. The interdependencies between the channel XPD, directional spread and pathloss, and the respective impact on channel capacity are also discussed in this paper.

  13. Evaluation of Diversity Antenna Designs Using Ray Tracing, Measured Radiation Patterns, and MIMO Channel Measurements

    Directory of Open Access Journals (Sweden)

    Pal Arindam

    2007-01-01

    Full Text Available This paper presents an evaluation of the MIMO performance of three candidate antenna array designs, each embedded within a PDA footprint, using indoor wideband channel measurements at 5.2 GHz alongside channel simulations. A channel model which employs the plane-wave approximation was used to combine the embedded antenna radiation patterns of the candidate devices obtained from far-field pattern measurements and multipath component parameters from an indoor ray-tracer. The 4-element candidate arrays were each constructed using a different type of antenna element, and despite the diverse element directivities, pattern characteristics, and polarization purities, all three devices were constructed to fully exploit diversity in polarization, space, and angle. Thus, low correlation and high information theoretic capacity was observed in each case. A good match between the model and the measurements is also demonstrated, especially for MIMO subsets of identically or orthogonally polarized linear slot antennas. The interdependencies between the channel XPD, directional spread and pathloss, and the respective impact on channel capacity are also discussed in this paper.

  14. A dual-band reconfigurable Yagi-Uda antenna with diverse radiation patterns

    Science.gov (United States)

    Saurav, Kushmanda; Sarkar, Debdeep; Srivastava, Kumar Vaibhav

    2017-07-01

    In this paper, a dual-band pattern reconfigurable antenna is proposed. The antenna comprises of a dual-band complementary split ring resonators (CSRRs) loaded dipole as the driven element and two copper strips with varying lengths as parasitic segments on both sides of the driven dipole. PIN diodes are used with the parasitic elements to control their electrical length. The CSRRs loading provide a lower order mode in addition to the reference dipole mode, while the parasitic elements along with the PIN diodes are capable of switching the omni-directional radiation of the dual-band driven element to nine different configurations of radiation patterns which include bi-directional end-fire, broadside, and uni-directional end-fire in both the operating bands. A prototype of the designed antenna together with the PIN diodes and DC bias lines is fabricated to validate the concept of dual-band radiation pattern diversity. The simulation and measurement results are in good agreement. The proposed antenna can be used in wireless access points for PCS and WLAN applications.

  15. Computation of antenna pattern correlation and MIMO performance by means of surface current distribution and spherical wave theory

    Directory of Open Access Journals (Sweden)

    O. Klemp

    2006-01-01

    Full Text Available In order to satisfy the stringent demand for an accurate prediction of MIMO channel capacity and diversity performance in wireless communications, more effective and suitable models that account for real antenna radiation behavior have to be taken into account. One of the main challenges is the accurate modeling of antenna correlation that is directly related to the amount of channel capacity or diversity gain which might be achieved in multi element antenna configurations. Therefore spherical wave theory in electromagnetics is a well known technique to express antenna far fields by means of a compact field expansion with a reduced number of unknowns that was recently applied to derive an analytical approach in the computation of antenna pattern correlation. In this paper we present a novel and efficient computational technique to determine antenna pattern correlation based on the evaluation of the surface current distribution by means of a spherical mode expansion.

  16. Electromagnetic cloak to restore the antenna radiation patterns affected by nearby scatter

    Science.gov (United States)

    Teperik, Tatiana V.; de Lustrac, André

    2015-12-01

    We have theoretically verified the feasibility of the concept of mantle cloak for very high frequency (VHF) antenna communications. While the applicability of the concept has been demonstrated for an infinitely long cylindrical obstacle and infinitely long electric source [Y.R. Padooru, A.B. Yakovlev, and P.-Y. Chen and Andrea Alù, J. Appl. Phys., 112, 104902, (2012)], the use of this cloak in realistic conditions is not straightforward. In this paper as an electric source we consider a typical VHF monopole antenna mounted on ground plane together with a metallic cylindrical obstacle. The both ground plane and obstacle affect the antenna radiation scattering. Nevertheless, we could show that the mantle cloak can bee successfully applied to restore the radiation patterns of antenna even when the source, the cylindrical metallic obstacle, and the ground plane have finite length. We have studied the antenna adaptation in the presence of the cloaked obstacle and found that the complete radiation system is still functional in the bandwidth that is reduced only by 11%.

  17. Electromagnetic cloak to restore the antenna radiation patterns affected by nearby scatter

    Energy Technology Data Exchange (ETDEWEB)

    Teperik, Tatiana V., E-mail: tatiana.teperik@u-psud.fr [Univ. Paris-Sud, Institut d’Electronique Fondamentale, UMR 8622, Orsay F-91405 (France); Donostia International Physics Center, Aptdo. 1072, 20080 San Sebastian (Spain); Lustrac, André de [Univ. Paris-Sud, Institut d’Electronique Fondamentale, UMR 8622, Orsay F-91405 (France); Univ. Paris-Ouest, 92410 Ville d’Avray (France)

    2015-12-15

    We have theoretically verified the feasibility of the concept of mantle cloak for very high frequency (VHF) antenna communications. While the applicability of the concept has been demonstrated for an infinitely long cylindrical obstacle and infinitely long electric source [Y.R. Padooru, A.B. Yakovlev, and P.-Y. Chen and Andrea Alù, J. Appl. Phys., 112, 104902, (2012)], the use of this cloak in realistic conditions is not straightforward. In this paper as an electric source we consider a typical VHF monopole antenna mounted on ground plane together with a metallic cylindrical obstacle. The both ground plane and obstacle affect the antenna radiation scattering. Nevertheless, we could show that the mantle cloak can bee successfully applied to restore the radiation patterns of antenna even when the source, the cylindrical metallic obstacle, and the ground plane have finite length. We have studied the antenna adaptation in the presence of the cloaked obstacle and found that the complete radiation system is still functional in the bandwidth that is reduced only by 11%.

  18. Pattern Reconfigurable Patch Antenna menggunakan Edge Shorting Pin dan Symmetrical Control Pin

    Directory of Open Access Journals (Sweden)

    DWI ANDI NURMANTRIS

    2016-02-01

    Full Text Available Abstrak Metode baru dalam mendesain suatu pattern reconfigurable antenna telah diteliti. Penelitian ini fokus pada optimasi antena patch lingkaran single layer pencatuan probe koaksial dengan mengintegrasikan 24 switch/shorting pin pada sisi patch yang disebut edge shorting pin dan 8 shorting pin membentuk lingkaran dengan radius tertentu dan selanjutnya disebut symmetrical control pin yang fungsinya sebagai metode penyepadan impedansi. Algoritma Genetika yang dikombinasikan dengan Finite Element Software digunakan untuk mengoptimasi kombinasi  switch, radius lingkaran symmetrical control pin, dan radius patch untuk mendapatkan kemampuan pattern reconfigurability. Antena ini menghasilkan 8 kemungkinan arah radiasi azzimuth dengan resolusi 45o dan arah elevasi 30o pada frekuensi 2,4 Ghz. Optimasi, simulasi, fabrikasi, dan pengukuran dilakukan untuk memverifikasi hasil penelitian. Kata kunci: Patch Lingkaran, Edge Shorting Pin, Symmetrical Control Pin, Algoritma Genetika, Pattern Reconfigurable   Abstract New method for desaining pattern reconfigurable antenna was studied. This study focuses on the optimization of a single layer circular patch antenna with probe feed by integrating the 24 switch / shorting pin on the side of the patch that called Edge Shorting Pins and 8 shorting pins form circular line in such radius that called Symmetrical Control Pins as a impedance matching method. Genetic algorithm combined with the Finite Element Software is used to optimize the switch combination, the radius of circular line of symmetrical control pins, and the patch radius to obtain a pattern reconfigurability capabilities. This antenna produces 8 possible directions of azimuth radiation with a resolution of 45o and 30o elevation direction at a frequency of 2.4 GHz. Optimization, simulation, fabrication, and measurement was done to verify the results. Keywords: Circular Patch, Edge Shorting Pin, Symmetrical Control Pin, Genetic Algorithm, Pattern

  19. Phase Residual Estimations for PCVs of Spaceborne GPS Receiver Antenna and Their Impacts on Precise Orbit Determination of GRACE Satellites

    Institute of Scientific and Technical Information of China (English)

    TU Jia; GU Defeng; WU Yi; YI Dongyun

    2012-01-01

    In-flight phase center systematic errors of global positioning system (GPS) receiver antenna are the main restriction for improving the precision of precise orbit determination using dual-frequency GPS.Residual approach is one of the valid methods for in-flight calibration of GPS receiver antenna phase center variations (PCVs) from ground calibration.In this paper,followed by the correction model of spaceborne GPS receiver antenna phase center,ionosphere-free PCVs can be directly estimated by ionosphere-free carrier phase post-fit residuals of reduced dynamic orbit determination.By the data processing of gravity recovery and climate experiment (GRACE) satellites,the following conclusions are drawn.Firstly,the distributions of ionosphere-free carrier phase post-fit residuals from different periods have the similar systematic characteristics.Secondly,simulations show that the influence of phase residual estimations for ionosphere-free PCVs on orbit determination can reach the centimeter level.Finally,it is shown by in-flight data processing that phase residual estimations of current period could not only be used for the calibration for GPS receiver antenna phase center of foretime and current period,but also be used for the forecast of ionosphere-free PCVs in future period,and the accuracy of orbit determination can be well improved.

  20. Engineering antenna radiation patterns via quasi-conformal mappings.

    Science.gov (United States)

    García-Meca, Carlos; Martínez, Alejandro; Leonhardt, Ulf

    2011-11-21

    We use a combination of conformal and quasi-conformal mappings to engineer isotropic electromagnetic devices that modify the omnidirectional radiation pattern of a point source. For TE waves, the designed devices are also non-magnetic. The flexibility offered by the proposed method is much higher than that achieved with conformal mappings. As a result, it is shown that complex radiation patterns can be achieved, which can combine high directivity in a desired number of arbitrary directions and isotropic radiation in other specified angular ranges. In addition, this technique enables us to control the power radiated in each direction to a certain extent. The obtained results are valid for any part of the spectrum. The potential of this method is illustrated with some examples. Finally, we study the frequency dependence of the considered devices and propose a practical dielectric implementation.

  1. Sidelobe Canceling for Optimization of Reconfigurable Holographic Metamaterial Antenna

    OpenAIRE

    Johnson, Mikala C.; Brunton, Steven L.; Kutz, J Nathan; Kundtz, Nathan B.

    2014-01-01

    Accurate and efficient methods for beam-steering of holographic metamaterial antennas is of critical importance for enabling consumer usage of satellite data capacities. We develop an optimization algorithm capable of performing adaptive, real-time control of antenna patterns while operating in dynamic environments. Our method provides a first analysis of the antenna pattern optimization problem in the context of metamaterials and for the purpose of directing the central beam and significantl...

  2. Geolocation of Source Interference from a Single Satellite with Multiple Antennas

    Science.gov (United States)

    2014-03-01

    Systems ............................................................................ 124 a. INMARSAT Global Xpress ...7 Figure 4. Ku Band Single Antenna Footprint (from [12]). ............................................. 8 Figure 5. INMARSAT Global Xpress ...this sort of antenna system. This image is from INMARSAT’s planned Global Xpress system. Shown is the expected coverage provided by three Global

  3. Study of high speed complex number algorithms. [for determining antenna for field radiation patterns

    Science.gov (United States)

    Heisler, R.

    1981-01-01

    A method of evaluating the radiation integral on the curved surface of a reflecting antenna is presented. A three dimensional Fourier transform approach is used to generate a two dimensional radiation cross-section along a planer cut at any angle phi through the far field pattern. Salient to the method is an algorithm for evaluating a subset of the total three dimensional discrete Fourier transform results. The subset elements are selectively evaluated to yield data along a geometric plane of constant. The algorithm is extremely efficient so that computation of the induced surface currents via the physical optics approximation dominates the computer time required to compute a radiation pattern. Application to paraboloid reflectors with off-focus feeds in presented, but the method is easily extended to offset antenna systems and reflectors of arbitrary shapes. Numerical results were computed for both gain and phase and are compared with other published work.

  4. Performance Analysis of Anti-Interference Wireless Packet Networks for LEO Micro-Satellite with Adaptive Nulling Antenna Array

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-tao; HAN Fang-jing; WAN Jian-wei

    2006-01-01

    Information integrity is key to successful operations in intricacy environments in the future, especially when strong interferences exist. This paper presents the design of a novel wireless packet network receiver system for Low Earth Orbit (LEO) micro-satellites with adaptive nulling antenna arrays. It uses three types of interference suppression in cascade: namely spread spectrum, adaptive array nulling, and transform domain filtering. This paper proposes a pilot channel-aided method in order to make full advantage of this arrangement, and analyzes its throughput and delay performance using the Markov chain model. Our results show that this method can achieve excellent delay and throughput performance: When the number of array antenna is 8, its throughput increase relative to the standard Slot-ALOHA protocol is 125 %.

  5. Pattern Nulling of Linear Antenna Arrays Using Backtracking Search Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Kerim Guney

    2015-01-01

    Full Text Available An evolutionary method based on backtracking search optimization algorithm (BSA is proposed for linear antenna array pattern synthesis with prescribed nulls at interference directions. Pattern nulling is obtained by controlling only the amplitude, position, and phase of the antenna array elements. BSA is an innovative metaheuristic technique based on an iterative process. Various numerical examples of linear array patterns with the prescribed single, multiple, and wide nulls are given to illustrate the performance and flexibility of BSA. The results obtained by BSA are compared with the results of the following seventeen algorithms: particle swarm optimization (PSO, genetic algorithm (GA, modified touring ant colony algorithm (MTACO, quadratic programming method (QPM, bacterial foraging algorithm (BFA, bees algorithm (BA, clonal selection algorithm (CLONALG, plant growth simulation algorithm (PGSA, tabu search algorithm (TSA, memetic algorithm (MA, nondominated sorting GA-2 (NSGA-2, multiobjective differential evolution (MODE, decomposition with differential evolution (MOEA/D-DE, comprehensive learning PSO (CLPSO, harmony search algorithm (HSA, seeker optimization algorithm (SOA, and mean variance mapping optimization (MVMO. The simulation results show that the linear antenna array synthesis using BSA provides low side-lobe levels and deep null levels.

  6. Nonlinear analysis and vibration suppression control for a rigid-flexible coupling satellite antenna system composed of laminated shell reflector

    Science.gov (United States)

    You, Bin Di; Wen, Jian Min; Zhao, Yang

    2014-03-01

    In this paper, a nonlinear dynamic modeling method for a rigid-flexible coupling satellite antenna system composed of laminated shell reflector is proposed undergoing a large overall motion. For the study of the characteristics of the reflector using laminated shell structure, the displacement field description of a point in a 3-noded shell element is acquired in conjunction with the length stretch, lateral bending and torsional deformation. Hence, a nonlinear dynamic model of the satellite antenna system is deduced based on Lagrange's equations. The complete expressions of nonlinear terms of elastic deformation and coupling terms between rigid motion and large deflection are considered in the dynamic equations, and the dynamic behavior of the rigid-flexible coupling system is analyzed using linear model and nonlinear model, respectively. In order to eliminate the system vibration, the PD with vibration force feedback control strategy is used to achieve its desired angles and velocity in a much shorter duration, and can further accomplish reduction of residual vibration. Then, the asymptotic stability of the system is proved based on the Lyapunov method. Through numerical computation, the results show that the linear model cannot capture the motion-induced coupling terms and geometric nonlinearity variations. However, the nonlinear model is suitable for dealing with large deformation rigid-flexible problem undergoing large overall motions. Hence, the satellite antenna pointing accuracy would be predicted based on the nonlinear model. Furthermore, the results also show that the proposed control strategy can suppress system vibration quickly. The above conclusions would have important academic significance and engineering value.

  7. Symbol-Level Precoding with Per-antenna Power Constraints for the Multi-beam Satellite Downlink

    OpenAIRE

    Spano, Danilo; Chatzinotas, Symeon; Krause, Jens; Ottersten, Björn

    2016-01-01

    This paper tackles the problem of multi-user interference in the forward downlink channel of a multi-beam satellite system. A symbol-level precoding scheme is considered, where the data information is used, along with the channel state information, in order to exploit the multi-user interference and transform it into useful power at the receiver side. In this framework, the max-min fair problem for constructive interference is formulated and solved, under per-antenna power constraints. The co...

  8. The role of terahertz surface plasmons in the scattering pattern of electromagnetic waves in an unstable elliptical plasma antenna

    Science.gov (United States)

    Safari, S.; Jazi, B.

    2017-07-01

    The scattering phenomenon of plane waves from an unstable elliptical plasma antenna is investigated. The role of surface plasmon excitation in the scattering pattern is studied. In the antenna mentioned above, there is a metallic rod with dielectric cover embedded in a long plasma column with an elliptical cross section. The antenna is considered unstable because of the injection of an electron beam into the plasma layer. The effects of applied accelerating voltage and applied current intensity on the scattering pattern and resonance frequency are investigated. The geometrical structure and its effect on the scattering cross section and creation of new resonance frequency are studied.

  9. Simulating Global AeroMACS Airport Ground Station Antenna Power Transmission Limits to Avoid Interference With Mobile Satellite Service Feeder Uplinks

    Science.gov (United States)

    Wilson, Jeffrey D.

    2013-01-01

    The Aeronautical Mobile Airport Communications System (AeroMACS), which is based upon the IEEE 802.16e mobile wireless standard, is expected to be implemented in the 5091 to 5150 MHz frequency band. As this band is also occupied by Mobile Satellite Service feeder uplinks, AeroMACS must be designed to avoid interference with this incumbent service. The aspects of AeroMACS operation that present potential interference are under analysis in order to enable the definition of standards that assure that such interference will be avoided. In this study, the cumulative interference power distribution at low Earth orbit from transmitters at global airports was simulated with the Visualyse Professional software. The dependence of the interference power on antenna distribution, gain patterns, duty cycle, and antenna tilt was simulated. As a function of these parameters, the simulation results are presented in terms of the limitations on transmitter power from global airports required to maintain the cumulative interference power under the established threshold.

  10. Study on In-Orbit Test Methods for Antenna Coverage of Geostationary Communication Satellites%同步轨道通信卫星天线覆盖图在轨测试方法

    Institute of Scientific and Technical Information of China (English)

    许国庆; 毛新宏; 贺中人; 杨丽

    2013-01-01

    The purpose of in-orbit tests on the antenna pattern of geostationary communication satellites is to verify consistency of the stationed satellite footprint with the designed coverage area,and to analyze the influence of antenna thermal deformation caused by solar radiation on the coverage characteristics.This paper describes relevant in-orbit test methods,e.g.maneuvering satellite attitude method,moving antenna platform method and using movable earth station method,for three types of antennas used on satellites,fixed shaped antenna,zone beam antenna and movable spot beam antenna.A solution by using transponder telemetry parameters and multiple stations in maneuvering satellite attitude is studied and a challenge of saving precious fuel and measuring as much pattern cuts as possible is effectively resolved.In-orbit tests are performed on a fixed shaped antenna and a movable spot beam antenna of a real satellite.The test results show good agreement with theoretical characteristics,proving feasibility of the methods.Finally,the measurement uncertainty of the solution is analyzed.%同步轨道通信卫星天线覆盖图在轨测试的目的是检验卫星入轨后上下行覆盖图与设计覆盖区域的一致性,以及太阳照射产生的天线热变形等因素对覆盖特性的影响.针对卫星上常用的固定赋形波束天线、区域波束天线和可移动点波束天线等类型的星载天线在轨测试问题,分析了几种在轨测试方法的原理,包括偏置卫星姿态法、转动天线平台法以及使用移动测量站的方法,提出了偏置卫星姿态法中融合转发器遥测参数判决和多站联合在轨测试的解决方案,有效解决了既要节省宝贵的燃料又要尽可能测量多条切线方向图的工程难题.对真星的固定赋形波束天线和可移动点波束天线进行了在轨测试,测试结果与实际特性吻合很好,验证了方法的可行性.最后,针对融合遥测参数判决的多站联合偏置

  11. The Hitachi and Takahagi 32 m radio telescopes: Upgrade of the antennas from satellite communication to radio astronomy

    Science.gov (United States)

    Yonekura, Yoshinori; Saito, Yu; Sugiyama, Koichiro; Soon, Kang Lou; Momose, Munetake; Yokosawa, Masayoshi; Ogawa, Hideo; Kimura, Kimihiro; Abe, Yasuhiro; Nishimura, Atsushi; Hasegawa, Yutaka; Fujisawa, Kenta; Ohyama, Tomoaki; Kono, Yusuke; Miyamoto, Yusuke; Sawada-Satoh, Satoko; Kobayashi, Hideyuki; Kawaguchi, Noriyuki; Honma, Mareki; Shibata, Katsunori M.; Sato, Katsuhisa; Ueno, Yuji; Jike, Takaaki; Tamura, Yoshiaki; Hirota, Tomoya; Miyazaki, Atsushi; Niinuma, Kotaro; Sorai, Kazuo; Takaba, Hiroshi; Hachisuka, Kazuya; Kondo, Tetsuro; Sekido, Mamoru; Murata, Yasuhiro; Nakai, Naomasa; Omodaka, Toshihiro

    2016-10-01

    The Hitachi and Takahagi 32 m radio telescopes (former satellite communication antennas) were so upgraded as to work at 6, 8, and 22 GHz. We developed the receiver systems, IF systems, back-end systems (including samplers and recorders), and reference systems. We measured the performance of the antennas. The system temperature including the atmosphere toward the zenith, T_sys^{ast }, is measured to be ˜30-40 K for 6 GHz and ˜25-35 K for 8 GHz. T_sys^{ast } for 22 GHz is measured to be ˜40-100 K in winter and ˜150-500 K in summer seasons, respectively. The aperture efficiency is 55%-75% for Hitachi at 6 GHz and 8 GHz, and 55%-65% for Takahagi at 8 GHz. The beam sizes at 6 GHz and 8 GHz are ˜4.6° and ˜3.8°, respectively. The side-lobe level is less than 3%-4% at 6 and 8 GHz. Pointing accuracy was measured to be better than ˜0.3° for Hitachi and ˜0.6° for Takahagi. We succeeded in VLBI observations in 2010 August, indicating good performance of the antenna. We started single-dish monitoring observations of 6.7 GHz methanol maser sources in 2012 December, and found several new sources showing short-term periodic variation of the flux density.

  12. Pattern Synthesis of Planar Nonuniform Circular Antenna Arrays Using a Chaotic Adaptive Invasive Weed Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Huaning Wu

    2014-01-01

    Full Text Available A novel invasive weed optimization (IWO variant called chaotic adaptive invasive weed optimization (CAIWO is proposed and applied for the optimization of nonuniform circular antenna arrays. A chaotic search method has been combined into the modified IWO with adaptive dispersion, where the seeds produced by a weed are dispersed in the search space with standard deviation specified by the fitness value of the weed. To evaluate the performance of CAIWO, several representative benchmark functions are minimized using various optimization algorithms. Numerical results demonstrate that the proposed approach improves the performance of the algorithm significantly, in terms of both the convergence speed and exploration ability. Moreover, the scheme of CAIWO is employed to find out an optimal set of weights and antenna element separation to obtain a radiation pattern with maximum side-lobe level (SLL reduction with different numbers of antenna element under two cases with different purposes. The design results obtained by CAIWO have comfortably outperformed the published results obtained by other state-of-the-art metaheuristics in a statistically meaningful way.

  13. GMI High Frequency Antenna Pattern Correction Update Based on GPM Inertial Hold and Comparison with ATMS

    Science.gov (United States)

    Draper, David W.

    2015-01-01

    In an inertial hold, the spacecraft does not attempt to maintain geodetic pointing, but rather maintains the same inertial position throughout the orbit. The result is that the spacecraft appears to pitch from 0 to 360 degrees around the orbit. Two inertial holds were performed with the GPM spacecraft: 1) May 20, 2014 16:48:31 UTC-18:21:04 UTC, spacecraft flying forward +X (0yaw), pitch from 55 degrees (FCS) to 415 degrees (FCS) over the orbit2) Dec 9, 2014 01:30:00 UTC-03:02:32 UTC, spacecraft flying backward X (180yaw), pitch from 0 degrees (FCS) to 360 degrees (FCS) over the orbitThe inertial hold affords a view of the earth through the antenna backlobe. The antenna spillover correction may be evaluated based on the inertial hold data.The current antenna pattern correction does not correct for spillover in the 166 and 183 GHz channels. The two inertial holds both demonstrate that there is significant spillover from the 166 and 183 GHz channels. By not correcting the spillover, the 166 and 183 GHz channels are biased low by about 1.8 to 3K. We propose to update the GMI calibration algorithm with the spill-over correction presented in this document for 166 GHz and 183 GHz.

  14. Two-Dimensional Time-Domain Antenna Arrays for Optimum Steerable Energy Pattern with Low Side Lobes

    Directory of Open Access Journals (Sweden)

    Alberto Reyna

    2014-01-01

    Full Text Available This document presents the synthesis of different two-dimensional time-domain antenna arrays for steerable energy patterns with side lobe levels. The research is focused on the uniform and nonuniform distributions of true-time exciting delays and positions of antenna elements. The uniform square array, random array, uniform concentric ring array, and rotated nonuniform concentric ring array geometries are particularly studied. These geometries are synthesized by using the well-known sequential quadratic programming. The synthesis regards the optimal true-time exciting delays and optimal positions of pulsed antenna elements. The results show the capabilities of the different antenna arrays to steer the beam in their energy pattern in time domain and how their performance is in frequency domain after the synthesis in time domain.

  15. Effect of the tank main gun on the radiation pattern of the monopole antenna

    Directory of Open Access Journals (Sweden)

    Miroslav Lj. Đorđević

    2011-01-01

    Full Text Available For telecommunication purposes, a monopole antenna is usually positioned on the tank turret. At low frequencies the whole tank has to be treated as a part of the antenna system. In this paper a method for electromagnetic modeling of metallic structures is presented and applied to the analysis of radiation of a tank monopole antenna. Radiation simulations are performed at the frequency range from 1MHz to 30MHz. A special attention is given to the analysis of the effects of increased elevation of the tank main gun to the radiation pattern of the antenna. The analysis of the radiation of the tank monopole is performed with and without the presence of conducting ground. It is shown that the increase in the main gun elevation at certain frequencies can lead to degradation of uniformity of radiation in the horizontal plane. Introduction Informational technologies and reliable and secure communications are an important part of a modern military doctrine. Regarding telecommunications, armored vehicles and tanks in particular present a specific problem. In this paper, a theoretical basis of the electromagnetic analysis of metallic structures and a modeling technique will be presented. The effect of the tank on the radiation pattern will be investigated both for a tank in free space and above the conducting ground. Method of moments The method of moments (MoM is a method for an approximate solution of integral equations. This section presents the fundamentals of the MoM and the higher-order quadrilaterals as the basic elements used for geometry modeling. The currents in our method are approximated using high-order two-dimensional polynomials. Modeling of the tank geometry The tank is modeled using only 28 elements, out of which 10 bilinear quadrilaterals and 18 second-order surfaces. The monopole antenna is modeled using one straight wire segment. Results The use of the polynomial current approximation yields a reduction in the number of unknowns required

  16. Design and layout of rectangular waveguide horns antennas

    Science.gov (United States)

    Fasold, D.; Pecher, H.

    Theoretical basis of waveguide horn antennas (WHA) is outlined. Applicable design curves, such as nomograms for determining gain and a diagram for laying out necessary waveguide dimensions, are given. Use of WHA designs in satellite radio and television systems is discussed. Antenna radiation pattern calculations are treated and optimization problems are dealt with. Based on design feasibility results, a laboratory model of a transmitter antenna for TV-SAT was built. The equipment, an elliptical waveguide horn design, demonstrates satisfactory performance.

  17. Mitigating illumination gradients in a SAR image based on the image data and antenna beam pattern

    Science.gov (United States)

    Doerry, Armin W.

    2013-04-30

    Illumination gradients in a synthetic aperture radar (SAR) image of a target can be mitigated by determining a correction for pixel values associated with the SAR image. This correction is determined based on information indicative of a beam pattern used by a SAR antenna apparatus to illuminate the target, and also based on the pixel values associated with the SAR image. The correction is applied to the pixel values associated with the SAR image to produce corrected pixel values that define a corrected SAR image.

  18. Auxetic shape memory alloy cellular structures for deployable satellite antennas: design, manufacture and testing

    Directory of Open Access Journals (Sweden)

    Di Maio D.

    2010-06-01

    Full Text Available We describe the production development and experimental tests related to an hybrid honeycomb-truss made of shape memory alloy (Ni48Ti46Cu6, and used as a demonstrator for a deployable antenna in deep-space missions. Specific emphasis is placed on the modal analysis techniques used to test the lightweight SMA structure.

  19. Antenna Radiation Pattern Influence on the Localization Accuracy in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    COCA, E.

    2013-05-01

    Full Text Available Localization or position determination is one of the most common applications for the wireless sensor networks. Many investigations have been made during the last decade, most of the effort being concentrated in the direction of improving the accuracy of the positioning results by using complex filtering and correction algorithms, and other techniques such as radio maps or directive antennas for the reference nodes. The most common sources of errors include reflections on nearby objects, radio frequency noise, and variable characteristics of the communication channel. In the vast majority of cases, several assumptions have been made in order to simplify the computing algorithms or the complexity of nodes, and finally their cost. The omnidirectional radiation pattern of the node antennas is such an assumption. In this paper we investigate theoretically and validate by measurements the influence of the radiation pattern on the localization accuracy of a wireless sensor node network. By taking into consideration the orientation of nodes, which could be provided by a local digital compass on each node, we demonstrate that the position accuracy could be improved with a minimum of resources. All measurements were made in radio emissions controlled environment - a semi-anechoic chamber, without affecting the generality of the proposed solution.

  20. 基于Simulink仿真的用户星天线控制系统分析%Analysis of Simulink-based antenna control system on user satellite

    Institute of Scientific and Technical Information of China (English)

    龙甲禄; 闫剑虹

    2012-01-01

    To meet the need of the antenna pointing accuracy of data relay satellite system, the antenna pointing control concept is described, and the establishment process of the link between the user satellite and data relay satellite is analyzed. A scheme for satelite-borne autonomous control is designed, A mathematic simulation of the antenna pointing control system is conducted under the Simulink circumstance. The tracking performance of the antenna control system on the user satellite is verified by the analysis of the simulation results.%为满足中继卫星系统对天线指向精度的要求,首先描述了天线指向控制概念,对用户星与中继卫星星间链路的建立过程进行了分析,并且设计了星上自主控制方案,在Simulink环境下对所设计的天线指向控制系统进行了数学仿真,最后通过对仿真结果的分析验证了用户星天线控制系统的跟踪性能.

  1. VHF antenna pattern characterization by the observation of meteor head echoes

    Science.gov (United States)

    Renkwitz, Toralf; Schult, Carsten; Latteck, Ralph

    2017-02-01

    The Middle Atmosphere Alomar Radar System (MAARSY) with its active phased array antenna is designed and used for studies of phenomena in the mesosphere and lower atmosphere. The flexible beam forming and steering combined with a large aperture array allows for observations with a high temporal and angular resolution. For both the analysis of the radar data and the configuration of experiments, the actual radiation pattern needs to be known. For that purpose, various simulations as well as passive and active experiments have been conducted. Here, results of meteor head echo observations are presented, which allow us to derive detailed information of the actual radiation pattern for different beam-pointing positions and the current health status of the entire radar. For MAARSY, the described method offers robust beam pointing and width estimations for a minimum of a few days of observations.

  2. Fast 3D Pattern Synthesis with Polarization and Dynamic Range Ratio Control for Conformal Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Massimiliano Comisso

    2014-01-01

    Full Text Available This paper proposes an iterative algorithm for the 3D synthesis of the electric far-field pattern of a conformal antenna array in the presence of requirements on both the polarization and the dynamic range ratio (DRR of the excitations. Thanks to the use of selectable weights, the algorithm allows a versatile control of the DRR and of the polarization in a given angular region and requires a low CPU time to provide the array excitations. Furthermore, a modified version of the algorithm is developed to enable the optimization of the polarization state by phase-only control. Numerical results are presented to verify the usefulness of the proposed approach for the joint pattern and polarization synthesis of conformal arrays with reduced or even unitary DRR.

  3. Adaptive Forming of the Beam Pattern of Microstrip Antenna with the Use of an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Janusz Dudczyk

    2012-01-01

    Full Text Available Microstrip antenna has been recently one of the most innovative fields of antenna techniques. The main advantage of such an antenna is the simplicity of its production, little weight, a narrow profile, and easiness of integration of the radiating elements with the net of generators power systems. As a result of using arrays consisting of microstrip antennas; it is possible to decrease the size and weight and also to reduce the costs of components production as well as whole application systems. This paper presents possibilities of using artificial neural networks (ANNs in the process of forming a beam from radiating complex microstrip antenna. Algorithms which base on artificial neural networks use high parallelism of actions which results in considerable acceleration of the process of forming the antenna pattern. The appropriate selection of learning constants makes it possible to get theoretically a solution which will be close to the real time. This paper presents the training neural network algorithm with the selection of optimal network structure. The analysis above was made in case of following the emission source, setting to zero the pattern of direction of expecting interference, and following emission source compared with two constant interferences. Computer simulation was made in MATLAB environment on the basis of Flex Tool, a programme which creates artificial neural networks.

  4. HF Radio Astronomy from a Small Satellite

    Science.gov (United States)

    2016-06-15

    antenna as shown in Figure 4. Dual mode loop-dipole elements are described in [25,29,30]. The 10 MHz radiation patterns of the six modes are shown in... telemetry , GPS, and vector antenna modules. Robey 14 30th Annual AIAA/USU Conference on Small Satellites Alexander Morris. Thanks to Sara Klein for

  5. Scanning beam antenna conceptual design for 20/30 GHz satellite systems

    Science.gov (United States)

    Smetana, J.; Sorbello, R.; Crosswell, W. F.

    1983-01-01

    The configuration described is one of four antenna system configurations developed using a variety of monolithic microwave integrated circuit module arrangements and optical systems. A parametric analysis is expected to produce a data base for the selection of design points for a variety of applications. Soon to be accomplished is the design concept of the active (lens) array, which will take into consideration such factors as, coupling effects, the space-fed power divider network design, input bias and control layout, investigation of thermal distribution, and analysis of module failure (graceful degradation).

  6. Digital-beamforming array antenna technologies for future ocean-observing satellite missions

    DEFF Research Database (Denmark)

    Iupikov, Oleg A.; Ivashina, Marianna V.; Cappellin, Cecilia

    2016-01-01

    Existing passive microwave radiometers that are used for ocean observations are limited in spatial resolution and geographic coverage, due to the limitations of traditional antenna technologies using mechanically-scanning reflectors and horn-type feeds. Future ocean observation missions call...... for new solutions, such as digitally-beamforming array feeds (DBAFs) as well as stationary and more complex reflectors. Our studies demonstrate that DBAFs can overcome the physically fundamental limitations of traditional horn feeds, and are capable of meeting all the challenging requirements for the next...

  7. Beampattern for Multiple Antennas in Hybrid Terrestrial Satellite Communications System (HTSCS

    Directory of Open Access Journals (Sweden)

    Farman Ullah

    2013-10-01

    Full Text Available The hybrid architecture of Terrestrial and Satellite networks discussed in this paper utilizes frequency reuse. However, at the same time the frequency reuse results in Co-Channel Interference (CCI. The CCI is caused by the mobile users to the satellite end because of the strong receiver on the satellite end. Mainly, this paper will focus on to tone down the CCI and would also show that how the OFDM based adaptive beamforming can be employed to mitigate this interference. The technique which is being used to mitigate this interference is Pre-FFT adaptive beamforming also called as time domain beamforming. In this paper, main task is to mitigate the CCI which is induced by the mobile users to the satellite end and will be considered that there are J users. Out of these J users there is one desired user and rest are interferers. When the interfered data is received at the satellite end, the Pre-FFT adaptive beamforming extracts the desired user data from the interferers by applying the complex weights to the received symbol. The weight for the next symbol is then updated by Least Mean Square (LMS algorithm and then is applied to it. This process is carried out till all the desired user data is extracted from the interference signal.

  8. Regional patterns of ocean mass change from GRACE satellite data

    Science.gov (United States)

    Riva, R. E.; Bamber, J. L.; Lavallee, D. A.; Wouters, B.; Hashemi Farahani, H.; Ditmar, P.; Van Der Wal, W.

    2011-12-01

    The Gravity Recovery and Climate Experiment (GRACE) satellites provide a direct measure of mass exchange between continents and oceans over time. Here, we make use of 8 years (2003-2010) of optimally filtered monthly GRACE-based solutions produced at TUDelft to determine trends in the mass of land ice and continental water stocks. We pay particular attention to accounting for the main error sources in the estimation of the land load: the model of glacial isostatic adjustment, signal leakage caused by a limited spatial resolution, and geocentre motion. Through gravitational coupling, load changes over land induce a redistribution of ocean water, which is characterized by complex patterns with peak values in coastal areas. We focus on a few selected regions where those sea-level changes are going to have a particularly high impact on human activities and settlements.

  9. Algorithm for the synthesis of linear antenna arrays with desired radiation pattern and integral amplitude coefficients

    Directory of Open Access Journals (Sweden)

    Sadchenko A. V.

    2015-06-01

    Full Text Available Ahe problem of technical implementation of phased array antennas (PAR with the required radiation pattern (RP is the complexity of the construction of the beamforming device that consists of a set of controlled attenuators and phase shifters. It is possible to simplify the technical implementation of PAR, if complex representation of coefficients of amplitude-phase distribution of the field along the lattice is approximated by real values in the synthesis stage. It is known that the amplitude distribution of the field in the aperture of the antenna array and the radiation pattern are associated with Fourier transform. Thus, the amplitude and phase coefficients are first calculated using the Fourier transform, and then processed according to the selected type of circuit realization of attenuators and phase shifters. The calculation of the inverse Fourier transform of the modified coefficients allows calculating the synthesized orientation function. This study aims to develop a search algorithm for amplitude and phase coefficients, taking into account the fact that integer-valued amplitudes and phases are technically easier to implement than real ones. Synthesis algorithm for equidistant linear array with a half-wavelength irradiators pitch (&l;/2 is as follows. From a given directivity function the discrete Fourier transform (DFT in the form of an array of complex numbers is found, the resulting array is then transformed into a set of attenuations for attenuators and phase shifts for phase shifters, while the amplitude coefficients are rounded off to integers, and phases are binarizated (0, ?. The practical value of this algorithm is particularly high when using controlled phase shifters and attenuators integrally. The work confirms the possibility of a thermoelectric converter of human body application for an electronic medical thermometer power supply.

  10. gLISA: geosynchronous Laser Interferometer Space Antenna concepts with off-the-shelf satellites

    CERN Document Server

    Tinto, Massimo; Buchman, Sasha; Tilley, Scott

    2014-01-01

    We discuss two geosynchronous gravitational wave mission concepts, which we generically name gLISA. One relies on the science instrument hosting program onboard geostationary commercial satellites, while the other takes advantage of recent developments in the aerospace industry that result in dramatic satellite and launching vehicle cost reductions for a dedicated geosynchronous mission. To achieve the required level of disturbance free-fall onboard these large and heavy platforms we propose a "two-stage" drag-free system, which incorporates the Modular Gravitational Reference Sensor (MGRS) (developed at Stanford University) and does not rely on the use of micro-Newton thrusters. Although both mission concepts are characterized by different technical and programmatic challenges, individually they could be flown and operated at a cost significantly lower than those of previously envisioned gravitational wave missions. We estimate both mission concepts to cost less than 500M US$ each, and in the year 2015 we wi...

  11. 低轮廓动中通天线研究现状%Research Status of Low Profile Antennas in Satellite Communication on-the-move

    Institute of Scientific and Technical Information of China (English)

    李琳; 万继响

    2015-01-01

    针对目前卫星通信系统对天线性能、形式的需求,回顾了卫星移动通信中天线的应用背景和发展历程,对国内外低剖面动中通天线的类型进行了综述;详细介绍了平板阵列、一维和二维有源相控阵天线的工作原理和代表产品,分析了各自产品在具体使用环境中的技术指标及优缺点;进一步研究了低轮廓动中通天线的关键技术;最后对卫星移动通信天线的发展趋势进行了展望。%According to the requirements of antenna performance and profile in satellite communication, the background and development of antenna for satellite communications on-the-move is firstly reviewed and the type of the low profile anten-na for SOTM abroad is then described. Moreover, the plate antenna and the 1-D and 2-D electronic scanned active phased arrays are introduced in detail. The advantages as well as the shortcomings and the characteristics of these products under practical condition are analyzed. Furthermore, other key technologies about low profile antenna are presented. Finally, the development trend of the low profile antenna of SOTM is predicted.

  12. Design and Analysis of Thinned Array Pattern Reconfigurable Antenna to Enlarge the Scanning Range

    Directory of Open Access Journals (Sweden)

    Zhangjing Wang

    2016-01-01

    Full Text Available A novel thinned array with symmetric distribution along the array center is proposed in this paper. The proposed symmetric thinned array is based on the theory of unequally spaced array and the amplitude of each element in the array can be changed by introducing the weighted function. The pattern of the proposed array can be properly adjusted by changing the weighted function and the amplitude of the weighted factor, which obviously releases new degrees of freedom in array design. It has advantages such as low side lobe level (SLL in the visible region, no grating lobes, and low nearby side lobe level (NSL, which has good potential for wide-angle scanning. Both simulation and experiment have been done; the experiment results show that, by applying this novel symmetric thinned array with pattern reconfigurable quasi-Yagi antenna, the scanning range of the array is −70°~70° in H-plane with SLL almost −10 dB below the maximum of the main beam. The 3 dB beam-width coverage is −86°~86°, which means that the proposed array can realize the entire upper-space beam coverage and restrain the SLL at the same time.

  13. A method of using commercial virtual satellite image to check the pattern painting spot effect

    Science.gov (United States)

    Wang, Zheng-gang; Kang, Qing; Shen, Zhi-qiang; Cui, Chang-bin

    2014-02-01

    A method of using commercial virtual satellite image to check the pattern painting spot effect contrast with the satellite images before painting and after painting have been discussed. Using a housetop as the testing platform analyses and discusses the factors' influence such as resolution of satellite image, spot size and color of pattern painting spot and pattern painting camouflage method choosing to the plan implement. The pattern painting design and spot size used in the testing has been ensured, and housetop pattern painting has been painted. Finally, the small spot pattern painting camouflage effect of engineering using upon painting pattern size, color and texture have been checked, contrasting with the satellite image before painting and after painting.

  14. Notch Antennas

    Science.gov (United States)

    Lee, Richard Q.

    2004-01-01

    Notch antennas, also known as the tapered slot antenna (TSA), have been the topics of research for decades. TSA has demonstrated multi-octave bandwidth, moderate gain (7 to 10 dB), and symmetric E- and H- plane beam patterns and can be used for many different applications. This chapter summarizes the research activities on notch antennas over the past decade with emphasis on their most recent advances and applications. This chapter begins with some discussions on the designs of single TSA; then follows with detailed discussions of issues associated with TSA designs and performance characteristics. To conclude the chapter, some recent developments in TSA arrays and their applications are highlighted.

  15. Size reduction and radiation pattern shaping of multi-fed DCC slot antennas used in conformal microwave array hyperthermia applicators.

    Science.gov (United States)

    Maccarini, Paolo F; Arunachalam, Kavitha; Martins, Carlos D; Stauffer, Paul R

    2009-02-23

    The use of conformal antenna array in the treatment of superficial diseases can significantly increase patient comfort while enhancing the local control of large treatment area with irregular shapes. Originally a regular square multi-fed slot antenna (Dual Concentric Conductor - DCC) was proposed as basic unit cell of the array. The square DCC works well when the outline of the treatment area is rectangular such as in the main chest or back area but is not suitable to outline diseases spreading along the armpit and neck area. In addition as the area of the patch increases, the overall power density decreases affecting the efficiency and thus the ability to deliver the necessary thermal dose with medium power amplifier (antennas is preferable as the disease is more accurately contoured and the lower power requirement for the amplifiers correlates with system reliability, durability, linearity and overall reduced cost. For such reason we developed a set of design rules for multi-fed slot antennas with irregular contours and we implemented a design that reduce the area while increasing the perimeter of the slot, thus increasing the antenna efficiency and the power density. The simulation performed with several commercial packages (Ansoft HFSS, Imst Empire, SemcadX and CST Microwave Studio) show that the size reducing method can be applied to several shapes and for different frequencies. The SAR measurements of several DCCs are performed using an in-house high resolution scanning system with tumor equivalent liquid phantom both at 915 MHz for superficial hyperthermia systems in US) and 433 MHz (Europe). The experimental results are compared with the expected theoretical predictions and both simulated and measured patterns of single antennas of various size and shapes are then summed in various combinations using Matlab to show possible treatment irregular contours of complex diseases. The local control is expected to significantly improve while maintaining the patient

  16. Radiation Pattern Measurement of a Low-Profile Wearable Antenna Using an Optical Fibre and a Solid Anthropomorphic Phantom

    Directory of Open Access Journals (Sweden)

    Tian Hong Loh

    2014-08-01

    Full Text Available This paper presents a study into radiation pattern measurements of an electrically small dielectric resonator antenna (DRA operating between 2.4 and 2.5 GHz in the industrial, scientific and medical (ISM radio band for body-centric wireless communication applications. To eliminate the distortion of the radiation pattern associated with the unwanted radiation from a metallic coaxial cable feeding the antenna we have replaced it with a fibre optic feed and an electro-optical (EO transducer. The optical signal is then converted back to RF using an Opto-Electric Field Sensor (OEFS system. To ensure traceable measurements of the radiation pattern performance of the wearable antenna a generic head and torso solid anthropomorphic phantom model has been employed. Furthermore, to illustrate the benefits of the method, numerical simulations of the co-polar and cross-polar H-plane radiation patterns at 2.4, 2.45, and 2.5 GHz are compared with the measured results obtained using: (i an optical fibre; and (ii a metallic coaxial cable.

  17. Design on configurations of multi-beam antenna of LEO communication satellite%LEO通信卫星多波束天线构型方案设计

    Institute of Scientific and Technical Information of China (English)

    赵星惟; 吕源; 刘会杰; 梁旭文

    2011-01-01

    We present systematic analysis and planning of multi-beam antenna based on the features of LEO communication satellite. First, the reasons for adopting multi-beam antenna system are analyzed. Calculations of system parameters within the satellite coverage range are performed based on 7-beam equal-coverage-area scheme. System parameters, like beam width and beam angle, are given. Then, the scheme of array antenna is elaborated and analyzed. Some beamforming and multiplexing schemes are designed and analyzed.%针对低轨道(LEO)通信卫星的特点,进行星载多波束天线的系统级分析和规划.首先,对天线体制选择多波束天线的原因进行了论述.基于卫星覆盖范围的指标,进行了7波束等覆盖面积方案下波束指标的计算,给出了波束宽度、夹角等系统指标.然后对阵列天线方案进行了详细论述.最后对波束形成方案以及复用方案进行了设计和分析.

  18. A linearly and circularly polarized active integrated antenna

    Science.gov (United States)

    Khoshniat, Ali

    This thesis work presents a new harmonic suppression technique for microstrip patch antennas. Harmonic suppression in active integrated antennas is known as an effective method to improve the efficiency of amplifiers in transmitter side. In the proposed design, the antenna works as the radiating element and, at the same time, as the tuning load for the amplifier circuit that is directly matched to the antenna. The proposed active antenna architecture is easy to fabricate and is symmetric, so it can be conveniently mass-produced and designed to have circular polarization, which is preferred in many applications such as satellite communications. The antenna simulations were performed using Ansoft High Frequency System Simulator (HFSS) and all amplifier design steps were simulated by Advanced Design System (ADS). The final prototypes of the linearly polarized active integrated antenna and the circularly polarized active integrated antenna were fabricated using a circuit board milling machine. The antenna radiation pattern was measured inside Utah State University's anechoic chamber and the results were satisfactory. Power measurements for the amplifiers' performance were carried out inside the chamber and calculated by using the Friis transmission equation. It is seen that a significant improvement in the efficiency is achieved compared to the reference antenna without harmonic suppression. Based on the success in the single element active antenna design, the thesis also presents a feasibility of applying the active integrated antenna in array configuration, in particular, in scanning array design to yield a low-profile, low-cost alternative to the parabolic antenna transmitter of satellite communication systems.

  19. Multi-Variable Model-Based Parameter Estimation Model for Antenna Radiation Pattern Prediction

    Science.gov (United States)

    Deshpande, Manohar D.; Cravey, Robin L.

    2002-01-01

    A new procedure is presented to develop multi-variable model-based parameter estimation (MBPE) model to predict far field intensity of antenna. By performing MBPE model development procedure on a single variable at a time, the present method requires solution of smaller size matrices. The utility of the present method is demonstrated by determining far field intensity due to a dipole antenna over a frequency range of 100-1000 MHz and elevation angle range of 0-90 degrees.

  20. Sidelobe Canceling for Optimization of Reconfigurable Holographic Metamaterial Antenna

    CERN Document Server

    Johnson, Mikala C; Kutz, J Nathan; Kundtz, Nathan B

    2014-01-01

    Accurate and efficient methods for beam-steering of holographic metamaterial antennas is of critical importance for enabling consumer usage of satellite data capacities. We develop an optimization algorithm capable of performing adaptive, real-time control of antenna patterns while operating in dynamic environments. Our method provides a first analysis of the antenna pattern optimization problem in the context of metamaterials and for the purpose of directing the central beam and significantly suppressing sidelobe levels. The efficacy of the algorithm is demonstrated both on a computational model of the antenna and experimentally. Due to their exceptional portability, low-power consumption and lack of moving parts, metamaterial antennas are an attractive and viable technology when combined with proven software engineering strategies to optimize performance.

  1. Control system of satellite TV antenna of strapdown shipborne%捷联式船载卫星电视天线控制系统

    Institute of Scientific and Technical Information of China (English)

    秦爱民; 闫英敏; 闫建生; 靳英卫

    2011-01-01

    With the progress of the society and the improvements of information technology, people need more TV programmes through satellite networks while moving. A strapdown shipborne satellite TV antenna control system based on DSP is introduced. The architectures of the software and hardware of the control system are given, and the functions of different components are described in detail. The stabilization and the automatic tracking are realized in this antenna control system for satellite television.%随着社会的进步和信息化技术的提高,人们对移动中通过卫星网路接收卫星电视节目的需求越来越大.介绍了基于DSP的捷联式船载卫星电视天线控制系统,阐述了系统软硬件的结构及各部分的功能,实现了船载卫星电视天线的稳定与自动跟踪卫星.

  2. Flexible plasma linear antenna

    Science.gov (United States)

    Zhao, Jiansen; Wang, Shengzheng; Wu, Huafeng; Liu, Yue; Chang, Yongmeng; Chen, Xinqiang

    2017-02-01

    In this work, we introduce a type of plasma antenna that was fabricated using flexible materials and excited using a 5-20 kHz alternating current (ac) power supply. The results showed that the antenna characteristics, including the impedance, the reflection coefficient (S11), the radiation pattern, and the gain, can be controlled rapidly and easily by varying both the discharge parameters and the antenna shapes. The scope for reconfiguration is greatly enhanced when the antenna shape is changed from a monopole to a helix configuration. Additionally, the antenna polarization can also be adjusted by varying the antenna shapes.

  3. The analysis of reactively loaded microstrip antennas by finite difference time domain modelling

    Science.gov (United States)

    Hilton, G. S.; Beach, M. A.; Railton, C. J.

    1990-01-01

    In recent years, much interest has been shown in the use of printed circuit antennas in mobile satellite and communications terminals at microwave frequencies. Although such antennas have many advantages in weight and profile size over more conventional reflector/horn configurations, they do, however, suffer from an inherently narrow bandwidth. A way of optimizing the bandwidth of such antennas by an electronic tuning technique using a loaded probe mounted within the antenna structure is examined, and the resulting far-field radiation patterns are shown. Simulation results from a 2D finite difference time domain (FDTD) model for a rectangular microstrip antenna loaded with shorting pins are given and compared to results obtained with an actual antenna. It is hoped that this work will result in a design package for the analysis of microstrip patch antenna elements.

  4. 卫星便携站天线自动对星系统的设计与实现%Design and implement of satellite auto-aiming system on antenna of satellite portable station

    Institute of Scientific and Technical Information of China (English)

    胡明; 王星全; 郑振华; 杨华

    2012-01-01

    In the porcess of narrow-beam portable station antenna aiming the satellite, there are three problems: finding the satellite difficulty, aiming the satellite long-time and low-precision. In this article, an auto-aim instrument on equipment is designed and implemented. This instrument based on PIC singlechip can implement rapid, automatic and precise aiming the satellite by collecting and porcessing the data from GPS and sensors and signal strength module, controling stepping motors to adjust the azimuth and elevation of portable station antenna. Using this system, we can reduce the time, improve the precision in aiming the satellite and prove the efficiency of communication markedly.%针对卫星便携站窄波束天线找星难度大、对星耗时多、对星精度差的问题,设计并实现了一个附加在实装设备上的自动对星工具,以PIC单片机为核心,通过采集和处理GPS数据、方位俯仰传感器数据和卫星信号强度数据,控制高精度步进电机自动调整便携站天线方位角和俯仰角,从而实现快速、自动、精确对星.通过使用高精度步进电机代替传统手工操作,能够明显缩短对星时间、提高对星精度,且体积较小、安装拆卸容易、携带方便,显著提高了通信效能.

  5. Amplitude pattern synthesis for conformal array antennas using mean-field neural networks

    NARCIS (Netherlands)

    Castaldi, G.; Gerini, G.

    2001-01-01

    In this paper, we deal with the synthesis problem of conformai array antennas using a mean-field neural network. We applied a discrete version of mean-field neural network proposed by Vidyasagar [1], This technique is used to find the global minimum of the objective function, which represents the sq

  6. Transcriptome and Expression Patterns of Chemosensory Genes in Antennae of the Parasitoid Wasp Chouioia cunea.

    Directory of Open Access Journals (Sweden)

    Yanni Zhao

    Full Text Available Chouioia cunea Yang is an endoparasitic wasp that attacks pupae of Hyphantria cunea (Drury, an invasive moth species that severely damages forests in China. Chemosensory systems of insects are used to detect volatile chemical odors such as female sex pheromones and host plant volatiles. The antennae of parasite wasps are important for host detection and other sensory-mediated behaviors. We identified and documented differential expression profiles of chemoreception genes in C. cunea antennae. A total of 25 OBPs, 80 ORs, 10 IRs, 11 CSP, 1 SNMPs, and 17 GRs were annotated from adult male and female C. cunea antennal transcriptomes. The expression profiles of 25 OBPs, 16 ORs, and 17 GRs, 5 CSP, 5 IRs and 1 SNMP were determined by RT-PCR and RT-qPCR for the antenna, head, thorax, and abdomen of male and female C. cunea. A total of 8 OBPs, 14 ORs, and 8 GRs, 1 CSP, 4 IRs and 1 SNMPs were exclusively or primarily expressed in female antennae. These female antennal-specific or dominant expression profiles may assist in locating suitable host and oviposition sites. These genes will provide useful targets for advanced study of their biological functions.

  7. Satellite Image Edge Detection for Population Distribution Pattern Identification using Levelset with Morphological Filtering Process

    Science.gov (United States)

    Harsiti; Munandar, T. A.; Suhendar, A.; Abdullah, A. G.; Rohendi, D.

    2017-03-01

    Population distribution pattern is directly related with economic gap of a region. Analysis of population distribution pattern is usually performed by studying statistical data on population. This study aimed to analyze population distribution pattern using image analysis concept, i.e. using satellite images. Levelset and morphological image filtering methods were used to analyze images to see distribution pattern. The research result showed that Levelset and morphological image filtering could remove a lot of noises in analysis result images and form object edge contours very clearly. The detected object contours were used as references to recognize population distribution pattern based on satellite image analysis. The pattern made based on the research result didn’t show optimal result because Levelset performed image segmentation based on the contours of the analyzed objects. Other segmentation methods should be combined with it to produce clearer population distribution pattern.

  8. Optical antenna gain. I - Transmitting antennas

    Science.gov (United States)

    Klein, B. J.; Degnan, J. J.

    1974-01-01

    The gain of centrally obscured optical transmitting antennas is analyzed in detail. The calculations, resulting in near- and far-field antenna gain patterns, assume a circular antenna illuminated by a laser operating in the TEM-00 mode. A simple polynomial equation is derived for matching the incident source distribution to a general antenna configuration for maximum on-axis gain. An interpretation of the resultant gain curves allows a number of auxiliary design curves to be drawn that display the losses in antenna gain due to pointing errors and the cone angle of the beam in the far field as a function of antenna aperture size and its central obscuration. The results are presented in a series of graphs that allow the rapid and accurate evaluation of the antenna gain which may then be substituted into the conventional range equation.

  9. Optical antenna gain. 1: transmitting antennas.

    Science.gov (United States)

    Klein, B J; Degnan, J J

    1974-09-01

    The gain of centrally obscured optical transmitting antennas is analyzed in detail. The calculations, resulting in near- and far-field antenna gain patterns, assume a circular antenna illuminated by a laser operating in the TEM(00) mode. A simple polynomial equation is derived for matching the incident source distribution to a general antenna configuration for maximum on-axis gain. An interpretation of the resultant gain curves allows a number of auxiliary design curves to be drawn that display the losses in antenna gain due to pointing errors and the cone angle of the beam in the far field as a function of antenna aperture size and its central obscuration. The results are presented in a series of graphs that allow the rapid and accurate evaluation of the antenna gain which may then be substituted into the conventional range equation.

  10. Identification of Abnormal System Noise Temperature Patterns in Deep Space Network Antennas Using Neural Network Trained Fuzzy Logic

    Science.gov (United States)

    Lu, Thomas; Pham, Timothy; Liao, Jason

    2011-01-01

    This paper presents the development of a fuzzy logic function trained by an artificial neural network to classify the system noise temperature (SNT) of antennas in the NASA Deep Space Network (DSN). The SNT data were classified into normal, marginal, and abnormal classes. The irregular SNT pattern was further correlated with link margin and weather data. A reasonably good correlation is detected among high SNT, low link margin and the effect of bad weather; however we also saw some unexpected non-correlations which merit further study in the future.

  11. Identification of Abnormal System Noise Temperature Patterns in Deep Space Network Antennas Using Neural Network Trained Fuzzy Logic

    Science.gov (United States)

    Lu, Thomas; Pham, Timothy; Liao, Jason

    2011-01-01

    This paper presents the development of a fuzzy logic function trained by an artificial neural network to classify the system noise temperature (SNT) of antennas in the NASA Deep Space Network (DSN). The SNT data were classified into normal, marginal, and abnormal classes. The irregular SNT pattern was further correlated with link margin and weather data. A reasonably good correlation is detected among high SNT, low link margin and the effect of bad weather; however we also saw some unexpected non-correlations which merit further study in the future.

  12. Designing Adaptive Linear Array Antenna to Achieve Pattern Steering Optimization by Phase-Amplitude Perturbations Using Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    HSUChaohsing; CHENTsongyi; PanJengshyang

    2005-01-01

    In this paper, a phase-amplitude perturbation method of an adaptive array factor based on the genetic algorithm is proposed. The design for an optimal beam pattern of an adaptive antenna is able to not only suppress interference by placing nulls at the directions of the interfering sources but also provide a maximized main lobe in the direction of the desired signal, i.e., to maximizethe Signal interference ratio (SIR). In order to achieve this goal, a kind of new convergent skill called the two-way convergent method for genetic algorithms is proposed. The phase-amplitude perturbation method is applied to realize the optimal beam pattern of an adaptively linear array antenna. The Genetic algorithms are applied to find the optimal phase-amplitude weighting vector of adaptive array factor. An optimal beam pattern of linear array is derived by phase-amplitude perturbations using a genetic algorithm. Computer simulation result is given to demonstrate the effectiveness of the proposed method.

  13. A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

    Directory of Open Access Journals (Sweden)

    Chong Zhang

    2015-01-01

    Full Text Available A new kind of circular polarization leaky-wave antenna with N-shaped slots cut in the upper side of substrate integrated waveguide (SIW is investigated and presented. The radiation pattern and polarization axial ratio of the leaky-wave antenna are studied. The results show that the width of N-shaped slots has significant effect on the circular polarization property of the antenna. By properly choosing structural parameters, the SIW based leaky-wave antenna can realize circular polarization with excellent axial ratio in 8 GHz satellite band.

  14. Patterns Antennas Arrays Synthesis Based on Adaptive Particle Swarm Optimization and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Boufeldja Kadri

    2013-01-01

    Full Text Available In recent years, evolutionary optimization (EO techniques have attracted considerable attention in the design of electromagnetic systems of increasing complexity. This paper presents a comparison between two optimization algorithms for the synthesis of uniform linear and planar antennas arrays, the first one is an adaptive particle swarm optimization (APSO where the inertia weight and acceleration coefficient are adjusted dynamically according to feedback taken from particles best memories to overcome the limitations of the standard PSO which are: premature convergence, low searching accuracy and iterative inefficiency. The second method is the genetic algorithms (GA inspired from the processes of the evolution of the species and the natural genetics. The results show that the design of uniform linear and planar antennas arrays using APSO method provides a low side lobe level and achieve faster convergence speed to the optimum solution than those obtained by a GA.

  15. Low profile superstrate using transformation optics for semicircular radiation pattern of antenna

    Science.gov (United States)

    Joshi, Chetan; Lepage, Anne Claire; Begaud, Xavier

    2017-02-01

    In this article, a dielectric superstrate inspired from transformation optics is presented. When placed over a patch antenna, this superstrate increases the half power beam width (HPBW) of a classical patch antenna. An appropriate spatial transformation relation with spatial compression and refractive index shift factors has been used to derive an expression for a dielectric material profile. The wave front exiting from the transformed space is optimized for a semicylindrical shape. Then, a discretized version of this profile has been used to design a cuboidal superstrate. Full wave simulations have been presented that essentially show a superstrate device capable of producing a 297° of HPBW in H-plane with a peak directivity of 3.2 dBi at the design frequency. The derived solution can be realized using the standard dielectric materials for real-world applications.

  16. Far-field radiation patterns of aperture antennas by the Winograd Fourier transform algorithm

    Science.gov (United States)

    Heisler, R.

    1978-01-01

    A more time-efficient algorithm for computing the discrete Fourier transform, the Winograd Fourier transform (WFT), is described. The WFT algorithm is compared with other transform algorithms. Results indicate that the WFT algorithm in antenna analysis appears to be a very successful application. Significant savings in cpu time will improve the computer turn around time and circumvent the need to resort to weekend runs.

  17. A Compact Single-Feed Circularly Polarized Microstrip Antenna with Symmetric and Wide-Beamwidth Radiation Pattern

    Directory of Open Access Journals (Sweden)

    Xihong Ye

    2013-01-01

    Full Text Available A compact single-feed circularly polarized microstrip antenna is proposed to achieve symmetric radiation pattern over a wide range of observation angles. In order to reduce the radiation aperture and consequently broaden the circular polarization (CP and the half power beamwidth (HPBW of the antenna, a partially etched superstrate and a conducting cavity are employed in the design. Further, reasonable axial ratio (AR and impedance bandwidths are realized within the compact structure by using a simple series crossed-slot aperture coupled feeding. As a consequence, the overall dimension of the fabricated prototype is 0.32λ0 × 0.32λ0 × 0.12λ0 at the center operating frequency of 1.56 GHz, and a 3.0% overlapped bandwidth of 10 dB return loss (RL and 3 dB AR is obtained. Within the bandwidth, symmetric CP radiation pattern over almost the entire upper hemisphere is observed and the HPBW is also increased from 60° to 106°.

  18. Development of a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; Beeker, W.P.; Beeker, Willem; Noharet, Bertrand; Verpoorte, Jaco; Baggen, Rens

    Novel avionic communication systems are required for various purposes, for example to increase the flight safety and operational integrity as well as to enhance the quality of service to passengers on board. To serve these purposes, a key technology that is essential to be developed is an antenna

  19. Capture Scheme of the Antenna in Ka-band for Launch Vehicle Based on Tracking and Data Relay Satellite%运载火箭Ka频段天基测控的天线捕获方法

    Institute of Scientific and Technical Information of China (English)

    宫长辉; 曾贵明; 张恒

    2011-01-01

    In order to transmit the space-based signal, the capture and track between the tracking and data relay satellite(TDRS) antenna and the user's aerocraft antenna should be completed firstly. In this paper, the uncertain area of the antenna scan is analyzed, adopting antenna-scan capture scheme for capturing the antenna on TORS by the phased-array antenna on launch vehicle. The values of the antenna array and EIRP are conformed and the capture time is given by computer simulation.%为实现天基信息的传输,首先要完成中继卫星天线与用户飞行器天线之间的捕获与跟踪.针对箭载相控阵天线对中继卫星的捕获,采用Ka频段相控阵天线扫描捕获策略,分析了天线扫描的不确定区域,确定了天线阵元数及EIRP值,给出了捕获时间的仿真结果,为工程应用提供参考.

  20. Satellite change detection analysis of deforestation rates and patterns along the Colombia-Ecuador border.

    Science.gov (United States)

    Viña, Andrés; Echavarria, Fernando R; Rundquist, Donald C

    2004-05-01

    This study uses Landsat satellite data to document the rates and patterns of land-cover change along a portion of the Colombia-Ecuador border during a 23-yr period (1973-1996). Human colonization has resulted in extensive deforestation in both countries. Satellite change detection analysis showed that the annual rates of deforestation were considerably higher for the Colombian side of the border. In addition, loss of forest cover on the Colombian side for the study period was almost 43%, while only 22% on the Ecuadorian side. The study found that there is no single factor driving deforestation on either side of the border, but concluded that the higher rates on the Colombian side may be due to higher colonization pressures and intensification of illegal coca cultivation. On the Ecuador side of the border the satellite images documented patterns of deforestation that reflected road networks associated with oil exploration and development.

  1. Analysis of a generalized dual reflector antenna system using physical optics

    Science.gov (United States)

    Acosta, Roberto J.; Lagin, Alan R.

    1992-01-01

    Reflector antennas are widely used in communication satellite systems because they provide high gain at low cost. Offset-fed single paraboloids and dual reflector offset Cassegrain and Gregorian antennas with multiple focal region feeds provide a simple, blockage-free means of forming multiple, shaped, and isolated beams with low sidelobes. Such antennas are applicable to communications satellite frequency reuse systems and earth stations requiring access to several satellites. While the single offset paraboloid has been the most extensively used configuration for the satellite multiple-beam antenna, the trend toward large apertures requiring minimum scanned beam degradation over the field of view 18 degrees for full earth coverage from geostationary orbit may lead to impractically long focal length and large feed arrays. Dual reflector antennas offer packaging advantages and more degrees of design freedom to improve beam scanning and cross-polarization properties. The Cassegrain and Gregorian antennas are the most commonly used dual reflector antennas. A computer program for calculating the secondary pattern and directivity of a generalized dual reflector antenna system was developed and implemented at LeRC. The theoretical foundation for this program is based on the use of physical optics methodology for describing the induced currents on the sub-reflector and main reflector. The resulting induced currents on the main reflector are integrated to obtain the antenna far-zone electric fields. The computer program is verified with other physical optics programs and with measured antenna patterns. The comparison shows good agreement in far-field sidelobe reproduction and directivity.

  2. Space communication link propagation data for selected cities within the multiple beam and steerable antenna coverage areas of the advanced communications technology satellite

    Science.gov (United States)

    Manning, Robert M.

    1988-01-01

    Rain attenuation propagation data for 68 cities within the coverage area of the multiple beam and steerable antennas of the Advanced Communications Technology Satellite (ACTS) are presented. These data provide the necessary data base for purposes of communication link power budgeting and rain attenuation mitigation controller design. These propagation parameters are derived by applying the ACTS Rain Attenuation Prediction Model to these 68 locations. The propagation parameters enumerated in tabular form for each location are as follows: (1) physical description of the link and location (e.g., latitude, longitude, antenna elevation angle, etc.), link availability versus attenuation margin (also in graphical form), fading time across fade depths of 3, 5, 8, and 15 dB versus fade duration, and required fade control response time for controller availabilities of 99.999, 99.99, 99.9, and 99 percent versus sub-threshold attenuation levels. The data for these specific locations can be taken to be representative of regions near these locations.

  3. Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images

    OpenAIRE

    Marc Wieland; Massimiliano Pittore

    2014-01-01

    In this study, a classification and performance evaluation framework for the recognition of urban patterns in medium (Landsat ETM, TM and MSS) and very high resolution (WorldView-2, Quickbird, Ikonos) multi-spectral satellite images is presented. The study aims at exploring the potential of machine learning algorithms in the context of an object-based image analysis and to thoroughly test the algorithm’s performance under varying conditions to optimize their usage for urban pattern recognitio...

  4. Reconfigurable Antennas for High Data Rate Multi-beam Communication Systems

    Science.gov (United States)

    Bernhard, Jennifer T.; Michielssen, Eric

    2005-01-01

    High-speed (2-100 Mb/sec) wireless data communication - whether land- or satellite-based - faces a major challenge: high error rates caused by interference and unpredictable environments. A planar antenna system that can be reconfigured to respond to changing conditions has the potential to dramatically improve data throughput and system reliability. Moreover, new planar antenna designs that reduce array size, weight, and cost can have a significant impact on terrestrial and satellite communication system performance. This research developed new individually-reconfigurable planar antenna array elements that can be adjusted to provide multiple beams while providing increased scan angles and higher aperture efficiency than traditional diffraction-limited arrays. These new elements are microstrip spiral antennas with specialized tuning mechanisms that provide adjustable radiation patterns. We anticipate that these new elements can be used in both large and small arrays for inter-satellite communication as well as tracking of multiple mobile surface-based units. Our work has developed both theoretical descriptions as well as experimental prototypes of the antennas in both single element and array embodiments. The technical summary of the results of this work is divided into six sections: A. Cavity model for analysis and design of pattern reconfigurable antennas; B. Performance of antenna in array configurations for broadside and endfire operation; C. Performance of antenna in array configurations for beam scanning operation; D. Simulation of antennas in infinite phased arrays; E. Demonstration of antenna with commercially-available RF MEMS switches; F. Design of antenna MEMS switch combinations for direct simultaneous fabrication.

  5. Design of Broadband Quasi-Yagi Antenna with Pattern Reconfigurability%方向图可重构宽带准八木天线的设计

    Institute of Scientific and Technical Information of China (English)

    王安国; 刘楠; 兰航

    2011-01-01

    To meet the requirement of new wireless communication systems, a broadband quasi-Yagi antenna with pattern reconfigurability was presented. The reconfigurable quasi-Yagi antenna was designed based on the prototype of the quasi-Yagi antenna. The two arms of the driver dipole in the antenna prototype were printed separately on the opposite sides of the dielectric substrate. The feed structure of the antenna was simplified and the size of antenna was reduced. The impedance bandwidth of the proposed antenna was excellent, and the gain variation within operating bandwidth was relatively small. By controlling the states of the switches, the main beam of the proposed antenna in the xoy plane could be shifted to each one of four angles. Using the full-wave electromagnetic simulator, the parameters of antenna were analyzed and optimized. The antenna was fabricated and measured. The simulation results were in good agreement with the measurement results, which demonstrated the validity of the proposed antenna.%为了满足新型无线通信系统的需要,设计了一种宽带方向图可重构准八木天线.可重构准八木天线以基本准八木天线的结构为基础,在基本准八木天线结构的设计中,激励振子的两臂分别印制在介质板两侧,从而简化了馈电结构,减小了天线尺寸.该天线具有宽频带及工作频带上增益变化相对较小等优点.控制开关的通断状态,天线在xoy面的方向图可以分别指向4个方向.用电磁仿真软件对所提出的天线结构进行了分析与优化,并对所设计的天线进行了实际制作和测试,测试与仿真结果吻合较好,验证了该天线的可行性.

  6. Measure system for the antenna to get the patterns of the tested antennas based on LabVIEW%基于LabVIEW的天线方向图测试系统设计

    Institute of Scientific and Technical Information of China (English)

    刘瑾; 王化吉

    2011-01-01

    针对传统的天线方向图测量方法效率低、精度差的缺点,基于LabVIEW软件平台开发了1套天线方向图自动测试系统.该系统通过GPIB总线实现对测试仪器的控制,在信号录取、角度录取、数据处理、方向图绘制方面实现了完全自动化,具有精度高、测量速度快、性能稳定的特点.%The conventional antenna pattern testing method has the quality of low velocity and low accuracy. Using the software of LabVIEW,we construct the auto-measure system for the antenna to get the patterns of the tested antennas.The system controls instruments by GPIB, and the signal extraction, angle extraction, data processing and pattern plotting are automatic. The system has the quality of high accuracy,high testing velocity and high reliability.

  7. Sensing Urban Patterns with Antenna Mappings: The Case of Santiago, Chile

    Directory of Open Access Journals (Sweden)

    Eduardo Graells-Garrido

    2016-07-01

    Full Text Available Mobile data has allowed us to sense urban dynamics at scales and granularities not known before, helping urban planners to cope with urban growth. A frequently used kind of dataset are Call Detail Records (CDR, used by telecommunication operators for billing purposes. Being an already extracted and processed dataset, it is inexpensive and reliable. A common assumption with respect to geography when working with CDR data is that the position of a device is the same as the Base Transceiver Station (BTS it is connected to. Because the city is divided into a square grid, or by coverage zones approximated by Voronoi tessellations, CDR network events are assigned to corresponding areas according to BTS position. This geolocation may suffer from non negligible error in almost all cases. In this paper we propose “Antenna Virtual Placement” (AVP, a method to geolocate mobile devices according to their connections to BTS, based on decoupling antennas from its corresponding BTS according to its physical configuration (height, downtilt, and azimuth. We use AVP applied to CDR data as input for two different tasks: first, from an individual perspective, what places are meaningful for them? And second, from a global perspective, how to cluster city areas to understand land use using floating population flows? For both tasks we propose methods that complement or improve prior work in the literature. Our proposed methods are simple, yet not trivial, and work with daily CDR data from the biggest telecommunication operator in Chile. We evaluate them in Santiago, the capital of Chile, with data from working days from June 2015. We find that: (1 AVP improves city coverage of CDR data by geolocating devices to more city areas than using standard methods; (2 we find important places (home and work for a 10% of the sample using just daily information, and recreate the population distribution as well as commuting trips; (3 the daily rhythms of floating population

  8. Sensing Urban Patterns with Antenna Mappings: The Case of Santiago, Chile †

    Science.gov (United States)

    Graells-Garrido, Eduardo; Peredo, Oscar; García, José

    2016-01-01

    Mobile data has allowed us to sense urban dynamics at scales and granularities not known before, helping urban planners to cope with urban growth. A frequently used kind of dataset are Call Detail Records (CDR), used by telecommunication operators for billing purposes. Being an already extracted and processed dataset, it is inexpensive and reliable. A common assumption with respect to geography when working with CDR data is that the position of a device is the same as the Base Transceiver Station (BTS) it is connected to. Because the city is divided into a square grid, or by coverage zones approximated by Voronoi tessellations, CDR network events are assigned to corresponding areas according to BTS position. This geolocation may suffer from non negligible error in almost all cases. In this paper we propose “Antenna Virtual Placement” (AVP), a method to geolocate mobile devices according to their connections to BTS, based on decoupling antennas from its corresponding BTS according to its physical configuration (height, downtilt, and azimuth). We use AVP applied to CDR data as input for two different tasks: first, from an individual perspective, what places are meaningful for them? And second, from a global perspective, how to cluster city areas to understand land use using floating population flows? For both tasks we propose methods that complement or improve prior work in the literature. Our proposed methods are simple, yet not trivial, and work with daily CDR data from the biggest telecommunication operator in Chile. We evaluate them in Santiago, the capital of Chile, with data from working days from June 2015. We find that: (1) AVP improves city coverage of CDR data by geolocating devices to more city areas than using standard methods; (2) we find important places (home and work) for a 10% of the sample using just daily information, and recreate the population distribution as well as commuting trips; (3) the daily rhythms of floating population allow to

  9. Direction Finding Using Multiple Sum and Difference Patterns in 4D Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Quanjiang Zhu

    2014-01-01

    Full Text Available Traditional monopulse systems used for direction finding usually face the contradiction between high angle precision and wide angle-searching field, and a compromise has to be made. In this paper, the time modulation technique in four-dimensional (4D antenna array is introduced into the conventional phase-comparison monopulse to form a novel direction-finding system, in which both high angle resolution and wide field-of-view are realized. The full 4D array is divided into two subarrays and the differential evolution (DE algorithm is used to optimize the time sequence of each subarray to generate multibeams at the center frequency and low sidebands. Then the multibeams of the two subarrays are phase-compared with each other and multiple pairs of sum-difference beams are formed at different sidebands and point to different spatial angles. The proposed direction-finding system covers a large field-of-view of up to ±60° and simultaneously maintains the advantages of monopulse systems, such as high angle precision and low computation complexity. Theoretical analysis and experimental results validate the effectiveness of the proposed system.

  10. Effects of atmospheric turbulence on microwave and millimeter wave satellite communications systems. [attenuation statistics and antenna design

    Science.gov (United States)

    Devasirvatham, D. M. J.; Hodge, D. B.

    1981-01-01

    A model of the microwave and millimeter wave link in the presence of atmospheric turbulence is presented with emphasis on satellite communications systems. The analysis is based on standard methods of statistical theory. The results are directly usable by the design engineer.

  11. Radiation pattern synthesis of planar antennas using the iterative sampling method

    Science.gov (United States)

    Stutzman, W. L.; Coffey, E. L.

    1975-01-01

    A synthesis method is presented for determining an excitation of an arbitrary (but fixed) planar source configuration. The desired radiation pattern is specified over all or part of the visible region. It may have multiple and/or shaped main beams with low sidelobes. The iterative sampling method is used to find an excitation of the source which yields a radiation pattern that approximates the desired pattern to within a specified tolerance. In this paper the method is used to calculate excitations for line sources, linear arrays (equally and unequally spaced), rectangular apertures, rectangular arrays (arbitrary spacing grid), and circular apertures. Examples using these sources to form patterns with shaped main beams, multiple main beams, shaped sidelobe levels, and combinations thereof are given.

  12. Radiation pattern synthesis of planar antennas using the iterative sampling method

    Science.gov (United States)

    Stutzman, W. L.; Coffey, E. L.

    1975-01-01

    A synthesis method is presented for determining an excitation of an arbitrary (but fixed) planar source configuration. The desired radiation pattern is specified over all or part of the visible region. It may have multiple and/or shaped main beams with low sidelobes. The iterative sampling method is used to find an excitation of the source which yields a radiation pattern that approximates the desired pattern to within a specified tolerance. In this paper the method is used to calculate excitations for line sources, linear arrays (equally and unequally spaced), rectangular apertures, rectangular arrays (arbitrary spacing grid), and circular apertures. Examples using these sources to form patterns with shaped main beams, multiple main beams, shaped sidelobe levels, and combinations thereof are given.

  13. Point-actuated aperture antenna development

    Science.gov (United States)

    Angelino, Marc; Washington, Gregory N.

    2001-08-01

    Consistent changes in both commercial and military satellite needs have created the need for antennas with additional flexibility. Military surveillance may require the ability to focus the radiation pattern to increase the bandwidth or resolution in a certain area. Commercial satellites may need to change coverage area to meet evolving consumer needs or to compensate for adverse weather or atmospheric conditions. Recent studies on active antennas have shown that the far field radiation pattern can be changed by altering the shape of the sub reflector. In this research, we control the antenna far field radiation pattern by controlling the shape of the sub reflector using numerous point actuators placed perpendicular to the reflector surface. The PZT stack coupled with a stick-slip mechanism give the point actuators used in this design an advantage over similar studies using PZT bimorph or PVDF actuators to generate the actuation force in that the displacement can be maintained without the continuous application of voltage. An electromechanical model is used to describe the motion of the stack, and the stick slip mechanism is modeled similar to power screw-type actuators. A combined finite element/electromagnetic analysis code is used to determine the desired shape of the reflector, and the corresponding actuator displacements. The final shape of the reflector is verified using stereo photogrammetry.

  14. Experiments with Dipole Antennas

    Science.gov (United States)

    Kraftmakher, Yaakov

    2009-01-01

    Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a…

  15. Design of pattern reconfigurable antenna based on MEMS switch%基于MEMS开关的方向图可重构天线的设计

    Institute of Scientific and Technical Information of China (English)

    崔奉云; 李林翠; 张黎; 杨春; 张文涛

    2011-01-01

    This paper presents a broadband and wide-angle pattern reconfigurable antenna. The antenna is composed of four different linear arrays, in which the element is designed with different phase shift. The pattern of the whole antenna can be changed by the RF-MEMS switch, which is planed in the feed network. The feed network uses a novel compact broadband impedance transformer, and the microstrip slot antenna acts as an antenna element. The VSWR of the antenna element in a broadband from 2.4 GHz to 3.4 GHz is less than 2. The simulation result demonstrates that the reconfigurable antenna realizes different patterns(0°,25o,40°and 50°) in different RF-MEMS switching states, furthermore, the VSWR of the reconfigurable antenna under each of these four different states is less than 2 from 2.5 GHz to 3.25 GHz except for part frequency points.%设计了一种波束可重构天线,以实现宽带、宽角方向图可重构设计.该天线由4组具有不同波束指向的天线子阵组成,通过6个RF-MEMS开关控制其波束指向;采用的宽带单元天线,在2.4 GHz~3.4 GHz频率范围内(相对带宽34.5%),电压驻波比小于2.馈电网络的设计采用小型化宽带阻抗变换器,减小了馈电网络尺寸,并拓展了带宽.仿真结果表明,可重构天线实现了0°,25°,40°和50°的不同波束指向,除部分频点外,4种状态天线的驻波在2.5 GHz~3.25 GHz(相对带宽26%)带宽内驻波比均小于2.

  16. Satellite altimetry reveals spatial patterns of variations in the Baltic Sea wave climate

    Science.gov (United States)

    Kudryavtseva, Nadezhda; Soomere, Tarmo

    2017-08-01

    The main properties of the climate of waves in the seasonally ice-covered Baltic Sea and its decadal changes since 1990 are estimated from satellite altimetry data. The data set of significant wave heights (SWHs) from all existing nine satellites, cleaned and cross-validated against in situ measurements, shows overall a very consistent picture. A comparison with visual observations shows a good correspondence with correlation coefficients of 0.6-0.8. The annual mean SWH reveals a tentative increase of 0.005 m yr-1, but higher quantiles behave in a cyclic manner with a timescale of 10-15 years. Changes in the basin-wide average SWH have a strong meridional pattern: an increase in the central and western parts of the sea and a decrease in the east. This pattern is likely caused by a rotation of wind directions rather than by an increase in the wind speed.

  17. Satellite derived integrated water vapor and rain intensity patterns - Indicators of rapid cyclogenesis

    Science.gov (United States)

    Mcmurdie, Lynn; Katsaros, Kristina

    1992-01-01

    We examine integrated water vapor fields and rain intensity patterns derived from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I) for several rapidly deepening and non-rapidly deepening midlatitude cyclones in the North Atlantic. Our goal is to identify features in the satellite data unique to the rapidly deepening cases, and to explore how these data can potentially be used in the analysis and forecasting of these events.

  18. Satellite derived integrated water vapor and rain intensity patterns: Indicators of rapid cyclogenesis

    Science.gov (United States)

    Mcmurdie, Lynn; Katsaros, Kristina

    1992-01-01

    We examine integrated water vapor fields and rain intensity patterns derived from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I) for several rapidly deepening and non-rapidly deepening midlatitude cyclones in the North Atlantic. Our goal is to identify features in the satellite data unique to the rapidly deepening cases, and to explore how these data can potentially be used in the analysis and forecasting of these events.

  19. Antennas for light and plasmons

    NARCIS (Netherlands)

    Dikken, Dirk Jan Willem

    2015-01-01

    Antennas have been used for over a century as emitters, scatterers and receivers of electromagnetic waves. All wireless communication devices, such as radio, mobile phones and satellite communication are strongly dependent on the capability of an antenna to localize propagating electromagnetic waves

  20. APPLICATION OF VISION METROLOGY TO IN-ORBIT MEASUREMENT OF LARGE REFLECTOR ONBOARD COMMUNICATION SATELLITE FOR NEXT GENERATION MOBILE SATELLITE COMMUNICATION

    Directory of Open Access Journals (Sweden)

    M. Akioka

    2016-06-01

    Full Text Available Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1 Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order

  1. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    Science.gov (United States)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial

  2. Mobile multimedia antenna systems for station wagons and the achievable diversity effectiveness obtained by analysis of virtual test drives

    Science.gov (United States)

    Hopf, J. F.; Lindenmeier, H. K.; Reiter, L. M.

    2003-04-01

    For modern cars, antennas are required for AM reception, FM and TV diversity reception, weatherband reception (USA), terrestrial digital radio, remote control functions, keyless entry, mobile phone for all worldwide used systems, GPS, and in the future, satellite broadcast radio services. Those services cover the frequency range from 150 kHz up to 2.4 GHz. Such kind of a multiantenna system developed for station wagons is presented in this paper. The obtainable FM and TV diversity effectiveness is discussed for several types of antenna arrangements in detail. This value is the number of fictitious completely decorrelated antenna signals and is obtained by virtual test drives. The characteristic of the respective antennas under test is introduced in the software as antenna pattern, measured or calculated with respect to amplitude and phase. During the computer analysis the car with the antennas is driven virtually through a Rayleigh field scenario with desired and undesired signals.

  3. 基于通信卫星的非对称圆环毫米波微带天线%Asymmetric ring millimeter-wave microstrip antenna based on communications satellite

    Institute of Scientific and Technical Information of China (English)

    张宁; 张霞

    2013-01-01

    针对毫米波微带天线的特点,设计了一种可用于通信卫星的天线.该天线在辐射贴片的顶部开了个渐变的缝隙并在天线体上方放置矩形槽形成耦合,从而达到展宽天线带宽的效果,在天线单元的基础上分析了该天线的阵列形式.采用基于时域有限积分算法的CST三维电磁仿真软件对该设计进行仿真,分析结果表明在设计的工作频带范围内,该天线具有较好的带宽范围和较高的增益,且结构小巧简单,具有较高实用价值.%An antenna for communications satellites based on characteristics of millimeter wave microstrip antenna is researched.To broadening the bandwidth,the antenna opened a gradient in the gap at the top of the radiation patch and at the top of the antenna body placed rectangular groove where is formed coupling.Analysis on the basis of the antenna elements,the antenna array have achieved.Simulation of the design using 3D electromagnetic simulation software CST which is used on time domain finite integration algorithm,the analysis results show that in the design of the work within the frequency range the antenna having a better bandwidth range,high directional gain,simple structure and easy to be fabricated in the design band.

  4. North Atlantic teleconnection patterns signature on sea level from satellite altimetry

    Science.gov (United States)

    Iglesias, Isabel; Lázaro, Clara; Joana Fernandes, M.; Bastos, Luísa

    2015-04-01

    Presently, satellite altimetry record is long enough to appropriately study inter-annual signals in sea level anomaly and ocean surface circulation, allowing the association of teleconnection patterns of low-frequency variability with the response of sea level. The variability of the Atlantic Ocean at basin-scale is known to be complex in space and time, with the dominant mode occurring on annual timescales. However, interannual and decadal variability have already been documented in sea surface temperature. Both modes are believed to be linked and are known to influence sea level along coastal regions. The analysis of the sea level multiannual variability is thus essential to understand the present climate and its long-term variability. While in the open-ocean sea level anomaly from satellite altimetry currently possesses centimetre-level accuracy, satellite altimetry measurements become invalid or of lower accuracy along the coast due to the invalidity of the wet tropospheric correction (WTC) derived from on-board microwave radiometers. In order to adequately analyse long-term changes in sea level in the coastal regions, satellite altimetry measurements can be recovered by using an improved WTC computed from recent algorithms that combine wet path delays from all available observations (remote sensing scanning imaging radiometers, GNSS stations, microwave radiometers on-board satellite altimetry missions and numerical weather models). In this study, a 20-year (1993-2013) time series of multi-mission satellite altimetry (TOPEX/Poseidon, Jason-1, OSTM/Jason-2, ERS-1/2, ENVISAT, CryoSat-2 and SARAL), are used to characterize the North Atlantic (NA) long-term variability on sea level at basin-scale and analyse its response to several atmospheric teleconnections known to operate on the NA. The altimetry record was generated using an improved coastal WTC computed from either the GNSS-derived path Delay or the Data Combination methodologies developed by University of

  5. 大型网状可展开天线的动力学与控制研究进展%Advance of Dynamics and Control of the Satellite with Large Mesh Deployable Antenna

    Institute of Scientific and Technical Information of China (English)

    刘丽坤; 周志成; 郑钢铁; 田强

    2014-01-01

    随着卫星移动通信技术的迅猛发展,为了提高卫星天线增益,普遍采用大型网状可展开抛物面天线。由于该类天线具有质量惯量大、展开过程耗时长、低刚度等特点,其展开过程和在轨正常工作期间,对卫星的动力学和姿态控制有较大影响。文章首先对大型网状可展开天线的特点及其对卫星动力学与控制的影响进行介绍,然后对大型网状可展开天线带来的动力学与控制相关问题进展进行了综述,包括:大型网状可展开天线展开状态动力学建模、展开状态试验验证、展开过程动力学建模、展开过程姿态控制及在轨天线指向控制等。最后对采用大型网状可展开天线的动力学与控制研究方向进一步需深入开展的工作提出了建议。%With the development of mobile communication technology ,the large deployable parabolic mesh reflectors are wildly used to improve the antenna gain . Considering the large inertia , long-period deployment , and low stiffness properties , these antennae have a great influence on the dynamics and control of the satellites . Firstly , the structural characteristics and its influences on the dynamic and control of the whole-satellite were introduced for the large mesh deployable antenna . Secondly , the dynamic and control problems were discussed , such as dynamic modeling of the deployed antenna , verification method of the deployed dynamic model , multi-body dynamics of the deploying antenna , deploying-process attitude control , and pointing control of the antenna , and so on . Finally , the prospects of the dynamics and control of the satellite with large deployable antenna were presented .

  6. Fourpoint antenna

    OpenAIRE

    2003-01-01

    Wideband antennas with omnidirectional coverage have both military and commercial applications. In one embodiment, the Planar Inverted Cone Antenna (PICA) is composed of a single flat element vertically mounted above a ground plane. A geometry of Planar Inverted Cone Antenna (PICA) is based on the conventional circular-disc antenna with trimmed top part having the shape of a planar-inverted cone, in a second embodiment, the Fourpoint antenna also provides balanced impedance over the operating...

  7. Communication satellite technology trends

    Science.gov (United States)

    Cuccia, Louis

    1986-01-01

    A chronology of space-Earth interconnectivity is presented. The Advanced Communications Technology Satellite (ACTS) system, Land Mobile Satellite, space-Earth antennas, impact of antenna size on coverage, intersatellite links are outlined. This presentation is represented by graphs and charts only.

  8. Fully automated extraction and analysis of surface Urban Heat Island patterns from moderate resolution satellite images

    Science.gov (United States)

    Keramitsoglou, I.; Kiranoudis, C. T.

    2012-04-01

    Comparison of thermal patterns across different cities is hampered by the lack of an appropriate methodology to extract the patterns and characterize them. What is more, increased attention by the urban climate community has been expressed to assess the magnitude and dynamics of the surface Urban Heat Island effect and to identify environmental impacts of large cities and "megacities". Motivated by this need, we propose an innovative object-based image analysis procedure to extract thermal patterns for the quantitative analysis of satellite-derived land surface temperature maps. The spatial and thermal attributes associated with these objects are then calculated and used for the analyses of the intensity, the position and the spatial extent of SUHIs. The output eventually builds up and populates a database with comparable and consistent attributes, allowing comparisons between cities as well as urban climate studies. The methodology is demonstrated over the Greater Athens Area, Greece, with more than 3000 LST images acquired by MODIS over a decade being analyzed. The approach can be potentially applied to current and future (e.g. Sentinel-3) level-2 satellite-derived land surface temperature maps of 1km spatial resolution acquired over continental and coastal cities.

  9. 47 CFR 25.209 - Antenna performance standards.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna performance standards. 25.209 Section... SATELLITE COMMUNICATIONS Technical Standards § 25.209 Antenna performance standards. (a) The gain of any antenna to be employed in transmission from an earth station in the fixed-satellite service shall lie...

  10. Design of multi-layer circularly polarized microstrip antenna in satellite navigation receiver system%卫星导航接收机系统中的多层圆极化微带天线设计

    Institute of Scientific and Technical Information of China (English)

    王喜龙; 魏昆

    2015-01-01

    Several circularly polarized receiving antennas with different frequency in small space are placed on satellite naviga⁃tion receiver system. The double⁃deck circularly polarized antenna,which receives signals from the GPS with L1 frequency point and L2 frequency point is studied and designed to save space. The double⁃deck antenna consists of two separate single feed point antenna,which is working at L1 frequency range and L2 frequency range independently,right⁃hand circular polarization and left⁃hand circular polarization of the antenna is working as receiving antenna and sending antenna. It′s easy to debug and in⁃stall since the antenna is processed with 4 mm thickness composite material. The simulation analysis and optimization proved that the designed antenna with high gain,excellent polarization and qualifies bandwidth requirement,and it is suitable for satel⁃lite navigation receiver system application.%卫星导航接收机系统有时需要在较小的区域中放置多个不同频率的圆极化接收天线。通过研究并设计出一种GPS的L1和L2双频点双层叠放圆极化天线,可以在很大程度上节约空间。该天线上下层是两个独立的单馈点天线,可以分别在L1和L2频段独立工作,分别为右旋圆极化和左旋圆极化,可作接收天线和发射天线。天线由厚度为4 mm的复合材料加工而成,调试和组装均比较方便。经过仿真分析优化,设计的天线增益较高,极化特性优良,带宽满足要求,完全适合于卫星导航接收机系统的应用。

  11. 频率与方向图可重构微带天线设计%Design of frequency and radiation pattern reconfigurable microstrip antenna

    Institute of Scientific and Technical Information of China (English)

    赵轶卓; 陈春红; 马伟男; 邾志民

    2015-01-01

    This paper presents a microstrip patch antenna with reconfigurable frequency and pattern to meet the needs of wireless communication system miniaturization and antenna multifunction. The configuration consists of a radiation patch with an U-shaped slot and two symmetrical parasitic patches. The reconfigurations of frequency and pattern can be achieved by changing the operating states of the PIN diode on the U-shaped slot and parasitic patches. Simulation and test results show that the antenna resonates at 5. 2 GHz or 5. 8 GHz, at the same time, the beam deflection and broadening can be achieved at both of the resonant frequencies. The reconfigurable frequencies and radiation patterns can be achieved by adopting the structure of a microstrip antenna, and the characteristic of multifunction is realized.%为了满足无线通信系统小型化和天线多功能的需求,设计了一种频率和方向图可重构的微带贴片天线. 该天线由一个带U型槽的辐射贴片和左右对称的寄生贴片构成,通过改变辐射贴片上U型槽和寄生贴片上PIN(正-本-负)二极管的工作状态来实现天线的工作频率和方向图的改变. 仿真和测试结果表明:天线的谐振频率可以在5 . 2 GHz和5 . 8 GHz之间切换,同时在两个频点都可以实现波束的左右偏转和展宽. 采用这种结构的微带天线可以同时实现频率和方向图的重构,从而实现天线的多功能.

  12. An FSS-Backed 20/30 GHz Circularly Polarized Reflectarray for a Shared Aperture L- and Ka-Band Satellite Communication Antenna

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst; Gothelf, Ulrich; Kim, Oleksiy S.

    2014-01-01

    A shared aperture antenna for simultaneous operation at L- (1525 to 1661 MHz) and Ka-band (19.7 to 20.2 GHz and 29.5 to 30.0 GHz) is demonstrated. This stacked antenna consists of a Ka-band reflectarray antenna with a frequency selective surface (FSS) ground-plane above an L-band patch array...... antenna. The reflectarray is based on the concentric dual split-loop element backed by a concentric dual-loop FSS element. The reflectarray comprises 80 × 80 elements and it is printed on a 40 ×40 cm2 Rogers 5880 substrate, while the L-band antenna is a 2 × 2 patch array. The reflectarray antenna has been...

  13. Antenna set for multi-channel TV system

    OpenAIRE

    Gryanik, M. V.; Ilyinov, M. D.; Pasechnik, S. G.

    1995-01-01

    One of the directions in the development of the urban TV networks is switching to the non-traditional frequency ranges. In particular, this is the range, which is widely used in systems of direct satellite TV broadcasting. The choice of this range can be explained by the saturation of commercial market of receiving equipment such as converters and tuners first of all. Transmitting antenna for such a network should have a circular horizontal plane directional pattern (DP) and have as high gain...

  14. Satellite Gravity Transforms Unmask Tectonic Pattern of Arabian-African Region

    Science.gov (United States)

    Eppelbaum, Lev; Katz, Youri

    2017-04-01

    Satellite derived geophysical gravity data are the modern powerful tool of regional tectono-geophysical examination of the Earth's crust and upper mantle. It is well known that regional long-term seismological prognosis, strategy of searching economic deposits and many other important geological-geophysical problems are based mainly on constructions derived from the combined tectono-geophysical zonation. Some authors' experience of the tectono-geophysical zonation in the Eastern Mediterranean (both sea and land) with satellite derived gravity field (Eppelbaum and Katz, 2015a, 2015b) indicates a high effectiveness of the data employment for delineation of different tectono-structural units. Therefore, on the basis of the previous successive application, satellite derived gravity field analysis was applied for a giant (covering > 10 mln. km2) and complex Arabian-African region (including Zagros Mts.). The gravity field retracked from the Geosat and ERS-1 altimetry (e.g., Sandwell and Smith, 2009) was processed by the use of different mathematical apparatus employment enabling to underline these or those tectonic (geodynamic) features of the region under study. The main goals of present investigation are following: (1) employment of a new powerful regional geophysical tool - satellite derived gravity data and its transforms for unmasking some buried tectonic and geodynamic peculiarities of the study area, (2) finding definite relationships between the novel tectonic map and the gravity field transformations, (3) development of a novel tectonic map of this area (on the basis of careful examination of and generalization of available geological and geophysical (mostly satellite gravity) data). The compiled gravity map (for the map compiling more than 4 mln. observations were utilized) with the main tectonic features shows the intricate gravity pattern of the investigated area. An initial analysis of the gravity field behavior enabled to separate two main types of

  15. Installing the antenna for STELLA

    CERN Multimedia

    1979-01-01

    The 3 metre diameter antenna for the STELLA satellite communication project is lowered into position on the roof of the Computer Building (see Weekly Bulletin 48/79 and CERN Courier 19 (1979) 444). STELLA stands for Satellite Transmission Experiment Linking Laboratories.

  16. 卫星电视天线射频电路中LC压控振荡器设计%LC VCO Design of Satellite TV Antenna RF Circuit

    Institute of Scientific and Technical Information of China (English)

    王魏; 黎希; 宫召英; 马晓英; 杨丽君; 王岳生

    2012-01-01

    A monolithic integrated voltage controlled oscillator (VCO) with low power, low phase noise and wide tuning range used in the satellite TV antenna RF circuit is designed. The PMOS tail current source and a MIM capacitor array structure is used so as to effectively reduce the phase noise,and ensure the enough tuning range. The proposed VCO achieved a tuning rang of 3.364 -4.022 GHz,and the central frequency is 3.7 GHz,the phase noise is -90.4 dBc/Hz at 100 Hz and -119.1 dBc/Hz at 1 MHz offset while dissipating2.5 mW from 1.8 V supply.%设计了一款应用于卫星电视天线电路中低功耗、低相噪的宽带单片集成压控振荡器.该振荡器利用PMOS尾电流源和MIM电容阵列结构.在保证调谐范围的前提下,有效地降低了相位噪声.使得该压控振荡器实现了3.384 ~4.022 GHz频段的覆盖,在中心频率为3.7 GHz时,100 Hz和1 MHz频偏处的相位噪声分别为-90.4 dBc/Hz和-119.1 dBc/Hz,工作电压下为1.8V,功耗仅为2.5 mW.

  17. Antenna for Ultrawideband Channel Sounding

    DEFF Research Database (Denmark)

    Zhekov, Stanislav Stefanov; Tatomirescu, Alexandru; Pedersen, Gert F.

    2016-01-01

    A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact...... on the antenna performance. The optimized antenna demonstrates S11 below -10 dB and a stable omnidirectional radiation pattern robust against the cable effect over the frequency band 1.5-41 GHz despite its compactness (the maximum electrical dimension is of 0.29max, where max is the free space wavelength...... at the lowest frequency of operation). A prototype of the antenna is fabricated and tested. The simulated and measured S11 are in a good agreement. Measured radiation patterns confirm the pattern stability in terms of the direction of maximum radiation and 3 dB beamwidth....

  18. Optimisation of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    H. El Hamchary

    1996-04-01

    Full Text Available When choosing the most appropriate microstrip antenna configuration for particular applications, the kind of excitation of the radiating element is an essential factor that requires careful considerations. For controlling the distribution of energy of the linear or planar array of elements and for coupling energy to the individual elements, a wide variety of feed mechanisms are available. In this paper, the coaxial antenna feeding is assumed and the best (optimised feeding is found. Then, antenna characteristics such as radiation pattern, return loss, input impedance, and VSWR are obtained.

  19. Plasma Antenna

    OpenAIRE

    N M Vijay

    2014-01-01

    The fundamental base of plasma antenna is the use of an ionized medium as a conductor. The plasma antenna is a radiofrequency antenna formed by a plasma columns, Filaments or sheets, which are excited by a surface wave. The relevance of this device is how rapidly it can be turned on and off, only applying an electrical pulse. Besides its wide carrier frequency, the great directivity and controllable antenna shape. Otherwise a disadvantage is that it needs energy to be ionized....

  20. Improved patch antenna performance by using a metamaterial cover

    Institute of Scientific and Technical Information of China (English)

    ZHU Fang-ming; HU Jun

    2007-01-01

    A new patch antenna system with a metamaterial cover is presented in this paper. The impedance, radiation pattern, and directivity of such an antenna are studied. A performance comparison between the conventional patch antenna and the new metamaterial patch antenna is given. The results show that the directivity of the metamaterial patch antenna is significantly improved. The effect of the metamaterial cover's layer numbers on the radiation pattern of the patch antenna is also studied.

  1. Application of the SWE-to-PWE antenna diagnostics technique to an offset reflector antenna

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, Aksel; Breinbjerg, Olav

    2008-01-01

    Electrical and mechanical errors in an antenna may seriously affect the antenna's performance. Although their presence is usually detected by anomalies in the antenna's far-field pattern, their identification is normally possible only through an analysis of the antenna's extreme near field. The r...

  2. Non-standard antennas

    CERN Document Server

    Le Chevalier, Francois; Staraj, Robert

    2013-01-01

    This book aims at describing the wide variety of new technologies and concepts of non-standard antenna systems - reconfigurable, integrated, terahertz, deformable, ultra-wideband, using metamaterials, or MEMS,  etc, and how they open the way to a wide range of applications, from personal security and communications to multifunction radars and towed sonars, or satellite navigation systems, with space-time diversity on transmit and receive. A reference book for designers  in this lively scientific community linking antenna experts and signal processing engineers.

  3. Design of A Pentagon Microstrip Antenna for Radar Altimeter Application

    Directory of Open Access Journals (Sweden)

    K. RamaDevi

    2012-11-01

    Full Text Available In the navigational applications, radar and satellite requires a device that is a radar altimeter. Theworking frequency of this system is 4.2 to 4.3GHz and also requires less weight, low profile, and high gainantennas. The above mentioned application is possible with microstrip antenna as also known as planarantenna. In this paper, the microstrip antennas are designed at 4.3GHz (C-band in rectangular andcircular shape patch antennas in single element and arrays with parasitic elements placed in H-planecoupling. The performance of all these shapes is analyzed in terms of radiation pattern, half power points,and gain and impedance bandwidth in MATLAB. This work extended here with designed in different shapeslike Rhombic, Pentagon, Octagon and Edges-12 etc. Further these parameters are simulated in ANSOFTHFSSTMV9.0 simulator.

  4. Mantle cloaking for co-site radio-frequency antennas

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Alessio, E-mail: alessio.monti@uniroma3.it; Barbuto, Mirko [“Niccolò Cusano” University, Via Don Carlo Gnocchi 3, Rome 00166 (Italy); Soric, Jason; Alù, Andrea [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Ramaccia, Davide; Vellucci, Stefano; Toscano, Alessandro; Bilotti, Filiberto [Department of Engineering, “Roma Tre” University, Via Vito Volterra 62, Rome 00146 (Italy); Trotta, Fabrizio [Antenna Department, ELETTRONICA S.p.A., Via Tiburtina Valeria Km 13700, Rome 00131 (Italy)

    2016-03-14

    We show that properly designed mantle cloaks, consisting of patterned metallic sheets placed around cylindrical monopoles, allow tightly packing the same antennas together in a highly dense telecommunication platform. Our experimental demonstration is applied to the relevant example of two cylindrical monopole radiators operating for 3G and 4G mobile communications. The two antennas are placed in close proximity, separated by 1/10 of the shorter operational wavelength, and, after cloaking, are shown to remarkably operate as if isolated in free-space. This result paves the way to unprecedented co-siting strategies for multiple antennas handling different services and installed in overcrowded platforms, such as communication towers, satellite payloads, aircrafts, or ship trees. More broadly, this work presents a significant application of cloaking technology to improve the efficiency of modern communication systems.

  5. A Compact Printed Quadruple Band-Notched UWB Antenna

    Directory of Open Access Journals (Sweden)

    Xiaoyin Li

    2013-01-01

    Full Text Available A novel compact coplanar waveguide- (CPW- fed ultrawideband (UWB printed planar volcano-smoke antenna (PVSA with four band-notches for various wireless applications is proposed and demonstrated. The low-profile antenna consists of a C-shaped parasitic strip to generate a notched band at 8.01~8.55 GHz for the ITU band, two C-shaped slots, and an inverted U-shaped slot etched in the radiator patch to create three notched bands at 5.15~5.35 GHz, 5.75~5.85 GHz, and 7.25~7.75 GHz for filtering the WLAN and X-band satellite signals. Simulated and measured results both confirm that the proposed antenna has a broad bandwidth of 3.1~12 GHz with VSWR < 2 and good omnidirectional radiation patterns with four notched-bands.

  6. 可收展卫星天线用金属网技术研究进展%Advances on the Metal Gauzes in Drawing -in and Opening -up Satellite Antenna

    Institute of Scientific and Technical Information of China (English)

    赛兴鹏; 秦庆彦

    2011-01-01

    随着卫星通信技术的不断发展,对卫星天线的口径要求越来越大,收展工作特性要求越来越高,这使天线用金属网材料和成网技术得到了较快发展.文章介绍了国外可收展星载卫星天线的概况,分析了天线用金属网面材料、网面织构参数、成网技术的发展,以及我国金属网的研究和应用发展状况.%With the rapid development of the satellite communication techniques, the requirements for large bore size and high working performances of the satellite antenna are increasing. The metal gauzes materials and knitting techniques have progressed rapidly. The general situations of the drawing - in and opening- up satellite antenna are introduced in the present paper, including the metal gauzes materials,wire size parameters and knitting techniques. The paper also covers the achievements made in China on metal gauzes.

  7. Broadband Multilayered Array Antenna with EBG Reflector

    Directory of Open Access Journals (Sweden)

    P. Chen

    2013-01-01

    Full Text Available Most broadband microstrip antennae are implemented in the form of slot structure or laminate structure. The impedance bandwidth is broadened, but meanwhile, the sidelobe of the directivity pattern and backlobe level are enlarged. A broadband stacked slot coupling microstrip antenna array with EBG structure reflector is proposed. Test results indicate that the proposed reflector structure can effectively improve the directivity pattern of stacked antenna and aperture coupled antenna, promote the front-to-back ratio, and reduce the thickness of the antenna. Therefore, it is more suitable to be applied as an airborne antenna.

  8. An Efficient Beam Steerable Antenna Array Concept for Airborne Applications

    OpenAIRE

    Aliakbarian, H.; Van der Westhuizen, E.; Wiid, R.; Volskiy, V.; R. Wolhuter; G. A. E. Vandenbosch

    2014-01-01

    Deployment of a satellite borne, steerable antenna array with higher directivity and gain in Low Earth Orbit makes sense to reduce ground station complexity and cost, while still maintaining a reasonable link budget. The implementation comprises a digitally beam steerable phased array antenna integrated with a complete system, comprising the antenna, hosting platform, ground station, and aircraft based satellite emulator to facilitate convenient aircraft based testing of the antenna array and...

  9. Preliminary study on migration pattern of the Tibetan antelope ( Pantholops hodgsonii) based on satellite tracking

    Science.gov (United States)

    Buho, Hoshino; Jiang, Z.; Liu, C.; Yoshida, T.; Mahamut, Halik; Kaneko, M.; Asakawa, M.; Motokawa, M.; Kaji, K.; Wu, X.; Otaishi, N.; Ganzorig, Sumiya; Masuda, R.

    2011-07-01

    The spatial and temporal patterns of the endangered Tibetan antelope or chiru ( Pantholops hodgsonii) have been studied using satellite-based ARGOS platform transmitter terminal (PTT) tracking data. The data was obtained from the satellite tracking of two female Tibetan antelopes that were collared with satellite transmitters and have been tracked from August 2007 to April 2009. Analysis of the locality data (LC) obtained, shows that both antelopes were migrant individuals, they shared the same calving ground surrounding lake Huiten (or Zhuonai lake), but different wintering pastures. Each antelope covered 250-300 km from the wintering to summer pastures. Annual range consisted of a core area that was used for at least 9 months; a calving ground used for a short time (from 8-20 days); and temporal pastures used during migration to and from the calving ground. Seasonal migration cycle was about 3 months, 27-30 days to reach the calving ground; 8-20 days staying there; and 36-40 days returning to the core area. Examination of the spatial distribution during migration showed that both chiru crossed the Qinghai-Tibetan railway (QTR) and the Golmud-Lhasa highway (GLH) at least two times, and reached calving ground (118-120 km from there) in 8 days, maintaining an average speed of 15 km per day. However, the return migration took twice as long (from 14 to 16 days). Each time, after reaching the QTR and GLH, the antelopes spent 20-40 days in that area, probably looking for passages and waiting. So far, we suppose that the QTR and the GLH have become a hindrance to the migration of the Tibetan antelopes and seriously delay their movement to and from the calving area. Extended aggregation of the herds of Tibetan antelopes along the QTR and the GLH may impact negatively with increased mortality among offspring, the spread of various diseases and overgrazing of pastures.

  10. Calibration and performance analysis on channel mismatch of multi-beam antenna on satellites%星载多波束天线通道误差特性分析及校准

    Institute of Scientific and Technical Information of China (English)

    赵星惟; 龚文斌; 梁旭文

    2012-01-01

    针对星载多波束天线幅相误差对天线性能影响较大的问题,通过对多波束发射天线的射频通道在不同温度下的幅相特性进行试验测定,得到了通道幅相特性与温度的对应关系,发现不同通道的幅相特性与通道温度的关系曲线在给定温度区间内基本呈线性关系,且斜率基本一致,从而确定了对不同通道的幅相特性进行固定值补偿的校准策略.通过固定值补偿后,各通道的幅相特性曲线基本重合,从而消除了通道间幅相误差.进一步给出了提升温度一致性的措施,并设计了多波束发射天线的校准原理框图和校准流程图.结果表明:新的星载多波束天线幅相误差校准方法是有效的.%To solve the mismatch effect of amplitude-and-phase errors on multi-beam antenna performance , the radio frequency channel amplitude and phase errors of multi-beam transmitting antenna on satellite were experimentally measured to obtain the corresponding relations of channel amplitude-and-phase mismatch and temperature, and to compensate the mismatch. The shell temperatures are almost same after temperature stabilization, which effectively results in channel consistency. Some methods were used to improve temperature consistency. Calibration of channel is the key to guarantee the performance indexes of multi-beam antenna on satellites. The calibration principle block diagram and flow chart of multi-beam transmitting antenna were designed. The theoretical analysis and simulation results show that the proposed calibration method is effective for calibration of multi-beam antenna on satellites.

  11. Antenna technology for advanced mobile communication systems

    Science.gov (United States)

    Rammos, Emmanuel; Roederer, Antoine; Rogard, Roger

    1988-01-01

    The onboard antenna front end is the key subsystem conditioning configuration and performance of mobile communication satellites. The objectives of this paper are to demonstrate this key role and to review L-band satellite antenna technology for earth coverage and regional applications. Multibeam arrays are first discussed, then unfurlable and inflatable reflector antennas are described. These technologies are now qualified in Europe for future mobile systems, for which the optimum choice of antenna technology has been found to be the key to efficient use of spectrum and power resources.

  12. Certified dual-corrected radiation patterns of phased antenna arrays by offline–online order reduction of finite-element models

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, A., E-mail: a.sommer@lte.uni-saarland.de; Farle, O., E-mail: o.farle@lte.uni-saarland.de; Dyczij-Edlinger, R., E-mail: edlinger@lte.uni-saarland.de

    2015-10-15

    This paper presents a fast numerical method for computing certified far-field patterns of phased antenna arrays over broad frequency bands as well as wide ranges of steering and look angles. The proposed scheme combines finite-element analysis, dual-corrected model-order reduction, and empirical interpolation. To assure the reliability of the results, improved a posteriori error bounds for the radiated power and directive gain are derived. Both the reduced-order model and the error-bounds algorithm feature offline–online decomposition. A real-world example is provided to demonstrate the efficiency and accuracy of the suggested approach.

  13. The ACTS multibeam antenna

    Science.gov (United States)

    Regier, Frank A.

    1992-01-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 is briefly introduced. Its multibeam antenna, consisting of electrically similar 30 GHz receive and 20 GHz transmit offset Cassegrain systems, both utilizing orthogonal polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 degree beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz HEMT low-noise amplifier and a 20 GHz TWT power amplifier.

  14. The ACTS multibeam antenna

    Science.gov (United States)

    Regier, Frank A.

    1992-06-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 is briefly introduced. Its multibeam antenna, consisting of electrically similar 30 GHz receive and 20 GHz transmit offset Cassegrain systems, both utilizing orthogonal polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 degree beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz HEMT low-noise amplifier and a 20 GHz TWT power amplifier.

  15. Dielectric Covered Planar Antennas

    Science.gov (United States)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  16. Integrating satellite actual evapotranspiration patterns into distributed model parametrization and evaluation for a mesoscale catchment

    Science.gov (United States)

    Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.

    2016-12-01

    Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.

  17. A Novel Broadband Antenna with Pattern Reconfigurability%一种新型宽带方向图可重构天线

    Institute of Scientific and Technical Information of China (English)

    王任; 王秉中; 丁霄

    2016-01-01

    设计了一种具有两个辐射模式的宽带方向图可重构天线。该天线由两个准八木天线单元组成,两个单元的辐射体分别指向相反的方向。两个单元使用同一根同轴线从背面馈电,在每个单元的馈线与同轴线馈点之间安装一个PIN二极管以控制辐射模式。在天线振子的下方安装反射板用以调节天线的辐射方向,避免了天线对射频组件的干扰。仿真结果显示,天线的工作频段为5.00~5.65 GHz,两种模式的主瓣分别指向θ=±55°,3 dB波瓣宽度均为110°,工作频段内增益为7.3~7.7 dB,调节反射板的尺寸可以改变天线的主瓣指向。对该天线进行了实际制作和测量,实测结果和仿真结果较吻合。该天线可以用于智能通信系统。%A novel wideband antenna with two reconfigurable radiating patterns is presented. The proposed antenna is made of two quasi-Yagi antennas, with their radiations directing to opposite directions, respectively. The two elements are fed with one coaxial cable from the back of the dielectric substrate. A PIN diode is embedded between the feeding line of each element and coaxial cable to regulate the radiating pattern. Besides, reflectors are set under the arms of the driver dipole to regulate the radiating direction and avoid interference with radio components. Simulated results show that the proposed antenna can work at 5.00 GHz to 5.65 GHz, the main beams of the two modes direct to±55° respectively, and the 3dB beam-widths of main beams are all 110°. The gain within the operating bandwidth is 7.3 dB to 7.7 dB. The main beam direction of the proposed antenna can be regulated by the size of reflectors. The antenna was fabricated and measured. The measurement results are good with the simulation results. The antenna presented can be used in intelligent communication systems.

  18. Transparent antennas for solar cell integration

    Science.gov (United States)

    Yasin, Tursunjan

    Transparent patch antennas are microstrip patch antennas that have a certain level of optical transparency. Highly transparent patch antennas are potentially suitable for integration with solar panels of small satellites, which are becoming increasingly important in space exploration. Traditional patch antennas employed on small satellites compete with solar cells for surface area. However, a transparent patch antenna can be placed directly on top of solar cells and resolve the issue of competing for limited surface real estate. For such an integration, a high optical transparency of the patch antenna is required from the solar cells' point of view. On the other hand, the antenna should possess at least acceptable radiation properties at the same time. This dissertation focuses on some of the most important concerns from the perspective of small satellite applications. For example, an optimization method to simultaneously improve both optical transparency and radiation efficiency of the antenna is studied. Active integrated antenna design method is extended to meshed patch applications in an attempt to improve the overall power efficiency of the front end communication subsystem. As is well known, circular polarization is immune from Faraday rotation effect in the ionosphere and thus can avoid a 3-dB loss in geo-satellite communication. Therefore, this research also aims to present design methods for circularly polarized meshed patch antennas. Moreover, a meshed patch antenna capable of supporting a high communication data rate is investigated. Lastly, other types of transparent patch antennas are also analyzed and compared to meshed patches. In summary, many properties of transparent patch antennas are examined in order to meet different design requirements.

  19. Simulation of the Optical System for the ASTRO-G Offset Cassegrain Antenna

    Science.gov (United States)

    Kimura, K.; Toshikawa, T.; Shiroyama, N.; Kurozumi, A.; Ojima, T. K.; Abe, Y.; Yonekura, Y.; Ogawa, H.; Ujihara, H.; Murata, Y.; Tsuboi, M.; Kasuga, T.

    2009-08-01

    We are developing the satellite (ASTRO-G) for the space VLBI mission, called VSOP-2 (Hirabayashi et al. 2004). This system will have an offset cassegrain antenna, and the three multi-mode feed horns (8, 22, 43 GHz bands) will be chosen by the Cassegrain focus position. We are designing the antenna optics of the three band receivers by using the GRASP physical optics software package on simulated feed configurations. The result of these simulations shows low cross-polarization level, a good radiation pattern, and the antenna efficiencies are 63--68 percent in these bands, assuming a perfect reflector. In this paper, we present these results of simulation of ASTRO-G antenna optics.

  20. Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images

    Directory of Open Access Journals (Sweden)

    Marc Wieland

    2014-03-01

    Full Text Available In this study, a classification and performance evaluation framework for the recognition of urban patterns in medium (Landsat ETM, TM and MSS and very high resolution (WorldView-2, Quickbird, Ikonos multi-spectral satellite images is presented. The study aims at exploring the potential of machine learning algorithms in the context of an object-based image analysis and to thoroughly test the algorithm’s performance under varying conditions to optimize their usage for urban pattern recognition tasks. Four classification algorithms, Normal Bayes, K Nearest Neighbors, Random Trees and Support Vector Machines, which represent different concepts in machine learning (probabilistic, nearest neighbor, tree-based, function-based, have been selected and implemented on a free and open-source basis. Particular focus is given to assess the generalization ability of machine learning algorithms and the transferability of trained learning machines between different image types and image scenes. Moreover, the influence of the number and choice of training data, the influence of the size and composition of the feature vector and the effect of image segmentation on the classification accuracy is evaluated.

  1. Influence of satellite-derived rainfall patterns on plague occurrence in northeast Tanzania.

    Science.gov (United States)

    Debien, Annekatrien; Neerinckx, Simon; Kimaro, Didas; Gulinck, Hubert

    2010-12-13

    In the tropics, rainfall data are seldom accurately recorded, and are often discontinuous in time. In the scope of plague-research in northeast Tanzania, we adapted previous research to reconstruct rainfall patterns at a suitable resolution (1 km), based on time series of NDVI: more accurate satellite imagery was used, in the form of MODIS NDVI, and rainfall data were collected from the TRMM sensors instead of in situ data. First, we established a significant relationship between monthly rainfall and monthly composited MODIS NDVI. The established linear relationship was then used to reconstruct historic precipitation patterns over a mountainous area in northeastern Tanzania. We validated the resulting precipitation estimates with in situ rainfall time series of three meteorological stations located in the study area. Taking the region's topography into account, a correlation coefficient of 0.66 was obtained for two of the three meteorological stations. Our results suggest that the adapted strategy can be applied fruitfully to estimate rainfall variability and seasonality, despite the underestimation of overall rainfall rates. Based on this model, rainfall in previous years (1986) is modelled to obtain a dataset with which we can compare plague occurrence in the area. A positive correlation of 82% is obtained between high rainfall rates and plague incidence with a two month lag between rainfall and plague cases. We conclude that the obtained results are satisfactory in support of the human plague research in which this study is embedded, and that this approach can be applied in other studies with similar goals.

  2. Geodetic Secor Satellite

    Science.gov (United States)

    1974-06-01

    simple, and had low-power lem. 17 14. Satellite Orientation . The satellite was designed to maintain a constant relationship between the antenna...the same satellite orientation . Further considerations were Th oscillations, however, when higher orbital ranges (500-2500 nautical miles) -, 3 a

  3. Cup Cylindrical Waveguide Antenna

    Science.gov (United States)

    Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.

    2008-01-01

    The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).

  4. Reconfigurable antennas

    CERN Document Server

    Bernhard, Jennifer

    2007-01-01

    This lecture explores the emerging area of reconfigurable antennas from basic concepts that provide insight into fundamental design approaches to advanced techniques and examples that offer important new capabilities for next-generation applications. Antennas are necessary and critical components of communication and radar systems, but sometimes their inability to adjust to new operating scenarios can limit system performance. Making antennas reconfigurable so that their behavior can adapt with changing system requirements or environmental conditions can ameliorate or eliminate these restricti

  5. Microstrip Antenna

    OpenAIRE

    Anuj Mehta

    2015-01-01

    Abstract This article presents an overview of the microstrip patch antenna and its design techniques. Basically a microstrip patch antenna comprises of a trace of copper or any other metal of any geometry on one side of a standard printed circuit board substrate with other side grounded. The antenna is fed using various feeding techniques like coaxial strip line aperture coupling or proximity coupling techniques. The working principle and the radiation mechanism have also been described. The ...

  6. Gain and far-field patterns for phase-correcting Fresnel zone plate antennas at millimeter-wave and terahertz frequencies

    Science.gov (United States)

    Wiltse, James C.

    2007-04-01

    The Fresnel zone plate lens antenna, which provides advantages compared to a normal paraboloidal or spherical lens, has been extensively investigated in the millimeter-wave and terahertz regions. The advantages include reduced weight, volume, and attenuation and simplicity of design. The principal disadvantage is that the zone plate sometimes provides reduced gain compared to a true lens. Particularly at high millimeter-wave or terahertz frequencies the low loss of the zone plate more than compensates for the reduced directivity. This paper investigates the gains and far-field patterns for a number of cases and gives both the analysis and numerical results for the examples. These cases have dealt with large-angle designs, where the focal length (F) and diameter (D) are comparable (F/D = 0.3 to 2.5), unlike the typical optical examples. The antenna patterns are found to have beamwidths and first sidelobes that are similar to what one would obtain with a standard lens, given the same aperture illumination. Appropriate feed designs are also described. For best aperture efficiency the illumination taper is about 10 dB, and this gives first sidelobe levels of about -24dB for a circular aperture. Far-out average sidelobes are not as low as for a true lens, and this is where the gain is affected.

  7. Antenna Measurement

    OpenAIRE

    Picard, Dominique

    2010-01-01

    Currently it is possible to measure all the characteristics of an antenna with a good accuracy. Far-field ranges do not have a very good accuracy, due to parasitic reflections for the outdoor ranges and because of the limited distance between the source antenna and the tested antenna for the indoor ranges. The compact range allows one to obtain a direct farfield cut in a relatively short time. The near-field techniques are the most accurate and the most convenient for global antenna radiation...

  8. Antenna toolkit

    CERN Document Server

    Carr, Joseph

    2006-01-01

    Joe Carr has provided radio amateurs and short-wave listeners with the definitive design guide for sending and receiving radio signals with Antenna Toolkit 2nd edition.Together with the powerful suite of CD software, the reader will have a complete solution for constructing or using an antenna - bar the actual hardware! The software provides a simple Windows-based aid to carrying out the design calculations at the heart of successful antenna design. All the user needs to do is select the antenna type and set the frequency - a much more fun and less error prone method than using a con

  9. Millimeter-wave antenna measurement

    NARCIS (Netherlands)

    Akkermans, J.A.G.; Dijk, R. van; Herben, M.H.A.J.

    2007-01-01

    A novel approach is presented to accurately measure the scattering parameters as well as the radiation pattern of planar antennas that operate in the millimeter-wave frequency band. To avoid interconnection problems, RF probes have been used to connect to the antenna. These RF probes are normally us

  10. 卫星导航专利分析报告之三──接收机四臂螺旋天线%The Third Report for Satellite Navigation Patent Analysis--quadrifilar helix antenna for receiver

    Institute of Scientific and Technical Information of China (English)

    程小亮; 丰学民; 王海波

    2015-01-01

    As the critical part for satellite navigation receiver receiving satellite signal, antenna affects directly the navigation and positioning effects with its performance. As the second part of series reports for receiver antenna patent analysis and on the basis of mass exact data statistics, this paper studies the characteristics of principal applicants and origin countries deeply, selects the important patents from Sarantel Inc. which is an important company in industry, and shows comprehensively the technique status and development trends in future in the art by means of technical efifciency analysis.%天线作为卫星导航接收机接收卫星信号的关键部分,其性能直接影响到卫星导航接收机的导航和定位效果。本文作为接收机天线专利分析报告系列的第三部分,以大量精确的数据统计为基础,深入研究了四臂螺旋天线的主要申请人及来源国特点,对行业重点企业萨恩特尔公司的重要专利进行筛选,并借助技术功效分析将该领域的技术现状和未来发展趋势给予全面展现。

  11. Metamaterial-based "sabre" antenna

    Science.gov (United States)

    Hafdallah Ouslimani, Habiba; Yuan, Tangjie; Kanane, Houcine; Priou, Alain; Collignon, Gérard; Lacotte, Guillaume

    2014-05-01

    The "sabre" antenna is an array of two monopole elements, vertically polarized with omnidirectional radiation patterns, and placed on either side of a composite material on the tail of an airplane. As an in-phase reflector plane, the antenna uses a compact dual-layer high-impedance surface (DL-HIS) with offset mushroom-like Sivenpiper square shape unit cells. This topology allows one to control both operational frequency and bandgap width, while reducing the total height of the antenna to under λ0/36. The designed antenna structure has a wide bandwidth higher than 24% around 1.4 GHz. The measurements and numerical simulations agree very well.

  12. A Review of Antennas for Picosatellite Applications

    Directory of Open Access Journals (Sweden)

    Abdul Halim Lokman

    2017-01-01

    Full Text Available Cube Satellite (CubeSat technology is an attractive emerging alternative to conventional satellites in radio astronomy, earth observation, weather forecasting, space research, and communications. Its size, however, poses a more challenging restriction on the circuitry and components as they are expected to be closely spaced and very power efficient. One of the main components that will require careful design for CubeSats is their antennas, as they are needed to be lightweight, small in size, and compact or deployable for larger antennas. This paper presents a review of antennas suitable for picosatellite applications. An overview of the applications of picosatellites will first be explained, prior to a discussion on their antenna requirements. Material and antenna topologies which have been used will be subsequently discussed prior to the presentation of several deployable configurations. Finally, a perspective and future research work on CubeSat antennas will be discussed in the conclusion.

  13. Microstrip antenna gain enhancement with metamaterial radome

    Science.gov (United States)

    Attachi, S.; Saleh, C.; Bouzouad, M.

    2017-01-01

    In this work, a high gain patch antenna using multilayer FSS radome is proposed for millimeter-wave applications. The antenna operating frequency is 43.5 GHz. The antenna/radome system consists of one, two, three, or four layers of metasurfaces placed in the near-field region of a microstrip patch antenna. The antenna/radome system gain is improved by 9 dBi compared to the patch antenna alone, and the radiation pattern half-power beamwidth is reduces to 20° in both E- and H-planes.

  14. An Antenna Tracking Method Using Phased Array and Servo for Vehicle Satellite Communication on the Move%相控阵结合伺服辅助的车载动中通天线跟踪方法

    Institute of Scientific and Technical Information of China (English)

    蒋文丰

    2016-01-01

    天线跟踪功能是车载动中通系统( SOTM)提供无线通信能力的前提,相控阵天线能提供较好的跟踪性能,但是存在波束扫描范围有限的问题。为实现相控阵天线全方位跟踪能力,提出了一种相控阵+伺服辅助的方法。给出了算法数据处理流程,并完成了原理样机设计。根据原理样机工作原理给出了跟踪角误差计算公式,测试结果与计算结果相符。测试结果表明:在(57.88~115.76)。/s角速度下,通信链路信噪比损失小于0.5 dB。%The antenna tracking function is the foundation for the vehicle satellite communication on the move( SOTM) to offer wireless communications,and the phased array antenna can provide better tracking performance,but the beam scanning range is limited. In order to realize the phased array antenna tracking in the entire orientation,a method using phased array antenna and servo is presented. The data processing flow of algorithm is provided, and the prototype has been developed. According to the prototype working principle,the formula to calculate the tracking angle error is given. The test result matches with the calcu-lating result,and the signal-to-noise ratio(SNR) loss is smaller than 0. 5 dB at the angle speed between (57. 88~115. 76)./s.

  15. A Compact UWB Diversity Antenna

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2014-01-01

    Full Text Available A compact printed ultrawideband (UWB diversity antenna with a size of 30 mm × 36 mm operating at a frequency range of 3.1–10.6 GHz is proposed. The antenna is composed of two semielliptical monopoles fed by two microstrip lines. Two semicircular slots, two rectangular slots, and one stub are introduced in the ground plane to adjust the impedance bandwidth of the antenna and improve the isolation between two feeding ports. The simulated and measured results show that impedance bandwidth of the proposed antenna can cover the whole UWB band with a good isolation of < −15 dB. The radiation patterns, peak antenna gain, and envelope correlation coefficient are also measured and discussed. The measured results show that the proposed antenna can be a good candidate for some portable MIMO/diversity UWB applications.

  16. Stretchable antenna for wearable electronics

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-04-13

    Various examples are provided for stretchable antennas that can be used for applications such as wearable electronics. In one example, a stretchable antenna includes a flexible support structure including a lateral spring section having a proximal end and at a distal end; a metallic antenna disposed on at least a portion of the lateral spring section, the metallic antenna extending along the lateral spring section from the proximal end; and a metallic feed coupled to the metallic antenna at the proximal end of the lateral spring section. In another example, a method includes patterning a polymer layer disposed on a substrate to define a lateral spring section; disposing a metal layer on at least a portion of the lateral spring section, the metal layer forming an antenna extending along the portion of the lateral spring section; and releasing the polymer layer and the metal layer from the substrate.

  17. Antenna structure with distributed strip

    Science.gov (United States)

    Rodenbeck, Christopher T.

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  18. Optimization of Planar Monopole Wideband Antenna for Wireless Communication System.

    Science.gov (United States)

    Shakib, Mohammed Nazmus; Moghavvemi, Mahmoud; Mahadi, Wan Nor Liza

    2016-01-01

    In this paper, a new compact wideband monopole antenna is presented for wireless communication applications. This antenna comprises of a new radiating patch, a new arc-shaped strip, microstrip feed line, and a notched ground plane. The proposed radiating patch is combined with a rectangular and semi-circular patch and is integrated with a partial ground plane to provide a wide impedance bandwidth. The new arc-shaped strip between the radiating patch and microstrip feed line creates an extra surface on the patch, which helps further widen the bandwidth. Inserting one step notch on the ground plane further enhances the bandwidth. The antenna has a compact size of 16×20×1.6mm3. The measured result indicated that the antenna achieves a 127% bandwidth at VSWR≤2, ranging from 4.9GHz to 22.1GHz. Stable radiation patterns with acceptable gain are achieved. Also, a measured bandwidth of 107.7% at VSWR≤1.5 (5.1-17GHz) is obtained, which is suitable for UWB outdoor propagation. This antenna is compatible with a good number of wireless standards, including UWB band, Wimax 5.4 GHz band, MVDDS (12.2-12.7GHz), and close range radar and satellite communication in the X-band (8-12GHz), and Ku band (12-18GHz).

  19. Array antennas design in dependence of element-phasing

    Science.gov (United States)

    Zichner, R.; Chandra, M.

    2009-05-01

    Array antennas are used in science as well as for commercial and military purposes. The used element antennas act in accordance to their desired uses, for example radars or stationer GPS satellites. Typical components are for example slotted waveguides, patches, yagi-antennas and helix-antennas. All these elements do stand out with their own characteristics based on their special applications. If these elements are formed into an array configuration, the effectiveness can be improved immensely. There is a relation between the array functions and the physical array properties like the element alignment (linear, planar, circular), distances between the elements and so on. Among the physical properties there are other attributes like phase or amplitude coefficients, which are of great significance. The aim of this study was to provide an insight into the problem of array design, as far as the antenna element phase is concerned. Along with this, array radiation characteristics effects are presented. With the help of the extracted cognitions beam forming behaviour can be shown and the array phase behaviour can be analysed. One of the main applications is to simulate the array characteristics, like the radiation characteristic or the gain, for displacements of the array feeding point. A software solution that simulates the phase shift of a given array pattern is sought to adjust the feeding point.

  20. Array antennas design in dependence of element-phasing

    Directory of Open Access Journals (Sweden)

    R. Zichner

    2009-05-01

    Full Text Available Array antennas are used in science as well as for commercial and military purposes. The used element antennas act in accordance to their desired uses, for example radars or stationer GPS satellites. Typical components are for example slotted waveguides, patches, yagi-antennas and helix-antennas. All these elements do stand out with their own characteristics based on their special applications. If these elements are formed into an array configuration, the effectiveness can be improved immensely. There is a relation between the array functions and the physical array properties like the element alignment (linear, planar, circular, distances between the elements and so on. Among the physical properties there are other attributes like phase or amplitude coefficients, which are of great significance. The aim of this study was to provide an insight into the problem of array design, as far as the antenna element phase is concerned. Along with this, array radiation characteristics effects are presented. With the help of the extracted cognitions beam forming behaviour can be shown and the array phase behaviour can be analysed. One of the main applications is to simulate the array characteristics, like the radiation characteristic or the gain, for displacements of the array feeding point. A software solution that simulates the phase shift of a given array pattern is sought to adjust the feeding point.

  1. Low-profile natural and metamaterial antennas analysis methods and applications

    CERN Document Server

    Nakano, Hisamatsu

    2017-01-01

    This book presents the full range of low-profile antennas that use novel elements and take advantage of new concepts in antenna implementation, including metamaterials. Typically formed by constructing lattices of simple elements, metamaterials possess electromagnetic properties not found in naturally occurring materials, and show great promise in a number of low-profile antenna implementations. Introductory chapters define various natural and metamaterial-based antennas and provide the fundamentals of writing computer programs based on the method of moments (MoM) and the finite-difference time-domain method (FDTDM). Chapters then discuss low-profile natural antennas classified into base station antennas, mobile card antennas, beam-forming antennas, and satellite-satellite and earth-satellite communications antennas. Final chapters look at various properties of low-profile metamaterial-based ant nnas, revealing the strengths and limitations of the metamaterial-based straight line antenna (metaline antenna), m...

  2. A Pattern Reconfigurable Antenna Array with Five Printed Monopoles%五元印刷单极子方向图可重构阵列天线

    Institute of Scientific and Technical Information of China (English)

    郑如萍; 施展; 瞿颜; 郭陈江; 丁君

    2013-01-01

    设计制作了一种用于无线通信移动终端的方向图可重构阵列天线.该阵列天线由一个激励单极子和四个长度可调的寄生印刷单极子组成,可工作于两种模式,阵列波束在方位面内有八种不同的指向.通过控制PIN开关的状态,寄生单元可以在引向器和反射器之间切换状态,方向图的主瓣指向开关断开的阵元方向.阵列天线方向图可以以45°步长覆盖方位面,工作频带覆盖WiMAX (3.40-3.69GHz)频段,辐射增益大于6dBi.在两种模式中各选取了一个指向状态,对其回波损耗和方向图进行了实测,实测结果与仿真结果吻合较好.%A radiation pattern reconfigurable antenna array for wireless communication is designed.The antenna array is composed of a feeding monopole and four length-switchable parasitic monopoles.The proposed antenna provides two modes with eight cases.Directive and reflective roles for the paras' tic elements can be changed by controlling the switches at them,the patterns' main lobes point towards the direction where the switches states are off.Thus,the radiation pattern can be rotated every 45° to cover the azimuth plane.The impedance bandwidth can cover the WiMAX(3.40-3.69GHz) band with gain over 6 dBi.Measured return losses and radiation patterns of both modes show good agreement with simulated ones.

  3. Himalayan glaciers: understanding contrasting patterns of glacier behavior using multi-temporal satellite imagery

    Science.gov (United States)

    Racoviteanu, A.

    2014-12-01

    High rates of glacier retreat for the last decades are often reported, and believed to be induced by 20th century climate changes. However, regional glacier fluctuations are complex, and depend on a combination of climate and local topography. Furthermore, in ares such as the Hindu-Kush Himalaya, there are concerns about warming, decreasing monsoon precipitation and their impact on local glacier regimes. Currently, the challenge is in understanding the magnitude of feedbacks between large-scale climate forcing and small-scale glacier behavior. Spatio-temporal patterns of glacier distribution are still llimited in some areas of the high Hindu-Kush Himalaya, but multi-temporal satellite imagery has helped fill spatial and temporal gaps in regional glacier parameters in the last decade. Here I present a synopsis of the behavior of glaciers across the Himalaya, following a west to east gradient. In particular, I focus on spatial patterns of glacier parameters in the eastern Himalaya, which I investigate at multi-spatial scales using remote sensing data from declassified Corona, ASTER, Landsat ETM+, Quickbird and Worldview2 sensors. I also present the use of high-resolution imagery, including texture and thermal analysis for mapping glacier features at small scale, which are particularly useful in understanding surface trends of debris-covered glaciers, which are prevalent in the Himalaya. I compare and contrast spatial patterns of glacier area and élévation changes in the monsoon-influenced eastern Himalaya (the Everest region in the Nepal Himalaya and Sikkim in the Indian Himalaya) with other observations from the dry western Indian Himalaya (Ladakh and Lahul-Spiti), both field measurements and remote sensing-based. In the eastern Himalaya, results point to glacier area change of -0.24 % ± 0.08% per year from the 1960's to the 2006's, with a higher rate of retreat in the last decade (-0.43% /yr). Debris-covered glacier tongues show thinning trends of -30.8 m± 39 m

  4. Dual-Antenna Microwave Reception Without Switching

    Science.gov (United States)

    Hartop, Robert W.

    1994-01-01

    Receiver remains connected to both antennas, transmitter switched to connect it to one or other. Combination of hybrid junction, circulators, and filter provides simultaneous reception paths from both antennas without significantly altering radiation patterns of antennas. Communication system considered for use in spacecraft and in which mechanical switch permitted on downlink but not on uplink. Applicable to terrestrial microwave communication stations subject to dual-antenna requirements.

  5. Rectangular dielectric resonator antennas theory and design

    CERN Document Server

    Yaduvanshi, Rajveer S

    2016-01-01

    This book covers resonating modes inside device and gives insights into antenna design, impedance and radiation patterns. It discusses how higher-order modes generation and control impact bandwidth and antenna gain. The text covers new approaches in antenna design by investigation hybrid modes, H_Z and E_Z fields available simultaneously, and analysis and modelling on modes with practical applications in antenna design. The book will be prove useful to students, researchers and professionals alike.

  6. Potential earthquake precursory pattern from space: The 2015 Nepal event as seen by magnetic Swarm satellites

    Science.gov (United States)

    De Santis, A.; Balasis, G.; Pavón-Carrasco, F. J.; Cianchini, G.; Mandea, M.

    2017-03-01

    A large earthquake of 7.8 magnitude occurred on 25 April 2015, 06:26 UTC, with the epicenter in Nepal. Here, taking advantage of measurements provided by the Swarm magnetic satellites, we investigate the possibility to detect some series of pre-earthquake magnetic anomalous signals, likely due to a lithosphere-atmosphere-ionosphere coupling, that can be a potential earthquake precursory pattern. Different techniques have been applied to Swarm data available during two months around earthquake occurrence. From the detected magnetic anomalies series (during night and magnetically quiet times or with an automatic detection algorithm), we show that the cumulative number of anomalies follows the same typical power-law behavior of a critical system approaching its critical time, and hence recovers as the typical recovery phase after a large event. The similarity of this behavior with the one obtained from seismic data analysis and the application of the analyses also to another period without significant seismicity do support a lithospheric-linked origin of the observed magnetic anomalies. We suggest that they might be connected to the preparation phase of the Nepal earthquake.

  7. A Minimized MIMO-UWB Antenna with High Isolation and Triple Band-Notched Functions

    Science.gov (United States)

    Kong, Yuanyuan; Li, Yingsong; Yu, Kai

    2016-11-01

    A compact high isolation MIMO-UWB antenna with triple frequency rejection bands is proposed for UWB communication applications. The proposed MIMO-UWB antenna consists of two identical UWB antennas and each antenna element has a semicircle ring shaped radiation patch fed by a bend microstrip feeding line for covering the UWB band, which operates from 2.85 GHz to 11.79 GHz with an impedance bandwidth of 122.1 %. By etching a L-shaped slot on the ground plane, and embedding an "anchor" shaped stub into the patch and integrating an open ring under the semicircle shaped radiation patch, three notch bands are realized to suppress WiMAX (3.3-3.6 GHz), WLAN(5.725-5.825 GHz) and uplink of X-band satellite (7.9-8.4 GHz) signals. The high isolation with S21<-20 dB in most UWB band is obtained by adding a protruded decoupling structure. The design procedure of the MIMO-UWB antenna is given in detail. The proposed MIMO-UWB antenna is simulated, fabricated and measured. Experimental results demonstrate that the proposed MIMO-UWB antenna has a stable gain, good impedance match, high isolation, low envelope correlation coefficient and good radiation pattern at the UWB operating band and it can provide three designated notch bands.

  8. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L., E-mail: stenzel@physics.ucla.edu; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2015-07-15

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B{sub 0}. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B{sub 0}. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B{sub 0} has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental

  9. 具有方向图可重构特性的小型化天线设计%Design of compact antenna with reconfigurable lobe patterns

    Institute of Scientific and Technical Information of China (English)

    陈彬; 许伟民; 王小军

    2016-01-01

    设计了一款具有方向图可切换特性的新型平面圆形可重构天线。该天线制作于介电常数为4.4的 RR-4介质板上,半径为60 mm,在x-o-y 平面上紧凑对称,具有低剖面、低成本、小型化的优点。天线可用阻抗带宽为2.36~2.51 GHz,可以适用于 Wibro,Bluetooth和 WLAN系统。通过改变不同辐射单元与馈电微带的连接关系,天线可在6个方向上实现波束可重构。若结合快速切换开关系统,天线可在x-o-y 平面上完成方向图电扫描。同时,测量和仿真结果具有很好一致性。%A novel planar circular reconfigurable antenna with six switchable lobe patterns is proposed.The antenna was fabricated on a FR-4 epoxy substrate with radius of 60 mm and relative dielectric constant of 4.4,and has a compact structure located symmetrically in x-o-y plane.The proposed antenna is of low profile,low cost and small volume,and has an available impedance bandwidth of 2.35~2.51 GHz,which can be applied in the systems of Wibro, Bluetooth,ZigBee and wireless local area networks (WLAN).By changing the connections between the radiators and feed,six reconfigurable lobe patterns are achieved.Combining rapid switchable control system of switches,the patterns can be scanned in x-o-y plane.Meanwhile,a good agreement between measured and expected results is obtained.

  10. A plasmonic dipole optical antenna coupled quantum dot infrared photodetector

    Science.gov (United States)

    Mojaverian, Neda; Gu, Guiru; Lu, Xuejun

    2015-12-01

    In this paper, we report a full-wavelength plasmonic dipole optical antenna coupled quantum dot infrared photodetector (QDIP). The plasmonic dipole optical antenna can effectively modify the EM wave distribution and convert free-space propagation infrared light to localized surface plasmonic resonance (SPR) within the nanometer (nm) gap region of the full-wavelength dipole antenna. The plasmonic dipole optical antenna coupled QDIP shows incident-angle-dependent photocurrent enhancement. The angular dependence follows the far-field pattern of a full-wavelength dipole antenna. The directivity of the plasmonic dipole optical antenna is measured to be 1.8 dB, which agrees well with the antenna simulation. To our best knowledge, this is the first report of the antenna far-field and directivity measurement. The agreement of the detection pattern and the directivity with antenna theory confirms functions of an optical antenna are similar to that of a RF antenna.

  11. Telecommunications Antennas for the Juno Mission to Jupiter

    Science.gov (United States)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  12. Telecommunications Antennas for the Juno Mission to Jupiter

    Science.gov (United States)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  13. 47 CFR 25.205 - Minimum angle of antenna elevation.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Minimum angle of antenna elevation. 25.205... SATELLITE COMMUNICATIONS Technical Standards § 25.205 Minimum angle of antenna elevation. (a) Earth station antennas shall not normally be authorized for transmission at angles less than 5° measured from the...

  14. Satellite image eavesdropping: a multidisciplinary science education project

    Energy Technology Data Exchange (ETDEWEB)

    Friedt, Jean-Michel [Association Projet Aurore, UFR-ST La Bouloie, 16, route de Gray, 25030 Besancon Cedex (France)

    2005-11-01

    Amateur reception of satellite images gathers a wide number of concepts and technologies which makes it attractive as an educational tool. We here introduce the reception of images emitted from NOAA series low-altitude Earth-orbiting satellites. We tackle various issues including the identification and prediction of the pass time of visible satellites, the building of the radio-frequency receiver and antenna after modelling their radiation pattern, and then the demodulation of the resulting audio signal for finally displaying an image of the Earth as seen from space.

  15. Hyperbolic thermal antenna

    CERN Document Server

    Barbillon, Grégory; Biehs, Svend-Age; Ben-Abdallah, Philippe

    2016-01-01

    A thermal antenna is an electromagnetic source which emits in its surrounding, a spatially coherent field in the infrared frequency range. Usually, its emission pattern changes with the wavelength so that the heat flux it radiates is weakly directive. Here, we show that a class of hyperbolic materials, possesses a Brewster angle which is weakly dependent on the wavelength, so that they can radiate like a true thermal antenna with a highly directional heat flux. The realization of these sources could open a new avenue in the field of thermal management in far-field regime.

  16. The use of satellite data for monitoring temporal and spatial patterns of fire: a comprehensive review

    Science.gov (United States)

    Lasaponara, R.

    2009-04-01

    fire regimes from Earth observation data Global Change Biology vo. 14. doi: 10.1111/j.1365-2486.2008.01585.x 1-15, Chuvieco E., P. Englefield, Alexander P. Trishchenko, Yi Luo Generation of long time series of burn area maps of the boreal forest from NOAA-AVHRR composite data. Remote Sensing of Environment, Volume 112, Issue 5, 15 May 2008, Pages 2381-2396 Chuvieco Emilio 2006, Remote Sensing of Forest Fires: Current limitations and future prospects in Observing Land from Space: Science, Customers and Technology, Advances in Global Change Research Vol. 4 pp 47-51 De Santis A., E. Chuvieco Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models, Remote Sensing of Environment, Volume 108, Issue 4, 29 June 2007, Pages 422-435. De Santis A., E. Chuvieco, Patrick J. Vaughan, Short-term assessment of burn severity using the inversion of PROSPECT and GeoSail models, Remote Sensing of Environment, Volume 113, Issue 1, 15 January 2009, Pages 126-136 García M., E. Chuvieco, H. Nieto, I. Aguado Combining AVHRR and meteorological data for estimating live fuel moisture content Remote Sensing of Environment, Volume 112, Issue 9, 15 September 2008, Pages 3618-3627 Ichoku C., L. Giglio, M. J. Wooster, L. A. Remer Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2950-2962. Lasaponara R. and Lanorte, On the capability of satellite VHR QuickBird data for fuel type characterization in fragmented landscape Ecological Modelling Volume 204, Issues 1-2, 24 May 2007, Pages 79-84 Lasaponara R., A. Lanorte, S. Pignatti,2006 Multiscale fuel type mapping in fragmented ecosystems: preliminary results from Hyperspectral MIVIS and Multispectral Landsat TM data, Int. J. Remote Sens., vol. 27 (3) pp. 587-593. Lasaponara R., V. Cuomo, M. F. Macchiato, and T. Simoniello, 2003 .A self-adaptive algorithm based on AVHRR multitemporal

  17. Improved Low-Profile Helical Antenna Design for INMARSAT Applications

    Directory of Open Access Journals (Sweden)

    Shiqiang Fu

    2012-01-01

    Full Text Available A new low-profile variable pitch angle cylindrical helical antenna employing a copper strip as impedance transformer is proposed in this paper. Under the circumstance of a limited antenna height, the circular polarization performance of the antenna has been enhanced by changing the pitch angle and the input impedance matching has been improved by adjusting the copper strip match stub. The design method of the proposed antenna is given. The optimal antenna structure for INMARSAT application has been fabricated and measured. The measured results show that in the whole maritime satellite communication work band the VSWR is less than 1.2, its antenna gain is higher than 9 dBi, and the axial ratio is lower than 2.5 dB. The experimental results have a good agreement with the simulations. The proposed antenna is compact and easy tuning. It provides a promising antenna element for maritime satellite communication applications.

  18. Metapopulation theory identifies biogeographical patterns among core and satellite marine bacteria scaling from tens to thousands of kilometers

    DEFF Research Database (Denmark)

    Lindh, Markus V.; Sjöstedt, Johanna; Ekstam, Börje

    2017-01-01

    with a satellite mode of rare endemic populations and a core mode of abundant cosmopolitan populations (e.g. Synechococcus, SAR11 and SAR86 clade members). Temporal changes in population distributions supported several theoretical frameworks. Still, bimodality was found among bacterioplankton communities across......Metapopulation theory developed in terrestrial ecology provides applicable frameworks for interpreting the role of local and regional processes in shaping species distribution patterns. Yet, empirical testing of metapopulation models on microbial communities is essentially lacking. We determined...

  19. Multifrequency Printed Antennas Loaded with Metamaterial Particles

    Directory of Open Access Journals (Sweden)

    D. Segovia-Vargas

    2009-06-01

    Full Text Available This paper provides a review of printed antennas loaded with metamaterial particles. This novel technique allows developing printed antennas with interesting features such as multifrequency (simultaneous operation over two or more frequency bands and multifunctionality (e. g. radiation pattern diversity. Moreover, compactness is also achieved and the main advantages of conventional printed antennas (light weight, low profile, low cost ... are maintained. Different types of metamaterial-loaded printed antennas are reviewed: printed dipoles and patch antennas. Several prototypes are designed, manufactured and measured showing good results. Furthermore, simple but accurate equivalent models are proposed. These models allow an easy and quick design of metamaterial-loaded printed antennas. Finally, two interesting applications based on the proposed antennas are reviewed: the patch antennas are used as radiating elements of emerging active RFID systems in the microwave band and the metamaterial-loaded printed dipoles are employed to increase the performance of log-periodic arrays.

  20. 低轨卫星系统星载多波束天线点波束设计及优化%Spot -beam Design and Optimization of On- board Multi -beam Antenna for LEO Satellite Systems

    Institute of Scientific and Technical Information of China (English)

    张旭; 吴潜

    2009-01-01

    星载多波束天线具有广阔的应用前景,尤其适合应用于低轨卫星系统.讨论了星载多波束天线点波束设计的方法,为平衡点波束各覆盖区域的接收增益,借鉴最优化理论思想,提出了一种点波束设计的方法,以全球星系统为例进行分析,结果表明该方法较典型的点波束设计方法具有更高的满意度.%Muhi - beam antenna is widely used in low earth orbit(LEO) satellite systems. Spot - beam de-sign of on - board multi - beam antenna is discussed, an optimized method adopting optimization theory for spot -beam design is proposed to balance the receiving gain of each spot -beam covering area, analysis of the optimized method for Globalstar system is given, and higher satisfaction of the proposed method is proved.

  1. Precise Calibration of a GNSS Antenna Array for Adaptive Beamforming Applications

    Directory of Open Access Journals (Sweden)

    Saeed Daneshmand

    2014-05-01

    Full Text Available The use of global navigation satellite system (GNSS antenna arrays for applications such as interference counter-measure, attitude determination and signal-to-noise ratio (SNR enhancement is attracting significant attention. However, precise antenna array calibration remains a major challenge. This paper proposes a new method for calibrating a GNSS antenna array using live signals and an inertial measurement unit (IMU. Moreover, a second method that employs the calibration results for the estimation of steering vectors is also proposed. These two methods are applied to the receiver in two modes, namely calibration and operation. In the calibration mode, a two-stage optimization for precise calibration is used; in the first stage, constant uncertainties are estimated while in the second stage, the dependency of each antenna element gain and phase patterns to the received signal direction of arrival (DOA is considered for refined calibration. In the operation mode, a low-complexity iterative and fast-converging method is applied to estimate the satellite signal steering vectors using the calibration results. This makes the technique suitable for real-time applications employing a precisely calibrated antenna array. The proposed calibration method is applied to GPS signals to verify its applicability and assess its performance. Furthermore, the data set is used to evaluate the proposed iterative method in the receiver operation mode for two different applications, namely attitude determination and SNR enhancement.

  2. Precise calibration of a GNSS antenna array for adaptive beamforming applications.

    Science.gov (United States)

    Daneshmand, Saeed; Sokhandan, Negin; Zaeri-Amirani, Mohammad; Lachapelle, Gérard

    2014-05-30

    The use of global navigation satellite system (GNSS) antenna arrays for applications such as interference counter-measure, attitude determination and signal-to-noise ratio (SNR) enhancement is attracting significant attention. However, precise antenna array calibration remains a major challenge. This paper proposes a new method for calibrating a GNSS antenna array using live signals and an inertial measurement unit (IMU). Moreover, a second method that employs the calibration results for the estimation of steering vectors is also proposed. These two methods are applied to the receiver in two modes, namely calibration and operation. In the calibration mode, a two-stage optimization for precise calibration is used; in the first stage, constant uncertainties are estimated while in the second stage, the dependency of each antenna element gain and phase patterns to the received signal direction of arrival (DOA) is considered for refined calibration. In the operation mode, a low-complexity iterative and fast-converging method is applied to estimate the satellite signal steering vectors using the calibration results. This makes the technique suitable for real-time applications employing a precisely calibrated antenna array. The proposed calibration method is applied to GPS signals to verify its applicability and assess its performance. Furthermore, the data set is used to evaluate the proposed iterative method in the receiver operation mode for two different applications, namely attitude determination and SNR enhancement.

  3. Analysis of long-term precipitation pattern over Antarctica derived from satellite-borne radar

    Science.gov (United States)

    Milani, L.; Porcù, F.; Casella, D.; Dietrich, S.; Panegrossi, G.; Petracca, M.; Sanò, P.

    2015-01-01

    Mass accumulation is a key geophysical parameter in understanding the Antarctic climate and its role in the global system. The local mass variation is driven by a number of different mechanisms: the deposition of snow and ice crystals on the surface from the atmosphere is generally modified by strong surface winds and variations in temperature and humidity at the ground, making it difficult to measure directly the accumulation by a sparse network of ground based instruments. Moreover, the low cloud total water/ice content and the varying radiative properties of the ground pose problems in the retrieval of precipitation from passive space-borne sensors at all frequencies. Finally, numerical models, despite their high spatial and temporal resolution, show discordant results and are difficult to be validated using ground-based measurements. A significant improvement in the knowledge of the atmospheric contribution to the mass balance over Antarctica is possible by using active space-borne instruments, such as the Cloud Profiling Radar (CPR) on board the low earth orbit CloudSat satellite, launched in 2006 and still operating. The radar measures the vertical profile of reflectivity at 94 GHz (sensitive to small ice particles) providing narrow vertical cross-sections of clouds along the satellite track. The aim of this work is to show that, after accounting for the characteristics of precipitation and the effect of surface on reflectivity in Antarctica, the CPR can retrieve snowfall rates on a single event temporal scale. Furthermore, the CPR, despite its limited temporal and spatial sampling capabilities, also effectively observes the annual snowfall cycle in this region. Two years of CloudSat data over Antarctica are analyzed and converted in water equivalent snowfall rate. Two different approaches for precipitation estimates are considered in this work. The results are analyzed in terms of annual and monthly averages, as well as in terms of instantaneous values. The

  4. Analysis of long-term precipitation pattern over Antarctica derived from satellite-borne radar

    Directory of Open Access Journals (Sweden)

    L. Milani

    2015-01-01

    Full Text Available Mass accumulation is a key geophysical parameter in understanding the Antarctic climate and its role in the global system. The local mass variation is driven by a number of different mechanisms: the deposition of snow and ice crystals on the surface from the atmosphere is generally modified by strong surface winds and variations in temperature and humidity at the ground, making it difficult to measure directly the accumulation by a sparse network of ground based instruments. Moreover, the low cloud total water/ice content and the varying radiative properties of the ground pose problems in the retrieval of precipitation from passive space-borne sensors at all frequencies. Finally, numerical models, despite their high spatial and temporal resolution, show discordant results and are difficult to be validated using ground-based measurements. A significant improvement in the knowledge of the atmospheric contribution to the mass balance over Antarctica is possible by using active space-borne instruments, such as the Cloud Profiling Radar (CPR on board the low earth orbit CloudSat satellite, launched in 2006 and still operating. The radar measures the vertical profile of reflectivity at 94 GHz (sensitive to small ice particles providing narrow vertical cross-sections of clouds along the satellite track. The aim of this work is to show that, after accounting for the characteristics of precipitation and the effect of surface on reflectivity in Antarctica, the CPR can retrieve snowfall rates on a single event temporal scale. Furthermore, the CPR, despite its limited temporal and spatial sampling capabilities, also effectively observes the annual snowfall cycle in this region. Two years of CloudSat data over Antarctica are analyzed and converted in water equivalent snowfall rate. Two different approaches for precipitation estimates are considered in this work. The results are analyzed in terms of annual and monthly averages, as well as in terms of

  5. Electrical performance verification methodology for large reflector antennas: based on the P-band SAR payload of the ESA BIOMASS candidate mission

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Kim, Oleksiy S.; Nielsen, Jeppe Majlund;

    2013-01-01

    In this paper, an electrical performance verification methodology for large reflector antennas is proposed. The verification methodology was developed for the BIOMASS P-band (435 MHz) synthetic aperture radar (SAR), but can be applied to other large deployable or fixed reflector antennas for which...... the verification of the entire antenna or payload is impossible. The two-step methodology is based on accurate measurement of the feed structure characteristics, such as complex radiation pattern and radiation efficiency, with an appropriate Measurement technique, and then accurate calculation of the radiation...... pattern and gain of the entire antenna including support and satellite structure with an appropriate computational software. A preliminary investigation of the proposed methodology was carried out by performing extensive simulations of different verification approaches. The experimental validation...

  6. On the Use of Robotics Formalism in the Description and Modeling of Antenna Range Positioners

    Science.gov (United States)

    Beckon, R. J.

    1998-01-01

    A typical positioner used for positioning an antenna under test on an antenna range has two or three rotation axes arranged in such a manner as to facilitate the taking of data along certain paths through the antenna pattern.

  7. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  8. Planar Millimeter-Wave Antennas: A Comparative Study

    Directory of Open Access Journals (Sweden)

    K. Pitra

    2011-04-01

    Full Text Available The paper describes the design and the experimental verification of three types of wideband antennas. Attention is turned to the bow-tie antenna, the Vivaldi antenna and the spiral antenna designed for the operation at millimeter waves. Bandwidth, input impedance, gain, and directivity pattern are the investigated parameters. Antennas are compared considering computer simulations in CST Microwave Studio and measured data.

  9. Diamond dipole active antenna

    OpenAIRE

    Bubnov, Igor N.; Falkovych, I. S.; Gridin, A. A.; Stanislavsky, A. A.; Reznik, A. P.

    2015-01-01

    Advantages of the diamond dipole antenna as an active antenna are presented. Such an antenna is like an inverted bow-tie antenna, but the former has some advantages over the ordinary bow-tie antenna. It is shown that the diamond dipole antenna may be an effective element of a new antenna array for low-frequency radio astronomy as well as a communication antenna.

  10. Modeling C-Band Co-Channel Interference From AeroMACS Omni-Directional Antennas to Mobile Satellite Service Feeder Uplinks

    Science.gov (United States)

    Wilson, Jeffrey D.

    2011-01-01

    A new C-band (5091 to 5150 MHz) airport communications system designated as Aeronautical Mobile Airport Communications System (AeroMACS) is being planned under the Federal Aviation Administration s NextGen program. An interference analysis software program, Visualyse Professional (Transfinite Systems Ltd), is being utilized to provide guidelines on limitations for AeroMACS transmitters to avoid interference with other systems. A scenario consisting of a single omni-directional transmitting antenna at each of the major contiguous United States airports is modeled and the steps required to build the model are reported. The results are shown to agree very well with a previous study.

  11. Microstrip and printed antenna design

    CERN Document Server

    Bancroft, Randy

    2009-01-01

    The approach in this book is historical and practical. It covers abasic designsa in more detail than other microstrip antenna books that tend to skip important electrical properties and implementation aspects of these types of antennas. Examples include: quarter-wave patch, quarter by quarter patch, detailed design method for rectangular circularly polarized patch, the use of the TM11 (linear and broadside CP), TM21 (monopole CP pattern) and TM02 (monopole linear) circular patch modes in designs, dual-band antenna designs which allow for independent dual-band frequencies. Limits on broadband m

  12. Concept and analytical basis for revistas - A fast, flexible computer/graphic system for generating periodic satellite coverage patterns

    Science.gov (United States)

    King, J. C.

    1976-01-01

    The generation of satellite coverage patterns is facilitated by three basic strategies: use of a simplified physical model, permitting rapid closed-form calculation; separation of earth rotation and nodal precession from initial geometric analyses; and use of symmetries to construct traces of indefinite length by repetitive transposition of basic one-quadrant elements. The complete coverage patterns generated consist of a basic nadir trace plus a number of associated off-nadir traces, one for each sensor swath edge to be delineated. Each trace is generated by transposing one or two of the basic quadrant elements into a circle on a nonrotating earth model sphere, after which the circle is expanded into the actual 'helical' pattern by adding rotational displacements to the longitude coordinates. The procedure adapts to the important periodic coverage cases by direct insertion of the characteristic integers N and R (days and orbital revolutions, respectively, per coverage period).

  13. Concept and analytical basis for revistas - A fast, flexible computer/graphic system for generating periodic satellite coverage patterns

    Science.gov (United States)

    King, J. C.

    1976-01-01

    The generation of satellite coverage patterns is facilitated by three basic strategies: use of a simplified physical model, permitting rapid closed-form calculation; separation of earth rotation and nodal precession from initial geometric analyses; and use of symmetries to construct traces of indefinite length by repetitive transposition of basic one-quadrant elements. The complete coverage patterns generated consist of a basic nadir trace plus a number of associated off-nadir traces, one for each sensor swath edge to be delineated. Each trace is generated by transposing one or two of the basic quadrant elements into a circle on a nonrotating earth model sphere, after which the circle is expanded into the actual 'helical' pattern by adding rotational displacements to the longitude coordinates. The procedure adapts to the important periodic coverage cases by direct insertion of the characteristic integers N and R (days and orbital revolutions, respectively, per coverage period).

  14. Feedforward attitude control for a TDRS with mobile antennas

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, feedforward attitude control law for a Tracking and Data Relay Satellite (TDRS) with mobile antennas is proposed. To track or point the target spacecraft with median/law orbit, the large mobile antennas have to move in a wide range. The movement of such mobile antennas disturbs the satellite attitude consequently. Conventionally, the main body of the satellite and the mobile antennas are controlled independently.The proposed controller first estimates the angular momentum which the mobile antennas will produce based on the momentum conservation equation. Next, it computes the desired velocity of reaction wheels to compensate the disturbance due to the antenna motion. It then adds the error of the wheels' velocity between a desired one and a current value as a feedforward signal to the control system. The proposed controller is demonstrated using a mathematical simulation, of which these results coincide well with analytical results.

  15. Highly Enhanced Risk Management Emergency Satellite

    DEFF Research Database (Denmark)

    Dalmeir, Michael; Gataullin, Yunir; Indrajit, Agung

    HERMES (Highly Enhanced Risk Management Emergency Satellite) is potential European satellite mission for global flood management, being implemented by Technical University Munich and European Space Agency. With its main instrument - a reliable and precise Synthetic Aperture Radar (SAR) antenna...

  16. An optimal antenna motion generation using shortest path planning

    Science.gov (United States)

    Jeon, Moon-Jin; Kwon, Dong-Soo

    2017-03-01

    This paper considers an angular velocity minimization method for a satellite antenna. For high speed transmission of science data, a directional antenna with a two-axis gimbal is generally used. When a satellite passes over a ground station while pointing directly at it, the angular velocity of the satellite antenna can increase rapidly due to the gimbal kinematics. The high angular velocity could exceed the dynamic constraint of the antenna. Furthermore, micro vibration induced by high speed antenna rotation during an imaging operation might cause jitter, which can degrade the satellite image quality. To solve this problem, a minimum-velocity antenna motion generation method is proposed. Boundaries of the azimuth and elevation angles of the antenna within an effective beam width are derived using antenna geometry. A minimum-velocity azimuth profile and elevation profile within the boundaries are generated sequentially using a shortest path planning method. For fast and correct generation of the shortest path, a new algorithm called a string nailing algorithm is proposed. A numerical simulation shows that the antenna profile generated by the shortest path planning has a much lower angular velocity than the profiles generated by previous methods. The proposed string nailing algorithm also spends much less computation time than a search-based shortest path planning algorithm to generate almost the same antenna profiles.

  17. Ku Band Hemispherical Fully Electronic Antenna for Aircraft in Flight Entertainment

    Directory of Open Access Journals (Sweden)

    Alfredo Catalani

    2009-01-01

    Full Text Available The results obtained in the frame of the ESA activity “Advanced Antenna Concepts For Aircraft In Flight Entertainment” are presented. The aim of the activity consists in designing an active antenna able to guarantee the Ku band link between an aircraft and a geostationary satellite in order to provide in flight entertainment services. The transmit-receive antenna generates a single narrow beam to be steered electronically in a half sphere remaining compliant with respect to stringent requirements in terms of pattern shape, polarization alignment, EIRP, G/T, and using customized electronic devices. At the same time, the proposed solution should be competitive in terms of cost and complexity.

  18. Satellite-Derived Photic Depth on the Great Barrier Reef: Spatio-Temporal Patterns of Water Clarity

    Directory of Open Access Journals (Sweden)

    Scarla Weeks

    2012-11-01

    Full Text Available Detecting changes to the transparency of the water column is critical for understanding the responses of marine organisms, such as corals, to light availability. Long-term patterns in water transparency determine geographical and depth distributions, while acute reductions cause short-term stress, potentially mortality and may increase the organisms’ vulnerability to other environmental stressors. Here, we investigated the optimal, operational algorithm for light attenuation through the water column across the scale of the Great Barrier Reef (GBR, Australia. We implemented and tested a quasi-analytical algorithm to determine the photic depth in GBR waters and matched regional Secchi depth (ZSD data to MODIS-Aqua (2002–2010 and SeaWiFS (1997–2010 satellite data. The results of the in situ ZSD/satellite data matchup showed a simple bias offset between the in situ and satellite retrievals. Using a Type II linear regression of log-transformed satellite and in situ data, we estimated ZSD and implemented the validated ZSD algorithm to generate a decadal satellite time series (2002–2012 for the GBR. Water clarity varied significantly in space and time. Seasonal effects were distinct, with lower values during the austral summer, most likely due to river runoff and increased vertical mixing, and a decline in water clarity between 2008–2012, reflecting a prevailing La Niña weather pattern. The decline in water clarity was most pronounced in the inshore area, where a significant decrease in mean inner shelf ZSD of 2.1 m (from 8.3 m to 6.2 m occurred over the decade. Empirical Orthogonal Function Analysis determined the dominance of Mode 1 (51.3%, with the greatest variation in water clarity along the mid-shelf, reflecting the strong influence of oceanic intrusions on the spatio-temporal patterns of water clarity. The newly developed photic depth product has many potential applications for the GBR from water quality monitoring to analyses of

  19. Integrated broadband bowtie antenna on transparent substrate

    CERN Document Server

    Zhang, Xingyu; Subbaraman, Harish; Zhan, Qiwen; Pan, Zeyu; Chung, Chi-jui; Yan, Hai; Chen, Ray T

    2015-01-01

    The bowtie antenna is a topic of growing interest in recent years. In this paper, we design, fabricate, and characterize a modified gold bowtie antenna integrated on a transparent glass substrate. We numerically investigate the antenna characteristics, specifically its resonant frequency and enhancement factor. We simulate the dependence of resonance frequency on bowtie geometry, and verify the simulation results through experimental investigation, by fabricating different sets of bowtie antennas on glass substrates utilizing CMOS compatible processes and measuring their resonance frequencies. Our designed bowtie antenna provides a strong broadband electric field enhancement in its feed gap. The far-field radiation pattern of the bowtie antenna is measured, and it shows dipole-like characteristics with large beam width. Such a broadband antenna will be useful for a myriad of applications, ranging from wireless communications to electromagnetic wave detection.

  20. Antenna arrays. Citations from the NTIS data base

    Science.gov (United States)

    Reed, W. E.

    1980-04-01

    A bibliography containing 161 abstracts concerning the use of antenna arrays in the fields of radar, communications, radio astronomy, navigation, electronic countermeasures, and spacecraft is presented. Topics include design, antenna radiation patterns, mathematical models, and performance.

  1. Shaped Beam Pattern Synthesis of Antenna Arrays Using Composite Differential Evolution with Eigenvector-Based Crossover Operator

    Directory of Open Access Journals (Sweden)

    Sotirios K. Goudos

    2015-01-01

    Full Text Available This paper addresses the problem of designing shaped beam patterns with arbitrary arrays subject to constraints. The constraints could include the sidelobe level suppression in specified angular intervals, the mainlobe halfpower beamwidth, and the predefined number of elements. In this paper, we propose a new Differential Evolution algorithm, which combines Composite DE with an eigenvector-based crossover operator (CODE-EIG. This operator utilizes eigenvectors of covariance matrix of individual solutions, which makes the crossover rotationally invariant. We apply this novel design method to shaped beam pattern synthesis for linear and conformal arrays. We compare this algorithm with other popular algorithms and DE variants. The results show CODE-EIG outperforms the other DE algorithms in terms of statistical results and convergence speed.

  2. Coupling between minimum scattering antennas

    DEFF Research Database (Denmark)

    Andersen, J.; Lessow, H; Schjær-Jacobsen, Hans

    1974-01-01

    Coupling between minimum scattering antennas (MSA's) is investigated by the coupling theory developed by Wasylkiwskyj and Kahn. Only rotationally symmetric power patterns are considered, and graphs of relative mutual impedance are presented as a function of distance and pattern parameters. Crossed...

  3. Theoretical analysis of a parabolic torus reflector antenna with multibeam

    Institute of Scientific and Technical Information of China (English)

    杜彪; 杨可忠; 钟顺时

    1995-01-01

    The parametric equations and the formulas of unit normal vector and surface element for aparabolic torus reflector antenna are derived and the mechanism of producing multibeam is proposed, Based on physical optics, the radiation pattern formulas for the antenna are given, with which the effects of geometric parameters on the antenna are studied. The good agreement between the calculated patterns and the measured ones shows that the theory is helpful for designing parabolic torus antennas.

  4. Researches on Reconfigurable Antenna in CEMLAB at UESTC

    Institute of Scientific and Technical Information of China (English)

    WANG Bing-zhong; XIAO Shao-qiu; ZHANG Yong; YANG Xue-song; WU Wei-xia

    2006-01-01

    This paper summarizes the achievement and progress in the research on reconfigurable antenna since 2001, in Computational Electromagnetics Laboratory (CEMLAB) at University of Electronic Science and Technology of China (UESTC). Several typical reconfigurable antennas are introduced, which can realize frequency, pattern or frequency-pattern reconfigurability by electrically controlling methods. Some techniques involved in the design and analysis of reconfigurable antennas are reported. At last, the development trend of reconfigurable antenna is predicted in the conclusions.

  5. Broadband pattern reconfigurable planar antenna based on switchable rectangular slots%基于矩形槽切换的宽带平面方向图可重构天线

    Institute of Scientific and Technical Information of China (English)

    孙佳文; 赵凯南; 冯正和

    2011-01-01

    The bandwidth of pattern reconfigurable planar antennas is improved by introducing a rectangular slot in the active clement. A switch controlled rectangular slot is used in the active element using designs from the stagger tuning method. The antenna can be controlled to work in two adjacent frequency bands to broaden the total bandwidth of the planar antenna. The resonant characteristics of this antenna illustrate the bandwidth improvement by introducing switch controlled rectangular slots for the design of a pattern reconfigurable antenna. Tests show that the working frequency ranges from 2.21 GHz to 2.49 GHz and the relative bandwidth is about 11.6% with the return loss less than - 10 dB. The antenna has more bandwidth than antennas using the stagger tuning method due to pattern reconfiguration.%针对阵列天线频带窄的缺点,在参差调谐法的基础上,通过在有源单元上引入开关可控矩形槽的方法,使天线工作在两个相邻的频带,从而达到天线总体带宽的展宽。根据该类型天线单元的谐振特性,研究了开关可控矩形槽展宽频带的原理,并设计了引入矩形槽的平面方向图可重构天线。实验结果表明:该天线可以工作在频率范围为2.21~2.49GHz的频段上,-10dB下的相对带宽约为11.6%,比采用参差调谐法进一步展宽了天线带宽,实现了天线方向图的可重构。

  6. Recent Developments of Reflectarray Antennas in Dual-Reflector Configurations

    Directory of Open Access Journals (Sweden)

    Carolina Tienda

    2012-01-01

    Full Text Available Recent work on dual-reflector antennas involving reflectarrays is reviewed in this paper. Both dual-reflector antenna with a reflectarray subreflector and dual-reflectarrays antennas with flat or parabolic main reflectarray are considered. First, a general analysis technique for these two configurations is described. Second, results for beam scanning and contoured-beam applications in different frequency bands are shown and discussed. The performance and capabilities of these antennas are shown by describing some practical design cases for radar, satellite communications, and direct broadcast satellite (DBS applications.

  7. Quasi-optical slot antenna SIS mixers

    OpenAIRE

    Zmuidzinas, Jonas; LeDuc, H. G.

    1992-01-01

    A quasi-optical SIS mixer designed for efficient radiation coupling is described. The mixer uses a twin-slot antenna which has the advantages of a good beam pattern and a low impedance. The radiation and impedance characteristics of the antenna were obtained from a moment-matched calculation. Tapered superconducting microstrip transmission lines are used to carry the radiation from the slot antennas to the tunnel junction. The effective impedance seen by the tunnel junction is quite low, abou...

  8. Conformal, Transparent Printed Antenna Developed for Communication and Navigation Systems

    Science.gov (United States)

    Lee, Richard Q.; Simons, Rainee N.

    1999-01-01

    Conformal, transparent printed antennas have advantages over conventional antennas in terms of space reuse and aesthetics. Because of their compactness and thin profile, these antennas can be mounted on video displays for efficient integration in communication systems such as palmtop computers, digital telephones, and flat-panel television displays. As an array of multiple elements, the antenna subsystem may save weight by reusing space (via vertical stacking) on photovoltaic arrays or on Earth-facing sensors. Also, the antenna could go unnoticed on automobile windshields or building windows, enabling satellite uplinks and downlinks or other emerging high-frequency communications.

  9. On the pattern of circular antenna array configuration in electronic reconnaissance%电子侦察中圆形天线阵列配置方式仿真分析

    Institute of Scientific and Technical Information of China (English)

    夏添; 谢俊好

    2011-01-01

    To implement two dimensional direction finding of emitters on the ground by antenna array in electronic reconnaissance satellites, the paper studies how to select a suitable circular array to receive multi-octave signal. Theoretically array factors for three circular array models are given. The optimal array parameters for three models are obtained by computer simulation. The comparison of array factor results for multi-octave signal shows that the uniform circular array with one antenna element in the center and odd antenna elements uniformly located in the circle is a rational choice.%针对星载电子侦察阵列天线二维测向的应用背景,研究如何选取合适的圆形天线阵列方式以适应多倍频程信号的接收、处理.通过理论分析,给出了3种圆阵模型的阵因子表达式,并对其分别进行大量的最优搜索和计算.结果表明,带有中心阵元的外层阵元数为奇数的单层均匀圆阵是比较合理的选择.

  10. Diversity Gain through Antenna Blocking

    Directory of Open Access Journals (Sweden)

    V. Dehghanian

    2012-01-01

    Full Text Available As part of the typical usage mode, interaction between a handheld receiver antenna and the operator's RF absorbing body and nearby objects is known to generate variability in antenna radiation characteristics through blocking and pattern changes. It is counterintuitive that random variations in blocking can result in diversity gain of practical applicability. This diversity gain is quantified from a theoretical and experimental perspective. Measurements carried out at 1947.5 MHz verify the theoretical predictions, and a diversity gain of 3.1 dB was measured through antenna blocking and based on the utilized measurement setup. The diversity gain can be exploited to enhance signal detectability of handheld receivers based on a single antenna in indoor multipath environments.

  11. Synthesis of offset dual reflector antennas transforming a given feed illumination pattern into a specified aperture distribution

    Science.gov (United States)

    Mittra, R.; Galindo-Israel, V.; Hyjazie, F.

    1982-01-01

    The problem of transforming a given primary feed pattern into a desired aperture field distribution through two reflections by an offset dual reflector system is investigated using the concepts of geometrical optics. A numerically rigorous solution for the reflector surfaces is developed which realizes an exact aperture phase distribution and an aperture amplitude distribution that is accurate to within an arbitrarily small numerical tolerance. However, this procedure does not always yield a smooth solution, i.e., the reflector surfaces thus realized may not be continuous or their slopes may vary too rapidly. In the event of nonexistence of a numerically rigorous smooth solution, an approximate solution that enforces the smoothness of the reflector surfaces can be obtained. In the approximate solution, only the requirement for the aperture amplitude distribution is relaxed, and the condition on the aperture phase distribution is continued to be satisfied exactly.

  12. Study of LEO-SAT microwave link for broad-band mobile satellite communication system

    Science.gov (United States)

    Fujise, Masayuki; Chujo, Wataru; Chiba, Isamu; Furuhama, Yoji; Kawabata, Kazuaki; Konishi, Yoshihiko

    1993-01-01

    In the field of mobile satellite communications, a system based on low-earth-orbit satellites (LEO-SAT's) such as the Iridium system has been proposed. The LEO-SAT system is able to offer mobile telecommunication services in high-latitude areas. Rain degradation, fading and shadowing are also expected to be decreased when the system is operated at a high elevation angle. Furthermore, the propagation delay generated in the LEO-SAT system is less pronounced than that in the geostationary orbit satellite (GEO-SAT) system and, in voice services, the effect of the delay is almost negligible. We proposed a concept of a broad-band mobile satellite communication system with LEO-SAT's and Optical ISL. In that system, a fixed L-band (1.6/1.5 GHz) multibeam is used to offer narrow band service to the mobile terminals in the entire area covered by a LEO-SAT and steerable Ka-band (30/20 GHz) spot beams are used for the wide band service. In this paper, we present results of a study of LEO-SAT microwave link between a satellite and a mobile terminal for a broad-band mobile satellite communication system. First, the results of link budget calculations are presented and the antennas mounted on satellites are shown. For a future mobile antenna technology, we also show digital beamforming (DBF) techniques. DBF, together with modulation and/or demodulation, is becoming a key technique for mobile antennas with advanced functions such as antenna pattern calibration, correction, and radio interference suppression. In this paper, efficient DBF techniques for transmitting and receiving are presented. Furthermore, an adaptive array antenna system suitable for this LEO-SAT is presented.

  13. In-orbit performance evaluation of multiple-beam antenna on satellites%星载多波束天线在轨性能评估方法

    Institute of Scientific and Technical Information of China (English)

    尹术懿; 何元智; 尹浩

    2012-01-01

    为解决星载多波束天线测试波束数量大、在轨测试成本高、性能评估困难等问题,在合成多波束形成原理基础上,通过分析天线系统中波束成形网络和馈源阵之间的映射关系,提出了一种以馈源阵性能为基础评估天线性能的策略.采用最小二乘估计法,对馈源性能估计中典型波束的数量、组合方式选取与平均估计误差等问题进行了分析,并通过仿真实验得出了典型波束数量、组合方式、平均估计误差三者间的定量关系以及在实际条件下,测试波束数量的选取范围和波束最佳组合方式,为高效地处理在轨测试数据提供了一种低复杂度的分析方法,对实际系统中星载多波束天线在轨测试具有重要意义.%To solve such problems as the high in-orbit testing cost and the difficult evaluation of Multiple-Beam Antenna with large number of beams,an antenna evaluation strategy based on the feed properties was proposed,through the analysis of the beam forming principle of the composite beams and exploration of the relation between the beam forming network and the feed Source Array. By employing the least squares evaluation method,the typical beam selection,combination and average estimation error for the feed properties were analyzed. The simulation results show the quantitative correlation among the typical beam number,combination and the average estimation error,and the selection of the typical test beam number and the optimal test beams sequence in actual conditions. The proposed method can provide an excellent reference value to process the In-Orbit testing data efficiency and reduce the complexity of finding the optimal test beams sequence for a practical system.

  14. Superluminal antenna

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.; Potter, James M.; Romero, William P.; Wang, Zhi-Fu

    2017-03-28

    A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.

  15. Examining the Satellite-Detected Urban Land Use Spatial Patterns Using Multidimensional Fractal Dimension Indices

    Directory of Open Access Journals (Sweden)

    Dongjie Fu

    2013-10-01

    Full Text Available Understanding the spatial patterns of urban land use at both the macro and the micro levels is a central issue in global change studies. Due to the nonlinear features associated with land use spatial patterns, it is currently necessary to provide some distinct analysis methods to analyze them across a range of remote sensing imagery resolutions. The objective of our study is to quantify urban land use patterns from various perspectives using multidimensional fractal methods. Three commonly used fractal dimensions, i.e., the boundary dimension, the radius dimension, and the information entropy dimension, are introduced as the typical indices to examine the complexity, centrality and balance of land use spatial patterns, respectively. Moreover, a new lacunarity dimension for describing the degree of self-organization of urban land use at the macro level is presented. A cloud-free Landsat ETM+ image acquired on 17 September 2010 was used to extract land use information in Wuhan, China. The results show that there are significant linear relationships represented by good statistical fitness related to these four indices. The results indicate that rapid urbanization has substantially affected the urban landscape pattern, and different land use types show different spatial patterns in response. This analysis reveals that multiple fractal/nonfractal indices provides a more comprehensive understanding of the spatial heterogeneity of urban land use spatial patterns than any single fractal dimension index. These findings can help us to gain deeper insight into the complex spatial patterns of urban land use.

  16. UWB planar antenna technology

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent developments of the ultra-wideband(UWB)planar antennas are reviewed,where the progress in UWB plate monopole antennas,UWB printed monopole antennas and the UWB printed slot antennas is introduced and compared.In addition,the UWB printed antennas with the band-notched functions are also presented.

  17. Design and fabrication of miniature antenna based on silicon substrate for wireless communications

    Institute of Scientific and Technical Information of China (English)

    GUO XingLong; JIN Yan; LIU Lei; OUYANG WeiXia; LAI ZongSheng

    2008-01-01

    In this paper, a novel compact CPW-fed slot small antenna was designed and fab-ricated on high-resistivity silicon (HR-Si) by micro-electronics process. The results of simulation are consistent with results of measurement for the antenna. The mode of the antenna is vertical and horizontal bidirectional radiations. The gain of antenna is 2.5 dB, and the resonance frequency approximately is 3 GHz. This fab-rication can be compatible with antenna integration and CMOS process. The pa-rameters of this antenna are for reference radar antenna system of Unmanned Ae-rial Vehicles (UAV), satellite transmission, and communication.

  18. Satellite Microwave Communication Signal Degradation Due To Hall Thruster Plasma Plumes

    Science.gov (United States)

    Wiley, J. C.; Hallock, G. A.; Spencer, E. A.; Meyer, J. W.; Loane, J. T.

    2001-10-01

    We have developed a geometric optics vector ray-tracing code, BeamServer, for analyzing the effects of Hall thruster plasma plumes on satellite microwave communication signals. The possible effects include main beam attenuation and squinting, side lobe degradation, and induced cross-polarization. We report on a study of Hall current thruster (HCT) mounting positions on a realistic satellite configuration and a study with a highly shaped reflector. Results indicate HCT signal degradation can occur and should be considered in the satellite design process. Initial results of antenna pattern perturbations due to low frequency plume oscillations driven by thruster instabilities are also given.

  19. Synthesis of Phased Cylindrical Arc Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Hussein Rammal

    2009-01-01

    Full Text Available This paper describes a new approach to synthesize cylindrical antenna arrays controlled by the phase excitation, to synthesize directive lobe and multilobe patterns with steered zero. The proposed method is based on iterative minimization of a function that incorporates constraints imposed in each direction. An 8-element cylindrical antenna has been simulated and tested for various types of beam configurations.

  20. Fresnel zones for ground-based antennas

    DEFF Research Database (Denmark)

    Andersen, J. Bach

    1964-01-01

    The ordinary Fresnel zone concept is modified to include the influence of finite ground conductivity. This is important for ground-based antennas because the influence on the radiation pattern of irregularities near the antenna is determined by the amplitude and phase of the groundwave. A new...

  1. Wideband Monopole Antenna for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Muhammad Umar

    2013-03-01

    Full Text Available This paper presents a circular patch antenna for WLAN applications with wideband characteristics. It is shown that impedance of the antenna is matched over wideband by using the partial ground plane and quarter wave transformer with slotted TX-Line. Ansoft HFSS is used for simulation tool to map the numerical results for the return loss frequency behavior of antenna. Measure of bandwidth, return loss and radiation pattern are also reported with satisfactory performance. As the patch is circular in shape so substrate is kept in the same shape. The shape of the substrate is also discussed in details for specific antenna designs.

  2. A Compact Diversity Antenna for Handheld Terminals

    Institute of Scientific and Technical Information of China (English)

    Hai-Lin Xiao; Zai-Ping Nie; Yu-Jing Wu

    2009-01-01

    The handheld terminals antenna should have a small size, sufficient gain and big bandwidth. In this paper, a compact planar inverted-L diversity antenna for handheld terminals is proposed. Three diversity antennas operating at 2.15 GHz are designed and the effect of important parameters of the proposed antenna is measured. The isolation is found to be better than 13 dB, the usable bandwidth is about 13%. Moreover, the measured radiation patterns are also obtained that the backward radiation is decreased.

  3. Analysis on two novel spherical helical antennas

    Institute of Scientific and Technical Information of China (English)

    Hou ZHANG; Yingzeng YIN; Dongyu XIA

    2009-01-01

    Two novel spherical helical antennas are designed by projecting the planar equiangular spiral antenna onto hemisphere and partial sphere surfaces.Their radiation properties are analyzed by the moment method with curved basis and test function,and the curves of the voltage standing wave ratio (VSWR),gain,polarization and pattern that change with frequency are also given,respectively.It can be seen that the circular polarization band of the novel hemispherical helical antenna is broader.The gain curve of the partial spherical helical antenna is flatter and the structure is simpler.

  4. A Novel Ancient Coin-Like Fractal Multiband Antenna for Wireless Applications

    Directory of Open Access Journals (Sweden)

    Zhen Yu

    2017-01-01

    Full Text Available This study proposes a novel square-circle structure fractal multibroadband planar antenna, similar to an ancient Chinese coin-like structure, for second generation (2G, third generation (3G, fourth generation (4G, WLAN, and navigation wireless applications. The device is based on the principles and structural features of conventional monopole antenna elements, combined with the advantages of microstrip antennas and fractal geometry. A fractal method was presented for circular nested square slotted structures, similar to an ancient Chinese copper coin. The proposed antenna adapted five iterations on a fractal structure radiator, which covers more than ten mobile applications in three broad frequency bands with a bandwidth of 70% (1.43–2.97 GHz for DCS1800, TD-SCDMA, WCDMA, CDMA2000, LTE33-41, Bluetooth, GPS (Global Positioning System, BDS (BeiDou Navigation Satellite System, GLONSS (Global Navigation Satellite System, GALILEO (Galileo Satellite Navigation System, and WLAN frequency bands, 16.32% (3.32–3.91 GHz for LTE42, LTE43, and WiMAX frequency bands, and 10.92% (4.85–5.41 GHz for WLAN frequency band. The proposed antenna was fabricated on a 1.6 mm thick G10/FR4 substrate with a dielectric constant of 4.4 and a size of 88.5 × 60 mm2. The measurement results reveal that the omnidirectional radiation patterns achieve a gain of 1.16–3.75 dBi and an efficiency of 40–72%. The good agreement between the measurement results and simulation validates the proposed design approach and satisfies the requirements for various wireless applications.

  5. Optical antennas and plasmonics

    OpenAIRE

    Park, Q-Han

    2009-01-01

    Optical antenna is a nanoscale miniaturization of radio or microwave antennas that is also governed by the rule of plasmonics. We introduce various types of optical antenna and make an overview of recent developments in optical antenna research. The role of local and surface plasmons in optical antenna is explained through antenna resonance and resonance conditions for specific metal structures are explicitly obtained. Strong electric field is shown to exist within a highly localized region o...

  6. MUTUAL COUPLING REDUCTION BETWEEN MICROSTRIP ANTENNAS USING ELECTROMAGNETIC BANDGAP STRUCTURE

    Directory of Open Access Journals (Sweden)

    G.N. Gaikwad

    2011-03-01

    Full Text Available When the number of antenna elements is placed in forming the arrays, mutual coupling between the antenna elements is a critical issue. This is particularly concern in phase array antennas. Mutual coupling is a potential source of performance degradation in the form of deviation of the radiation pattern from the desired one, gain reduction due to excitation of surface wave, increased side lobe levels etc. EBG (Electromagnetic Band Gap structure (also called as Photonic Bandgap Structure PBG not only enhances the performance of the patch antennas but also provides greater amount of isolation when placed between the microstrip arrays. This greatly reduces the mutual coupling between the antenna elements. The radiation efficiency, gain, antenna efficiency, VSWR, frequency, directivity etc greatly improves over the conventional patch antennas using EBG. The EBG structure and normal patch antenna is simulated using IE3D antenna simulation software.

  7. Analysis of equivalent antenna based on FDTD method

    Institute of Scientific and Technical Information of China (English)

    Yun-xing YANG; Hui-chang ZHAO; Cui DI

    2014-01-01

    An equivalent microstrip antenna used in radio proximity fuse is presented. The design of this antenna is based on multilayer multi-permittivity dielectric substrate which is analyzed by finite difference time domain (FDTD) method. Equivalent iterative formula is modified in the condition of cylindrical coordinate system. The mixed substrate which contains two kinds of media (one of them is air)takes the place of original single substrate. The results of equivalent antenna simulation show that the resonant frequency of equivalent antenna is similar to that of the original antenna. The validity of analysis can be validated by means of antenna resonant frequency formula. Two antennas have same radiation pattern and similar gain. This method can be used to reduce the weight of antenna, which is significant to the design of missile-borne antenna.

  8. VAlidation STandard antennas: Past, present and future

    DEFF Research Database (Denmark)

    Drioli, Luca Salghetti; Ostergaard, A; Paquay, M

    2011-01-01

    The field of antenna measurements is lacking a Golden Standard, i.e. an antenna of which the pattern is known by definition. To gain confidence in the performance of a range, including the procedures and skills of the operators, range comparison has been a popular tool for over three decades...... designed for validation campaigns of antenna measurement ranges. The driving requirements of VAST antennas are their mechanical stability over a given operational temperature range and with respect to any orientation of the gravity field. The mechanical design shall ensure extremely stable electrical...... characteristics allowing frequent travel and shall ease the handling of the VAST antenna (practical electrical and mechanical interfaces, well-defined alignment tools, low mass, attachment points for lifting, etc). The widespread use of the so-called VAST-12 antenna demonstrates the long-term value of dedicated...

  9. New band-notched UWB antenna

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-xiang; DENG Hong-wei

    2009-01-01

    A simple and compact ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed in this paper. The antenna is partially grounded so that the Q value is depressed and the impedance bandwidth is broadened. A small strip bar is loaded on each arm of the similar U-shaped radiator. The impedance bandwidth of the antenna overlap with IEEE 802.11a is rejected consequently. The geometry parameters of the antenna are investigated and optimized with HFSS. The measured bandwidth of the proposed antenna occupies about 7.89 GHz covering from 3.05 GHz to 10.94 GHz with expected notched band from 4.96 GHz to 5.98 GHz. A quasi-omnidirectional and quasi-symmetrical radiation pattern in the whole band is also obtained. As a result, a UWB wireless communication system can be simplified with the band-notched UWB antenna presented.

  10. Smart Antenna for Cellular Mobile Communication

    CERN Document Server

    Jain, R K; Agrawal, N K

    2012-01-01

    The adoption of smart / adaptive antenna techniques in future wireless systems is expected to have a significant impact on the efficient use of the spectrum, the minimization of the cost of establishing new wireless networks, the optimization of service quality and realization of transparent operation across multi technology wireless networks [1]. This paper presents brief account on smart antenna (SA) system. SAs can place nulls in the direction of interferers via adaptive updating of weights linked to each antenna element. SAs thus cancel out most of the co-channel interference resulting in better quality of reception and lower dropped calls. SAs can also track the user within a cell via direction of arrival algorithms [2]. This paper explains the architecture, evolution and how the smart / adaptive antenna differs from the basic format of antenna. The paper further explains about the radiation pattern of the antenna and why it is highly preferred in its relative field. The capabilities of smart / adaptive ...

  11. Whip antenna design for portable rf systems

    Science.gov (United States)

    Ponnapalli, Saila; Canora, Frank J.

    1995-12-01

    Whip type antennas are probably the most commonly used antennas in portable rf systems, such as cordless and cellular phones, rf enabled laptop computers, personal digital assistants (PDAs), and handheld computers. Whip antennas are almost always mounted on the chassis which contains the radio and other electronics. The chassis is usually a molded plastic which is coated with a conducting paint for EMI purposes. The chassis which appears as a lossy conductor to the antenna, has several effects -- detuning, altering the gain of the antenna, and shadowing its radiation pattern. Extensive modeling and measurements must be performed in order to fully characterize the affects of the chassis on the whip antenna, and to optimize antenna type, orientation and position. In many instances, modeling plays a more important role in prediction of the performance of whip antennas, since measurements become difficult due to the presence of common mode current on feed cables. In this paper models and measurements are used to discuss the optimum choice of whip antennas and the impact of the chassis on radiation characteristics. A modeling tool which has been previously described and has been successfully used to predict radiated field patterns is used for simulations, and measured and modeled results are shown.

  12. U-Slotted Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    Yogesh Bhomia

    2013-05-01

    Full Text Available A new U–slotted microstrip antenna is proposed. A patch antenna is a narrowband, wide-beam antenna These antennas are low profile, conformal to planar and non-planar surface, simple and inexpensive to manufacture using modern printed circuit technology, mechanically robust when mounted on rigid surface, compatible with MMIC designs and when the particular shape and mode are selected they are very versatile in terms of resonant frequency, polarization, field pattern and impedance. Microstrip antenna consist of a very thin metallic strip (patch placed a small fraction of a wavelength above a ground plane. The patch is generally made of conducting material such as copper or gold and can take any possible shape. This paper presents a design of U - slotted microstrip patch antenna and experimentally studied on IE3D software. This design is achieved by cutting U shape in a patch. With U - slotted shapes patch antenna is designed on a FR4 substrate of thickness 1.524 mm and relative permittivity of 4.4 and mounted above the ground plane at a height of 6 mm. Bandwidth as high as 39% are achieved with stable pattern characteristics, such as gain and cross polarization, within its bandwidth. Impedance bandwidth, antenna gain and return loss are observed for the proposed antenna. Details of the measured and simulated results are presented and discussed

  13. A new double L-shaped multiband patch antenna on a polymer resin material substrate

    Science.gov (United States)

    Ullah, M. Habib; Islam, M. T.; Mandeep, J. S.; Misran, N.

    2013-01-01

    The design and prototyping of a new double L-shaped patch antenna on substrate of available low cost polymer resin composite material is presented. The designed microstrip line fed compact antenna consists of a planar double L-shaped slotted radiating patch, 1.6 mm thick substrate and ground plane. The proposed small antenna was designed and analyzed using a finite-element method-based, commercially available, high frequency structure simulator, and fabricated on a printed circuit board. The measured -10 dB return loss bandwidths were 220 MHz and 650 MHz at 4.85 GHz and 8.10 GHz center frequencies. The corresponding symmetric and almost steady radiation patterns have peak gains of 7.6 dBi and 4.1 dBi, making the proposed antenna suitable for C and × band wireless applications, especially for WLANs, mobiles and satellites. The radiation efficiency, input impedance and current distribution of the proposed antenna were also analyzed.

  14. Optical recoil of asymmetric nano-optical antenna.

    Science.gov (United States)

    Song, Jung-Hwan; Shin, Jonghwa; Lim, Hee-Jin; Lee, Yong-Hee

    2011-08-01

    We propose nano-optical antennas with asymmetric radiation patterns as light-driven mechanical recoil force generators. Directional antennas are found to generate recoil force efficiently when driven in the spectral proximity of their resonances. It is also shown that the recoil force is equivalent to the Poynting vector integrated over a closed sphere containing the antenna structures.

  15. Explore the Capability of ESPAR Antennas for Low Cost Communication

    DEFF Research Database (Denmark)

    Han, Bo; Kalis, A; Papadias, C.;

    ESPAR antenna systems are composed of one active and several parasitic elements and by changing the characteristic of the parasitic elements on the antenna, the radiation pattern will also change. Such characteristic makes ESPAR antenna useful in many applications, e.g., single RF MIMO transmissi...

  16. Wideband Antenna for HPM Measurements

    Directory of Open Access Journals (Sweden)

    Kurkan Ivan

    2016-01-01

    Full Text Available The measurements of microwave pulses of gigawatt power level have a lot of constraints. A receiving antenna is a starting and core point of the measurement system. Waveguide based and dipole antennas have a limited wide bands, while the use of commercially available wideband antennas is restricted by their maximum peak power acceptances. The design of the wide band antenna with the small effective area was proposed. The characteristics of prototype were obtained in numerical simulations with ANSYS HFSS software and by calibration tests in the frequency band of 1–13 GHz. It has the effective area about the 1 mm2 in X-band and square-law dependence on the wavelength in a wide band. The cross polarization rate is more than 60 dB at the centre position and not less than 30 dB within the range of ±5° in azimuth and elevation angle. The wide beam radiation pattern forces a user to discriminate reflected signals. This antenna could greatly simplify the measurement system, replacing a set of narrow band antennas that connected to several recording channels.

  17. Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific humpback whales.

    Science.gov (United States)

    Garrigue, Claire; Clapham, Phillip J; Geyer, Ygor; Kennedy, Amy S; Zerbini, Alexandre N

    2015-11-01

    The humpback whale population of New Caledonia appears to display a novel migratory pattern characterized by multiple directions, long migratory paths and frequent pauses over seamounts and other shallow geographical features. Using satellite-monitored radio tags, we tracked 34 whales for between 5 and 110 days, travelling between 270 and 8540 km on their southward migration from a breeding ground in southern New Caledonia. Mean migration speed was 3.53±2.22 km h(-1), while movements within the breeding ground averaged 2.01±1.63 km h(-1). The tag data demonstrate that seamounts play an important role as offshore habitats for this species. Whales displayed an intensive use of oceanic seamounts both in the breeding season and on migration. Seamounts probably serve multiple and important roles as breeding locations, resting areas, navigational landmarks or even supplemental feeding grounds for this species, which can be viewed as a transient component of the seamount communities. Satellite telemetry suggests that seamounts represent an overlooked cryptic habitat for the species. The frequent use by humpback whales of such remote locations has important implications for conservation and management.

  18. Antennas in inhomogeneous media

    CERN Document Server

    Galejs, Janis; Fock, V A; Wait, J R

    2013-01-01

    Antennas in Inhomogeneous Media details the methods of analyzing antennas in such inhomogeneous media. The title covers the complex geometrical configurations along with its variational formulations. The coverage of the text includes various conditions the antennas are subjected to, such as antennas in the interface between two media; antennas in compressible isotropic plasma; and linear antennas in a magnetoionic medium. The selection also covers insulated loops in lossy media; slot antennas with a stratified dielectric or isotropic plasma layers; and cavity-backed slot antennas. The book wil

  19. Patterns of upper layer circulation variability in the South China Sea from satellite altimetry using the self-organizing map

    Institute of Scientific and Technical Information of China (English)

    LIU Yonggang; WEISBERG Robert H; YUAN Yaochu

    2008-01-01

    Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns. The annual cycle of the SCS gener- al circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July--August (January--February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which de- velopa into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 e- vent in response to the peak Pacific El Nino in 1997, the overall SCS sea level is found to have a significant rise during 1999~ 2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years.

  20. Angle-resolved polarimetry measurements of antenna-mediated fluorescence

    CERN Document Server

    Mohtashami, Abbas; Koenderink, A Femius

    2015-01-01

    Optical phase-array antennas can be used to control not only the angular distribution but also the polarization of fluorescence from quantum emitters. The emission pattern of the resulting system is determined by the properties of the antenna, the properties of the emitters and the strength of the antenna-emitter coupling. Here we show that Fourier polarimetry can be used to characterize these three contributions. To this end, we measured the angle and Stokes-parameter resolved emission of bullseye plasmon antennas as well as spiral antennas excited by an ensemble of emitters. We estimate the antenna-emitter coupling on basis of the degree of polarization, and determine the effect of anisotropy in the intrinsic emitter orientation on polarization of the resulting emission pattern. Our results not only provide new insights in the behavior of bullseye and spiral antennas, but also demonstrate the potential of Fourier polarimetry when characterizing antenna mediated fluorescence.

  1. A phased array antenna with a broadly steerable beam based on a low-loss metasurface lens

    Science.gov (United States)

    Liu, Yahong; Jin, Xueyu; Zhou, Xin; Luo, Yang; Song, Kun; Huang, Lvhongzi; Zhao, Xiaopeng

    2016-10-01

    A new concept for a gradient phase discontinuity metasurface lens integrated with a phased array antenna possessing a broadly steerable beam is presented in this paper. The metasurface lens is composed of a metallic H-shaped pattern and the metallic square split ring can achieve complete 360° transmission phase coverage at 30° phase intervals. The metasurface can refract an incident plane wave to an angle at will by varying the lattice constant. We demonstrate that the beam steering range of the phased array antenna is between 12° and 85° when the metasurface lens with a refracting electromagnetic wave is employed at 45°. Interestingly, the proposed array antenna has a much higher gain than a conventional phased array antenna at low elevation angles. It is expected that the proposed array antenna will have potential applications in wireless and satellite communications. Furthermore, the proposed array antenna is fabricated easily and is also low in cost due to its microstrip technology.

  2. 基于改进粒子群算法的共形阵列天线综合%Conformal Antenna Array Beam Pattern Synthesis Based on Improved Particle Swarm Optimization

    Institute of Scientific and Technical Information of China (English)

    杨永建; 王晟达; 马健; 甘轶; 邓有为

    2012-01-01

    共形阵列天线的赋形方向图综合涉及大量的运算,成为现在研究的一大难点,目前对共形阵方向图综合的研究比较少,且所用算法存在理论复杂、耗时长的缺点.文中运用改进粒子群算法对圆环阵、圆柱阵方向图的综合进行了研究,仿真结果表明,改进粒子群算法能够较快地形成期望方向图,证明了该方法的有效性和实用性.%The shaped of conformal antenna array beam pattern synthesis is one of difficulties in array antennas beam pattern, because larger numbers of operation is needed. Presently, the research for conformal array antennabeam pattern synthesis is less, and the used arithmetic is complex in theoretics and need more times. Improved particle swarm optimization (PSO) to synthetize circu-larand columniform array beam pattern is used, the result of simulation shows the improved optimization can form desired beam pattern quickly, and proves the method is effective and practicability.

  3. Global Characterization of Biomass-Burning Patterns using Satellite Measurements of Fire Radiative Energy

    Science.gov (United States)

    Ichoku, Charles; Giglio, Louis; Wooster, Martin J.; Remer, Lorraine A.

    2008-01-01

    Remote sensing is the most practical means of measuring energy release from large open-air biomass burning. Satellite measurement of fire radiative energy (FRE) release rate or power (FRP) enables distinction between fires of different strengths. Based on a 1-km resolution fire data acquired globally by the MODerate-resolution Imaging Spectro-radiometer (MODIS) sensor aboard the Terra and Aqua satellites from 2000 to 2006, instanteaneous FRP values ranged between 0.02 MW and 1866 MW, with global daily means ranging between 20 and 40 MW. Regionally, at the Aqua-MODIS afternoon overpass, the mean FRP values for Alaska, Western US, Western Australia, Quebec and the rest of Canada are significantly higher than these global means, with Quebec having the overall highest value of 85 MW. Analysis of regional mean FRP per unit area of land (FRP flux) shows that a peak fire season in certain regions, fires can be responsible for up to 0.2 W/m(sup 2) at peak time of day. Zambia has the highest regional monthly mean FRP flux of approximately 0.045 W/m(sup 2) at peak time of day and season, while the Middle East has the lowest value of approximately 0.0005 W/m(sup 2). A simple scheme based on FRP has been devised to classify fires into five categories, to facilitate fire rating by strength, similar to earthquakes and hurricanes. The scheme uses MODIS measurements of FRP at 1-km resolution as follows: catagory 1 (less than 100 MW), category 2 (100 to less than 500 MW), category 3 (500 to less than 1000 MW), category 4 (1000 to less than 1500 MW), catagory 5 (greater than or equal to 1500 MW). In most regions of the world, over 90% of fires fall into category 1, while only less than 1% fall into each of categories 3 to 5, although these proportions may differ significantly from day to day and by season. The frequency of occurence of the larger fires is region specific, and could not be explained by ecosystem type alone. Time-series analysis of the propertions of higher category

  4. Dipole-on-dielectric model for infrared lithographic spiral antennas

    Energy Technology Data Exchange (ETDEWEB)

    Boreman, G.D. [Center for Research and Education in Optics and Lasers and Department of Electrical Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Dogariu, A. [Center for Research and Education in Optics and Lasers, University of Central Florida, Orlando, Florida 32816 (United States); Christodoulou, C. [Department of Electrical Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Kotter, D. [Idaho National Engineering Laboratory, Lockheed-Martin Corporation, P.O. Box 1625, Idaho Falls, Idaho 83415 (United States)

    1996-03-01

    We present a dipole-on-dielectric model for lithographic antennas used for bolometer coupling in the infrared. The predicted antenna patterns show good agreement with measurements of Au-on-Si spiral antennas at 9.5-{mu}m wavelength. Angle- and polarization-resolved measurements are proposed, which will further probe the behavior of these antenna structures and facilitate refinement of the analytical models. {copyright} {ital 1996 Optical Society of America.}

  5. Advanced system characterizes antennas to 65 GHz

    Science.gov (United States)

    Francis, Michael H.; Kremer, Douglas P.; Repjar, Andrew G.

    1990-03-01

    The antenna measurement service offered by the National Institute of Standards and Technology provides radiation-pattern, on-axis gain, and polarization measurements to 65 GHz using planar near-field and extrapolation techniques. It is pointed out that measurements of millimeter-wave antennas are both difficult and costly to make and that such measurements require low-noise, high-power signal sources and exceptionally stable and repeatable connections. The process of the three-antenna extrapolation technique and subsequent measurements of dual-port circularly polarized antennas and swept-frequency gain measurements are analyzed, and antenna standards are noted. Insertion-loss measurements and attenuator calibration are discussed, and measurement uncertainties and far-field patterns are analyzed.

  6. Matching Parasitic Antenna for Single RF MIMO

    DEFF Research Database (Denmark)

    Han, Bo; Kalis, A; Nielsen, Rasmus Hjorth

    2012-01-01

    Single RF MIMO communication emerges a novel low cost communication method which does not consume as much power as the conventional MIMO. The implementation of such single RF MIMO system is done by mapping the weighting factors to the polarizations or the radiation patterns of the antennas....... In order to have such performance, an antenna with rich pattern modes is required by the system, thus the ESPAR antenna is investigated. The critical part on such antenna is parasitic element impedance matching. Unlike the conventional smith-chart matching method which assumes the minimal resistance...... is zero and with goal of 50 ohm or 75 ohm matching, matching on such parasitic antenna will adopt negative value as well. This paper presents a matching network with controllable impedance even to the range of negative values....

  7. Dynamic monitoring of landscape patterns and ecological processes using HJ-1 and SPOT satellite data over Hulunbeier grassland, China

    Indian Academy of Sciences (India)

    Feng Zhang; Ying Li; Sihan Liu; Shaohua Zhao; Yanting Wu

    2014-03-01

    Landscape patterns and ecological processes have been in long-term research focus in the field of landscape ecology, but how to measure their quantitative relations is still open. This work chooses the Hulunbeier grassland as the study area where ecosystem shows high vulnerability, frequent evolvement of landscape patterns and ecological processes. With remote sensing technology, the relationships between landscape patterns and ecological processes were analyzed quantitatively from multi-scale, multitemporal and time series perspective. Firstly, the information about the current situation and change of landscape patterns and ecological processes are obtained from HJ-1 (Environmental and Disaster Small Satellite) and LANDSAT TM (Thermal Mapper) data. Secondly, SPOT NDVI (Normalized Difference Vegetation Index) data during 2000–2008 are used to analyze the dynamic changes of ecological processes, and to simulate its inter-annual variety at pixel scale. Finally, the dynamic change trends of ecological processes of grassland vegetation are described. The results indicate that the unchanged ecosystem types account for most of the study area, unused land in the central part expands continuously which results in the increase of desertification, and most ecosystem types in the eastern part are changed to grassland and woodland. Furthermore, the vegetation vulnerability is the highest in the grassland-dominated region, the second in grassland–farmland–woodland transition, and the smallest in the woodland-dominated region, where the stability is enhanced in turn. Due to the dynamic change of vegetation, it can be concluded that the study area underwent ecological processes of vegetation cover with a negative trend and a changed phenology.

  8. Seasonal circulation patterns of the Yellow and East China Seas derived from satellite-tracked drifter trajectories and hydrographic observations

    Science.gov (United States)

    Lie, Heung-Jae; Cho, Cheol-Ho

    2016-08-01

    We investigated seasonal circulation patterns of the Yellow and East China Seas (YECS), by reviewing previous works on the circulation and its dominant currents, and taking into account newly-compiled trajectories of satellite-tracked drifters collected between the 1980s and 2000s. The circulation patterns suggested before the 1990s can be categorized into two groups, depending on the identified origin of the Tsushima Warm Current in the Korea-Tsushima Straits: (i) branching from the Kuroshio southwest of Kyushu, or (ii) northeastward continuation of the Taiwan Strait throughflow. The branching of the Kuroshio southwest of Kyushu and northeast of Taiwan was clearly evidenced by current measurements and concurrent hydrographic surveys. However, there is still no clear evidence for the northeastward pathway of Taiwan Strait throughflow across the mid-shelf area of the East China Sea. Target-oriented surveys in the 1990s and 2000s employing advanced instruments, such as drifter tracking and acoustic Doppler current profiler measurements, now provide decisive proof of the clockwise rounding of the Cheju Warm Current around Jeju-do throughout the year, of the northeastward extension of Changjiang discharge in summer, and of the presence of the Yellow Sea Warm Current only in winter. Thus, both coastal currents in shallow water and secondary branch currents of the Kuroshio (such as the Yellow Sea Warm Current) are found to significantly change from winter to summer. To better present the basic pattern of YECS circulation and its seasonality, we have constructed seasonal circulations patterns, based on review results, on the newly-compiled drifter trajectories, and on hydrographic observations. Further investigations should be carried out in future, with support of comprehensive current measurements on shelf areas and through elaborate numerical modeling.

  9. 带寄生贴片的圆盘形方向图可重构天线设计%Design of a circular disc-shaped pattern reconfigurable antenna with parasitic patch

    Institute of Scientific and Technical Information of China (English)

    王安国; 蔡晓涛; 冷文

    2011-01-01

    提出了一种新的带寄生贴片的圆盘形方向图可重构天线。天线主要由位于中心的圆形贴片和周围环绕的五个带U型槽的扇环形寄生贴片组成。该天线工作在5.5GHz WiMAX(全球微波接入互操作性)波段范围内,在谐振频率点具有较好的阻抗匹配特性。通过控制开关,天线可以在θ=45°的面内实现五种定向方向图变化。计入方向图增益及波瓣宽度,可以实现波束全向覆盖。天线方向图的旁瓣和后瓣较小,主瓣方向最大增益可达6.3dB,定向辐射特性显著,具有较强的抗干扰能力。该天线尺寸小、剖面低。还分析了一些重要结构参量对天线性能的影响。天线的仿真与测试结果具有较好的一致性。%A novel circular disc-shaped pattern reconfigurable antenna with parasitic patches is proposed in this paper.The antenna mainly consists of the central circular patch and five surrounding fan ring parasitic patches with U-shaped slot.The proposed antenna can work in the 5.5GHzWiMAX(World Interoperability for Microwave Access)frequency band and has a good performance of impedance matching at the resonant frequency.By controlling the states of five switches,the main lobe of each pattern directs to one of five different directions in the plane with the elevation angle of 45 degree.Considering the pattern gain and beam width,the antenna can cover all directions in the elevation plane.The gains of the back lobe and side lobe are both low,and the main lobe is high which gain can reach 6.3dB.A good performance of the antenna in directional radiation characteristic and interference restraining can be achieved.The designed antenna is compact in size and low in profile.The effects on the antenna performance of some important structure parameters are also analyzed in the paper.The simulation and measurement results of the proposed antenna are in a good agreement.

  10. Design Tri-band Rectangular Patch Antenna for Wi-Fi, Wi-Max and WLAN in Military Band Applications with Radiation Pattern Suppression

    Directory of Open Access Journals (Sweden)

    Aymen Dheyaa Khaleel

    2015-08-01

    Full Text Available Design tri-band rectangular patch antenna is presented. This research study focuses on designing an antenna that can operate with three bands; 2.4, 3.5 and 4.4 GHz, respectively. These bands are accepted by Wi-Fi, Wi-MAX and WLAN in Military band applications. The shape of the proposed design is based on simple rectangular patches with inset-feed on one surface of the FR4 substrate. On the other surface of FR4 substrate, is the infinite ground plane. Also Computer Simulation Technology (CST microwave studio 2012 is used for the design of antenna. This design is fabricated using photolithographic process.

  11. A note on antennas: Definitions and methods

    DEFF Research Database (Denmark)

    Bach, Henning

    1987-01-01

    Definitions of scattered and diffracted fields, originally given by R. F. Millar, are reviewed and supplemented. The definitions are used to discuss relations between results obtained by commonly used pattern prediction methods for reflector antennas....

  12. Improving Fishing Pattern Detection from Satellite AIS Using Data Mining and Machine Learning.

    Directory of Open Access Journals (Sweden)

    Erico N de Souza

    Full Text Available A key challenge in contemporary ecology and conservation is the accurate tracking of the spatial distribution of various human impacts, such as fishing. While coastal fisheries in national waters are closely monitored in some countries, existing maps of fishing effort elsewhere are fraught with uncertainty, especially in remote areas and the High Seas. Better understanding of the behavior of the global fishing fleets is required in order to prioritize and enforce fisheries management and conservation measures worldwide. Satellite-based Automatic Information Systems (S-AIS are now commonly installed on most ocean-going vessels and have been proposed as a novel tool to explore the movements of fishing fleets in near real time. Here we present approaches to identify fishing activity from S-AIS data for three dominant fishing gear types: trawl, longline and purse seine. Using a large dataset containing worldwide fishing vessel tracks from 2011-2015, we developed three methods to detect and map fishing activities: for trawlers we produced a Hidden Markov Model (HMM using vessel speed as observation variable. For longliners we have designed a Data Mining (DM approach using an algorithm inspired from studies on animal movement. For purse seiners a multi-layered filtering strategy based on vessel speed and operation time was implemented. Validation against expert-labeled datasets showed average detection accuracies of 83% for trawler and longliner, and 97% for purse seiner. Our study represents the first comprehensive approach to detect and identify potential fishing behavior for three major gear types operating on a global scale. We hope that this work will enable new efforts to assess the spatial and temporal distribution of global fishing effort and make global fisheries activities transparent to ocean scientists, managers and the public.

  13. 基于DPSO算法的半球共形阵方向图综合%Hemispherical conformal antenna array beam pattern synthesis based on Dichotomy Particle Swarm Optimization

    Institute of Scientific and Technical Information of China (English)

    马颖; 田维坚; 樊养余

    2013-01-01

    针对共形阵列天线方向图综合所需迭代次数大,且算法的收敛对初始值敏感问题,本文采用DPSO算法对半球共形阵赋形方向图综合进行了研究,通过对半球共球阵模型的建立,推导了所建模型的方向图函数.仿真结果表明,DPSO算法能够较快地综合半球共形阵的赋形方向图,是一种高效且实用的综合算法.%DPSO (Dichotomy Particle Swarm Optimization) algorithm was used to synthesize hemispherical conformal antenna array beam pattern,aimed at the accustomed algorithms of conformal array antenna beam pattern synthesis have a great iterative time and the constringency depending on the value of initialization.Based on the model of hemispherical conformal array,the beam pattern mathematic function of the array is put up.The result of simulation shows DPSO algorithm can form desired beam pattern quickly,and proves the method is effective and practicability.

  14. BeiDou Satellites Assistant Determination by Receiving Other GNSS Downlink Signals

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2016-01-01

    Full Text Available GNSS’s orbit determinations always rely on ground station or intersatellite links (ISL. In the emergency of satellite-to-ground links and ISL break-off, BeiDou navigation satellite system (BDS satellites cannot determine their orbits. In this paper, we propose to add a spaceborne annular beam antenna for receiving the global positioning system (GPS and global navigation satellite system (GLONASS signals; therefore, the BDS satellites may be capable of determining their orbits by GPS/GLONASS signals. Firstly, the spectrum selection, the power isolation, the range of Doppler frequency shift, and changing rate are taken into account for the feasibility. Specifically, the L2 band signals are chosen for receiving and processing in order to prevent the overlapping of the receiving and transmitting signals. Secondly, the minimum number of visible satellites (MNVS, carrier-to-noise ratio (C/N0, dilution of precision (GDOP, and geometric distance root-mean-square (gdrms are evaluated for acquiring the effective receiving antennas’ coverage ranges. Finally, the scheme of deploying 3 receiving antennas is proved to be optimal by analysis and simulations over the middle earth orbit (MEO, geostationary earth orbit (GEO, and the inclined geosynchronous satellite orbit (IGSO. The antennas’ structures and patterns are designed to draw a conclusion that installing GPS and GLONASS receivers on BDS satellites for emergent orbits determination is cost-effective.

  15. VSOP-2 Antenna and its Structure

    Science.gov (United States)

    Higuchi, K.; Kishimoto, N.; Mizuno, T.; Kawahara, K.; Tachikawa, S.; Murata, Y.; Tsuboi, M.; Ogawa, H.; Kimura, S.; Ujihara, H.; Meguro, A.; Tanaka, H.; Yoshihara, M.; Iikura, S.

    2009-08-01

    To achieve scientific improvements from VSOP (HALCA) to VSOP-2 (ASTRO-G), the satellite design incorporates the engineering characteristics of a large-scale deployable antenna of offset Cassegrain type with observation bands of 8, 22, and 43 GHz. The antenna subsystem requires the surface accuracy of 0.4mm RMS on the main reflector named LDR (Large-scale Deployable Reflector) of about 9m in diameter. An off-axis paraboloid reflector is adopted to achieve this surface accuracy for millimeter-wave observation. The main reflector is composed of seven deployable modular antennas, and each of the modules employs a new idea of radial-rib/hoop-cable reflector construction to stretch metal mesh and to satisfy the required surface accuracy. The deployment mechanism employs most of the LDR technology developed for JAXA's ETS-VIII satellite, which was launched in December 2006, and both of the two antennas on the ETS-VIII deployed successfully on orbit. Some prototype models of one module have been made to investigate the surface accuracy. In addition, the antenna will have a two-axis adjustment mechanism for the main reflector, and a three-axis adjustment mechanism for the sub-reflector in order to optimize the antenna gain after deployment in orbit.

  16. Intraseasonal patterns in coastal plankton biomass off central Chile derived from satellite observations and a biochemical model

    Science.gov (United States)

    Gomez, Fabian A.; Spitz, Yvette H.; Batchelder, Harold P.; Correa-Ramirez, Marco A.

    2017-10-01

    Subseasonal (5-130 days) environmental variability can strongly affect plankton dynamics, but is often overlooked in marine ecology studies. We documented the main subseasonal patterns of plankton biomass in the coastal upwelling system off central Chile, the southern part of the Humboldt System. Subseasonal variability was extracted from temporal patterns in satellite data of wind stress, sea surface temperature, and chlorophyll from the period 2003-2011, and from a realistically forced eddy-resolving physical-biochemical model from 2003 to 2008. Although most of the wind variability occurs at submonthly frequencies (biomass is within the intraseasonal band (30-90 days). The strongest intraseasonal coupling between wind and plankton is in spring-summer, when increased solar radiation enhances the phytoplankton response to upwelling. Biochemical model outputs show intraseasonal shifts in plankton community structure, mainly associated with the large fluctuations in diatom biomass. Diatom biomass peaks near surface during strong upwelling, whereas small phytoplankton biomass peaks at subsurface depths during relaxation or downwelling periods. Strong intraseasonally forced changes in biomass and species composition could strongly impact trophodynamics connections in the ecosystem, including the recruitment of commercially important fish species such as common sardine and anchovy. The wind-driven variability of chlorophyll concentration was connected to mid- and high-latitude atmospheric anomalies, which resemble disturbances with frequencies similar to the tropical Madden-Julian Oscillation.

  17. Computer controlled antenna system

    Science.gov (United States)

    Raumann, N. A.

    1972-01-01

    The application of small computers using digital techniques for operating the servo and control system of large antennas is discussed. The advantages of the system are described. The techniques were evaluated with a forty foot antenna and the Sigma V computer. Programs have been completed which drive the antenna directly without the need for a servo amplifier, antenna position programmer or a scan generator.

  18. Curved spiral antennas for underwater biological applications

    Science.gov (United States)

    Llamas, Ruben

    We developed curved spiral antennas for use in underwater (freshwater) communications. Specifically, these antennas will be integrated in so-called mussel backpacks. Backpacks are compact electronics that incorporate sensors and a small radio that operate around 300 MHz. Researchers attach these backpacks in their freshwater mussel related research. The antennas must be small, lightweight, and form-fit the mussel. Additionally, since the mussel orientation is unknown, the antennas must have broad radiation patterns. Further, the electromagnetic environment changes significantly as the mussels burrow into the river bottom. Broadband antennas, such a spiral antennas, will perform better in this instance. While spiral antennas are well established, there has been little work on their performance in freshwater. Additionally, there has been some work on curved spiral antennas, but this work focused on curving in one dimension, namely curving around a cylinder. In this thesis we develop spiral antennas that curve in two dimensions in order to conform the contour of a mussel's shell. Our research has three components, namely (a) an investigation of the relevant theoretical underpinning of spiral antennas, (b) extensive computer simulations using state-of-the art computational electromagnetics (CEM) simulation software, and (c) experimental validation. The experimental validation was performed in a large tank in a laboratory setting. We also validated some designs in a pool (~300,000 liters of water and ~410 squared-meter dive pool) with the aid of a certified diver. To use CEM software and perform successful antenna-related experiments require careful attention to many details. The mathematical description of radiation from an antenna, antenna input impedance and so on, is inherently complex. Engineers often make simplifying assumptions such as assuming no reflections, or an isotropic propagation environment, or operation in the antenna far field, and so on. This makes

  19. A COMPACT CIRCULARLY POLARIZED SLOTTED MICROSTRIP ANTENNA

    Directory of Open Access Journals (Sweden)

    V. Jebaraj

    2014-12-01

    Full Text Available Slot antennas are often used at UHF and microwave frequencies. In slot antenna for RFID reader applications the frequency ranges from 902-923MHz to achieve circular polarization. The shapes and size of the slot, as well as the driving frequency, determine the radiation distribution pattern. The proposed compact size circularly polarized slotted microstrip antenna are summarized with design rules. The circularly polarized radiation in square patch antenna can be obtained by perturbation technique with different shapes of slot in the orthogonal direction. A single feed configuration based symmetric slotted microstrip antenna is adapted to realize the compact circularly polarized microstrip antennas. Based on the perimeter, the size of the slot on microstrip slot antenna are studied and compared. The Operating frequency of the antenna is 912MHz that can be tuned by varying the perimeter of the slot while the keeping the circularly polarized radiation unchanged. The schematic and layout are configured by using Advanced Design System (ADS. Return loss, Resonant Frequency, Axial Ratio (AR, and Gain were determined for the proposed system using ADS. A measured 3dB Axial Ratio (AR bandwidth around 6MHz with 16MHz impedance bandwidth has been achieved for the antenna on a RO3004C substrate with dielectric constant 3.38.

  20. Accurate determination of antenna directivity

    DEFF Research Database (Denmark)

    Dich, Mikael

    1997-01-01

    The derivation of a formula for accurate estimation of the total radiated power from a transmitting antenna for which the radiated power density is known in a finite number of points on the far-field sphere is presented. The main application of the formula is determination of directivity from power......-pattern measurements. The derivation is based on the theory of spherical wave expansion of electromagnetic fields, which also establishes a simple criterion for the required number of samples of the power density. An array antenna consisting of Hertzian dipoles is used to test the accuracy and rate of convergence...

  1. 47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.

    Science.gov (United States)

    2010-10-01

    ... performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... measurements to establish performance of directional antennas. The performance of a directional antenna may be... directional antenna pattern, a total of six radials is sufficient. If two radials would be more than 90°...

  2. Novel Microstrip Patch Antennas with Frequency Agility, Polarization Reconfigurability, Dual Null Steering Capability and Phased Array Antenna with Beam Steering Performance

    Science.gov (United States)

    Babakhani, Behrouz

    Nowadays the wireless communication technology is playing an important role in our daily life. People use wireless devices not only as a conventional communication device but also as tracking and navigation tool, web browsing tool, data storage and transfer tool and so for many other reasons. Based on the user demand, wireless communication engineers try to accommodate as many as possible wireless systems and applications in a single device and therefore, creates a multifunctional device. Antenna, as an integral part of any wireless communication systems, should also be evolved and adjusted with development of wireless transceiver systems. Therefore multifunctional antennas have been introduced to support and enhance the functionality on modern wireless systems. The main focus and contribution of this thesis is design of novel multifunctional microstrip antennas with frequency agility, polarization reconfigurablity, dual null steering capability and phased array antenna with beam steering performance. In this thesis, first, a wide bandwidth(1.10 GHz to 1.60 GHz) right-handed circularly polarized (RHCP) directional antenna for global positioning system (GPS) satellite receive application has been introduced which covers all the GPS bands starting from L1 to L5. This design consists of two crossed bow-tie dipole antennas fed with sequentially phase rotated feed network backed with an artificial high impedance surface (HIS) structure to generate high gain directional radiation patterns. This design shows good CP gain and axial ratio (AR) and wide beamwidth performance. Although this design has good radiation quality, the size and the weight can be reduced as future study. In the second design, a frequency agile antenna was developed which also covers the L-band (L1 to L5) satellite communication frequencies. This frequency agile antenna was designed and realized by new implementation of varactor diodes in the geometry of a circular patch antenna. Beside wide frequency

  3. Spatial Patterns of Snow Cover in North Carolina: Surface and Satellite Perspectives

    Science.gov (United States)

    Fuhrmann, Christopher M.; Hall, Dorothy K.; Perry, L. Baker; Riggs, George A.

    2010-01-01

    Snow mapping is a common practice in regions that receive large amounts of snowfall annually, have seasonally-continuous snow cover, and where snowmelt contributes significantly to the hydrologic cycle. Although higher elevations in the southern Appalachian Mountains average upwards of 100 inches of snow annually, much of the remainder of the Southeast U.S. receives comparatively little snowfall (snow cover and the physical processes that act to limit or improve its detection across the Southeast. In the present work, both in situ and remote sensing data are utilized to assess the spatial distribution of snow cover for a sample of recent snowfall events in North Carolina. Specifically, this work seeks to determine how well ground measurements characterize the fine-grained patterns of snow cover in relation to Moderate- Resolution Imaging Spectroradiometer (MODIS) snow cover products (in this case, the MODIS Fractional Snow Cover product).

  4. Investigation on the Patterns of Global Vegetation Change Using a Satellite-Sensed Vegetation Index

    Directory of Open Access Journals (Sweden)

    Ainong Li

    2010-06-01

    Full Text Available The pattern of vegetation change in response to global change still remains a controversial issue. A Normalized Difference Vegetation Index (NDVI dataset compiled by the Global Inventory Modeling and Mapping Studies (GIMMS was used for analysis. For the period 1982–2006, GIMMS-NDVI analysis indicated that monthly NDVI changes show homogenous trends in middle and high latitude areas in the northern hemisphere and within, or near, the Tropic of Cancer and Capricorn; with obvious spatio-temporal heterogeneity on a global scale over the past two decades. The former areas featured increasing vegetation activity during growth seasons, and the latter areas experienced an even greater amplitude in places where precipitation is adequate. The discussion suggests that one should be cautious of using the NDVI time-series to analyze local vegetation dynamics because of its coarse resolution and uncertainties.

  5. Microstrip Array Antenna with 16 Patches for UHF Band Television Signal Reception

    Directory of Open Access Journals (Sweden)

    Yulindon Yulindon

    2013-01-01

    Full Text Available There are 2 commonly known equipment for the reception of television broadcasts i.e. using a parabolic antenna connected to satellite receiver and a wire or pipe antenna that directly connected to the television receiver. Receiving the signal by means of a parabolic antenna is more expensive because it requires additional tools , namely satellite receivers, so generally the people like to choose the easier way by direct receiving the signal using wire antenna. The antenna construction which made of aluminum pipes has a weakness easily bent or broken on the assembling phase as well as when there are high winds causing the antenna mast collapsed, confirmed that the antenna is bent, loose or broken elements. The paper relates to a microstrip antenna for reception of television signals using material printed circuit boards or printed circuit board (PCB which is a thin but strong in the form of a number of patches array separated in a certain distance.

  6. PBG based terahertz antenna for aerospace applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications. Space communication systems using the terahertz spectrum can resolve the problems of limited bandwidth of present wireless communications without radio-frequency interference. This book describes design of such high-gain antennas and their performance enhancement using photonic band gap (PBG) substrates. Further, optimization of antenna models using evolutionary algorithm based computational engine has been included. The optimized high-performance compact antenna may be used for various wireless applications, such as inter-orbital communications and on-vehicle satellite communications.

  7. Phase shifter for antenna beam steering

    Science.gov (United States)

    Jindal, Ravi; Razban, Tchanguiz

    2016-03-01

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  8. Phase shifter for antenna beam steering

    Energy Technology Data Exchange (ETDEWEB)

    Jindal, Ravi, E-mail: rjindal21@gmail.com [Master’s(MS) in System Electronics and General Electrical, Ecole Polytechnique of university of Nantes France, IETR, Nantes (France); Razban, Tchanguiz, E-mail: tchanguiz.razban-haghighi@univ-nantes.fr [Electronics and Telecommunication Institute of Rennes (IETR-UMR 6164), Ecole Polytechnique of university of Nantes France, IETR, Nantes (France)

    2016-03-09

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  9. Low-profile pattern reconfigurable antenna with switched parasitic inverted-L elements%带有倒L寄生单元的低剖面方向图可重构天线

    Institute of Scientific and Technical Information of China (English)

    赵凯南; 郑剑锋; 孙佳文; 陈文华; 冯正和

    2011-01-01

    提出一种带有倒L寄生单元的低剖面方向图可重构天线.该天线由一个有源六边形贴片单元和两个加载开关的倒L寄生单元组成.仿真和测量结果表明:通过改交寄生单元上加载开关的状态,可以使天线工作在3种状态,即SO,OS和OO模式,其中,S代表"短路",O代表"开路".天线工作在OO模式下,方向图在水平面内的辐射接近全向.工作在SO和OS模武下,天线可以获得良好的定向方向图,并且可以实现方向图在水平面内的切换.同时,该天线为垂直极化,具有低剖面和良好的方向图切换特性,便于与无线接入设备共形集成,适用于室内无线通信系统.%A low-profile reconfigurable antenna with parasitic inverted-L elements was developed for wireless communication systems.The antenna consists of a hexagonal patch as the driven element and two parasitic inverted-L elements loaded with switches.Simulated and measured results show that by changing the status of the switches,the antenna is able to operate in SO, OS, and OO modes with S representing short circuit and O for open circuit.The OO mode gives an omni-directional pattern in the azimuthal plane.The SO and OS modes give a directional pattern that can be switched in the azimuthal plane.Moreover, the antenna exhibits vertical polarization characteristics.Owing to the low profile and good beam switching capacity, the antenna can be used for wireless devices.

  10. Compact Low Frequency Radio Antenna

    Science.gov (United States)

    Punnoose, Ratish J.

    2008-11-11

    An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.

  11. SPS solid state antenna power combiner

    Science.gov (United States)

    Fitzsimmons, G. W.

    1980-01-01

    A concept for a solar power satellite antenna power combiner which utilizes solid state dc-rf converters is described. To avoid the power combining losses associated with circuit hybrids it is proposed that the power from multiple solid state amplifiers be combined by direct coupling of each amplifier's output to the radiating antenna structure. The selected power-combining antenna consists of a printed (metalized) microstrip circuit on a ceramic type dielectric substrate which is backed by a shallow lightweight aluminum cavity which sums the power of four microwave sources. The antenna behaves like two one-half wavelength slot-line antennas coupled together via their common cavity structure. A significant feature of the antenna configuration selected is that the radiated energy is summed to yield a single radiated output phase which represents the average insertion phase of the four power amplifiers. This energy may be sampled and, by comparison with the input signal, one can phase error correct to maintain the insertion phase of all solid state power combining modules at exactly the same value. This insures that the insertion phase of each SPS power combining antenna module is identical. An experiment verification program is described.

  12. Millimeter-wave and terahertz integrated circuit antennas

    Science.gov (United States)

    Rebeiz, Gabriel M.

    1992-01-01

    This paper presents a comprehensive review of integrated circuit antennas suitable for millimeter and terahertz applications. A great deal of research was done on integrated circuit antennas in the last decade and many of the problems associated with electrically thick dielectric substrates, such as substrate modes and poor radiation patterns, have been understood and solved. Several new antennas, such as the integrated horn antenna, the dielectric-filled parabola, the Fresnel plate antenna, the dual-slot antenna, and the log-periodic and spiral antennas on extended hemispherical lenses, have resulted in excellent performance at millimeter-wave frequencies, and are covered in detail in this paper. Also, a review of the efficiency definitions used with planar antennas is given in detail in the appendix.

  13. A tunable microwave slot antenna based on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Dragoman, Mircea; Aldrigo, Martino; Vasilache, D.; Dinescu, A. [National Institute for Research and Development in Microtechnology (IMT), Str. Erou Iancu Nicolae 126 A, 077190 Bucharest-Voluntari (Romania); Neculoiu, Dan; Bunea, Alina-Cristina, E-mail: alina.bunea@imt.ro [National Institute for Research and Development in Microtechnology (IMT), Str. Erou Iancu Nicolae 126 A, 077190 Bucharest-Voluntari (Romania); “Politehnica” University of Bucharest, Bd. Iuliu Maniu 1-3, 061071, Bucharest (Romania); Deligeorgis, George; Konstantinidis, George [Foundation for Research and Technology Hellas (FORTH), P.O. Box 1527, Vassilika Vuton, Heraklion 71110, Crete, Hellas (Greece); Mencarelli, Davide; Pierantoni, Luca [Università Politecnica delle Marche, via Brecce Bianche 12, 60131 Ancona (Italy); Modreanu, M. [Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork (Ireland)

    2015-04-13

    The paper presents the experimental and modeling results of a microwave slot antenna in a coplanar configuration based on graphene. The antennas are fabricated on a 4 in. high-resistivity Si wafer, with a ∼300 nm SiO{sub 2} layer grown through thermal oxidation. A CVD grown graphene layer is transferred on the SiO{sub 2}. The paper shows that the reflection parameter of the antenna can be tuned by a DC voltage. 2D radiation patterns at various frequencies in the X band (8–12 GHz) are then presented using as antenna backside a microwave absorbent and a metalized surface. Although the radiation efficiency is lower than a metallic antenna, the graphene antenna is a wideband antenna while the metal antennas with the same geometry and working at the same frequencies are narrowband.

  14. Design and Implementation of Radiation Pattern Reconfigurable Planar Microstrip Antenna%方向图可重构的平面准八木天线的设计与实现

    Institute of Scientific and Technical Information of China (English)

    汪圣杰; 顾涓涓; 胡国华

    2016-01-01

    The development of wireless communication system has raise higher demand on the perform-ance of antenna,the radiation pattern reconfigurable antenna is widely needed in wireless communica-tion system.In this paper the radiation pattern reconfigurable microstrip antenna has been designed and realized.This structure is based on traditional dipole antenna and Yagi antenna.According to dif-ferential feeding theory,the two arms which consist of the driven dipole are loaded on each side of sub-strate.A PIN diode switch is loaded between the ground and each driven dipole arm a PIN diode switch is loaded between the feed and the other driven dipole arm.The antenna radiation pattern can be reconfigurable by combination controlling the diode switch state.The result shows that the return loss is -25dB at center frequency.-10dB bandwidth is about 320MHz,relative bandwidth is about 13%.The maximum gain at main radiation direction reaches 3dB.This reconfigurable antenna has good directivity with the scanning function of eight direction and can be applied in wireless communi-cation system.%通信系统的快速发展对天线的性能提出了更高的要求,方向图可重构天线是天线家族中重要组成部分之一,应用十分广泛。文中利用 HFSS 软件对方向图可重构的平面准八木天线进行了设计与实现,天线结构基于传统的偶极子天线以及八木天线并采用差分馈电,主天线振子置于介质板的两侧,在地板一侧的振子臂通过PIN 二极管开关与地板相连,馈电一侧的阵子臂通过 PIN 二极管开关与馈电相连。通过组合控制二极管的开关状态即可控制天线单元的工作状态从而实现天线方向图可重构的目的。结果表明天线的回波损耗在中心频点出达到-25dB,-10dB 带宽为约为400MHz,相对带宽为13%,天线在主辐射方向的增益达到约4.5dB,该天线能够实现4个方向的扫描,具有良好的方向性。

  15. Computer-Automated Evolution of Spacecraft X-Band Antennas

    Science.gov (United States)

    Lohn, Jason D.; Homby, Gregory S.; Linden, Derek S.

    2010-01-01

    A document discusses the use of computer- aided evolution in arriving at a design for X-band communication antennas for NASA s three Space Technology 5 (ST5) satellites, which were launched on March 22, 2006. Two evolutionary algorithms, incorporating different representations of the antenna design and different fitness functions, were used to automatically design and optimize an X-band antenna design. A set of antenna designs satisfying initial ST5 mission requirements was evolved by use these algorithms. The two best antennas - one from each evolutionary algorithm - were built. During flight-qualification testing of these antennas, the mission requirements were changed. After minimal changes in the evolutionary algorithms - mostly in the fitness functions - new antenna designs satisfying the changed mission requirements were evolved and within one month of this change, two new antennas were designed and prototypes of the antennas were built and tested. One of these newly evolved antennas was approved for deployment on the ST5 mission, and flight-qualified versions of this design were built and installed on the spacecraft. At the time of writing the document, these antennas were the first computer-evolved hardware in outer space.

  16. The planar parabolic optical antenna.

    Science.gov (United States)

    Schoen, David T; Coenen, Toon; García de Abajo, F Javier; Brongersma, Mark L; Polman, Albert

    2013-01-09

    One of the simplest and most common structures used for directing light in macroscale applications is the parabolic reflector. Parabolic reflectors are ubiquitous in many technologies, from satellite dishes to hand-held flashlights. Today, there is a growing interest in the use of ultracompact metallic structures for manipulating light on the wavelength scale. Significant progress has been made in scaling radiowave antennas to the nanoscale for operation in the visible range, but similar scaling of parabolic reflectors employing ray-optics concepts has not yet been accomplished because of the difficulty in fabricating nanoscale three-dimensional surfaces. Here, we demonstrate that plasmon physics can be employed to realize a resonant elliptical cavity functioning as an essentially planar nanometallic structure that serves as a broadband unidirectional parabolic antenna at optical frequencies.

  17. Evolutionary Algorithm Geometry Optimization of Optical Antennas

    Directory of Open Access Journals (Sweden)

    Ramón Díaz de León-Zapata

    2016-01-01

    Full Text Available Printed circuit antennas have been used for the detection of electromagnetic radiation at a wide range of frequencies that go from radio frequencies (RF up to optical frequencies. The design of printed antennas at optical frequencies has been done by using design rules derived from the radio frequency domain which do not take into account the dispersion of material parameters at optical frequencies. This can make traditional RF antenna design not suitable for optical antenna design. This work presents the results of using a genetic algorithm (GA for obtaining an optimized geometry (unconventional geometries that may be used as optical regime antennas to capture electromagnetic waves. The radiation patterns and optical properties of the GA generated geometries were compared with the conventional dipole geometry. The characterizations were conducted via finite element method (FEM computational simulations.

  18. STUDY ON A NOVEL ELLIPSOIDAL HELICAL ANTENNA

    Institute of Scientific and Technical Information of China (English)

    Xia Dongyu; Zhang Hou; Wang Chong; Zhang Qianyue

    2007-01-01

    A novel ellipsoidal helical antenna is proposed and studied in this letter.As a special instance,the hemispherical helical antennas are analyzed firstly,which indicates that the characteristics of a two-arm unit are better than that of a single-arm unit.Based on this,the ellipsoidal helical antenna,formed by changing the axial direction's dimension of the two-arm hemispherical helical antenna,is analyzed by the moment method with curved basic and testing function.The effects to VSWR (Voltage Standing Wave Ratio),gain,polarization and patterns by the axial direction's dimensions are investigated.The study results provide dependable gist to the choice of antenna format according to the practical requirements.

  19. The use of mobile satellite communication terminals

    Science.gov (United States)

    Law, P. A.

    The role of small portable terminals in military satellite systems is examined; the discussion embraces terminals with an antenna reflector diameter of seven meters or less. Emphasis is placed on the specification of MARMOSET (Marconi Mobile Satellite Earth Terminal). Also considered are ship-borne satellite terminals, the improved SCOT terminal, interoperability, reduced downlink power, and reliability and availability.

  20. Technology for a quasi-GSO satellite communications system

    OpenAIRE

    Katagi, T.; Yonezawa, R.; Chiba, I.; Urasaki, S.

    1999-01-01

    In this paper, a satellite communications system using a Quasi Geostationary Satellite Orbit (Quasi-GSO) is proposed. A 24-hour period Quasi-GSO system could give high quality communication to high latitude regions with its satellites observed from earth stations having high elevation angles. In this paper, a system concept and a deployable flat antenna with light weight antenna elements are described proposing it to be a good candidate for mobile communications satellite use.

  1. Cavity-Backed Dipole Antenna for Intelligent Lock Communication

    Directory of Open Access Journals (Sweden)

    Bo Yuan

    2013-01-01

    Full Text Available This paper introduces a 20*40 mm2 planar folded L-shaped dipole antenna operated under surroundings of an iron cavity for intelligent lock communication. The height of the slot antenna is shortened and the bandwidth for 2.4 GHz band has been widened. This antenna provides a solution for antenna surrounded by metal background. Good performances on return loss, radiation pattern are obtained over 2.4 GHz operating bands. The operation distance in front and back sides for the antenna has been calculated by Friis transmission equation.

  2. Odyssey, an optimized personal communications satellite system

    Science.gov (United States)

    Rusch, Roger J.

    Personal communications places severe demands on service providers and transmission facilities. Customers are not satisfied with the current levels of service and want improvements. Among the characteristics that users seek are: lower service rates, hand held convenience, acceptable time delays, ubiquitous service, high availability, reliability, and high quality. The space industry is developing commercial space systems for providing mobile communications to personal telephones. Provision of land mobile satellite service is fundamentally different from the fixed satellite service provided by geostationary satellites. In fixed service, the earth based antennas can depend on a clear path from user to satellite. Mobile users in a terrestrial environment commonly encounter blockage due to vegetation, terrain or buildings. Consequently, high elevation angles are of premium value. TRW studied the issues and concluded that a Medium Earth Orbit constellation is the best solution for Personal Communications Satellite Service. TRW has developed Odyssey, which uses twelve satellites in medium altitude orbit to provide personal communications satellite service. The Odyssey communications system projects a multibeam antenna pattern to the Earth. The attitude control system orients the satellites to ensure constant coverage of land mass and coastal areas. Pointing can be reprogrammed by ground control to ensure optimized coverage of the desired service areas. The payload architecture features non-processing, "bent pipe" transponders and matrix amplifiers to ensure dynamic power delivery to high demand areas. Circuit capacity is 3000 circuits per satellite. Each satellite weighs 1917 kg (4226 pounds) at launch and the solar arrays provide 3126 Watts of power. Satellites are launched in pairs on Ariane, Atlas, or other vehicles. Each satellite is placed in a circular orbit at an altitude of 10,354 km. There are three orbit planes inclined at 55° to the equatorial plane

  3. Patterns of Precipitation and Convection Occurrence over the Mediterranean Basin Derived from a Decade of Microwave Satellite Observations

    Directory of Open Access Journals (Sweden)

    Bahjat Alhammoud

    2014-05-01

    Full Text Available The Mediterranean region is characterized by its vulnerability to changes in the water cycle, with the impact of global warming on the water resources being one of the major concerns in social, economical and scientific ambits. Even if precipitation is the best-known term of the Mediterranean water budget, large uncertainties remain due to the lack of suitable offshore observational data. In this study, we use the data provided by the Advanced Microwave Sounding Unit-B (AMSU-B on board NOAA satellites to detect and analyze precipitating and convective events over the last decade at spatial resolution of 0.2° latitude × 0.2° longitude. AMSU-B observation shows that rain occurrence is widespread over the Mediterranean in wintertime while reduced in the eastern part of the basin in summer. Both precipitation and convection occurrences display a weak diurnal cycle over sea. In addition, convection occurrences, which are essentially located over land during summertime, shift to mostly over the sea during autumn with maxima in the Ionian sub-basin and the Adriatic Sea. Precipitation occurrence is also inferred over the sea from two other widely used climatological datasets, HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data and the European Centre for Medium-Range Weather Forecasts (ECMWF reanalysis interim (ERA-Interim. There is generally a rather fair agreement between these climatologies for describing the large-scale patterns such as the strong latitudinal gradient of rain and eastward rain signal propagation. Furthermore, the higher spatial resolution of AMSU-B measurements (16 km at nadir gives access to mesoscale details in the region (e.g., coastal areas. AMSU-B measurements show less rain occurrences than HOAPS during wintertime, thereby suggesting that some of the thresholds used in our method might be too stringent during this season. We also observed that convection occurrences in ERA-Interim are systematically

  4. Design of Multilevel Sequential Rotation Feeding Networks Used for Circularly Polarized Microstrip Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Aixin Chen

    2012-01-01

    Full Text Available Sequential rotation feeding networks can significantly improve performance of the circularly polarized microstrip antenna array. In this paper, single, double, and multiple series-parallel sequential rotation feeding networks are examined. Compared with conventional parallel feeding structures, these multilevel feeding techniques present reduction of loss, increase of bandwidth, and improvement of radiation pattern and polarization purity. By using corner-truncated square patch as the array element and adopting appropriate level of sequential rotation series-parallel feeding structures as feeding networks, microstrip arrays can generate excellent circular polarization (CP over a relatively wide frequency band. They can find wide applications in phased array radar and satellite communication systems.

  5. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  6. Beam spoiling a reflector antenna with conducting shim.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2012-12-01

    A horn-fed dish reflector antenna has characteristics including beam pattern that are a function of its mechanical form. The beam pattern can be altered by changing the mechanical configuration of the antenna. One way to do this is with a reflecting insert or shim added to the face of the original dish.

  7. BEAM-FORMING ERRORS IN MURCHISON WIDEFIELD ARRAY PHASED ARRAY ANTENNAS AND THEIR EFFECTS ON EPOCH OF REIONIZATION SCIENCE

    Energy Technology Data Exchange (ETDEWEB)

    Neben, Abraham R.; Hewitt, Jacqueline N.; Dillon, Joshua S.; Goeke, R.; Morgan, E. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bradley, Richard F. [Dept. of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904 (United States); Bernardi, G. [Square Kilometre Array South Africa (SKA SA), Cape Town 7405 (South Africa); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Briggs, F. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Cappallo, R. J.; Corey, B. E.; Lonsdale, C. J.; McWhirter, S. R. [MIT Haystack Observatory, Westford, MA 01886 (United States); Deshpande, A. A. [Raman Research Institute, Bangalore 560080 (India); Greenhill, L. J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Hazelton, B. J.; Morales, M. F. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Kaplan, D. L. [Department of Physics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Mitchell, D. A. [CSIRO Astronomy and Space Science (CASS), P.O. Box 76, Epping, NSW 1710 (Australia); and others

    2016-03-20

    Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21 cm spectral line emission from the Dark Ages and the Epoch of Reionization (EOR) and unlock the scientific potential of 21 cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of the order of ±10%–20% near the edges of the main lobe and in the sidelobes. We consider the ramifications of these results for image- and power spectrum-based science. In particular, we simulate visibilities measured by a 100 m baseline and find that using an otherwise perfect foreground model, unmodeled beam-forming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the “wedge”). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beam-forming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the “EOR window”), showing that foreground avoidance remains a viable strategy.

  8. Experimental evaluation of shape memory alloy actuation technique in adaptive antenna design concepts

    Science.gov (United States)

    Kefauver, W. Neill; Carpenter, Bernie F.

    1994-01-01

    Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.

  9. Antenna Structure Registrate

    Data.gov (United States)

    Department of Homeland Security — This file is an extract of the Antenna Structure Registrate (ASR). The ASR consists of antenna structures that are more than 60.96 meters (200 feet) in height or...

  10. Vertically Polarized Omnidirectional Printed Slot Loop Antenna

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper

    2015-01-01

    A novel vertically polarized omnidirectional printed slot loop antenna has been designed, simulated, fabricated and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform and in-phase fields in the slot in order to obtain an omnidirectional radiation...... pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due to the polarization....

  11. Development of Ray Tracing Algorithms for Scanning Plane and Transverse Plane Analysis for Satellite Multibeam Application

    Directory of Open Access Journals (Sweden)

    N. H. Abd Rahman

    2014-01-01

    Full Text Available Reflector antennas have been widely used in many areas. In the implementation of parabolic reflector antenna for broadcasting satellite applications, it is essential for the spacecraft antenna to provide precise contoured beam to effectively serve the required region. For this purpose, combinations of more than one beam are required. Therefore, a tool utilizing ray tracing method is developed to calculate precise off-axis beams for multibeam antenna system. In the multibeam system, each beam will be fed from different feed positions to allow the main beam to be radiated at the exact direction on the coverage area. Thus, detailed study on caustics of a parabolic reflector antenna is performed and presented in this paper, which is to investigate the behaviour of the rays and its relation to various antenna parameters. In order to produce accurate data for the analysis, the caustic behaviours are investigated in two distinctive modes: scanning plane and transverse plane. This paper presents the detailed discussions on the derivation of the ray tracing algorithms, the establishment of the equations of caustic loci, and the verification of the method through calculation of radiation pattern.

  12. Wearable near-field communication antennas with magnetic composite films

    Science.gov (United States)

    Zhan, Bihong; Su, Dan; Liu, Sheng; Liu, Feng

    2017-06-01

    The flexible near-field communication (NFC) antennas integrated with Fe3O4/ethylene-vinyl acetate copolymer (EVA) magnetic films were presented, and the influence of the magnetic composite films on the performance and miniaturization capability of the NFC antennas was investigated. Theoretical analysis and experimental results show that the integration of the magnetic composite films is conducive to the miniaturization of the NFC antennas. However, the pattern design of the integrated magnetic film is very important to improve the communication performance of NFC antenna. When magnetic film covers whole antenna, the inductance (L) and quality factor (Q) of the NFC antenna at 13MHz are increased by 60% and 5% respectively, but the communication distance of NFC system is decreased by 70%. When the magnetic film is located at the center of the antenna, the L value, Q value and communication distance of the NFC antenna are increased by 16.5%, 15.5% and 20% respectively. It can be seen that the application of the integrated magnetic film with optimized pattern to the NFC antenna can not only reduce the size of the antenna, but also improve the overall performance of the antenna.

  13. Integrated 222-GHz corner-reflector antennas

    Science.gov (United States)

    Gearhart, Steven S.; Ling, Curtis C.; Rebeiz, Gabriel M.

    1991-01-01

    A high-gain monolithic millimeter-wave antenna has been designed, fabricated, and tested at 222 GHz. The structure consists of a traveling-wave antenna integrated on a 1.2-micron dielectric membrane and suspended in a longitudinal cavity etched in a silicon wafer. A new traveling-wave antenna design yields a wideband input impedance and a low cross-polarization component in the E- and quasi-H-plane patterns. A directivity of 17.7 dB and a main-beam efficiency of 88.5 percent are calculated from the 222-GHz pattern measurements. The integrated corner-reflector antenna is well suited for millimeter- and submillimeter-wave imaging applications in large f-number systems.

  14. Conformal phased array with beam forming for airborne satellite communication

    NARCIS (Netherlands)

    Schippers, H.; Verpoorte, J.; Jorna, P.; Hulzinga, A.; Meijerink, A.; Roeloffzen, C.G.H.; Heideman, R.G.; Leinse, A.; Wintels, M.

    2008-01-01

    For enhanced communication on board of aircraft novel antenna systems with broadband satellite-based capabilities are required. The installation of such systems on board of aircraft requires the development of a very low-profile aircraft antenna, which can point to satellites anywhere in the upper h

  15. Design of a novel square-shaped antenna with dual-band and pattern reconfigurable characteristics%一种双频段方向图可重构的方形天线的设计

    Institute of Scientific and Technical Information of China (English)

    李娜; 冷文; 王安国; 李洪雷

    2016-01-01

    A novel rectangle-shaped antenna with dual-band and pattern reconfigurable characteristics is presented in this paper.The antenna consists of a patch-slot-square loop structure and surrounding four Quasi-Horn parasitic patches with U-shaped slot.By reconfiguring the depth of the side slot in the U-shaped slot,the antenna can cover two resonant frequencies of 5.25 GHz and 2.45 GHz,respectively.The main lobe of each pattern directs to one of four different directions in the plane with the elevation angle of 45°or 90°by controlling the states of one set of connections among the center patch,square loop and Quasi-Horn parasitic elements.The antenna,which operates at two resonant frequencies within 2.42~2.52 GHz and 5.21~5.32 GHz,has a good performance of directional radiation properties, so that it has potential applications in wireless communication systems with multiple operating frequency bands and high performance against the interference.%提出了一种新型的双频段方向图可重构方形天线。该天线由贴片-槽-方形环及四个带 U 型槽的类喇叭形寄生单元构成。通过改变 U 型槽结构的深度,天线可分别工作在2.45 GH 和5.25 GHz 两个频点。通过控制贴片-方形环-喇叭形寄生单元之间通断,选择相应的寄生单元,天线可分别在θ=45°和θ=90°平面上实现4个方向的定向辐射。该天线在2.42~2.52 GHz 和5.21~5.32 GHz 两个频段上具有较好的定向性,适用于抗干扰性能要求较高的多频点工作的无线通信系统。

  16. Antennas for VHF/UHF personal radio: A theoretical and experimental study of characteristics and performance

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Hansen, Flemming

    1977-01-01

    , and it is shown how antenna impedance, gain, and radiation patterns can be calculated taking the presence of the body into account. For very short antennas the results indicate that radiation from the body may dominate over the radiation contributed by the antenna itself, and that the presence of the body can...... increase the antenna efficiency considerably, indicating that even very short antennas may provide acceptable radiation efficiencies. The results of the theoretical work are supported by measurements on practical antennas. Quarter-wave and short antennas of the helical type are compared with respect...

  17. Evolutionary Design of a Phased Array Antenna Element

    Science.gov (United States)

    Globus, Al; Linden, Derek; Lohn, Jason

    2006-01-01

    We present an evolved S-band phased array antenna element design that meets the requirements of NASA's TDRS-C communications satellite scheduled for launch early next decade. The original specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a genetic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results are largely consistent with simulation. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years its computer speed has increased and electromagnetic simulators have improved. Many antenna types have been investigated, including wire antennas, antenna arrays and quadrifilar helical antennas. In particular, our laboratory evolved a wire antenna design for NASA's Space Technology 5 (ST5) spacecraft. This antenna has been fabricated, tested, and is scheduled for launch on the three spacecraft in 2006.

  18. Cross resonant optical antenna.

    Science.gov (United States)

    Biagioni, P; Huang, J S; Duò, L; Finazzi, M; Hecht, B

    2009-06-26

    We propose a novel cross resonant optical antenna consisting of two perpendicular nanosized gold dipole antennas with a common feed gap. We demonstrate that the cross antenna is able to convert propagating fields of any polarization state into correspondingly polarized, localized, and enhanced fields and vice versa. The cross antenna structure therefore opens the road towards the control of light-matter interactions based on polarized light as well as the analysis of polarized fields on the nanometer scale.

  19. Cross Resonant Optical Antenna

    Science.gov (United States)

    Biagioni, P.; Huang, J. S.; Duò, L.; Finazzi, M.; Hecht, B.

    2009-06-01

    We propose a novel cross resonant optical antenna consisting of two perpendicular nanosized gold dipole antennas with a common feed gap. We demonstrate that the cross antenna is able to convert propagating fields of any polarization state into correspondingly polarized, localized, and enhanced fields and vice versa. The cross antenna structure therefore opens the road towards the control of light-matter interactions based on polarized light as well as the analysis of polarized fields on the nanometer scale.

  20. Computer simulation of the effects of a distributed array antenna on synthetic aperture radar images

    Science.gov (United States)

    Estes, J. M.

    1985-01-01

    The ARL:UT orbital SAR simulation has been upgraded to use three-dimensional antenna gain patterns. This report describes the modifications and presents quantitative image analyses of a simulation using antenna patterns generated from the modeling of a distributed array antenna.

  1. FORTE antenna element and release mechanism design

    Energy Technology Data Exchange (ETDEWEB)

    Rohweller, D.J. [Astro Aerospace Corp., Carpinteria, CA (United States); Butler, T.Af. [Los Alamos National Lab., NM (United States)

    1995-02-01

    The Fast On-Orbit Recording of Transient Events (FORTE) satellite being built by Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL) has as its most prominent feature a large deployable (11 m by 5 m) log periodic antenna to monitor emissions from electrical storms on the Earth. This paper describes the antenna and the design for the long elements and explains the dynamics of their deployment and the damping system employed. It also describes the unique paraffin-actuated reusable tie-down and release mechanism employed in the system.

  2. Coherently combining antennas

    Science.gov (United States)

    Dybdal, Robert B. (Inventor); Curry, Samuel J. (Inventor)

    2009-01-01

    An apparatus includes antenna elements configured to receive a signal including pseudo-random code, and electronics configured to use the pseudo-random code to determine time delays of signals incident upon the antenna elements and to compensate the signals to coherently combine the antenna elements.

  3. Designs and Development of Multimode Horns for ASTRO-G/VSOP-2 Satellite

    Science.gov (United States)

    Ujihara, H.

    2009-08-01

    The antenna optics of VSOP-2 satellite require low cross polarization, and the volume of the receiver box is limited. Thus, instead of conventional corrugated horns, multimode horns were proposed and designed in order to reduce the axial length and weight of the horns but still compatible with a low cross polarization. These multimode horns were designed for three observational bands of VSOP-2 at 8GHz, 22GHz, 43GHz, all with about the same antenna illumination size. However, the ratio of waveguide and wavelength are slightly different. The 22GHz-horn was designed at first, and the other horns were arranged around it. The properties of the horns were improved by controlling the complex amplitude of higher modes and by fitting the beam width to the antenna optics. The BBM models of horns were tested, and their measured beam patterns agree well with numerical simulations.

  4. 频率与方向图可重构锯齿偶极子微带天线的设计%Design of reconfigurable frequency and radiation pattern saw-tooth-dipole micro-strip antenna

    Institute of Scientific and Technical Information of China (English)

    曹卫平; 蔡彬

    2014-01-01

    In order to meet high date rate wireless services and the miniaturization of the micro-strip antenna,a printed planar micro-strip fed saw-tooth dipole antenna with reconfigurable frequency and pattern properties is designed for wireless com-munication.The structure consists of two saw-tooth dipoles,each one is printed on one substrate layer.The saw-tooth di-pole can achieve its frequency and pattern reconfigurable function by changing the operating state of the PIN diode to trans-form the local structure and the distribution of surface current.Experimental results show that the antenna can achieve the function reconfigurable in the range of 1.88-2.85 GHz,which covers the main wireless communication band.During the op-erating band,an omni-directional radiation pattern in H-plane is well reached and the beam scanning in E-plane pattern is a-chieved.%为了满足无线通信高速数据需求和微带天线的小型化,设计了一种频率和方向图可重构锯齿偶极子微带天线,该天线包括2个锯齿状振子,分别印制在介质板的两面。通过改变锯齿振子上PIN二极管的工作状态,使天线的局部结构和表面电流分布发生变化,实现天线频率和方向图的可重构。实验结果表明,该天线在1.88~2.85 GHz 频段内实现可重构的功能,覆盖了主要的无线通信频带。在工作频段内,天线的 H 面方向图具有全向特性,E面方向图实现了波束扫描。

  5. Inter-nesting habitat-use patterns of loggerhead sea turtles: Enhancing satellite tracking with benthic mapping

    Science.gov (United States)

    Hart, Kristen M.; Zawada, David G.; Fujisaki, Ikuko; Lidz, Barbara H.

    2010-01-01

    The loggerhead sea turtle Caretta caretta faces declining nest numbers and bycatches from commercial longline fishing in the southeastern USA. Understanding spatial and temporal habitat-use patterns of these turtles, especially reproductive females in the neritic zone, is critical for guiding management decisions. To assess marine turtle habitat use within the Dry Tortugas National Park (DRTO), we used satellite telemetry to identify core-use areas for 7 loggerhead females inter-nesting and tracked in 2008 and 2009. This effort represents the first tracking of DRTO loggerheads, a distinct subpopulation that is 1 of 7 recently proposed for upgrading from threatened to endangered under the US Endangered Species Act. We also used a rapid, high-resolution, digital imaging system to map benthic habitats in turtle core-use areas (i.e. 50% kernel density zones). Loggerhead females were seasonal residents of DRTO for 19 to 51 d, and individual inter-nesting habitats were located within 1.9 km (2008) and 2.3 km (2009) of the nesting beach and tagging site. The core area common to all tagged turtles was 4.2 km2 in size and spanned a depth range of 7.6 to 11.5 m. Mapping results revealed the diversity and distributions of benthic cover available in the core-use area, as well as a heavily used corridor to/from the nesting beach. This combined tagging-mapping approach shows potential for planning and improving the effectiveness of marine protected areas and for developing spatially explicit conservation plans.

  6. Plan of advanced satellite communication experiments using ETS-6

    Science.gov (United States)

    Ikegami, Tetsushi

    1989-01-01

    In 1992, an Engineering Test Satellite 6 is scheduled to be launched by an H-2 rocket. The missions of ETS-6 are to establish basic technologies of inter-satellite communications using S-band, millimeter waves and optical beams and of fixed and mobile satellite communications using multibeam antenna on board the satellite. A plan of the experiments is introduced.

  7. Jacobi-Bessel Analysis Of Antennas With Elliptical Apertures.

    Science.gov (United States)

    Rahmat-Samii, Y.

    1989-01-01

    Coordinate transformation improves convergence pattern analysis of elliptical-aperture antennas. Modified version of Jacobi-Bessel expansion for vector diffraction analysis of reflector antennas uses coordinate transformation to improve convergence with elliptical apertures. Expansion converges rapidly for antennas with circular apertures, but less rapidly for elliptical apertures. Difference in convergence behavior between circular and elliptical Jacobi-Bessel algorithms indicated by highest values of indices m, n, and p required to achieve same accuracy in computed radiation pattern of offset paraboloidal antenna with elliptical aperture.

  8. Experimental investigation of a mm-wave planar antenna

    Science.gov (United States)

    Lambrakakis, Georgios D.

    1990-06-01

    This thesis investigates a new mm-wave Bilateral Slot Line (BSL) antenna and its relation to the Linearly Tapered Slot Antenna (LTSA). The BSL antenna consists of a tapered double-sided slotline and can be viewed as two identical LTSAs sandwiched back to back. Dielectric substrates with permittivities of 2.33 and 6.0 were used to construct these antennas. The theoretical background, the design, and the performance in the frequency range 5 to 9 GHz of the new microwave integrated circuit antenna is presented. The effects of several parameters such as dielectric constant, stripline and slotline characteristic impedance, antenna structure, and transition scheme on the radiation patterns and return loss were experimentally investigated. Some relationships between the width of stripline and slotline, their characteristic impedance and the dielectric constant are reported. Guidelines are laid to design the LTSA and BSL antennas.

  9. Practical realization of dual S arm antenna for beam steering applications

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A dual S shaped micro strip antenna with a realistic feed is proposed for generation of tilted beam radiation pattern pertaining for beam steering applications. To achieve this, four feeding points are located at a distance of 5.6 mm from the antenna centre. These feeding points when excited one by one generate four tilted beams in four different space quadrants, thus yielding a beam steerable antenna. Importantly, since the proposed antenna is symmetrical in the structure, all the four tilted beams have the same radiation pattern characteristics. A further enhancement of the antenna bandwidth is also achieved using 100-μm capacitive coupling between the feed and the antenna strip.

  10. Normalized GNSS interference pattern technique for altimetry.

    Science.gov (United States)

    Ribot, Miguel Angel; Kucwaj, Jean-Christophe; Botteron, Cyril; Reboul, Serge; Stienne, Georges; Leclère, Jérôme; Choquel, Jean-Bernard; Farine, Pierre-André; Benjelloun, Mohammed

    2014-06-11

    It is well known that reflected signals from Global Navigation Satellite Systems (GNSS) can be used for altimetry applications, such as monitoring of water levels and determining snow height. Due to the interference of these reflected signals and the motion of satellites in space, the signal-to-noise ratio (SNR) measured at the receiver slowly oscillates. The oscillation rate is proportional to the change in the propagation path difference between the direct and reflected signals, which depends on the satellite elevation angle. Assuming a known receiver position, it is possible to compute the distance between the antenna and the surface of reflection from the measured oscillation rate. This technique is usually known as the interference pattern technique (IPT). In this paper, we propose to normalize the measurements in order to derive an alternative model of the SNR variations. From this model, we define a maximum likelihood estimate of the antenna height that reduces the estimation time to a fraction of one period of the SNR variation. We also derive the Cramér-Rao lower bound for the IPT and use it to assess the sensitivity of different parameters to the estimation of the antenna height. Finally, we propose an experimental framework, and we use it to assess our approach with real GPS L1 C/A signals.

  11. Normalized GNSS Interference Pattern Technique for Altimetry

    Directory of Open Access Journals (Sweden)

    Miguel Angel Ribot

    2014-06-01

    Full Text Available It is well known that reflected signals from Global Navigation Satellite Systems (GNSS can be used for altimetry applications, such as monitoring of water levels and determining snow height. Due to the interference of these reflected signals and the motion of satellites in space, the signal-to-noise ratio (SNR measured at the receiver slowly oscillates. The oscillation rate is proportional to the change in the propagation path difference between the direct and reflected signals, which depends on the satellite elevation angle. Assuming a known receiver position, it is possible to compute the distance between the antenna and the surface of reflection from the measured oscillation rate. This technique is usually known as the interference pattern technique (IPT. In this paper, we propose to normalize the measurements in order to derive an alternative model of the SNR variations. From this model, we define a maximum likelihood estimate of the antenna height that reduces the estimation time to a fraction of one period of the SNR variation. We also derive the Cramér–Rao lower bound for the IPT and use it to assess the sensitivity of different parameters to the estimation of the antenna height. Finally, we propose an experimental framework, and we use it to assess our approach with real GPS L1 C/A signals.

  12. A hinge-type and radiation-pattern-reconfigurable antenna for cognitive Internet of Things application%应用于感知物联网的方向图可重构超高频RFID标签天线

    Institute of Scientific and Technical Information of China (English)

    徐守辉; 邱方; 王子旭

    2015-01-01

    A hinge⁃type ultrahigh frequency RFID(radio frequency identification)antenna with reconfigurable radiation pat⁃tern is proposed for cognitive Internet of Things(CIOT). The antenna is a dipole antenna applied to metal object. It was ana⁃lyzed with FEM(finite element method). The hinge⁃type structure enables the dipole antenna to be rotatable and by rotating the angle between the two antenna arms from 0 degree to 90 degree. Its radiation pattern can be reconfigured form 40° to -90° (assuming the axis vertical to ground is 0°). Moreover,EBG(electromagnetic band⁃gap)structure is applied to realize further reconfigurable radiation patters. Specifically,taking 60° as an example,by tuning the size of rectangular hole of EBG,its radia⁃tion patterns could be tuned ±30°. The reconfigurable radiation pattern is qualitatively verified in an experiment by performance measurement system.%提出了一款新颖的应用于感知物联网的方向图可重构的RFID超高频电子标签天线。该RFID超高频电子标签天线为应用于金属物品的偶极子天线,创新地在RFID超高频电子标签天线中采用汉字结构;偶极子天线应用“铰链型”可旋转结构,在0~90°范围内调控超高频电子标签天线的偶极子臂的夹角,进而实现电子标签天线的阻抗实部在0~90Ω范围以及虚部在150~260Ω范围内可调,方向图在边射(约0°)和前向端射(约-90°)范围内调控;在该超高频天线偶极子臂夹角固定为某一特定角度(以60°为例)的前提下,通过在”铰链型”天线的上层加一层介质和电磁带隙栅格结构进一步调控方向图的辐射方向(以60°夹角为例,可进一步调控30°~40°)。实际测试结果验证了RFID超高频电子标签天线的可翻转偶极子臂对方向图的调控性,以及EBG结构对方向图辐射方向的可调控性。在此探索了可重构天线在RFID超高频电子标签天线的延伸,尤其提

  13. The Omninet mobile satellite system

    Science.gov (United States)

    Salmasi, A.; Curry, W.

    Mobile Satellite System (MSS) design offering relatively low cost voice, data, and position location services to nonmetropolitan areas of North America is proposed. The system provides spectrally efficient multiple access and modulation techniques, and flexible user interconnection to public and private switched networks. Separate UHF and L-band satellites employing two 9.1 m unfurlable antennas each, achieve a 6048 channel capacity and utilize spot beams. Mobile terminals have modular design and employ 5 dBi omnidirectional antennas. Gateway stations (with two 5 m Ku-band antennas) and base stations (with a single 1.8 m Ku-band antenna) transmit terrestrial traffic to the satellite, where traffic is then transponded via an L-band or UHF downlink to mobile users. The Network Management Center uses two 5-m antennas and incorporates the Integrated-Adaptive Mobile Access Protocol to assure demand assignment of satellite capacity. Preliminary implementation of this low-risk system involves a mobile alphanumeric data service employing receive-only terminals at Ku-band projected for 1987, and plans for the launching of L-band receive-only packages as early as 1988.

  14. Design of a Microstrip Bowtie Antenna for Indoor Radio-Communications

    OpenAIRE

    Fraga-Rosales Hector; Reyes-Ayala Mario; Hernandez-Valdez Genaro; Andrade-Gonzalez Edgar Alejandro; Miranda-Tello Jose Raul; Cruz-Perez Felipe Alejandro; Castellanos-Lopez Sandra Lirio

    2017-01-01

    In this paper, a microstrip bowtie patch antenna (MBPA) for wireless indoor communications is carried out. Here, a microstrip transmission-line feed network was designed in order to match the MBPA. The proposed antenna uses a ground plane with the aim of narrowing down the back lobes in comparison with bowtie sheet antennas, which radiation pattern is omni-directional. The far-field pattern of the antenna was simulated using a finite-element numerical algorithm and obtained by interpolation e...

  15. Multiple-unit antennas on paraboloidal lattices of dielectric resonators

    Directory of Open Access Journals (Sweden)

    A. A. Trubin

    2015-03-01

    Full Text Available Introduction. Today a multiple-unit antenna properties, containing big number DRs are studied inefficiently. At present article a possibility of the antennas building produced on paraboloidal lattices consisting DRs of the cylindrical form with lowest magnetic type resonances is considered. The results. Calculation results of the antenna parameters on dielectric resonator paraboloidal lattices are presented. The space distribution of the radiation field patterns in the near and wave zones is considered. Reflection coefficient frequency dependence of the antennas is calculated. Possibility narrowing of the directional pattern is showed. Signals frequency selection performing as well as increased electromagnetic compatibility of the suggested structures is noticed. Conclusion. Adduced calculations indicate capability of the practical application lattices on DRs as well as building on their base a wide class of the frequency selective antennas in millimeter and sub millimeter wavelength ranges. Such antennas will have enhanced electromagnetic compatibility.

  16. OPERATION MODES AND CHARACTERISTICS OF PLASMA DIPOLE ANTENNA

    Directory of Open Access Journals (Sweden)

    Nikolay Nikolaevich Bogachev

    2014-02-01

    Full Text Available Existence modes of  surface electromagnetic wave on a plasma cylinder, operating modes and characteristics of the plasma antenna were studied in this paper. Solutions of the dispersion equation of surface wave were obtained for a plasma cylinder with finite radius for different plasma density values. Operation modes of the plasma asymmetric dipole antenna with finite length and radius were researched by numerical simulation. The electric field distributions of  the plasma antenna in near antenna field and the radiation pattern were obtained. These characteristics were compared to characteristics of the similar metal antenna. Numerical models verification was carried out by comparing of the counted and measured metal antenna radiation patterns.

  17. Antenna with distributed strip and integrated electronic components

    Science.gov (United States)

    Rodenbeck, Christopher T.; Payne, Jason A.; Ottesen, Cory W.

    2008-08-05

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element can be in proximity to a ground conductor and/or arranged as a dipole. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. An antenna can comprise a distributed strip patterned on a printed wiring board, integrated with electronic components mounted on top of or below the distributed strip, and substantially within the extents of the distributed strip. Mounting of electronic components on top of or below the distributed strip has little effect on the performance of the antenna, and allows for realizing the combination of the antenna and integrated components in a compact form. An embodiment of the invention comprises an antenna including a distributed strip, integrated with a battery mounted on the distributed strip.

  18. A New Wide Band Planar Antenna and FDTD Simulation

    Institute of Scientific and Technical Information of China (English)

    WANGHonziian; GAOBenqing

    2003-01-01

    A new planar trigonometric curve (PTC)antenna is firstly proposed. The finite difference time domain method (FDTD) is used to analysis the input impedance and pattern of this antenna. The image the-ory is firstly applied to obtain the impedance using FDTD.Using the image theory the computation time and RAMspace needed by the calculation of monopole antenna can be reduced greatly, while the results remain almost the same level as those of the experiments. The FDTD sim-ulation of this PTC antenna exhibit the very wide band results in impedance (14:1) and pattern (5.7:1), which are much better than those of the circular disc monopole an-tenna (CMA) and Trilateral monoDole antenna (TLA).

  19. Application of the SWE-to-PWE antenna diagnostics technique to an offset reflector antenna

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, A; Breinbjerg, Olav

    2007-01-01

    A new antenna diagnostics technique has been developed for the DTU-ESA Spherical Near-Field Antenna Test Facility at the Technical University of Denmark. The technique is based on the transformation of the Spherical Wave Expansion (SWE) of the radiated field, obtained from a spherical near...... will be detected in the antenna far-field pattern, and the accuracy and ability of the diagnostics technique to subsequently identify them will be investigated. Real measurement data will be employed for each test case....... measurement accuracy, have been reported previously, we validate here the new antenna diagnostics technique through an experimental investigation of a commercially available offset reflector antenna, where a tilt of the feed and surface distortions are intentionally introduced. The effects of these errors...

  20. Design of silicon-based fractal antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2012-11-20

    This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.

  1. Terahertz antenna technology for space applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book explores the terahertz antenna technology towards implementation of compact, consistent and cheap terahertz sources, as well as the high sensitivity terahertz detectors. The terahertz EM band provides a transition between the electronic and the photonic regions thus adopting important characteristics from these regimes. These characteristics, along with the progress in semiconductor technology, have enabled researchers to exploit hitherto unexplored domains including satellite communication, bio-medical imaging, and security systems. The advances in new materials and nanostructures such as graphene will be helpful in miniaturization of antenna technology while simultaneously maintaining the desired output levels. Terahertz antenna characterization of bandwidth, impedance, polarization, etc. has not yet been methodically structured and it continues to be a major research challenge. This book addresses these issues besides including the advances of terahertz technology in space applications worldwide,...

  2. Precise Orbit Determination for LEO Spacecraft Using GNSS Tracking Data from Multiple Antennas

    Science.gov (United States)

    Kuang, Da; Bertiger, William; Desai, Shailen; Haines, Bruce

    2010-01-01

    To support various applications, certain Earth-orbiting spacecrafts (e.g., SRTM, COSMIC) use multiple GNSS antennas to provide tracking data for precise orbit determination (POD). POD using GNSS tracking data from multiple antennas poses some special technical issues compared to the typical single-antenna approach. In this paper, we investigate some of these issues using both real and simulated data. Recommendations are provided for POD with multiple GNSS antennas and for antenna configuration design. The observability of satellite position with multiple antennas data is compared against single antenna case. The impact of differential clock (line biases) and line-of-sight (up, along-track, and cross-track) on kinematic and reduced-dynamic POD is evaluated. The accuracy of monitoring the stability of the spacecraft structure by simultaneously performing POD of the spacecraft and relative positioning of the multiple antennas is also investigated.

  3. Proceedings of the Antenna Applications Symposium (1993). Volume 1

    Science.gov (United States)

    1994-02-01

    for mechanical tolerances and different path lengths in the antenna. - Element failure diagnosis. Errors due to component failures and manufacturing...approximately), we can establish the antenna pattern. Recall from [4] the pin of an antenna in a particular direction for transmit mode is 2 xc c, rf...frequency radar ( SFR ) syste-: has been developed to synthetically generate picosecond pulse data similar what would be obtained from an impulse radar. The

  4. An Efficient Beam Steerable Antenna Array Concept for Airborne Applications

    Directory of Open Access Journals (Sweden)

    H. Aliakbarian

    2014-04-01

    Full Text Available Deployment of a satellite borne, steerable antenna array with higher directivity and gain in Low Earth Orbit makes sense to reduce ground station complexity and cost, while still maintaining a reasonable link budget. The implementation comprises a digitally beam steerable phased array antenna integrated with a complete system, comprising the antenna, hosting platform, ground station, and aircraft based satellite emulator to facilitate convenient aircraft based testing of the antenna array and ground-space communication link. This paper describes the design, development and initial successful interim testing of the various subsystems. A two element prototype used in this increases the signal-to-noise ratio (SNR by 3 dB which is corresponding to more than 10 times better bit error rate (BER.

  5. Dielectrically Loaded Biconical Antennas

    Science.gov (United States)

    Nusseibeh, Fouad Ahmed

    1995-01-01

    Biconical antennas are of great interest to those who deal with broadband applications including the transmission/reception of pulses. In particular, wide-angle conical antennas are an attractive choice in many applications including Electronic Support Measures (ESM) and the measurements of transient surface currents and charge densities on aircraft. Dielectric loading in the interior region of a conical antenna can be used to reduce the size of the antenna especially at low frequencies and/or for structural strength. Therefore, having an analytical solution for the input impedance and the frequency response is very helpful in optimizing the design and understanding the behavior of the antenna. From the quasi-analytical solution for the input impedance and the electric field of a wide-angle conical antenna, it can be seen that the dielectric loading in the antenna region improves the input impedance at low frequencies, but increases the number of resonance points and the magnitude of these peaks. When an inhomogeneous dielectric load is used, the magnitude of the resonance peaks is decreased (depending on the way the load is distributed), improving the input impedance of the antenna significantly. Introducing a dielectric load in the interior region of an electrically short receiving cone makes the antenna behave as an electrically longer antenna. However, this is not true for the case for electrical1y long antennas. For the case of pulse transmission, the dielectric load affects only the amplitude. Of course, if the dielectric fills the whole space, both transmitting and receiving antennas behave as electrically longer antennas.

  6. Compact printed high rejection triple band-notch UWB antenna with multiple wireless applications

    Directory of Open Access Journals (Sweden)

    Manish Sharma

    2016-09-01

    Full Text Available In this paper, small printed urn-shape triple notch ultra-wideband (UWB monopole antenna with diverse wireless applications is presented. Notch bands include WiMAX (IEEE802.16 3.30–3.80 GHz, WLAN IEEE802.11a/h/j/n (5.15–5.35 GHz, 5.25–5.35 GHz, 5.47–5.725 GHz, 5.725–5.825 GHz, and X-band downlink satellite system (7.25–7.75 GHz and other multiple wireless services as close range radar (8–12 GHz in X-band & satellite communication (12–18 GHz in Ku-band. By including T-shape stub and etching two C-shaped slots on the radiating patch, triple band-notch function is obtained with measured high band rejection (VSWR = 16.54 at 3.60 GHz, VSWR = 22.35 at 5.64 GHz and VSWR = 6.38 at 7.64 GHz and covers a wide useable fractional bandwidth of 154.56% (2.49–19.41 GHz. In short the antenna offers triple band-notch UWB systems as a compact multifunctional antenna to reduce the number of antennas installed in wireless devices for accessing multiple wireless networks with wide radiation pattern.

  7. Investigation of fluorine-doped tin oxide based optically transparent E-shaped patch antenna for terahertz communications

    Energy Technology Data Exchange (ETDEWEB)

    Anand, S., E-mail: anand.s.krishna@gmail.com, E-mail: darak.mayur@gmail.com, E-mail: srk@nitt.edu; Darak, Mayur Sudesh, E-mail: anand.s.krishna@gmail.com, E-mail: darak.mayur@gmail.com, E-mail: srk@nitt.edu; Kumar, D. Sriram, E-mail: anand.s.krishna@gmail.com, E-mail: darak.mayur@gmail.com, E-mail: srk@nitt.edu [Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli 620015 (India)

    2014-10-15

    In this paper, a fluorine-doped tin oxide based optically transparent E-shaped patch antenna is designed and its radiation performance is analyzed in the 705 – 804 GHz band. As optically transparent antennas can be mounted on optical display, they facilitate the reduction of overall system size. The proposed antenna design is simulated using electromagnetic solver - Ansys HFSS and its characteristics such as impedance bandwidth, directivity, radiation efficiency and gain are observed. Results show that the fluorine-doped tin oxide based optically transparent patch antenna overcomes the conventional patch antenna limitations and thus the same can be used for solar cell antenna used in satellite systems.

  8. Microstrip antennas in subsurface sensing

    Science.gov (United States)

    Volgyi, Ferenc

    2000-07-01

    This paper reviews the various applications of microstrip antennas with special emphasis on subsurface sensing, microwave moisture measurement and nondestructive testing of dielectric materials. With reference to the literature, we first describe the commonly used GPR-antennas, the printed Vivaldi-antennas, and microstrip antennas used in moisture content measurement. Furthermore, attention is given to the problems of new antenna technologies, showing examples for active integrated antennas, a photonic band gap patch antenna and a silicon micromachined patch antenna. The reminder of the paper summarizes relevant R&D activities in microstrip antennas at BUTE/DMT, focusing on near-field experiments, monitoring of particleboards and WLAN- applications of patch radiators.

  9. Multi-objective optimal sensor deployment for satellite antenna reflector%星载天线反射面传感器多目标优化部署方案

    Institute of Scientific and Technical Information of China (English)

    李文博; 王有懿; 赵志刚; 赵阳

    2012-01-01

    传感器数量和位置的优化部署,是实现大型星载天线在轨获取高精度模态参数亟待解决的关键技术.为克服以往研究中采用单一优化准则所带来的局限性和片面性,设计观测信息正交性最大和能量最大的双优化准则,引入NSGA -Ⅱ算法进行多目标传感器优化部署求解.考虑到该算法仅适合连续性优化变量,存在收敛速度及多样性保持方面的不足,对其在编码方式和遗传算子设计两方面进行改进,并给出所有指标权重组合且分布均匀的Pareto最优解集.设计四种优化方案,进行仿真比较可得:基于改进NSGA -II算法的星载天线传感器多目标优化部署方案,较其他三种方案在性能指标上更优,且该方案更加符合实际工程的多指标优化设计要求,保证优化结果具有更高的灵活性和适应性.%To determine the number and locations of deployed sensors is the key technology to be solved for obtaining high precision modal parameters of large satellite antenna reflector on-orbit. To Bvoid the limitations and one-sidedness of single-objective criterion used in previous research work, the double-objective criterions were designed, which contain the largest orthogonality and the highest vibration energy of observed signals. NSGA- II algorithm was introduced in salving multi-objective optimization problem of sensor deployment. Considering the limitation that only continuous variables can be applicable and the deficiencies in convergence speed and diversity holding of NSGA-1, the coding and genetic operators were improved. Comparing the results of four cases with different single-objective and multi-objective criterions, the solutions based on improved NSGA- D are the best among these four cases according to all indicators, which are of greater flexibility and adaptability and can obtain the uniform distributed Pareto solution set, including all weight combinations of muki objectives. It can more

  10. A Deployable 4 Meter 180 to 680 GHz Antenna for the Scanning Microwave Limb Sounder

    Science.gov (United States)

    Cofield, Richard E.; Cohen, Eri J.; Agnes, Gregory S.; Stek, Paul C.; Livesey, Nathaniel J.; Read, William G.; Thomson, Mark W.; Kasl, Eldon

    2011-01-01

    The Scanning Microwave Limb Sounder (SMLS) is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission between 180 and 680 GHz. SMLS, planned for the Global Atmospheric Composition Mission of the NRC Decadal Survey, uses a novel toric Cassegrain antenna to perform both elevation and azimuth scanning. These provide better horizontal and temporal resolution and coverage than were possible with elevation-only scanning at typical Low-Earth orbit spacing in the two previous MLS satellite instruments. Development of the SMLS antenna was the focus of a 2006 Small Business Innovative Research (SBIR) program whose phase II culminated in the fabrication and thermal stability testing of a composite demonstration model of the SMLS primary reflector. This reflector has the full 4m height and 1/3 the width planned for flight. An Instrument Incubator Program (IIP) titled "A deployable 4 Meter 180 to 680 GHz antenna for the Scanning Microwave Limb Sounder" continues development of the SMLS antenna with the study of 5 topics: 1) detailed mathematical modeling of the antenna patterns from which we simulate geophysical parameter retrievals in order to establish FOV performance requirements; 2) thorough correlation of finite element model predictions with measurements made on the SBIR reflector. We will again measure deformations of this reflector, under more flight-like thermal gradients, using higher precision metrology techniques available in a new large-aperture facility at JPL; 3) fabrication of a full-width primary reflector whose asbuilt surface figure will better meet the figure requirements of SMLS than did the SBIR reflector; 4) integration of the primary with other reflectors, and with residual front ends built in a 2007 IIP, in a breadboard antenna; and finally 5) RF testing of the breadboard on a Near Field Range at JPL. We report on significant progress in 3 areas of the current IIP: development of

  11. Photo-generated THz antennas

    Science.gov (United States)

    Georgiou, G.; Tyagi, H. K.; Mulder, P.; Bauhuis, G. J.; Schermer, J. J.; Rivas, J. Gómez

    2014-01-01

    Electromagnetic resonances in conducting structures give rise to the enhancement of local fields and extinction efficiencies. Conducting structures are conventionally fabricated with a fixed geometry that determines their resonant response. Here, we challenge this conventional approach by demonstrating the photo-generation of THz linear antennas on a flat semiconductor layer by the structured optical illumination through a spatial light modulator. Free charge carriers are photo-excited only on selected areas, which enables the realization of different conducting antennas on the same sample by simply changing the illumination pattern, thus without the need of physically structuring the sample. These results open a wide range of possibilities for the all-optical spatial control of resonances on surfaces and the concomitant control of THz extinction and local fields.

  12. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry

    2015-01-01

    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  13. Antenna-assembling mechanism test on ETS-7

    Science.gov (United States)

    Suzuki, Yoshiaki; Kimura, Shinichi; Takahashi, Tetsuo; Nakamura, Kazuo; Morikawa, Hajime

    1994-01-01

    The Communications Research Laboratory plans to test an antenna-assembling mechanism on the Engineering Test Satellite 7. The test is one of the application missions for the space robotics experiments that will be conducted mainly by the National Space Development Agency of Japan (NASDA). The purpose of the test is to verify the ability of the antenna assembling mechanism to function in space and to experiment on the teleoperation of a space robot to develop antenna-assembling technology. We present the test experiment plans and the outline of the onboard assembling mechanism.

  14. Antenna System for Nano-satelite Mission GOMX-3

    DEFF Research Database (Denmark)

    Tatomirescu, Alexandru; Pedersen, Gert F.; Christiansen, J.

    2016-01-01

    In this paper, we present the antenna design for a nano-satellite mission launched in September, the GOMX-3 mission. Some of the key design challenges are discussed and the chosen solutions are presented. In an effort to minimize development and manufacturing costs for future missions, this study...... shows how to modify off the shelf components in order to tailor them to the specifications of the mission at hand. The performance of the antenna is increased by up to 1.4 dB with a simple modification to adjust the resonance frequency. The antenna system’s performance is investigated through simulation...

  15. Band-notched reconfigurable CPW-fed UWB antenna

    Science.gov (United States)

    Majid, H. A.; Rahim, M. K. A.; Hamid, M. R.; Murad, N. A.; Samsuri, N. A.; Yusof, M. F. M.; Kamarudin, M. R.

    2016-04-01

    A reconfigurable band-notched CPW-fed UWB antenna using electromagnetic bandgap (EBG) structure is proposed. Two structures are positioned adjacent to the transmission line of the UWB antenna. The band-notched characteristic can be disabled by switching the state of switch place at the strip line. The EBG structure produces reconfigurable band notched at 4.0 GHz, which covers C-band satellite communication (3.625-4.2 GHz) systems. The proposed antenna is suitable for UWB systems, which requires reconfigurable band reject function.

  16. RAE-B antenna aspect system

    Science.gov (United States)

    1972-01-01

    The development of a facsimile camera to serve as the antenna aspect system for the second generation Radio Astronomy Explorer Satellite designated RAE-B is summarized. The camera system consists of two cameras and a data encoder. The program deliverables were two flight cameras, a flight encoder and one spare flight encoder. The RAE-B satellite was originally intended for an earth orbit mission and the facsimile subsystem characteristics were specified with this in mind. Subsequently the flight mission was changed to orbit the moon; however the change occurred too late to significantly influence the facsimile system design. Therefore, this report considers only compliance of the system to earth orbit requirements.

  17. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  18. Antenna applications of superconductors

    Science.gov (United States)

    Hansen, R. C.

    1991-09-01

    The applicability of superconductors to antennas is examined. Potential implementations that are examined are superdirective arrays; electrically small antennas; tuning and matching of these two; high-gain millimeter-wavelength arrays; and kinetic inductance slow wave structures for array phasers and traveling wave array feeds. It is thought that superdirective arrays and small antennas will not benefit directly, but their tuning/matching networks will undergo major improvements. Miniaturization of antennas will not be aided, but much higher gain millimeter-wave arrays will be realizable. Kinetic inductance slow-wave lines appear advantageous for improved array phasers and time delay, as well as for traveling-wave array feeds.

  19. Tunable Handset Antenna

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Foroozanfard, Ehsan; Morris, Art

    2017-01-01

    With the future LTE auction for TV white spaces at 600 MHz, there is a strong need for efficient handset antennas operating at very low frequencies. This paper shows a tunable antenna covering the LTE bands from 600 MHz to 2.6 GHz. The antenna uses state-of-the-art MEMS tunable capacitors in order...... to reconfigure its operating frequency. In this work, the design mitigates the tuning loss with a tunable extended ground plane. The resulting dual-resonant antenna exhibits a peak total efficiency of -3.9 dB at 600 MHz....

  20. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...